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This thesis recommends an experimentation methodology which can be used to improve
systems, processes and products. The proposed technique borrows insights from
statistical prediction practices referred to as Ensemble Methods, to extend Adaptive One-
Factor-at-a-Time (aOFAT) experimentation. The algorithm is developed for an input
space where each variable assumes two or more discrete levels.

Ensemble methods are common data mining procedures in which a set of similar
predictors is created and the overall prediction is achieved through the aggregation of
these units. In a methodologically similar way this study proposes to plan and execute
multiple aOFAT experiments on the same system with minor differences in experimental
setup, such as starting points, or order of variable changes. Experimental conclusions are
arrived at by aggregating the multiple, individual aOFATs. Different strategies for
selecting starting points, order of variable changes, and aggregation techniques are
explored. The proposed algorithm is compared to the performance of a traditional form of
experimentation, namely a single orthogonal array (full and fractional factorial designs),
which is equally resource intensive. Comparisons between the two experimental
algorithms are conducted using a hierarchical probability meta-model (HPM) and an
illustrative case study. The case is a wet clutch system with the goal of minimizing drag
torque. Across both studies (HPM and case study), it is found that the proposed procedure
is superior in performance to the traditional method. This is consistent across various
levels of experimental error, comparisons at different resource intensities, and through a
wide array of response surfaces generated by the meta-model. At best, the proposed
algorithm provides an expected value of improvement that is 15% higher than the
traditional approach, at worst, the two methods are equally effective, and on average the
improvement is about 10% higher. These findings suggest that the ensemble of aOFATs
can be an effective and often preferred alternative to the use of orthogonal arrays for
experimentation.

This thesis also shows that it more effective to apply ensemble procedures to aOFAT
versus applying ensemble techniques on multiple, highly-fractioned orthogonal designs
(each being as resource intensive as a single aOFAT). A theoretical discussion
explaining the reasons for the superior performance of the proposed algorithm supports
the empirical findings.
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1 Introduction

The operation of an engineering system can be conceptualized as a combination of

materials, methods, people, environment and policies (inputs), which when used together

perform a service, produce a product, or complete a task (outputs) (Schmidt and Launsby,

1994). Design of Experiments (DOE) is a formalized procedure of systematically and

purposefully making changes to controllable variables (a subset of the inputs), in an effort

to observe their influence on the outputs, and thereby improve them. This thesis involves

the advancement of experimentation methods and practices.

The applications of designed experiments span both social and technical systems.

Evidence of its use can be seen in engineering, social sciences, natural sciences and

management' (For examples see Schmidt and Launsby, 1994; Wu and Hamada 2000;

Montgomery, 2001). Its wide array of applications also makes this an apt tool to deal

with complex systems that are an amalgamation of the above.

1.1 Basics of Designed Experiments

This section provides an introduction to designed experiments. It presents an overview of

the basic principle, and is intended as the bare minimum required to understand

terminology used later in this thesis. A more detailed, yet mathematically simple

discussion of DOE can be found in Schmidt and Launsby (1994). A technically advanced

treatment can be gained from Wu and Hamada (2000) or Dean and Voss (1991). The

section can be skipped if the reader is familiar with this topic.

1 While there are numerous examples of formal experimentation in engineering, social science and natural
science, it is rarely seen as a process improvement procedure in management. A PhD thesis that discusses
the role of DOE in corporate decision-making can be seen in Tang (2006).



Design of experiments is an offline quality improvement process. Formalized sequences

of steps have been presented by various authors to help plan and organize the experiment.

A list of the main steps, adapted from Barker (1985), Schmidt and Launsby (1994) and,

Wu and Hamada(2000) is presented here:

1. Experimental Objective: The objective of the experiment needs to be clearly

stated by all the stakeholders involved with the process. The reason for any

designed experiment is to provide data that can be used to answer well thought

out questions. Failure to allocate sufficient time and thought in formulating these

questions often result in wasting resources throughout the reminder of the

experimental process. It is important that all of the key players (management,

engineering, experts in area, operators, and analysts) be in involved in the

planning phase

2. Choice of response: The response/s that the experiment seeks to improve needs to

be selected and quantified. This process typically involves identifying the key

process output variables (KPOV's) that serve as indicator to any problems or

concerns that arise in the first phase (experimental objective). The chosen

response could be discrete or continuous. The latter, however, is preferred. The

response also needs to be classified according to stated objectives. Such as, larger-

the-better or smaller-the-better or nominal-the-best.

3. Choose Factors and Levels: This step concerns identifying the key-process-input-

variables (KPIV's). Inputs are selected based on an understanding of their likely

relation to the response. Once selected, the variable is referred to as a 'factor'. In

order to study the influence of an input variable on the output, two or more values

(or stages) that the input variable can assume in the context of the experiment is

selected. These are referred to as 'levels' of the factor. A 'treatment' or 'treatment



combination' is a combination of the inputs at different levels (input vector). It

can be readily seen the that number of possible treatments is equal to

J L, Where, F is the number of factors and L is the number of levels that the nth

factor can assume.

4. Choose experimental plan: The experimental plan indicates the experimental

algorithm. In some cases, such as the fractional factorial arrays, it can be

characterized a subset of all possible treatments that exist (sometimes each

treatment could be tested multiple times). The experimental plan should be picked

such that it is in accordance with the available resources, or number of factor level

changes possible. There are a few different criteria for selection of the

experimental plan. Some seek to maximize the knowledge that could be gained

from running the plan, and thereby model the system. Other plans use expected

value of improvement from running the experiment as the metric of importance.

Motivated by a line of reasoning in Frey and Wang (2006), in this thesis, we use

the latter criterion behind selection of experimental plans. At this stage, one is

ready to conduct the experiment.

5. Analyze data: An analysis appropriate for the design follows the actual

experiment. In some cases, an analysis of the data requires the construction of a

model following statistical analysis to identify the important effects and quantify

their exact influence. In others, it requires using direct techniques that will

identify treatment that provided the best output.

6. Draw conclusions and make recommendations: Following the data analysis it is

possible to identify those input settings that are ideally suited for maximizing the

performance of the system. The conclusion should refer back to the stated

objectives of the experiment



1.2 Motivation

The motivation for this thesis is two-fold. First, is based on past literature, and industry

practice concerning designed experiments. The impetus here comes from realizing the

scope for improvement in the current methods in terms of their performance, as well as

their applicability to engineering systems in the field.

The second motivation is more conceptual. It discusses the nature of algorithms, across

different domains, which are used to solve large and complex problems. Insights from

this are used to motivate a new and improved breed of experimental algorithms.

1.2.1 Motivation: DOE literature

Experiments require studying system performance (output) at different input factor

settings. In certain cases this could mean that a different resource is consumed for each

input configuration that is studied. In other cases, the experiment may require changes to

be made in the control variables to attain a new input vector (reusing the same resource).

In the former scenario, the resources required for experimentation might be limited. In

the latter, making the changes to input variables could be expensive and time consuming.

It is therefore very important to study the effectiveness of experimental algorithms in the

context of the number of experiments (trials) run.

In this thesis we look at two algorithms: Adaptive one-factor-at-a-time (aOFAT) and

orthogonal arrays. The aOFAT is an experimental procedure where a single factor is

changed in each experiment. Changes to variables that improve the response are retained

and ones that are detrimental are reversed 2. This practice is repeated sequentially until all

factors are exhausted, thus always taking 1+ (n, -1) experiments when m variables are

being tested, at n, levels each. Orthogonal arrays are pre-built matrices which are subsets

of the full factorial design (which is an enumeration of all possible factor combinations at

all possible levels). Examples of such matrices are, fractional factorial designs, composite

2 A more detailed description of the experimental algorithms will be discussed in section 1.2.1



designs, Latin squares/hypercube, etc,. A more in depth background on the classical

methods can be found in Schmidt and Launsby (1994) or Montgomery (2001). A

common technique discussed (and compared) in this research is the fractional factorial

design. Here, fractions equaling I (where there are m variables each at n levels) of the

full factorial are selected for the experiment. The selection of the appropriate fraction is

based on mathematical criteria such as maximum resolution (Box and Hunter, 1961) or

minimum aberration (Fries and Hunter, 1980). A detailed set of studies on picking the

most suited fraction with theoretical reasoning can be found in the literature (Chen and

Wu, 1991; Chen, 1992; Chen et al., 1993; Chen, 1998; Tang and Wu, 1996).

Given the resource requirements for the two algorithms, a reasonable comparison can be

made between the aOFAT and Resolution III fractional factorial designs. The Resolution

III designs are one of the most frugal fractional factorial designs. They are usually more,

and at least equal, in resource requirements as the aOFAT. Figure 1.1 illustrates the

resource requirements of these two algorithms for different numbers of controllable

variables when each variable has two-levels.

0
, 20-

Res. III
I -- aOFAT

5 10 15 20 25 30

Number of Control Factors
Figure 1.1 Comparison of resource consumption in aOFAT and Resolution III arrays using two-level

factors

Under certain, standard, experimental conditions the aOFAT outperforms the resolution

III fractional factorial arrays (Frey, Engelhardt, and Greitzer., 2003; Frey and Wang,

2006; Frey and Sudarsanam 2008). Section 1.3.1 discusses this in greater detail.

However, in many situations the number of resources available for experimentation could

be significantly more than that required by aOFAT or resolution III arrays. It is also

possible that we would like to extend our experimental plan upon finding the results from



the earlier experiments. In such situations the fractional factorial plans seem relatively

more adaptable to the designers' needs. It is possible to find fractions of different

degrees, for example, when seven factors are involved, plans ranging from 27-4 to 27 are

considered reasonable options depending on the resource availability (Wu and Hamada;

2000). Also, foldover techniques (Box and Hunter; 1961) and semi-folding methods

(Daniel; 1962, Daniel;1976, and Barnet et al.,; 1997) allow us to make sensible

extensions of even the most highly fractioned array such that there is no penalty incurred

from initially planning a frugal design. No such extensions are currently available with

aOFAT. This specific shortcoming, in light of its superior performance per unit resource

consumption (as shown by Frey et al., 2003; Frey and Wang, 2006; Frey and Sudarsanam

2008), makes it important to investigate possible extensions of aOFAT experimentation.

A solution would retain the performance benefits of the aOFAT while simultaneously

providing designs suited for various amounts of resource availability. This thesis seeks to

provide one such solution.

1.2.2 Motivation: Algorithmic Properties

The motivation to use an ensemble of adaptive one-factor-at-a-time experiments is

grounded in the algorithmic properties of such a strategy. The various aspects in the

nature of such an algorithm, and how each serves as a motivation, are discussed in the

following sections

(i) Why Many Are Better Than One

The idea that large groups of naYve individuals, when brought together in the right way,

are better at solving large-scale, complex problems than an exceptional few is the central

premise of James Surowiecki's book "Wisdom of Crowds" (Surowiecki, 2004). A claim

supported by an eclectic set of examples ranging from how ant colonies function in the

wild, to investors in a stock market, scientists collaborating on a research project, or

people guessing an ox's weight at a local fair. In fact, understanding the value of such

'swarm intelligence' is at the root of many problem solving initiatives adopted by



businesses. Examples include a company that solved a routing and truck allocation

problem for pick up and delivery, by using ant colony inspired rules. A large airline

conglomerate solved the complex problem of gate and runway allocation for airplanes in

airports. Delphi methods and prediction markets are used in management for various

forms of business forecasting. The common strand among all these initiatives is that the

building block in each case (truck driver, pilot, etc.,) always act on simple rules, localized

information, decentralized decisions and are unaware of the other agents (Miller, 2007).

This principle, seen in various industrial and social practices, goes even further. We can

find an array of examples in formal academic literature. Jordan and Jacobs (1994) write

that 'Divide and conquer' algorithms enjoy a wide range of applicability in applied

mathematics. Optimization techniques like Genetic algorithms, Simulated Annealing, and

the Ant Crawl algorithm use these concepts in part or whole. Agent-based modeling is

used to represent complex systems. In Machine learning a formalized set of methods

called 'ensemble techniques' are used to create superior predictors.

Yet, such a divide-and-conquer, decentralized, agent-based approach has not been seen in

formal design-of-experiments. Standard procedures recommend a single full or fractional

design array, depending on resource availability. This motivates us to examine the

effectiveness of aggregating multiple highly frugal experiments, and comparing its

performance to a single standard array.

(ii) Why aOFAT: Greedy Algorithms

The principle described so far motivates the use of multiple small experiments as a

replacement for one large experiment, the motivation to use aOFATs in this context as

the building blocks is also manifold.

Most importantly, it can be argued that the algorithmic structure of aOFAT is well suited

to the exploit gains that are accrued from aggregation. The aOFAT in many ways is



similar to a breed of algorithms called 'greedy algorithms'. "A greedy algorithm always

makes the choice that looks best at the moment. That is, it makes a locally optimal choice

in the hope that this choice will lead to a globally optimal solution" (Cormen et al.,

1990). In a stochastic environment, this makes greedy methods assume 'low bias and

high variance', when compared to their more conservative, non-greedy counterparts.

Similarly, when compared to a fraction factorial design, aOFAT has properties reflective

of a lower bias and higher variance. This is explained in section 4.2. The specific fact that

aggregation techniques target the variance component and not the bias is what makes

aOFAT suited for ensemble techniques. This theoretical argument for this is also made in

section 4.2.

