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ABSTRACT

Electronic-photonic integrated circuits have the potential to circumvent many of the
performance bottlenecks of electronics. To achieve the full benefits of integrating
photonics with electronics it is generally believed that wavelength-division multiplexing
is needed; requiring an integrated optical device capable of multiplexing/demultiplexing
operations. One such device is a bank of microring-resonator filters with precisely
spaced resonant frequencies.

In this work, a fabrication strategy based on scanning-electron-beam lithography (SEBL)
is presented for precisely controlling the resonant frequency of microring-resonator
filters. Using this strategy it is possible to achieve dimensional control, on the tens-of-
picometer scale, as required for microring-resonator filter banks. To correct for resonant-
frequency errors present after fabrication, two forms of postfabrication tuning, one
dynamic and one static, are demonstrated. It is also shown that hydrogen silsesquioxane
(HSQ) can be converted into a high-quality overcladding for photonic devices by
optimizing the annealing process. Finally, a postfabrication technique of localized
substrate removal is presented, enabling the integration of photonics with CMOS
electronics.

Second-order microring-resonator filter banks were fabricated using SiNx and Si as the
high-index core materials. By controlling the electron-beam-exposure dose it is possible
to change the average microring-waveguide width to a precision better than 75 pm,
despite the 6 nm SEBL address grid. Using postfabrication tuning the remaining
resonant-frequency errors can be reduced to less than 1 GHz. By annealing HSQ in a an
O; atmosphere using rapid thermal processing, it is possible to create thick overcladding
layers that have essentially the same optical properties as SiO; with the excellent gap-
filling and planarization properties of HSQ. Using XeF; to locally etch an underlying Si
substrate, waveguides with a propagation loss of ~10 dB/cm were fabricated out of
polysilicon deposited on 50 nm of SiO,.
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Chapter 1

Introduction

Since the fabrication of the first electronic integrated-circuit (IC) there has been a
constant drive to make ICs faster, smaller, cheaper, and more energy efficient. This was
famously stated in the paper by Gordon E. Moore in 1965 where he predicted the number
of components in an integrated circuit, and the density at minimum cost per transistor,
would double approximately every two years [1]. This prediction became known as
Moore’s Law, and although it originally applied to the density of transistors in an IC it is
now often used to describe the doubling of computing power every two years. Until
recently, this trend has mainly relied on the shrinking or scaling of the transistor size,
which enables an increase in speed and density. Some ICs, such as processors, are
closing in on the fundamental limits of size scaling, where currently the transistor gate
length is ~20 nm [2]. This is forcing processor manufacturers to move to a multicore
platform, allowing them to maintain this doubling of computer performance through
parallelism. However, this approach has its limitations due to the core-to-DRAM and
core-to-core data transfer rate bottlenecks [3]. For other systems, such as high-speed
analog-to-digital converters, improving speed through dimensional scaling is not

sufficient to improve performance. Currently, the sampling resolution of electronic
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Chapter 1 Introduction

analog-to-digital converters is limited by the timing jitter of the electronic clock, not the
speed of the individual transistors [4]. These two examples demonstrate that dimensional
scaling is no longer the answer for achieving higher performance ICs; a new solution is
called for.

One such solution is to integrate photonic devices with electronic devices. The
history of the telecommunications industry makes is evident that this is not a far-fetched
idea. Telecommunication, a word derived from the Greek prefix tele- meaning “far off”
and the Latin communicare meaning “to share”, describes the transmission of signals
over long distances for the sake of communication. From 1837, when the electric
telegraph was invented, until the late 1980s the telecommunications infrastructure was
dominated by electronic cables. The laying of the first fiber-optic transatlantic cable in
1988 changed this, causing the rapid replacement of long-haul electric cables with fiber
optics, taking advantage of their enormous increase in data capacity [5]. This increase in
data capacity can also be used to solve the data-transfer bottleneck in ﬁlulﬁcore
processors by replacing some of the electronics with photonics. Also, by integrating
photonics with electronics one can take advantage of ultra-low-noise optical sources. For
example, the timing jitter of a femtosecond laser is more than two orders of magnitude
lower than current state-of-the-art on-chip electronic oscillators. Jitter currently limits the
performance of ultra-fast analog-to-digital converters [6]. These are just two examples of
the many ways photonics can be combined with electronics in a synergistic manner to
form an electronic-photonic integrated circuit (EPIC) that surpasses current performance

limitations of electronic ICs.
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Although certain photonic devices are already being used heavily in
telecommunication systems, they can not be easily integrated with electronic ICs. This is
because the photonic devices used in telecommunication are relatively large, low-index-
contrast discrete components that are made using materials and fabrication methods that
are not CMOS compatible. To monolithically integrate photonics with electronic ICs, a
switch from the low-index-contrast and III-V material systems of the telecommunications
industry to a high-index-contrast (HIC) CMOS-compatible material system must be
made. This would enable a decrease in size, with the added benefit of using CMOS
compatible fabrication tools. For seamless integration it is also important to develop a
fabrication process for integrated photonics that involves minimal customization of the
IC fabrication process.

The switch from low-index-contrast to HIC materials is not trivial. Both the
design and fabrication challenges increase rapidly as the index contrast increases. The
analytic design tools developed for low-index-contrast photonics do not work adequately
for HIC devices, requiring the use of rigorous three-dimensional finite-difference time-
domain simulations [7]. Likewise, the fabrication challenges for HIC photonic devices
are immense. The propagation loss from sidewall roughness scales with the index
contrast squared, requiring ultra-smooth sidewalls for HIC devices. Also, for resonant
structures such as microring filters, dimensional precision on the nanometer to tens of
picometer level is essential for optimal performance. There are also challenges in
integrating HIC photonics with electronics since photonic devices require a thick (>1 pm)
low-index undercladding layer, which is currently prohibited in high-performance ICs

due to thermal constraints.
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In this thesis, I address some of the challenges in fabricating CMOS-compatible
photonic devices and integrating them with current IC process flows. The main focus
will be on the basic architecture and fabrication of filter banks consisting of optical
microring-resonators, thought by many to be the basic building block of integrated
photonic systems. This will include material selection, means of achieving resonant
frequency control without post-fabrication tuning, and post-fabrication tuning methods.
Also, a novel fabrication method will be presented that enables the transparent integration
of photonic devices with electronic ICs.

