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ABSTRACT

Cisco Systems, Inc. (Cisco) has recently adopted Six Sigma as the main platform to drive quality
improvements in its manufacturing operations. A key component of the improvement strategy is
the ability to define appropriate manufacturing yield goals. Cisco's manufacturing operations can be
divided, at a very high level, in two major steps: Printed Circuit Board Assembly (PCBA) and System
Assembly and Test. The company has already deployed a global yield goal definition methodology
for the PCBA operation, but the creation of a similar methodology for the System Assembly and
Test operation proved difficult: Cisco lacked a universal methodology to determine the expected
variation on manufacturing performance resulting from differences on product design and
manufacturing processes attributes.

This thesis addresses this gap by demonstrating a methodology to relate relevant design and process
attributes to the System Assembly and Test manufacturing yield performance of all products. The
methodology uses statistical analysis, in particular Artificial Neural Networks, to generate a yield
prediction model that achieves excellent prediction accuracy (4.8% RMS error).

Although this study was performed using Cisco Systems' product and manufacturing data, the
general process outlined in this exercise should be applicable to solve similar problems in other
companies and industries. The core components of the methodology outlined can be easily
reproduced: 1) identify the key complexity attributes, 2) design and execute a data collection plan
and 3) generate statistical models to test the validity and impact of the selected factors.
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1 Introduction

This thesis explores the possibility of generating a first pass yield (FPY) prediction methodology

for electronic systems assembly and test operations. Having a methodology to predict FPY

performance provides companies with the foundation to define manufacturing goals that reflect

differences in performance due to product complexity, enabling the creation of a platform for cross-

organizational learning. Learning is facilitated by the removal of the barriers that prevent

comparisons between simple products and more complicated systems: since complexity is taken into

account when defining each product's goals, a simple device that is not meeting its goals may be able

to learn something from the very complex system that is exceeding its goals, even if the actual yield

numbers are higher for the simple system.

The ability to have a universal goal setting methodology has become essential for Cisco

Systems, Inc. (Cisco) as it moves towards the implementation of Six Sigma across its manufacturing

operations. The company is currently operating under a model that allows each product group, or

Business Unit (BU), to define its own FPY goals, but in order to realize the full benefits of the Six

Sigma initiative, a coordinated cross-company effort to manage FPY performance is required. As a

result an effort to generate a universal FPY goal setting methodology was initiated, starting with the

task of creating a methodology to predict FPY for all the systems produced by the company.

Creating the yield prediction methodology needed by Cisco is the central theme of this research

work. The hypothesis that is investigated is that the differences in FPY performance for different

products can be explained by a number of system and process complexity attributes. Although the

analysis is done using exclusively Cisco's manufacturing data, the methodology used to conduct this

research and the conclusions generated should be applicable to any electronic systems assembly and

test operation.



1.1 Thesis Organization

This thesis is organized into seven chapters as follows:

* Chapter 1 - Introduction: Provides an overview of the thesis, describes the thesis

organization, defines the problem statement and the purpose of the study, and

enunciates the thesis statement.

* Chapter 2 - Company and Manufacturing Process Overview: Provides background

information on Cisco Systems and its manufacturing process.

* Chapter 3 - Research and Literature Review: Presents the literature reviewed as a basis

for this analysis.

* Chapter 4 - Research Methodology: Describes the process followed to identify the

factors that influence FPY, the creation of a data collection plan and the execution of

the data collection process.

* Chapter 5 - Hypothesis Test: Presents the process and results of performing statistical

analysis to test the proposed hypothesis.

* Chapter 6 - Conclusions: Provides a summary of the key findings and

recommendations

* Chapter 7 - Bibliography: Lists the bibliographical references used for this research

1.2 Problem Statement

Cisco's Manufacturing Operations group requires a universal FPY goal definition methodology

to enable the implementation of the Six Sigma program. The Six Sigma initiative is the central

component of a company wide effort to facilitate continuous quality improvement through

collaboration among product groups, manufacturing, and product design and development. The



effort was initiated with the generation of FPY goals for the printed circuit board assembly (PCBA)

operation, and needs to be expanded to the second half of the manufacturing process, Direct

Fulfillment (DF), the operation where PCBAs are assembled and tested into complete systems.

There are two main reasons why Cisco does not currently have a universal methodology to

define system assembly and test FPY goals. First, Cisco has grown not only organically but also

through a considerable number of acquisitions, and the manufacturing goal setting methodologies of

the acquired companies have not always been fully converted into the existing Cisco practices.

Acquired companies typically operate inside Cisco as individual Business Units (BUs), retaining

some of their autonomy on designing and executing their manufacturing policies. The process of

driving standardization across BUs has recently gained a lot of attention in the company and has

been greatly facilitated by the Six Sigma adoption initiative.

Second, Cisco builds a diverse array of networking and communications systems with varying

levels of technological and manufacturing complexity. Establishing a universal FPY goal setting

methodology faces the challenge of accounting for variations on the expected manufacturing

performance due to differences in the products' complexity levels. It is this particular problem that

this research work attempts to address.

