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Abstract

Fast Ignition is an alternative scheme for Inertial Confinement Fusion (ICF) that

uses a petawatt laser to ignite a hot spot in precompressed fuel. The laser delivers its

energy into relativistic electrons at the critical surface of the blowoff plasma. These

electrons must propagate to the fuel core and deliver their energy to a hot spot. Elec-

trons of energies between 1 and 3 MeV have the appropriate range for efficient energy

deposition. This thesis experimentally explores the coupling efficiency and spectrum

of the laser produced electrons. The experiments make use of Bremsstrahlung and

K-shell emission from planar foil targets to infer the electron distribution produced

in the laser-plasma interaction.
This thesis describes the development of a filter stack Bremsstrahlung spectrome-

ter with differential sensitivity up to 500 keV. The spectrometer is used with a single

photon counting camera for measuring Ka emission in experiments on the Titan

laser (1.06 um, 150 J, 0.7 ps) at Lawrence Livermore National Laboratories. The

Bremsstrahlung and K-shell emission from 1 mm3 planar targets irradiated with in-

tensities from 3x1018-8x101 9 W/cm 2 were measured. The target emission is modeled

using the Monte Carlo code Integrated Tiger Series 3.0 in order to unfold the

electron spectrum from the x-ray measurements. Conversion efficiencies into 1-3 MeV

electrons of 12-28% were inferred, representing 35-60% total conversion efficiencies.
Laser diagnostics were used to characterize the laser focal spot and pulselength

in order to provide proper comparisons to intensity scaling laws. Comparisons to

scaling laws show that the electron spectrum is colder than the laser ponderomotive
potential derived from the peak intensity. For intensities above 2 x 1019 W/cm 2,
the spectrum is slightly hotter than widely used empirical scalings. More accurate
comparisons to ponderomotive scaling using a synthetic energy spectra generated
from the intensity distribution of the focal spot imply slope temperatures less than
the ponderomotive potential, but is within the range of a correction due to the neglect
of resistive transport effects. The impact of resistive transport effects were estimated



using an analytic transport model and may lead to higher total conversion efficiencies
but lower conversion efficiencies into 1-3 MeV electrons.
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Chapter 1

1.1 Fusion Basics

When two nuclei combine to form a heavier one, the strong nuclear force binds the

nucleons together into a lower potential state, releasing energy in the process. This

energy comes from the mass of the original nucleons, since the mass of the heavier

nucleus is smaller than the sum of its constituent parts. The energy released is calcu-

lated from Einstein's famous relationship E = mc2. The binding energy determines

whether nuclear reactions are endothermic or exothermic. The binding energy per

nucleon is plotted in Figure 1-1. The lowest binding energies are for hydrogen and its

isotopes, deuterium (D) and tritium (T), and for 3He. When these nuclei fuse into

heavier elements, energy equivalent to the difference in the binding energy is released.

The binding energy curve peaks at iron, and drops off for the heavier elements. Split-

ting the heavy elements like uranium and plutonium into moderate Z elements also

releases energy through nuclear fission. Nuclear fission is the energy mechanism in

all nuclear reactors today.

Since the isotopes of hydrogen and 3He have the lowest binding energies per nu-

cleon, fusion efforts in the laboratory concentrate on reactions involving these ele-

ments. These reactions are shown in Table 1.1. The energy from the reactions is

released in the kinetic energy of the resultant particles. While the fusion reactions

are strongly exothermic, there is a significant amount of activation energy involved.

The strong nuclear force is a short range force acting with a range on order of the

two nuclear radii, which can be approximated by r, , 1.44 x 10-13 (A1/3 + A/3) cm
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Figure 1-1: Binding Energy per nucleon.

D+T - a + n + 17.6 MeV

D+D i T + p + 4.1 MeV
3He + n + 3.2 MeV

D+ 3He a + p + 18.3MeV

Table 1.1: Common reactions for laboratory fusion

where A1 and A 2 are the atomic masses of the two nuclei in atomic mass units. Since

the two nuclei are positively charged, they must have sufficient kinetic energy to

overcome the coulomb repulsion. For the deuterium-tritium reaction, the repulsion

energy is approximately 370 keV. Fortunately, quantum tunneling allows appreciable

fusion reactions to occur at lower energies. The total cross section can be written as

a () = exp (- E ) (1.1)

where e is the center of mass kinetic energy, S (E) is the astrophysical S factor

which is a weak function of energy, and EG is the Gamow energy [9] given by EG =

(7raZ1iZ 2)2 2mc 2 where af is the fine structure constant and mr is the reduced mass.

For the DT reaction, the Gamow energy is about 1.2 MeV. The total reaction rate

is calculated from the cross section by integrating over distribution functions for the



ion energies. The reaction rate is given by

RR ~V. /v U o(IVa - Vb) Va - Vb NaFa (Va) NbFb (Vb) d 3 va d3 Vb (1.2)

This equation is just the average of av over a distribution function, usually taken to

be thermal Maxwellian distribution. The reaction rate can then be written as

RR = NaNb(av), (1.3)

where av is a function of the ion temperature, taken as equivalent for the two ion

species. The fusion cross section is commonly tabulated for av as a function of

temperature for the different fusion reactions. The av parameter is plotted for D-

T, D-D, and D-3He in Figure 1-2 and is taken from Principles of Fusion Energy

[10] and originally tabulated by J. Rand McNally, Jr. [11]. The reactivity of the

1.E-21

E 1.E-23

A
- D- DT

v 1.E-24
-D-D,8He

1. E-25 -

1 10 100 1000
kT (keY)

Figure 1-2: (av) parameter for different fusion reactions. The onset temperature is
the lowest and cross section the highest for D-T, making it the reaction of choice for
first generation fusion reactors.

D-T reaction is about an order of magnitude higher than the other reactions. The

threshold temperature for D-T is also roughly 5-10 keV, compared to 10's of keV for

the other reactions. These factors make D-T the reaction of choice for first generation

fusion reactors.



1.2 Confinement and Energy Balance

Heating the fuel to keV temperatures requires novel ways of confining the fuel for

sufficient time for fusion reactions to take place. There are two primary techniques

for fusion plasma confinement, magnetic and inertial. In the Magnetic Confinement

Fusion (MCF) scheme, charged particles are constrained to travel along magnetic field

lines. Current designs for magnetic confinement fusion demonstration reactors such

as the ITER tokamak use a closed field geometry, in this case a toroidal field where

the magnetic field lines form rings around a donut-shaped reactor. In such a field

structure the particles make orbits around the reactor and remain confined. As the

particles undergo collisions, however, they scatter across the field lines and eventually

escape, resulting in a finite confinement time for the plasma.

The minimum confinement time required for a fusion plasma is defined by the

reactor energetics and power balance. The confinement time must be long enough

that enough fusion reactions occur to replace the input heating energy and energy lost

through other loss channels. These power balance equations were originally published

by Lawson [12], and the constraints are known as Lawson or Lawson-type criteria.

A requirement on the confinement time can be derived from the steady state power

balance of a burning plasma, without accounting for the technology of energy delivery

and energy capture. A steady state burning fusion plasma is heated by a-particle

energy deposition from the D-T reaction as well as any auxiliary input power. It cools

due to radiative Bremsstrahlung losses and diffusive losses from the finite confinement

time of the plasma. The power balance is represented by

Paux + P = Pbrems + Pdiffusion. (1.4)

The a deposition is given by the fusion reaction rate times the energy in the a

particle, with P,=20% ()2 (JU)QDTV since the a particle contains about 20% of

the reaction energy (QDT is the 17.6 MeV released in the reaction). The diffusive loss

is expressed as the energy contained in the plasma divided by the confinement time,

Pdif =N T V. The Bremsstrahlung power loss can be estimated by integrating over
Pif= TE



the Bremsstrahlung cross section and can be approximated as [13] PB = CbN'T1/2V,

where Cb = 5.34 x 10-24 erg cm 3 s- 1 keV - 1/2. In addition, writing the reactor Q as

Q = f , the power balance can cast in the form

3kbT
nT = [(1/Q) + (1/5)] QDT(0V) - CbT/ 2  (1.5)

This equation is known as the nr condition and sets the minimum requirement on

the confinement time of the reactor. For steady-state operation the auxiliary input

power is zero and Q=inf. A 20 keV temperature then sets the nE requirement at

nfrE r 2 x 1014 Cm - 3 S.

1.3 ICF Overview

MCF relies on the relatively long confinement ( l1sec) of a low density plasma

(. 1014 cm- 3). In contrast, Inertial Confinement Fusion (ICF) involves high densities

and short confinement times to achieve energy gain. In the ICF scheme, a D-T fuel

capsule spherically compressed to high density is confined for only as long as it takes

for the compression to stagnate and the mass to accelerate outwards, on the order of

a few ns. The density must be sufficiently high that for ns confinement times, the

number of fusion reactions burns a significant fraction of the D-T fuel. A Lawson-

like criteria can also be derived for the energy balance of the ICF fuel capsule. The

reaction rate is a function of the fuel density and reactivity

dn n2dn- n(v 
(1.6)

dt 2

assuming an initial 50-50 DT mixture. Integrating out to a confinement time Tc, the

burn fraction of the fuel is given by

T

fb= 2TR (1.7)
27-r



where TR = is the initial mean time between fusion reactions. The effective

confinement time Tc is about 1/4 the radius of the capsule divided by the sound

speed cs = 2kBT/mavg. Equation 1.7 can then be written as

pR
fb pR (1.8)

where HB = 8csmavg/(ov) is the burn parameter which is between 6 and 9 g/cm 2 for

fusion temperatures. For a reasonable fuel burn fraction of 1/3, the requirement on

pR is about 3 g/cm2

The energy released in the burn of a fusion capsule is substantial. The 30% burnup

of a solid density D-T capsule with pR=3 g/cm2 results in the release of energy

equivalent to 500 tons of TNT from 18 g of fuel. In order to maintain a functioning

reactor, the total fuel mass must be limited to 10 mg. With the pR constraint, this

sets the required fuel density at 300-1000x solid density. These high densities can be

achieved through spherical implosions. This idea was first published by Nuckolls et

al. in 1972 [14] although it was studied a decade earlier in the classified realm. The

spherical implosion design uses a driver, typically a laser, to ablate a surface layer on

the fuel capsule. The ablative material blows off and the inner fuel is imploded via

the rocket reaction.

The coupling of the driver to the fuel is expected to be on the order of 10%.

The energy required for volumetric heating of the fuel to 10 keV limits energy gain

to about 10, too low for energy breakeven. To achieve higher energy gain, only a

portion of fuel is directly heated, while the rest is heated through a particle energy

deposition from the fusion reactions.

The conventional design for ICF is called "Hot Spot Ignition." This scheme is

shown schematically in Figure 1-3. The fuel capsule is irradiated with a driver, which

can be a laser, x-rays, or ion beams. The outer surface is ablated by the driver

and the shell is launched inward via the rocket reaction. Compression via a single

shock is limited to 4-6x, with stronger shocks serving only to raise the isentrope

(preheating the fuel), thereby making it harder to compress. A series of shocks



launched by shaping the driver pulse is therefore used to achieve high compression

while keeping the fuel at a lower isentrope. The shocks are also carefully timed to

converge simultaneously on the inner DT gas. The gas heats up from the compression,

the shock coalescence, and the deposition of fusion a particle energy. The internal

pressure increases, causing the shell implosion to stagnate. At stagnation the capsule

is in pressure equilibrium (isobaric compression), and has a stagnation time on the

order of a few hundred ps. The inner DT gas reaches ignition temperatures and

fusion a particles deposit their energy in the high density DT shell, resulting in a

propagating burn wave that consumes the fuel capsule.

n

Figure 1-3: The fuel capsule is irradiated with a driver. The outer surface mate-

rial ablates, launching the shell inwards via the rocket reaction. A series of shocks

converges on the inner DT gas, heating it up and raising the pressure inside the cap-

sule. The shell is decelerated by the internal pressure and eventually stagnates as the

DT gas reaches ignition temperatures. The resulting fusion a particles deposit their

energy in the shell, triggering a chain reaction that burns up the fuel.

The main challenge in hot spot ignition is the hydrodynamic stability of the implo-

sion. As the shell implodes, the low density plasma at the outer surface is accelerated

against the high density shell, triggering the Rayleigh-Taylor instability on the exter-

nal surface which can lead to shell breakup. The instability is seeded by the capsule

surface roughness and by imprinting of the driver nonuniformity on the shell. As

the shell is decelerated by the internal pressure buildup, it experiences the Rayleigh

Taylor instability on the interior surface, this time seeded by the inner D-T ice rough-

ness. There are two dangers in the deceleration phase. The shell can again break up.



In addition, the instability can result in mixing of the cold DT ice with the heated

gas, quenching the fusion burn. These instabilities are depicted in Figure 1-4, taken

from graphic artists at the Laboratory for Laser Energetics (LLE) in Rochester, NY.

Significant hydrodynamic simulation work has gone into setting constraints on the

Peak compression

Stagnation + core shell mix

Rayleigh-Taylor
[growth r

Deceleration phase

Early time
Imprinting
and shock Laser drive

Feed-out
Plasma formation
a nd im p rin ting

LPI

Rayleigh-Taylor growth,
mitigation, and saturation
Shock convergence

Laser drive

Acceleration phase

Figure 1-4: The Rayleigh-Taylor instability occurs at the outer shell surface in the
acceleration phase and at the inner surface in the deceleration phase. The instability
can lead to shell breakup and quenching of the fusion burn via mixing of the cold
shell material and the heated DT gas.

surface roughness and beam uniformity. Current target designs use "indirect-drive,"

which contain the fuel capsule in a gold can called a "hohlraum." The hohlraum is

illuminated by intense lasers, producing a uniform bath of x-rays which ablate the

shell surface. The reduced coupling efficiency of the driver to the target is traded for

increased implosion uniformity which leads to better hydrodynamic stability.

The recent completion of the National Ignition Facility [15] will allow these tar-

gets to be tested at ignition scale conditions. It is hoped that ICF will be able to

demonstrate ignition on the National Ignition Facility in the next couple of years.



1.4 Fast Ignition

Fast Ignition is an alternative scheme for ICF that decouples the fuel compression

and ignition phases by using a secondary beam to spark a hot spot in the precom-

pressed fuel. It was first proposed by Tabak et al. [16] in 1994, a few years after

the development of Chirped Pulse Amplification lasers [17] that made possible the

delivery of large amounts of energy in timescales short enough for fusion confinement.

The Fast Ignition concept promises higher gains, lower sensitivity to hydrodynamic

instabilities, and reduced driver energy when compared to conventional hot spot ICF.

This is achieved by using a short-pulse laser to ignite a hot spot in a pre-compressed

fusion capsule. The laser interacts with the plasma near the critical density surface,

generating hot electrons that propagate into the core to heat the hot spot.

The main challenge in fast ignition is how to get the short pulse laser as close to

the dense plasma as possible in order to maximize coupling. The original concept is

known as "hole-boring," which delivers energy to the core using two picosecond-scale

petawatt lasers: the ponderomotive force of the first laser creates a channel through

the plasma around the compressed fuel, and the second laser propagates through the

channel and deposits its energy into hot electrons near the core, igniting a hot spot.

While the hole-boring concept is still being studied, the current mainline approach to

fast ignition instead uses a high Z cone to keep open a channel through the blowoff

plasma. In this "cone-guided" fast ignition concept [18], [19], [20], a single petawatt

laser deposits its energy at the cone tip. The high Z cone then reduces the distance

the electrons have to travel to reach the core. The work in this thesis is primarily

focused on the cone-guided fast ignition concept. Other designs involving conversion

of the petawatt energy into protons [21] that transport ballistically to heat the core

are also being studied.

The conventional ICF and Fast Ignition concepts are shown schematically in Fig-

ure 1-5. In Conventional ICF, a cold, high density outer shell surrounds a hot, low

density plasma which ignites and heats the shell. In Fast Ignition, the fuel is uniformly

compressed to moderate densities (isochoric compression) and ignition separately trig-
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Figure 1-5: The compressed target in Conventional ICF consists of a cold, high density

outer shell surroundeing a hot, low density plasma which triggers ignition. In Fast

Ignition, the fuel is isochorically compressed to moderately high density with no hot

spot. The hot spot is generated by a picosecond-scale secondary driver beam that

ignites the target.

gered by a picosecond-scale petawatt laser. Since the compression and ignition phases

are decoupled, the requirements on the compression driver are relaxed. The compres-

sion uniformity is less important since no hydrodynamic hot spot is required, and the

lower density fuel allows for lower driver energies, which also reduces the acceleration

that drives the hydrodynamic instabilities.

Alternatively, the success of Fast Ignition is primarily dependent on the coupling

of the short-pulse laser energy to the hot spot. Simulations [22] have found that to

achieve ignition at 300 g/cc, 18 kJ of energy must be deposited in a 40 pm diameter hot

spot in 20 ps, requiring laser intensities of 2-3x1020 W/cm 2 . This energy requirement

is higher than the 3 kJ required to heat a 40 pm, 300 g/cc hot spot because of pdV

losses during the heating phase in this isochoric configuration.

The coupling of the laser to the hot spot can be broken down into 3 components:

the coupling of the laser into relativistic electrons (UL-.e-), the transport efficiency

of the electrons to the core, which depends on the divergence angle and collimation

effects (7trans), and the deposition of the electron energy in the hot spot, which is a

function of the electron energy spectrum (rdeposition). This is shown schematically for

the cone guided approach in Figure 1-6. For a 40 pm diameter hot spot, electrons of 1-

Fast IgnitionConventional ICF
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Figure 1-6: The success of fast ignition depends on the coupling of the laser to the hot
spot, which can be broken down into the conversion efficiency to relativistic electrons,
the transport coupling to the core, and the deposition rate of electron energy in the
hot spot.

3 MeV have the ideal range to couple efficiently, making the conversion efficiency to 1-3

MeV electrons a critical parameter for fast ignition. For Fast Ignition laser intensities,

the primary acceleration mechanism for the electrons is via the jxB force, which will

be discussed in Chapter 2. The temperature of the electron spectrum generated via

the jxB acceleration mechanism is usually taken to scale with the ponderomotive

potential of the laser [23]. For intensities of 2-3x10 20 W/cm 2, however, this results in

temperatures of 6-8 MeV, reducing the deposition efficiency because stopping in the

hot spot is less efficient, and driving up the driver requirements. Recent modeling

suggests that the mean energy may be colder than ponderomotive scaling due to

steepening of the plasma density profile within the cone [24], [8], [25].

All three aspects of the coupling efficiency are active areas of research within the

fast ignition community. Significant theoretical and experimental work has been done

on evaluating the electron source, although large uncertainties still remain. These ef-

forts will be discussed further in the following chapter. The transport efficiency to

the core has been studied computationally [26], [27] and is starting to be examined

experimentally [28] with the advent of high energy short-pulse lasers such as OMEGA



EP that allow electron transport to be studied in the appropriate physical regime.

Electron stopping powers in fast ignition plasmas have been studied analytically by

a number of different groups [29], [30], [31] to better understand the deposition effi-

ciency. The deposition efficiency is dependent on the spectrum of the electron source,

thereby linking this efficiency to the driver conversion efficiency in a coupled way.

1.5 Thesis Overview

This thesis describes a series of experiments that study the electron source produced

at the cone tip, specifically the conversion efficiency of the laser into fast ignition

relevant electrons in the 1-3 MeV range. These experiments involve measurements

of Bremsstrahlung and k-shell emission from planar foils irradiated with intensities

from 3x1018 to 9x1019 W/cm2 . The experiments were performed with the TITAN

laser [32] at the Jupiter Laser Facility at Lawrence Livermore National Laboratory

(LLNL).

Chapter 2 of the thesis describes the physics of the absorption mechanisms and the

prior work done on conversion efficiency and spectral measurements. It also provides

a background of the physics relevant to the diagnostics and computational models

used in the analysis. Chapter 3 provides an overview of the TITAN laser system,

laser diagnostics, and Bremsstrahlung and single photon counting spectrometers for

measurements of the Bremsstrahlung and k-shell emission. The calibration procedure

and calibration data for the x-ray diagnostics is also presented. Chapter 4 gives

an overview of the experiment, presents the data, and describes the analysis and

modeling procedures used in the interpretation of the data. The results are compared

to analytic scaling models and discussed in the context of fast ignition. Chapter 5

summarizes the conclusions and presents ideas for future diagnostics and experiments

that evolve from this work.



1.6 Role of the Author

Short-pulse laser experiments require a collaborative team effort for successful execu-

tion. This section details the specific role of the author in the work described in this

thesis.

The design of the Bremsstrahlung spectrometer described in Chapter 3 was devel-

oped by the author over a series of three experimental campaigns on the Titan laser

in April 2007, August 2007, and January 2008 and one campaign on the Callisto laser

in May-June 2007. The CAD drawings and construction of spectrometer was done

by Roger Van Maren of the Jupiter Laser Facility at LLNL. The final assembly of the

filters and and dosimeters required nearly 100 man-hours and was done by the author

with generous assistance from the other graduate students on the experimental team.

The spectrometer calibration shown in Chapter 3 was by the author at the HEX

facility at NSTec (Livermore, CA) and at the Radiation Calorimetry Laboratory at

LLNL (Livermore, CA) with assistance from the staff of the respective facilities.

The single photon counting cameras described in this thesis was borrowed from the

High Energy Radiography group at LLNL. The calibration for this camera was done

by Brian Maddox of the radiography group. The author also fielded other cameras

for single photon counting on other experiments. The author worked with Brian

Maddox in calibrating these other cameras and to verify the calibration of the one

discussed in this work. The author also calibrated these cameras at the MANSEN

facility at NSTec, with assistance from the facility staff. The single photon counting

analysis algorithms are from preexisting literature. These algorithms were studied and

evaluated both independently and collaboratively with Brian Maddox. The author

developed a general use software package for analyzing the single hit data.

