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Abstract

This thesis presents a new light-weight specification language called JForge Speci-
fication Language (JFSL) for object-oriented languages such as Java. The language
is amenable to bounded verification analysis by a tool called JForge that interprets
JFSL specifications, fully integrates with a mainstream development environment,
and assists programmers in examining counter example traces and debugging
specifications. JFSL attempts to address challenges of specification languages such
as inheritance, frame conditions, dynamic dispatch, and method calls inside spec-
ifications in the context of bounded verification. A collection of verification tasks
illustrates the expressiveness and conciseness of JForge specifications and demon-
strates effectiveness of the bounded verification technique.
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Chapter 1

Introduction

Formal specifications are integral to automated reasoning about strong properties
of software systems. They provide the necessary formalism to express the required
conditions on the system that the designer has in mind. They are written in a rig-
orous language that has less ambiguities that plague natural language documen-
tation. Lastly but no less important, they facilitate formal analysis of the software.
The analysis can be either manual (performed by experts), completely automated,
or achieved by a combination of tools with human assistance.

Despite all the advantages of writing specifications, average programmers still
make little investment in providing formal specifications. We can think of with
several reasons for that. First, formal specifications require as much work as infor-
mal specifications if not more in understanding what the system actually does. For
certain parts of the system, such as public interfaces, specifications are certainly
necessary, but for other, internal parts, programmers are willing to take code as
its documentation. Second, formal languages are often less accessible to program-
mers because they require mathematical training, use semantics that is too remote
from the semantics of the programming language, or are simply too verbose. Un-
less there is some other good justification, a formal specification that is longer than
the specified code and operates on complex mathematical concepts is simply too
costly for average programmers. Finally, programmers expect to see a support
from tools that employ the formal specification in useful ways that is worth the
effort of writing them. For example, checking whether code matches its specifica-
tions is crucial to verifying programs and can justify large investments in writing
specifications.

In this thesis, we attempt to tackle some of these challenges in designing a spec-
ification language called JForge. We call the language "light-weight" since its tool
support is built on top of Alloy light-weight verification methodology [13], and it
attempts to be easy to use and accessible to programmers. The JForge specification
language (JFSL) aims to complement code written in Java. We also developed a
tool that comes in the form of a plug-in for Eclipse, a mainstream integrated de-
velopment environment for Java, that fully interprets JFSL and is able to perform
bounded code verification [9].



1.1 Motivation

There has been a considerable research effort recently in specification languages
for high-level programming languages. The Java Modeling Language (JML) is a
behavioral specification language for Java that has a wide variety of supporting
tools [7]. Spec# is a specification language for API contracts designed as an exten-
sion to C# language [6]. While being a behavioral interface specification language
in the same vein as JML and Spec#, JFSL is distinct in its approach to code verifi-
cation since its semantics views heap as a relational structure.

In an experimental study of KOA vote tallying software annotated with JML,
we showed viability of modular static analysis based on the bounded code verifi-
cation technique [9]. We identified a great potential of the underlying Alloy logic in
its ability to express strong heap properties in a concise form that was not exploited
by the front-end specification language to its fullest. For example, transitive clo-
sure, which is necessary to talk about trees and reachability in graphs, is a complex
construction in JML that has support from specialized tools only [14]. Alloy's logic
has transitive closure, that could be easily included in the front-end specification
language. On the other hand, underspecified semantics of treatment of method
calls in specifications presented a problem for JMLForge since it required higher-
order quantification and resulted in complex verification conditions. Static invari-
ants were abundant in the experimental code but did not work well with modular
verification approach. Lastly, the complexity of model types in JML as well as lack
of consistent and verified specifications for them limit the use of specification fields
in JML.

JFSL attempts to address directly the issues we encountered in JMLForge case
study. JFSL introduces relations as first-class citizens in the language and provides
navigation operators that facilitate the use of model fields. JFSL was designed to
be amenable to automated bounded analysis. JFSL takes advantage of the vast ex-
perience in writing declarative models in Alloy to find the right balance between
expressiveness of the language and full automated support by tools[13]. Finally,
we provide a collection of sample JFSL specifications to demonstrate its use in an-
notating programs.

We have identified the following challenges in designing a specification lan-
guage that we address in this work:

1. Specifications are hard to write, verbose, and prone to errors. JFSL uses highly
expressive Alloy operators for describing heap properties. JForge facilitates
debugging specifications and provides visual feedback for validating speci-
fications. Debugging specifications is especially important for modular pro-
gram verification because of the dangers of over- or under-approximation of
code by its specification [9].

2. Specification languages are complicated and plagued with inconsistent semantics.
JFSL is based upon relational first-order logic with transitive closure but is
consistent with substantial fragment of Java language semantics as well.

3. Specification languages are either not designed for mainstream programming lan-



guages or fall behind the progress of programming languages. JFSL is designed
to complement Java, a popular object-oriented programming language, and
uses its novel features such as annotations [11]. JForge tool operates only on
compiled byte code, which in theory is forward compatible with future ver-
sions of Java virtual machine. P. Chalin is leading a similar line of work for
updating software infrastructure for JML [18].

4. Programmers are reluctant to use specification languages and tools unless they are
integrated into development environment. JForge tool is integrated into Eclipse
development environment via a set of plug-ins for code verification, interac-
tive counter example trace stepping, and heap snapshot visualization. Re-
lated work is in progress for other specification languages. Visual Studio
now offers good support for Spec# and the Boogie theorem prover as well as
code contracts, a different technology from Microsoft for run-time and lim-
ited static checking [1].

5. Verification tools should be accessible to programmers and not require expert knowl-
edge in program verification. JForge tool uses bounded verification which ren-
ders the logic decidable, and thus allows full automation. It provides a sim-
ple push-button interface that produces counter example traces that are con-
verted to initial heap configurations and, thus, can be understood by pro-
grammers. This provides an additional benefit of easy validation of counter
examples since JForge makes some unsound approximations of program be-
havior. We believe that the light-weight approach to verification is desirable
as it can give meaningful results with little investment in verification; in par-
ticular, it provides an ability to verify parts of the system in a modular fash-
ion.

1.2 Binary Search Example

We illustrate our proposed solution with a famous bug in binary search routine
that stayed unnoticed for years in the Java API [4]. Listing 1.1 presents the method
together with its JFSL specification. Given an array a and a key key, this method
either returns an index for the array entry that equals to the key, or a negative
number if the array has entries equal to the key. The bug is triggered only for
arrays of length sufficiently large to cause an integer overflow in expression (low +
high) / 2. The correct implementation should instead use (low + high) >>> 1.

The specification of this method consists of two parts. The pre-condition spec-
ifies that the input is a sorted array. The post-condition specifies that if the key is
in array, then an index to corresponding entry is returned non-deterministically;
otherwise, a negative number is returned. As you can see, specifications are rela-
tively short and the expression language is similar to Java with elements of Alloy
for quantifications.

JForge can analyze this method for violations of refinement of code and spec-
ification. If we perform bounded verification in the scope of at least two loop
unrollings, JForge automatically finds a counterexample such as the one seen in



Listing 1.1: Buggy binary search from Java API

@Requires({"a != null",
"all i:int, j:int I 0<=i&&i<j&&j<a.length => a[i]<=a[j]"})
@Ensures("(some i : int I a[i] = key) ? a[return] = key : return < 0")
int binarySearch(int[] a, int key) {

int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high) / 2;
int midVal = a[mid];
if (midVal < key)

low = mid + 1;
else if (midVal > key)

high = mid - 1;
else

return mid; // key found

}
return -(low + 1); // key not found.

Figure 1-1: Counter example for the buggy binary search implementation

initial state:
key = 1
a = [-4, 0, 2]

low = 0
high = 2

$iO := (low plus high) goto Stmtl0O
$iO = 2
mid = 1

low = 2
$iO := (low plus high) goto StmtlO

$iO = -4
mid = -2

final state:
binarySearch_throw = java.lang.ArrayIndexOutOfBoundsException$Lit



figure 1-1. Since the analysis is bounded, the bit width is approximated to 3 which
means values of integers span the range {-4, -3,..., 3}. In the counter example,
overflow happens at the second loop iteration in evaluating 2+2 which results in
-4. In the end, method queries an array for a negative index, which in Java always
fails with an exception and failure to satisfy the post-condition of the method.

While the approximation is unsound, the bug is real since the same overflow
may happen in Java but for larger numbers. Moreover, with a couple lines of spec-
ifications from the programmer, JForge completely automatically discovers a non-
trivial counter example that would be much harder to find with testing. Much
of empirical evidence that has been collected for counter examples to models and
code suggests that the limited scope of analysis may in fact discover many more
if not all bugs [5] [9]. This claim is known as the small scope hypothesis. While the
counter example traces might not be valid in Java because of unsoundness of anal-
ysis, they may correspond directly with real bugs just like in this example.

1.3 Thesis Outline

In section 2 we explain the framework of bounded verification that stems from re-
search on Alloy modeling language and light-weight formal methods, and present
an overview of the tool chain.

In section 3 we define JFSL language formally and describe its syntax via gram-
mar production rules. The challenge lies in incorporating elements of Alloy lan-
guage and Java language and resolving inconsistencies in the interpretation.