1.3 Thesis Statement

The main purpose of this thesis is to explore the effect that product and process complexity

have on manufacturing performance of electronic systems, in particular those manufactured by

Cisco Systems, Inc. To perform this study, the following hypothesis is tested:

Hypothesis: Variations in System Assembly and Test First Pass Yield (FPY) can be explained by a limited

set ofproduct andprocess attributes, enabling the generation of ayieldprediction model that can accurately

estimate FPY as afunction of them



If this hypothesis can be confirmed, the resulting yield prediction model can help in the process

of defining appropriate FPY performance goals for current and new Cisco products. It would also

portray a case study on yield prediction methods that could be used by other companies to

understand the impact of product and process complexity on their manufacturing operations.

In the case that the hypothesis is rejected this study would generate insights and

recommendations on how to continue to explore the effects of product and process complexity in

first pass yield performance.



2 Company and Manufacturing Process Overview

Cisco Systems is the market leader in the networking industry and manufactures more than

4500 different products, each with a wide array of customer selectable options, resulting in a virtually

infinite list of potential system configurations. The company's hardware offerings range from

relatively simple and inexpensive IP phones to very complex multimillion-dollar network routing

systems. Manufacturing operations span the globe and are almost 100% outsourced. A high level

overview of the typical manufacturing process is described in the next section.

2.1 Cisco's Manufacturing Process

Cisco manufacturing process is summarized in Figure 1. At a very high level there are two main

steps in the process: Printed Circuit Board Assembly (PCBA) and Direct Fulfillment (DF). During

the PCBA operation, electrical components are positioned and soldered in place on a dielectric

substrate that contains the conductive tracks to form an electrical circuitry (Printed Circuit Board or

PCB). Once all the components are secured in place, the PCBA goes through a testing process that

is usually divided in two main steps, in-circuit test and functional test. In-circuit test verifies the

structural integrity of the board, meaning that it checks for problems with the electrical connections

between the board and the components. Common defects captured by this test are solder joint

opens and shorts. Functional test, on the other hand, verifies the correct functionality of the board

by exercising its components via diagnostic scripts. During this test, the board is tested at corner

voltage and temperature conditions to ensure that the board remains fully functional according to its

specifications. Once a board has successfully passed all tests it is sent to continue processing at a

Direct Fulfillment location.
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Figure 1. High Level Manufacturing Flow

Direct Fulfillment (DF) is the second and final component of the manufacturing process.

PCBAs arrive at the DF location to be either assembled into a configured to order system or

shipped as a stand-alone product (spare). Systems are usually composed of a chassis, one or more

PCBAs, power supplies and other electronic components such as hard drives, memory modules etc.

Once assembled, the systems undergo a series of tests that verify that the equipment has been

assembled correctly and that it is functioning as expected. The assembly test verifies the correct

configuration of the system and the quality of the connections between the different boards and

components. The system functional tests verify that the system is functioning as specified and

usually exercises portions of the PCBA circuitry that cannot be tested at PCBA level tests. After

each test operation, in the PCBA and DF process, if a PCBA or system fails it is sent to a debug and

rework flow in which the failure is analyzed and necessary repairs are performed.

Once the system has successfully passed all test operations it is shipped to the customer.

When a PCBA is to be shipped as a spare it is usually assembled into a golden system and processed

through the regular testing flow. When the golden system successfully passes all tests, the PCBA is

removed and shipped to the customer.



Different yield metrics, such as Rolled Throughput Yield (RTY) and First Pass Yield (FPY) are

continuously reviewed in order to understand the performance of the manufacturing operations.

Figure 2 gives an example on how this metrics are calculated. RTY is the probability that a unit can

pass through the whole manufacturing process without any defects and is calculated by multiplying

the yield for each one of the test operations. FPY is the ratio between the number of systems that

passed all test operations without needing any debug or rework and the total number of systems that

went into the process. This study focuses only on FPY to maintain a consistent approach with the

previous Six Sigma efforts in the company.

Test I Test 2 Test 3

RTY 35 * 34 * 2/4 a 22.5%

FPY: 1i5 20%
sftll I $yn I ste 1 Sin 1 em 1

f2System 2 System 2 It a
son ISystem 3 sem 3 SFystem 3
ASyStem 4 System 4 System 4

convRwenwn:

Reworked
8epeW

Figure 2. RTY and FPY Calculation Example



3 Research and Literature Review

Yield estimation in the electronics industry has been the subject of multiple studies in the

industry and academia due to its importance in managing manufacturing cost, line capacity, materials

procurement and on-time delivery. There are in particular many publications on yield prediction for

Integrated Circuits manufacturing (ICs) and Printed circuit Board Assemblies (PCBA)

manufacturing. There is, however, not a significant number of references on estimating electronic

systems assembly and test yield.