(iii) Why aOFAT: Adaptive Algorithms

Adaptive one-factor-at-a-time experimentation, as the name suggests, is an adaptive

procedure. Academic work from prominent researchers in experimentation, such as Box

and Liu (1999), Friedman and Savage (1947), Daniel (1973), Sasena et al., (2005) has

been in support of using an adaptive, sequential approach.

George Box and Patrick Liu emphasize the importance of using an adaptive approach to

experimentation in the following quote:

An industrial innovation of major importance, such as the development of a new drug or

the design of a new engineering system, comes about as the result of investigation

requiring a sequence of experiments. Such research and development is a process of

learning: dynamic, not stationary; adaptive, not one-shot. (Box and Liu, 1999)

While Box and Wilson (1951) suggest Response Surface Methodology as one way of

"practicing the process of investigation" suggested in the above quote (Box and Liu,

1999), aOFAT is a conceptually simpler yet adaptive approach to experimentation.



Friedman and Savage call attention to the trend where non-adaptive procedures lead to

spending unnecessary resources at points far from the target of interest. Cuthbert Daniel

highlights the benefit of being able to react to data in a sequential process, in the

following quote:

Some scientists do their experimental work in single steps. They hope to learn something

from each run or trial. They see and react to data more rapidly. The statistician who tells

such an experimenter that he can secure greater precision or validity by doing 16 or

more runs in a balanced set, may be listened to with courtesy, but rarely with enthusiasm

(Daniel, 1973)

The works of some of these authors have directly contributed to one-factor-at-a-time

plans and will be discussed in greater detail when reviewing the literature of this

experimentation technique in section 1.3.1. Insights from such academic work serve as a

key motivation to look at an experimentation technique that is adaptive.

(iv) Why aOFAT: Algorithmic Modeling Culture

In the data mining literature Leo Breiman describes two cultures in statistical modeling:

The data modeling culture and algorithmic modeling culture (Breiman, 2001b). The data

modeling culture is one where a fixed, presupposed mathematical structure (usually

stochastic) is assumed in a prediction problem. The field data is used to estimate the

parameters in the mathematical structure. Examples of such a procedure include various

forms of regression, discriminant analysis, neural nets, support vector machines, etc.

Alternatively, there is another culture which uses no presupposed mathematical structure

or statistical model, but only algorithmic instructions in order to establish a relationship

between predictor (input) and response (output) variables. Examples of this kind include

nearest neighbor methods, CART (Classification And Regression Trees) (Breiman,

1984), etc. Breiman argues that the focus of the statistical community on data models has:

* Led to irrelevant theory and questionable scientific conclusions



* Kept statisticians from using more suitable algorithmic models

* Prevented statisticians from working on exciting new problems

(Breiman, 2001b)

A similar criticism can be made of current practice, and literature in design of

experiments. Orthogonal arrays are fixed matrices, while aOFAT is best described by a

set of instructions (there is no one matrix that represents aOFAT for a set number of

resources). By incorporating algorithmic ideas in experimentation one can create an

adaptive approach, which is useful for planning experiments, and also for selecting and

analyzing them. This in turn will be more effective in improving the system.



1.3 Literature Review

This research lies in the intersection of two topics: Adaptive one-factor-at-a-time

experimentation from the DOE literature, and Ensemble Methods from the data mining

literature. A discussion of past literature on aOFAT experimentation is presented in

section 1.3.1. This section does not seek to review work on factorial designs or design of

experiments as a whole. A comprehensive treatment of the literature in design of

experiments over the last hundred years has been summarized as a journal article by

Atkinson and Bailey (2001).

1.3.1 Background on Adaptive one-factor-at-a-time (aOFAT)
Experimentation

The aOFAT is an experimental procedure where a single factor is changed in each

experiment. Changes to variables that improve the response are retained and ones that are

detrimental are reversed. This practice is repeated sequentially until all factors are

exhausted, thus always taking 1 + (n, -1) experiments when m variables are being

tested at ni levels each. Figure 1.2 illustrates the mechanism associated with aOFAT as it

is applied to a system with three factors, and each factor is tested at two levels.



Do an experiment

Change
one factor /

-1 B +1 -1

+1

A

Figure 1.2 Graphical representation of the adaptive one-factor-at-a-time experimentation for a
system with three factors at two levels per factor (adapted from Frey and Jugulum (2006))

One-factor-at-a-time (OFAT) experimentation is generally discouraged in the literature

on experimental design and quality improvement (Box, Hunter, and Hunter, 1978,

Logothetis and Wynn, 1994, Czitrom, 1999, Wu and Hamada, 2000). Reasons mentioned

include:

* They require more runs for the same precision in effect estimation

* Interactions between variables cannot be captured,

* Can miss optimal settings,

* It is an ad-hoc procedure which does not allow us to form a mathematical model

of the system.

* Sensitive to biases in time trend since randomization is not possible.

Citing the above reasons, researchers have preferred, and made theoretical arguments for

an alternate form of experimentation, Orthogonal Arrays. The use of orthogonal arrays

was formalized by R.A. Fisher in the 1920's, where this approach was used to study crop

variation (Fisher, 1926). Unlike aOFAT, the orthogonal arrays result in a 'balanced'

design (all the levels of each factor are tested an equal number of times in the

If there is an apparent
improvement, retain the

change

If the response gets worse,
go back to the previous state

Stop after every factor has
been changed exactly once



experimental plan). It is claimed that orthogonal arrays can provide factor estimates with

greater precision and our less susceptible to the above mentioned weaknesses of aOFAT.

While this might be true, aOFAT has one important advantage over orthogonal arrays, in

that it is adaptive in nature (The treatment combination for each subsequent experimental

trial in an aOFAT is dictated by the findings from the previous trials). Milton Friedman

and Leonard Savage have favored iterative one-at-a-time plans by arguing that their

adaptive quality leads to more trials being conducted in regions in the design space that

are closer to the maximum (or closer to the desired target). Orthogonal arrays, in contrast,

due to their fixed one-shot approach, set aside many experimental trials that are far from

the maximum. Friedman and Savage state that such an approach could be preferred in an

environment where interactions are likely to exist. The plan proposed here uses multiple

rounds of aOFAT, where each new round starts with the combination of values of the

independent variables reached at the end of the previous round (Friedman and Savage,

1947). Cuthbert Daniel also acknowledged the value of aOFAT experimentation by

pointing out that such a procedure allows the experimenter to react to the data. Daniel

claimed that when random error is small in comparison to the main effects, such

experiments are economical and effective. Daniel suggests minimal augmentations to the

one-at-a-time plan to make it more effective (Daniel, 1973). Although not specifically

addressing a one-at-a-time approach, George Box and Patrick Liu have emphasized the

importance of adaptive experimentation by stating that a dynamic approach is needed

over a one shot approach (Box and Liu, 1999).

Other examples include, Qu and Wu (2004) who present two classes of one-at-a-time

plans that are of resolution V. They state that such plans facilitate sequential learning

while consuming fewer resources than a tradition resolution V design. McDaniel and

Ankenman (2000) state that for 'small change problems', a one-factor-at-a-time in

conjunction with Box-Behnken designs outperforms a resource equivalent strategy using

fractional factorial designs when there is no experimental error. Koita(1994) and Koita

and Staelin (1995) present a one-at-a-time strategy as a part of an overall experimentation



approach where fractional factorial arrays are used to identifying selected interactions

and other optimal experiments are carried out.

Some of the insights from the above mentioned literature motivated Frey, Engelhardt, and

Gretizer (2003) to look at a two-level, discrete version of aOFAT in an empirical study

that used data from 66 response variables in 27 full factorial experiments. This meta

analysis showed that when experimental error was low in comparison to main factor

effects and when interaction effects was more than one quarter of all main factor effects,

an aOFAT strategy achieves greater improvement than an orthogonal design that is

equally resource intensive.

Frey and Wang (2006) provided the theoretical basis for the empirical findings. This was

achieved by constructing a mathematical model to calculate the expected value of

improvement in using an aOFAT and orthogonal designs. Based on this model, a

comparison can be made between the exact improvement that can be afforded by aOFAT

and resolution III arrays (A set of orthogonal arrays that are typically more, and at least

equal, in their resource requirements as the aOFAT). The findings in this study

complement that of Frey et al., (2003), in that when experimental error is reasonably low

and the strength of interaction effects is reasonably high (both quantities measured in

relation to the strength of the main effects), then aOFAT outperforms the Resolution III

arrays. To determine what values are reasonable, a study by Li, Sudarsanam, and Frey

(2006) looked at 113 published full factorial experiments. They determined that the ratio

of interaction strength to main variable effects is typically 1/3.6.

Frey and Jugulum (2006) explicate these results by discussing the mechanism by which

aOFAT delivers the improvements that it does. Four specific mechanisms are identified

and explained. Frey and Sudarsanam (2008) corroborated the findings from the above

mentioned studies by adopting a case study approach in the context of robust design.

They present a methodological simple alternate to the traditional crossed array by

replacing the inner array with an aOFAT design.



A portion of the literature in one-factor-at-a-time design also concerns itself with a

continuous input design space. This is beyond the scope of this research. Many

algorithms and ideas have been suggested under such a framework. It is important that

the reader make this distinction (between continuous and discrete design space) in order

to fully place the contribution of this thesis with respect to the general body of available

literature There are many other cases of adaptive algorithms that use optimization on a

continuous space to select, sequentially, the next point in the design space to conduct the

experiment. Some examples include EGO by Jones et al. (1998), and SuperEGO by

Sasena et al., (2005), Hardwick and Stout (1998), and Wang (2007). Even, some of

discrete algorithms assume more than a predetermined number of levels for each factor.

For example the algorithm by Friedman and Savage (1947) suggest convergence in each

of their iterative rounds of aOFAT, suggesting that a continuous range of possible values

is available for each input factor. In this thesis the scope is different. It is constrained to

solving the problem where there are a fixed, finite number of levels for each factor and

their settings or values are known before conducting even a single experiment.

1.3.2 Background on Ensemble methods

Statistical learning3 is the art and science of extracting information from data in order to

establish a logical relationship between the inputs (independent variables) and outputs

(dependent variables), of any given process. This approach is especially valuable in

situations where the exact association between inputs and outputs cannot be derived from

first principles, or an in depth analysis of the underlying physics is not possible. In these

cases, statistical learning can be used to fill in gaps left over from such an analysis, or

build the relationships from scratch (Hand et al., 2001).

Building this logical relationship allows us to make predictions. In supervised learning,

this is achieved through a learning analysis of sample data that contain instances where

both input and output variables are known. This is referred to as 'training set' of data

(Hastie et al., 2001). The learning process uses the training data to construct a model or

3 The terms Statistical learning, Data mining, and Machine learning are used interchangeably in this thesis.
The difference in terminology can be mostly attributed to the different fields of origin, and do not hold any
significant, meaningful difference in the context of our study.



algorithmic structure that is capable of predicting the dependent variable given any vector

of independent variables. In order to achieve this, a basic skeletal structure for predictor

is assumed prior to any data analysis. The effectiveness of a given predictor can be

judged by how accurately it achieves the intended task of prediction. It is good practice to

set aside a pre-specified amount of data is separated for running model validations and

tests. Most training algorithms seek to optimize a metric of performance. This metric

depends on whether the output is a continuous variable (regression problems) or

categorical one (classification problems). Metrics such as squared deviation, mean

absolute deviation are seen in regression, while misclassification errors, cross entropy are

used for classification. (Hastie et al., 2001)

As mentioned in section 1.2.2, when the predictor links the dependent and independent

variable through some mathematical function, this broad genre of data mining procedures

are referred to as "Data modeling culture" by Leo Breiman (Breiman; 2001b). Examples

include multiple regression, logistic regression, discriminant analysis, neural nets,

support vector machines, etc. An alternative mechanism, referred to as "Algorithmic

modeling culture" involves the use of algorithmic instructions to predict the dependent

variable from the independent variables. Examples here are nearest neighbor methods,

random forests, etc. Ensemble techniques belong to this class of procedures (Berk; 2006).

Ensemble methods were primarily developed as a classification technique in machine

learning. They are learning algorithms that construct a set of classifiers and then classify

by taking some form of voting or aggregation of their predictions (Dietterich; 2000a).

Originally the term was coined in the context of creating and aggregating multiple neural

networks (Hansen and Salamon; 1990). However, since then, research work on ensemble

techniques has primarily used 'Tree predictors'. In fact, classification and regression

Trees are often used as a didactic tool to explain ensemble techniques (Berk; 2006,

Breiman; 2001a, Friedman and Hall; 2007). A detailed description on Trees as predictors

and the underlying algorithms, such as CART or C4.5, can be found in Breiman et al.

(1984) and Quinlan (1993), respectively. As we will see later in this thesis (section 4.2),

the reasons for suggesting a match between aOFAT and ensemble methods, is the same



reason that the Tree algorithms mentioned above (also 'greedy algorithms') are used as

the building block for ensemble technique exercises.