In section 4 we explain the semantics of the language and translation to bounded
verification logic. We explain how we solve the problem of invariant relevancy us-
ing the notion of a scene. We show how specification fields fit naturally into the ab-
stract data type pattern in Java. Frame conditions on the specification fields solve
the problem of sub-typing and specification inheritance. We explain how JForge
solves the challenge of method calls inside specifications via a simple substitution
mechanism.

In section 5 we give an overview of the static analysis tool built as an Eclipse
plug-in and show its functionality. We also present an overview of the architecture
of the tool chain. The challenge here is to bring an intricate verification technology
to the hands of a non-expert programmer. We discuss the kinds of automated anal-
ysis that JForge supports, and JForge solves the usability problem of verification
tools.

In section 6 we demonstrate a collection of examples of using our code. We start
with a Red-Black tree implementation that shows the power of JForge in describing
complex heap properties.

Finally, in section 7 we conclude and present directions for the future work.
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Chapter 2

Methodology

JFSL is designed to work well with bounded verification approach although it is
not coupled with it. Because of that reason, much of semantics of JFSL is derived
from Forge and its intermediate representation (FIR) [10]. In this chapter, we de-
scribe this intermediate representation and present an overview of JForge.

2.1 Bounded Verification

FIR is a common medium in which both specifications and code reside. It has both
procedures and imperative control flow graphs as well as specification statements
for declarative constraints. This way specifications and code are treated uniformly.
One may think of JForge as a translator from JFSL into FIR. Specifications are trans-
lated into FIR expressions, which are then inserted into Forge control flow graphs.
Forge has relations, transitive closure, integer arithmetic, set operations, relational
join and override, and conditional expressions (see figure 2-1.)

Forge accepts a Forge procedure and a specification as its input. Once the
bounds are specified, Forge attempts to find a counter example which is a trace
of the procedure that violates the specification. The bounds specify the number of
atoms per each domain, the bit width, and the number of loop un-rollings. If no
counter example is found then one can be confident that there is no initial heap
configuration with the number of atoms per domain within the bounds and inte-
gers with the given bit width, such that the procedure executes with no more than
the given number of loop iterations and completes in a state, in which specification
fails. For that reason, this approach is called bounded verification.

2.1.1 Java-to-FIR Translation

JForge includes a translator from Java byte code to Forge intermediate represen-
tation based on SOOT framework [20]. This component has undergone evolution
from its use in JMLForge [9] and now is substantially more mature. The translator
operates only on the byte code representation. It does not handle several features

~~_1~_~^1 _i___;__l( ~~~_j *.I.IIEIXLII-I-~LII



Expr ::=
varld I litld I domlD 0 leaf

Expr C Expr subset

Expr {= I $} Expr (in)equality
I {some I one I lone I no} Expr multiplicity
I Expr {U I n I \} Expr set operations
I Expr. Expr join
Expr - Expr cross product

Expr E Expr override
^ Expr transitive closure
, Expr transpose

I r(Expr, IntegerLiteral*) projection
I Expr ? Expr : Expr conditional
I {varld* I Expr} comprehension
I - Expr boolean negation
I Expr {A I v} Expr boolean operations
I {VI 3} varld* I Expr quantification
I E varld* I Expr summation
I Expr {+ - I x l+l mod} Expr arithmetic
I Expr {> I < I I <} Expr integer inequality
I Expr { I & I^ <I I >> I Expr bitwise operations
I # Expr cardinality
Svarldld pre-state variable

Figure 2-1: FIR expression grammar

that are not supported by our bounded verification technique such as real arith-
metic or synchronization mechanisms. However, there is no reason apart from
the required engineering effort, that bounded verification can in theory support
synchronization commands.

A Java program is converted to Forge procedures as follows. First, the scope on
types is reduced to a finite set of Java types relevant to the program. Then each of
these types is converted to its own instance domain, a set of atoms corresponding
to instances of the actual type (or unknown sub-type.) The presumption here is
that the principle of behavioral inheritance holds for sub-typing relation in Java
and the unknown sub-types obey specifications of their super types. Then the set
of atoms of any given declared type is the union of the instance domains for all
reflexive transitive sub-types and the special null domain for the single null atom.
Fields are represented as relations from the declaring type to the value type. Arrays
are represented as relations from the array type to integers to the base type. More
subtle details such as handling of dynamic dispatch is explained in greater detail
elsewhere [10].

Translation from Java is not fully accurate and some sources of unsoundness
are introduced. As we have seen before in binary search example, change of bit-
width triggers bugs that do not actually appear in real Java executions but may
manifest themselves in larger scope. In addition to that, JForge takes liberty in
introducing some unsound approximations such as interning all string literals and
restricting all exception class domain to be singletons.

2.1.2 JFSL-to-FIR Translation

JForge uses the ANTLR parser generator to parse, type check, and translate spec-
ifications in JFSL. ANTLR grammar follows extended the Backus-Naum form of



Forge

Kodkod

SAT

Figure 2-2: JForge toolkit module dependency diagram

JFSL (see 3-1) very closely and was initially derived from ANTLR grammar for

Java [2]. The translation proceeds in phases from building an abstract syntax tree

for JFSL, type checking using SOOT-loaded class signatures, and translating into
FIR.

JFSL considers the heap as a set of atoms for each type, and a collection of

relations representing the fields of the types. For any type T, expression T stands

for the set of all non-null aton of type T; for interfaces it includes atoms for all

classes implementing the interfaces, and for classes it includes atoms for all sub-

classes as well. For example, expression int stands for the bounded subset of all

primitive integers {..., -1,0, 1,...}.

2.2 Toolkit Overview

The JForge toolkit consists of the following components organized as shown in

figure 2-2:

1. JForge Eclipse Plug-in is a plug-in for Eclipse that integrates into the develop-
ment environment, executes JForge analyses and presents results to the user;

2. JForge is the main tool that exports public interfaces to perform analysis on
methods annotated with JFSL specifications;

3. Eclipse represent a collection of dependency plug-ins such as Graphical Edit-

ing Framework (GEF) for visualizing heap snapshots;

4. Forge by Greg Dennis [10], Kodkod by Emina Torlak [19], and SAT provide the

back-end of bounded verification analysis;

5. SOOT is a byte code optimization framework that is used for translation from

Java to FIR [20];
6. ANTLR is a run time library for parsing JFSL expressions given production

rules for the grammar [2];
7. Annotations is a shared library of JFSL Java annotations;



8. API Specifications is a library of specifications for commonly used classes from

Java API, mostly from collections framework.

JForge takes as its input a compiled Java class and a method identifier. Then it

extracts all relevant specifications from the compiled classes, library of API speci-

fications, and refinement JFG files, constructs abstract syntax trees using ANTLR,
and translates them into FIR. It translates code into FIR using SOOT starting from

the raw byte code and applying SOOT optimizations to obtain static single as-

signment (SSA) form. The output of JForge is either a trace of a counter example
(which specifies the initial pre-state, sequence of steps, and the final post-state heap

configuration), or coverage information (only available if the back-end SAT solver
supports unsatisfiable core extraction.)

The JForge Eclipse plug-in presents this information within the environment
itself and facilitates interactive validation of the counter example as described later
in chapter 5.



Chapter 3

JFSL Reference Manual

This chapter presents the JFSL reference manual - the annotations facility, JFG file
format, and the syntax of the language.

3.1 Java 5 Annotations

JFSL introduces a collection of Java 5 annotations that provide the means of writing
the specifications directly in Java source code. The annotations are stored as strings
in Java byte code, and they are understood by the JForge tools. These annotations
belong to the package edu.mit.csail.sdg.annotations:

1. @Invariant type annotation specifies type invariants (see 3.5.1)
2. @Helper method annotation tags a method as a helper method (see 3.5.1)
3. @SpecField type annotation is a declaration of specification fields (see 3.5.2)
4. @Requires method annotation specifies a light-weight pre-condition (see 3.6.1)
5. @Ensures and @Effects method annotations specify light-weight post-conditions

for normal executions (see 3.6.2)
6. @Returns method annotation is a syntactic sugar for a light-weight post-condition

for normal executions (see 3.6.2)
7. @Throws method annotation specifies a light-weight exceptional post-condition

(see 3.6.4)
8. @Modifies method annotation specifies a light-weight frame condition (see

3.6.3)
9. @Pure method annotation is a syntactic sugar for an empty frame condition

(see 3.6.3)
10. @Specification method annotation specifies a heavy-weight specification (see

3.6.5)

Each of these annotations takes a string value that contains a JFSL expression.
It is possible with most of them to supply an array of strings instead of a single
string. The meaning of an array of strings complies to the natural interpretation,
i.e. multiple strings in specification field declaration would provide multiple dec-
larations of distinct fields.



3.2 Formal Grammar

The following section describes the grammar of JFSL in Extended Backus-Naur
form. The operators used in the production rules are Kleene star (*), choice opera-
tor (I), and option ([...].)