IC manufacturing yield prediction has been studied thoroughly and continues to be a

developing field. Although many methods have been explored, the common theme across them is

the creation of mathematical models (usually statistically based) that predict yield performance based

on the defect density of the design on a given process and the fault coverage (percentage of defects

detected) of the test suite used during manufacturing. Different approaches have been proposed on

how to effectively estimate those two parameters, including historic process data, circuit design and

layout characteristics, and test coverage measurements at different stages of the design process.

Despite the complexity of today's IC designs, manufacturing processes yield estimation has

benefited from the existence of substantial amount of process data to estimate defect densities and

the increasing amount of simulation power to measure test coverage.

In general, two different methods have been explored to predict PCBA manufacturing yield:

process yield estimation, and board design yield estimation (F. Helo, 2000). Process yield estimation

uses a very similar approach to the one described above for IC yield prediction, where defect density

and fault coverage are the main factors used to build a statistical model. In this case, defect density

is approximated by the defect rate of the different components (percentage of faulty components

shipped by suppliers), and fault coverage is calculated as the percentage of defects that can be

detected by the board tests. The efficiency of this method has been hindered by two main factors:



The need to rely on suppliers to accurately report the defect rates of the components they provide,

and the difficulty of accurately measuring the fault coverage for board tests.

PCBA design yield estimation proposes models that incorporate PCBA design attributes such as

number of components, board area, number of solder joins, and board circuit layer count to

generate statistical yield prediction models. It has been demonstrated (Y. Li, 1994) that as board

design complexity increases, the expected manufacturing yield for the board decreases. Li et al

studied the effect of board design parameters on PCBA yield by relating the design attributes and

yield performance of 30 different PCBAs through regression analysis and artificial neural networks.

The resulting models were able to predict yield with a root mean square (RMS) error of less than

5%.

Cisco performed a similar statistical analysis using manufacturing data for its own products

finding similar results (Averbeck, 2008). These results have enabled the generation of a PCBA yield

goals generation methodology that uses the yield estimation model to translate different board

attributes into Six Sigma defect opportunities. The definition of what constitutes a defect

opportunity is a fundamental step in defining Six Sigma goals of 3.4 defects per million

opportunities (DPMO) (Shina, 2002).

No public references were found on methods to estimate system assembly and test yield. The

common practice in the industry seems to be to estimate expected yield performance based on

historical data and the past performance of systems with similar components, architecture and

manufacturing processes. The fact that this approach has been used with some success in the

industry appears to support the idea that there is a set of system complexity attributes that have a

direct influence on how the systems perform in the manufacturing line. The existence of this

relationship, between product and process attributes and yield performance, is precisely the thesis

that this study explores.



To explore the validity of this thesis an approach similar the PCBA design yield estimation was

used. The study starts by identifying the design and process attributes that may have an impact on

yield and later investigates the possibility of relating them to the system's actual yield performance by

using statistical tools such as regression analysis and artificial neural networks.



4 Research Methodology

This chapter describes the process followed to identify the main product and process attributes

that influence FPY, and reviews the creation and execution of the data collection plan. The data

collection plan generated the information used to perform the statistical tests required to identify the

relationship between the selected factors and FPY.

4.1 Identifying the Factors that Influence First Pass Yield

The identification of the different factors that influence system assembly and test FPY was the

first step required to start with the study. Managers and engineers agreed that product and process

complexity had a direct impact on the yield performance observed at the different factories.

However, the definition of what constituted complexity at the product and process level was not

clear. When asked to compare various products, managers and engineers seemed to have no issues

in ranking them using subjective measures of complexity. Yet, when asked why a particular system

ranked higher than other the answers where not always clear and consistent: it was difficult to

describe what made a product more complicated.

It was evident then that it was required to perform an exercise to determine as precisely and

comprehensively as possible the product and process complexity factors that have a direct impact on

a system's manufacturing yield. The result should be a list of measurable attributes that capture the

subjective reasoning used by the different individuals to assess manufacturing complexity. To

facilitate the process of generating this list a Cause-and-Effect (also known as Fishbone or Ishikawa)

diagram was created through a brainstorming and prioritization exercise.

The resulting diagram in Figure 3 reveals six mayor categories of factors that influence FPY

performance for Cisco products: Assembly and Test Process, Product Complexity, Product Design,

27



Production Volume, and Incoming Material Quality. Each category has one or more individual

factors identified by the subject matter experts to have an impact on the manufacturing yield

performance of a system.

Figure 3. Cause and Effect Diagram for System Assembly and Test FPY

Further analysis was required to select the yield drivers that should be used to test the

hypothesis. Not all of the factors identified through the exercise fell into the scope of this project,

which attempts to deal with process and product complexity factors. There are also drivers that are

either hard to measure or for which data is not available or difficult to obtain. To identify the factors

relevant to this study, a framework based on three main selection criteria: factor hierarchy, data

availability and organizational behavior was used. The details of the framework and the resulting

factor list are covered in detail in the next section.