The common aspect in all ensemble methods is that they seek to apply, on what is usually

a deterministic algorithm, elements of stochasticity (whether it is on the input data, or

algorithmic methodology). The end results are multiple, modified versions of a

structurally similar set of predictors. For example, one of the most common, formalized

prediction techniques that uses such an approach on Tree algorithms is called 'Random

Forests' (Breiman, 2001a). Random Forests achieve the different training data sets

through 'Bagging' or 'Bootstrap aggregating' (Breiman, 1996). Here, the training data

sets are formed by using bootstrap (sampling with replacement) replicates, where each

replicate serves as a separate learning set. The differences in trees are also brought about

through various other techniques. One common technique used in Random Forests is

called 'Random Subspace method' (Ho; 1998). Here, a subset of the input variables is

selected for decision-making at each node. That is, if there are M input variables, a

number m<<M is specified. Such that at each node, m variables are selected at random

out of the M and the best split on this subset is used to split the node. The value of m is

held constant during the forest growth. Another similar technique is 'Random Split

selection' (Dietterich; 2000b). Here, at each node the split is selected randomly (as

opposed to picking the optimal split) among K best splits while using the entire set of

input variables for decision-making at each node. Other alternatives or modifications

have been suggested by Amit and Geman (1997) and Robnik-Sikonja(2004).

Additionally, all these methods have to deal with an aggregation technique which is

central to the procedures effectiveness.

In this study we attempt to utilize the methodology seen in such procedures by applying

the same experimental algorithm (aOFAT) with procedural modifications such as starting

locations and order in which variables are changed. This thesis also looks at different

aggregation techniques.



1.4 Research Summary

1.4.1 Research hypotheses

The broad hypothesis in this research is that an approach to experimentation which is

more adaptive, algorithmic, decentralized and agent-based will lead to greater system

improvement. We seek to test this through a specific experimentation procedure

characterized by an ensemble of aOFATs. The detailed hypotheses in the context of this

technique are:

* The application of ensemble techniques to create and aggregate multiple aOFAT

procedures will outperform the use of a single, full/fractional factorial, orthogonal

array when both methods are equally resource intensive.

* The use of ensemble techniques on aOFAT will outperform the use of ensemble

techniques on multiple, highly-fractioned orthogonal designs (each being as resource

intensive as a single aOFAT).

These empirical findings will be corroborated by a theoretical argument for why aOFAT

methods are better suited for Ensemble techniques.

1.4.2 Research Approach

The research approach, which is discussed in detail in Chapter 2, is briefly introduced in

this section as a research summary. The following steps summarize the approach adopted

in testing the two main hypotheses discussed in section 1.4.1.

I. The Meta Modeling approach

1. Create a meta model that represents actual engineering systems which

experiments can be carried out upon



(i) Use a mathematical structure/formulation that accounts for various

regularities seen in engineering systems

(ii) Use real world data to estimate various parameters in the math

formulation.

(iii) Create the meta model by coding the math model as a computer

program

2. Instantiate multiple response surfaces using the meta model that has been

constructed in step 1.

3. Simulate each experimental algorithm (ensemble aOFATs and orthogonal

arrays) on the responses

4. Evaluate the primary variable indicating the overall performance of the

algorithm

5. Analyze and visualize data

II. Case study approach

Apply the experimental algorithms on a case study of an actual engineering system and

thereby validate the findings from the meta-analysis.

1.4.3 Main Contribution

The main contributions from this research can be summarized as follows:

1. Encourage the use of industrial experimentation as a means to improve system

performance, by:

a. Providing an algorithmically superior and more effective form of

experimentation: This is quantified by providing an experimental strategy

that provides a greater expected value of improvement in system

performance, when compared to the current methods.

b. Providing an experimentation strategy that is more responsive to the

designers needs: The proposed method can cater to wider range of

resource availabilities. By using multiple aOFATs, any resource



availability can be closely matched by using the nearest multiple of a

single aOFAT's resource consumption.

c. Encouraging concurrent engineering practices: Since this procedure

requires multiple aOFATs that operate independently of each other,

different teams within the same company can be assigned the job of

running an individual aOFAT simultaneously. Since each aOFAT is a

complete experimental investigation on its own, many of the benefits that

come from performing a goal oriented exercise (as opposed to different

teams just running unrelated treatment combinations) can be benefited

from.

2. Provide insights into the general properties of algorithms used to solve large

complex problems. Specifically, provide a context for the use of decentralized,

agent-based approaches to solving problems. Offer insights on what types of

agents are better suited for such a decentralized approach. Look at the relative

advantages of using greedy algorithms as agents. Also, show the value of

algorithmic and adaptive approaches as opposed to structured ones. Much of this

contribution can be generalized to areas beyond experimentation.



1.5 Structure of the Thesis

The subsequent chapters in this thesis are structured as follows: Chapter 2 starts with an

introduction of the experimental algorithms that are compared in this study. It includes

the proposed method of Ensemble aOFATs, and the traditional approach of factorial

designs. The chapter then introduces the procedure used for making comparisons. This

refers to the concept of creating and using a meta-model in conjunction with simulations

to evaluate the two algorithms. A randomly selected equation from the meta-model is

used as an illustration to guide the reader through the actual application of both

algorithms. The chapter is completed with the results from the analysis performed and a

discussion with the interpretation of the results. Chapter 3 covers a case study. The case

pertains to a wet clutch system, where the goal of the experimental exercise is to

minimize drag torque. A background on the case is provided, followed by test

methodology, and finally the results with a discussion. In Chapter 4 the meta-modeling

approach is again used to test the secondary hypothesis of this thesis. A comparison

between the proposed methodology and an ensemble of equally frugal factorial designs is

conducted. The chapter concludes with a theoretical discussion, which explains the

empirical findings. Chapter 5 provides a set of methodological extensions to the

proposed algorithm. These include using different strategies for starting points, order of

variable changes, and aggregation of aOFATs. Alternate ways of analyzing the fractional

factorial arrays is also explored. Chapter 6 presents a summary of the findings and

potential areas for future work.



2 Evaluating Experimental Algorithms using the
Hierarchical Probability Model

In this chapter, the two experimental algorithms (ensemble of aOFATs and Fractional

factorial arrays) are tested using a hierarchical probability meta-model. Section 2.1

introduces the algorithms in the context of the specific experimental plans that are tested.

Section 2.2 introduces the meta-model and the procedure used to make the comparisons.

Section 2.3 presents a single example of a response equation with both experimental

algorithms applied to improving the system. And, section 2.4 presents the results with the

discussion on findings.

2.1 Experimental Algorithms

The first phase of comparisons in this study will look at variables that have exactly two

levels each. In order to reasonably compare two experimental strategies, it is important to

adopt plans that are equally resource intensive. To achieve this, we take seven design

variables. This will lead to a single aOFAT plan requiring eight resources (7.(2 -1) +1),

and ensembles of aOFAT requiring resources that are multiples of eight. Fractional

factorial designs, when two-level variables are used, consume 2
7-k resources (where k is

the degree of fractioning). Such a setup will allow us to make comparisons between these

two strategies at multiple degrees of resource availabilities. Specifically, in this study we

will compare a low-resource and a high-resource version. The low-resource version will

consist of an ensemble of four aOFAT designs and are compared to a 27-2 fractional

factorial design. With seven explanatory variables at two levels, both experimental plans

will need thirty two resources. The second pair-wise comparison, which is a high-

resource intensive assessment, is between eight aOFATs and a 27- 1 factorial array. Both

of these experiments require sixty four resources.



2.1.1 Ensemble of aOFATs

In our study we apply a divide-and-conquer, decentralized approach of using multiple

aOFATs , each seeking to find the optimal design setting. The findings of every aOFAT

are aggregated to provide a single recommendation. One key strategic aspect that

influences the performance of this algorithm is the starting locations of the different

aOFATs.

This refers to the default initial level settings for the variables. There are two reasons why

this aspect is thought to have a large impact on the algorithms performance. First, past

literature, when referring to the wisdom of crowd effect in such algorithms, acknowledge

the importance of diversity among the individual agents (Surowiecki, 2004 and Miller,

2007). Also, in the academic literature of ensemble techniques Amit and Gelman (1997),

and Breiman (2001a) note the importance of low correlation between the individual

predictors. Having different starting locations for the aOFAT experiments is seen as a

way of achieving this dissimilarity or low correlation. The second motivation to look at

starting points of aOFATs comes from previous findings that the performance of this

technique is greatly influenced by changing the starting location. Frey and Sudarsanam

(2008) in an investigation of aOFAT in the context of robust design, present an algorithm

where the each factor for aOFAT is started by setting it at the correct stage with a 75%

probability, when the factor has two levels. This modification to the aOFAT led to a

considerably improved performance when compared to the standard algorithm (Frey and

Sudarsanam, 2008). These findings suggest that by testing aOFATs at different starting

locations, there is a greater probability of finding a starting location that is closer to the

optimum.

Three plans are tested to look at the influence of starting locations of aOFAT. The first is

a plan that maximizes the dissimilarity of starting points. Here, aOFAT's are started at

locations which minimize the average correlation between all pairs of starting points

(maximize the negative correlation). This is synonymous to maximizing the mean

Euclidean distance between each pair of starting locations in the input variable design

space, when the variable levels are coded as +1 and -1. An alternative strategy looks at



the effectiveness of a method where the initial locations are independent of each other

(zero correlation as opposed to negative correlation). This is achieved by selecting each

variable's initial setting randomly for each aOFAT. And lastly, a plan where the same

location is selected for all aOFATs is looked at. The first plan performed considerably

better in terms of maximizing the performance metric for our study. A more detailed

comparison and demonstration of results between these plans is shown in Chapter 5.

However, for the experimental comparison, both low-resource and high-resource, the

plan of maximizing the negative correlation is the criterion used to select starting

locations. Note that while the aim here is to maximize the average Euclidean distance

between any pair of points, it is not necessary that all points are equally distanced from

each other, and this is often the case. In the four aOFAT ensemble case, the starting

vectors shown in table 2.1 achieved this.

A B C D E F G

aOFAT 1 -1 -1 -1 -1 -1 -1 -1
aOFAT2 -1 +1 -1 +1 -1 +1 -1
aOFAT3 +1 -1 +1 -1 +1 -1 +1
aOFAT4 +1 +1 +1 +1 +1 +1 +1

Table 2.1 Select starting locations for four aOFATs, with 2 levels each, which maximize the mean
Euclidean distance between each other

In addition to the location of the starting point, there are other strategic aspects that

influence the performance of ensemble aOFATs. They are the order in which the

variables are changed, and the aggregation technique used. In this thesis various different

plans are tested for each of these strategic aspects and their effect is discussed in Chapter

5. In this section we present a more elemental version of the algorithm. The order in

which variables are changed is fixed and the same for each aOFAT. The aggregation

technique uses a simple voting strategy where each aOFAT votes on each variable's level

settings based on its experimental findings. Each vote is weighted by the performance of

the response which is measured for the respective aOFAT, during its proposed best

treatment combination run. To ensure robustness, the weighting is not directly based on

the response magnitude, instead, through a ranking mechanism similar to the Mann-

Whitney U test, also known as, Wilcoxon rank-sum test (Wilcoxon; 1945). The rank sum



for the different levels of each variable is computed at each level and final design

decisions are made based on the aggregation of these ranked recommendations. Since the

aim here is to maximize the response, aOFATs that have higher responses have higher

ranks and therefore contribute more in terms of the rank sum. This method,

probabilistically, provides due advantage for aOFATs that found truly optimal solutions

and penalizes the voting power for ones that just found inferior solutions, or local

optimums. Also, this approach is seen as an intermediate between a strategy that simply

votes (equal weights) and one which just adopts the recommendation of the aOFAT

which had the best response (take-the-best). It is important to see that using the final

response magnitude only (as in the case of take-the-best) from the final recommendations

exposes the method to erroneous conclusions due to experimental error seen during the

final run. Ties resulting in this algorithm, which are usually infrequent, were resolved

through the assumption of squared loss function. This placed more benefit to treatments

that were consistent.

2.1.2 Fractional Factorial Design and Analysis

Ensemble aOFATs are compared with fractional factorial designs. Specifically, four

aOFATs will be compared to a 27-2 (32 runs) fractional factorial design and eight

aOFATs with a 27-1 (64 runs) factorial array. The fractional factorial design is selected in

accordance to maximum resolution (Box and Hunter; 1961) and minimum aberration

(Fries and Hunter; 1980) criteria. The arrays that meet these criteria are summarized in

Wu and Hamada (2000). It is seen that four arrays for the size 27-2 and two arrays for size

27-1 meet these requirements of optimality. Our simulations randomly select between the

four arrays for 27-2 design and two arrays for 27-1 design.

Statistical analysis of the fractional factorial arrays is carried out using a slightly

modified version of stepwise regression as discussed in Draper and Smith (1981) and

summarized in Hastie et al., (2001). This is a procedure which is a hybrid version of

forward stepwise selection and backward stepwise selection. In forward stepwise



selection, the model starts with only the intercept. Subsequent addition of variables is

done on a step-by-step basis based on a criterion that evaluates goodness of fit, such as

the p-value from the F-Statistic. The stopping criterion is met when the addition of a term

does not improve the p-value or when the percentage increase is below a tolerance level.