3.2.1 Design Considerations

The grammar of JFSL matches the grammar of Java 5 language closely. That means
most side-effect free expressions in Java 5 belong to JFSL and carry the same se-
mantic meaning. However, most of the operators in JFSL are overloaded with
more flexible semantics of Alloy operators. The main semantic difference between
JFSL and Java 5 is that every expression in JFSL evaluates to a set of tuples like in
Alloy. Scalars are treated as singleton sets. In particular, JFSL lacks any notion of a
higher-order set. Both x and {x} are equivalent in JFSL. The lexical analyser rules
of JFSL are identical to Java 5. Decimal integers, floating point numbers, and string
literals are written in the same way as Java 5. The lexical rule for the identifier is
borrowed from Java 5:

id ::= Letter (Letter I JavalDDigit)*

where Letter represents any non-digit Unicode character. The following Java ex-
pressions are permitted in JFSL:

1. conditional expressions (expr ? expr : expr);
2. boolean operators for "or" (II) and "and" (&&);
3. bit operators (I, ̂ , &, > > >, < <, and >>);
4. equality and comparison operators (==, !=, <, >, <=, and >=);
5. arithmetic operators (+, -, *, /, and %);
6. boolean negation operator (! unary operator);
7. instanceof expressions.

Non-side effect free expressions are not permitted in JFSL. These include variable
assignment (=), and integer postfix and prefix operators (++ and -. ) The opera-
tor = can be used in JFSL but its meaning is equivalent to operator ==. Another
significant difference between Java and JFSL is that this is required in any field
dereference expression since fields are interpreted as binary relations. Thus, there
is no implicit this in JFSL.

3.2.2 JFSL Expressions

This section describes JFSL expression language in full detail. The entire grammar
is presented in figure 3-1 in extended Backus-Naur form. The order of precedence
and associativity of operators in the grammar are from low to high.These rules are
consistent with Java 5 language specification. The set operator precedence and as-
sociativity is generally consistent with Alloy. However, their combination slightly
deviates from Alloy.



expression ::= conditionalExpression
conditionalExpression ::= quantifiedExpression [? expression : expression]
quantifiedExpression ::= setQuantOp decls 'I' expression IogicalExpression
setQuantOp ::= setUnaryOp # i all
logicalExpression ::= conditionalOrExpression [<=> I <! > I => conditionalOrExpression]
conditionalOrExpression ::= conditionalAndExpression (I conditionalAndExpression)*
conditionalAndExpression ::= inclusiveOrExpression (&& inclusiveOrExpression)*
inclusiveOrExpression ::= exclusiveOrExpression (I exclusiveOrExpression)*
exclusiveOrExpression ::= andExpression (^ andExpression)*
andExpression ::= equalityExpression (& equalityExpression)*
equalityExpression ::= instanceOfExpression (== I! = I =) instanceOfExpression)*
instanceOfExpression ::= relationalExpression [instanceof type]
relationalExpression ::= setUnaryExpression ( <= I >= I < > I in I !in)
setUnaryExpression)*
setUnaryExpression ::= setUnaryOp joinExpression I shiftExpression
setUnaryOp ::= setDeclOp I no I sum
setDeclOp ::= one I some I lone
shiftExpression ::= additiveExpression ((<< i >>> i >>) additiveExpression)*
additiveExpression ::= sizeExpression (( + -) sizeExpression)*
sizeExpression ::= (# joinExpression) I multiplicativeExpression
multiplicativeExpression ::= setAdditiveExpression ((* I / I %) setAdditiveExpression)*
setAdditiveExpression ::= overrideExpression (@+ @-) overrideExpression)*
overrideExpression ::= intersectionExpression (++ intersection Expression)*
intersectionExpression ::= composeExpression (@& composeExpression)*
composeExpression ::= unaryExpression (- > unaryExpression)*
unaryExpression ::= (+ I - I !) unaryExpression I unaryExpressionNotPlusMinus
unaryExpressionNotPlusMinus ::= castExpression I joinExpression
joinExpression ::= primary selector*
castExpression := ( primitiveType ) unaryExpression
decls ::= id (in I :) additiveExpression (, id (in I :) additiveExpression)*
common :: = (expression )

I return I throw I this I super
I @old ( expression )
I @arg ( integerLiteral)
I relationalUnaryExpression
I { decls I expression }

relationalUnaryExpression ::= specUnaryOp ( expression ) I specUnaryOp id
specUnaryOp ::= @A I @- I
primary ::= common I literal I typeDisambiguous I

id (. id)*
I typeName @ id

selector ::= . id arguments I
. id I . common I
. * id . * common I
'[' expression ']'

Figure 3-1: JFSL expression language EBNF



3.2.3 Set Expressions

Set and tuple operations in JFSL are:

1. + (and @+) is set union;
2. - (and @-) is set difference;
3. & (and @&) is set intersection;
4. ++ is the relational override;
5. in and !in are subset relationship tests (and negated test);
6. = and == are interchangeable set equality tests;
7. - > is the Cartesian product.

Java operators (+, -, and &) acquire semantics of set operations instead of arith-
metic operations whenever Java specification allows that(see 3.2.6.)

3.2.4 Primary Expressions

The following Java primary expressions are allowed in JFSL:

1. this literal;
2. boolean and integer literals;
3. fully-qualified type names and ambiguous identifier names (not that '.' car-

ries different semantic meaning in package names and relational join chains);
4. parenthesised expressions.

JFSL introduces several new primary expressions:

1. return refers to the return value of the method (if it is available);
2. throw refers to the thrown exception (or null if none is thrown);
3. @old evaluates the sub-expression in the pre-state;

4. @arg refers to the method parameter by index (Java does not preserve argu-
ment names in interfaces and abstract classes.);

5. navigational expressions such as ^ id which is a closure of the relation of id
6. set comprehension expressions;
7. qualified field references type @ id that refer to the field id in type type as a

relation.

3.2.5 Relational Expressions

JFSL provides several operators for navigating relations. Together with the rela-
tional join they offer a concise and flexible way to describing complex conditions.
These operators are:

1. . is the relational join operator.
2. .* is the reflexive transitive closure join operator;
3. ^ (and @^) is the transitive closure unary operator;



4. - (and @-) is the relational transpose unary operator;

The use of @ in operator names is not mandated since the type inference au-
tomatically converts bitwise exclusive "or" (^), number multiplication (*), and bit-
wise complement (-) operators into relational operators if it detects that Java op-
erators cannot be applied to the inferred types of the arguments (see 3.2.6.)

3.2.6 Operator Conversion

The meaning of arithmetic operators +, -, and & depends on the types of their
sub-expressions which are derived using type inference rules (see 3.3.) If at least
one of the sub-expressions has a non-numeric type, the operator is automatically
converted to a set operator (@+, @-, and @&, respectively.) A numeric type is a
type of arity 1 corresponding to a numeric primitive type in Java.

For example, expression 1+2 evaluates to 3 but expression 1 + "2" evaluates to
{1, "2"}.

Note that while operator conversion does not interfere with expressions involv-
ing only values of numeric types, it conflicts with Java's rule of string promotion
for +.

Similar mechanism resolves the meaning of the ambiguous - operator that
could either be a bit-wise not operator or a relational transpose operator using
the type of the sub-expression. Other ambiguous operators can be resolved from
the context without type information.

3.2.7 Set Comprehension

Set comprehension expressions are written with curly braces:

{ decls I expression }

The elements in the set are tuples of variables from the declaration decls that
satisfy the predicate expression. For example, the set of integer pairs (x, y) such
that x2 + y2 = 25 is written in JFSL as:

{x:int, y:int I x*x + y*y = 25}

3.2.8 Quantification Expressions

There are two types of quantification expressions in JFSL. One form has the fol-
lowing grammar:

quantifiedExpression ::= setQuantOp decls '1' expression I logicalExpression
decis ::= id (in I :) additiveExpression (, id (in I:) additiveExpression)*

The expression evaluates to either a boolean or an integer scalar based on the
kind of the quantification operator. The interpretation of the quantification expres-
sions is the following:



* one : there is exactly one tuple of declared variables from their respective
domains that satisfies the predicate logicalExpression

* some : there is at least one such tuple;
* lone : there is at most one such tuple;
* no : there are no such tuples;
* all: for any tuple of declared variables in their respective domains, the pred-

icate is true;
* sum : the value is the sum of values of the formula expression for all tuples

of variables in the domain;
* # : the value is the total number of tuples of variables in the domain that

satisfy the predicate logicalExpression.

Another kind of quantification expressions omits the predicate altogether and
is described by the following grammar:

relationalUnaryExpression ::= specUnaryOp ( expression ) I specUnaryOp id

The expression has the following meaning depending on the type of the quantifier:

* one: there is exactly one element in the set that sub-expression evaluates to;
* some: there is at least one element in the set;
* lone : there is at most one element in the set;
* no : there are no elements in the set;
* sum: the value is the sum of integer elements in the set;
* #: the value is the number of elements in the set.

3.2.9 Logic Expressions

JFSL has operators for logical equivalence (<=>), negation of logical equivalence
(<! >), and logical inference (=>.)