This thesis is separated into two main parts. Part I will focus on the fabrication of
microring-resonator filter banks that can be used as multiplex/demultiplex devices for
EPIC systems. To achieve the resonant-frequency-spacing precision required for these
devices, dimensional control on the fens of picometer scale is required, which we
demonstrate using a novel scanning-electron-beam lithography (SEBL) technique. Also
presented, are two forms of post-fabrication tuning, one dynamic and one static, to
correct any resonant frequency errors in the filter bank. Using these methods some of the
most advanced microring resonator filters and filter banks have been fabricated.

Part II focuses on supporting techniques for the fabrication of EPICs. This
includes an optimized annealing technique that allows the use of a spin-on glass to form a
high quality overcladding layer for photonic devices. Another supporting technology is a
postfabrication technique of localized substrate removal to enable the seamless

integration of photonic devices with electronics in a commercial CMOS line.
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Chapter 2

Background

2.1 ELECTRONIC-PHOTONIC INTEGRATED CIRCUITS

Advances in HIC photonics have enabled increasingly complex EPICs to be designed and
fabricated. Examples of these circuits include: ultrafast analog-to-digital converters,
optical interconnects for multicore processors, and fiber-optic transceivers [3,6,8]. The
photonic components that comprise EPICs typically fall into one of four categories;
waveguides, modulators, filters, and detectors (assuming that the light source will not be
integrated monolithically). The goal of EPICs is to integrate these basic photonic
building blocks with electronic circuits in a synergistic manner to achieve better
performance than in current electronic ICs.

Waveguides are the most basic photonic component, and are used to transport
light from one point to another. All other photonic structures are comprised of
waveguides in one way or another. The most important characteristic of a waveguides is
its propagation loss. The loss consists of a material-dependent term (material absorption)
and a fabrication-dependent term (typically scattering from sidewall roughness).
Propagation loss will determine the overall efficiency of a photonic device, and for most
systems should be 3 dB/cm or less. Other important characteristics are index contrast and

the confinement factor of the optical mode. These properties determine the minimum
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Chapter 2 Background

radius of curvature a waveguide can have before incurring excess bending loss. This is
important because the minimum bending radius will ultimately determine how densely
photonic devices can be integrated.

The next photonic component, optical modulators, have the role of transforming
electrical signals into optical signals. This is typically done by changing either the phase
or the magnitude of light. Broadband modulators (> 100 GHz) are typically based on a
Mach-Zehnder interferometer and use either carrier injection or heating to change the
optical path length between the two arms [9]. This changes the interference at the output
of the modulator resulting in an amplitude change. Narrowband modulators (<100 GHz),
on the other hand, are typically based on resonant structures such as microrings [10].
Here again, either carrier injection or heating is used to change the optical path length of
the device. This results in a change in the resonant frequency, allowing one to modulate
the magnitude of the signal. The two important figures of merit for a modulator are the
speed at which it can modulate, and the energy consumed per bit. Carrier-injection-based
modulators are both faster and more energy efficient then thermal ones so they are
preferred [11].

Optical filters are used to separate signals carried on different wavelengths. It is
generally agreed that in order to maximize the value of integrating photonics with
electronics, wavelength-division multiplexing (WDM), (transporting multiple optical
signals through a single waveguide on different wavelengths) must be used [12]. This
creates the need for filters to separate the signals (demultiplex) and combine them
(multiplex). This filtering function can be achieved using a bank of microring resonators

that have resonant frequencies corresponding to the wavelengths of the various signals.
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In HIC material systems, such as silicon-on insulator, these microring resonators can
have radii as small as 1.5 um, making them ideal for integration [13].

The fourth basic photonic building block, detectors, transform optical signals into
electrical signals. Detectors are photodiodes made from Ge, SiGe, and ion implanted Si
[14,15,16]. The photodiode material is chosen so that it can efficiently absorb the
incoming photon, resulting in the excitation of electron-hole pairs. This creates a
photocurrent that is dependent on the flux of the incoming light. A few important
characteristics of photodiodes are their detection efficiency and speed. Detection
efficiency relates the number of incoming photons to the resulting photocurrent. The
speed of a photodiode depends on the how quickly the excited electron-hole pairs can exit
the photodiode.

These basic photonic building blocks, when combined with an external light
source (laser) and integrated with electronic circuits can, overcome performance
bottlenecks that limits analogous electronics-only systems. Two systems that provide a
great example of the possible synergy between photonics and electronics are an electron-
photonic ultra-fast analog-to-digital converter and an optical many-core processor-to-
DRAM network. Both systems address current limitations in integrated electronic
circuits by replacing certain parts of the system with photonics, resulting in an increase in
performance of more than an order of magnitude. By monolithically integrating
photonics with electronics this large performance increase can be achieved without an

associated large increase in cost.
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analog signal to ~5 ENOB. To increase the sampling resolution to > 6 ENOB for
microwave signals a different low-timing-jitter source most be used, such as a
femtosecond laser.