4.2 Creating a Data Collection Plan

Extracting the relevant factors from the general yield drivers list required a formal framework to

guarantee that no significant factor was left out and that all factors selected were significant to the



objectives of the study. The framework used (Figure 4) consists of three main criteria: factor

hierarchy, data availability and organizational behavior.

Inputs to data collection plan

Figure 4. Factor Selection Criteria

By factor hierarchy it is understood that there are factors that are a consequence or a function

of other higher hierarchy factors. By looking at the hierarchical relationship between the factors it is

possible to intend to identify and select those factors that are at the top of the scale. By using only

the principal factors, those that are the cause of product and process complexity and not the result,

it is possible to better focus the analysis, minimizing redundancy and correlation among variables.

Number of assembly steps is an example of a factor that was removed from the list of drivers

due to this criterion. Although there was consensus on its impact on yield performance, it was

determined by the team that the number of assembly steps should be a function of the number of

boards at each connectivity level in the system. In this case, number of boards at each level had a

higher hierarchy than assembly steps and, a result, number of boards at each level was included in

the final list but number of assembly steps was not.

The second criterion used was data availability and data collection feasibility. A metric was

defined for each factor affecting FPY and the possibility of constructing it with the available data



was assessed. Those factors that could not be measured using the existing data sources where

excluded from the analysis. Two relevant factors that could not be included in the analysis because

of challenges collecting the necessary data were test coverage (percentage of defects that could be

successfully screened out by the test process) and incoming component quality (defects per million,

or DPM, for different components in the system).

The third criterion used to evaluate the different factors was their relationship to organizational

behaviors. If a given factor was the result of poor organizational behavior it was removed from the

analysis, helping maintain the study focused on product and process complexity. Examples of

factors that fell into this category are: Tool wear and tear (poor preventive maintenance policies),

design marginalities (inadequate design procedures and controls) and quality of operator training.

Another reason to exclude these factors from the study is that the ultimate goal of this effort is

to facilitate the creation of an FPY goal setting methodology. To serve its purpose of driving quality

improvements across the organization, the goal generation methodology should not include any

yield loss allowances for poor organizational performance. Removing all behavioral related factors

from the FPY estimation model prevents those factors from being included in the goal generation

methodology.

The results of applying the three principles described above were captured in a Data Collection

Plan (Figure 5). This document summarizes the selected factors and the metrics used to quantify

them and constitutes the starting point for the data collection process that is described in the

following section.



Count of boards at each level (1, 2 and 3) Test Record Data warehouse
level

Count of # of first level unique Cisco board types for Test Record Data warehouseeach system, at each level.

omplexity f Cisco and no isco components Count of non Cisco S/N in the system. Report for Test Record Data warehouse + Bills of
at each connectivity level each level of connectivity. Materials

Defect opportunities count based on component, Board Complexity Database
solder joints and board layers.

Number of different configurations for the Standard deviation for all board counts described Test Record Data warehouse
above

Design Mid Plane/Back Plane connector Technology rating for backplane connector interface Design Database

Test of Test Steps Count of unique test steps. Test Record Data warehouse
Volume Wee mothlyvolume Tested quantity Test Record Data warehouse

Expected medium time between fails for the
System expected quality Expected medium time between fails for the Design Database

Figure 5. Data Collection Plan

4.3 Data Collection

The Data Collection Plan was executed in order to gather the data necessary to perform the

study. Data collection was performed for all Cisco systems being manufactured by the company's

contract manufacturers in the period between July 27 and October 25 2008 (4t quarter of Cisco's

2008 fiscal year). The decision to collect data for all systems was motivated by the risk of biasing the

sample due to the lack of previous experience selecting products based on the selected attributes.

The total number of systems to be analyzed rounded the nine million count, requiring the

development of an automation tool to make the process feasible and avoid introducing errors due to

manual data collection and reporting. The resulting automation tool also enables experiment

repeatability, allowing subsequent studies of production data to be performed.

The raw data produced by the automation tool was then manually scrubbed to remove records

that could affect the effectiveness of the analysis. In particular, records with less than 30 samples or

with incomplete information were removed. After eliminating problematic entries the resulting data



set consisted of 232 records. This data set was used to perform the statistical analysis necessary to

understand how well the factors identified explained variations in yield performance for the selected

systems. The statistical analysis is covered in detail in the next section.



5 Hypothesis Test

This chapter presents in detail the statistical analysis performed to understand the relationship

between the system and process complexity attributes identified in the previous chapter and the

systems' FPY performance. First, basic first and second order linear regression models are explored

for their fit and prediction capabilities. Subsequently, more elaborate non-linear models, logistic

regression and artificial neural networks, are analyzed.

5.1 Statistical Analysis

Statistical analysis was the main tool used to test the ability to predict FPY performance based

on process and product complexity attributes. Two particular factors were taken into account in

deciding if enough evidence existed to prove or disprove the hypothesis: The regression's R-Squared

value and the Cross Validation's RMS (Root Mean Square) error.