3.2.10 JFG File Format

While the annotation facility of Java 5 is convenient to use in practice, there is
a need for an alternative way to provide specifications. I designed a specification
file format that serves this purpose. The grammar for the file is shown in figure 3-2.
The files of this format are automatically loaded by our tools if they are present in
the class path. The specifications from multiple sources (JFG files and annotations)
are unified together according to the following rules:

* invariants from both sources are logically conjoined;
* specification field declarations from both sources are combined;
* method specification cases are combined;
* for a given method, the resulting specification is pure if at least one of the

sources is pure, and helper if at least one of the sources is helper.



compilationUnit ::=
package packageName;
(import importName)*
typeDeclaration ;*

typeDeclaration ::=
(class I interface) id [typeParameters]
{ typeBodyDeclaration* };

typeBodyDeclaration ::= ; I typeDeclaration
I @lnvariant ( expression )
I @SpecField (declaration)
Sid ( methodParameters) { specCase (';' specCase)* ;* }

specCase ::=
[@Requires( expression )]
[@Ensures ( expression) I @Throws ( expression ) ]
[@Modifies ( frame )]
I @Helper
I @Pure

Figure 3-2: JFG file format

Specifications within JFG specification case sections are identical to specifica-
tions within annotation specifications.

The mechanism of JFG file format provides a means to refine pre-existing spec-
ifications access to which is limited, due to unavailability of the source code for
example.

3.3 Type Inference

The type system of JFSL is based on the notion of a tuple type. A tuple type is a
vector of Java types:

T1 --- T2 --- . . Tk

where each Ti is a Java type. We call k the arity of the type.
Type inference for tuple types of arity 1 works exactly like in Java. For example,

arithmetic operators or field dereferences.
For tuple types of arity 2 set operations require new inference rules which are

presented in figure 3-3. These rules use the function LCA(T, U) that gives the least
common super-type of T and U in the single inheritance hierarchy. Traditionally,
we consider arrays and interfaces as descendants of java.lang.Object. Primitive types
fall out of the object hierarchy but they have their own inheritance tree [11].

While Forge has its own type inference rules, they use the fact that the set of
types is finitized before type checking, i.e. the universe is reduced to a finite set
of types. In that case, the types may be considered as simply sets of elements and
set operations directly applied to these set representations. JFSL type inference
cannot make an assumptions about unknown sub-types. Therefore, the rules for
JFSL only use super-type information and make crude estimations of the values.



UNION

a: T- Tk
a + b: LCA(T, U1 ) -+ ... - LCA(Tk, Uk)

DIFFERENCE

a: T --+... -+ Tk b: U ... Uk
a - b: Tl -... Tk

INTERSECTION

a: T, -... --+ Tk b: U1 --...- Uk

a&b: LCA(T1 , U) -+ ... - LCA(Tk, Uk)

JOIN

k > 1 1 > 1 a: T - ... -Tk b: U - ... U1

a.b:T 1 - ...- Tk-1 - U2  U1 ...

REFLEXIVE TRANSITIVE JOIN

k > 1 a: T -- ... --- Tk b: U1 -+ U2

a. b: T - ... .- Tk-1 - LCA(Tk, U2)

PRODUCT

a: T --. ..-- Tk b: U1 -... U

a -+ b: T1 - ... - Tk U1 - ... U1

Figure 3-3: JFSL type inference rules

A challenging aspect of the type system is handling the transitive reflexive clo-
sure. Initially, closure was considered a unary operator. That posed the question
what the type of the identity relation should be. The identity relation is a binary
relation that maps every atom to itself. In our type system it would acquire the
type Object-O0bject which is useless for resolve field dereferences on the right hand
side. Due to this challenge, we decided that reflexive transitive closure deserves a
special binary operator.

Type inference in JFSL produces a bound on the exact type of sub-expressions.
For Java expressions the inference rules derive the compile-time type of the expres-
sion. This inference is a modular static analysis that only requires knowledge of all
super types of relevant types.

Type information does not capture information about whether an expression is
a singleton or not. Therefore, a set of elements has the same type as the elements
themselves. Despite that, type checking can possibly detect many type violations
inside boolean predicates and integer expressions.

3.3.1 Name Resolution

The identifiers in the expressions are resolved using the context of the expression.
The context includes the stack of local variables such as the receiver and method

b: U, -- .. -+ Uk



parameters as well as global variables in the declaring type.
Resolution of a selector expression uses the context of the preceding selector or

primary expression. The context brings forward the name space corresponding to
the right-most type in the inferred type of the preceding expression. This name
space includes all the declared visible members of the type. This rule ensures that
all valid Java field dereference expressions are correctly parsed and interpreted in
JFSL.

Evaluation of the selector expressions proceeds from left to right starting from
the primary expression. The production rules for the selector expressions include
almost all of possible primary expression types. These expressions are joined to-
gether to the right-side of the primary expression. The only additional selector
expression is the array bracket expression.

The meaning of the expression depends on the type of the previously evaluated
left-hand side expression. If it has an array type, then Java array dereference is
performed. Otherwise, the expression is treated as a left-side join. For example,
expression a[b] is equivalent to b.a if the type of a is not an array type.

There is an additional explicit field of arrays elems that evaluates to the binary
relation from the indexes to the elements in the array.

3.4 Undefinedness

JFSL is a declarative language so the only way it can handle undefined expres-
sions is by choosing and assigning a special value for all sub-expressions that are
not well-defined. The convention of the language is that the undefined value is an
empty set. The result is that field dereferences of null and illegal arithmetic expres-
sions, such as division by zero, are evaluated to 0.

3.5 Type Specifications

Type annotations belong to data type definitions in Java, i.e. interfaces and classes
declarations. While they can be attached to individual members of types, there
is no special treatment of this relationship. Type specifications are inherited via
sub-classing and interfaces.

3.5.1 Invariants

Invariant expressions are simply expressions in JFSL that evaluate to boolean value
according to the type inference rules. The predicate for expression expression is
expression = true. The expressions are evaluated in the context that contains the
declaring type and the literal this of the declared type.

A special annotation is used for methods that do neither need to assume nor
guarantee invariants. Methods marked with @Helper tag serve as helper methods.



3.5.2 Specification Fields

The grammar of a field declaration is the following:

declaration ::= id : [mult additiveExpression [from frame [ expression]]
mult ::= setDeclOp I set I seq

The identifier id is the name of a specification field. All specification fields
are instance fields and share the same name space as Java fields belonging to the
declaring type. We call additiveExpression the upper bound of the field idj frame the
frame of the field id, and expression the abstraction function of id.

The specification fields are public, i.e. they can be accessed within any spec-
ification expressions. They can only be updated via the abstraction function or
explicitly via a post-condition.

The multiplicity factor of a specification field is interpreted as follows. Let U be
the inferred type of the upper bound in the declaration in a type T. Then the type
of the field relation is:

T ---, U

unless the multiplicity modifier is seq, in which case it is

T - int -- U

The multiplicity keyword also imposes a condition on the value of the field for a
given instance t E T:

1. one - the field has a singleton value similar to Java fields;
2. some - the value is a non-empty set;
3. lone - the value is either an empty-set or a singleton;
4. set - the value is an arbitrary set;
5. seq - the value is a sequence.

Similar to Alloy, if U has arity 1, then the default (unspecified) multiplicity is
one; otherwise, it is set.

These constraints are considered a part of the abstraction function of the field.

3.6 Method Specifications

Specification cases are written within method-only annotations. There are three
kinds of specification cases provided by annotations:

1. lightweight specification case is formed from the top-level method annota-
tions for the pre-condition, post-condition, and so on;

2. exceptional specification cases are extracted from a special method annota-
tions;

3. heavyweight specification cases are written inside a structured annotation.



3.6.1 Pre-condition

A normal pre-condition is written inside @Requires method annotation or inside the
heavyweight specification. Syntactically, the pre-condition expressions satisfy the
following conditions:

1. the local variables are method arguments and, if the method is non-static,
this;

2. access to members of other types is limited only by the type context, i.e. all
private members of the declaring type are accessible but not those of other
top-level types;

3. @old expression is prohibited.

The pre-condition is meant to be evaluated in the pre-state of the method.

3.6.2 Post-condition

A post-condition for the light-weight specification case is written inside either
@Ensures or @Returns method annotation. The expression inside @Ensures satisfies
the following conditions:

1. the local variables are method arguments holding their pre-state values, this
(if the method is non-static), and return (if the return type of the method is
not void.)

2. access to members of other types is limited only by type context

@Returns annotation serves as a syntactic sugar. The condition @Returns("expression
") is equivalent to @Ensures("retum = expression").

The post-condition is meant to be evaluated in the post-state.

3.6.3 Frame Condition

A frame condition for the light-weight specification case is written inside @Modifies
annotation. The grammar for frame expression is the following:

frame ::= [storeRef (; storeRef)*]
storeRef ::= storePrimary storeSelectors
storePrimary ::= id I common
storeSelectors ::= selector* .* I selector+

All expressions in the frame condition are evaluated in the pre-state, and so
@old expression is prohibited.

For every storeRef expression, the selector fields are resolved using type infer-
ence rules using the storePrimary as the left-most expression. The special keyword
* is resolved to all the fields of the type (as determined by type inference.) The
fields include both concrete Java fields and specification fields.

A special tag annotation @Pure attached to a method serves as a shortcut for
adding a specification case with the trivial pre-condition and post-condition (which
is true) and an empty frame condition. This specification says that the program may
not modify the existing heap state under any circumstances.