Femtosecond lasers have been shown to be very-low-noise sources, with timing
jitter of ~10 fs or below [6,18]. The timing jitter of electronic oscillators, dominated by
thermal noise (kT), is proportional to the square of the oscillation period (To) (Eq. 2.1).
This period is on the order of ~100 ps for a ~10 GHz microwave signal. In contrast, the
dominant source of timing jitter for mode-locked femtosecond lasers is quantum noise
(hw ) and is proportional to the square of the pulse width (7), which is on the order of
~100 fs (Eq. 2.2). This six order of magnitude difference between the square of the pulse
width and oscillation period easily overcomes the fact that the quantum noise is
significantly larger than the thermal noise (Eq. 2.3). The end result is that femtosecond
lasers have a timing-jitter improvement of greater than two orders of magnitude relative
to electronic oscillators (Eq. 2.4). This creates the potential of sampling 20 GHz analog

signals at a resolution of 10 ENOB.

d 2 2 kT
— <At} >~T}-
dt RF ° Emode 2.cav 2.1
n
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d d 2
;17<At,fﬂ> >102*E<At;w> 2.4

27






Chapter 2 Background

modulator where the input voltage (Vgg) is the 20 GHz analog signal to be sampled. The
modulator will imprint the analog signal as an amplitude modulation on the broadband
spectrum, effectively converting the analog signal from the time domain to the frequency
domain. The spectrum is then demultiplexed into N channels using a bank of microring-
resonator filters with precisely spaced resonant frequencies. Each channel is then
incident onto a photodetector converting the optical signal into an electrical signal. The
electrical signals from the photodetectors are then digitized in parallel by “slower” high-
resolution electronic ADCs. The demultiplexing of the signal allows for each frequency
to be processed electronically in parallel, therefore the electronic ADCs only need to be
as fast as the repetition rate of the laser (2 GHz) not the frequency of the signal (20 GHz).
An added benefit of this system is that the complementary output of the modulator can
also be demultiplexed and digitized to cancel nonlinearities in the system. The total
sampling speed of the system is the repetition rate of the femtosecond laser multiplied by

the number of channels in the filter bank.

2.1.2 Many-Core Processor-to-DRAM Networks

The new trend for increasing the performance of processors is to increase the
number of cores. In order to maintain the pace of processor performance increase
dictated by Moore’s Law, these multi-core processors will soon become many-core
processors, where the number of cores will be in the hundreds to thousands. One of the
greatest problems facing many-core systems is that as the number of cores increases there

is a corresponding increase in the memory bandwidth requirements. Without this
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also used as modulators in this system to encode the bit signals onto each wavelength of
light individually. The figure of merit, energy per bit, for this system is ~250 fJ/bit about

a 20X improvement over electronic-only systems [3].

2.2 MICRORING RESONATOR OPTICAL FILTERS

As is evident in the two examples of EPICs described above, microring resonators are
essential photonic components. In addition to filtering, it is possible to make switches,
narrowband modulators, delay lines, and slow-light structures out of microring
resonators. In many ways improving the performance of microring resonators is as
essential to the future of integrated photonics as improvements in the transistor were, and
still are, to integrated electronics. Also, similarly to the transistor, material properties and
fabrication methods for microring resonators need to continuously improve to keep up

with the need for higher performance in increasingly demanding applications.

2.2.1 General Operation

The theory for microring resonator filters was first developed in 1969, but it was
not until the late 1990s that advances in fabrication methods made these devices feasible
[19,20]. A single microring resonator coupled to two waveguides, W) and W,, is
depicted in Fig. 2.4a, with multiple signals carried by different wavelengths traveling
through W,. These wavelengths will evanescently couple to the nearby microring with to

W, transferring the signal to W,. This is how a microring resonator can filter out a
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Fig. 2.4: (a) Top-view diagram of a single microring
acting as a drop filter. (b) Simulated transmission
response of a single microring filter.

coupling strength x;. Each time a wavelength evanescently couples from a waveguide to

a microring its relative phase is shifted by 90 degrees. Therefore, for wavelengths, Ay,

that satisfies the resonant condition in Eq. 2.5, the light will be 180 degrees out of phase

with respect to the light in W, when evanescently coupling back into W, resulting in

deconstructive interference. This results in the coupling to the microring being enhanced

for A, and suppressed for all other wavelengths. The signal carried by A, is thus

transferred from W, to the microring. Once in the microring, A, will evanescently couple
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signal carried on W and transfer it to W,. The operation of the microring resonator is, of
course, time reversible; hence a signal carried by A, on W, can be added to the signals
traveling in W,. This is how a microring resonator can be used as an optical add-drop

filter.

M*Ay = 28R Negt 2.5

The frequency-transmission function for a single microring resonator is shown in
Fig. 2.4b. The key parameters of the transmission response are the 3 dB bandwidth
(Ahsgp), quality factor (Q), free spectral range (FSR), finesse, drop loss, and roll-off.
AMAsgp is the full-width half maximum of the transmission response and is dependent on
the coupling coefficients (k) between the microring and the waveguides. The Q of a
microring is a measure of the filters selectivity, where Q=A/AXzgp, and is an inverse sum
of the internal and external Qs. The external Q is a measure of the power loss due to
evanescent coupling to external photonic structures such as waveguides or other
microrings. The internal Q is a measure of the power loss to internal factors such as
material absorption, radiation scattering losses, and bending loss. The internal Q sets a
lower limit on the achievable bandwidth of the transmission response. The FSR is
defined as the spectral range between adjacent resonant frequencies of the same
microring filter. This range typically defines the maximum usable frequency spectrum
for the photonic systems. The FSR is typically increased by reducing the microring
radius but can also be increased artificially through the Vernier effect or by using two-
point coupling to suppress some of the resonances [21,22]. The finesse of a filter is

defined by the FSR/ AAs4, and is another way to measure the selectivity of the filter. The
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contrast, and limiting the bending radius to hundreds of microns [23]. Moving to higher
index contrast allows for smaller bending radii without excess bending loss. This has a
two-fold benefit of increasing the FSR of the microring and reducing the overall footprint
of the device. It has been shown that in silicon-on-insulator it is possible to fabricated
microrings filters that have a radius of only 1.5 um, and a FSR of over 6 THz, without
incurring a prohibitive amount of bending loss [13].