The Coefficient of Determination, or R-Squared, is a common measure of goodness of fit for

regression analysis. In this case, it indicates the percentage of the variation on the FPY performance

that can be explained by the complexity attributes used in the regression model. Based on previous

experiences at Cisco and published literature on statistical based yield prediction models, values

above 0.7 or 0.8 are acceptable levels of R-squared (Averbeck, 2008)(Y. Li, 1994). Regression results

were compared to this generally accepted level when deciding if the hypothesis could be confirmed

or not.

Root Mean Square Error (RMSE) is used to measure the predictive accuracy of the model.

RMSE was chosen to facilitate the comparison of the results with the different yield prediction

models found in the literature. To calculate the RMSE, the model resulting from the statistical



analysis is used to predict the FPY of a number of data points not used during the model generation

process. Then, the RMS difference between the predicted and actual yield is calculated. The smaller

the RMS error, the better is the model for prediction purposes. Literature (Y. Li, 1994) (F. Helo,

2000) reports RMS errors of 3% to 5% in successful attempts to create yield prediction models,

hence similar levels were considered to constitute acceptable evidence to support this study's

hypothesis. The formula used to calculate RMSE is described in Equation 1.

N 0.5

RMS = (Y - )2IN

Y, is the actual yield and Y,P is the predicted yield

Equation 1. RMS Error

To create and test the model, the data points were divided in two sets, a fitting set and a testing

set. The fitting set was used to run the regression and build the model, and the test set was used to

test the model for prediction accuracy. The selection of the data points that go in each model was

done randomly to avoid sample bias.

The following sections describe in detail the model generation and validation process for each

one of the statistical modeling techniques explored. The last section of this chapter summarizes and

analyzes the findings of the analysis.

5. 1. 1 First Order Linear Regression

The first order linear regression model described in Equation 2 was explored first. This model

represents the dependent variable (Y), in this case FPY, as a linear combination of first order

independent variables (x,, x2 .. Xk), in this case the complexity attributes. The model includes also an

additional term, E, a random variable that accounts for everything else that influences Y but is not

captured by x, ... Xk.



Y = + f 1X 1 + 32X + + 6kk + E

Equation 2. First Order Linear Regression Model

Three main steps were followed when creating the model: 1) Factor selection, 2) Regression

execution, and 3) Results analysis and cross validation.

Factor selection is used to identify the simplest model that achieves the best possible fit.

Reducing the number of factors in the model also helps prevent instability in the equation's

coefficients due to multicollinearity. In this analysis, factor selection was performed using two

different tools: correlation matrix, and all subsets regression analysis. The correlation matrix analysis

identified the factors with strong correlation with other factors in the model. Factors that exhibited

strong correlation were removed from the pool of variables that was later used to execute the

regression analysis. Afterwards, during the regression execution phase, the Variance Inflation

Factors (VIF) for the each of the independent variables in the model was calculated to confirm that

the model indeed had no multicollinearity problems. VIF values of 5 or less were considered

acceptable.

The reduced factor group was then used to perform an all subsets regression analysis. The all

subsets regression analysis helps to identify the best fit attainable with all the possible subsets of the

factors in the model. The analysis was performed using all the available data points (232), A

regression model was generated for each subset and R-Squared and Adjusted R-Squared were

computed for each model. The factor subset that generated the model with the highest Adjusted R-

Squared was selected to continue with the analysis. In this case, Adjusted R-Squared was used

instead of R-Squared because it adjusts the goodness of fit calculation for to the differences in factor

count on each model (Patel, 2003).



The resulting model contains nine factors total, down from 25 first order variables available in

the data set. Ten factors were removed due to multicollinearity, five factors dropped as a result of

the all subsets regression analysis (Table 1), and one additional factor was later removed because it

was not significant according to the regression ANOVA results (p-value > 0.05). The specific

factors remaining in the model and the model itself are not included in this document for

proprietary reasons.

The regression results for the first order linear regression are summarized in Figure 6. R-

Squared for the model is 65%, slightly below the 70 % target established as acceptable to confirm

our hypothesis in terms of model fit.

R-Sq
Vars R-Sq (adj)

1 46.3 46.1
2 53.4 52.9
3 55 54.5
4 57.2 56.4
5 59.1 58.2
6 60.4 59.3
7 62.4 61.2
8 64.5 63.2
9 65.4 64
10 65.7 64.2
11 65.9 64.2
12 66.1 64.3
13 66.3 64.3
14 66.3 64.2
15 66.3 64

Table 1. Best Subset Analysis for 1st Order Linear Regression



Figure 6. 1st Order Linear Regression Results Summary

5. 1. 1. 1 Regression Cross Validation

The model was tested for its predictive capabilities by dividing the 232 data points in two sets, a

training set to generate the fit equation and a testing set for testing it. The training set contains 174

points and the testing set contains the remaining 58. The points in the testing set were randomly

selected, but a consideration was made to guarantee that the testing set had no points outside the

range of the training set.