Similarly, backward selection starts with all explanatory variables in the model, and

sequentially removes them one-by-one. The hybrid method, which is the one used in our

study, starts with an empty model (only constant term), but at each stage considers both

options of adding and dropping terms. The criterion for addition and removal is set at

different levels so that infinite loops are avoided. In many cases using a fixed, pre-

determined a (p-value of 0.05 for entry of terms and 0.15 for removal of terms) provided

very few significant lower order terms, which was insufficient to make design vector

recommendation. For example, if only two three-way interaction terms are found

significant, this hardly helps us narrow down to a single treatment combination that can

be proposed as the best. And yet, the identification of the three-way interactions is useful

information that cannot be ignored. In such cases a (critical p-value for adding terms) and

the critical p-value for removing terms is adjusted to allow for concrete design

recommendations. This modification greatly improved the performance of the fractional

factorial designs over using a standard stepwise regression with fixed p-values.



2.2 Hierarchical Probability Model (HPM)

There are certain structural regularities often seen in an experimental environment. The

Hierarchical Probability Model is a mathematical form of expressing an engineering

system which can account for these regularities. A discussion of three prominent

structures discussed in literature can be found in Wu and Hamada (2000). A brief

summary is provided here:

* Sparsity of effects: In the context of experimentation, this principle states that a

small percentage of the tested effects (main effects and higher order interactions)

will influence the response in a statistically significant way. One of the earliest

explicit statements of this concept is seen in Box and Meyers (1986).

* Hierarchy: The hierarchical ordering regularity states that lower order effects are

more likely to be important (statistically significant and have larger coefficients)

than higher order ones. This means main effects are likely to be more important

than two-way interactions, and two-way interactions are likely to be more

important than three-way, and so on. Chipman(1996) discusses this concept,

including choice of priors for the higher order interactions.

* Heredity/ Inheritance: This principle suggests that an interaction is more likely to

be significant if its parent main effects are significant. In the case of a two-factor

interaction, the presence of both parent main effects makes it more likely that the

interaction is active, more than if either one of the parent effects is active, which

in turn holds a higher probability than if neither of the effects is significant. This

concept was formalized by Hamada and Wu (1992).

The HPM structure uses a General Linear Model (GLM) to express the system as a linear

combination of input variables, including their interactions and higher order effects. An

interpretation of the HPM by Chipman et al. (1997) is expressed in the equations 1

through 9.
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The formulation above provides us with a structure that is capable of expressing an

engineering system, with its expected regularities, in a mathematical form. However, we

still need to quantify the various parameters (such as s1, S2, p, poO, pi11, etc). A study by

Li, Sudarsanam, and Frey (2006) executes a meta-analysis of 113 data sets from

published factorial experiments. The study which focused on quantifying the above



mentioned regularities provides us with actual values for the parameters of interest. The

values shown in table 2.2 summarize the results that will be used in this study.

Parameters P P11 P01 P00 Pill P0ll P001 P000 ,2 Si s2 C

41% 33% 4.5% 0.48% 15% 6.7% 3.5% 1.2% 0-10 3.6 7.3 10

Table 2.2 Quantifying the HPM - Results from Li et al., (2006)

The use of the HPM to evaluate experimentation techniques was proposed by Frey and Li

(2008). In that study, multiple Robust parameter design methods were compared. Mainly,

the performance of two planning methods (crossed arrays versus combined arrays), and

two methods of analysis (classical analysis versus interaction modeling) were evaluated.

In this paper we adopt a similar process of using the HPM to evaluate our

experimentation algorithms. The proposed methodology has four key steps:

(i) Instantiate multiple response surfaces

(ii) Simulate each Experimental algorithm on the responses

(iii) Evaluate the primary variable indicating the overall performance of the

algorithm

(iv) Analyze and visualize the data

Each of these steps is briefly explained below (a more in depth discussion is available in

Frey and Li (2008)):

(i) Instantiate Multiple Response Surfaces:

In this step a response surface is instantiated by creating a polynomial equation described

by the GLM, shown in equation 1. Using a pseudo-random number generator we can

create random variates in accordance to the model described in equations 7, 8 and 9 and

therefore indirectly 4, 5 and 6. This will provide us with the coefficients (the fl's ) in the

GLM required to create the response surface. The observations are subject to different

degrees of experimental error, which is also subject to pseudo-random number generator

in accordance to equation 3. In this study we propose to analyze our experimental

algorithms at different degrees of experimental error, and hence we systematically

change o ,, and perform a separate analysis for each scenario.



(ii) Simulate each Experimental algorithm on the responses:

The experimental strategies analyzed in this paper (as explained in the previous section)

are coded as an algorithm that is executed by a computer. We describe this process as a

simulation since it is carried out multiple times. Each simulation run provides a different

response surface and therefore the performance of each experimental algorithm will

change from run-to-run. In addition, we need to understand that even for a fixed response

surface it is important to execute multiple simulation runs. This is because the

experimental error is modeled as a random variable, and it assumes different values for

each experiment. Hence the same algorithm, on the same response surface, at the same

mean error level can lead to different results.

(iii) Evaluate the primary variable indicating the overall performance of the algorithm:

The goal of the experimental methods under scrutiny is to find the ideal design setting

(treatment combination) that produces the best output (highest error-free response in a

larger-the-better case). Hence, we report the algorithms performance as a ratio between

the increase in output value achieved from the algorithms recommendation over the

maximum attainable increase in output. This is expressed as a percentage. Equation 10

characterizes this for a larger-the-better scenario:

Response from algorithm's recommendation - mean response
maximum possible response value - mean response

It is important to note that while the experimental algorithms are tested on data with

varying levels of experimental error, the evaluation of the algorithm's performance is

carried out at its theoretical, error-free value. This will not be possible during actual field

testing. It is possible only because we are running a computer experiment. Since we are

simulating the data and adding stochasticity later on through experimental error, we can

have an objective conception of performance.

(iv) Analyze and visualize the data:



The results from the simulations are gathered, analyzed and graphically plotted. To report

the performance of the two experimental strategies we look at the mean performance

across all simulations of that strategy. This is reported at different levels of experimental

error. The main reason for doing this is to show that an experimental strategy's

performance is greatly influenced by the experimental error, and it is important to define

the range within which our findings are valid. Since the computer simulations are run a

large number of times (10,000), even small differences in performance are statistically

significant.



2.3 Example with a Single Response Equation

In this section we take a random, sample equation that was generated from the HPM and

apply both algorithms to the response. It is hoped that this will concretely demonstrate

the procedure described in this chapter. Since this is conducted strictly for illustrative

purposes, only a low-resource comparison will be conducted. And, while both methods

will be carried out on the response, only the proposed method will be explained and

outlined in detail.

The response equation with only its significant terms is shown in equation 11.

Y(XA ,XB ,XC,XD,XEXF,XG)

= 11.2x c -1.5x E + 19 .5XG + 2 .4 xcXE + 0.4 xXG - 0.4XAXc + 0. 4XAXBXG + (11)

Xi e {+1,-1} , i A...G

E - NID(O,10 2)

This response can be summarized as being typical representation of the HPM. With seven

factors each having a 41% chance of being significant, the expected number of significant

main effects is approximately 3. Similarly using the expected value calculations we find

that there are no extreme anomalies with respect to the number of two-way and three-way

interactions. It is important to note however that as the number of input variables in the

experiment increase (main effects), the corresponding number of two-way and three-way

interactions increase in a combinatorial fashion. Other regularities such as sparsity,

hierarchy and heredity seem to be captured to a reasonable extent with most deviations

from the expected value within the bounds of the expected variability. The standard

deviation of the experimental error is set at 10 units. This value is seen as a medium value

of error and is equal to size of the main effects as indicated by the value of 'C' from

equations 7 through 9 and table 2.2.

In order to apply both experimental algorithms a full factorial design was generated using

the response equation from 11. The full array is presented in Appendix A. The highest

response, of 32.8 units is obtained with the following treatment: A = -1, B = -1. C = +1, E

= +1, G = +1. Since this equation is not a function of XDorXF , only the remaining



variables contribute to the response. Since there is no constant term, and this is a

balanced design, the mean response value is zero. A random simulation of the response

with experimental error is computed and this will be used as the output data for the two

experimental algorithms. The output with experimental error is also presented in

Appendix A.

2.3.1 Ensembles of aOFAT

Four aOFAT algorithms are executed on the output data presented in Appendix A. The

starting points for aOFATs are different and in accordance to the criteria of maximizing

the Euclidean distance (also shown in table 2.1). The result of performing such an

analysis is captured in tables 2.3 through 2.6. The best solution reached by each aOFAT

is highlighted.

A B C D E F G Output

-1 -1 -1 -1 -1 -1 -1 -15.91

+1 -1 -1 -1 -1 -1 -1 -29.13

-1 +1 -1 -1 -1 -1 -1 -15.31

-1 +1 +1 -1 -1 -1 -1 -25.19

-1 +1 -1 +1 -1 -1 -1 -33.73

-1 +1 -1 -1 +1 -1 -1 -47.12

-1 +1 -1 -1 -1 +1 -1 -0.66

-1 +1 -1 -1 -1 +1 +1 6.87
Table 2.3 aOFAT-1: an adaptive one-factor-at-a-time analysis on data from equation 11



A B C D E F G Output

+1 +1 +1 +1 +1 +1 +1 19.95

-1 +1 +1 +1 +1 +1 +1 19.08

+1 -1 +1 +1 +1 +1 +1 40.66

+1 -1 -1 +1 +1 +1 +1 4.30

+1 -1 +1 -1 +1 +1 +1 32.80

+1 -1 +1 +1 -1 +1 +1 32.93

+1 -1 +1 +1 +1 -1 +1 23.98

+1 -1 +1 +1 +1 +1 -1 -6.08
Table 2.4 aOFAT-2: an adaptive one-factor-at-a-time analysis on data from equation 11

A B C D E F G Output

-1 +1 -1 +1 -1 +1 -1 -28.05

+1 +1 -1 +1 -1 +1 -1 -43.38

-1 -1 -1 +1 -1 +1 -1 -48.34

-1 +1 +1 +1 -1 +1 -1 -19.92

-1 +1 +1 -1 -1 +1 -1 2.28

-1 +1 +1 -1 +1 +1 -1 -7.70

-1 +1 +1 -1 -1 -1 -1 -25.19

-1 +1 +1 -1 -1 +1 +1 39.41
Table 2.5 aOFAT-3: an adaptive one-factor-at-a-time analysis on data from equation 11

A B C D E F G Output

+1 -1 +1 -1 +1 -1 +1 22.38

-1 -1 +1 -1 +1 -1 +1 39.60

-1 +1 +1 - 1 +1 -1 +1 49.67

-1 +1 -1 -1 +1 -1 +1 9.45

-1 +1 +1 +1 +1 -1 +1 21.48

-1 +1 +1 -1 -1 -1 +1 32.74

-1 +1 +1 -1 +1 +1 +1 34.85

-1 +1 +1 -1 +1 -1 -1 -5.54

Table 2.6 aOFAT-4: An adaptive one-factor-at-a-time analysis on data from equation 11



It is noteworthy that none of the aOFATs above discovered the treatments that could

provide the highest response. The findings from each aOFAT are now aggregated as

using weighted voting method as described in section 2.1.1, and shown in table 2.7.

Response Rank Voting
A B C D E F G Weights

aOFAT 1 -1 +1 -1 -1 -1 +1 +1 6.87 4 1
aOFAT 2 +1 -1 +1 +1 +1 +1 +1 40.66 2 3
aOFAT 3 -1 +1 +1 -1 -1 +1 +1 39.41 3 2
aOFAT 4 -1 +1 +1 -1 +1 -1 +1 49.67 1 4

Aggregated -1 +1 +1 -1 +1 +1 +1
Table 2.7 Ensemble aOFAT aggregation process

The treatment combination recommended by the final aggregated process after a

weighted voting is shown in table 2.7. This treatment results in a response (without error)

of 32.0. This is not the best treatment, and therefore not the highest response. The

percentage improvement, as characterized by equation 10, is 97.6%

2.3.2 Fractional Factorial Design

A Resolution IV, 27-2 design which consumes 32 resources is applied on the data. Four

main fractions of the full factorial design that meet the criteria of maximum resolution

(Box and Hunter, 1961) can be selected. The selection of the fraction is done randomly.

A fraction with the aliasing pattern of F = ABCD, and G = ABDE, was selected. This

gives us the following defining words I= CEFG = ABCDF = ABDEG. The entire

aliasing structure is presented in Appendix B. This fractional factorial array allows us to

estimate all main effects, most of the two-way interactions (18 out of the 21), and a few

three-way interactions (6 out of 35). Owing to this aliasing pattern three two-way

interactions cannot be estimated and the designer is free to select these. However, the

designer might be unaware of which ones are truly significant, or not. In our response

equation three two-way interactions, are significant and we would ideally like to have

them in the model. Similarly, the same problem applies in estimating three-way

interactions. In our model we randomly selected 18 of the 21 two-way interactions and 6

of the 35 three-way's. All the two-ways in the response (equation 11) were selected, but



the three-way was not. It is noteworthy that in a simulation of many random trials there is

a random selection of fractions as well as interaction terms selected within the possible

set of aliased terms. This would lead to the selection of interaction terms that are in the

system by chance sometimes and fail to select them at others.