As one moves to higher-index-contrast material systems to improve filter
performance the fabrication challenges increase dramatically. Propagation loss due to
scattering from sidewall roughness scales with the index contrast squared. Therefore, to
maintain the same drop loss when switching to higher index contrast the sidewall
roughness must be significantly reduced. Also the resonant frequency sensitivity due to
small dimensional changes in the average microring waveguide width and height
increases substantially with index contrast. For example, for a microring resonator filter
with Si as the core and SiO; as the cladding, and using the nominal waveguide cross
section of 220 nm X 400 nm, the resonant frequency shifts approximately 100 GHz for
every 1 nm change in average microring width. In addition to these increased
sensitivities, the higher confinement of HIC materials systems means that the evanescent
field of the optical mode does not extend very far from the waveguide core. Therefore, to
achieve significant coupling to the microring resonator the gap between the waveguide
and the microring must be a few hundreds of nanometers, or less. All of these factors
mean that moving to higher index contrast results in the need for the development of

fabrication methods that are optimized for the specific needs of photonic structures.
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Fabrication of Microring-Resonators

3.1 INTRODUCTION

The challenges in fabricating integrated photonics devices are often very different than
those of electronic circuits; however, people often try to make use of the same techniques
for both. This approach has a number of limitations. For integrated photonics to be
successful new fabrication techniques must be developed. Microring-resonator filters are
a prime example on how the fabrication requirements differ substantially from those of
integrated electronic circuits. For example, one of the important fabrication challenges of
a transistor is scaling the size to make it faster, cheaper and consume less power. Today
the transistor gate length is ~20 nm but it can vary by as much as 10% from transistor to
transistor on the same chip, this is not a problem for electronics [2]. On the other hand,
all of the features of microring resonators are larger than 20 nm, generally much larger
than 100 nm, but they require dimensional control of 2% or better, and dimensional
precision on the tens of picometer scale. A second example is that electronics are laid out
using so-called Manhattan geometries, and current optical-lithography tools exploit this
fact with “resolution-enhancement techniques” such as dipole and quadrupole

illumination [24]. In contrast, microrings and many other photonic structures rely on
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smoothly varying, curved structures, and many of the resolution-enhancement techniques
used for Manhattan geometries sacrifice the quality of curved and off-axis features.
These are just two of the many differences in the challenges for fabricating integrated
photonics compared to integrated electronics.

To overcome these challenges each step of the fabrication process has been
optimized for the fabrication of microring-resonator filters while still utilizing some of
the same tools that have been developed primarily for the semiconductor industry.
During the experiments, two different types of filters were fabricated one using silicon-
rich silicon nitride (SiNx) (n=2.19 @ 1550 nm) and the other using crystalline silicon
(n=3.52 @ 1550 nm) as the core material. Scanning-electron-beam lithography (SEBL)
with an optimized writing strategy was used to define the features in an electron-beam
resist. The rest of the process optimizations included electron-beam resist choice,

exposure dose, etch mask material, and etching recipes.

3.2 SILICON-RICH SILICON NITRIDE FILTERS

Silicon-rich silicon nitride (SiNy) is also commonly known as low-stress nitride and is
widely used in the fabrication of membrane-based and MEMS devices. The reason that it
is chosen as the core material for these experiments over stoichiometric silicon nitride
(Si3Ng) is two fold. First, stoichiometric Si3sN4 deposited using low-pressure chemical-
vapor deposition (LPCVD) is highly stressed, limiting its maximum thickness to ~300
nm. This combined with its lower index of refraction (n=1.98 @ 1550 nm) limits the

achievable FSR to ~1 THz, making it unsuitable for most EPIC systems. SisN; made
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be grown. When combined with its higher index of refraction of 2.19 at 1550 nm FSRs
greater than 2 THz can be achieved.

Fig. 3.1 shows two different SiNy filters as well as their designed and measured
transmission responses. These designs were created by Milos Popovic and Anatoly Khilo
using rigorous numerical eigenmode and 3D finite-difference time-domain (FDTD)
simulations [25]. The first filter design is a second-order air-clad microring-resonator
filter with a designed FSR of 2.5 THz and a 3 dB bandwidth of 50 GHz. The second
design is a second-order oxide-clad microring-resonator filters with a designed FSR of
2.0 THz and 3 dB bandwidth of 25 GHz. The reason for using second-order microring
resonator filters is further discussed in Chapter 6.

The filter designs assume a propagation loss of 7.5 dB/cm, which was calculated
by measuring the transmitted powers through so-called “paperclip” structures of different
lengths, as explained in Appendix A. The designed and measured transmission responses
agree very weil for the air-clad design, indicating that the actual fabricated dimensions
and propagation loss are very close to the design. The measured transmission response of
oxide-clad filter, on the other hand, does not match perfectly with the design. The
measured response has both a wider 3 dB bandwidth and a larger drop loss than expected.
This combination of differences can only be explained by a larger propagation loss than
expected. The SiNy films used for the two fabrications were deposited by the same tool
but over 3 years apart. Although the stress of the deposited SiNy is measured often to
confirm low-stress, the optical properties are not monitored and are found to change

significantly over long periods of time, as observed here.
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H and N-H bonds. Next 200 nm of PMMA is spun on the wafer using a spin speed of
4500 rpm and baked in a convection oven at 180°C for 1 hr. Then a 60 nm-thick layer of
AquaSAVE, a conducting polymer made by Mitsubishi Rayon, is spun on and baked on a
hotplate for 1 min at 90°C. When properly grounded, this conductive layer eliminates
charging during SEBL, which can cause beam-placement errors. The SEBL step was
performed using a Raith 150 system operating at an accelerating voltage of 30 keV. The
exposure dose used was 285 pC/cm’® and 333 p‘C/cm2 for the air-clad and oxide-clad
designs, respectively. After exposure the AquaSAVE was removed with a rinse in
deionized (DI) water. The PMMA was developed by immersing in a solution of 2 parts
isopropyl alcohol (IPA) and 1 part methyl isobutyl ketone at 21°C for 60s, followed by
immersion in an IPA bath for 60s. The sample was then thoroughly rinsed with IPA and
blow dried with a N, gun. Next, a 40 nm-thick film of nickel was evaporated on the
developed PMMA pattern.  Using N-methyl-2-pyrrolidone at 80°C, the remaining
PMMA was removed, lifting-off the unwanted nickel and forming a nickel hardmask of
the desired pattern. The nickel pattern was then transferred into the SiNy using a
reactive-ion-etching (RIE) process with a CHF3-O, gas mixture, optimized to give
smooth vertical sidewalls. For the air-clad design a second RIE step was performed,
using CHF; gas only, to etch an additional 200 nm into the SiO, undercladding layer.
After etching, the nickel hardmask was removed using Transene TFB nickel etchant. The
samples were then cleaned with a mixture of 5 parts DI water, 1 part H,O, and 1 part
NH,OH at 80°C for 20 min. The oxide-clad design was then clad with 2.0 um of HSQ