On the experiments the author was responsible for setting up and fielding the

Bremsstrahlung spectrometer and single photon counting cameras, as well as for tar-

get alignment and positioning. The author also assisted with the laser alignment

focusing and focal spot imaging on a some of the Titan experiments. The equivalent

plane monitor described in Chapter 3 was fielded and analyzed by Daniel Hey of



LLNL. The prepulse measurements were done by Sebastien Le Pape from LLNL and

Ying Tsui from the University of Alberta. Ying Tsui also performed the autocorre-

lator measurements of the laser pulselength.

The Integrated Tiger Series 3.0 simulations described in Chapters 3 and 4

were done by the author using the code package. All of the post-processing and

analysis development was also performed by the author. The resistive transport cal-

culations described in Chapter 4 were developed by the author based on models in

the literature. The higher energy Bremsstrahlung spectrometer alluded to in Chapter

5 was also designed by the author and Roger Van Maren. The author also fielded the

higher energy Bremsstrahlung spectrometer on a June-August 2008 Titan experimen-

tal campaign. The Compton spectrometer discussed in Chapter 5 was conceptualized

together with Max Tabak of LLNL and the feasibility study was performed by the

author. The electron spectrometer used in the Compton spectrometer belongs to Hui

Chen (LLNL) and she provided the energy resolution data based on the field map

trajectory calculations.



Chapter 2

The physics of laser plasma interactions define the electron source generated at the

tip of a fast ignition cone. Under real experimental conditions, there is a mixture

of absorption mechanisms which depends on the local laser intensity, the plasma in-

teraction region, and the laser incidence angle. These parameters are complicated

by self-focusing of the laser in the subcritical plasma, steepening of the preformed

plasma through the ponderomotive pressure of the laser, and a 3-D plasma profile

which obscures the definition of the incidence angle. The exact physical mechanisms

of absorption for various laser conditions are still a matter of ongoing research. The

primary mechanism relevant under fast ignition conditions is the Relativistic Pondero-

motive (jxB) force. This is described in detail in this chapter. Other mechanisms,

including Resonance Absorption and Vacuum Heating are also briefly discussed.

Once the electrons are generated at the surface, they lose energy in the target

through collisional, resistive, and radiative mechanisms. In this work, collisional and

radiative energy losses are modeled with the cold matter Monte Carlo transport code

Integrated Tiger Series 3.0 (ITS 3.0) [33], under the assumption that for large

targets, cold matter is a reasonable approximation to the heated material during the

hot electron transport time. The electron energy loss mechanisms contained in ITS

3. 0 are described in this chapter. The electrons also produce k-shell line emission and

Bremsstrahlung through collisions with inner shell electrons and scattering off nuclei,

respectively. The x-ray products are measured in these experiments and used to infer

details of the electron source. The physics of k-shell emission and Bremsstrahlung

production are described in this chapter. Additionally, since the x-ray detectors



depend on various x-ray absorption mechanisms, the photoelectric effect, Compton

scattering, and pair production interaction mechanisms are also briefly discussed.

The large electron currents in these experiments lead to electric and magnetic fields

that affect the interparticle interactions. These collective effects cannot be modeled

using Monte Carlo techniques and in this thesis are treated as a perturbation to the

analysis and simulations presented. Discussion of collective effects are deferred to

chapter 4, after the presentation of the experimental data.

The last part of this chapter provides a backdrop to this thesis by describing the

techniques and key experiments that shape current understanding of the hot electron

spectra and conversion efficiencies in fast ignition regimes.

2.1 Laser plasma interactions

The propagation of a high frequency electromagnetic wave in a plasma is modified

from its vacuum propagation by the presence of the free electrons. The plasma

electrons have a characteristic frequency called the plasma frequency, which is the

oscillation frequency of the electrons when they are displaced from the background

ions and restored by the resultant electric field. The plasma frequency is solely a

function of electron density and is given by wpe ( ne1/2

In a plasma, the light wave propagates with the well known dispersion relation

k2 C2 = -_ e (2.1)

The dispersion relation is altered from its free space value by the presence of the wp,

term. For frequencies much greater than the plasma frequency, the light wave prop-

agates as if in free space. As the wave reaches densities where the plasma frequency

approaches the laser frequency, the plasma electrons begin to screen out the wave,

reducing the wave number. When these two frequencies are equal the wave number

drops to zero and the wave can no longer propagate. The electron density at which

this occurs is called the critical density (n) and the density contour is called the



critical surface. For densities beyond n, the wave vector is imaginary and the wave

is exponentially attenuated. The skin depth is then given by

J = [Im (k)] - - c (2.2)

and depends on the density profile of the plasma. At the critical surface the electrons

can respond quickly enough to screen out and reflect the light wave. For 1.06 Am

laser light the critical density is 1.1 x 1021 cm - 3 , about 1/1000 solid density. If the

laser light is intense enough for the electron motion to be relativistic, the light wave

can propagate up to en, due to the increased inertia of the electrons. This density

contour is called the relativistic critical surface.

The majority of the laser light is absorbed at the relativistic critical surface. This is

for two reasons. First, the densities are higher at the critical surface so more electrons

are accelerated. Second, most of the absorption mechanisms involve oscillations of

electrons in the laser field. In order for acceleration to occur, electrons must gain

energy and then dephase from the wave. This occurs when the electrons are pushed

across the critical surface. Beyond the critical surface the wave field is dampened and

the electrons are launched in the forward direction.

For normal incidence or s-polarized laser intensities > 101 W/cm 2, the primary

absorption mechanism is the relativistic ponderomotive force [23], [34], also called

j x B force because of the importance of the laser B field at relativistic intensities for

redirecting the electron currents. A simple picture the motion of an electron in a laser

field is first described, followed by a discussion of the actual physical mechanism for

the j x B force. In the field of an EM wave, the electrons oscillate transversely along

the direction of the electric field vector at the frequency of the field. This motion is

called the quiver velocity of the electrons and is given by [34]

pose _ vosc eEo IAmP m (2.3)
mec c mecwo 1.37 x 1018s '

where pose, vose, and Eo are peak values and I is in units of W/cm2 . The B field of



the wave gives the motion a longitudinal component, which is small if the motion is

non-relativistic. The electrons end up making a figure eight motion, superimposed

on drifts in the forward and transverse directions, depending on the initial phase of

the wave. The electrons thus oscillate transversely at 1w and longitudinally at 2w.

If the wave is intense and the electron motion is relativistic, this forward push from

the B field is significant and the electrons gain a longitudinal velocity on order of the

speed of light.

The energy of these electrons can be derived in the following way [35]. Starting

from the relativistic equation of motion for a fluid element

+  " V= -eP E + v . (2.4)ae c

The field components can be replaced by their vector potential definitions. Addition-

ally, substituting the momentum vector for the velocity we obtain

ag T -V 1 aA xvxA
9 p = -e - V + . (2.5)at m Ct Vmc I

For a I-D plane wave propagating in the 2 direction, the momentum can be decom-

posed into a longitudinal and a transverse component f = t + pt. A is taken to

have only a transverse component and vary only in the direction. The transverse

components of Eq 2.5 decompose into

-t - + m - = 0, (2.6)

where Pe = pz. The transverse momentum is then

3p = A. (2.7)

38



The longitudinal component of the fluid equation is given by

ape j Vx xVxA
+ -e-V + Ix. (2.8)

&t ym ymc

The vector potential can be substituted by taking the curl of Equation 2.7. The curl

of the longitudinal component can also be added since V x ~e = 0. Additionally, since

p = 7mi, v can be rewritten as y = 1 + . Equation 2.8 then becomes

p+ = eV x V x(2.9)at mJV + P M 0+l p (2.9)+
m m m2 c2

The basic vector identity

Vo A = xx x ) + x (V xA + ( + (B. V1) A, (2.10)

can be transformed into

A.VA = v/1 +A 2. (2.11)
V 1 _+A2  v1 +A 2

The longitudinal component of the fluid equation can now be written as

= eV - m oc2V (7 - 1) (2.12)at

This is the relativistic version of the ponderomotive force. In the non-relativistic

limit, this can be shown to reduce to the standard ponderomotive force. The term

in the gradient, along with the m0c2 coefficient, is called the ponderomotive potential.

Numerically this is given by

S  1+ 1.37 x 101
UP MO .7X 01 (2.13)



for linear polarization and

Up = moc2 2.8x 0 18 - 1 , (2.14)

for circular polarization. There is often some confusion over factors of 2 in the in-

tensity relations. The ponderomotive potential is the maximum energy that can be

transferred to the electrons in the acceleration. For a laser intensity defined in terms

of time averaged fields, the time averaged y is the same for linear and circular polariza-

tion since the maximum y is 2 x higher for linear polarization but the time averaging

introduces a factor of 1. The maximum energy transferred via jxB is related to the

peak field. For a given intensity the peak field is V2 higher for linear polarization,

hence the factor of 2 difference in the denominators.

The physical mechanism for the jxB acceleration can now be discussed in more

detail. A single relativistic electron in an EM wave will remain in phase with the

wave until it detunes (since v is always < c). The electron gains energy on the order

of the ponderomotive potential. For a temporally finite wave, however, the electron

gives back its energy to the wave as it passes. The electron is then again at rest

but with a net forward displacement. The only way for the electron to gain energy

from the wave is for it to dephase after it has gained energy. This happens at the

critical surface where the laser is reflected. If the electrons have the appropriate phase

to launch across the critical surface, they can escape from the wave with a forward

directed energy up to the ponderomotive potential.

The electron energy spectrum is commonly taken to scale with the ponderomotive

potential. This scaling usually takes the electron distribution as an exponential with

the ponderomotive potential as the mean energy of the distribution. This is seem in

both computational and experimental results [23], [1], [36]. In order for the electrons

to gain energy greater than the ponderomotive potential, they must dephase from

the laser field before the critical surface and receive multiple ponderomotive kicks.

The stochastic nature of receiving multiple ponderomotive kicks from dephasing in

the underdense plasma lends itself to a temperature distribution with a pondero-



motive mean energy. The exact nature of the dephasing is still a subject of active

computational research [37].

Steepening of the density gradient can also reduce the temperature of the relativis-

tic electrons [34]. If the density profile is long (which is the case for a large preformed

plasma), the skin depth is approximately the electron excursion distance and the elec-

trons can be fully accelerated in the ponderomotive potential. This density profile

can be shortened through either a small initial preplasma or through ponderomotive

acceleration of the ions from an intense laser. If the density profile is steepened to

the point where the skin depth is shorter than the acceleration length, the electrons

can no longer be fully accelerated by the ponderomotive potential and the electron

temperature drops. Since the skin depth is proportional to ± , or rather, the density

at the critical surface, the temperature drops by a factor of Y where np is the

electron density of the plasma slab. This is seen in PIC simulations by Chrisman,

Sentoku, and Kemp [8] where the absorbed electrons are parameterized in two com-

ponents each containing half the energy, one with Th = mec2yv/-T and one with

Tc = mec2 /7-T c

Recent particle-in-cell (PIC) simulations propose a more complicated story [37].

As electrons from the critical surface are launched into the target from the jxB force,

a potential well is set up at the front surface by the electrostatic field from the charge

imbalance. This coulomb barrier is on the order of tens of MV. On the laser side

the plasma is hot so the electrons have a long debye length and cannot effectively

shield out the potential. Electrons launched forward into the barrier bounce back

and have their phase randomized. They can then be accelerated again by the jxB

force, gaining additional energy until they have sufficient energy to penetrate the

barrier. Since the electrons receive multiple stochastic kicks from the jxB acceleration,

the ponderomotive potential can be treated like a temperature of the accelerated

electrons. Only a small high energy tail of electrons of these electrons cross the

coulomb barrier and enter the target. In 2-D, however, the laser spot is tightly

focused and the electrons might go around the coulomb barrier. On the other side

of the coulomb barrier, the colder material has a short debye length that screens out



the electrostatic potential. The skin depth is longer than the debye length so the

laser fields extend past the coulomb barrier. Electron on this side can enter the field

region and get hit by the jxB acceleration. They are then launched forward into the

target with a maximum energy up to the ponderomotive potential. The net electron

spectrum from a steepened density gradient thus consists of two components, the bulk

with an energy up to the ponderomotive potential, and a hot tail with a temperature

on the order of the ponderomotive potential.

Other factors can affect the electron acceleration and laser absorption. The laser

can self-focus in the underdense plasma, leading to fields larger than those calculated

from the vacuum laser intensity. Additionally, when the wave is reflected from the

critical surface, a standing wave is set up, resulting in field amplitudes up to 2x the

incoming field amplitude. These effects are discussed in much greater detail elsewhere

[37].

For oblique incidence p-polarized light, other absorption mechanisms come into

play. If the preformed plasma has a long scale length, the normal component of

the electric field can resonantly drive electron plasma waves in a mechanism called

resonance absorption [35]. For laser intensities of interest to fast ignition, however,

the ponderomotive force of the laser is sufficient to steepen the density gradient such

that the electrons are actually pulled out into vacuum, breaking the resonance. In

this limit, the electrons are pulled out and launched back into the target with the

oscillation of the electric field in a process called vacuum heating [35]. This absorption

mechanism is then very similar to the jxB mechanism except that the electrons are

accelerated by the longitudinal E field at 1w rather than by the transverse E field at

2w.

The classical ejection angle of an electron in a laser field can also be derived from

the relativistic equations of motion by calculating the ratio of the transverse to lon-

gitudinal momentum. Following Meyer-ter-Vehn [38], the Lagrangian of a relativistic

particle with charge q in an electromagnetic potential is given by

v22 qL(r,v,t) = -mc 2 1- -v.A-q0. (2.15)
C



The Euler-Lagrange equation is

d dL 8L = 0. (2.16)
dt ov ar

For a plane wave the Lagrangian has no gradient in the transverse direction (A,

are only functions of z and t). aL/ar± = 0 so the transverse canonical momentum

aL/av± is a constant of the motion. This is given by

pi + qA± = constant, (2.17)
c

as in Equation 2.7 since for a transverse plane wave All = 0. Another constant of the

motion can be derived from the functional dependence of the vector potential, since

A = A(t- ). Therefore, 4 = c R. From the Hamiltonian

dH dE &L OL d 0L dpc n  dpz
- - -- c-=c- = c z  = c (2.18)
dt dt Ot = z dt vz dt dt '

since Az = 0 for a plane wave. Therefore

E - cpz = constant. (2.19)

If the initial velocity of the particle is small, we can consider it at rest. Then

E - cpz = mc2 . (2.20)

The kinetic energy is given by

Ekin = E - mc2 = pzC = (7 = 1) mc 2  = 1 Pz (2.21)
mc

From the total energy of the particle

E2 = 2C2 + 4 = 22C4 = 1 +Ptota (2.22)Em2C2.



Equating the y's and expanding in terms of the components pota2 p + P, 2

2

pz - 2mc (2.23)
2mc

Using 7 = 1 + p , after some algebra the ratio P can be written as

tan=p = 2 (2.24)
Pz - 1

This is the classical ejection angle of a charged particle in the field of an electromag-

netic wave. For a 1 MeV electron, this ejection angle is 450, narrowing with increasing

energy. This angle can be taken as the ejection angle of an electron out of the laser

focal spot. This has been demonstrated experimentally by Moore et al. [39] using

magnetic electron spectrometers.

2.2 Cold Matter Electron T ransport

As fast electrons travel through a material they interact with the electrons and nu-

clei of the medium through elastic and inelastic scattering processes. In this way,

they lose energy due to collisions and radiation, scatter from their initial trajec-

tory, and generate secondary electrons that undergo the same processes. Photons

are also generated due to Bremsstrahlung, impact ionization and fluorescence, and

annihilation radiation. These photons also interact with the medium through photo-

electric, Compton, and pair production processes to generate secondary electrons and

positrons. This entire process is thus a coupled electron-photon transport problem,

and involves tracking the shower of particles generated to some energy endpoint.

This coupled transport in cold matter is modeled using the Monte Carlo code

Integrated Tiger Series 3.0. ITS 3.0 is based off the original ETRAN code de-

veloped by Berger and Seltzer [40] in the late 1960's. Since then the code has been

modified to incorporate 2-D and 3-D geometries, broadened to lower energy photon

transport down to 1 keV, and extended to include static electric and magnetic fields.

Integrated Tiger Series 3.0 now comprises a set of 8 codes for the different com-



binations of geometry, fields, and low energy physics.

The physical model in ITS 3.0 includes the following electron and photon trans-

port effects [33]:

1. Electron/Positron Interactions

- Energy loss straggling

- Elastic scattering

- Production of knock-on electrons

- Impact ionization and production of fluorescence photons and Auger
electrons

- Bremsstrahlung production

- Annihilation radiation

2. Photon Interactions

- Photoelectric absorption: production of photoelectrons, Auger electrons,
fluorescence photons

- Incoherent scattering with the production of scattered electrons

- Coherent scattering

- Pair production

The physics models and cross sections for the different processes of the ETRAN core

are described in a paper by Seltzer [41]. A few of the key physical processes for this

thesis are described here, including the electron energy loss, Bremsstrahlung

production, and inner shell ionization.

2.2.1 Collisional Stopping Power

The electron stopping powers are described in the authoritative report by the

International Commission on Radiation Units and Measurements (ICRU Report 37)

entitled "Stopping Powers of Electrons and Positrons" [42]. The electron energy loss

is described by two components: losses due to collisions with atomic electrons and

radiative losses due to Bremsstrahlung emission

dE _ dE dE (2.25)
dstotal d collisional ds radiative

45



The collisional stopping power is due to inelastic electron-electron scattering.

Current formulations are based on the Bethe model [43], [44]. The description here

follows a combination of derivations and summaries by Rohrlich and Carlson [45],

Bethe [43], [44], [46], Sakurai [47], and the ICRU [42]. The mass collisional stopping

power is described by integrating over the cross section for inelastic scattering

1 N do
SScol - Z J W dW, (2.26)
p p dW

where Scot/p is in units of MeV cm 2 g- 1 , N is the number of atoms/volume, Z is the

atomic number, and W the energy transferred in a collision. This stopping power is

broken down into two regimes based on the energy transfer. A cutoff value for the

energy transfer W, is defined, where Wc is large relative to the binding energies of

the electrons, and impact parameters associated with W < W, are large relative to

the atomic dimensions. This is described by

1 1 1
-Sco = -SCo (W < WC) + -Sco (W > W). (2.27)
p p p

Physically, the two components break down into inelastic collisions where the atomic

electron remains bound to the nucleus, and where the atomic electron is ionized.

The cross section for large impact parameter inelastic scattering is derived from

time-dependent perturbation theory. Following Sakurai [47], the cross section for

scattering of an electron off an atomic system in the first Born approximation is

given by
d (0 - * n) -L- 41 2?2(k',n| Vk, 0) 2 (2.28)

where |k, 0 > represents k momentum state of the incident electron and the ground

state of the atom and Ik', n > represents the momentum of the outgoing electron

and the n excited state of the atom. L represents the dimension of a box in the box

normalization scheme for the momentum state. The incident electron can interact



with the nucleus and each of the atomic electrons. The potential is then given by

Ze2 e2 (2.29)
V =x+ x . (2.29)r x- xiJl

This potential is substituted into Equation 2.28. In evaluating the matrix elements,

the first term of the potential can be removed from the atomic integration because

the r coordinate depends on the location of the incident electron and the nucleus,

not the atomic electrons. < n|0 > is just 6n,o which is 0 if the atomic state is

excited. This term is thus only important in elastic scattering. The second term is

evaluated using a change of variables from x - x + x, and performing a Fourier

transform of 1 The inelastic cross section can now be rewritten as

do 2 k' 1 1 i xi) 2
(0 - n) = 4Z 2  ) 1 (n eiq.x, (2.30)

h2

where ao -= The cross section is rewritten in terms of the momentum transfer

using

q2 = Ik - k' 12 = k2 + k 2 - 2kk'cose. (2.31)

The cross section then becomes

da 27rq d
d- k - (2.32)

dq kk' dQ

The energy loss rate per unit length is Na. The total cross section is computed by

integrating the differential cross section over all q and summing over the energy

states. This is given by

dE 82N . 2dE = 8rN E (E, = Eo) m (nJ eiq.x| 0 ) dq (2.33)

This summation was first performed by Bethe and can be evaluated exactly [43].

With a few pages of algebra detailed by Bethe and Jackiw [46] the stopping power



becomes
dE 4irZ 2e 4 Z maxd 4r NZlnqmax (2.34)dx mvo min

This energy loss equation is accurate for both incident electrons and ions. For ions,

the maximum momentum transfer is hqma = 2 mvo. The minimum momentum

transfer is taken as some average ionization potential, qmin = (I)/hvo. For electrons,

the maximum momentum transfer is based on the W, energy cutoff described above

so qmax = V2mWc/h 2 . The minimum energy transfer can still be taken as

qmin = (I)/hvo. The stopping power for nonrelativistic electrons is then given by

dE _ 2wr mc 2  2mev W
NZln 2mvW (2.35)

dx 32 (1) 2

The relativistic description was first given by Bethe in 1932 and is quoted here as

dE _ 2wr mc2  2meW _

dx - 72 NZ In() 2 (1n -_ 2)_ 2 2) (2.36)

The mean ionization potential is a free parameter in this model. Ab initio

calculations must take into the account the specific electronic structure of the

material. Typically, however, this parameter is experimentally determined using

proton and alpha-particle stopping data. Most cold matter Monte Carlo codes in

use today use values tabulated in ICRU Report 37.

The stopping power due to large energy transfers can be evaluated assuming the

atomic electrons are free and at rest. The free-free electron scattering cross section

is given by Moller [48] where relativity, spin effects, and indistinguishability of the

electrons is taken into account.