A stepwise regression analysis (as described in section 2.1.2) is performed on the data

with experimental error (as shown in Appendix A). The resulting regression equation is

shown below:

y = 13 .1xc + 19xG -0.2xB + l.lXCXE -0. 2 XDXE + O. lxAx (12)

An optimization of this equation results in selecting the following settings for the

variables A = +1, B = -1, C = +1, D = 1,, E = +1, G = +1. The factor F is not in this

equation or the original response surface and therefore does not influence the outcome.

This treatment combination resulted in a response of 31.2 units. This is 95.1% of the

maximum possible response of 32.8 units.



2.4 Results and Discussion

The results from applying the experimental algorithms on the HPM will be discussed in

this section. The goal of the experimental methods under scrutiny is to find the ideal

design setting (treatment combination). In the HPM simulations we assume a larger-the-

better scenario and seek to find the treatment that provides the largest response. The

response surfaces in these simulations vary with each run and are generally characterized

by equations 1 through 9. Experimental error is varied from 1 to 20 units, and the

expected value of the largest main effect is approximately 16 units (since each simulation

creates different, independent values for the coefficients). The standard step sizes for the

experimental error is 2.5 units. A total number of 10,000 simulation runs are executed at

each error level. The aim of the experimental algorithms is to find a treatment

combination that maximizes the response surface. The metric that measures the

performance of these procedures is shown in equation 10.
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Figure 2.1 Comparing an ensemble of 4 aOFATs with a 27-2 fractional factorial array using the HPM
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Figure 2.2 Comparing an ensemble of 8 aOFATs with a 27" fractional factorial array using the HPM

The results from the simulations are depicted in figures 2.1 and 2.2. These findings

suggest that at best the proposed algorithm is in general superior to the fractional factorial

designs and at worst they provide equal improvements.

In the low-resource intensive comparison (Ensemble of 4 aOFATs versus a 27-2

Fractional Factorial design) the ensemble aOFAT algorithm provides superior or

identical design recommendations in 66% of the cases at low error levels (2.5 units), 83%

at medium error levels (10 units), and 85% at high error levels(17.5 units). In the high-

resource intensive comparison (Ensemble of 8 aOFATs versus a 27-2 Fractional Factorial

design) the ensemble aOFAT algorithm provides superior or identical design

recommendations in 59% of the cases at low error levels (2.5 units), 74% at medium

error levels (10 units), and 81% at high error levels(17.5 units).
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3 Case Study: Improving the Performance of a Wet
Clutch

In this chapter we introduce an illustrative case study which shows the application of our

experimental techniques to a specific engineering system. This case is adapted from a

study performed by Fredrick A. Lloyd (Lloyd, 1974) which looks at the use of design of

experiments to identify the parameters contributing to power loss in a disengaged wet

clutch. This is a typical case which has been used in other studies in experimental design

as an illustrative example. Both Frey and Li (2008), and Frey and Jugulum (2006) utilize

this experiment as a sample test bed to illustrate the point of their respective papers. Li et

al. (2006) use this experiment as one of their 113 cases to study regularities in

experimental environments.

3.1 Background

A clutch, such as the one shown in figure 3.1, is a device used to transmit torque from an

input shaft, which is normally connected to a motor or an engine, to an output. This is

accomplished through the use of two or more friction discs that are pressed together. The

clutch can be engaged or disengaged. In the disengaged position, the friction discs are

separated by a very small clearance, and expected to spin at different speeds. In the wet

clutch, the entire setup is immersed in a cooling lubricating fluid. This provides multiple

advantages over a dry clutch, such as smoother performance, longer life and surfaces are

usually cleaner. However, there are some disadvantages, such as the energy lost to the

fluid, primarily through the viscous shear forces seen during operation. In this study, the

power loss is measured by studying the drag torque resulting from these shear forces

transmitted through the fluid.



INLET

Figure 3.1 A wet clutch pack (adapted from Lloyd (1974))

The friction assemblies were preburnished with the reaction plates on an inertia

dynamometer in order to reproduce a more realistic use of a clutch pack that has seen

some service. Drag torque, the response of interest, was measured from the inertia

dynamometer. Seven input variables were selected for this experiment. Each variable is

tested at two levels. The seven variables with their actual settings are shown in table 3.1

Variable Factor Name Low Level (-1) High Level (+1)

A Oil Flow, gal/min 0.75 2.00

B Pack Clearance, in 0.050 0.150

C Spacer Flatness Flat Waved

D Grooving Patterns No Groove RM No. 17 Waffle

E Oil Viscosity SAE 10W SAE40W

F Friction Material R-4893-1 W-1349

G Rotational Velocity 1000 3000
Table 3.1 Input variables and their level settings from the wet clutch case

A full factorial 27 experimental plan was carried out and the results analyzed by Lloyd

(1974).



3.2 Model Construction

For our purposes, we analyze the full factorial data using a model and procedure similar

to that performed in the original paper. The raw data is available in Lloyd (1974). The

analysis of the experiment is carried out using stepwise regression. This allows us to

quantifying all the main effects, two-way and three-way interactions. This procedure also

allows us to assess which effects are statistically significant (at the 99% level). In our

problem, we have included all main effects, and only the significant two-way and three

way effects in the GLM. This is in accordance to Chipman's 'Strong Heredity' principle

(Chipman; 1996), which states that all parent main effects be compulsorily included if an

interaction term which contains this effect is found to be statistically significant. Table

3.2 shows the values of the various main effects and Table 3.3 shows the significant two

way interactions, and Table 3.4 shows the significant three-way interactions. Our

findings, in terms of effect significance and magnitude, is very similar to that of Lloyd

(1974) and previous studies by our group on the same dataset (Frey and Jugulum; 2006).

Effect Drag torque [ft lbs]
A 1.33
B -1.55
C -1.81
D 0.07
E 2.81
F -0.09
G 3.01

Table 3.2 Main effects for the wet clutch case

Effect Drag torque [ft lbs]
AD 0.53
AG 0.96
BD -0.52
BG -0.83
CD 0.68
CG -0.49
DE 0.51
DG 0.83
EG 0.46

Table 3.3 Significant two-way interaction effects for the wet clutch case



Effect Drag torque [ft lbs]
BCD 0.43
CDE -0.49
CDF 0.51
CDG -0.83
CEF 0.46

Table 3.4 Significant three-way interaction effects for the wet clutch case

This analysis allows us to create the following response equation which is seen as a

predictive fit for the experimental data:

Drag torque =

4.92 + 0.66xA -0.77x - 0.90xc + 0.03xD +1.40xE -0.05xF -1.50xG

+0.26xAD -0. 4 8xAG -0.26xBD +0.41xBG +0.34xc + 0.35xcG +0.32xDE +0.4 6xDG -0. 6 6 xEG (13)

+0.2 xBCD - 0.2 5xDE + 0.2 5xCDF -0. 4 2 xCDG + 0.2 3xCEF

Where, drag torque is measured in ft-lbs and xA through XG are the input factors in coded

Hi - Lo settings of +1 and -1. Equation 13 is a response surface description of the

physical phenomenon associated with a wet clutches' workings. We will use this

description to study the performance of our experimentation strategies, where the goal of

both strategies is to minimize the drag torque.

Similar to the analysis seen in chapter 2 with the HPM, simulations of the experimental

algorithms on the response surface (equation 13) is conducted. The response in this case

is a single fixed surface, as opposed to the HPM where the response is characterized by a

stochastic formulation and each simulation run presents a different response equation.

Nevertheless, we conduct simulations on this single surface because the experimental

error is a source of randomness which leads to different findings in each simulation run.



3.3 Results and Discussion

The response surface used for this case is shown in equation (13). The coded settings of

the input variables that correspond to a minimization of drag torque are, A = -1, B = -1, C

= +1, D = +1, E = +1, F = -1 and G = +1. These settings lead to an expected drag torque

of 0.304 lb-ft. The average drag torque is 4.93 lb-ft (this is the same as /3o), and maximum

drag torque is 12.52 lb-ft.

Similar to equation 10 that was used for the HPM simulations, our metric is the decrease

in drag torque, expressed as a percentage of the maximum possible decrease. This is

defined through equation 14.

Percent decrease in drag torque = mean drag torque - drag torque of method .100 (14)
mean drag torque -minimum possible drag torque

The 'drag torque of method' is computed by looking at the error-free, theoretical drag

torque that will be achieved when a method's recommended treatment combination is

applied to the response surface. The mean and minimum possible drag torques are

constants.

We analyze the performance of the two strategies across a reasonable range of

experimental errors. The value of a, is varied from 0.5 lb-ft to 5 lb-ft, with step sizes of

0.5 lb-ft. It is important to look at this range in the context of the magnitude of the largest

main effect which is 3.01 lb-ft and the square root of the average residual sum of squares

(RSS) is 0.877 lb-ft, which is found by comparing the full-factorial experimental data

reported in the original study with the fitted GLM model. The performance of the

different algorithms is determined by simulating 10,000 trials at each level of aO, and

averaging the results to find the expected percent decrease in drag torque.
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The results are graphically illustrated in figures 3.2 and 3.3. In both cases the

performance of the ensemble aOFATs are superior to that of the fractional factorial

arrays, consistently for the various error levels.

At low error levels (error = llb-ft), in the low-resource intensive comparison (Ensemble

of 4 aOFATs versus a 27-2 Fractional Factorial design), the ensemble aOFAT algorithm

identifies the best treatment combination (the treatment combination that minimizes drag

torque) in 99% of the simulation runs. The fractional factorial design identifies this

treatment combination only in 97% of the cases. At this error level, the proposed method

provides an 99% expected decrease in drag torque, while fractional factorial provides a

98% decrease. At medium error levels (error = 3 lb-ft), in this same comparison, the

proposed algorithm identifies the best treatment combination in 48% of the cases, while

factorial arrays identify them 40% of the time. The expected decreases in drag torques are

59% and 46%, respectively. At high error levels (error = 5 lb-ft), in this same

comparison, the proposed algorithm identifies the best treatment combination in 31% of

the cases, while factorial arrays identify them 30% of the time. The expected decreases in

drag torques are 46% and 36%, respectively.

At low error levels (error = 1 lb-ft), in the high-resource intensive comparison (Ensemble

of 8 aOFATs versus a 27-1 Fractional Factorial design), the ensemble aOFAT algorithm

identifies the best treatment combination (the treatment combination that minimizes drag

torque) in 83% of the simulation runs. The fractional factorial design identifies this

treatment combination only in 61% of the cases. At this error level, the proposed method

provides an 86% expected decrease in drag torque, while fractional factorial provides a

72% decrease. At medium error levels (error = 3 lb-ft), in this same comparison, the

proposed algorithm identifies the best treatment combination in 65% of the cases, while

factorial arrays identify them 55% of the times. The expected decreases in drag torques

are 70% and 61%, respectively. At high error levels (error = 5 lb-ft), in this same

comparison, both algorithms identify the best treatment combination in 41 % of the cases.

The expected decreases in drag torques are 57% and 47%, respectively.



4 Comparing an Ensemble of aOFATs with an Ensemble
of Factorial Designs

In this chapter we test the secondary hypothesis in this thesis that, the use of ensemble

techniques on aOFAT will outperform the use of ensemble techniques on multiple, highly-

fractioned orthogonal designs (each being as resource intensive as a single aOFAT).

4.1 HPM Comparison and Results

Similar to the methodological approach adopted in Chapter 2, we use the HPM to make a

comparison between an ensemble of aOFATs and an ensemble of Resolution III

fractional factorial designs. Again, an experimental setup with seven factors is

considered where each factor has two levels each. With this setup, both, the aOFAT and

27-4 fractional factorial plan consumes 8 resources. The low-resource version of using

four aOFATs will be compared with four of the factorial designs. Both sets of plans

consume 32 resources each.

The 27-4 , resolution III array is a saturated design where the main effects are aliased with

all two-way interactions, thus making it impossible to estimate the two-way interaction

effects. The selection of the four arrays for each experimental plan is performed as a two

step process. Initially, one of the four 27-2 resolution IV designs that meet the maximum

resolution criteria (Box and Hunter, 1961) is randomly selected. Each of these 32 run

designs is split into four 27-4 resolution III designs. Essentially, there are 16 arrays of size

27-4 that meet the requirements of maximum resolution, and four of them are subsets of

any of the selected 27-2 design. These four arrays will be used to analyze the design space

and subsequently aggregated. By performing this two-step process we can guarantee that

each of the four fractions follow the guidelines for statistical propriety, but also that they

are relevant in the context of each other.

Stepwise regression is not used to analyze each Resolution III design. This is mostly

because there are overall 64 effects to be estimated (1 constant + 7 main effects + 21 two-



way interactions + 35 three-way interactions) from 8 experimental runs. In most

simulation runs, this is not a sufficient amount of data to construct a reasonable model.

Especially, one that can be optimized it to provide a single best treatment. An approach

that aggregates coefficients and significance levels from the different arrays in some

statistically sound manner would be akin to analyzing the larger fraction (27-2) in the first

place. In this thesis we use two simpler strategies to analyze the factorial arrays.