using an optimized annealing process described in Chapter 7.
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3.2.2 Reactive-lon-Etching Optimization

One of the critical characteristics of microring resonators is that they require
rigorously vertical sidewalls. This is especially important in the coupling-gap region for
two reasons. One is that slanted sidewalls will affect the evanescent-coupling coefficient,
changing the bandwidth of the filter. The second reason is that the slanted sidewalls can
cause polarization mixing to occur. The microring filter designs are highly polarization
dependent, and any mixing of polarization states at the coupling region will greatly
reduce performance. Therefore, it is important to make the sidewalls as vertical as
possible; this can be done by optimizing the RIE process.

To achieve highly vertical sidewalls during RIE, two things are desirable: high
selectivity between the masking material and the material to be etched, and the formation
of a sidewall passivation layer. Since a Ni hardmask is used for this RIE process the
selectivity between the SiNy and the mask is extremely high, ~40:1. It is also possible to
form a passivation layer on the SiNy surface by adding hydrogen into the etch recipe.
This is done by using CHF; gas. Although the passivation layer forms on all surface of
the SiNx, ion bombardment helps to selectively remove it from horizontal surfaces,
leaving it only on vertical surfaces, i.e. the sidewalls. However, if the sidewall
passivation layer grows during the etch or is removed by the etch the resulting sidewall
profile will slant out or in, respectively. By controlling the amount of O, in the RIE
process it is possible to control the growth rate of the sidewall passivation layer. If too
little O, is used the sidewall passivation layer will grow during the etch, resulting in the

sidewall profile to slant outward (Fig. 3.3a). Alternatively, if too much O, is added, the
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wavelengths of interest. Being a stoichiometric crystalline material it has well known
and repeatable optical properties. The SiN, material, on the other hand, is not
stoichiometric or crystalline, and since the deposition parameters are optimized for low
tensile stress, its optical properties, including absorption and refractive index, can vary
significantly from batch to batch. Another advantage of Si is that it has a higher index of
refraction, allowing for smaller radii and denser integration. However, with the increased
refractive index comes an increased sensitivity to dimensional changes and sidewall
roughness making fabrication much more challenging.

To partially overcome the problems associated with the higher index of Si, we use
a filter design having a low-aspect-ratio waveguide cross-section. This low-aspect-ratio
waveguide lessens the frequency sensitivity of the microring to changes in waveguide
width at the price of an increased sensitivity to the height. This is an acceptable trade-off
since the height can be controlled and measured very accurately through oxidative
thinning and ellipsometer measurements. Another benefit of this low-aspect-ratio
waveguide is that the propagation loss is less sensitive to sidewall roughness. The
designed and measured transmission responses for this improved Si filter are shown in
Fig. 34.

For this filter design the propagation loss in the Si was assumed to be 3 dB/cm.
The drop loss of the measured response is lower than the design, indicating, that the
actual propagation loss is less than expected. By measuring the Q of a weakly-coupled,
large-radius microring resonator the propagation loss was calculated to be ~2.5 dB/cm

(see Appendix A). The overall shape of the filter response agrees very well with the
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chosen since it had both the highest loss and lowest sidewall roughness. The cross-
section STEM micrograph of the waveguide is shown in Fig. 3.6(a) with boxes
displaying different areas that were analyzed by energy-dispersive x-ray spectrometry
(EDS). The EDS spectra for each sample point are shown in Fig. 3.6(b).

These spectra confirm the presence of Pd in the Si waveguide 1-2 nm from the
sidewall, but not at 8-9 nm from the sidewall. The presence of the Pd confirmed that the
metal hardmask was contaminating the Si waveguide, resulting in the excess loss.
However, the location of the Pd only on the sidewalls showed that the Pd was not
diffusing though the SiO, barrier layer. A probable explanation is that the Pd was
sputtered from the mask and deposited on the sidewall with enough energy to form a
silicide. The metals with higher silicidation-formation temperatures are also sputtered,
but do not have enough energy to bond to the sidewall and are later removed at the same
time as the hardmask. Although some metals did not appear to form a silicide; these
metals all produced very rough edges making them non-ideal for photonics. As a result
of this investigation, we changed the process from using PMMA with a lift-off step to

using HSQ (a negative tone inorganic electron-beam resist) as the resist and mask

material.
Table 3.1 Measured Results for Different Metallic Hardmasks
Metal hard mask Ni Pd Co Cr Fe-Ti° Fe
Silicide formation temperature (°C) 200 200 270 400 350 (Ti) 400
Roughness variance® (nm®) 3.0 2.8 4.8 7.7 3.1 4.2
Propagation loss® (dB/cm) ~70 >70 >65 <15 <15 <15

? Results for nonoptimized lift-off.
® Loss for Ni sample measured on ring resonator. Loss for other samples measured on straight waveguides.
© Fe-Ti refers to a 5 nm Ti cap on top of 45 nm of Fe to prevent corrosion of Fe during lift-off.
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was developed for 2 min. in a 25% solution of tetramethylammonium hydroxide
(TMAH) and then rinsed with DI water. The HSQ pattern was then transferred to the Si
layer using RIE with HBr gas. The selectivity between the Si and HSQ mask was
measured to be 11:1 for this etch. The remaining HSQ mask was removed using an SC-1
clean [26] followed by a 4 min dip in 0.125% solution of HF. Lastly, the fabricated Si
devices were overclad with 1 um of HSQ and annealed for 1 hr at 400°C in an O;

ambient.