27e4 dW Y _1 -1 2dW W2 (1 ) 1 - 3- A (I - A) + A (1-A)
mV2W2 (1 - A)2

(2.37)

where A = w (the ratio of the energy transfer to the initial kinetic energy), and v is

the velocity of the incident electron. With a little algebra the cross section can be



rewritten as

da = X 1 -1 + )2 (2y - 1) 1 ) (2.38)
dA T 2 (1 - A ) 2  - 2  A (1 -A)

where X = 27rrmd2 //32. The average energy loss per unit path length of Z electrons

is given by
dE 1/2 do\
dx= ZNT A dA, (2.39)

where the minimum energy transfer is the cutoff energy We and the maximum

energy transfer is half the initial kinetic energy due to indistinguishability of the

particles. This is a simple integration, and with the approximation that W/T is

small, the result is

dE= ZNx n + 1 - 2  n2 + .)21 (2.40)

Both the free-free inelastic stopping power and the free-bound inelastic stopping

power contain the cutoff energy We. When these two stopping powers are combined,

the cutoff energy cancels. The total collisional stopping power for electrons in cold

matter is then given by

dE) 2rr2mcNZ [1n 2 1 + In (1I + /2) + F- () , (2.41)

where F- (7) = (1 - 2) [1+ + 2 /8 - (2T + 1) 1n2] and 7 = Mc - 1. The

parameter 6 has been added into the collisional stopping power derived above and

represents the density-effect correction present at large densities. For electrons

passing through high density materials the stopping power is reduced by the

polarization of the medium. Current models primarily rely on calculations by

Sternheimer [49] and are important for large densities or high energies, where the

Lorenz contraction is significant. A summary of current density effect correction

models can be found in ICRU Report 37. Shell corrections (corrections when the

Vincident * Vbound) are usually neglected in the calculation of electron stopping



powers and result in errors at low energies. The errors in the collisional stopping

powers are estimated at 1-2% above 100 keV, 2-3% in low-Z materials between

10-100 keV, and 5-10% in high-Z materials between 10-100 keV [42].

2.2.2 Bremsstrahlung and Radiative Stopping Power

Electrons also lose energy through radiation as they scatter through the target.

This radiative energy loss is called Bremsstrahlung, or braking radiation, since it

was first observed during charged particle stopping in a target. Bremsstrahlung is

an important source of energy loss for relativistic particles. In the non-relativistic

regime, collisional losses dominate. Some qualitative aspects of Bremsstrahlung

emission can be derived from elementary E&M and will be shown here. A fully

correct evaluation of the cross sections must be done quantum mechanically and can

be calculated with various approximations or numerically evaluated using different

techniques. The qualitative calculation of the Bremsstrahlung cross sections here

loosely follows Jackson [50].

Radiation occurs whenever a charged particle undergoes acceleration. The radiation

intensity emitted by a particle of charge ze undergoing arbitrary acceleration is

calculated from the Lidnard-Wiechert potentials and is given by

d 2 1 4 22e2 rd n (nx) eiw(tnr(t)/c) dt (2.42)

where the vector potential has been expanded in Fourier components. To estimate

the angular distribution of the radiation, we can take the low frequency limit w -- 0.

The exponential equals one and the integrand becomes a perfect differential. The

spectrum then becomes

lim d2 1 z 2 e (2.43)
w-O0 dwdQ 42c 1 -- n. 3' 1 -n. 3

where c3 and cp' are the initial and final particle velocities, respectively. In the



non-relativistic limit, the radiation pattern is just that of a dipole, given by

d21 z 22 2

w-0O dwd 47r2c

In the relativistic limit and with the small angle approximation, the total radiation

in both polarizations reduces to

d 2I z 2e 2 4 IA312 (1 + y4 94)
lim d = 2.9 4  (2.45W--*o ded 72 (1 y202)4

The radiation pattern

0 = 1/y. The angular

in the relativistic limit has a narrow cone angle given by

distribution is shown in Figure 2-1.

0 1 2 3 4 5

Figure 2-1: Angular distribution of Bremsstrahlung
emission is in a narrow cone angle given by 8 = 1/y.

in the relativistic limit. The

The photon spectrum can also be estimated in a semiclassical way in the low

frequency limit for small changes in velocity. The double differential cross section

can be integrated over angle to

lim dI 2 z 2e2

lim - = 3 , M2c3
w--.o dw 3 r M2C3

(2.46)

where z and M are the charge and mass of the incident particle and Q is the

momentum transfer in the collision (Q = p' - pI and p = yMc,3).

The double differential cross section over frequency and momentum transfer is given

)

)



d2X d(w,Q) do-
dwdQ dw dQ Q )  (2.47)

where d-s depends on the elastic scattering cross section. The Rutherford cross

section can be rewritten in terms of momentum transfer as

do, ( zZe2  1
dQ c 8Q3

Equation 2.47 is now

dX2  16 Z 2e 2 (z2e2 2 1 (2.49)
- (2.49)dwdQ 3 c \Mc2 2 Q'

which can be integrated over all momentum transfers to give

dx 16 Z 2e 2  2  2 I2  ma (2.50)
dw 3 c -c2 ) 2 \ Qmin "

In the relativistic limit, the maximum momentum transfer is not set kinematically,

but rather by the small momentum transfer limit, given by Q,,,ax = 2Mc. The

minimum momentum transfer occurs at Qmin = p - p' - k, where p and p' are the

momenta of the incident and scattered particles and k is the momentum of the

photon. This can be written as Qmin - M2 c3  For an elastic collision off the

nucleus, the energy loss is only carried away by the photon so E' = E - hw. The

radiation cross section for photon emission can be written as

dx 16 Z 2e2  2e2 2 1 (2".5EE1)d---w 3 c -1n (2.51)du 3 c Mc2 02 MC2& )

This formula is only valid in the low frequency limit for photon energies of < ' To.

More accurate calculations of the Bremsstrahlung cross section rely solutions of the

Dirac wave equation for either a coulomb field or a screened, nuclear field. The

baseline calculations were done by Bethe and Heitler [51], who solved the scattering

cross section in the Born approximation for the coulomb potential. There are a

number of different calculations of the cross section using nonrelativistic coulomb,



relativistic coulomb wave, and free particle Born approximation wave functions, and

for screened and unscreened coulomb potentials. These are summarized in an

exhaustive paper by Koch and Motz [52], which classifies the cross sections based on

their approximations and for single, double, and triply differential cross sections.

ITS 3.0 uses an amalgam of Bremsstrahlung differential cross sections including

results of numerical phase-shift calculations by Tseng [53] and Pratt [54], [55] for

nuclear Bremsstrahlung for electrons < 2 MeV, analytic high-energy nuclear field

Bremsstrahlung by Davies et al. [56] and Olsen [57] with coulomb and screening

corrections, and analytic electron-electron Bremsstrahlung calculations by Haug

[58]. Nuclear Bremsstrahlung cross sections between the low and high energy limits

are spline interpolated. The ITS 3.0 cross section selection follow recommendations

by the ICRU [42].

The differential cross section for Bremsstrahlung production as a function of photon

energy is shown in Figure 2-2 for Al at three different energies. These cross sections

are from tabulations by Seltzer and Berger in Atomic Data and Nuclear Data

Tables [59], [60] and include both nuclear and electron-electron Bremsstrahlung.

The cross sections show a continuous energy distribution scaling with 1/k up to a

S1000 100 keV -
100

"- 1 MeV
"II
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Figure 2-2: The differential cross section for Bremsstrahlung production in Al for 100
keV, 1 MeV, and 10 MeV incident electron energies. The photon energy is normalized
to the initial electron kinetic energy. The cross sections include both nuclear and
electron-electron Bremsstrahlung.



cutoff at the maximum energy. These cross sections are integrated over emission

angle and secondary electron energy. This differential cross section in energy can be

combined with the angular distribution from Equation 2.44 to obtain the double

differential cross section.

The radiative energy loss can be calculated from the Bremsstrahlung cross sections

by taking the moment of the differential cross section in energy. This is given by [42]

1 (dE\ 1 [Td T' 11 d g- uI -- k d' dk + Z k de dk (2.52)
p dxrd uA dk o dk (2.52)

where u is the atomic mass unit and T' is the photon cutoff in electron-electron

Bremsstrahlung given by T' = mc2T [T + 2mc 2 - / (T + mc2)]-1. The relative

importance of radiative energy loss is shown in Figure 2-3. Figure 2-3 shows the

1 E+02
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-Radiative

- Total

1 E-03 1 " . . . . . . . . . . . .. . . .
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Figure 2-3: The collisional and radiative energy loss components are plotted as a
function of energy in solid density aluminum. Radiative losses start to dominate
collisional losses at electron energies of a few MeV.

collisional and radiative energy loss components as a function of incident electron

energy for solid density aluminum. Radiative losses start to dominate collisional

losses at electron energies of a few MeV. The importance of radiative effects scales



roughly with Z'"5 when nuclear screening effects are taken into account, and is thus

more significant at lower energies for higher Z materials.

The discussion of Bremsstrahlung so far has been for what is termed "thin target

Bremsstrahlung," representing single electrons scattering off single atoms. The

radiation distribution in a real target is much more complex, and must account for

issues such as the difference between path length and penetration into a target due

to scattering, the generation of secondary electrons, and straggling of the energy

distribution. The Bremsstrahlung emission from a real target of finite thickness is

known as "thick target Bremsstrahlung." A useful discussion of thick target

Bremsstrahlung is given by Evans [61]. The differential cross section in energy for

thick target Bremsstrahlung can be approximated as the sum of multiple thin target

cross sections as the electrons lose energy. The total radiated power scales with the

Z of the material, and there is no simple formulation for the angular distribution of

radiation. In this work calculation of the Bremsstrahlung emission in a full target is

handled by ITS 3.0, which accounts for the effects of scattering and secondary

particle generation. Thick target Bremsstrahlung effects are thus automatically

accounted for in the simulation.

2.2.3 Inner Shell Emission

Energetic electrons propagating through a target collide with atomic electrons,

occasionally imparting enough energy to eject them from the atom. When this

occurs, a vacancy is generated at one of the energy levels, and is filled by a

transition of an electron from a higher energy state. This transition results in the

radiation of a photon whose energy is given by the difference in energy levels of the

vacancy and the higher energy state. The energy diagram of non-ionized copper is

shown in Figure 2-4.

Kal, Ka2, and K13 line emission results from transitions from the L and M shells to

vacancies in the K shell. For cold matter, the line energies are just given by the

difference in the energy states. A sample spectrum is shown in Figure 2-5 This

spectrum was generated by the collisional radiative code FLYCHK [62] and is
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Figure 2-4: Energy diagram of non-ionized copper. Kal, Ka2, and KP line emission

results from transitions from the L and M shells to vacancies in the K shell. The line

energies are given by the difference in the energy states.
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Figure 2-5: Sample Cu line emission from the collisional radiative code FLYCHK.

Spectrum courtesy of Sophia Chen.



courtesy of a run by Sophia Chen for a 1 MeV Maxwellian beam of 1021 cm - 3 hot

electrons incident on a 10 eV cold Cu slab. This spectrum is similar to those seen in

experiments presented in this work. The Cu Kal and Ka2 lines have energies of

8.05 keV and 8.03 keV, respectively, and the Cu K3 line has an energy of 8.9 keV.

The relative intensities of the Ka and Kf lines depend on the transition probability

and the relative population of the states, the latter of which is sensitive to the

temperature of the material. The ratio of the Ka and K3 lines has been used to

diagnose plasma temperatures in previous laser-plasma experiments [5]. In this

work, the absolute intensity of the Ka emission is measured to determine the

number of relativistic electrons incident on a Cu fluorescor layer. The emission is

calculated using the ITS 3.0 Monte Carlo code, which uses impact ionization cross

sections from Kolbenstvedt [63] and fluorescence yield calculations by Bambynek

[64]. Secondary electrons generated in the target also stimulate Ka emission and are

included in the simulation. A plot of the Cu Ka cross section as a function of

incident electron energy is shown in Figure 2-6
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Figure 2-6: The Cu Ka cross section. The cross section peaks at 3-4x the K-shell

binding energy.

These cross sections are taken from Deutsch et al. [65], [66], [67]. The cross section

peaks at 3-4x the K-shell binding energy and is relatively flat at higher energies.

Emission is also isotropic, since it involves relaxation of the atomic electrons rather



than a scattering process. This allows measurements to be made without sensitivity

to angular distribution, making the Ka emission a useful counter of electrons

passing through the fluor.

2.3 Photon Interactions

Photon interactions with matter in energy regimes from a few keV up to a hundred

MeV primarily involve three processes: the photoelectric effect, Compton scattering,

and pair production. These interactions are discussed in detail by Evans [61] and

the physical mechanisms are briefly descried here.

The photoelectric effect involves the complete absorption of an incident photon by a

bound atomic electron. From the energy and momentum conservation laws, a free

electron cannot completely absorb an incident photon. A bound electron, however,

can transfer momentum to the nucleus, allowing for complete absorption. The

energy of the ejected electron is then equivalent to the incident photon energy minus

the binding energy, given by

T = hv - EB. (2.53)

In actuality it is slightly less since there will be some recoil of the nucleus. The large

mass difference between the electron and nucleus makes this a very small effect.

Compton scattering is very similar to the photoelectric effect in that it also involves

the interaction of the photon with an atomic electron. In this case the photon is not

completely absorbed, but incoherently scatters off the electron, losing energy and

shifting wavelength. This energy is transferred to the atomic electron. The energy

regime where Compton scattering is important is much higher than the binding

energy of the electrons, and calculation of the cross section treats the electrons as

free particles. The relationships between scattering angle, energy, and momentum

can be deterministically calculated from a 2-body scattering problem. The Compton

differential cross section for scattered unpolarized photons is given by the

Klein-Nishina cross section [68]. This effect will be discussed further in Chapter 5,

where it is the basis for a proposal for a new diagnostic.



Pair production involves generation of an electron-positron pair from the interaction

of the incident photon with the field of a charged particle, primarily the nucleus but

also from atomic electrons. The threshold energy for this is 2mc2, twice the rest

mass of the electron. The pair production process involves complete absorption of

the photon. The nuclear (or electron) field is required for momentum conservation.

The quantum mechanical description of the pair production process involves

treating the energy space as consisting of negative and positive energy states, with

an energy barrier of 2mc2 surrounding the zero energy. The negative energy states

are completely filled. If an incident photon has sufficient energy to excite the

electron into a positive energy state, a hole is left in the negative energy space. This

hole represents the created positron and the positive energy electron represents the

created electron. The cross sections have been calculated by Bethe and Heitler in

the first Born approximation [51]. Screening corrections were also included in the

original derivations.

Each of these processes dominate in different energy regimes. The total cross

sections for the three interactions is shown for Al in Figure 2-7. The photoelectric

effect is dominant up to 100 keV. From 100 keV to 10 MeV, the Compton scattering

effect is dominant. Pair production has a threshold energy of 1.02 MeV and is the

dominant interaction mechanism above 10 MeV.

2.4 History of Electron Spectrum and Conversion

Efficiency Measurements

The spectrum and conversion efficiency of laser produced relativistic electrons are

important parameters for fast ignition and of great interest in the physics of

laser-plasma interactions. As such, there have been a variety of efforts to

experimentally measure these parameters. Measurements to infer the electron

spectrum have used techniques such as vacuum electron spectrometers [1], [69],

nuclear activation [70], Bremsstrahlung [36], buried fluorescent foils [71], proton
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Figure 2-7: Photon interaction cross sections for the photoelectric, Compton scatter-

ing, and pair production processes in aluminum. The photoelectric effect is dominant

up to 100 keV. Compton scattering dominates from 100 keV to 10 MeV, above which

pair production is the dominant process.

emission [2], and coherent transition radiation [72]. The primary results are

summarized in this section.

The two principal references for conversion efficiencies both involve measurements of

the K-shell yield produced in a target by relativistic electrons. K-shell emission

tends to be isotropic, making it useful for quantifying total conversion efficiency

without a full angular distribution of instruments. Yasuike [4] used fluorescence

yields from buried layer Ka emitters in thick, non-refluxing targets to infer both the

slope temperature and conversion efficiency, estimating conversion efficiencies scaling

from 10-50% for I=1018 to 1020 W/cm2 from Monte Carlo modeling. Theobald et al.

[73], Myatt [74], and Nilson [5] measured and modeled the Ka yield in very thin

foils with strong refluxing. They found coupling efficiencies of 20%±10%,

independent of the laser intensity for 1=1017 to 1020 W/cm 2 using a hybrid particle

in cell model. Both of these experiments are described in this section.



2.4.1 Electron Spectral Measurements

The first measurements of ponderomotive scaling were done by Malka and Miquel

using vacuum electron spectrometers at the P102 laser at CEA (France) [1]. A 40 J,

300-500 fs beam was used to irradiate thin, 30 pm CH targets at normal incidence

for intensities up to 2 x 1019 W/cm 2. Using rear surface electron spectrometer

measurements, they found that along the laser axis, the electron spectrum scales

with the ponderomotive potential. This is shown in Figure 2-8, taken from the

original Phys. Rev. Lett. article [1], where the solid line represents the

ponderomotive potential and the data points represent single temperature

Boltzmann fits to the spectrometer data.
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Figure 2-8: The escaping electron spectra along the laser axis are consistent with the

ponderomotive potential of the laser. The solid line represents the ponderomotive
potential and the data points represent single temperature Boltzmann fits to the

spectrometer data. Reprinted with permission from [1]. Copyright (1996) by the
American Physical Society.

Comprehensive measurements of Bremsstrahlung, K-shell emission from buried

tracer layers, and maximum ion energies by Beg et al. [2] found that the hot

electron temperature scales with 11/3, lower than the 11/2 of the ponderomotive

potential. These experiments were performed on the CPA beamline of the

VULCAN laser facility. Laser energies were up to 30 J in 700 fs to 1.3 ps for

intensities between 1017 and 1019 W/cm 2. Targets were irradiated at 30 0 to target

normal with p-polarized light. Proton emission off of CH coated glass and Cu



targets was measured using CR-39 nuclear track detectors [75], [76]. Using an

isothermal rarefaction model acceleration model [77], the maximum proton cutoff

energy is related to the debye length at the rear surface. The hot electron

temperature is thus proportional to the proton cutoff energy. The maximum proton

energy is given by Emax = 1.2 ± (0.3) x 10-2 [1/ (Wcm-2)]0.3 13 0.03 .

Bremsstrahlung emission was also measured using an array of filtered pin diodes

and a pair of photomultiplier/scintillator detectors. The photomultipliers were

filtered with 2-5 mm of lead, with 1 cm thick Al blocks behind the lead filters to

eliminate fluorescence. A sample of the Bremsstrahlung data is shown in Figure 2-9,
integrated over a number of shots on a plastic CD target with a intensity of 5 x 1018

W/cm 2. A fit through the latter three points gives a temperature of 390 keV.
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Figure 2-9: Bremsstrahlung data from Beg, et. al.[2], integrated over a number of
shots. There are two slope temperatures seen in the photon distribution. Reprinted
with permission. Copyright (1997) by the American Institute of Physics.

From the Bremsstrahlung data, the temperature scaling was found to be

Th = 21514, (2.54)

where the laser intensity is in units of 10s W/cm2 . This is commonly known as Beg

scaling, and is currently one of the primary alternative temperature scalings to

ponderomotive scaling. Beg attributes the J1/3 temperature scaling to a resonance

absorption process rather than a jxB process. Recent theoretical work [25] suggests



that the 11/3 scaling may be due to the reduction of the hot electron temperature

due to steepening of the density gradient.

K-shell emission measurements were also performed by Beg using layered Pd and Sn

targets of varying thicknesses from 12-72 pm. The K-shell yield was measured using

a Single Hit Spectrometer and temperatures inferred from the ratios of the yields

based on calculations accounting for electron energy loss, K-shell ionization cross

sections, and x-ray mass attenuation coefficients. The temperatures inferred from

this technique ranged from 70-200 keV, somewhat lower than from the

Bremsstrahlung measurements. This was attributed to an overestimate of the

intensity on those shots.

Photonuclear activation measurements for inferring the hot electron spectrum were

performed by Stoyer [3] on the NOVA Petawatt laser at Lawrence Livermore.

Photons of energies greater than 8 MeV were used to excite the giant resonance

oscillation in Au and Ni targets. The 197Au and 58Ni nuclei are excited by the

photons and decay into unstable isotopes via (y, xn) reactions. The gamma

emission from the decay of these states were measured using high-purity Ge

detectors. Information about the incident photon spectrum was inferred from Monte

Carlo simulations with activation cross sections for the various (7, xn) reactions.

Figure 2-10 shows a sample photon spectrum with a best fit hot electron

temperature. The inferred temperatures ranged from 3 to 7 MeV for laser

intensities up to 3 x 1020 W/cm 2. The inferred temperatures were consistent with

the 7 MeV ponderomotive potential, although sometimes colder. These temperature

measurements were significantly hotter than those derived from Beg scaling, which

predicts a 1.4 MeV slope. Bremsstrahlung and electron spectrometer measurements

by Key et al. [78] on NOVA in conjunction with the nuclear activation

measurements found two components of the hot electron spectrum, a smaller

component with a temperature hotter than the ponderomotive potential, and a

larger, colder component. The authors proposed that the hot component may be

due to acceleration in the subcritical plasma and the colder component from

acceleration at the critical surface.
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Figure 2-10: A sample photon spectrum with a best fit hot electron temperature. The

inferred temperatures varied from 3 to 7 MeV for laser intensities up to 3x 1020W/cm 2.

Taken from Stoyer et al.[3]. Reprinted with permission. Copyright (2001) by the

American Institute of Physics.

Norreys et al. [36] performed an experiment on the CPA beamline of the VULCAN

laser to measure the hot electron temperature using an electron spectrometer, a

Bremsstrahlung spectrometer, and photonuclear activation of Cu foils in order to

try and resolve the differences between ponderomotive scaling and Beg scaling. CH,

Al, and Pb targets were irradiated at at 45 incidence with p-polarized light for

intensities up to 1019 W/cm2 . The Bremsstrahlung spectrometer consisted of an

array of eight filtered plastic scintillators coupled to photomultipliers. They were

filtered with 0.1 to 15 cm of Pb to measure the spectrum from 100 keV to 10 MeV.