(i) Classical Analysis: This procedure is a conceptually simple way of analyzing

factorial designs. Here, each factor is analyzed separately. The average response

at the different levels of the factor is compared and the best one is selected. This

is repeated for all factors, sequentially. This method is popularly used in the

context of robust design when crossed arrays are used with highly fractioned inner

arrays. It was popularized by Genichi Taguchi (Phadke, 1989). This technique is

likely to work well in environments with high experimental error. The reason

being that, the use of multiple experimental values to compute the average effect

is beneficial. The variance of the estimate is lower than individual values since it

is the average of many independent random variables. The decrease in variance

scales linearly with an increase in the number of trials. However, this technique is

likely to perform poorly in environments with a lot of interactions. The procedure

ignores interaction effects. While an interaction term in the system will indirectly

contribute towards a main effect through this analysis, it is likely to be weighed

down by the other experimental values of the same main effect which possess a

different interaction structure.

(ii) Take-the-best: Is a fairly straightforward technique which picks the treatment

combination with the highest output observed in the experiment. This method is

more susceptible to experimental error, since it just takes one erroneously

represented outcome to mislead the entire analysis. As a result, this analysis is

likely to perform well at regions of low experimental error and poorly in regions

of high error. Take-the-best is fully capable of exploiting interactions, but fails to

account for treatment combinations that aren't available in the selected fraction of

the full factorial space.



Due to some of the limitations mentioned above, neither of these techniques is effective

enough to be recommended as a standalone procedure to analyze factorial designs. One

of the main reason for this is that they do not perform consistently well across all regions

of experimental error. However, the take-the-best is an effective strategy when

experimental error is really low and classical analysis is effective when the experimental

error is really high. By focusing the comparison of our algorithm to take-the-best at low

errors, and classical analysis at high errors, we would be providing the ensemble of

factorial designs a substantial advantage. This is because, in the real world experimental

environment, the value of pure error is seldom known and can be hard to estimate.

The rank sum voting technique is used to aggregate the factorial designs. This is the same

technique that is used to aggregate the aOFATs (introduced in section 2.1.1). Here, each

agent, in this case 27-4 fraction factorial array, votes on the levels of each factor. Their

votes are weighted by ranking system. The factorial designs that find higher responses get

higher ranks.

Besides comparing the ensemble of four aOFATs, with two sets of four 27-4 factorial

designs (one using classical analysis and one using take-the-best), we also compare this

with the original 27-2 design with stepwise regression. All the designs use 32 resources.

The methods compared using HPM simulations are shown in figure 4.1.
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Factorial arrays using classical analysis and take-the-best, and a single 27-2 Fractional Factorial array

The key finding in this study is that, the ensemble of aOFATs performed consistently

better than an ensemble of fractional factorial designs, through all ranges of experimental

error, and irrespective of the strategy used to analyze the factorial design. Of specific

interest is the fact that an ensemble of aOFATs outperformed an ensemble of fractional

factorials when they were analyzed using a take-the-best strategy at regions of low

experimental error. And, an ensemble of aOFATs outperformed an ensemble of

fractional factorials when they were analyzed using a classical analysis at regions of high

experimental error. Unrelated to the hypothesis of this study, it was interesting to observe

that an ensemble of frugal fractions (27-4,'s) using heuristic analysis strategies (like

classical analysis, take-the-best, and voted aggregations) performed comparably to a

single 27-2 factorial array which used stepwise regression with an adaptive a value.

1 ~



4.2 Theoretical Discussion: Why Ensemble Methods to aOFAT?

The findings in section 4.1 suggest that the superior performance of the proposed

algorithm is not entirely due to the effect of ensembles (since factorial designs that are

aggregated do not perform as well). The performance is also not entirely due to aOFATs

design. This is because, previous studies, such as Frey et al.,(2003), Frey and Wang

(2006) and Frey and Sudarsanam (2008), show that aOFATs when compared to factorial

designs do not perform so well in regions of high experimental error (something not seen

with the algorithm proposed in this thesis). This section argues the interactive effect

aOFATs and ensemble techniques that make this algorithm work well.

The aggregation of many individual classifiers, or predictors, results in an ensemble

classifier. Hence, the strength of the ensemble classifier depends on the predictive

capabilities of the individual predictors and the interrelations between them (Amit and

Gelman; (1997), and Breiman (2001a)). The Predictive strength of an algorithm is often

represented as a percentage or ratio of perfect predictability, the complement of which is

prediction error. This error can be split into two components - 'variance' and 'bias'

(Bishop; 1995, Hastie, et al.,; 2001). Such a dichotomy is very useful in understanding

exactly how the predictive strength of the building blocks scale up to that of the ensemble

classifier's.

Using the following derivation from Hastie et al., (2001):

If we take an environment, Y = f(X) + E, where E(E) = 0 and Var(E) = 0,

We can derive an expression for the expected prediction error of a fitted model f(X) at a

point X = xo using squared error loss:

A

ERR(xo) = E[(Y- f(Xo)) 2 X = Xo] (15)



A A A

ERR(xo) = , + [E(f(xo)) - f(xo)]2 + E[(f (x) - E(f (xo)))2 ] (16)

ERR(xo) Irreducible error + Bias2 + Variance (17)
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levels of variance and bias

Figure 4.2 Bias and Variance Decomposition (adapted from Hastie, Tibshirani and Freidman 2001)

From equation 17 it can be inferred that it is possible for two individual prediction

methods to have the same predictive strength but one could have high bias and low

variance, while the other could have a low bias and high variance. Using a third variable

called 'model complexity', Figure 4.2 (adapted from Hastie et al,; 2001) illustrates this.

In such cases, is one prediction algorithm more suited for ensemble methods than the

other?

This study, and many others in the literature, (for example, Keijzer and Babovic (2000),

Buhlmann and Yu (2002), Friedman and Hall (2007)) assert that when two methods with

the similar predictive accuracies are compared, the method with relatively lower bias and

higher variance is better suited for ensemble techniques. The reasoning is that ensemble

methods work by utilizing the law of large numbers to achieve variance reduction that

results from the aggregation of multiple different predictors. In cases where the predictor

used has low bias and high variance the use of ensemble methods prevents overfitting of

the model to data. Conversely, if the individual predictor has a high bias and low



variance, then ensemble techniques don't contribute much to the predictability, because

the bias component is not improved through the aggregation.

A conception similar to prediction error, bias, and variance can be applied to

experimentation. A parallel notion of prediction error in experimentation is the loss

incurred in selecting a treatment combination that is suboptimal. For a given system there

exists one treatment combination (at zero error) that results in the best response value. An

algorithm that identifies this treatment combination is similar to a data mining algorithm

that makes a perfect prediction ( (x) = f(x)).A lower response (in a larger-the-better case)

resulting from an alternate treatment can be expressed as a fraction of the maximum

possible value. We define this loss as 'Percent experimental loss' and quantify it as:

Percent experimental loss = (1- responseexperment ).100 (18)
responseoptimal

Similar to the bias-variance dichotomy in data mining, the experimental loss can be split

into two sources, error-dependent loss and error-independent loss. The experimental loss

occurring due to experimental error (also referred to as pure error) is similar to the

variance component in a prediction algorithm. We call this 'error dependent loss', since

this usually increases as a function of increasing experimental error. And this increase is

dependent on the algorithm used. The variance in a predictor also increases as a function

of error. Analogous to the bias of a predictor is the 'error independent loss' of an

experimental strategy. In an effort to save resources and militate against this experimental

error various algorithms utilize statistical or heuristic strategies which prevent them from

identifying the best treatment combination. This is the loss incurred even when there is

no experimental error and hence can be quantified as the percent experimental loss when

experimental error is zero. The bias in a prediction technique can similarly be ascertained

by calculating the prediction error in f(X) with zero pure error (a, = 0 ).



Data Mining Experimentation

Prediction Error Percent Experimental Loss

Bias Error independent Loss

Variance+ Irreducible error Error dependent loss
Table 4.1 Conceptual analogues between data mining terminology and experimentation

The aOFAT algorithm when compared to resolution III fractional factorial arrays is a

method with lower 'error independent loss' and higher 'error dependent loss'. Theoretical

proof that aOFAT performs better than Resolution III arrays in environments with low

pure error (including zero error) has been shown, while the opposite is true in

environments with high experimental error (Frey and Wang; 2006). These findings have

been corroborated through case studies by Frey and Sudarsanam (2008) in the context of

robust design.

Figure 4.3 is an illustrative example from Frey and Wang (2006) that shows that at low

levels of experimental error aOFAT outperforms resolution III factional factorial arrays

(while the opposite is true at high error levels). This particular case looks at maximum

flight time of an electric powered model aircraft. An aOFAT with seven design variables,

each at two levels, is compared with a 27-4 resolution III fractional factorial design.
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Figure 4.3 Flight times against increasing standard deviation of experimental error for the electric
powered aircraft case when an aOFAT was applied (on the left), and a 27-4 resolution III design was

applied (on the right); with 10 th to 9 0 th percentiles (adapted from Frey and Wang, 2006)

A secondary line of reasoning to show that aOFAT when compared to resolution III

fractional factorial arrays is a method with lower 'error independent loss' and higher

'error dependent loss', follows from looking at environmental complexity. This reasoning

also uses the conceptual analogues that Bias corresponds to 'error independent loss' and

that variance corresponds to 'error dependent loss'. Low bias and high variance is

synonymous with model complexity (Hastie, et al.,; 2001). This is because such models

are capable of taking up complex structures in order to fit data (which can be an

advantageous or detrimental property). It therefore follows that predictors with low bias

and high variance perform better than their counterparts in environments that are

complex. Environmental complexity can be defined by complexity of the function f(X)

in Y = f(X) + c. In the context of designed experiments where each input variable often

only takes two levels, complexity is analogous to the average strength and presence of

interaction terms (as higher order, logarithmic and trigonometric terms are not possible).

Again, theoretical proof that aOFAT performs better than Resolution III arrays in

environments where the ratio between strength of interaction terms to main effect terms

is high has been demonstrated by Frey and Wang (2004) which has been corroborated

through case studies by Frey and Sudarsanam (2008).

7 I-



Similar to reasoning that the aggregation process in ensemble techniques targets the

variance component in a predictor, the aggregation of experiments targets the error

dependent loss in an experimental strategy. Hence, a technique with high error dependent

loss and low error independent loss is better suited for ensemble experiments. This notion

in conjunction with the findings of Frey and Wang (2006) and Frey and Sudarsanam

(2008) motivates us to use an aOFAT strategy over Resolution III fractional factorial

arrays in ensemble experiments.



5 Extending Ensemble Techniques and Factorial
Design Analyses

This chapter looks at the effect of various algorithmic modifications to the proposed

method. It also looks at the comparative performance of fractional factorial designs when

they are analyzed using different strategies.

5.1 Methodological Extensions of the Proposed Algorithm

In an effort to seek greater improvement in performance, changes to certain aspects of the

proposed algorithm are tested. Three key areas that impact the performance of an

ensemble of aOFATs are: (i) Starting points of aOFATs, (ii) Order in which variables are

changed, and (iii) Aggregation techniques used. In this section we will address each of

these aspects and provide multiple strategic plans for them.

It is important to note that these three methodological areas cannot be looked at

separately, but in the context of each other. A strong interaction exists between these

three domains. For example, an aggregation strategy which places a lot of weight on the

aOFATs with superior performances is better combined with a plan for having dissimilar

starting points. On the contrary, an aggregation strategy that is more egalitarian (the

findings of each aOFAT are weighted equally, irrespective of its outputs) works better

when the starting points are closer to each other. Acknowledging this interactive nature

between the three areas leads us to study them in combinations. The tests are conducted

in accordingly.

5.1.1 Starting locations of aOFATs

The starting point of aOFATs, refers to the levels at which the factors are originally set,

when the aOFAT is started. An aOFAT algorithm which starts closer to the peak of the

response (more levels of the starting vector match the levels of the best treatment), has a



higher probability of finding the peak or getting close to it, than one which starts far away

(Frey and Sudarsanam, 2008). In a scenario where there is no prior knowledge on the

response peak, this insight does not help guide us in picking a starting location for a

single aOFAT plan. However, when using an ensemble of aOFATs, in conjunction with

an aggregation strategy, or variable change order, this information can be utilized in a

beneficial way. A strategy which spreads starting locations is likely to have placed an

aOFAT closer to the peak than one which starts them all at the same point. A strategy

that maximizes the Euclidean distance between starting locations achieves this.

Motivated by this line of reasoning, and a comparative analysis conducted earlier in this

thesis (section 2.1.1), the experimental algorithm studied thus far in this thesis uses this

strategy. However, earlier studies looked at the various possible starting location

strategies with a fixed strategy for variable change order and aggregation. We revisit the

different possibilities for starting points in light of looking at its combined effect with the

other strategies which will also be changed. The three main ideas for starting locations

are summarized below:

(i) Maximizing Euclidean distance: In this plan, the aim is to maximize the average

Euclidean distance between pairs of points. It is important to note that our design

space with discrete levels is characterized a hyper-cube. An algorithm that

maximizes Euclidean distance will not place points that are equidistant from each

other. Almost always this algorithm encourages points to find the comers of the

cube, and therefore some pairs will be closer or further away than others.

(ii) Random Starting Locations: Inspired by random forest algorithms (Breiman,

2001a), and wisdom-of-crowd recommendations that emphasize the importance

independence between agents (Surowiecki, 2004), this plan randomly picks

starting locations for aOFATs.