3.6.4 Exceptional Case

@Throws annotation provides exceptional specification cases. The grammar for the
condition inside the annotation is the following:

throwsCondition ::= typeName : expression

This is a short way of adding a specification case with the pre-condition expression,
empty frame condition, and the post-condition:

throw in ExceptionType

where ExceptionType is the resolved type of typeName.
For example, the exceptional behavior triggered by parameter node being equal

to null can be written as:

@Throws( "NullPointerException : node = null")

The post-condition here is that the NullPointerException is thrown and no changes to
the heap are made.

3.6.5 Heavy-weight Specification Cases

For more complicated specifications, an alternative form of specification cases is
provided:

@Specification( {
@Case(requires = {"no x in this.nodes I x.key < node.key", "node

in this.nodes"}, ensures = "return = null"),
@Case(requires = "node = null", ensures = "throw in

NullPointerException", type = Type.EXCEPTIONAL) })

The specification cases are written as fields of an annotation type but the same
rules apply to the expressions as in light-weight specification case. The only differ-
ence concerns throw variable which can be directly referenced in the post-condition
of an exceptional specification case.

Heavy-weight specifications may provide multiple specifications for normal
execution unlike the light-weight specifications. They also use slightly more ver-
bose syntax. If both heavy-weight and light-weight specification cases are present,
they are combined together.

3.6.6 Default Values

If any of the annotations @Requires, @Ensures, @Modifies is present then the light-

weight specification case is constructed. The default values for pre-conditions and
post-conditions are true. The default frame condition is empty. The same default
values hold for omitted heavy-weight specification case fields.

There are no default heavy-weight or exceptional specification cases.



Chapter 4

Semantics of JFSL

In this chapter, I explain the interpretation of JFSL specifications in the intermedi-
ate representation. The representation is based on the Forge framework and uses
first-order logic with relations and transitive closure to express the specification
conditions.

4.1 Invariants

Invariants provide an intuitively appealing and light-weight means of formalizing
behavior of all objects of the given type. However, designing a modular semantics
for invariants meets substantial challenges. The basic problem is understanding
the dependence of method specifications on the invariants across types as well as
dependence of invariants on other invariants, which is frequent in layered object
structures. Another challenge occurs in combination of invariants and object type
hierarchies because of disparity between the exact and the inferred type of objects.

One approach to this problem is the explicit validity predicate on every object.
Spec# uses the notions of packing and unpacking which allow explicit guarantees
and assumptions of object invariants. However, this introduces a major language
change on the level of C#, the base source code language. It is rather heavy and
complicated in its usage.

The approach that JForge uses is much more lightweight. However, it has its
own drawbacks that may deem it less modular or tied to the particular tool I devel-
oped. Central to this approach is the notion of a scene. A scene is a tuple (T, F, M)
of types T, fields F, and methods M. There is a natural containment relation on
scenes induced by subset containment. Every scene satisfies the following condi-
tions:

1. T is closed under "extends" and "implements" relations, i.e. every type in T
has all its super-types in T;

2. declaring class of every field in F is in T;
3. declaring class of every method as well as the declaration types of its argu-

ments in M are in T;



4. scene of the specifications of methods in M is contained in the scene;
5. scene of every abstract field in F is contained in the scene;
6. scene of every invariant of every type in T is contained in the scene;
7. scene of any expression that contains a method call includes the scene for the

method.

Scenes define the notion of relevancy of Java elements to JFSL expressions (not
only basic expressions but also declarations, predicates, and frames). A type, a
field, or a method is relevant to JFSL expression if and only if it belongs to the
smallest scene containing the expression. One can think of the scene as the minimal
knowledge one must collect to reason about the expression in a modular fashion.
The scenes for non-basic JFSL expressions are defined as follows:

1. the scene of a specification is the union of the scenes for its pre-conditions,
post-conditions, and frame conditions;

2. the scene of a specification field declared in a type T is the union of the scene
of its declaration, frame, and abstraction function in declaration in T.

We can now formalize the notion of invariants in JFSL by saying that the in-
variant of a type is the conjunction of invariants of types in the smallest scene con-
taining the type. More generally speaking, the invariant to be used in an analysis
that requires a scene (T, F, M) is the conjunction of invariants of types in T.

JFSL only allows invariants on instances but not on types. The motivation for
that is that static invariants go against modularity of specifications. In addition to
that, the non-determinism in Java virtual machine class loading mechanism make
inference of relevant static invariants hard.

The immediate benefit of this design is that invariants are implicitly inferred
and the inferred invariants are only the ones that are relevant to the system. Below
are the points of criticism that we should address.

Dependence on the form of expressions The scenes for different methods may
differ even though the methods may belong to the same class. Scenes may also
change depending on how the expression is expressed. A convoluted example is
when an invariant of some type is unsatisfiable but the type itself is only relevant
to some of the methods but not others. This situation will make specifications of all
methods relevant to this type have pre-conditions false. Moreover, changing the
scene of an expression by referencing another type or a field may inflict changes in
the invariants of a specification. We see this as a trade-off in favor of modularity of
the approach. It is not feasible to consider all invariants of a system in any modular
analysis, and it is also not desirable to have explicit validity predicates that would
tell whether the object is valid or not as in Spec#.

No explicit control for layered objects If a type has multiple components then
there is no explicit control on saying that the invariant of type depends on the in-
variants of its components. The situation becomes worse if the mutator methods



may break invariants of components selectively while assuming invariants of other
components. While it is possible to express that the method is a helper, there is no
fine-grained control of validity of the object and its components. Our approach ap-
plies to the methods of the top-level class but may not work well for specifications
of components within a top-level class.

4.2 Specification Fields

Specification fields are very useful in modeling the abstract state of Java objects [12].
They are the primary means of abstraction in verification process reducing com-
plexity of multiple implementations of an abstract data type to a single model. In
our experience, specifications fields simplify description of operations on a data
type. Since Java facilitates design of abstract data types via interfaces and inheri-
tance, JFSL uses similar mechanics of fields and types for declaration of specifica-
tion fields.

For exposition we will use a directed graph as an example. Abstractly, a graph
consists of a set of nodes and edges. Edges are ordered pairs of nodes in the graph.
In JFSL this definition would look like the following code snippet:

@SpecField({"nodes : set Node", "edges : set Node -> Node"})
abstract class Graph {

class Node { .

In this example, class Graph declares two specification fields: nodes of type
Graph - Node, a relation from a graph to its nodes, and edges of type Graph --
Node -~ Node, a relation from a graph to its directed edges. These fields specify
neither frame, nor abstraction function. The specification of this class may freely
talk about these fields and update their values. For example, we may have the
following method that adds a node to the graph:

@Requires(node != null)
@Ensures("this. nodes = @old(this .nodes) + node")
@Modifies(" this . nodes")
void add(Node node) { ... }

Now let us give a concrete implementation of our abstract class. This imple-
mentation will necessarily use some representation for its nodes and edges. It is
desirable to provide an abstraction function that ties together the abstract state
(values of the specification field) and the concrete state (the representation in the
concrete class.) Let us represent them as arrays:

@SpecField({ "nodes: set Node from this.n this.nodes = this.n[int]",
"edges: set Node -> Node from this.e I this.edges = {a : Node, b : Node

1 some edge : this.e[int] I edge.from = a && edge.to = b}"})
class ConcreteGraph {

private Node[] n;
private Edge[] e;
class Edge {Node from; Node to; ...



Declaration of a specification field f in class C results in a frame .Fc(f), an upper
bound and an abstraction function (see 3.5.2.) Specification field is declared only once
but may be refined in sub-classes. Therefore, specification fields may have multiple
abstraction functions, multiple frames, and upper bound constraints. For example,
field nodes is given an abstraction function in class ConcreteGraph but none in Graph.

Abstraction function binds the value of the field to the concrete state under the
assumption that the object state is valid, i.e. all its representation invariants hold.
Despite being called a function, it takes a form of an arbitrary constraint. Whether
or not the constraint defines a function from the valid states to abstract states is an
important condition subject to bounded verification by JForge.

Upper bound is an additional constraint that is conjoined to the abstraction func-
tion. It also defines the type of the values of the specification field. We will use
notation Ac(f) to refer to the abstraction constraint of f in declaration in class C.
This constraint combines the abstraction function, the upper bound constraint, and
the multiplicity constraint.

Frame of a field specifies dependencies of the abstract state on the concrete state;
this is essentially the data group of the field [15]. In our example, the value of
nodes field is bound to a set of nodes. It depends on the concrete field this.n which
means that any frame condition that allows a change to nodes field should also
allow a change n field as well. On the other hand, any change to the field n might
trigger an update on the corresponding abstract value of nodes.

Either frame or abstraction function or both may not be given for a specification
field. In that case, the field may not be bound to the concrete state at all. This might
be the case for Java interfaces which do not have any representation but are integral
to abstract data type definition.

4.2.1 Inheritance and Data Groups

Inheritance provides a mechanism for refining an abstraction function. The ab-
straction function for a specification field f with top-most declaration in class C in
a scene (T, F, M) is:

A(f) = V this ES IAs(f)
SETIS<:C

If the sub-type S is missing both upper bound and abstraction function, we
assume As(f) = true. Note that this constraint does not truly specify a function.
We use this as a handy exception to the rule that the A(f) has to specify a function.