Exponential slope temperatures of the Bremsstrahlung varied between 750 keV to

1.2 MeV, depending on the target material. The authors emphasize, however, that

since the measurements are far off axis, these slope temperatures are not indicative

of the temperature of the input electron beam. An array of Cu foils was also placed

behind the target to measure the activation in the foils. From the activation, the

authors inferred temperatures of 1-2 MeV, consistent with ponderomotive

temperatures of 1-1.5 MeV for IA2 = 5 x 1018 to 1 x 1019 Wtm 2/cm 2. The

Bremsstrahlung cone angle was measured at 35 0 FWHM. The authors suggest that



while their measurements are consistent with the ponderomotive potential, the

lower spectral measurements by Beg are perhaps due to a time dependent process

where jxB initially dominates until the interaction surface becomes non-planer, after

which resonance absorption and vacuum heating start to become important.

In summary, there have been many measurements of the electron spectrum using a

wide variety of techniques. Many of the results are inconsistent, with different

temperature scalings. The electron spectrum may also scale with other parameters

such as the preformed plasma scale length, the focal spot intensity distribution,

laser energy, pulselength, the target material, and the angle of incidence. It is also

likely that the electron spectrum does not have a single or even dual temperature,

and the slope temperatures may depend on the part of the spectrum that is

measured. Experiments described in this thesis will seek to carefully address the

spectral dependencies.

2.4.2 Conversion Efficiency Measurements

In contrast to the multitude of electron spectral measurements, there are currently

only two key experiments that systematically address the question of the electron

conversion efficiency in Fast Ignition regimes. Both experiments involve

measurements of the K-shell yield, although in different target physics limits.

Electrons escaping a small target cause an electrostatic sheath to build up on the

surfaces of the target. This electrostatic field pulls escaping electrons back into the

target, resulting in the electrons making multiple passes through the target as they

are confined by the fields. This process is known as electron refluxing.

Experiments by Wharton [71] and Yasuike [4] used 50 ym buried Mo tracer layers

with variable front layer thicknesses of (0.2 to 0.45 g/cm2 of CH, Al, and Cu) to

infer the electron spectrum and conversion efficiency. The electrons lose energy in

the front surface layer before reaching the Mo tracer and exciting K-shell emission.

The variable thickness of the front layer allows the Mo fluor to sample different

parts of the electron spectrum. On the rear surface of the target, a 1 mm CH layer

is used to range out electrons to prevent multiple passes through the fluorescor,



establishing the non-refluxing limit. Experiments were performed on the NOVA

laser with energies up to 400 J in 0.5 ps for intensities up to 3 x 1020 W/cm 2. The

K-shell emission was measured using a charged coupled device (CCD) operating in

single photon counting mode and the emission modeled using Monte Carlo

simulations of the electron transport in the target. Various single temperature

distributions were fit to the emission data to estimate a hot electron temperature.

The absolute intensity of the K-shell yield, along with the estimated spectrum, were

used to calculate a total conversion efficiency. Figure 2-11 is taken from Yasuike [4]
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Figure 2-11: Conversion efficiencies inferred using buried fluor techniques range from
10-50% for intensities from 1018 -10 20W/cm2. Taken from Yasuike et al. [4]. Reprinted
with permission. Copyright (2001) by the American Institute of Physics.

and shows the predicted conversion efficiencies for three different intensities. The

absorption is intensity dependent, and ranges from 10% at 1018 W/cm 2 to 50% at

1020 W/cm 2

Unfolding of the electron spectra and conversion efficiency using Monte Carlo

techniques is complicated by the Ohmic and magnetic fields that build up in the

target due to the large electron currents. Davies performed a computational

"experiment" [79] to study the errors associated with Monte Carlo interpretations.

Davies developed a resistive transport model where the fast electron current is

opposed by a background return current in order to maintain charge neutrality.

This return current then generates a field according to Ohm's law E = rljb. Electric



and magnetic fields are due to the fast electron current and the return current.

Apart from the fields, the electrons scatter and lose energy due to collisions. The

collisional energy loss is assumed to be proportional to the K-shell emission. Using

this model Davies injected an exponential distribution of electrons with a 212 keV

mean energy into an infinite Al target with a 30% absorption for a laser intensity of

2 x 1018 W/cm2 . The K-shell emission produced by the resistive transport model is

then interpreted with a standard cold matter Monte Carlo model. An apparent two

temperature distribution was found when using the Monte carlo model, with a

colder component in the first few tens of microns and a hotter component at larger

depths. The mean energy and absorption calculated for the cold component was 50

keV and 14.3%. The hot component gave a mean energy of 185 keV and 10.9%

absorption. Davies argues that interpreting temperatures and conversion efficiencies

from buried layer fluorescence underestimates both the mean energy and the

conversion efficiency.

Theobald et al. [73], Myatt [74], and Nilson [5] measured the K-shell yield from

thin, low mass foils with strong refluxing. Experiments were performed at the

Rutherford Appleton Laboratory Petawatt (1.06 pm, 400 J, 0.4 ps, Imax = 4 x 1020

W/cm2 ) and at the MTW laser at the Laboratory for Laser Energetics (1.06 pm, 5

J, 1 ps, Imax = 2 x 1019 W/cm2 ). The targets were Cu foils from 1-75 pm thick and

0.01 to 8 mm 2 in area. The K-shell emission was measured using a Single Hit

Spectrometer. In the full refluxing regime, the electrons are assumed to deposit all

of their energy in the target, so that the total K-shell yield is proportional to the

conversion efficiency. The target interaction was estimated using a model where the

hot electrons traverse an infinite medium and lose energy due to cold matter

collisional losses. The K-shell emission was then calculated from the cross sections.

The electrons are assumed to have a exponential distribution with a temperature

equivalent to the ponderomotive potential for intensities > 1018 W/cm 2. For lower

intensities, a 11/3 temperature scaling was used. Since the target is in a full

refluxing regime, resistive losses are small because the refluxing electrons act as a

return current, shorting out the Ohmic potential. The refluxing efficiency of the



target was estimated at > 90% using a capacitance model. The estimated

conversion efficiencies are shown in Figure 2-12.
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Figure 2-12: Conversion efficiencies inferred from Ka emission in low mass targets

were 20% ± 10%, independent of the laser intensity. Taken from Nilson et al.[5].

Reprinted with permission. Copyright (2008) by the American Institute of Physics.

The calculated conversion efficiencies are 20% + 10%, independent of the laser

intensity. Estimates of the target heating using a hybrid particle-in-cell code

calculated temperatures of around a few hundred eV, and were consistent with

ratios of the K3 to Ka yields.

One major component neglected in this conversion efficiency analysis is the energy

loss to ion acceleration. As the electrons bounce off the sheath fields, they transfer

energy to the ions, resulting in acceleration of collimated proton beams off the

surface. These proton beams have been seen in previous experimental work [80].

This energy loss channel can be significant, and as such, Nilson states [81] that the

measured conversion efficiencies are to be taken as lower bounds.

So far experimental work on the electron conversion efficiency has been limited and

current measurements are largely inconsistent. Conversion efficiency measurements

thus remain a wide open area of research. The goal of this thesis is to narrow the

uncertainties in the conversion efficiency measurements. Additionally, this thesis

seeks to measure the conversion efficiency and electron spectrum in a coupled way,

providing better measurements of the number of electrons useful for fast ignition.



Chapter 3

Experimental Facilities and

Diagnostic Descriptions

This chapter describes the laser system and the diagnostics used in this thesis. An

overview of the Titan laser is first presented, along with the laser diagnostics that

characterize the focal spot, pulse length, and prepulse level. This is followed by a

description of the Hard X-ray Bremsstrahlung Spectrometer (HXBS), including

details of the implementation and design history, a description of the dosimeters,

Monte Carlo modeling of the response, and calibration of the instrument. Finally,

the Single Hit Spectrometer for measuring k-shell emission is summarized with

details of its setup and calibration, associated analysis algorithms, and sample data

analysis.

3.1 The Titan Laser System

The Titan laser is a petawatt class laser that uses Optical Parametric Chirped Pulse

Amplification (OPCPA) to achieve laser intensities of up to 9 x 10'9 W/cm 2 on

target [32]. OPCPA is a technique that involves both Chirped Pulse Amplification

(CPA) and Optical Parametric Amplification (OPA). Chirped Pulse Amplification is

a technique for achieving high laser power that is currently used in almost all of the

high power lasers in the world. Before the development of CPA, laser powers had



been limited by the onset of nonlinear effects; laser intensities above a threshold of

GW/cm2 would self-focus and damage the laser optics. Mitigation efforts involve

reducing the beam intensity either by spreading out the beam in space or stretching

the pulse in time. Larger beam optics, however, quickly become cost prohibitive.

CPA was developed by Strickland and Mourou [17] in the mid 1980s and overcame

these limitations by stretching out the laser pulse temporally and spectrally prior to

amplification. The pulse is stretched by a pair of gratings that "chirp" the pulse,

arranged such that the higher frequency part of the spectrum travels a longer path

length than the lower frequency part. The pulse is typically stretched in time by a

factor of 103-105 and safely amplified through the amplifier chain. After

amplification, the pulse is recompressed by a second pair of gratings before final

focusing on target.

Optical Parametric Amplification substitutes the laser gain medium for a nonlinear

crystal pumped by shorter wavelength pump laser [82]. The signal beam passes

through the crystal which is separately pumped by the higher frequency pump

beam. Photons from the pump beam are downconverted to photons of the signal

beam, with an idler beam carrying away the leftover energy. OPA provides higher

gain per unit volume than a standard laser medium. More importantly, however,

the pulselength of the pump laser can be matched to the pulselength of the signal

beam such that the gain medium is only "on" when the signal beam is being

amplified, thus reducing spontaneous emission and increasing the intensity contrast

of the laser relative to the prepulse.

The Titan laser makes use of both of these techniques to achieve high laser

intensities. A schematic of the Titan laser is shown in Figure 3-1. The seed pulse

originates in a commercial Time Bandwith Products GLX-200 master oscillator

which generates pulses of 100-200 fs at 1053 nm. The seed pulse then passes

through an Offner Pulse Stretcher [83], which stretches the pulse to 1.6 ns while

minimizing beam abberations. The stretched pulse then passes into the OPCPA

preamplifier, which consists of a set of BBO crystals (BaB20 4) pumped by a 1.06

/pm beam amplified through a YLF amplifier and frequency doubled to 532 nm. The



Figure 3-1: The Titan laser system.
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seed pulse is amplified up to a few mJ in the OPCPA. It then passes through 25 and

50 mm flashlamp pumped rod amplifiers where it is amplified up to W5 J. The beam

then takes a dual pass through a series of 9.4 cm disk amplifiers, is switched by a

pockels cell, and then passes through a set of 9.4 and 15 cm disk amplifiers where it

is amplified to its full energy ( 150J at shortest pulse). From here the beam passes

into the Titan compressor where it is recompressed back to about 0.7 ps by a pair of

40x80 cm Multilayer Dielectric (MLD) diffraction gratings. The short pulse beam is

then redirected by two turning mirrors before being focused with an f/3 off-axis

dielectric parabola down to about a 7 pm full width half-maximum (FWHM) spot

on target. Leakage light through the last two turning mirrors is directed into a

number of laser diagnostics, including an equivalent plane monitor, an

autocorrelator, and a prepulse monitor.

3.2 Laser Diagnostics

A number of laser diagnostics were fielded to carefully characterize laser conditions

that may affect the interaction physics. These include the laser focal spot and pulse

length, which together determine the laser intensity, and the preformed plasma

scalelength, which defines the interaction plasma. The focal spot was measured with

a 16-bit CCD camera with the laser at low power. A 2nd order autocorrelator was

used to determine the pulse length, which was measured at 0.7±0.3 ps at shortest

pulse. The preplasma was inferred by comparing the prepulse level determined with

a fast photodiode to the plasma scalelength measured from interferometry using a

532 nm probe beam tangential to the target surface. Hydrodynamic simulations

using the temporal profile of the prepulse trace were found to be consistent with the

measured preplasma scalelength [84].

The laser interaction is affected by a prepulse that always precedes the main laser

pulse, originating in the OPCPA due to Amplified Optical Parametric Fluorescence

(AOPF). This prepulse is intense enough to ionize the target surface, causing the

main pulse to interact with a preformed plasma instead of a solid surface. A typical



trace from the monitor is shown in Figure 3-2. The prepulse levels on these

experiments ranged from 5-80 mJ in a 3 ns pedestal from the AOPF and 1-30 mJ in

a spike 1.4 ns ahead of the main pulse caused by stray reflections in the beamline.

Simulations predict preplasma scalengths of up to 10 pm for the critical surface and

50 pm for 1- critical.
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Figure 3-2: Prepulse trace from Titan. Typical prepulse levels ranged from 5-80 mJ

in a 3 ns pedastal from spontaneous fluorescence and a 1-30 mJ parasitic short pulse

1.4 ns ahead of the main pulse. This figure is taken from MacPhee, RSI 2008[6]

3.2.1 Focal Spot & Pulselength Measurements

The initial laser alignment and focusing was done with an 8-bit camera focused on a

wire that defines the target chamber center. With the laser at low power the

parabola was adjusted such that the laser was focused on the camera focal plane.

The laser spot was positioned at the tip of the wire, and the astigmatism in the

beam was minimized. Once the laser was optimized, the focal spot was imaged with

a 16-bit Apogee Alta U2000 camera through an anti-reflection (AR) coated fused

silica window of the target chamber. The camera has a 1600x1200 array with

7.4x7.4 pm pixels and imaged the focal spot with a 66x magnification. The focal

spot image is shown in Figure 3-3. If the elliptical FWHM of the focal spot is

mapped onto a circular distribution of equal area, the focal spot diameter is 7 pm

and contains 15% of the laser energy.

One concern in the focal spot measurement was that the low power focal spot was



Figure 3-3: The Titan focal spot measured with the 16-bit camera. The mapping of
the elliptical FWHM into a circle results in a diameter of 7 jpm.

not representative of the on-shot focal spot, since the beam profile may be affected

by the laser amplifiers at full energy. An Equivalent Plane Monitor (EPM) was set

up to monitor the laser wavefront by focusing the leakage light through the final

turning mirror before the target chamber. In these experiments, an f/3

diamond-turned gold parabola nominally equivalent to Titan's dielectric parabola

was used to focus the beam. The focusing properties of the gold parabola were not

as good as those of the dielectric parabola, however, and the inferred intensities

from the focal spot were lower by an order of magnitude. In an experiment a few

months after the ones described in this text the gold parabola was replaced with a

6.3 m f/22 focal length lens. The intensity distribution from this EPM on a full

energy shot was compared to one at low energy (scaled to full energy). This is

shown in Figure 3-4. Since the intensity distribution is the same at low and high

energy, the focal spot imaged with the 16-bit camera at low power is representative

of the focal spot on a full energy shot.

One additional issue in the focal spot determination is that the focal spot degrades

over the course of a day due to thermal effects changing the index of refraction in

the amplifier chain. The quantitative extent of the degradation is uncertain because

this was measured with the gold parabola but is on order of a factor of 2-3

reduction in the peak intensity. Thus the focal spot distribution measured by the

16-bit camera is only reliable for the first shot of each day. In future experiments

the EPM will monitor shot to shot variations in the focal spot and a deformable
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Figure 3-4: Comparison of the EPM intensity distribution for a full energy and low
energy shot. The intensity distribution is generated from the focal spot distribution

using 150 J total laser energy and a 0.5 ps pulselength. The blue line is the distribution
at full energy and the red line is the distribution at low power using only the OPCPA.

mirror installed after these experiments will help correct the wavefront and reduce

thermal degradation.

3.3 Hard X-Ray Bremsstrahlung Spectrometer

3.3.1 Spectrometer Description

The Hard X-ray Bremsstrahlung Spectrometer (HXBS) uses k-edge and differential

filtering to discriminate the x-ray spectrum (up to 500 keV in the current filter

configuration). The spectrometer consists of nine filters of increasing Z, from Al to

Au, then four filters of I mm to 4 mm of Pb for differential filtering. A model of the

spectrometer hardware and a diagram of the setup are shown in Figure 3-5.

The filters are 1 in2 with a 250 pm sheet of Mylar taped to both faces to minimize

the contribution of secondary electrons < 150 keV. Fuji BAS-MS image plates [85]

are used as dosimeters. Image plates have high sensitivity and their spatial

resolution allows for verification of diagnostic alignment. Image plates, however, are

light sensitive and fade with time. Good procedural controls are thus extremely
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Figure 3-5: a) Spectrometer Overview. b) A black Delrin cartridge is contained in a
Pb housing. c) Cartoon of the filters and spectrometer setup.



important for proper dosimetry. The image plate dosimeters are described in the

following subsection.

The Titan target chamber is a high noise environment, with electrons and x-ray

fluorescence coming from other diagnostics and the target chamber wall.

Spectrometer shielding, collimation, and magnetic deflection are all necessary to

prevent background contribution to the dosimeter signals. The image plates and

filters are stacked in a 6 mm thick interlocking black Delrin cartridge loaded into a

1.8 cm thick Pb box, which shields up to 2 MeV photons. The Delrin cartridge

allows for rapid loading and unloading of the spectrometers, is light-tight to

preserve the image plate data, and reduces noise from scattered secondary electrons

in the Pb shielding. A 12.5 cm long Pb collimator with a 1/2 in. diameter hole is

also used to reduce noise from fluorescence off the vacuum chamber walls and

diagnostics around the target by limiting the field of view at tcc to 5 cm.

Additionally, an electron spectrometer was placed in front of the Bremsstrahlung

spectrometer to deflect electrons escaping from the target.

A description of the HXBS and its use has been published by C.D. Chen, et. al. in

Review of Scientific Instruments[86].

3.3.2 Implementation and Design History

The initial spectrometer design was adapted from R. Nolte[87], where

thermoluminescent detectors (TLDs) held in PVC trays were used as dosimeters.

TLDs are LiF chips which absorb radiation and emit photons proportional to the

deposited dose when heated to a few hundred degrees centigrade. TLDs are

commonly used in badge dosimeters around the world due to their durability,

stability, and linearity across several decades of dose. A prototype design was

initially fielded on Titan in April 2007, mostly copied from the Nolte design. The

prototype used 3.2 mm x 3.2 mm x 0.089 mm TLD-700 chips made by

ThermoFischer Scientific embedded in a Mylar spacer. During the experimental

campaign, a failure of the TLD reader resulted in a switch to image plate

dosimeters. Experience with both dosimeter configurations showed that image



plates held some distinct advantages over the TLDs. First, since the image plates

could be cut to the same size as the filters, they alleviated concerns over 3-D effects.

In the first few channels of the spectrometer where the primary deposition is due to

absorption of filtered x-rays by the TLD, this is not a significant concern. However,

in the later channels where Compton scattered electrons contribute significant signal

to the dosimeters, vacuum zones, air pockets, and the difference in electron

transport properties of Mylar and LiF complicate the modeling of the spectrometer,

especially if the spectrometer is not precisely aligned. The image plates also provide

spatial resolution, allowing for verification of alignment and diagnosing of

background noise issues.

A number of adaptations to the Nolte design were required for use in a petawatt

environment. As discussed above, shielding, collimation, and magnetic deflection

using an electron spectrometer were added to prevent contamination of the

measured spectrum from x-ray fluorescence in the chamber and high energy

electrons escaping the target. The original Nolte design includes a PVC/PMMA

plastic absorber to stop electrons up to 1.5 MeV. In Titan, however, electrons up to

several tens of MeV have been seen on vacuum electron spectrometers under these

experimental conditions. During April 2007 and August 2007 Titan campaigns, an

electron spectrometer was placed in front of the Bremsstrahlung spectrometer in

order to measure the escaping electron spectrum along the same line of sight as the

Bremsstrahlung signal. The electron spectrometer also served to deflect electrons

from the Bremsstrahlung spectrometer.

Figure 3-6 shows the image plate scans of some of these effects. In Fig. 3-6a the

electron contamination is evidenced by the "glow" around the dosimeter signals.

There is no magnetic deflection, and the electron signal scatters more than the

photon signal, resulting in rounder edges for the collimator throughhole. The

electron spectrometer used in April 2007 and August 2007 had a very narrow slit for

good energy resolution, along with a small alignment hole in the back. This limited

the signal area on the Bremsstrahlung spectrometer as seen in Fig. 3-6b.

In the January 2008 Titan campaign a 6 mm square entrance slit was machined into



Figure 3-6: a) Electron contamination is evidenced by the "glow" around the dosime-
ter signals. b) The electron spectrometer's small front slit and rear alignment hole
limit the signal statistics. c) The electrons are not fully deflected by the magnet,
resulting in spatially separated electron and photon signals. d) A clean signal with
no electron contamination has a sharp edge from the collimator.

the front plate of the electron spectrometer and the rear plate was removed. This

larger slit degraded the energy resolution of the electron spectrum but increased the

signal statistics of the HXBS. These signals are seen in Fig. 3-6c. Here, the electron

spectrometer was at an insufficient distance to fully deflect the electron beam when

the electron energies were up to 50-80 MeV. There are two distinct images of the

front slit of the electron spectrometer, one from the displaced electrons and one

from the straight through Bremsstrahlung. In Fig. 3-6d the electron spectrometer

was swapped with a magnet with a large throughhole, allowing the full projection of

the collimator to serve as usable signal. While the electron spectrometer's magnetic

field was sufficient for deflecting electrons when placed at least 12" in front of the

collimator, later a simpler magnet was used when the vacuum electron spectrum

was unnecessary.

3.3.3 Image Plate Dosimeters

Image Plates [88] are reusable x-ray imaging detectors developed 25 years ago by

Fuji Photo Film Co. for medical imaging. While designed as a substitute for

medical x-ray film, they have been used in many scientific applications for their

spatial resolution, linearity and dynamic range (over 5-6 decades), resistance to
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electromagnetic pulse, and reusability. The physical mechanism and operational

methodology of the image plates are described by Thoms [89] and summarized here.