(iii) Fixed starting locations: This plan picks a randomly selected starting location that

is fixed for all the aOFATs in the ensemble.

5.1.2 Order of Variable Changes



The performance of an aOFAT design, being sequential in nature, is influenced by the

order in which the variables are tested. Typically, the performance can be improved if the

factors with the largest impact (on the response) are toggled first, followed by others in a

descending order. The detailed explanation of this result is beyond the scope of this

thesis. However, the basic idea contained in this effect concerns exploiting two-way

interaction terms. When a variable with a large impact is changed towards the end of the

experimental plan, it impacts the contribution of all the two-way interactions in which it

is involved. Having different variable change orders is also seen as a way of creating

dissimilarity between the aOFAT experiments. The main plans for variable change orders

are summarized here:

(i) Maximize Negative Correlation: A plan of maximizing negative correlation

between variable change orders is tested. Similar to the plan of maximizing

Euclidean distance between starting points, this plan seeks to maximize the

average negative correlation between pairs of aOFATs.

(ii) Random Change order: The second plan changes variables in a randomly different

order for each aOFAT. It is motivated by the importance of presenting stochastic

properties to a deterministic algorithm, as seen in ensemble techniques (Berk,

2006) and providing independence between experimental agents.

(iii) Fixed Change order: The third plan provides a randomly selected order, which is

then fixed, and is held constant across all aOFATs. The experimental comparison

conducted up to this point in this thesis only used this strategy.

5.1.3 Aggregation Strategies

The aggregation strategy used is critical to the performance of an Ensemble technique,

and is similarly very important in this experimental algorithm. At a very simple level,

aggregation techniques seen in Ensemble methods range from a very equal participation

strategy as seen in 'Bagging', to a more a performance weighted approach such as

'Boosting' (Freund and Schapire, 1997). The aggregation strategies presented here

attempt to capture this range. However, this is a simplification. More complex

conceptions are possible in Ensemble techniques such as that seen with Hierarchical



Mixture of Experts and other Bayesian strategies (Jordan and Jacobs, 1994). Similarly,

the possibilities for creating complex and effective aggregation strategies in

experimentation are endless and would be a reasonable area of future work for this

research. Four main algorithms are presented here for aggregation:

(i) Rank Sum point system: This plan has been used on the proposed algorithm in the

previous chapters. This plan is weighted voting plan, where each aOFAT votes on

a level for each factor, independently. The weights are determined according to

the rank of the aOFATs in relation to each other and not a complex function of

the response. The aOFAT with the worst performance is given a rank point of 1,

the next 2, and so on. This is seen as a strategy that lends robustness to the

experiment and is similar to Wilcoxon rank-sum test(Wilcoxon; 1945).

(ii) Response Weighted: Similar to the rank sum point system, each aOFAT votes on

each factor's level settings based on its experimental findings. The weight to each

vote however is a function of the best response discovered by each aOFAT. A

square function is used in this case.

(iii) Equal Voting: Equal voting uses a similar strategy as the above two plans, but

with the exception of using equal weights for all aOFATs irrespective of their

performance. In this strategy and the Rank Sum point system, ties are broken by

assuming squared error loss function. This usually means the more consistent

aOFAT performers are given more preference in the case of a tie.

(iv) Take-the-best: This strategy does not really aggregate, it selects the

recommendation of the aOFAT that discovered the best treatment (characterized

by highest experimental response), and disregards the others. This exposes the

method to erroneous conclusions due to experimental error seen during the best

run. It is expected that this strategy will work well at regions of low experimental

error.

5.1.4 Evaluating the various experimental algorithms



There are three plans proposed for starting points, three for variable change order, and

four for aggregation techniques. The combinations of these three areas could therefore

provide 36 experimental algorithms. However, not all 36 algorithms are presented here.

A subset of nine algorithms with the best performers from preliminary tests, along with

some representative samples of the others is presented in this thesis. The combinations of

tests that will be evaluated are shown in table 5.1.

S.No. Aggregation Starting Point Strategy Variable Change
Technique order

1 Rank Sum Fixed Location Minimize Correlation

2 Response Weighted Max. Euclidean Distance Minimize Correlation

3 Equal Voting Random Random

4 Take-The-Best Fixed Location Same Order

5 Rank Sum Max. Euclidean Distance Same Order

6 Response Weighted Random Minimize Correlation

7 Equal Voting Max. Euclidean Distance Same Order

8 Take-The-Best Max. Euclidean Distance Minimize Correlation

9 Rank Sum Max. Euclidean Distance Random

Table 5.1Nine Ensemble aOFAT strategies tested in this thesis

Technique with serial number 5 from table 5.1 has been the default algorithm discussed

in the previous chapters of the thesis. These nine algorithms are tested in using the HPM,

on the low-resource version of aggregating 4 aOFATs. The results are graphically shown

in figure 5.1.
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Figure 5.1Comparing an Ensemble of four aOFATs with nine different strategies, using the HPM;

with 2 5th and 7 5 th Percentile error bars (average)

Figure 5.1 shows the performance of the algorithms labeled 1 through 9 in accordance to

the serial numbers from table 5.1. The main conclusions drawn from these simulations

are:

(i) The lack of large differences between the nine methods.

(ii) In a relative comparison of algorithms, the ones that work best at low error, tend

to perform poorly at high error, and vice versa. Exception to this are algorithms

1,5, and 9.

(iii) Algorithm 5 works reasonably well at high and low errors but performs poorly at

medium error.

(iv) In terms of the average expected value of improvement across the entire error

range, algorithms 9 and 1 performed the best. Algorithm 9 corresponds to a rank

sum aggregation, with starting points maximally separated, with variables

changed in random order. Algorithm 1 corresponds to a rank sum aggregation

with fixed starting points using a random order in which variables were changed



(v) The performance of algorithms 3 and 4 was poor. Algorithm 3 aggregated using

equal voting, with random starting locations, and a random variable change

order. Algorithm 4 used a take-the-best strategy to aggregate, with a fixed

starting location, and used a fixed order for variable changes.

(vi) The strategy of maximizing the starting locations, and maximizing negative

correlation of variable change orders, were two strategies that consistently

performed well. However, their contribution when placed together was not

synergistic.

(vii) The variation in performance was similar across all the algorithms. The error bars

shown in figure 5.1 are obtained by taking the average lower and upper quartiles

across all nine algorithms for the specified error level. This describes the

variability we can expect from running a given algorithm at a certain error level.



5.2 Analyzing factorial designs and comparing algorithms

In the previous sections, fractional factorial designs have been analyzed using stepwise

regression with a variable a (acceptance p-value). This algorithm is described in section

2.1.2. In this portion of the thesis, other strategies of analyzing the factorial designs are

investigated. The performances of these analysis techniques are compared to each other,

and with ensemble aOFAT results. These methods are applied on a 27-2, resolution IV

fractional factorial design (with randomly selected aliasing patterns in each simulation).

Four fractional factorial analysis techniques are tested:

(iii) Stepwise Regression with a changing a: This is the method of analysis that is

employed in the thesis thus far. Its performance is superior to a stepwise

regression with fixed value for accepting and excluding terms (0.05 and 0.15).

The procedure followed for stepwise regression is adopted from Draper and Smith

(1981).

(iv) Lenth Method: The Lenth Method of analysis (Lenth, 1989) is a computationally

simple method for estimating significant effects in factorial designs. It is

applicably on designs which are unreplicated. In this technique a plot is made of

all the effects, and a threshold value is created for separating significant effects

from those that are deemed not significant. In the first step, a parameter so is

created, such that so = 1.5 x meidanl 3 , where fl includes all estimated effects and

interactions including main effects and interactions. Using so , the pseudo standard

error (PSE) is computed. This is defined byPSE =1.5 x medianP1,

for V, < 2.5 x so . Subsequently, the margin of error of the effects is defined as

MOE = to.025,df xPSE. The margin of error effects serves as the threshold

demarcating between significant and insignificant effects. Lenth proposed using

one third the total number of effects for degrees of freedom for the t-distribution

(Lenth, 1989). In the Lenth method there is a more conservative measure for

effect significance, termed as simultaneous margin of error. This was not

investigated since the past experience with effect significance (when using



stepwise regression with fixed a of 0.05) has been that there are often insufficient

terms to pick the best treatment.

(v) Classical Analysis: This conceptually simple procedure was introduced in section

4.1. Here, each factor is analyzed separately. The average response at the different

levels of the factor is compared and best one is selected. This is repeated for all

factors, sequentially. It is popularly used in the context of robust design when

crossed arrays are used in conjunction with signal-to-noise ratios (Phadke, 1989).

This technique is likely to work well in environments with high experimental

error and perform poorly in environments with a lot of interactions.

(vi) Take-the-best: This straightforward technique was also introduced in section 4.1.

Here the algorithm picks the treatment combination with the highest output

observed in the experiment. This method is more susceptible to experimental

error, since it just takes one erroneously represented outcome to mislead the entire

analysis. As a result, this analysis is likely to perform well at regions of low

experimental error and poorly in regions of high error. Also, in this technique the

recommended treatment can only be selected from the set of treatments that were

tested in the experimental fraction. This is not true of the other methods. In fact,

quite often the treatment recommended by the other methods will be a vector that

was not a part of the experimental plan, and the experimenter might need a

confirmatory run to ensure the effectiveness of this combination.

The performance of these four analysis methods is shown in the figure 5.2.
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Figure 5.2 Comparing multiple methods of analyzing a 27-2 Fractional Factorial array, using the
HPM

As expected, at regions of low experimental error take-the-best strategy worked well and

classical analysis performed poorly. And, at regions of high experimental error classical

analysis performed well while take-the-best performed poorly. Stepwise regression

performed well through out most regions of experimental error. Surprisingly, Lenth

method performed poorly through out the entire range of experimental errors. In most

cases, this was mostly because of the methods failure to identify sufficient number of

significant terms. On average this analysis detected only 33% of the significant terms,

although almost never falsely labeling a term as being significant when it was not. This

method seemed to work better when the number control factors was reduced.

It is of interest to compare the range of performances in Ensemble aOFATs (figure 5.1),

with the range of performance of analyzing fractional factorial arrays (figure 5.2). This is

shown in figure 5.3.
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Figure 5.3 Comparing the various strategies of analyzing Ensemble aOFATs and Fractional
Factorial arrays

The conclusion that was drawn from this comparison is that on average the Ensemble

aOFAT procedures performed better than the differently analyzed factorial arrays. The

best performance of the ensemble of aOFATs outperformed the best performances of the

factorial design.



6 Conclusions and Future Work

Looking at adaptive, decentralized, algorithmic approaches to experimentation provides

improved benefits to the system. This study proposes one such experimental algorithm.

The conclusion reached in this study is that the proposed method outperforms a

traditional factorial design and analysis method in improving the performance of the

systems under experimentation. This is achieved by identifying superior design settings

with a higher probability. The algorithms are tested on a hierarchical probability meta-

model (HPM) and an illustrative case study that aims reduce the drag torque of a wet

clutch. Two versions of each of the two algorithms (Fractional factorials and Ensemble

aOFATs) were compared. The low-resource intensive version which requires 32

resources (Fractional Factorial 27-2 versus an ensemble of 4 aOFAT's), and a high-

resource intensive version which requires 64 resources (Fractional Factorial 27-1 versus an

ensemble of 8 aOFAT's) is tested. The superior performance of the proposed method is

consistent across both studies (HPM and Wet clutch case study), both versions (high

resource and low resource), as well as the range of experimental errors at which the

methods were tested. At best the proposed algorithm is significantly better than fractional

factorial arrays and at worst the performances are indistinguishable. This study also

showed that the ensemble of aOFATs outperformed an ensemble of fractional factorial

designs. The discussion following these empirical results provides a theoretical

explanation for the observations.

A summary of the performances of the these algorithms from chapters 2, 3 and 4 are

summarized in table 6.1



Ensemble of
Experimental Experimental Ensemble of Fractional Fractional
Environment Error aOFATs Factorial Factorials

TTB Classical

HPM Low- Low 94.0% 85.9% 92.3% 79.9%
Resource Medium 73.5% 65.5% 71.0% 66.3%

Version (32
Resources) High 62.5% 53.4% 52.1% 58.4%

HPM High- Low 96.0% 96.9%
Resource Medium 78.2% 73.7%

Version (64
Resources) High 66.9% 62.9%

Case Study Low 96.4% 85.5%
Low-Resource Medium 63.46% 50.0% N/A

Version (32
Resources) High 45.73% 35.9%

Case Study Low 99.5% 97.8%
High-Resource Medium 75.3% 66.6%

Version (64
Resources) High 57.1% 46.6%

Table 6.1Summary of the performance of algorithms in this thesis

Finally, a set of methodological extensions to the ensemble aOFAT algorithm is studied,

along with alternate ways of analyzing factorial designs. These extensions and

modifications to previously studied algorithms further strengthen the main findings that,

in general, the proposed algorithm outperforms factorial designs.

By outperforming standard experimental plans using a non-traditional experimentation

approach, this thesis encourages further advances in a relatively unexplored line of

experimental study and practice. While this study shows a specific experimental

algorithm to be effective, a more general conclusion is that an adaptive and algorithmic

approach to experimentation could lead to benefits previously unachieved.