As mentioned before, RMS error was used to measure the model's predictive accuracy. Three

cross-validations were performed by rotating the training and testing sets. For each cross-validation,

the RMS error was calculated using Equation 1, and the model's overall RMS error was calculated as

the average for the three rotations.

Table 2 and Figure 7 summarize the results of the model cross-validation. When used for

predictive purposes the first order linear model exhibits degraded performance, with R-Squared

shrinking by 9% on average. The average RMS error is 8.51%, not meeting the 5% goal defined as

acceptable during the hypothesis formulation.
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Fit Model R-Sq Prediction R-Sq Prediction RMSE
Rotation 1 64% 65% 8.28%
Rotation 2 69% 53% 9.26%
Rotation 3 68% 56% 8.00%
Average 67% 58% 8.51%

Table 2. 1st Order Linear Regression Cross Validation Results

Predicted Vs Actual Yield

5.1.2 Second Order Linear Regression

The second order linear regression model was explored next. This model is similar to the first

order model already analyzed in the previous section, with the difference that, in addition to the first

order factors, it includes second order and interaction terms for the independent variables. Equation

3 shows the general form of the second order regression model.

Y = o + x+ 2X2 + - 3 kXk + 3 11X2 + -+ fkkXk + 3 1 2 X 1X 2 + ... fl(k-1)kXklXk

Equation 3. Second Order Linear Regression Model
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The process of building and validating the model was identical to the process followed for the

first order model. Factors were screened out via correlation matrix and best subset analysis,

selecting the combination that produced the highest Adjusted R-Squared value. The model was

tested using R-square as a measurement of goodness of fit and RMS error as a measurement of

prediction accuracy.

The model generated contains a total of 13 factors, four of which are first-order, three are

second-order and the remaining six are factor interactions. 16 factors were selected as a result of the

best subset analysis (Table 3) and 3 factors were later removed as the regression ANOVA identified

them as not significant (p-value > 0.05). Again, as with the first order model, factor details and

model coefficients cannot be included in this document for company confidentiality reasons.

The regression results for the second order linear regression are summarized in Figure 8. The

model represents an improvement over the simpler first order model, with R-Squared of 71.6% Vs

65%. The model passes the test criteria of 70% R-Squared established as acceptable to confirm the

hypothesis in terms of goodness of fit.



R-Sq
Vars R-Sq (adj)

1 46.3 46.1
2 54.5 54.1
3 59.1 58.6
4 61.2 60.5
5 62.8 62
6 65.3 64.4
7 66.2 65.1
8 67.3 66.1
9 68.4 67.1
10 69.5 68.1
11 70.3 68.8
12 71.1 69.5
13 71.6 69.9
14 72 70.2
15 72.4 70.5
16 72.8 70.8
17 73 70.9
18 73.2 70.9
19 73.3 71
20 73.4 70.9
21 73.5 70.9
22 73.5 70.8
23 73.6 70.6
24 73.6 70.5
25 73.6 70.4
26 73.6 70.2

Table 3. Best Subset Analysis for 2nd Order Linear Regression

Figure 8. 2nd Order Linear Regression Results Summary
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5. 1.2. 1 Regression Cross Validation

To assess the general capabilities of the model in terms of its prediction accuracy the same

process as the one followed for the first order regression was used. The model's prediction accuracy

was measured by calculating the RMS error for three different cross-validations using rotations of

the training and testing data sets. The model's overall RMS error was calculated as the average for

the three rotations.

Table 4 and Figure 9 summarize the results of the model cross-validation. When used for

predictive purposes, the resulting model exhibits better performance than the first order model. Fit

(R-Squared) shrinks 6% on average compared to 9% for the first model. RMS error of the

prediction also improves, going from 8.51% to 7.64%. However, the average RMS error is still

higher than the 5% level defined as acceptable during the hypothesis formulation.

Fit Model R-Sq Prediction R-Sq Prediction RMSE
Rotation 1 70% 75% 7.34%
Rotation 2 74% 62% 8.25%
Rotation 3 74% 63% 7.33%
Average 73% 67% 7.64%

Table 4. Second Order Linear Regression Cross Validation Results



Figure 9. Second Order Linear Regression Prediction Performance

5. 1.3 Logistic Regression

Logistic regression is an extension of the traditional linear regression techniques and is

particularly useful when the dependent variable is binary. This regression methodology is

appropriate for this study because yield can be interpreted as the probability of a device passing (or

failing) the different tests steps along the manufacturing process. Traditional multiple linear

regression may be failing to produce better results because it generates predictions that fall outside

the valid probability range 0 to 1. The general form for the logistic regression is described in

Equation 4. This model is extensively used in econometrics and in life sciences, particularly in

modeling risk factors in epidemiology (Patel, 2003).

Prob(Y = 11 I x,x2 . .xk=
e(B +Px +P2x2 +...+-kx-k)

1 + e( o+PIxi +62x2+...+Pkxk)

Equation 4. Logistic Regression Model
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The same first, second order and interaction factors used in the linear regression models were

used in constructing the logistic model. The model contains 13 factors total (4 first-order, 3 second-

order and 6 are interactions). The regression results for the logistic regression are summarized in

Figure 10. The model represents a slight improvement over the linear regressions, with R-Squared'

of 73,6%. As with the second order linear regression, the model passes the fit criteria of 70%

established as acceptable to confirm our hypothesis in terms of goodness of fit.