Similarly, the frame of the field f in a scene (T, F, M) is:

F(f) = this.f U U Fc(f)
SETIS<:C

The frames of all sub-types in the scene are combined together to form a set
of locations all starting from this that the specification field depends upon. These



dependencies are required to be only on the concrete fields and objects, i.e. speci-
fication fields are not allowed to list each other in their frames to prevent recursive
frame constraints. Whenever a specification field appears in a frame condition of a
specification, it is automatically unrolled to its complete frame in the current scene.
This mechanism allows method specifications to refer indirectly to the unknown
concrete dependencies of a specification field in sub-types of the declaring class.

4.3 Method Specifications

Method specifications are the behavioral contracts stating the assumptions and
guarantees that the method execution has to respect as in design-by-contract paradigm.

The specification consists of specification cases targeting different scenarios, which
can be broadly grouped into normal executions and exceptional executions. The
specification cases are all publicly visible and inherited from the super classes and
implemented interfaces. Each specification case consists of a pre-condition pre, a
frame condition frame, and a post-condition post. Such a specification says:

only when the heap satisfies pre, the method applies and the post-
condition post is established in the post-state by making changes to
the pre-state heap according to frame condition and potentially adding
new objects to the heap.

The pre-condition of the entire specification is the disjunction of pre-conditions
of specification cases, and it represents the condition that the client has to satisfy in
order to call the method. Failure to satisfy this condition results in unconstrained
execution and arbitrary changes to the heap.

Expressions inside method specifications are evaluated in one of the two states:

* pre-state is the state of the program before entering the body of the method
and after evaluating all the method parameters;

* post-state is the state of the program immediately after returning from the
method body.

4.3.1 Pre-condition

The pre-condition is the a condition that the client has satisfy. It is always evaluated
in the pre-state. For non-helper methods, the pre-condition is the conjunction of
the stated pre-conditions for all specification cases and scene invariants.

4.3.2 Post-condition

The post-condition is a condition, imposed on the method being specified, on
the heap in the post-state. For specification cases with pre-conditions prei, post-



conditions posti, and frame conditions framei, the entire specification is inter-
preted as formula:

Aprei = (posti A frame,)

which says that for every pre-condition both its corresponding post-condition and
the frame condition are implied. The post-condition of a non-helper method in-
cludes the scene invariants as well.

4.3.3 Frame Condition

A frame condition consists of a set of store references. Each store references x.f
can be decomposed into a set of locations x and a relation f that is either a field or
array elements relation elems. If f is a specification field, then its frame is implicitly
included in the frame for locations in x via substitution of this by x (see 4.2.)

The interpretation of a frame {x.fi, ... , xi.fi} is the following. First, all loca-
tions are grouped by their relations, i.e. if fl and f2 refer to the same relation, then
their frames grouped into (x 1 + x2).fl. Assuming all relations in the store refer-
ences are distinct, the frame condition is the conjunction of frame conditions for
every relation x.f:

for any instance t in the domain of f in the pre-state, the value of t.f is
the same unless t E @old(x); this applies to both concrete and abstract
fields.

Simply put, it says that nothing else in pre-state domain of f can be changed
except for x and new instances. Note that the frame condition does not say any-
thing about the fresh instances that might be created during the execution of the
method.

For example, the following condition says that left, right, color, parent fields can
be changed for any Node in the pre-state, but root field can only be changed for this
instance and any newly created instance:

@Modifies ("Node. left , Node. right , Node. color, Node. parent, this .root")

4.3.4 Constructors and Static Methods

Static methods do not have a receiver but that is practically the only difference
they have from instance methods. Constructor calls internally in byte code are
represented as methods called on fresh instances in the order of the sub-typing.
We can still reason about constructors and invariants as long as the constructor
specification does not assume type invariants on the instance being created.



4.4 Method Calls inside Specifications

JFSL allows pure method calls inside specifications. However, reasoning about
specifications that allow unrestricted method calls inside specifications is chal-
lenging and subject to further investigation [8]. There are several competing ap-
proaches:

1. Treat method calls as uninterpreted partial functions. In the context of bounded
verification, every method call would require an additional relation that is
constrained to satisfy method specifications. While this approach is sound
and elegant, the arity of the relation is equal to the number of arguments
plus two which, as of this day, easily exceeds capabilities of SAT solvers that
are used in the back-end of bounded verification.

2. Solve for return values of the method calls. The return values are constrained by
the method specification with arguments substituted by the concrete inputs.
If these constraints are conjoined to the predicate passed to the SAT solver,
both would be solved at the same time. JMLForge successfully employed
this procedure for method calls inside JML specifications [9]. However, from
our experience, resulting specifications turned out to be overly complex. In
addition, special considerations must be applied to handle non-deterministic
method calls and failures to satisfy pre-conditions of the called method.

3. Encourage use of specification fields in lieu of method calls inside specifications. Al-
low only a restricted form of method specifications to be called. This approach
works most effectively with bounded verification and is adopted by JForge.

The specification for a called method must provide a specification that specifies
the return value explicitly as a function from the pre-state. This specification case
would have the predicate:

return = expr

as one of the conjuncts in the post-condition. Method call is then replaced by a
conditional expression:

pre ? expr : {}

where pre is the pre-condition of the specification case and expr has all its inputs
substituted by the actual arguments. Notice that we handle client failures using
an empty set expression, for the sake of consistency with our notion of undefined
expression.

If there are multiple specification cases of the required form, then one of them is
chosen at random. In addition to existence of such a specification case, the method
must necessarily be pure.
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Chapter 5

JForge Tool and Eclipse Plug-in

JForge toolkit includes an Eclipse plug-in that enhances integrated development
environment of Eclipse with JFSL annotation support, checking and simulation of
Java methods, debugging of specifications, and counter example trace presenta-
tions. Via integration of all of these services into a single language and a single
tool, JForge offers a friendly environment to encourage developers to use light-
weight formal methods in their coding practice. The tools generally require only
an understanding of JFSL and basic knowledge of the logic of the intermediate
representation. The entire tool chain is packaged and available for public use [3].

5.1 Automated Analysis

JForge is able to analyze specifications written in JFSL. Most importantly, it is able
to verify compliance of code against its specification (even though in the bounded
setting.) In this section, I describe the exact conditions that JFSL uses and present
an overview of other possible automated checks that can be done using specifica-
tions. We will assume that a control flow graph for procedure code P is handed in
to us in FIR as well as the specification S and its scene.

There are three distinct ways method specifications may be used in the analysis:

1. checking attempts to find a counter example of the specification by exhaus-
tively searching for the pre-state and the post-state that admit execution of P
and satisfy -'S;

2. simulation attempts to find an initial state satisfying the pre-condition of S (if
the method is non-helper, the pre-condition includes the invariants as well)
in the pre-state and then execute P in it;

3. inlining attempts to find a post-state from the given initial state using only
method specifications.

Checking and simulation can be performed on a per specification case basis. In
fact, JForge encourages breaking down specifications into cases for performance
reasons. We believe that tracking the progress of verification (how many cases



succeeded) as well as having partial verification (if some cases take too long to
complete) are very important from the end-user perspective.

If checking produces a trace, then that means there is a candidate for a bug in
the code or the specification. This trace certifies a failure of the specification for
a concrete symbolic execution. If simulation produces a trace, then that means
there are no over-constraints in the pre-condition and invariants of the specifica-
tion. The simulated trace is a normal trace of execution that can be examined in
detail to ensure correctness of the symbolic execution. Thus, finding a trace means
two opposite things for checking and simulation. Correct implementation would
produce simulation traces but no checking traces.

5.1.1 Checking

Given a specification with pre-condition pre in the pre-state, post-condition post,
and abstraction function A, checking attempts to find a trace of P that satisfies the
formula:

@old (pre A AA C) A -,post

where C is the Java pre-state well-formedness constraint (specifying that inputs
are singletons and fields are functions amidst other things.) Since post might use
abstract values in the pre-state, the procedure P is modified to include specification
statements that update the values of abstract functions. This statement is inserted
at the end of the control flow graph for P (see section 5.1.4.)

5.1.2 Simulation

Simulation of a specification simply tries to find any trace from a valid state of the
heap. It tries to find a trace of P that satisfies:

@old (pre A AA C)

Note that this condition is strictly weaker that checking condition. The benefit
of this analysis is detection of over constrained invariants or pre-conditions in the

pre-state that may make checking vacuously not find any counter examples. This
notion of simulation is slightly different from the one used in JMLForge, which
also adds post as a conjunct[9].

5.1.3 Inlining

In order to support modular analysis, the method calls in P should favor in-
lined specifications over inlined code. To inline a specification, we construct a
control flow graph that performs execution of the specification using Forge specifi-
cation statements (see algorithm 1.) Here C means Java post-state well-formedness
constraint, specifying that all concrete fields are functions, all arrays have correct



Algorithm 1 Control flow graph for the in inlined specification with pre-condition
pre, post-condition post, and frame frame

update all specification fields f at the same time such that Af A(f)
if pre then

update frame variables, return, throw such that post A frame A Af A(f) A C
else

throw +- ClientFailureException
return - default value

end if

index ranges, output variables are singletons, and so on. It uses a special error
variable instance ClientFailureException to indicate a failure to satisfy the pre-
condition of the specification. This error can propagate back to the caller of the
method and provide a meaningful counter example of the client failing to satisfy
the pre-condition of the called method. We find that early detection of client fail-
ures and presenting traces that pinpoint the location of a client failure is important
for debugging. Simply allowing arbitrary changes to the heap would produce
traces that are harder to understand and may in fact satisfy trivial specification.