6.1 Future Work

This idea associated with aggregating multiple aOFATs is relatively unexplored and the

findings from this study open up a promising set of extensions. A potential list is

presented here:

1. This thesis estimates the expected value of improvement through meta-models

and case studies. A theoretical formulation quantifying the expected value of

improvement for the proposed methodology is seen as the most important next

step in formalizing such a procedure. A comparison to the expected value of

improvement of traditional approaches will also serve as a validation to the results

found in this thesis.

2. The range and extent of algorithmic modifications that can be made are endless.

Specifically, this author feels that scope for improvement in aggregation

techniques is promising. In this thesis all the weighted voting techniques, gather

their weights based as some function of the response of the best treatment (the

recommendation of the aOFAT). Other alternatives could look at where in the

aOFAT scheme the best location was discovered, or the average performance of

the other treatments tested by the aOFAT, or response improvements in individual

level changes of variables. Also, Bayesian techniques could be used to aggregate

the aOFATs, if a theoretical formulation quantifying expected value of

improvement is constructed.

3. Having different starting points, and changing order in which variables are tested

are ways of creating structurally similar aOFAT experiments that explore the

design space in different ways. Such diversity can be achieved through other

means. An example of which is to incorporate stochasticity in the aOFAT

algorithm. In a standard aOFAT, once all the levels of a certain factor is tested,

the best one is set before moving on to the next factor. This can be changed to an

algorithm which provides probabilities for the levels that each factor could be set

at. This could be a function of the response that resulted in each level, thereby

giving levels that discovered high responses a high probability. This is seen as



being especially valuable when the problem at hand provides factors with many

levels (3 or more)

4. The current algorithm creates multiple aOFATs which function independently

and in a decentralized manner. The findings from each experiment are aggregated

in the end. Alternatives to the decentralized nature of the technique by allowing

aOFATs to communicate their findings with each other at intermediate points in

the experiment could lead to advances. Such a quasi-decentralized algorithm

could be more effective than the method currently proposed.

5. Alternate methods of analyzing Fractional Factorial arrays could be explored. In

this study stepwise regression, Lenth method, and two more basic concepts are

tested. The use of best subsets regression was explored but found to be

computationally infeasible. However, other approaches, some with Bayesian

reasoning have emerged in the literature (Joseph and Delaney, 2008). The impact

such techniques have on the efficacy of factorial designs is of interest.

6. The use of multiple, independent experiments allows for them to be run

simultaneously on different resources. The implication of this in terms of

concurrent engineering practices and time taken to complete experiments has not

been discussed in this paper. An on-site study exploring this aspect could provide

more insights on the effectiveness of such methods in the industry.

7. The value in using adaptive, decentralized, agent-based, algorithmic approaches

to experiments has been shown in this thesis. The value of such approaches can be

extended to other formal tools and techniques used to solve large, complex

problems. Some examples of domains where these insights can be applied

include, optimization, multi-attribute decision-making, network analysis, etc.
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Appendix A

A B C D E F G Response Response
with Experimental Error

1 -1 -1 -1 -1 -1 -1 -1 -27.2 -15.91

2 -1 -1 -1 -1 -1 -1 1 11.8 -7.20

3 -1 -1 -1 -1 -1 1 -1 -27.2 -29.79

4 -1 -1 -1 -1 -1 1 1 11.8 2.74

5 -1 -1 -1 -1 1 -1 -1 -35 -50.91

6 -1 -1 -1 -1 1 -1 1 4 9.80

7 -1 -1 -1 -1 1 1 -1 -35 -26.09

8 -1 -1 -1 -1 1 1 1 4 -1.90
9 -1 -1 -1 1 -1 -1 -1 -27.2 -33.79

10 -1 -1 -1 1 -1 -1 1 11.8 7.91
11 -1 -1 -1 1 -1 1 -1 -27.2 -48.34

12 -1 -1 -1 1 -1 1 1 11.8 -1.82

13 -1 -1 -1 1 1 -1 -1 -35 -31.79

14 -1 -1 -1 1 1 -1 1 4 7.07

15 -1 -1 -1 1 1 1 -1 -35 -41.12

16 -1 -1 -1 1 1 1 1 4 8.32

17 -1 -1 1 -1 -1 -1 -1 -9.6 6.06

18 -1 -1 1 -1 -1 -1 1 31 8.14

19 -1 -1 1 -1 -1 1 -1 -9.6 -11.69

20 -1 -1 1 -1 -1 1 1 31 47.07

21 -1 -1 1 -1 1 -1 -1 -7.8 -4.30

22 -1 -1 1 -1 1 -1 1 32.8 39.60

23 -1 -1 1 -1 1 1 -1 -7.8 -6.43

24 -1 -1 1 -1 1 1 1 32.8 36.24

25 -1 -1 1 1 -1 -1 -1 -9.6 -10.46

26 -1 -1 1 1 -1 -1 1 31 42.71

27 -1 -1 1 1 -1 1 -1 -9.6 -20.68

28 -1 -1 1 1 -1 1 1 31 16.92

29 -1 -1 1 1 1 -1 -1 -7.8 -5.37

30 -1 -1 1 1 1 -1 1 32.8 39.46

31 -1 -1 1 1 1 1 -1 -7.8 -3.87

32 -1 -1 1 1 1 1 32.8 43.06

33 -1 1 -1 -1 -1 -1 -1 -26.4 -15.31

34 -1 1 -1 -1 -1 -1 1 11 6.78

35 -1 1 -1 -1 -1 1 -1 -26.4 -0.67

36 -1 1 -1 -1 -1 1 1 11 6.87

37 -1 1 -1 -1 1 -1 -1 -34.2 -47.12

38 -1 1 -1 -1 1 -1 1 3.2 9.45

39 -1 1 -1 -1 1 1 -1 -34.2 -49.54

40 -1 1 -1 -1 1 1 1 3.2 6.87



41 -1 1 -1 1 -1 -1 -1 -26.4 -33.73

42 -1 1 -1 1 -1 -1 1 11 4.34

43 -1 1 -1 1 -1 1 -1 -26.4 -28.05
44 -1 1 -1 1 -1 1 1 11 10.11
45 -1 1 -1 1 1 -1 -1 -34.2 -29.94

46 -1 1 -1 1 1 -1 1 3.2 4.06

47 -1 1 -1 1 1 1 -1 -34.2 -36.21
48 -1 1 -1 1 1 1 1 3.2 5.21
49 -1 1 1 -1 -1 -1 -1 -8.8 -25.19
50 -1 1 1 -1 -1 -1 1 30.2 32.74

51 -1 1 1 -1 -1 1 -1 -8.8 2.28
52 -1 1 1 -1 -1 1 1 30.2 39.41

53 -1 1 1 -1 1 -1 -1 -7 -5.54

54 -1 1 1 -1 1 -1 1 32 49.68
55 -1 1 1 -1 1 1 -1 -7 -7.70

56 -1 1 1 -1 1 1 1 32 34.85
57 -1 1 1 1 -1 -1 -1 -8.8 -6.40

58 -1 1 1 -1 -1 1 30.2 39.69

59 -1 1 1 1 -1 1 -1 -8.8 -19.92

60 -1 1 1 1 -1 1 30.2 22.56

61 -1 1 1 1 1 -1 -1 -7 -16.02

62 -1 1 1 1 1 -1 1 32 21.48

63 -1 1 1 1 1 -1 -7 -6.39

64 -1 1 1 1 1 1 1 32 19.08
65 1 -1 -1 -1 -1 -1 -1 -25.6 -29.13

66 1 -1 -1 -1 -1 -1 1 11.8 20.33
67 1 -1 -1 -1 -1 1 -1 -25.6 -26.98

68 1 -1 -1 -1 -1 1 1 11.8 3.01
69 1 -1 -1 -1 1 -1 -1 -33.4 -9.28

70 1 -1 -1 -1 1 -1 1 4 -7.44

71 1 -1 -1 -1 1 1 -1 -33.4 -44.62

72 1 -1 -1 1 1 1 1 4 2.40

73 1 -1 -1 1 -1 -1 -1 -25.6 -16.48

74 1 -1 -1 1 -1 -1 1 11.8 6.20

75 1 -1 -1 1 -1 1 -1 -25.6 -33.61

76 1 -1 -1 1 -1 1 1 11.8 18.93

77 1 -1 -1 1 1 -1 -1 -33.4 -37.25

78 1 -1 -1 1 1 - 1 1 4 20.62

79 1 -1 -1 1 1 1 -1 -33.4 -36.20

80 1 -1 -1 1 1 1 1 4 4.30

81 1 -1 1 -1 -1 -1 -1 -9.6 -6.70

82 1 -1 1 -1 -1 -1 1 29.4 33.63

83 1 -1 1 -1 -1 1 -1 -9.6 -4.94

84 1 -1 1 -1 -1 1 1 29.4 48.78

85 1 -1 1 -1 1 -1 -1 -7.8 -16.08



86 1 -1 1 -1 1 -1 1 31.2 22.38

87 1 -1 1 -1 1 1 -1 -7.8 -11.35
88 1 -1 1 -1 1 1 1 31.2 32.80

89 1 -1 1 1 -1 -1 -1 -9.6 -3.82

90 1 -1 1 1 -1 -1 1 29.4 50.69

91 1 -1 1 1 -1 1 -1 -9.6 -20.00

92 1 -1 1 1 -1 1 1 29.4 32.93

93 1 -1 1 1 1 -1 -1 -7.8 -6.54

94 1 -1 1 1 1 -1 1 31.2 23.98

95 1 -1 1 1 1 1 -1 -7.8 -6.08

96 1 -1 1 1 1 1 1 31.2 40.66

97 1 1 -1 -1 -1 -1 -1 -26.4 -17.97

98 1 1 -1 -1 -1 -1 1 12.6 6.21
99 1 1 -1 -1 -1 1 -1 -26.4 -24.87

100 1 1 -1 -1 -1 1 1 12.6 34.68
101 1 1 -1 -1 1 -1 -1 -34.2 -15.88

102 1 1 -1 -1 1 -1 1 4.8 6.51

103 1 1 -1 -11 1 -1 -34.2 -27.43

104 1 1 -1 -1 1 1 1 4.8 9.92

105 1 1 -1 1 -1 -1 -1 -26.4 -24.41

106 1 1 -1 1 -1 -1 1 12.6 11.43

107 1 1 -1 1 -1 1 -1 -26.4 -43.38

108 1 1 -1 1 -1 1 1 12.6 20.96

109 1 1 -1 1 1 -1 -1 -34.2 -33.08
110 1 1 -1 1 1 -1 1 4.8 26.15
111 1 1 -1 1 1 1 -1 -34.2 -40.94

112 1 1 -1 1 1 1 1 4.8 5.42

113 1 1 1 -1 -1 -1 -1 -10.4 -43.89

114 1 1 1 -1 -1 -1 1 30.2 23.50

115 1 1 1 -1 -1 1 -1 -10.4 -4.31

116 1 1 1 -1 -1 1 1 30.2 26.82

117 1 1 1 -1 1 -1 -1 -8.6 -16.18

118 1 1 1 -1 1 -1 1 32 34.40
119 1 1 1 1 -1 -8.6 -5.41

120 1 1 1 -1 1 1 1 32 32.04

121 1 1 1 1 -1 -1 -1 -10.4 0.20

122 1 1 1 1 -1 -1 1 30.2 37.36

123 1 1 1 1 -1 1 -1 -10.4 -9.66

124 1 1 1 1 -1 1 1 30.2 47.02

125 1 1 1 1 1 -1 -1 -8.6 0.66

126 1 1 1 1 1 -1 1 32 33.50

127 1 1 1 1 1 1 -1 -8.6 0.49

128 1 1 1 1 1 1 1 32 19.95



Appendix B

Alias Structure for a 27-4, resolution IV fractional factorial design

I = CEFG = ABCDF = ABDEG

A = BCDF = BDEG = ACEFG

B = ACDF = ADEG = BCEFG

C = EFG = ABDF = ABCDEG

D = ABCF = ABEG = CDEFG

E = CFG = ABDG = ABCDEF

F = CEG = ABCD = ABDEFG

G = CEF = ABDE = ABCDFG

AB = CDF = DEG = ABCEFG

AC = BDF = AEFG = BCDEG

AD = BCF = BEG = ACDEFG

AE = BDG = ACFG = BCDEF

AF = BCD = ACEG = BDEFG

AG = BDE = ACEF = BCDFG

BC = ADF = BEFG = ACDEG

BD = ACF = AEG = BCDEFG

BE = ADG = BCFG = ACDEF

BF = ACD = BCEG = ADEFG

BG = ADE = BCEF = ACDFG

CD = ABF = DEFG = ABCEG

CE = FG = ABCDG = ABDEF

CF = EG = ABD = ABCDEFG

CG = EF = ABCDE = ABDFG

DE = ABG = CDFG = ABCEF

DF = ABC = CDEG = ABEFG

DG = ABE = CDEF = ABCFG

ACE = AFG = BCDG = BDEF



ACG = AEF = BCDE = BDFG

BCE = BFG = ACDG = ADEF

BCG = BEF = ACDE = ADFG

CDE = DFG = ABCG = ABEF

CDG = DEF = ABCE = ABFG