Figure 10. Logistic Regression Results Summary

5. 1.3. 1 Regression Cross Validation

The same cross validation methodology used for the linear models was used to validate the

general prediction capabilities of the model generated through logistic regression. Three different

random training and validation data sets were used to measure the prediction RMS error. The

overall RMS prediction error for the model was calculated as the average of the three cross-

validations.

I Goodness of fit for the logistic regression is usually measured using the deviance of the model. However, in this case, to facilitate

the comparison of the logistic model with the previous models, R-Squared was calculated. R-Squared was calculated as the square

of the correlation between the actual yield values and the-fitted values from the model.
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Table 5 and Figure 11 summarize the results of the model cross-validation. When used for

predictive purposes the resulting model exhibited in general similar characteristics to the second

order linear model. Fit (R-Squared) shrinks on average 7% and RMS error is 7.8%. Both metrics

represent a slight degradation in performance when compared to the second order model, which

presented 6% R-Squared shrinkage and 7.6% RMS error. As noted when analyzing the results for

the linear models, the average RMS error is still higher than the 5% level defined as acceptable

during the hypothesis formulation.

Fit Model R-Sq Prediction R-Sq Prediction RMSE
Rotation 1 71% 72% 7.50%
Rotation 2 76% 66% 8.50%
Rotation 3 73 % 61% 7.54%
Average 73% 66% 7.85%

Table 5. Logistic Regression Cross Validation Results

Predicted Vs Actual Yield

Figure 11. Logistic Regression Prediction Performance

Figure 11. Logistic Regression Prediction Performance



5. 1.4 Artificial Neural Network

Artificial Neural Network (ANN) modeling was the last technique explored. An artificial neural

network is a mathematical simplification of the structure of a biological neural network. The model

has been successfully used in various areas, including machine learning, financial markets

performance prediction, and other complex data mining applications. The main advantages of

neural networks are their ability to effectively model almost any type of response surface and their

generalization capability. Generalization means that the resulting models can usually perform very

well when used with data points that do not resemble closely the data set used to create, or "train",

the model. Because the linear and logistic models failed to meet the predefined prediction error

goals, leveraging on the ANNs generalization capabilities seemed the next logic step in exploring the

hypothesis.

The ANN model that was used has the form described in Figure 12. The structure consists of

three layers: one input layer, one hidden layer and one output layer. Each layer is composed by a

number of nodes. The input layer has as many nodes as independent factors are in the model, and

the output layer has as many nodes as dependent variables. In this case the model uses the same 13

factors used in the second order and logistic models, generating 13 nodes for the input layer. Since

there is only one dependent variable, FPY, the output layer has only one node.

Input 1 H

Input 2 H2
Output

Input Layer Hidden Layer Output Layer

Figure 12. Artificial Neural Network Structure



Each node in the hidden layer contains a nonlinear function of the input factors. In this case

the nonlinear function is the logistic function, also known as the sigmoid function. This is the same

function used in the logistic regression (Equation 5). In general, each one of the hidden nodes Hj is

defined as indicated in Equation 6, and the coefficients 3 and the constant c, are estimated during

the training process. There is no clear theory to guide the selection of the number of nodes in the

hidden layer, however, a network with too few hidden nodes may not be able to learn from the data,

and one with too many nodes may overfit (memorize) the training data and loose its generalization

capabilities. The common practice is to use trial and error to reach the configuration that performs

as desired. In this case, the optimal number of nodes was found to be two.

1
S(x) -

I + e-'

Equation 5. Sigmoid Function

Hj = SH cj + UXi))
1=1

Where k is the number of independent variables and SH is the sigmoid function

Equation 6. Hidden Node Equation

The output node contains a function that aggregates the results of each one of the hidden

nodes and generates the response variable, in this case the predicted FPY. The output node

function is described in Equation 7. The coefficients ca and the constant d are estimated during the

training process.



Y = d+ H(aHj)

Where n is the number of hidden nodes and S is the sigmoid function

Equation 7. Output Node Equation

Cross-validation was performed in parallel to the training process of the neural network; hence

the results for both the training and cross-validation processes are presented consolidated in the

following graphs and tables. Cross-validation was performed by randomly holding back 25% of the

available data points, generating training and testing sets equivalent to the ones used in the linear and

logistic regressions (174 points in the training set and 58 in the cross validation set). Again, three

different cross-validations were performed.

Figure 13 shows the fit performance of the model and Table 6 summarizes the cross validation

results. The neural network has superior performance compared to the linear and logistic

regressions, exceeding the criteria defined for both fit and prediction accuracy. R-squared for the

resulting model is 85% and the average RMS prediction error is 4.8%. R-squared shrinkage is

significant (12%) when comparing the training and cross-validation results, the highest for all the

models explored. However, despite the significant shrinkage, the ANN is the only model studied in

which both the training and validation R-Squared values are higher than 70%.