The active layer of the image plate consists of a photostimulable BaFX:Eu2+ (X =

Cl, Br, I) phosphor embedded in an organic binding. The phosphor is surrounded

by a thin ( 10 ptm) plastic protective coat and a ferrite/plastic base for support and

magnetic adhesion. When the phosphor is exposed to ionizing radiation, electron

hole pairs are generated. The holes migrate to the Eu2+ ions, forming Eu3+ . The

electrons are trapped in F-centers (halide vacancies) in a metastable state. The

image plates are then scanned using an image plate scanner, which uses a focused

HeNe laser to excite the trapped electrons, causing them to emit blue light as they

recombine with the holes. The blue photons are collected by a photomultiplier tube

in the image plate scanner. This emission is digitized by the scanner in linear dose

units called PSLs (PhotoStimulated Luminescence). After readout, any latent signal

in the image plate is erased by a 20-30 minute exposure to an intense light source.

Two common types of image plates used in this work are the BAS-MS and BAS-SR

plates, part of Fuji's Biological Analysis System (BAS) series. The BAS-MS is a

white plate, where MS stands for maximum sensitivity, and are the ones used in

experiments described here. The BAS-SR (super resolution) has a blue dye in the

phosphor layer which increases resolution by reducing the scattering of the scanner

laser light and the emitted blue photons. The tradeoff is a factor of three lower

sensitivity, which can be useful in higher fluence environments such as OMEGA-EP

or NIF.

The chemical composition of the image plate is important in modeling the response

of the spectrometer. Since the image plates and filters are used in series, both the

absorption and transmission characteristics are important. While the phosphor layer

composition is known, the composition of the plastic and ferrite layers is not readily

available, and somewhat vague and contradictory. Three sources of information were

used to compile an estimate of the composition: information from the USA Fuji Life

Sciences website, FAQs from the Fuji-Japan English website, and information

supplied by Fuji sales representatives. This synthesis of the composition data is



analyzed and summarized in an internal LLNL memo attached as Appendix A.

The trapped electrons can also spontaneously escape from the F-center and

therefore the image plate readout fades with time. Because of the thermal energy

distribution, the fade rate is also temperature dependent. If the image plates are

scanned at different times after a shot, the signal needs to be renormalized with a

fade curve. This fade curve has been measured for Titan ambient temperature

conditions and will be described in the following calibration subsection.

The image plate scanner model used in these experiments was a Fuji FLA-7000.

There are three adjustable parameters on the scanner, the sensitivity (s1000, s4000,

s10000), the resolution (25, 50, 100, 200 pm), and the latitude (L4, L5), which is

related to the dynamic range of the photomultiplier tube. The scanner outputs

readings in data units called "Quantum Levels" which are logarithmic units

dependent on the sensitivity and latitude settings. The Quantum Levels need to be

converted to PSLs using the Fuji supplied formula

S(Resolution 2  4000 10Latitudex (-!)
100 Sensitivity x(31)

where G is the Gradiation which depends on the bit depth setting, and is G=255 for

8 bit output and G=65535 for 16 bit output. This calculated PSL level is linearly

proportional to the deposited dose. One additional factor is that the scanner's HeNe

laser spot is -70 pm and larger than some of the resolution step sizes and therefore

erases signal as the plate is read. Scans at different resolutions need to be scaled for

this effect. All scans in this work were done at 100 pm resolution.

3.3.4 Monte Carlo modeling w/ ITS sensitivity curves

The response of the filter stack, including the Teflon absorber, filters, Mylar spacers,

and each image plate layer has been modeled with the 1-D Monte Carlo TIGER

code from the ITS 3.0 package. The Delrin enclosure and the Pb shielding are not

included in the model, as they do not contribute to the image plate signal. The set

of filters used in the HXBS is shown in Table 3.1. The Teflon layer functions solely



Table 3.1: Filters used in the Bremsstrahlung Spectrometer.
Layer Material Thickness

0 Teflon 5 mm
1 Al 100 ,m
2 Ti 100 pm
3 Fe 100 pm
4 Cu 100 pm
5 Mo 100 pm
6 Ag 150 pm
7 Sn 500 jm
8 Ta 500 pm
9 Au 1.58 mm

10 Pb 1.143 mm
11 Pb 2.272 mm
12 Pb 3.372 mm
13 Pb 4.473 mm

as an electron absorber and does not have an image plate behind it.

A Spectrometer Response Matrix (SRM) is built up from 150 simulations of narrow

bin photon spectra launched into the filter stack. The 150 photon spectral bins are

logarithmically spaced from 1 keV to 100 MeV, and the incident spectrum in each

run is uniformly distributed between the two bin edges. Since the energy bins are

narrow, this is equivalent to using monoenergetic photons. However, monoenergetic

photon inputs can introduce error near the absorption peaks of the image plate

phosphor, and using a spectral input averages over the changing absorption and is

more representative of the expected spectrum. This calculated spectrometer

response is shown in Figure 3-7.

Each of the 13 lines corresponds to the deposited dose in the image plate active

layer behind the respective filters. Each channel starts to pick up signal at a

different energy and the response edge is defined at 10- 4 MeV/photon, which is

1 of the average response level. The filter thicknesses in the legend are the

nominal filter thicknesses, compared to the actual measured thicknesses in

Table 3.1. This thickness difference was initially a significant source of error when

compared to the experimental calibration and has since been corrected.
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Figure 3-7: Spectrometer channel response calculated from ITS 3.0. Each curve
represents the energy deposited in that layer by the photon spectrum. For the 13
channels this forms a 13x150 spectrometer response matrix (SRM).

3.3.5 Experimental Calibration

The HXBS was calibrated over the 15-85 keV energy range and at 662 keV. These

calibrations were done at two facilities: the High Energy X-ray (HEX) facility at

National Security Technologies, LLC (NSTec) in Livermore, CA, and the Radiation

Calorimetry Laboratory (RCL) at Lawrence Livermore National Laboratory in

Livermore, CA. The HEX facility produces k-shell line emission by photopumping

fluorescent foils with a Yxlon x-ray source (160 kV onto a Tungsten target). For

fluorescors from Cu to Pb this provides line emission in the 8 to 85 keV range. The

RCL houses a 254 Ci Cs-137 source which emits a 662 keV photon. This section

describes these two calibrations.

HEX calibration

The HXBS was exposed to 11 fluorescent foils from Zr to Pb, spanning the energy

range of 15-85 keV. The fluorescors, filters, and line energies are summarized in

Table 3.2. The emission spectrum was measured before and after each exposure

with a Canberra high-purity germanium detector which had been previously

calibrated with NIST traceable radioactive sources (Fe-55, Cd-105, Gd-153, and



Table 3.2: Fluorescors and line emission at HEX
Fluorescor Filter kal line (keV) k3 line (keV)

Zr Zr 15.7 17.7
Mo Zr 17.5 19.6
Ag none 22.2 24.9

BaO Sm 32.2 36.4
Sm Sm 40.1 45.4
Dy Dy 46.0 52.1
Er Dy 49.1 55.7
Ta Ta 57.5 65.2
Pt W 66.8 75.7
Au Au 68.8 78.0
Pb Pt 75.0 84.9

Am-241). The emission spectrum includes the kal, ka2, and k3 lines on top of a

Bremsstrahlung background, and is measured just behind the spectrometer housing

with the housing removed but collimator still in place.

The HXBS exposures were limited to 60s in order to minimize fading effects. The

image plates were scanned on the same Fuji FLA-7000 image plate scanner used in

the experiments. The scanner was transported to the HEX facility and the scanner

calibration checked with a C-14 source to ensure equivalent functionality. The

scanner calibration parameters were a scan time exactly 30 minutes after the start

of exposure, and scanner settings of 100 am pixel size, s4000 sensitivity, and L5

dynamic range.

The spectrometer signals were compared to a Monte Carlo model of the

spectrometer response, accounting for appropriate distance, air transmission, and

Canberra quantum efficiency factors. Since the HEX spectrum is primarily line

emission, a modified response matrix was calculated where the spectrometer

response to monoenergetic photons is used for the line emission and the narrow bin

spectral response described above used for the Bremsstrahlung background. The

physical model is otherwise the same. The model predictions match up quite well

with the calibration, as seen in Figure 3-8. In this figure the data points are the

measured dose on the image plates and the solid lines represent the predictions of



Table 3.3: Calibration factors from HEX and RCL
Fluorescor kal line (keV) Calibration Factor (MeV/PSL)

Zr 15.7 2.0
Mo 17.5 1.6
Ag 22.2 1.6

BaO 32.2 1.6
Sm 40.1 2.1
Dy 46.0 2.0
Er 49.1 1.9
Ta 57.5 2.0
Pt 66.8 3.8
Au 68.8 1.8
Pb 75.0 2.0

Cs-137 662 2.1

the Monte Carlo model. The energies listed in the legend are the kal line energies.

Some of the exposures include both ka and k and others are filtered for just the

ka line. The 662 keV data point from the RCL Cs-137 exposure is also included.

The response is scaled to show multiple lines on the same plot.

The model predictions are scaled to best fit the data and determine a PSL to energy

calibration factor. For the measured PSL levels to be proportional to the calculated

deposited dose, these calibration factors, in units of MeV/PSL, must be the same

for every calibration point. These calibration factors are shown in Table 3.3.

The error bars on the calibration factors are ±0.3 MeV/PSL. Almost all of the

calibration factors are about 2.0 MeV/PSL. The Pt line is high at 3.8 MeV/PSL

but is most likely an outlier. There is no physical reason for the difference and the

surrounding points are all lower. It is most likely due to an incorrect setting of the

HEX fluence rate as it is exactly a factor of two off from the other points. The three

points around 18-32 keV are all low at 1.6 MeV/PSL. These low points, however,

are most likely due to issues with the Canberra calibration rather than a real

difference in the spectrometer response. The quantum efficiency curve measured by

NSTec for the Canberra detector has a large scatter around these energies and the

fitted quantum efficiency used to calculate the input spectrum has a large

discontinuity. The discontinuity in the quantum efficiency would bring these three
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Figure 3-8: Calibration of the Hard X-ray Bremsstrahlung Spectrometer. The spec-
trometer was exposed to different fluorescent foils. The data points are the measured
dose on the image plates. The solid lines represent the predictions of the Monte Carlo
model. The energies listed are the kal line energies. Some of the exposures include
both ka and k3 and others are filtered for just the ka line. The 662 keV data point
represents the Cs-137 calibration at RCL. The response is scaled to show multiple
lines on the same plot.



calibration factors back in line with the other data. On this basis these four

calibration factors are excluded and the rest are averaged to obtain an absolute

calibration of 2.0±0.1 MeV/PSL.

RCL calibration

The RCL houses a Shepherd model 81-12 beam irradiator which contains a 254 Ci

Cs-137 source (calibrated Oct 2008). The Cs-137 source emits a 662 keV photon

through beta decay, providing a high energy data point. There is also x-ray emission

up to 30 keV and electron emission at 0.5 and 1.2 MeV. The front of the HXBS

assembly was placed 374 cm away from the source housing. A 1/16" Pb sheet was

placed halfway between the source and spectrometer in order to filter the low energy

x-rays while minimizing fluorescence. Additionally, a 1/4" sheet of polycarbonate

was placed in front of the source to range out the electron emission.

The HXBS was exposed about 15 times for 30s each and scanned between 20

minutes and 140 minutes (including the 30 minute reference) after the exposure in

order to build up a fade curve for the image plates. The spectrometer response was

also compared to a line emission Monte Carlo model of the HXBS. The model

comparison was shown along with the HEX calibration in Figure 3-8. Figure 3-9

shows the fade curve for the image plates as a function of time, normalized to the 30

minute reference scan. Each data point is the average of the ratios of the 13

channels to the 30 minute reference (the averaged ratios were all consistent). The

fade curve is also split in two portions, with an inflection point around 60 minutes.

This fade curve was used to normalize the Titan experimental data to the 30 minute

reference calibration when it was logistically infeasible to scan at exactly 30 minutes

after a Titan shot.

3.3.6 HXBS analysis

The full analysis of the HXBS data is tightly coupled to modeling of the target and

will therefore be discussed in the next chapter. This subsection describes the initial
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Figure 3-9: Image Plate fade curve. Each data point is the average of the ratio of the
13 spectrometer channels to the 30 minute reference. The fade curve is split in two
parts with an inflection point around 60 minutes.

data processing of the spectrometer signals. After each shot, the image plate stack

is disassembled in a dark room and scanned 30 minutes after exposure using the

scanner settings: s4000, 100 pm, L5. Each spectrometer is scanned separately and

scan times from a system synchronized clock are noted for the fade correction. This

results in a scanned image of the 13 plates with a projection of the collimator hole

on each one. Figure 3-10 shows a sample of six of these channels.

For each of the IP channels the mean PSL is taken as the signal level for that

channel. The error in the signal level for each channel is quantified as the quadrature

addition of 3 different parameters: the standard deviation in each channel, the

gradient across the projection, and a standard 3% response variability in the image

plate. The standard deviation about the mean in each channel is related to the

uniformity of the dose and thus the statistics of the deposition. The gradient is

taken as the difference in the mean across different parts of the image (away from

the boundary) and is a measure of 3-D effects in the spectrometer modeling. The

3% image plate response variability is seen in shot to shot calibration exposures.

The signals and errors from each of the spectrometer channels, together with the

Monte Carlo modeled SRM constitute a few channel spectrometer problem. The

x-ray spectrum can be unfolded with a number of techniques, such as fitting test

distributions, Maximum Entropy Methods, or Singular Value Decomposition. Some
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Figure 3-10: Data extraction from the HXBS channels. The mean signal in each

channel is taken as the PSL signal value. The error bar on each channel is quadrature

sums of the standard deviation in each channel, the gradient across the channel, and

a 3% image plate response variation.

of these techniques have been explored in the analysis of other data using this

instrument. For the purposes of this work the electron spectrum is more interesting

than the exact Bremsstrahlung distribution. The electron to Bremsstrahlung

mapping is derived from a series of Monte Carlo simulations of the target,

generating multiple Target Response Matrices (TRM) for different simulation

parameters. These simulations and the estimates of the electron spectra will be

described in the next chapter.

3.4 Single Hit Spectrometer

Single photon counting is an established technique in short-pulse laser experiments

for measuring absolute line emission from targets [4], [90], [91]. The Single Hit

Spectrometer is simply a charged coupled device (CCD) camera facing the target

operating in single photon counting mode. When appropriately filtered such that

only a small percentage of the pixels are exposed to photons, a histogram of the

pixel counts correlates linearly with the x-ray spectrum. This picture is a



simplification; in practice, the deposited charge spreads into adjacent pixels, gamma

emission from the target produces noise and fluorescence from within the camera,

and crowding effects complicate the analysis and calibration of the detection

efficiency. The spectrometer is described below, along with operational factors and

data analysis procedures.

3.4.1 Spectrometer Description

The camera used in these experiments was a Spectral Instruments model 800 CCD

(S1800-116) with a 2048x2048 EEV CCD chip (13.5 pm pixels, 16 pm thick,

backilluminated). The spectrometer layout is shown in Figure 3-11. The camera is

placed 541 cm away from the target and pointed by retroreflecting an alignment

laser through the target and the center of a Pb collimator on the chamber port.

Since the chamber radius is about 1 m, there is a 4.4 m air gap between the target

and the CCD. For 8 keV Cu ka measurements, the attenuation length is 90 cm in

air. A vacuum tube to displace the air gap is thus necessary to prevent a reduction

in the signal to noise. A Cu filter is used to attenuate the signal into the single

photon regime. The spectrometer is also contained in a 2" thick Pb housing to

reduce background fluorescence from the rest of the room. Previous experiments

[90] have shown that a 5 cm thick Pb housing can dramatically reduce the

fluorescence from structures around the CCD. To minimize the dark current, the

camera is cooled to -40 'C using a thermoelectric cooler and water chiller.

3.4.2 Analysis Algorithms and Calibration

X-rays that interact with the CCD can deposit their energy in one or more pixels,

termed "single events" or "split events," respectively. Because of these split events,

a direct histogram of the counts on the CCD does not reflect the incident x-ray

spectrum. There have been many different algorithms developed to sum these split

events through techniques such as pattern matching and boundary detection. The

simplest and most established procedure, however, is to ignore the split events and
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Figure 3-11: Layout of the Single Hit CCD spectrometer. The spectrometer is 541 cm

from target chamber center (tcc) and looks through a steel vacuum tube, Cu filter,
and a Pb collimator. The vacuum tube prevents attenuation of the Cu ka signal in

air. The spectrometer is contained in a 2" thick Pb housing to reduce the background
signal.

use a detection efficiency curve calibrated for single events. This "Single Event

algorithm" scans through a background subtracted CCD image and finds pixels

whose brightness is above the surrounding 8 pixels by some threshold level, taken

here as 98% of the signal in the central pixel. Only these single events are included

in the histogram. Figure 3-12 shows a sample subsection of a CCD image and the

Single Event histogram derived from this image. The x-axis on the histogram has

been scaled from counts (deposition counts vs histogram counts) to the energy of

the incident photon. This scale factor depends on the camera gain and is

empirically determined by scaling to known line energies. The Cu ka and ko lines

are seen in the histogram.

The calibration of the detection efficiency to translate the histogram into an

absolute k-shell yield involves determining 3 factors: the quantum efficiency of the

CCD, the single hit probability of a photon, and a crowding correction as the single

event algorithm starts to reject single events with increasing CCD exposure. The

calibration of this specific camera is described in further detail by Maddox [7] and is

summarized here.

The camera was calibrated at 5.9 keV and 22 keV using Fe-55 and Cd-109 sources.

The source activities were measured using an AmpTek XR100-CR Si detector and
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Figure 3-12: A sample subsection of a CCD image and the Single Event histogram
from the image. The counts on the x-axis have been scaled to the energy of the
incident photon. The Cu ka and k3 lines are seen in the histogram.

an AmpTek MCA8000A multichannel analyzer to within 10% of the specified

activity. The dose was varied over 2 decades of CCD exposure levels by varying the

exposure time and the distance of the CCD to the source. The images were then

analyzed with the single event algorithm and the detected photons compared to the

source fluence. Figure 3-13 shows the calibration curve from Maddox for the 5.9

keV photon exposure. The black squares and red triangles represent the detection

efficiencies for 5.9 keV photons using a standard histogram and single event

algorithms, respectively. The detection efficiencies are plotted against the chip

exposure level. The exposure level is defined as the fraction of pixels above a

background threshold, taken here as 3 times the half width at half maximum

(HWHM) distribution of the dark image.

The detection efficiency is more stable for the standard histogram as the chip

exposure level increases. However, the standard histogram does not reflect the

actual x-ray spectrum, complicating the subtraction of the bremsstrahlung

background to obtain a k-shell signal. In addition, the k-shell peaks are often

indistinguishable among the split events of the higher energy background. The
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Figure 3-13: Detection efficiency calibration for 5.9 keV photons as a function of the
chip exposure level. The standard histogram provides a stable detection efficiency
but the single event algorithm needs to be corrected for chip crowding. Taken from
Maddox RSI 2008 [7]. Reprinted with permission. Copyright (2008) by the American
Institute of Physics.

single event algorithm can obtain a real spectrum but must be corrected for chip

crowding as seen in the detection efficiency curve. One assumption in the crowding

correction is that crowding due to monoenergetic photon exposure from the

calibration is similar to crowding due to the spectrum of hard x-rays and

fluorescence of surrounding material in a real high intensity laser experiment. This

is a statistically reasonable assumption based on the algorithm but has not been

experimentally verified.

The detection efficiency calibration shown is for 5.9 keV. To obtain the detection

efficiency curve for 8 keV Cu ka, the quantum efficiency and single hit probability

must be scaled from 5.9 keV. Since the range of 10 keV electrons (1.5 pm) in silicon

is much smaller than the 16 pm pixel size, the single hit probability is assumed to

be constant from 5.9 keV to 8 keV. The detection efficiency thus only needs to be

scaled by the ratio of the absorption probabilities, which for these 2 energies is a

48% correction. From this calibration, the uncertainty in the detection efficiency is

15%. Coupled with a 10% uncertainty from the algorithm and background

subtraction, this leads to a 20% error bar in the Ka measurement.



3.4.3 Sample Analysis

This subsection describes in detail the analysis procedure used to determine the

k-shell yield from the CCD image. Figure 3-14 shows the raw CCD image from a

experimental exposure. A background image consisting of the integrated dark

current from the CCD is first subtracted from the raw CCD image using ImageJ

[92]. The circular subsection of the single hit points represents the open path of the

vacuum tube, whose diameter was just slightly smaller than required. Since the chip

was not fully exposed, only a subsection of the image is used in the analysis. The

yellow line traces out the subimage that is used. The rest of the image is blanked

out and the number of pixels in the subimage is calculated to determine an effective

chip area.

Figure 3-14: The raw image from the camera CCD. The circular subsection is the
open path of the vacuum tube, whose diameter was just slightly smaller than required.
The yellow line traces the subimage that is used in the analysis.

The subimage is processed with the single event algorithm and a histogram is taken

of the result. This histogram was shown in Figure 3-12. An exponential is then fit

to the background points around the peaks and subtracted from the histogram. An

integration under the ka and k/ peaks provides the total detected k-shell counts.

The total k-shell yield per steradian from the target is then obtained by factoring in

the detection efficiency, solid angle (adjusted for the subimage), and

filter/air/window transmissions using Equation 3.2.