3.4 EXPOSURE OPTIMIZATION

The most critical step in the fabrication of the SiNy and Si microring-resonator filters is
the SEBL exposure. There are many variables that can be controlled in the SEBL
process, including: electron dose, dimensional biasing, and writing strategy. For
photonic devices it is important to optimize the exposure dose and e-beam resist to
minimize line-edge roughness. This roughness will be transferred to the device sidewalls
during further processing, resulting in increased propagation loss. Since the exposure
dose is optimized for roughness, not dimensional accuracy, biasing must be used to
achieve accurate dimensions. Also of great concern is pattern fidelity, i.e., how closely
the fabricated microring represents the imputed circular pattern. Errors in the pattern
fidelity can occur due to deflection errors, beam blanker timing errors, and intrafield
distortion of the write field. By employing an optimized writing strategy it is possible to

minimize these errors.
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3.4.1 Roughness Minimization

For microring resonators, as well as almost all other integrated-photonic devices,
it is very important to minimize sidewall roughness in order to minimize scattering
losses. Sidewall roughness arises primarily from the line-edge roughness (LER) of the
etching mask, which in turn depends on the SEBL exposure either indirectly, when using
PMMA and a lift-off, or directly, when using HSQ.

For the optimization of the dose for the SiNy designs, using PMMA resist, a series
of electron-beam doses were used to expose the filter design and nearby waveguides.
The resist was developed, Ni deposited and a lift-off performed. The Ni hardmasks
formed for each dose were then imaged with a scanning-electron microscope (SEM).
Each imaged pattern, examples of which are shown in Fig 3.8, fall into one of five
categories: not cleared, under exposed, optimal dose, over exposed and fused gap. In the
not-cleared regime the dose is so low that after development there is still a thin layer of
PMMA at the bottom of the exposed feature. In this case when the metal is evaporated
there is no way for it to make contact with the substrate, so the entire defined feature is
removed during lift-off. In the under-exposed regime, where the resist has been cleared
over most of the feature except for small footings at the edges, these footings get covered
with a thin layer of metal that is connected to the metal layer at the bottom of the trench.
During lift-off the PMMA footing is removed by the solvent but the thin layer of metal
remains attached to the mask. This thin layer will either fold over on top of the hardmask

or fold down onto the SiNx. This layer acts as a etch mask during at least a portion of the
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extremely smooth edges with a measured roughness variance of 1.8 nm’. As the dose is
increased into the over exposed regime a significant footing develops at the bottom of the
HSQ features. This footing has an extremely high roughness as seen in Fig 3.9c. Once
again if the dose is increased too much the coupling gap between the ring and waveguide
will fuse. Although the sidewall roughness at the optimal dose achievable with HSQ is

lower than for PMMA, the exposure window is also smaller, */-8%, but still acceptable.

3.4.2 Absolute Dimensional Control and Pattern Fidelity

Since the exposure dose is optimized to reduce sidewall roughness, not for
replicating absolute dimension of the design, it is important to pre-bias all of the
dimensions so that they are correct at the end of fabrication. This places a high level of
importance on how well one can measure the dimensions of the straight (bus) waveguide
width, the microring waveguide, and the coupling gaps. Typically, measurements
performed using an SEM can obtain a measurement accuracy of only 5%, which, for the
near-micron-size features of the microring resonators, is substantial. In an SEBL system
one can calibrate the deflection of the electron-beam to the movement of the
interferometric stage. This can theoretically improve the accuracy of SEM measurements
to below 1 nm, but in practice the accuracy is limited to ~5 nm due mechanical
vibrations. Using this method, all of the critical features of each microring-filter design
were measured after a test fabrication run and then biased appropriately in the final layout
to achieve the correct dimensions. After biasing, the critical dimensions are no more than

6 nm off from the design as seen in Table 3.2.
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Table 3.2 Dimensional Accuracy of Filter Parameters

SiN, filter, air clad SiN, filter, oxide clad Si filter, oxide clad

Bias Measured Emror Bias Measured Error Bias  Measured  Error

Ring width (nm) -30 897 -3 -36 802 +2 -72 602 +2
Bus width (nm) -30 700 0 -42 602 +2 <72 501 +1
Gap, bus-ring (nm) 0 166 +4 0 508 -2 0 340 -2
Gap, ring-ring (nm) -6 394 +4 -12 926 -4 -6 703 -5

In addition to making sure that the absolute dimensions of the microring are
accurate it is also important to make sure that the overall shape of the microring filter is
correct. This has two key components, one is that the overall shape of the microring be
as close to circular as possible, and second is that both microrings in the same filter be
identical or at least have identical resonant frequencies. To ensure circular shape of the
microring it is important to optimize the SEBL writing strategy. This was first done by
Tymon Barwicz and is outlined in detail in his thesis [27]. Ifeel it is important to briefly
explain it again here because of how critical it is to the fabrication of high quality
microring-resonator filters.

The first optimization is the scan speed. In a vector scan SEBL system a beam
blanker controls when the beam is on and off. The beam will be blanked and driven to a
point near the starting point of the vector to be scanned. Once the beam position reaches
the starting point of the vector it is unblanked and scanned continuously to the end point,
exposing the resist along the vector. When the beam has reached the ending point the
blanker is reactivated halting the exposure of the resist. With this method any timing
error in the blanking and unblanking of the beam will result in a positional error in the

exposure. By slowing down the writing speed the same timing error in the beam blanker
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will result in a smaller positional error in the exposed feature. There are multiple ways to
decrease the scan speed in the Raith 150 system, including decreasing the beam current
(smaller aperture) and increasing the spacing between vector scans.