Actual vild By FIt
Rd V 85%

Figure 13. Neural Network Performance Summary
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Fit Model R-Sq Prediction
85%
85%
85%

85%00

R-Sq Prediction RMSE
73% 4.79%
72% 4.80%
75% 4.80%

73% 4.80%

Table 6. Neural Network Cross Validation Results

5.2 Results Analysis and Summary

The statistical modeling performed has shown that it is possible to predict FPY performance

based on selected product and process complexity attributes. The analysis confirms the hypothesis

outlined at the beginning of this study: " Variations in System Assembly and Test First Pass Yield (FPY) can

be explained by a limited set ofproduct andprocess attributes, enabling the generation of a yieldprediction model that

can accurately estimate FPY as afunction of them"

Table 7 summarizes the key results for the statistical analysis performed. According to the

criteria defined (R-Squared > 70% and RMSE < 5%), satisfactory prediction levels were achieved

only by the utilization of neural network modeling techniques, as linear first and second order, and

logistic regression models were not able to conform to the specified 5% maximum RMS prediction

error.

Model
Linear 1st Order
Linear 2nd Order
Logistic
Neural Network

Fit R-Sq Prediction R-Sq Prediction
65% 58%
72% 67%
74% 66%
85% 73%

Table 7. Summary of Statistical Analysis Results

In general, both the goodness of fit and the generalization capabilities improved as the model

complexity increased, with the exception of the change from a second order linear model to the

logistic model, where the prediction RMS error degraded slightly. In this case, even though the
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Rotation 1
Rotation 2
Rotation 3
Average

RMSE
8.51%
7.64%
7.85%
4.80%



increased complexity did not result in improved prediction capabilities, the logistic model is an

improvement over the linear model as it guarantees that the resulting yield prediction is on the 0 to 1

range.

The fact that the neural network outperformed the other modeling techniques is not surprising.

In addition to the ability to model non-linear relationships effectively, the flexibility of the neural

network allows for subtle relationships between the independent variables and the response variable

to be effectively captured. The neural network model is also good at dealing with the noise present

in the data set, as there are a number of variables not related to product complexity, such as test

record completeness, differences in manufacturing partners operating methods, and process

capability factors that were not considered in this analysis.



6 Conclusions and Recommendations

This study has demonstrated that differences in system assembly and test FPY performance can

be explained as a function of product and process complexity attributes. Besides confirming the

initial hypothesis outlined at the beginning of this study, this result is important because it provides

the foundation to create FPY goal definition methodologies that take into account product

complexity attributes. Defining complexity based yield goals enables cross product benchmarking,

identification of best practices, and the execution of yield improvement initiatives.

Along with the confirmation of the hypothesis, there are other important observations and

recommendations that need to be mentioned. The generation of an acceptable FPY prediction

model required the utilization of complex, non-linear data mining techniques. Of the four methods

explored (first and second order linear regression, logistic regression and artificial neural networks),

only artificial neural networks generated a yield prediction model that met the initial thresholds for

acceptable goodness of fit and prediction accuracy. The use of neural networks makes the process

of understanding the impact that each factor has on the dependent variable a very complex one

because there is an intermediate non-linear layer, rather than a direct path, from the input variables

to the output variable.

Not having a good understanding of the relationship between each one of the complexity

factors and FPY may limit the effectiveness of the goal definition methodology. One of the main

objectives of relating product and process attributes to FPY is to identify leverage points in the

product design and manufacturing process that can help improve manufacturing performance.

However, the ability to drive manufacturing friendly designs and processes depends on the

possibility of explaining how process and design decisions affect product performance. Generating

a good level of understanding of the impact that each one of the factors in the neural network has in

the model output is not an easy task and would require significant effort from the company. Some
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techniques that may be used to accomplish this task are: varying the levels of the different inputs to

the network, and the usage of trees.

From this perspective, it may be worth to invest time and resources on investigating the

possibility of improving the yield prediction capabilities of the linear models explored in this study.

These models could be improved by focusing on understanding and controlling factors not related

to product complexity that may be interfering with the model accuracy and the FPY performance of

the products. Examples of such factors include test record completeness and accuracy, test defect

coverage, incoming quality levels, variations in manufacturing procedures across locations, and out

of control processes among others. If, after careful analysis, the effectiveness of the simpler models

cannot be improved, management should weight the option of sacrificing model accuracy for the

possibility of facilitating the task of driving the desired organizational performance.

Finally, although this study was performed using Cisco Systems' product and manufacturing

data, the general process outlined in this exercise should be applicable to solve similar problems in

other companies and industries. The core components of the methodology presented can be easily

reproduced: 1) identify the key complexity attributes, 2) design and execute a data collection plan

and 3) generate statistical models to test the validity and impact of the selected factors.
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