Nka(per SR) = Count(3.2)
EdetTfilters subimage (3.2)
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where edet includes the quantum efficiency, single hit probability, and crowding

correction as described above, Tfilters includes the transmission of the Cu foil,

beryllium windows, and air gap, and Qsubimage is the solid angle of the chip,

adjusted for the subimage area. This yield does not factor in the x-ray opacity of

the target itself, which depends on the CCD view angle and the distribution of the

source. For an absolute k-shell yield this is a necessary calculation. However, in the

context of this work, the k-shell yield is compared to simulations where the

calculated photons must also escape the target. The opacity correction is therefore

already factored into the simulation and the measured yield can be directly

compared. These comparisons will be discussed further in the following chapter.
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Chapter 4

4.1 Experimental Overview

Experiments were conducted on the Titan laser at Lawrence Livermore National

Laboratory to probe the spectrum and conversion efficiency of the laser generated

hot electrons and test the intensity scaling laws. The targets were 1 mm x 1 mm

planar foils, consisting of a 25 pm Cu fluor sandwiched between 10 Ium Al at the

front surface and 1 mm Al at the back. The 10 pm Al front layer prevents heating

of the fluor and provides a consistent interaction surface across different types of

targets. Previous spectroscopic studies [93] have shown that a Ni fluor buried under

a few microns of Mo does not heat up appreciably, even when irradiated by lasers

with higher energy and intensity (400 J, 5x1020 W/cm2 ) than those used here. The

1 mm Al back layer ranges out electrons to prevent multiple passes through the

fluor ("refluxing") due to buildup of the electrostatic potential as electrons escape.

The target is shown in Figure 4-1.

Figure 4-1: A 10 pm Al layer prevent heating of Cu fluor. The 25 pm Cu layer emits

K-shell photons and serves as an electron counter. The 1 mm Al back layer ranges

out electrons to prevent multiple passes through the fluor.



The targets were irradiated at 160 off-normal s-polarization with 5 to 150 J of laser

energy for peak intensities of 3x 1018-8x 1019 W/cm2 . Bremsstrahlung emission

produced in the bulk was measured using two Hard X-ray Bremsstrahlung

spectrometers at rear target normal and at 23' horizontal to rear target normal,

about 80 cm from the target. A Spectral Instruments SI-800 CCD operating as a

Single Hit Spectrometer was used to measure the K-shell emission from the buried

Cu layer at 24' horizontal to the front target normal. Other ancillary diagnostics

included a Kac Bragg crystal imager for imaging the fluorescence spot, vacuum

electron spectrometers for measuring the escaping electron spectrum, and a Highly

Oriented Pyrolytic Graphite (HOPG) mosaic crystal spectrometer for relative Cu

spectroscopy. Laser diagnostics included a 16-bit CCD for measuring the focal spot,

a fast diode prepulse monitor, and a 532 nm probe beam for inferring the preformed

plasma. A schematic of the diagnostic layout for this experiment is shown in

Figure 4-2.

4.2 Data Summary

There were ten shots on Al/Cu/Al targets in this data series. The raw data from

the instruments and the data processing was described in Chapter 3. Table 4.1 lists

the shot parameters for each of the ten shots. The data from the Bremsstrahlung

spectrometer and Single Hit Spectrometer was processed as described in Chapter 3.

The Ka data from the Single Hit Spectrometer is plotted in Figure 4-3. The

absolute emission in photons/SR is represented by the blue diamonds and scales

with the laser intensity. The emission normalized to the laser energy in units of

photons/SR/J is shown in red and is constant across this intensity range. This

shows that the primary scaling in Ka emission with the laser energy. (These

numbers have not been adjusted for the opacity of the target.) Note that the right

axis is on a linear scale. The measured Ka emission has a shot to shot variation of

up to 30%, which is seen in all of the buried fluor experiments. The source of this

variation is currently the subject of active research.



Figure 4-2: Schematic of the Diagnostic Layout

Table 4.1: Shot Parameters for Al/Cu/Al shots

ShotID Laser Energy (J) Intensity (W/cm2 ) LA Dist (mm) TN Dist (mm)

20080122s01 121 6.7x 10'9 821 764

20080122s02 81 4.5x1019  821 764

20080122s03 36 2.0x 101 821 764

20080124s02 18 1.0x 1019 821 764

20080129s07 120 6.7x 10'9 750 N/A

20080130s04 123 6.9x 10'9 750 850

20080131s04 143 8..Ox 10 750 850

20080131s05 13.5 7.5 x 10's 750 N/A

20080131s06 4.7 2.6x 1018 750 850

20080131s07 57 3.2x 10'9 750 N/A
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Figure 4-3: Ka data from the Single Hit Spectrometer. The emission in photons/SR
is given by the blue diamonds and scales with the laser intensity. The emission
normalized to the laser energy is shown in red and is constant across this range, which
shows that the Ka signal primarily scales with the laser energy. These numbers have
not been adjusted for the opacity of the target. Note that the left axis is logarithmic
while the right axis is linear.
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The raw dosimeter signals from the target normal Bremsstrahlung spectrometer are

shown in Figure 4-4 for two shots of similar energy (121 J and 123 J). The signals

and errors were extracted from the scans of the image plate dosimeters as discussed

in Chapter 3. (This data has not been corrected for fade time, but for these two

shots the difference is only on the order of a few percent.) The low energy

component up to the 6th channel (response threshold = 70 keV) is almost exactly

the same. The higher energy channels are lower for the 123 J shot. The impact of

this shot to shot variation on the inferred electron spectrum will be discussed later.

1E+5

1E+4

E

1 3 7 9 11 13

Bremsstrahlung spectrometer for two shots of similar energy (121 J and 123 J). The
1E+2 1 3 5 7 9 ii 13

Dosimeter Layer

Figure 4-4: The raw image plate dosimeter signals are shown for the target normal

Bremsstrahlung spectrometer for two shots of similar energy (121 J and 123 J). The

low energy component up to the 6th channel is almost exactly the same but the higher
energy channels diverge by up to 30%.

The slope of the Bremsstrahlung spectrum can be visualized through signal ratios of

the different dosimeter channels. Figure 4-5 shows the signal ratio of channel 3 to

channel 6 (S3/S 6) and the signal ratio of channel 11 to channel 6 (S11/S 6). The

response threshold for channels 3, 6, and 11 are 25 keV, 50 keV, and 300 keV,

respectively. S3/S 6 is highest at low intensity and falls off, as expected for an

increasing spectral temperature. S11/S 6 is small at low intensity and increases with

the laser intensity, also in accordance with an increasing spectral temperature. The

S11/S 6 ratio from the 123 J shot shown in Figure 4-4 is abnormally low when
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compared to the trend for the rest of the data shots and may be an outlier. The raw

signal ratios for the rest of the data show a clear trend toward increasing spectral

temperature for higher laser intensities. Unfolding the electron spectra from the

dosimeter data, however, requires significant modeling effort to understand the

Bremsstrahlung production and the spectrometer response to the Bremsstrahlung

emission. This will be discussed in the following sections.
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Figure 4-5: Ratios of the raw dosimeter data for different channels are plotted. The
ratio of S3/S 6 decreases with increasing laser intensity. The ratio of S11/S 6 increases
with laser intensity, as expected for higher spectral slope temperatures.

4.3 Target Simulation

The Bremsstrahlung and Ka emission from the target is modeled in 3-D using the

ACCEPTP code from the ITS 3.0 package. Analogous to the modeling of the

Bremsstrahlung spectrometer, 81 narrow spectral bins of electrons logarithmically

spaced from 10 keV to 100 MeV are injected at the target surface in a 30 pm spot.

The electron beam directionality and electron cone angle are variable parameters in
the simulation. The beam direction is varied between 0' and 160, consistent with

experiments by Santala et al. [94] who found that the beam direction varied

102

+ Ratio S3/S6

m Ratio S11/S6

fr



between target normal to along the laser axis depending on the preformed plasma

scale length. The electron cone angle was assumed to have a distribution based on

the classical electron ejection angle of electrons in a laser field [39] given by

Ohalf = tan- 1 , (4.1)

where -y is the relativistic -y of the electron as discussed in Chapter 2. This

assumption follows work by Stephens et al. [95], where images from buried

fluorescent foils showed a broad 70-100 tpm Ka spot up to 100 pm depth, followed

by a 400 (full) divergence angle. From Monte Carlo simulations the assumption of

the classical ejection angle was consistent with Ka spot sizes measured by Stephens.

For reference a constant 400 full cone angle response was also simulated. Recent

hybrid-PIC simulations by Honrubia and Meyer-ter-Vehn [96] have found that

initial electron cone angles consistent with the classical ejection angle reproduced

mean divergence angles of 30-400 seen in experiments due to magnetic collimation

effects. The net propagation angle in Monte Carlo simulations is not collimated by

field effects so the initial cone angle is expected to be bounded by these two

parameter choices. This is a reasonable assumption based on the Stephens work.

For each combination of simulation parameters and spectrometer locations, a Target

Response Matrix (TRM) is generated, representing the Bremsstrahlung emission

from the target for injected electron energies. The Bremsstrahlung spectrum is

averaged over 50 polar angular bins and 200 azimuthal bins for the off-axis

directionality. The Ka emission detected by the Single Hit Spectrometer is also

calculated, generating a Ka Response Matrix (KaRM) for each parameter

combination.

Figure 4-6 shows the Bremsstrahlung emission for incident electrons with 200 keV, 1

MeV, 2 MeV, and 3 MeV energies to help visualize the TRM. Since the

Bremsstrahlung spectrometer has differential sensitivity only up to 500 keV

(photons above 500 keV deposit a uniform signal across the channels, as discussed

in Chapter 3), it is useful to see what this means in terms of electron
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Figure 4-6: The Bremsstrahlung emission for incident electrons with 200 keV, 1 MeV,

2 MeV, and 3 MeV energies. An exponential fit to the photon spectrum from 80 keV

to 500 keV shows that the Bremsstrahlung spectrometer can differentiate electrons

up to 2-3 MeV.

differentiability. An exponential was fit to the different spectra between 80 keV and

500 keV. A photon slope was determined for each of the incident electron energies.

These slopes start to coalesce for electron energies above 2 MeV. The maximum

electron differential sensitivity is about 2-3 MeV. This makes this instrument

suitable for looking at electron distributions in the 1-3 MeV range.

The SRM and TRM are multiplied together for the overall response matrix,

representing the response of the dosimeter layers to electrons injected into the

target. The deconvolution of the underconstrained electron spectrum constitutes a

classic few channel spectrometer problem commonly found in unfolding neutron

spectra from Bonner Spheres [97]. This is shown pictorially in Figure 4-7.

The electron spectrum can be unfolded using a number of techniques, such as fitting

test distributions, maximum entropy methods, or singular value decomposition. In

this work, one and two temperature distributions are used to parameterize the

spectrum. These results will be discussed in the following sections.
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Figure 4-7: The Spectrometer Response Matrix is multiplied with the Target Re-

sponse Matrix to represent the response of the dosimeters to injected electron distri-

butions.

4.4 1-T Distributions

A single temperature electron distribution with an exponential or 1-D relativistic

maxwellian functional form can be fit to the spectrometer data through the

response models. The inferred electron temperature for each spectrometer location

depends on the assumed electron beam directionality. If the injected electron beam

is directed away from the spectrometer location, the spectrometer sees a softer

spectrum from the thick-target Bremsstrahlung angular distribution. For a given set

of measured data, the inferred electron temperature will be higher as the angle

between the injected beam and the spectrometer location increases. Using two

spectrometers provides information on the beam directionality. The directionality is

estimated by simultaneously fitting the data from both spectrometers. As the beam

directionality is varied from the target normal to along the laser axis, the slope

temperature calculated for the spectrometer on the laser axis drops and that of the

target normal spectrometer temperature rises. The angle at which the predicted

temperatures are equal is taken as the beam direction. The coincident temperature

is taken as the temperature of the electron distribution. The directionality

determination is more important for higher intensities since the electron cone angle

is more directional. For low intensities, electrons less than several hundred keV have

a cone angle of almost 27r and the beam directionality does not matter. For these

large cone angles the temperature inferred from the data does not depend on the

directionality in the simulations used in this analysis. The calculated beam
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directionality varied from 6 to 16 degrees, consistent with the target normal to laser

axis range previously discussed.
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Figure 4-8: Single temperature exponential fits to target normal spectrometer data
for a 121 J and a 18 J shot. The black lines represent the best fit temperature. The
red and blue lines represent the fit for the maximum and minimum temperatures as
determined by a X2 fitting parameter of the greater of 1 or 2 x the minimum X2 .

Figure 4-8 shows the fit of a single temperature exponential electron distribution to

the dosimeter signals of the target normal Bremsstrahlung spectrometer for a 121 J

and a 18 J shot. The black line in each graph represents the best fit exponential

spectrum. The fitting parameter is characterized by the weighted, reduced X2 value,

where a X2 < 1 represents a curve that on average fits the data points within their
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error bars. For the 121 J shot, the best fit temperature is 1.3+0.15 MeV, with

X2 = 1. The 18 J shot has a best fit temperature of 470±120 keV, with X2 = 0.14.

The dosimeter error bars on the latter channels are larger for the 18 J shot due to

lower signal statistics and result in relatively higher temperature errors. The error

bar on the temperature is determined by the maximum and minimum temperatures

for which X2 is the greater of 1 or 2 x the minimum X2. The red and blue lines on

each plot represent the fit for the maximum and minimum temperatures. The error

bars are typically on the order of 100-200 keV.
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Figure 4-9: The temperatures from the Bremsstrahlung measurements are plotted

against the ponderomotive and Beg scaling laws. The data is significantly colder than

ponderomotive scaling with the peak laser intensity. The measured temperatures are

also higher than Beg scaling for intensities greater than 2 x 1019 W/cm2 .

A single temperature distribution provides a very good fit to the measured data,

with the X2 < 1 for nearly all of the shots. These single temperature distributions

are how the field has typically described these interactions until now [1], [36], [22].

The inferred electron slope temperatures (equivalently, the mean energy for an

exponential) are compared to the ponderomotive and Beg scaling laws in Figure 4-9.

Typically, the intensity used in the scaling laws is calculated from the power in the
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FWHM laser spot, taken here as 15% of the laser energy in a 7 pm diameter spot in

0.7 ps, as derived from measurements described in Chapter 3. This FWHM peak

intensity is the primary definition found in the literature, although other definitions

such as the peak intensity tip of the intensity profile or an intensity containing 50%

of the energy are also used, complicating comparisons to standard scaling laws.

The shot to shot variations of the Bremsstrahlung spectrum described in Figure 4-4

is seen in the cluster of three shots around 7 x 1019 W/cm2 . For these three shots,

the maximum difference in Thot is 300 keV, just outside the 100-200 keV error bars,

making this variation a relatively small effect. This variation is likely due to a

degradation in the laser focal spot over the course of a day from thermal effects in

the amplifier chain, which results in somewhat lower peak intensities and slightly

colder electron temperatures.

From Figure 4-9 it is clear that the Bremsstrahlung measurements are not

consistent with a ponderomotive scaling law using the peak vacuum intensity. At

intensities of 5 x 1019-1020 W/cm 2, the measurements are a factor of 2-3 lower than

the ponderomotive potentials (with intensities defined the same way). The

measured temperatures are, however, closer to Beg scaling, but still higher for

intensities greater than 2 x 1019 W/cm2 . The Beg scaling was empirically

determined [2] for intensities up to 1019 W/cm 2 using p-polarized light at 300 to

normal laser incidence angle. The data here diverges slightly from Beg scaling at

intensities above the original empirical measurements. This data is also significantly

colder than the ponderomotive potential of the laser. However, scaling the electron

temperature with a single peak intensity is not the right application of

ponderomotive theory because of the widely varying intensity profile in space and

time over a real laser focal spot. Despite this, single temperature comparisons to

ponderomotive scaling are still typically found in the literature. This issue will be

further discussed later in this chapter.
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4.5 2-T Spectrum Unfolding

While the 1-T distributions provide a very good fit to the Bremsstrahlung

measurements, other electron distributions are also consistent with the data. Since

the laser intensity varies in space and time, there is inherently a range of intensities

present, which can result in more complex electron spectra. For example, this can

be seen in Figure 4-11, where for a synthetic ponderomotive spectrum the slope

temperature is higher if measured at higher energies. This spectrum will be

discussed further in the following section. The spectral space can be expanded by

unfolding the electrons with 2-T distributions, of the type seen in previous

experimental and computational work [36], [2], [78]. These distributions are

parameterized by hot and cold temperatures and the ratio between the two

components, and can be represented by a function of the form

f (E) oc Rp (E I Tc) + Ip (E I Th) , (4.2)

where Tc and Th are varied from 10 keV to 10 MeV, the ratio R ranges from 0.1 to

1000, and ,o is a normalized Boltzmann or 1-D relativistic Maxwellian distribution.

The electron spectrum is again unfolded by calculating the X2 fitting parameter for

each distribution parameterized by the two temperatures. The matrix response

model simplifies testing of the entire parameter space. The fitting parameter is

calculated for 16 million distributions per shot, providing highly resolved variances

of the distribution. The electron distributions that simultaneously fit both of the

spectrometers within one X2 are selected as valid fits.

Figure 4-10a shows a sample subset of allowed distributions for the 121 J shot

discussed in the previous section. These sample spectra are represented by the color

lines. A broad range of electron distributions are consistent with the data, with

almost an order of magnitude difference in the number of electrons at any given

energy. The straight dotted black line in 4-10a represents the single temperature

distribution with a 1.3 MeV slope temperature. The other sample distributions

demonstrate that this single temperature is not unique and depends on the energy
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Figure 4-10: (a) Various 2-T electron spectra are consistent with the spectrometer

data. The colored lines represent a selected subset of different electron distributions

that fit the spectrometer data within one X 2. The black lines represent the envelope
bounding the electron distributions. This envelope bounds the space of the electron

distributions but not every distribution within the envelope is a solution within the

error bars of the data. (b) The black lines represent the envelope of Bremsstrahlung

spectra consistent with the various electron spectra in 4-10a. The Bremsstrahlung

is spectrum is degenerate, with the different electron spectra in 4-10a producing the
same Bremsstrahlung emission. The red lines represent the Bremsstrahlung envelope
consistent with the Bremsstrahlung spectrometer data and Ka emission data. As

expected, the Ka emission does not influence the photon spectrum, which is indepen-
dently measured. (c) 2-T electron spectra consistent with both the Bremsstrahlung
data and the K-shell emission. The colored lines again represent a sample subset of

electron distributions, this time consistent with both the Bremsstrahlung data and
the Ka emission data. The K-shell emission acts as an electron counter that further

constrains the electron spectrum. The black lines represent the envelope bounding
these electron distributions.these electron distributions.

110



range in which the slope is measured. The envelope surrounding all of the 2-T

distributions consistent with the Bremsstrahlung data is represented by the solid

black lines. This envelope represents the boundary of the space within which the

solutions are found. However, not every distribution that can be drawn in the

envelope will be a solution consistent with the data. For example, other straight

lines can be drawn within the space representing 1-T fits with widely varying slope

temperatures. As shown in Section 4.4, however, the 1-T solutions consistent with

the data have slope temperatures within the 1.3±0.15 MeV.

The wide range of electron distributions consistent with the data is the result of two

issues. The first is that the electron spectrum is only constrained up to a couple of

MeV due to the 500 keV photon differential sensitivity of the spectrometer. The

second is that a number of these electron distributions without higher energy

constraints can generate similar photon spectra, as seen in Figure 4-10b. The solid

black lines represent the envelope of Bremsstrahlung distributions generated by the

different electron spectra. This envelope is significantly narrower; similar

Bremsstrahlung spectra can be generated with larger numbers of colder electrons or

smaller numbers of hotter electrons. As expected, the Bremsstrahlung envelope

starts to broaden above the energies where the spectrometer no longer has good

differential sensitivity. The only constraint on the Bremsstrahlung spectrum above

those energies is the incorporation of the prior assumption that the electron

distribution has a 2-T exponential form. The exponential falloff with slopes up to 10

MeV is a physically reasonable assumption based on the ponderomotive potential

and the intensities in this experiment.

The envelope of unfolded electron spectra was reduced by using the independent

measurement of the Cu Ka emission from the fluorescence layer. This measurement

is used as an additional constraint on the electron number. The Ka emission is

measured on each shot, thereby accounting for the 30% shot to shot variation. For

this 121 J shot the measured Ka yield was 5.3 x 1011 ± 20% photons/SR. (Note that

this yield does not need an opacity correction since the opacity is already calculated

into the KaRM through the Monte Carlo simulation.) The Ka signal effectively
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acts as a counter of electrons above 50 keV; these have sufficient energy to reach the

copper layer and efficiently stimulate fluorescence. With the Ka constraint, the

range of possible electron distributions is significantly narrowed, as shown in

Figure 4-10c. The photon spectrum is not affected, as seen in the solid red lines

Figure 4-10b. This is expected since the photon spectrum is an independent

measurement. This is the first time this analysis has been applied to characterizing

the electrons produced in short-pulse laser plasma interactions.

4.6 Comparison to Synthetic Spectra from

Scaling Laws

Experimental comparisons to ponderomotive scaling typically use a

single-temperature electron distribution with a Thot from the peak laser intensity [1],

[3], [36]. As shown above, the Bremsstrahlung data is colder than the

ponderomotive potential characterized by a single peak intensity. For the 121 J

shot, this results in a 3.3 MeV ponderomotive temperature, which is well outside the

error bars (X2 %70) of the 1.3 + 0.15 MeV single-temperature fit (X2 ~1).
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Figure 4-11: The synthetic electron spectrum derive from ponderomotive scaling
applied to the focal spot intensity distribution. There is no single temperature, and
the slope temperature is higher when measured at higher energies.

The ponderomotive acceleration mechanism is a local effect, and a proper

comparison to ponderomotive scaling can only be made by accounting for the actual
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intensity distribution, instead of just a single number. The intensity distribution

from the focal spot image can be used to generate a synthetic electron spectrum.

The intensity distribution is binned in time and space using the laser focal spot and

a 0.7 ps Gaussian temporal profile as measured from the autocorrelator trace

discussed in Chapter 3. The intensity distribution using the focal spot and a 0.7 ps

flat top temporal profile is shown in Figure 4-12. A conversion efficiency and

electron energy spectrum is then assigned to each intensity element in space and

time using an exponential distribution with a slope temperature equal to the

ponderomotive potential and a conversion efficiency model. Here a flat coupling

model described by Myatt [74] and Nilson [5] is used, with the coupling efficiency

scaled to the measured data (alternatively Yasuike's 10-50% coupling efficiency [4]

would make the hot tail of the electron distribution slightly hotter and would

increase the discrepancy shown here between the measured data and the

ponderomotive model for temperature). The synthetic distribution is then

generated by integrating these electron distributions in space and time. This

synthetic spectrum is shown in Figure 4-11. This spectrum does not have a single

temperature, and the slope temperature is higher when measured at higher energies.