5.1.4 Updates to the Abstract State

Specification fields are updated by changes to their dependency concrete fields.
The changes to specification fields are only visible at the method boundaries, and
only if they are referenced in the specifications. Therefore, control flow graphs in
FIR are modified as follows to include updates to the abstract state:

1. procedure P under analysis ends in a specification statement that updates
the values of specification fields right before the exit;

2. inlined code is left untouched;
3. inlined specifications start with an update to specification fields as described

in subsection 5.1.3.

When should the specification field be updated? Because of presence of abstrac-
tion function constraints that simply say true for interfaces, a field should only be
updated only if its abstraction constraint is violated. Therefore, the specification
statement that updates the values of specification fields should only modify val-
ues for instances that fail to satisfy the abstraction constraint. If the specification
field is completely abstract, i.e. not tied to any representation, its values are not
non-deterministically changed at every method boundary.

Our methodology of handling specification field updates is similar to packing
and unpacking in Spec# [6] applied to every method. While it is not as flexible
as packing, it is less intrusive into the programming language and programming
practice and satisfies common needs.



Figure 5-1: JForge graphical user interface

5.1.5 Consistency of Abstraction Functions

There are a few unstated assumptions that checking and simulation take advan-
tage of. For example, the abstraction function constraint should describe a function
from the valid concrete states to abstract values. This assumption is not checked
every time checking or simulation is performed, but can nevertheless be verified
for all instances. A counter example to this assumption is a valid state for which
the abstraction constraint has either no solution or at least two solutions. While
JForge does not at the moment implement this functionality, it can easily be added
to the tool. Another interesting case is the use of specification fields in helper meth-
ods. These methods may not guarantee representation invariants and, therefore,
cannot guarantee existence of abstract values for the specification fields.

5.2 User Interface

JForge includes an Eclipse plug-in (see figure 5-1) that extends it via several exten-

sion points:

1. it provides context menus for methods and classes to check or simulate or
do both in aggregate; it also provides context menu on projects to toggle



Figure 5-2: JForge preferences dialog

JForge nature and modify class path to include annotation and specification
libraries;

2. it adds a JForge report view that displays results of completed analyses to-
gether with succinct description of the outcome;

3. a preference dialog (see figure 5-2) for tweaking Forge settings (SAT solver,
coverage analysis), and bounds settings that extends standard Eclipse type
dialog to select a type and the custom bounds for it;

4. analysis outcome pages that display very detailed information about the tex-
tual traces, graphical traces, control flow graphs in the intermediate repre-
sentation, specifications in the intermediate representation, and a query box
to evaluate JFSL expressions dynamically on the counterexample trace;

5. progress dialog using Eclipse jobs infrastructure that reports on the progress
of translation and solving, and lets the user terminate the process if it takes
longer than expected.

5.2.1 Usability of Verification Tools

The verification tools are notorious for the high expertise that is required to actu-
ally use them. In this work, we attempted to make intricate verification technology
accessible to a programmer. In particular, our user interface strives to be minimal-
istic and intuitive to a non-expert in Alloy logic by using diagrams to show the
object relationship graph instead of textual relational algebra.

A challenge in formal methods that is not commonly addressed is that speci-
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Figure 5-3: Trace evaluator and trace visualizer

fications may also contain bugs, and a specialized set of tools is needed to debug
specifications as well. For example, over constrained pre-conditions and invariants
may give a false impression of successful verification since the verification condi-
tions are vacuously satisfied. JForge tries to address this problem via a number
of ways. For example, it offers a simulation analysis aimed exactly at discovering
over constraints in the assumptions.

If the unsatisfied formula is of the form a A b,
then the root cause is in either a or b by the de Morgan's law.

If the unsatisfied formula is of the form a -= b,
then the root cause is in b.

Figure 5-4: Rules for the root clause discovery analysis

JForge provides several mechanisms to assist the programmer in understand-
ing counter example traces:

1. Trace visualization. Figure 5-3 shows the initial(black) and final(red) states of

edu,mit.csail.sdg.annotations.test.IntTree$NodeO
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the heap for a tree insertion method. We can see values of both concrete fields
such as key and specification fields such as nodes. Schematic description of
graphs is much more effective in describing differences between them. Since
Java object heap is essentially a graph, visual presentation of the transition of
the heap from the initial state to the final state is very useful.

2. Trace evaluation. Figure 5-3 also includes a trace evaluator as part of the de-
tailed information about a trace. It dynamically evaluates expressions using
the trace as the context of evaluation - all the instances and values of the
fields are extracted from the trace under analysis. This interactive dialog is
effective in learning JFSL and investigation of complex heap transitions.

3. Root cause discovery. Whenever the specification is very complex, and a counter
example is found, it is a non-trivial task to figure out what caused the fail-
ure of the specification. It can be any or a combination of a post-condition, a
frame condition, or an invariant violation. JForge offers a very simple anal-
ysis that looks at the reasons why specification is not satisfied by breaking it
down into a set of clauses (as shown in figure 5-4) and presenting them to the
user. Each such clause individually makes the entire specification formula
false. This simple analysis pin points the exact condition in the specification
that is violated.
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Chapter 6

Case Studies and Evaluation

We have used JForge to verify a large number of small examples. That way we
could be the users of our own tool and evaluate its performance in both usability
respect and as a bug-finding tool.

6.1 Red-Black Tree

A very common task in verification is formally specifying and verifying a data
structure that represents a common data type such as a sorted tree. A red-black
tree is an efficient implementation of a balanced binary search tree [16]. We have
used an existing implementation by Emina Torlak that is used internally in Kodkod
relational engine [19]. This implementation has been heavily tested since it sits
at the core of SAT translation technology. In addition, it was well documented
using standard @specfield annotations. We have formally specified it and verified
code against the specification. We have discovered a few cases where necessary
assumptions were not stated in the Javadoc specification which would count as
over-approximation in specifications. Declaration of the data structures and its
invariants are shown in listing 6.1.

This data structure is challenging since it uses transitive closure operator to
state tree invariants and uses a number of interconnected nodes internally. This
is an excellent example of highly linked data structure that requires complex con-
straints on the topology of the heap.

An important consideration for declarative languages, and in particular, for
languages used in verification, is what amount of specification is needed to verify
correctness of implementation. We have calculated number of lines of code and
specifications excluding comments per method in IntTree (see table 6-1.) Method
specifications are all within 7 lines and together with invariants on the data type
amount only to 1 of the total number of lines. For some methods such as insert
or delete, declarative specification is much more concise than the implementation
itself. For some other helper methods such as rotateLeft orrotateRight we expect to
see little difference in sizes of the specification and the actual code.



Listing 6.1: IntTree specification

@SpecField("nodes : set Node from this.root, this.nodes.left, this.nodes

.right, this.nodes.parent, this.nodes.color I "+

"this.nodes = this .root.*( left+right) - null")

public final class IntTree {
private static final boolean BLACK = true;
private static final boolean RED = false;
@Invariant( {
/* root */ "this.root.parent in null",
/* distinct */ "this.root != null => one root.(this .root)"})

private @Nullable Node root;

@Invariant( {
/* parent left */"this.left != null => this.left.parent = this",

/* parent right */"this .right != null => this.right.parent =
this",

/* parent /"this.parent != null => this in this.parent.(left +
right)",

/* form a tree */"this !in this .^ parent",
/* left sorted */"all x : this.left.left left + right) + this.left

- null I x.key < this.key",
/* right sorted */"all x : this. right .^(left + right) + this.

right - null I x.key > this.key",
/* no red node has a red parent */" this .color = false && this.

parent != null => this.parent.color = true"})
public static class Node {

public @Nullable
Node parent, left, right;
public boolean color;
protected int key;
Node(int key) {

this.parent = this.left = this.right = null;
this.color = BLACK;
this.key = key;

}

}



method # lines of code # lines of specs
IntTree 1 2
clear 1 2
search 10 1
searchGTE 18 2
searchLTE 18 4
predecessor 11 7
successor 11 6
minAll 7 1
maxAll 1 1
min 6 3
max 6 3
replace 18 0
insert 96 5
delete 42 3
deleteFixUp 93 0
rotateLeft 13 0
rotateRight 13 0
entire class 436 56

Figure 6-1: Number of lines of code and specifications in IntTree; some methods are
helper methods and, therefore, have no specifications; entire class also contains
invariants and specification field declarations



6.2 Collections Framework

We were able to specify parts of Java collections framework using JFSL. This is

important not for verification of the framework itself but for the clients of the col-

lections framework. Using abstract models of collections defined with specifica-

tion fields rather than implementation allows JForge to scale better and benefits

the writer of the specifications for the client code.

Listings 6.2 6.3 show our specifications for Hashtable and List using JFG for-

mat (see 3.2.10.) The content of the data structure Hashtable is modeled using an
unconstrained specification field that has type Object -- Object. The specification
provides neither concrete data structure for entries in the table nor the abstraction
functions.