The second optimization is the scan algorithm. In the Raith 150 it is possible to
expose a given feature using an area, a point or a line scan. When using an area scan to
expose a microring the pattern generator of the Raith 150 will split up the microring
shape into a series of boxes and write each one using a raster scan. This results in the
majority of the beginnings and endings of each scan, where most placement errors take
place, to be located at the edges of the microring, the place of most concern. The point
scan method, where the beam exposes the ring on a point by point basis is not practical
since there is a finite settling time before and after each point. Given that each ring
contains approximately 1 million points this quickly adds up. The line scan is ideal for
circular structures because it allows one to have both the beginning and ending of each
scan inside the exposed pattern, thereby decreasing the effect of beam-placement errors
on the microring shape. By writing a group of concentric circles using these line scans it

is possible to exposes a circle with a desired width. Also, by randomizing the beginning

Fig. 3.10: Schematic demonstrating the optimum
SEBL writing strategy for a microring resonator.
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and ending points of the exposed concentric circles it is possible to distribute the
deviation in the effective dose due to placement errors over the circumference of the
microring, lessening their overall effect. This ideal writing strategy for the microring is
sketched in Fig. 3.10, where the dots represent the starting and stopping points of each
circular scan.

Another component of the SEBL write is matching the resonant frequencies of the
two microrings of the same filter. In the layout the two microrings are identical and, due
to symmetry, proximity effects should shift the resonant frequencies the same for both
rings. However, a repeatable frequency mismatch between the two rings is always
observed. Experiments showed that this repeatable mismatch was dependant of the
location of the microrings in the 100 pm X 100 pm write field (Fig. 3.11). The cause of
this is the intrafield distortion of the SEBL address grid. Clearly, the address grid that
makes up the writing field is not a perfect Cartesian grid. These intrafield distortions are
caused by imperfections in the electron optics and the digital-to-analog converters. In
SEBL systems such as the Raith 150, these distortions can result in absolute beam-
placement errors as high as 20 nm. How the distortion changes the microring varies with
location in the write field, resulting in a location-dependent frequency mismatch between
the two microrings. This frequency mismatch can be either measured empirically or
simulated using a map of the intrafield distortion [28]. Once known, the mismatch can be
compensated by predistorting the microrings in some manner to counteract the effects of

the intrafield distortion.
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Fig. 3.11: The repeatable resonant frequency mismatch between the two rings of a
second-order filter displaced by integrals of 12 microns along the y-axis (a) and
by 12 microns along the x-axis (b). The actual filters are 4 times larger than what
is shown here and each filter is fabricated in its own field. The variance of the
frequency mismatch at a given location was less than 8 GHz.

3.5 CONCLUSION

The CHF; to O, ratio used during RIE for SiN, microring resonators was optimized to
achieve smooth vertical sidewalls. For the fabrication of Si microring resonators the
process was changed to eliminate the metal hardmask which caused excess loss from
silicide formation. The exposure dose for each filter design and resist was optimized to
produce minimal sidewall roughness, which was measured to be of 3.0 and 1.8 nm? for
the SiNy and Si filters, respectively. To ensure dimensional accuracy all critical
dimensions were measured using the SEBL system, calibrated with the interferometric
stage, and then biased in the layout to reduce errors below 6 nm. The SEBL writing
strategy was also optimized to achieve the high level pattern fidelity required for the

microring resonator filters.
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Chapter 4
Lithographic Resonant Frequency

Control of Microring Resonators

4.1 INTRODUCTION

The greatest challenge in fabricating HIC microring-resonator filter banks is achieving
accurate spacing between resonant frequencies. The resonant frequency of a microring
filter is defined by the optical path length of the microring (shown previously in Eq. 2.5).
The optical path length can be broken down into two components; the physical path
length of the microring (i.e. the circumference 2nR) and the effective index of refraction
(nesp). It is possible to control the physical path length and nes by changing the dimension
of the microring in the lithographic layout. However, this is limited by the discrete step
size of the SEBL address grid, which is 6 nm for the optimal microring-resonator writing
strategy. For high performance (small channel spacing) filter banks, comprised of HIC
microring filters, this discrete step size would result in frequency shifts that are too large.

Parts of this chapter are featured in:

C.W. Holzwarth, T. Barwicz, M.A. Popovi¢, P.T. Rakich, E.P. Ippen, F.X. Kirtner, and
Henry I Smith, "Accurate resonant frequency spacing of microring filters without
postfabrication trimming," J. Vac. Sci. Technol. B, vol. 24, no. 6, pp 3244-3247 (2006).

C.W. Holzwarth, R. Amatya, M. Dahlem, A. Khilo, F.X. Kirtner, E.P. Ippen, R.J. Ram, and
Henry 1. Smith, “Fabrication strategies for filter banks based on microring resonators,” J.
Vac. Sci. Technol. B, vol. 26, no. 6, pp 2164-2167 (2008).
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There are two ways to change the physical path length of a microring resonator in
the lithographic layout. The first way is to simply increase the radius of the microring
resonator by AR, which will increase the physical path length by 2nAR (Fig. 4.1a). Since
the minimum address grid step size is 6 nm the minimum change in optical path length
using this method is 2*6 nm or 37.68 nm. The resulting frequency shifts from this
minimum change in radius for the three microring-resonator filter designs are shown in
Table 4.1. These frequency shifts are all larger than the channel spacing desired in a
high-performance filter bank. Another way to change the physical path length is to add a
small straight section to the microring, forming a racetrack structure (Fig. 4.1b). The
length of this straight section can be changed by AL, which will increase the path length
of the microring by 2AL. This results in a minimum change in the physical path length of
12 nm, producing a much smaller frequency shift than changing the radius of the
microring (Table 4.1). This method, however, is not optimal because adding the straight
section increases the internal loss of the microring due to the modal mismatch between
the resonant modes in the curved and straight sections of the ring. For resonant structures
this small loss due to modal mismatch adds up very quickly making this approach

unsuitable.