As expected, the slope temperature at very high energies is consistent with the peak

intensity ponderomotive potential since the high energy electrons are prescribed

from the peak intensities of the laser profile.

A comparison of the synthetic ponderomotive spectrum to the data for the 121 J

shot is given by the red line in Figure 4-13. The spectrum is still slightly hotter

than the data with a X2= 8. This spectrum is a much better fit than the 1-T

spectrum with the 3.3 MeV peak intensity ponderomotive potential temperature.

To characterize how well this synthetic ponderomotive spectrum fits the data, it is

useful to compare it to a I-T distribution with the same X2= 8 fitting parameter.

The equivalent 1-T distribution has a 1.7 MeV temperature, somewhat higher than

the 1.3 MeV best fit, but significantly less than 3.3 MeV.

Recent simulations by Chrisman, Sentoku, and Kemp [8], and Kemp et al. [24] show

a reduction in the slope temperature due to light pressure induced steepening of the
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Figure 4-12: The intensity distribution of the laser focal spot assuming 150 J and a
0.7 ps flat top temporal profile. The focal spot was measured with a 16-bit CCD and
with 0.45 pm spatial resolution and is the same focal spot shown in Chapter 3.
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Figure 4-13: The fits from the synthetic ponderomotive distribution, the Chrisman
distribution, and the 75% synthetic ponderomotive distribution are plotted against
the target normal spectrometer data for the 121 J shot. The synthetic pondero-
motive spectrum is slightly hotter with a X2=8. The Chrisman and 75% synthetic
ponderomotive distributions fit well to the data.
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density gradient. This arises from shortening of the jxB acceleration distance by a

factor , where n, is the upper shelf density (as described in Chapter 2.1 as np,
V ns

the plasma density). The energy spectrum is parameterized by splitting the hot

electrons into two components, one with a slope temperature equal to the

ponderomotive potential and the other reduced by the factor .c Each

component contains half of the energy. This analytic parameterization of the

electron spectrum was applied to the focal spot intensity distribution in the same

way. This spectrum fits the data very well, with a X2= 0.6, and is represented by

the green line in Figure 4-13.

Wilks' 1992 PIC simulations [23] show electron temperatures 25% higher than the

ponderomotive potential for p-polarization and 25% lower for s-polarization. If the

ponderomotive temperature applied to the focal spot intensity distribution is

reduced by a scale factor, i.e. Th = fTPoND, temperatures where f=70-80% produce

a spectrum that fits the data with X2 < 1. The data thus fall within the "error bar"

of ponderomotive scaling if the lower s-polarization temperatures are taken from the

PIC simulations. This synthetic spectrum is the best fit to the data with a x2= 0.4,

represented by the black line in Figure 4-13. Since the laser in this experiment is

s-polarized (with small p components due to the focusing optics and the 3-D plasma

profile), this most accurately represents ponderomotive scaling in this experiment.

Figure 4-14 shows these three spectra plotted against the envelope of Ka

constrained fits from Figure 4-10c. The ponderomotive and 75% ponderomotive

synthetic spectra fall within the envelope of constrained fits. Even though the

ponderomotive spectrum falls within the envelope, it does not fit the data within

the error bars (it falls within the boundaries of the solution space but is not itself a

solution). The 75% ponderomotive spectrum is consistent with the data, as shown

in Figure 4-13. At lower energies, the Chrisman spectrum deviates outside the Ka

constrained envelope. This spectrum is consistent with the Bremsstrahlung data

but the low energy electrons generate too much Ka emission. It is possible that the

Ka emission from the fluor is affected by resistive transport effects, where Ohmic

fields prevent low energy electrons from reaching the fluor and generating Ka. The
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Figure 4-14: The synthetic spectra derived from different Thot scalings using the focal

spot intensity distribution are plotted against the electron spectral envelopes from

Fig 4-10c. The solid black lines are the envelope constrained by the Bremsstrahlung

and Ka. Both the ponderomotive and 75% ponderomotive scaling fit within the Ka

constrained envelope. Even though the ponderomotive spectrum falls within the en-

velope, it does not fit the data within the error bars. The 75% ponderomotive scaling

does fit the data. The Chrisman parameterization [8] ranges slightly outside the Ka

envelope at the low end. This spectrum is consistent with the Bremsstrahlung data

but generates too much Ka from the low energy electrons. Resistive transport effects

may reduce the production of Ka by low energy electrons, altering the constraint

boundaries at low energy.
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impact of resistive fields will be discussed later in this chapter.

The Beg scaling law [2] was discussed above, with the hot electron temperature

scaling as Thot = 215( 18 A2)1/3 keV. Since Beg scaling is empirically determined from

experimental data, it is more appropriate to use a single peak intensity number

rather than the composite intensity distribution. It was shown previously that for

intensities above 2 x 1019 W/cm 2 the measured data is slightly hotter than Beg

scaling. For this 121 J shot, Beg scaling gives a Thot of 0.9 MeV, which is colder

than the 1.3 MeV 1-T fit. For a 0.9 MeV distribution exponential distribution, the

X2=10, which is outside the lower boundary of the error bars.

Accounting for the focal spot intensity distribution is important in obtaining a

realistic comparison to the intensity scaling laws. Ponderomotive scaling using the

distribution is still slightly hotter than the data, but fits far better than scaling

using a single peak intensity number. The Chrisman parameterization of density

gradient steepening fits the Bremsstrahlung data quite well, and deviates slightly

outside the measured Ka signal. This high Ka signal may be due to the neglect of

resistive transport effects which could reduce the number of lower energy electrons

reaching the Cu fluor. The fit from the Chrisman parameterization is better than

that of the ponderomotive model but has essentially the same energy fraction of 1

to 3 MeV electrons. At higher intensities required for ignition more of the low

energy component of the spectrum would fall in the energy range of interest so the

useful fraction would increase. In addition, some PIC models have shown that the

density profile steepening is more fully developed for higher intensities with an onset

threshold close to the conditions of this experiment [37]. It is clear from this analysis

that a single temperature distribution is not appropriate for realistic laser pulses.

Scaling the focal spot intensity distribution with 75% of the ponderomotive

potential also provides an excellent fit to the data. This lower scaling was also seen

in PIC simulations using "s" polarized light, and is considered as an error bar for the

ponderomotive theory. The measured data is also consistent with ponderomotive

scaling within this error bar. Since both the 75% ponderomotive potential and the

Chrisman parameterization are both consistent with the data, it is not possible at
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this time to distinguish between the two models. This would require measurements

to higher Bremsstrahlung energies where the high energy tail can be tested.

Resistive transport effects may also shift affect the Bremsstrahlung emission and

upshift the ponderomotive spectrum. This issue is addressed in the Discussion

section later in this chapter.

4.7 Conversion Efficiency Scalings with Intensity

Since 1-3 MeV electrons have the appropriate range to couple efficiently to the

compressed core, the coupling of the laser into electrons of these energies is one of

the critical parameters for evaluating the success of fast ignition. This 1-3 MeV

conversion efficiency allows the electron spectrum and conversion efficiency to be

parameterized in a coupled way. Despite the broad range of 2-T electron

distributions, the total conversion efficiency (qL-e-) and the conversion efficiency

into 1-3 MeV (!L-,1-3MeVe-) electrons are more tightly constrained. For each of the

fitted electron distributions, the conversion efficiencies can be determined by

integrating the moment of the distribution function across the corresponding energy

range. This is depicted in Figure 4-15, which shows the energy weighted distribution

function from the synthetic ponderomotive spectrum. The blue shaded area

represents the energy in 1-3 MeV electrons and the yellow shaded area (including

the blue) represents the total energy in all electrons.

For the 121 J shot, the predicted conversion efficiencies for the different models and

parameterizations are given in Table 4.2. The conversion efficiency range predicted

from the 2-T parameterization is significantly narrowed with Ka data. The different

scaling laws all give conversion efficiencies within or very close to the bands

predicted by the 2-T parameterizations. The Chrisman spectrum total conversion

efficiency is much higher than the synthetic ponderomotive spectrum conversion

efficiency but has a similar number of 1-3 MeV electrons. This higher total

conversion efficiency is due to the larger number of prescribed colder electrons which

contribute to the total energy but do not produce significant levels of
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Figure 4-15: The energy weighted distribution function for the synthetic ponderomo-

tive spectrum. The blue shaded area represents the energy in 1-3 MeV electrons and

the yellow shaded area (including the blue) represents the total energy in all electrons.

Table 4.2: Inferred conversion efficiencies for the 121 J shot.
Model ?L--e- ?L--*1-3MeVe-

2-T parameterization (Brems only) 36-71% 5-23%

2-T parameterization (Brems+Ka) 39-57% 12-22%

Ponderomotive (focal spot distribution) 37% 12%

75% Ponderomotive 46% 16%

Chrisman parameterization 59% 11%

Bremsstrahlung. The 75% ponderomotive spectrum has more energy in 1-3 MeV

electrons because of the lower temperature scaling for the hot electrons.

Figure 4-16 shows the scaling of 77L-1-3MeVe- with the laser intensity. The solid

gray bars represent the predicted conversion efficiencies for the spectra that fit the

Bremsstrahlung data within the error bars; the orange bars also fit the Ka

constraint within its 20% error bars, as described earlier. jL--1-3MeVe- peaks around

2x10 19 W/cm 2 and then falls off. The conversion efficiency into 1-3 MeV electrons is

banded between 12-28%. For reference, the black line represents the conversion

efficiency into 1-3 MeV electrons assuming a Boltzmann distribution with

ponderomotive scaling using the peak intensity and a 50% conversion efficiency.

With standard ponderomotive scaling using the peak intensity, QL-1-3MeVe- peaks

at too low an intensity compared to the data, confirming that the calculated

spectrum needs to take into account both the focal spot distribution and a possible
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reduction in the scaling temperature. The total conversion efficiencies are shown in

Figure 4-17. These are banded between 35-60% and are consistent with the 10-50%

Yasuike conversion efficiencies but slightly higher than the 10-30% minimum

conversion efficiencies measured by Theobald, Myatt, and Nilson.
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Figure 4-16: The conversion efficiency into 1-3 MeV electrons is plotted vs. laser
intensity. The grey bars represent the predicted conversion efficiencies from the
Bremsstrahlung data. The orange bars represent the conversion efficiencies also con-
sistent with the Ka fluorescence measurement. Above 1019 W/cm 2, about 12-28% of
the laser energy goes into 1-3 MeV electrons. For reference, the black line represents
conversion efficiency into 1-3 MeV electrons given ponderomotive scaling with the
peak intensity and a 50% total conversion efficiency.

4.8 Discussion

The actual number of useful electrons for fast ignition is complicated by the cone

angle and transport effects. For example, in an analytic study of integrated fast

ignition models, Atzeni [22] assumes a 25% total conversion efficiency and a hot

electron temperature consistent with ponderomotive scaling, resulting in electrons

with a non-optimal range for coupling to the hot spot. The total conversion

efficiency measured here is up to a factor of two higher, with electron temperatures

that predict a more optimal range. The cone angle assumed here, however, ranges

from 90-60' for 1-3 MeV electrons, resulting in deposition radius significantly worse

120

~11111 III*

r



100%

D%

40%

20%

1.E+18 1.E+19 1.E+20
Intensity (W/cm2)

Figure 4-17: Laser conversion efficiencies into all electrons range from 35-60% for

intensities above 1019 W/cm 2.

than the collimated beams in analytic models. Whether these electron beams

undergo magnetic collimation at ignition scale conditions is a subject of ongoing

study [26], [28]. If they are collimated, this would significantly improve the coupling

efficiency to the core.

4.8.1 Systematic Uncertainties

There are two primary sources of potential uncertainty that may systematically bias

this analysis: (1) the assumption of the electron cone angle and (2) the neglect of

resistive transport effects. These two issues are discussed in this subsection.

Angle Effects

In contrast to the classical ejection angle assumption, if all the electrons are

launched into a 400 cone angle, the calculated conversion efficiencies would be lower.

The conversion efficiencies for the two angular distributions are shown in Table 4.3.

The full conversion efficiency is 25% lower and the 1-3 MeV conversion efficiency

40% lower in the 400 model. The angular distribution of the electrons is the main

uncertainty in unfolding the electron conversion efficiency from the Bremsstrahlung

measurements. A full spectral and angular measurement, similar to work by
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Table 4.3: Inferred conversion efficiencies for the 121 J shot for different angular
distributions

Angular Distribution 7L-e- 7?L--1-3MeVe-

Classical Ejection Angle 39-57% 12-22%
400 Fixed Full Angle 31-43% 7-14%

Schwoerer [98], or imaging of multiple fluorescent layers buried in the target would

help provide additional constraints on the angular distribution. Proposals for

improved angular measurements are discussed in the Future Work section in

Chapter 5.

Field Effects

The other source of error is the neglect of collective electric and magnetic effects in

the transport model. While collective fields are not present in a basic Monte Carlo

model, the impact has been estimated using an analytic [99], [79] model where an

Ohmic potential drives a return current of thermal electrons. The magnitude of the

potential in these experiments was estimated using an initial electron spectrum from

ponderomotive scaling using the intensity distribution and a 37% conversion

efficiency, as described above. The electrons are binned into energy groups and are

launched from a 30 pm diameter spot into a cone angle given by the classical

ejection angle. The electric field is given by

E (z) = (z) j (z) = (Z) Ni z) H (Ri - z), (4.3)
T (ro+ztani)H

where 7r is the resistivity of the material, Ni is the number of electrons in each

energy group, ro the initial spot size, Oi the divergence angle of each energy group, H

the Heaviside step function, and Ri the range of the electrons in each energy group.

The electric field is calculated as a function of depth with a cutoff at the electron

range. The electrons lose energy through collisional, radiative, and resistive effects.

The collisional and radiative losses are taken from tabulated values for cold matter

[42]. Scattering is included by taking the electron path length as two times greater
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than the linear penetration depth, which has been shown for energies from 10 keV

to several MeV [100], [101]. The electron range is thus approximated by integrating

the energy loss against the potential into the target along with twice the collisional

and radiative losses. The electric field is calculated and summed for all energy

groups and integrated for a potential across the target. This procedure is then

iterated to converge upon a self-consistent solution of the potential and electron

penetration depth.
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Figure 4-18: Laser conversion efficiencies into all electrons range from 35-60% for

intensities above 1019 W/cm 2 .

This calculation is shown in Figure 4-18. The first iteration has no resistive fields so

the electrons have a longer range; the electric field drops only from the angular

divergence of the electrons. In the second iteration, the resistive field is

overestimated from the long range of the electrons and results in an underestimate

of the potential. The calculated potential converges at the 4th iteration. Using this

formulation, the potential across the target is calculated at 1.1 MV using a peak

aluminum resistivity of about 1.5 x 10- 6' - m for the entire bulk, assuming that

most of the interaction occurs at temperatures between 10 eV and 100 eV for which

the resistivity of Al is close to the peak value. Half of the potential is in the first 10
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pm, and 3/4 is in the first 30 pm, before the electrons have had a chance to spread.

The calculated potential is temperature dependent because the the resistivity

decreases with increasing and decreasing temperature (the peak resistivity is used

here). The potential will be lower when the actual temperature distribution in the

target is taken into account. 3-D currents may also serve to partially lower the front

surface charge buildup and thus reduce the potential felt by the hot electrons.

Regardless, given the electron currents in these experiments, the potential is likely

to be at least a few hundred kV.

Neglecting this potential in a Monte Carlo analysis will influence the interpretation

of the conversion efficiencies. Since the majority of the potential is in the first few

tens of microns and the Bremsstrahlung is produced throughout the bulk, all of the

electrons producing Bremsstrahlung in the target pass through this potential. The

electron spectrum is essentially downshifted by this potential before it produces

Bremsstrahlung. Conversely, the electron spectrum inferred from the measured

Bremsstrahlung emission is therefore upshifted by the potential. In terms of a

simple 1-T treatment, if the mean energy is taken to be 1.3 MeV, a shift of a few

hundred kV would only slightly perturb the inferred conversion efficiencies. At the

upper bound of a 1 MV potential, this might be a significant effect, but still leaves

the mean energy lower than the 3.3 MeV predicted from ponderomotive scaling with

a single peak intensity. Transport simulations similar to those by Davies [79] and

Honrubia [96] are necessary to quantify the shift in the spectrum. The Ka emission

is strongly influenced by the Ohmic potentials, as previously discussed by Davies.

With the Monte Carlo analysis, the fluor acts as a counter of electrons above 50

keV. If there is a potential of a few hundred kV in the first ten microns before the

fluor, those electrons are ranged out due to resistive losses before their reach the

fluor to produce Ka. Only higher energy electrons will reach the Cu layer. The

energy at which this counter acts is therefore upshifted to a few hundred keV.

The impact of the Ohmic potentials on the Ka constraint is mixed. The electron

spectra in the envelope of Figure 4-10a with larger numbers of electrons in the

hundreds of keV range produce too much Ka in the Monte Carlo model to be

124



consistent with measured Ka emission. With an Ohmic model, the low energy

electrons would not reach the fluor, resulting in a lower Ka emission. These

distributions would then be consistent with the Ka measurements. This would

result in an upward revision of the total conversion efficiency since there would be

larger numbers of low energy electrons. The conversion efficiency into 1-3 MeV

electrons would drop since fewer high energy electrons would be needed to produce

the measured Bremsstrahlung emission. In Figure 4-17, 7Le- consistent with the

measured Ka is at the lower range of the band consistent with the Bremsstrahlung.

In Figure 4-16, ?rL-1-3MeVe- consistent with the Ka is at the upper range of the

band consistent with the Bremsstrahlung. The total conversion efficiency goes up

and the conversion efficiency into 1-3 MeV goes down when resistive effects are

taken into account.

Magnetic fields would also enhance the energy loss near the front surface of the

target and reduce the penetration lengths by increasing the curvature of the

electron path [79]. The impact of magnetic fields on the conversion efficiency would

thus be analogous to that of the Ohmic potential.

The Ohmic potentials will also have an impact on comparisons to the intensity

scaling laws. Since the mean energy of the distribution will be upshifted, Beg

scaling will remain colder than the data. Ponderomotive scaling with the peak

intensity will likewise remain too hot, since at 7 x 1019 W/cm 2 intensities, it is still

2 MeV hotter than the data. The focal spot ponderomotive spectrum, however, is

within range of the potential Ohmic correction. This spectral comparison needs to

be examined more carefully with hybrid-transport modeling in order to fully assess

these issues. This will be the subject of future work.

4.9 Conclusions

The Bremsstrahlung spectrum and Ka emission of a fluorescent layer have been

measured in non-refluxing targets. The laser produced electron spectrum is inferred

through Monte Carlo modeling of the target interaction. One and two temperature
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distributions were used to unfold the electron spectra. 1-T distributions provide a

good fit to the Bremsstrahlung measurements. Comparisons to intensity scaling

laws showed that scaling the ponderomotive potential with a single peak intensity

resulted in temperatures that were significantly higher than the measurements. At

intensities above 2 x 1019 W/cm 2 , the inferred electron temperatures are also higher

than the empirical Beg scaling.

2-T unfolding of the electron distributions showed that the I-T fits are not unique,

and that a broad range of electron spectra can generated the same Bremsstrahlung

spectra and were thus consistent with the Bremsstrahlung measurements. Ka

emission from the Cu fluor was used as an electron counter to help break this

degeneracy.

Realistic comparisons to intensity scaling laws require taking into account the

spatial and temporal distribution of the laser intensity. A synthetic electron

spectrum was derived by applying ponderomotive scaling to a measured focal spot

spatial intensity distribution and to a measured autocorrelator trace temporal

distribution. This synthetic ponderomotive spectrum was still slightly hotter than

the data. A parameterization of density gradient steepening by Chrisman, Sentoku,

and Kemp was used to generate a similar spectrum. This spectrum was consistent

with the Bremsstrahlung data, but overestimated the Ka emission, most likely

because of the neglect of resistive transport effects in the analysis. A synthetic

spectrum generated from 75% of ponderomotive scaling as seen in PIC simulations

by Wilks of an s-polarized jxB interaction provided the best fit to the

Bremsstrahlung and Ka data.

This range of 2-T spectra was used to calculate the total laser conversion efficiencies

and the conversion efficiencies into 1-3 MeV electrons of most interest to fast

ignition. Conversion efficiencies into 1-3 MeV electrons of 12-28% have been

inferred. This represents a total conversion efficiency of 35-60%.

Systematic uncertainties include the assumption of the angular distribution model

and the neglect of resistive transport effects. An assumption of a 400 cone angle,

rather than the classical ejection angle used in the analysis, would reduce the total
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conversion efficiency by 25% and the 1-3 MeV conversion efficiency by 40%.

Resistive transport effects were estimated using an analytic model which predicts

potentials of up to 1 MV, primarily in the first few tens of microns in the target.

This potential was calculated using the peak aluminum resistivity across the target,

and is likely lower, but still on the order of several hundred kV. This would result in

higher total conversion efficiencies than inferred from Monte Carlo modeling but

lower conversion efficiencies into the 1-3 MeV energy band.
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Chapter 5

5.1 Summary and Conclusions

Bremsstrahlung emission measurements are useful for inferring the hot electron

spectrum and conversion efficiency generated by the laser-plasma interaction in

short-pulse laser experiments. In this work the Bremsstrahlung emission was

measured using a filter stack spectrometer with differential sensitivity up to 500

keV. The spectrometer was developed and absolutely calibrated using radiological

and fluorescence sources for energies from 15 keV to 662 keV. Bremsstrahlung

measurements were performed on the TITAN laser for laser intensities from 3 x 1018

up to 8 x 1019 W/cm 2. The emission was analyzed using cold matter Monte Carlo

simulations with the coupled electron-photon transport code Integrated Tiger

Series 3.0. The electron spectrum was unfolded from the Bremsstrahlung

distribution by using one and two temperature test functions.