Listing 6.2: java. util. Hashtable specification

package java.util;
import java.util;

class Hashtable {
@SpecField(data : Object -> Object)

Hashtable () {
@Ensures(no this.data)
@Modifies( this . data);

}

get(Object key) {
@Requires(key = null)
@Throws(throw in NullPointerException)
@Modifies () ;

@Requires(key != null)
@Ensures(return = some this.data[key] ? this.data[key]

null)
@Modifies ();

put(Object key, Object value) {
@Requires(key = null II value = null)
@Throws(throw in NullPointerException)
@Modifies () ;

@Requires(key != null && value != null)
@Ensures(return = @old(some this.data[key] ? this.data[

key] : null) &&
this.data = @old(this.data) ++ key -> value)

@Modifies (this .data);

}



Listing 6.3: java. util. List specification
package java. util;
import java.util;

interface List {
@SpecField(data : seq Object)

size () {
@Ensures( return
@Pure; @Helper

isEmpty() {
@Ensures(return
@Pure; @Helper

}

contains(Object o) {
@Ensures(return
@Pure; @Helper

= # this.data);

<=> (this.size() = 0));

<=> (@arg(0) in this.data[int]));

add(Object e) {
@Ensures(

this.size() = @old(this.size() + 1)&&
this.data = @old(this.data ++ (this.size() ->

@arg(0))) &&
return = true

@Modifies( this . data) ;
@Helper

clear () {
@Ensures(no this.data)
@Modifies(this . data);
@Helper

}

get(int index) {
@Requires(@arg(0) >= 0 && @arg(0) < this.size())
@Ensures(return = this .data[@arg(O)]);
@Requires(@arg(0) < 0 I @arg(0) >= this.size())
@Throws(throw in IndexOutOfBoundsException);
@Pure;
@Helper

}



6.3 Interplay of Interfaces and Object Inheritance

The following example was used for the Squander project [17]. Listing 6.4 shows

a specification of an address book that uses a specification field data to model the

content of the address book. A concrete class is given in listing 6.5. This class re-

declares the specification field and provides both the frame (this. entries) and the

abstraction function for data. As you can see, the abstraction function uses the
concrete representation of the entries to define the constraint that binds the abstract
and the concrete states together. Also notice, that we did not have to refine the

specifications unless we want to avoid non-determinism in the structure of the
concrete representation that produces the given abstract state.

Listing 6.4: IAddressBook specification

@SpecField("data : String -> String")
@Invariant("all x:String lone this.data[x]")
public interface IAddressBook {

@Requires("@arg(0) != null && @arg(1) != null")
@Ensures("this .data = @old(this.data) ++ @arg(O) -> @arg(1)")
@Modifies(" this . data")
void setEmailAddress( String name, String email);

@Ensures("return - null = this.data[@arg(0)]")
String getEmailAddress( String name);

@Returns ("some this . data [@arg(0) ]")
boolean contains(String name);

6.4 Arithmetic Programs

JFSL supports specifications involving arithmetic expressions. An example often
used in verification field is that of the greatest common divisor algorithm. List-
ing 6.6 shows the code and the specification for this algorithm. JForge is able to

check it without finding any counter examples for the bitwidth of 5 and 5 loop
unrollings withing a few minutes on a modern machine.

6.5 Cyclic List

Listing 6.7 presents the specification and the partial code of a linked list data struc-
ture. JForge is able to verify correctness of its code against the specifications in a
few seconds for the bitwidth of 3 and 3 loop unrollings. This example demonstrate
the richness of JFSL expressions:



Listing 6.5: AddressBook specification
@SpecField("data : String -> String from this .entries"+

"I this.data = {x in String, y : String " +
" some e : this.entries[int] I e.entryName = x && e.entryEmail

= y}")
public class AddressBook implements IAddressBook {

@Invariant("this .entryName != null && this.entryEmail != null")
public static class Entry {

String entryName = ""
String entryEmail =

}

@Invariant ("null !in this. entries [int]")
public Entry[] entries;

@Override
public void setEmailAddress (String name, String email) {...}
@Override
public String getEmailAddress( String name) {...}
@Override
public boolean contains(String name) {...}

Listing 6.6: GCD specification
@Requires("m > 0 && n > 0")
@Ensures({ "some x: int, y : int x m + y * n = return",

"return > 0",
"m % return = 0",
"n % return = 0"})

int gcd(int m, int n) {
if (m < n) {

int t = m;
m = n;
n =t;

int r = m % n;
if (r == 0)

return n;
else

return gcd(n, r);

}



1. calling a method inside specifications: this. size () = 0;

2. fully-qualifying a field and a left join: lone CyclicList @ nodes. this;

3. computing a sum over a bag of integers: sum n in this.nodes I n. data;

4. disambiguation of the plus operators: this.nodes.data @+ k = @old(this.nodes.data



Listing 6.7: CyclicList specification
package edu.mit.csail.sdg.annotations.test;
import edu.mit.csail.sdg annotations.*;

@SpecField("nodes : set Node from this.root I this.nodes = this.root.*next - null")
public class CyclicList {

@Invariant({"-prev = next", "lone CyclicList @ nodes . this"})
private static class Node {Node next; Node prev; int data;}

@Invariant("this. root in this.root.*next + null")
private Node root;

@Ensures("no this.nodes") @Modifies(" this .nodes")
public void clear() {root = null;}

@Returns("#this. nodes")
public @Pure int size() {

if (root == null) return 0;
int count = 1;
Node current = root.next;
while (current != root) {count++; current = current.next;}
return count;

}

@Returns("this.size() = 0")
public @Pure boolean isEmpty() {return size() == 0;}

// insert at the end
@Ensures({"this. nodes.data = @old(this.nodes). data @+ k",

"#this.nodes = @old(# this .nodes) + 1"})
@Modifies("this.nodes, this.nodes.next, this.nodes.prev")
public void insert(int k) {

if (root == null) {
Node n = new Node();
n.data = k;
n.next = n.prev = n;
this.root = n;
return;

}
Node n = new Node();
n.data = k;
n.next = this.root;
n.prev = this.root.prev;
this.root.prev.next = n;
this.root.prev = n;
return;

// delete the first one if found
@Requires("k in this .nodes.data")
@Ensures({"return.data = k",

"#this .nodes = @old(#this.nodes) - 1",
"this.nodes.data @+ k = @old(this.nodes.data)"

@Specification (@Case( requires = "k !in this.nodes.data", ensures = "return = null"

@Modifies("this.nodes, this.nodes.prev, this .nodes.next")
public Node delete(int k) {

// code omitted
}

@Returns("sum n in this.nodes I n.data")
public @Pure int sum() {

// code ommitted
}

}
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Chapter 7

Future Work

I have designed JFSL language and JForge tool to support automatic bounded veri-
fication of Java code. The tool has the potential to introduce light-weight formalism
into development practice with little cost of annotating the programs. This work
may be extended in various directions. Here are the few ideas that seem to be the
most fruitful extensions of the system:

Other Languages Java was chosen for the source code language because of its
popularity and better support for abstract data types. Java is a mainstream high-
level object-oriented language, and therefore, our tool supports common features
of these languages such as type hierarchy, dynamic dispatch and method overrid-
ing, interfaces, aliasing, casting, and exceptions.

Still, other popular languages, such as C, bring additional challenges that we
did not face in developing specifications for Java. For example, Java does not have
pointers and pointer arithmetic. To represent pointers, one would need to encode
an extra layer of indirection into the relational representation. This would include
a relation to map the pointer to its address location and the address location to the
value stored at that address. Function pointers are another complication, but they
could be handled by treating writing a separate specification for the function being
point to and presuming the behavior of that function conforms to its specification.

Full Java Support Our tool does not support static initialization, real arithmetic,
recursion, generics, and auto-boxing. This might limit the scope applicability of
the tool to the real-world code. Embracing generics in translation to FIR may offer
performance improvement by reducing the scope of the relations using parametric
type information.

Larger Case Study A substantial case study is needed for evaluating the tool in
practice. Annotating existing code body is challenging since it requires specifying
all dependency classes from Java API such as collections framework as well as full
understanding what the code actually does. Whether specifying the entire system
is necessary for confidence in software, or only its most complex part, is also an



interesting research question. It is also interesting to understand how helpful the
tool is in the early stages of designing and prototyping software.

Counter Example Validation The traces produced by JForge may not always be
real traces of bugs in the program due to over-approximation of program seman-
tics. For example, integers typically have smaller bit width in JForge. However,
these traces usually indicate real bugs in the program. One interesting direction
is automatic generation of JUnit tests from counter example traces that would use
reflection to build the initial heap and then dynamically execute method in it.

Squander Squander is an ongoing research project of using JFSL as the basis for
agile specifications [17]. Squander offers a way to execute declarative JFSL speci-
fications. There are many challenges in this direction, such as run-time evaluation
of specifications fields, and generation of fresh instances.

Assertion Checking Java's assertions can be extended to support entire JFSL.
JForge can then be used to automatically check assertions either dynamically dur-
ing runtime, or statically in bounded verification.

Coverage Analysis Forge provides extensive coverage information when used
with appropriate SAT engine. This information may be presented to the user us-
ing standard color-scheme for branch or statement coverage in code. The main
challenge here is to construct a source-to-source translator that would map control
flow graph statements in FIR to Java byte code statements and then to Java source
code lines.
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