Comparisons of the Bremsstrahlung data to intensity scaling laws showed that

scaling the ponderomotive potential with a single peak intensity resulted in

temperatures that were significantly higher than the measurements. A more

realistic comparison to the scaling models was performed using the spatial and

temporal intensity distribution from a measured focal spot and an autocorrelator

trace. A synthetic electron spectrum generated by applying ponderomotive scaling

to the intensity distribution was slightly hotter than the data, but within the range

of a potential correction due to the neglect of collective effects. A synthetic

spectrum generated from a parameterization of density gradient steepening by
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Chrisman was found to be consistent with the Bremsstrahlung data. The Chrisman

parameterization, however, predicts too much Ka emission. This discrepancy may

be due to the neglect of Ohmic effects which range out the low energy electrons

before they reach the Cu fluor. In these intensity regimes, however, it serves only to

add a cold electron component that is not of use to fast ignition. A synthetic

spectrum scaling with 75% of the ponderomotive potential provided the best fit to

the Bremsstrahlung and Ka data. This reduction in the temperature spectrum was

consistent with particle-in-cell simulations by Wilks of the jxB acceleration

mechanism in an s-polarized light wave, which did not invoke the steepening of the

density gradient. The mechanism for the colder electron spectrum is thus

inconclusive, but the colder spectrum does provide for better coupling of the

electrons to the hot spot in the fast ignition concept.

The unfolding of the electron spectrum from 2-T distributions showed that there is

a degeneracy in the Bremsstrahlung measurements, whereby dramatically different

electron spectra can produce the same Bremsstrahlung emission. The electron

spectrum was further constrained by measuring the K-shell emission from a buried

Cu fluor layer in the target. This was done in a non-refluxing target, such that

incident electrons only make one pass through the fluor. This allows the fluor to

effectively act as an electron counter, breaking the degeneracy in the

Bremsstrahlung measurements. With these two constraints, the total inferred laser

to hot electron conversion efficiency ranged from 35-60%, with 12-28% of the laser

energy going into 1-3 MeV electrons of most use to fast ignition.

The two primary uncertainties in the analysis were the assumption of the electron

cone angle in the Monte Carlo modeling and the neglect of resistive transport

effects. The electron cone angle was not measured on these experiments. In the

Monte Carlo modeling, the cone angle was assumed to vary with the electron

energy, consistent with the classical ejection angle of an electron in a laser field,

which can be analytically derived from constants of the motion in Maxwell's

equations. Prior experimental work by Stephens et al. imaged Ka emission from Cu

fluors buried within varying depths of Al. They found a constant 100 pm diameter
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spot size in the first 100 pm, followed by a constant 400 divergence (full) cone angle.

Monte Carlo simulations found that the classical ejection angle assumption was

consistent with the measured Ka spot sizes. For reference, in our experiments a 40'

cone angle was also used in the Monte Carlo modeling, which resulted in 40% drops

in the total conversion efficiency and 25% drops in the conversion efficiency into 1-3

MeV electrons.

Resistive transport effects also influence the unfolding of the electron spectrum from

the Bremsstrahlung and Ka data. An analytic model [99], [79] was used to estimate

the impact of resistive effects. The model takes into account the collisional and

resisitive losses of the electrons and self-consistently solves for the potential across

the target. Using the peak aluminum resistivity, the potential across the target is

calculated at 1 MV, primarily within the first few tens of microns. The actual

potential is likely to be lower, on the order of a few hundred kV due to resistivity

differences from temperature gradients and 3-D current effects. This potential

upshifts the electron spectrum inferred from the Bremsstrahlung emission and

ranges out low energy electrons before the reach the Cu fluor, causing the Ka

emission to act as a counter of higher energy electrons. This effect increases the

total inferred conversion efficiency but decreases the conversion efficiency into 1-3

MeV electrons

5.2 Future Experiments and Modeling

A number of advancements in modeling and experiments will further constrain the

electron spectrum and conversion efficiency. Better quantitative modeling of the

experimental data using hybrid particle-in-cell codes like LSP [102], [103] are

computationally expensive, but are able to quantify the collective field effects on the

inferred electron distributions. Simpler hybrid transport codes such as Zuma [104]

are faster and contain the majority of the Ohmic potentials and magnetic field

physics. These codes can be used to improve the accuracy of the inferred

distributions.
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Shot to shot measurements of the angular distribution of Bremsstrahlung can

reduce the errors associated with the uncertainty in the cone angle. This can be

done by using an array of Bremsstrahlung spectrometers, such as the 10

spectrometers fielded by Schwoerer in lower intensity experiments. Imaging of a

fluor buried at deeper depths would also help constrain the angular distribution of

electrons. The current set of imaging diagnostics is only able to image Ti and Cu

Ka lines, representing 4.5 and 8 keV x-rays. Opacity effects in Al preclude imaging

of Cu fluors beyond a couple hundred microns, and less for Ti fluors. A crystal

imager for 15.7 keV Zr Ka line emission is currently being developed but has yet to

be successfully tested. A working Zr imager would allow for target designs with

deeply buried Zr fluor layers, providing information on the divergence angle. The Zr

fluor would also allow electrons to be counted deeper in the target, correlating with

higher energy electrons. In recent TITAN experiments a Ag fluor has been buried at

depths up to 500 pm in Al, in addition to the front Cu fluor. Absolute

measurements of the 22 keV Ka emission, without imaging, can also be used as an

electron counter. The analysis of the data is still ongoing and will be closely coupled

to improvements in the modeling capability.

Measurements to higher Bremsstrahlung energies would also be extremely useful in

further constraining the electron source. The Bremsstrahlung spectrometer has

recently been extended with additional thick Pb filters and now has differential

sensitivity up to 800 keV. This spectrometer has already been used in the TITAN

buried Cu/Ag experiments and has also been fielded on OMEGA EP as a

Bremsstrahlung spectrometer for measuring x-ray emission in diffraction

experiments to test material strength and lattice dynamics. Measurements of even

higher photon energies can be done using nuclear activation techniques, which have

sensitivity above 8 MeV. These are usually done using solid Au, Cu, or Ni

activation targets. Signal to noise issues necessitate the activation material be part

of the target, which may hinder the ability to use buried fluor techniques.
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5.3 Proposed X-ray Measurements between 1-5

MeV

Measurements of the Bremsstrahlung spectrum in the 1-5 MeV range will better

constrain the electron spectrum, providing more accurate comparisons to scaling

models and tighter estimates on the number of 1-3 MeV electrons. Figure 5-1 plots

the ratio of 2 MeV photons to 1 MeV photons against the conversion efficiency into

1-3 MeV electrons for the electron spectra consistent with the Bremsstrahlung data

in the previous chapter. Measurements of even a single ratio in the 1-3 MeV regime
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Figure 5-1: The ratio of 2 MeV photons to 1 MeV photons is plotted against the

conversion efficiency into 1-3 MeV electrons for the electron spectra consistent with

the Bremsstrahlung spectrometer data in the previous chapter.

will significantly reduce the uncertainty in the electron spectrum. However, while

filter stack spectrometers can measure photons up to an MeV and nuclear activation

can measure photons greater than 8 MeV, it is extremely difficult to measure the

photon spectrum between these two energies. One possible technique is to make use

of the Compton effect, where high energy x-rays inelastically scatter free electrons

in a target. If the Bremsstrahlung interacts with a low Z scattering target, the

electron emission spectrum can be correlated with the incident photon spectrum.

The unpolarized Compton differential cross section for scattered photons is given by
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the Klein-Nishina cross section [68]

da r ' v o\3/ V'd - - + - - s i n 2 0  
(5.1)

where v0o is the initial photon energy, v' is the final photon energy, and 0 is the angle

between between the incident and final photon momentum vectors. By energy and

momentum conservation 0 is given by

1 1 1- - I - i (1 - cos) . (5.2)hv' hvo mc2

From conservation laws the differential cross section for the electron can be written

as
do- _ do- 27r (1 + a) 2  a2cos20 2

dT d 2 c 2 (1 + a) 2 - a (2 f ) Cos2J ' (5.3)

where a = hvo/mc2 and cot q = (1 + a) tan. Since Compton scattering is a 2-body

problem, the scattering angle can be uniquely correlated with the energy of the

electron. The electron spectrum in a narrow forward viewing angle can then be

correlated with the incident photon spectrum, provided the scattering of the

Compton electron in the target is small. The primary parameters are the viewing

angle and the thickness of the scattering target. For thick targets and large viewing

angles the signal level is larger, but the energy resolution is reduced due to electron

scattering and broader electron energy distributions. The tradeoff is therefore

between the signal level and the energy resolution of the spectrometer.

A conceptual simulation has been performed to study the feasibility of the

instrument. A beam of photons incident on a small, cylindrical graphite scattering

target 7.5 mm thick and 3 mm in radius is modeled with ITS 3.0. The output

electron spectrum in a narrow 5' cone angle is tabulated for different input photon

energies to generate a response matrix for the Compton target. The output electron

spectrum is coupled to an electron spectrometer currently in use [105], with known

energy resolution and sensitivity threshold characteristics. The input photon

spectrum is taken from measured photon distributions described in this current
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work. The absolute intensity of the photon spectrum is set by placing the graphite

scattering target at rear surface normal 30 cm from the laser target to provide

sufficient space to magnetically deflect escaping laser electrons. The graphite target

is placed close to the front aperture of the electron spectrometer such that a 200 full

cone angle of electrons enters the spectrometer. This larger acceptance angle

degrades the energy resolution but increases the signal to noise level, reflecting the

primary tradeoff in the Compton spectrometer design.

Simulated Compton electron data is shown in Figure 5-2. Four curves are plotted,

representing the Compton electron spectrum detected in the spectrometer from the

Bremsstrahlung emission produced by different input laser electron spectra into the

Al/Cu/Al target. The blue line labeled POND100 represents the synthetic spectrum

from ponderomotive scaling using the intensity distribution, the red line labeled

POND75 represents the synthetic spectrum using 75% of ponderomotive scaling

with the intensity distribution. These are the distributions described in Chapter 4.

The other two colored lines, labeled "15% and 23% 1-3 MeV e-" represent best fit

two temperature spectra with the corresponding 1-3 MeV conversion efficiencies.

These lines are detectable above the 1e4 electrons/MeV noise floor of the

instrument for Compton electron energies up to 3-5 MeV. The noise floor ranges

between le3 and le4 electrons/MeV and is due to the background levels on the

electron spectrometer on a full intensity Titan shot. This noise floor can be reduced

with better instrument shielding. The le2 electrons/MeV detection threshold is the

minimum detection threshold of the spectrometer in a low noise environment, such

as on a low intensity shot. The solid black line represents the energy resolution of

the electron spectrometer for a 200 full cone angle of electrons entering the

spectrometer. The resolution up to 5 MeV Compton electron energy is better than

1 MeV.

The energy resolution shown here is not yet convolved with the energy resolution

from the Compton scattering process. Additionally, the simulation currently takes

the electron spectrum from a 100 full angle output and scales with solid angle for

the larger entrance angles. This would also somewhat degrade the energy resolution
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Figure 5-2: The colored lines represent the Compton electron distributions detected

by the spectrometer for the Bremsstrahlung emission from different laser electron

distributions. The graphite scattering target is 30 cm from the laser target and a 200

full cone angle of electrons enters the electron spectrometer. The black line represents

the energy resolution from the electron spectrometer. The noise floor is due to the

high noise environment on a full energy Titan shot, and can be reduced with better

shielding.
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beyond what is shown here. A full design for this diagnostic would require a detailed

simulation of the entire system, coupling the scattering target to the magnetic field

map of the electron spectrometer. These designs are work for the future.
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Figure 5-3: The tradeoff in energy resolution versus signal level is shown in this Fig-

ure. As the distance between the scattering target and the electron spectrometer is

reduced, the signal level increases but the cone angle of electrons entering the spec-

trometer also increases, degrading the energy resolution of the spectrometer. The

dashed color lines represent the electron spectrometer energy resolutions correspond-

ing with the solid color lines for the simulated spectra.

The tradeoff in energy resolution versus signal to noise is shown in Figure 5-3, where

the spectrum for the 75% ponderomotive scaling is plotted for various acceptance

angles into the spectrometer. Again, the energy resolution shown here involves only

the degradation in resolution due to the larger acceptance angle for the magnetic

spectrometer, and does not yet couple in the degradation from the Compton

scattering process. The dashed lines of the same color represent the corresponding

energy resolutions. For smaller acceptance angles, the signal level drops but the

energy resolution increases. A 200 full angle gives reasonable parameters for an

instrument design on Titan. This design space for the spectrometer is improved for
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the OMEGA EP and NIF ARC lasers, as their higher energies provide better

Bremsstrahlung signal levels for the spectrometer. These higher energy

Bremsstrahlung measurements would help confirm the intensity scaling laws and

provide shot to shot information on the full laser electron spectrum.

5.4 Concluding Remarks

The recent completion of both the OMEGA EP laser and the National Ignition

Facility makes this an exciting time for ICF and fast ignition research. It is hopeful

that ICF will be able to achieve hot spot ignition in the next few years. The

OMEGA EP laser provides the means to test fast ignition interaction physics at far

higher energies than have been achievable to date. In these experiments, conversion

efficiencies of 12-28% into 1-3 MeV electrons were measured, representing 35-60%

total coupling. This provides an optimistic view for fast ignition. Analytic ignition

models typically use a total coupling efficiency of 25%, with a single intensity

ponderomotive spectrum for the electrons. For 1020 W/cm 2 intensities, this

represents about 7.5% in the 1-3 MeV band. Thus, the 12-28% coupling is almost a

factor of two higher, but was measured at a somewhat lower intensity. Additionally,

with modeling that accounts for resistive transport effects, the inferred spectrum

may be closer to ponderomotive and the amount of energy in 1-3 MeV electrons will

be lower. Significant work remains to be done on reducing the error bars on the

conversion efficiency and electron spectrum. The impact of the preformed plasma

profile on the electron spectrum in a confined cone geometry is also an important

subject of ongoing research. Additionally, the transport physics under fast ignition

relevant plasma conditions is only starting to be experimentally tested. Fast

ignition integrated experiments combining both the implosion driver and the igniter

driver have recently started on OMEGA EP at near-ignition experimental

conditions. If successful, fast ignition could provide a significantly broader path

towards inertial fusion energy.
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An Estimation of the Composition of FujiFilm

Image Plates

C.D. Chen

Plasma Science Fusion Center, MIT, Cambridge, MA 02139

P.K. Patel

Lawrence Livermore National Laboratory, Livermore, CA 94550

Introduction

Image plates (IP) are frequently used as x-ray and charged particle detectors in a variety of

diagnostics due to their resolution, resistance to EMP, dynamic range, and reusability. While

their response curves have been measured, it is useful to have an idea of the composition of

the image plates in order to model their response and transmission curves in codes. There has

been some confusion over the composition details provided by FujiFilm and this note serves to

provide a best estimate for the BAS-SR, BAS-TR, and BAS-MS image plates.

Composition Information

Total Thickness

Details regarding image plate composition were obtained from two sources, a Fuji Medical

Systems sales representative and through the Fuji Life Sciences website. The sales

representative provided a document that described the thicknesses and densities of the various

layers of the image plates, along with the barium weight % and the density of the phosphor for

the different IPs. This document is attached at the end of this note. The FAQ section of the Fuji

Life sciences website contains some information on the composition of the BAS-MS image plate

(shown in Table 1). Between the two documents, there seem to be inconsistencies with regard

to the total thickness of the image plate and the thicknesses of the back layers. Additionally,

even within the attachment, there is an inconsistency in the thickness of the BAS-MS image

Table 1

MS-IP
Layer Thickness Density Material

(pm) (g/cm3 )
Back protective layer 25 1.4 polyethyleneterephthalate (PET)
Ferrite layer 80 3.0 MnO, ZnO, Fe203 + plastic
Base layer 190 1.4 polyethyleneterephthalate (PET)
Back layer 12 1.4 plastic
Phosphor layer 115 3.3 phosphor*:urethane = 25:1

*BaFBro. 85slo0.s density 5.2 g/cm 3

Surface layer 9 1.4 polyethyleneterephthalate (PET)



plate. When one sums the thicknesses of the layers, it sums to 458 pm instead of the 486 p.m
quoted as the total thickness. To resolve this discrepancy, we measured the thickness of two of
our BAS-MS image plates, and the weight of one of them. The thickness of the image plate
came out to 476-480 Ipm in one case and 465-469 pm in the other. The weight of the 465-469

p.m IP was 1049 g/m2. The manufacture error is thus probably around 2-3% in the layer
thicknesses.

Phosphor Layer

Between the attachment and the website, we know the following about BAS-MS:

* pphosphor = 5.2 g/cm3, composed of BaFBro.ss5 0.1s

* pphosphor layer= 3 .30 7 g/cm3 (phosphor mixed with urethane in 25:1 ratio)

* pphosphor in that layer = 3.18 g/cm 3

* % Barium weight = 19%
The urethane can be assumed to be some polyurethane resin with density ~1.2 and a Zeff of
~6.6'. The polyurethane binder is a small percentage of the phosphor layer composition. The
phosphor density within the phosphor layer is 3.18 g/cm3, with the polyurethane binder making
up the rest of the 3.307 g/cm3. This provides for the 25:1 mass ratio and a calculated volume
fill factor of "72%. This is also consistent with the % barium weight, which we note is the %
weight of the entire image plate. Along the same lines, the phosphor:urethane ratio of the
BAS-SR and BAS-TR is calculated to be 20:1.

Ferrite and Other Layers
The thicknesses of the protective coat and undercoat are consistent between the attachment
and the website. These thicknesses are assumed to be correct and composed of 1.37 g/cm3 PET
(Mylar). The rest of the image plate, the Base and Back layers, are assumed to be divided
between additional PET and the 3.0 g/cm3 ferrite layer. The ferrite layer is composed of MnO,
ZnO, and Fe20 3 with a binding plastic (density assumed ~1.2 g/cm3 ). The densities" of the three

oxides are 5.37 g/cm3, 5.6 g/cm3, and 5.25 g/cm3, respectively. While the relative mixture

ratios are unknown, the elements are all close in Z, and assuming a 1:1:1 mass ratio should not
introduce much error. The average density of the ferrite compounds is thus 5.41 g/cm3. Since
there is no stated mass ratio for the ferrite layer, there are two possible assumptions that one
can make. The first is that there is a 100% volume fill factor, which leads to a ferrite
composition of 77% by mass (if we assume a 1.2 g/cm3 polyurethane binder). The second
assumption is that the layer is primarily ferrite with just enough resin to hold the layer
together, and that this resin can be neglected. This assumption requires a 55% volume fill
factor. Either way, using the measured values for thickness (470 Ipm) and weight (1049 g/m2),
the thicknesses of the PET and ferrite layers on the back are calculated to be 222.3 pm and
111.7 p.m, respectively.



Summary
The image plate is primary composed of the phosphor and resin layer, coast and support made
of PET, and a ferrite/resin layer for the magnetic backing. The phosphor:urethane mixture is
different for the BAS-MS (25:1) vs the BAS-SR and BAS-TR (20:1). The phosphor layer
thicknesses and weights in the attachment are most likely accurate, given that this is the
sensitive region of the image plate. If the ferrite layer is assumed to be consistent across the
different image plates, the ratio of the ferrite layer thickness to PET film/support thickness can
be easily calculated by measuring the total thickness and weight of the image plate. For BAS-

MS, this works out to:

MS-IP

Layer Thickness Density Material
(Wm) (g/cm3 )

Ferrite layer 112 3.0 MnO, ZnO, Fe203 (1:1:1)+plastic, ferrite 77% by mass
Base layer 222 1.37 polyethyleneterephthalate (PET)
Back layer 12 1.37 polyethyleneterephthalate (PET)
Phosphor layer 115 3.3 phosphor*:urethane = 25:1 (3.18 g/cc phosphor)

*BaFBro.ssio.1s density 5.2 g/cm3

Surface layer 9 1.37 polyethyleneterephthalate (PET)

M. Thorns, Nucl. Instrum. Methods Phys. Res. A 378, 598-611 (1996)
" Webelements.com
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BAS-III Back 27.3 28

Base 443.9 319

Undercoat 25.2 20

Phosphor 445.6 139 BaFBro.s5Io.s15  3.05 26

Protective Coat 16.3 11

Total 958.3 517

BAS-IIIS Back 671.5 290

Base 443.9 319

Undercoat 25.2 20

Phosphor 445.6 139 BaFBro.sso.5 15  3.05 26

Protective Coat 16.3 11

Total 1602.5 779

BAS-MP 2040 Back 27.3 28

Base 443.9 319

Undercoat 18.5 12

Phosphor 573.5 178 BaFBro.851o.15  3.07 31

Protective Coat 16.3 11

Total 1079.5 548
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BAS-MP 2040 S Back 671.5 290

Base 443.9 319

Undercoat 18.5 12

Phosphor 573.5 178 BaFBro.8510.15  3.07 19

Protective Coat 16.3 11

Total 1723.7 810

BAS-SR 2040 Back 443.7 160

Base 266.7 190

Undercoat 18.5 12

Phosphor 389.8 121 BaFBro.85 o.15  3.07 20

Protective Coat 10.4 7

Total 1129.1 490

BAS-TR 2040 Back

Base 346.6 247

Undercoat 13.9 11

Phosphor 142.6 52 BaFBro.85Io.15  2.61 16

Protective Coat

Total 503.1 310
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BAS-TR 2040S Back 671.5 290

Base 346.6 247

Undercoat 13.9 11

Phosphor 142.6 52 BaFBro.s85 o.15  2.61 7

Protective Coat

Total 1174.6 600

BAS-MS 2040 Back 443.7 120

Base 266.7 202

Undercoat 16.5 12

Phosphor 380.3 115 BaFBro.s85 o.15  3.18 19

Protective Coat 14.8 9

Total 1122 486
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