Table 4.1 Resonant Frequency Dependence on Dimensional Changes
SiNy air-clad SiN, oxide-clad Si oxide-clad

AR =6 nm 106 GHz 87 GHz 104 GHz
AL =6 nm 34 GHz 28 GHz 33 GHz
AW = 12 nm 396 GHz 300 GHz 480 GHz
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that are spaced by 12 nm each. This means that the minimum amount the width of the
microring can be changed is 12 nm, resulting in the frequency shifts listed in Table 4.1.
These frequency shifts are all quite large, demonstrating how sensitive the resonant
frequency is to changes in the average waveguide width.

Clearly, to achieve the desired resonant-frequency spacing one needs to control
the dimensions of the microrings on a scale much finer than the address grid of the SEBL
system. To ensure 1 GHz channel-spacing precision it is necessary to control the
dimension on the tens of picometer scale, orders of magnitude finer than the discrete
address grid of the SEBL system. Another parameter that is adjustable in SEBL, is the
exposure dose of each microring. By controlling the exposure dose one can control the
resonant frequency of the microring filters in a way that is no longer limited by the

discrete SEBL address grid.

4.2 DOSE MODULATION

One of the advantages of the serial writing process of SEBL is that it is possible to
control the exposure dose (charge incident per unit area) of individual features in the
layout. Assuming constant current in the electron-beam, the dose can be accurately
controlled via adjusting the dwell time at the address-grid points. By adjusting the
exposure dose it is possible to change the width of a feature on a scale that is orders of
magnitude smaller than the address grid of the SEBL.

The point-spread function of an electron beam is not a delta or top-hat function,

typically it is modeled as a double Gaussian, with the narrow Gaussian simulating the
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incoming beam and the wider Gaussian is the backscattered electrons. To better fit
empirical data, a tail function, represented by a polynomial in logarithmic space, is added
to the point-spread function, smoothing out the double Gaussian. The point-spread
function of the Raith 150 system has been previously measured and is shown in Fig 4.2
[27]. By performing a convolution of the point-spread function with the microring layout
it is possible to calculate the effective exposure dose as a function of position. Once the
effective exposure dose profile is known one can use resist development models to find
how changes in exposure dose can change the width of the microring waveguide. This
information can then be used to calculate the resonant frequency dependence on exposure
dose. Two models used in this thesis for simulating the development of resists are the

binary model and string propagation method.
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Fig. 4.2 Normalized plot of the electron-beam point-spread function
of the Raith 150 system.
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4.2.1Binary Model

The binary development model is the most simplistic, but for many resists it will give
accurate results. This model assumes that if a positive resist receives a dose above a
threshold level it will be developed (dissolved by the developer) and will remain
undeveloped for doses below the threshold. For a negative resist the opposite will be true.

For this model, in addition to calculating the effective dose as a function of
location by performing a convolution of the point-spread function and the exposed
layout, it is also necessary to determine the threshold dose. This can be done by
measuring the width of an exposed pattern and finding the dose that intersects the
corresponding cross-sectional width of the effective-dose profile.

Once the threshold dose is known it is possible to repeat the convolution for
different exposure doses and calculate the change in width of the feature (Fig 4.3). For
microring-resonator filters the resonant frequency shift depends on the average change in
the ring-waveguide width. The change in waveguide width will be different at different
radial locations along the microring due to the different contribution of proximity effects
from the bus waveguide and neighboring microrings. To find the average change in
waveguide width, the change in waveguide width is simulated for every 30 degrees
around the microring and then fitted with a polynomial function. The polynomial is then
averaged over the circumference of the ring to give the average change in ring waveguide
and then the resulting change in resonant frequency is calculated. Fig. 4.4 shows the
simulated change in resonant frequency versus change in exposure dose for the oxide-

clad SiNy and Si filter designs calculated using the binary model.
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The major assumption in this development model is that the resist is binary, i.e.
has infinite contrast. In reality all resists have finite contrast, meaning that the
development rate is a continuous function of exposure dose. This assumption makes it so
that the binary model is very good at simulating high contrast resist but breaks down for
low contrast and chemically amplified resists. PMMA is a high contrast resist so the
binary model is adequate but HSQ has significantly lower contrast. This means that to
simulate the resonant frequency dependence of the Si filters fabricated using HSQ it is

best to use a more rigorous development model.

4.2.2 String Propagation Method

Another way to model resist development is the string propagation method [29].
This method is more rigorous then the binary model since it takes into account material
properties of the resist and the developer used. The string propagation method first
calculates the distribution of the local resist etch-rates for the exposed feature. Next, a
string of points, joined by straight-line segments, is plotted on the surface of the resist.
As time proceeds by At, each point will propagate by a distance Ax, determined by the
local etch rate of the resist. The direction of propagation is along the angle bisector of the
two adjoining line segments as shown in Fig. 4.5. This is repeated for n iterations until
n*At equals the total development time. By making At small and, therefore n large, it is
possible to simulate the width of the exposed microring waveguide very accurately. The

main assumption for this simulation is that etching of the resist by the developer only
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Pn+1

Fig. 4.5 Diagram showing how the string-propagation
resist-development model works. Each point propagates Ax
(local etch rate times At) in the direction of the angle
bisector formed by the string segments connecting adjacent
points.

occurs at the time-varying location of the string boundary. This assumption is valid for
both PMMA and exposed HSQ.

Before employing this simulation the resist etch-rate distribution for the exposed
feature must be calculated. This is done by first finding the rate of etching of the resist
by the developer as a function of electron-dose. An array of 0.8 um X 40 um and 0.6 pm
X 40 pm lines were exposed in PMMA and HSQ, respectively, using a wide range of
doses. These samples were then developed in their respective developers for the standard
development time, 60 s for PMMA and 120 s for HSQ. After development the thickness
of the resist remaining was measured using a profilometer. This experiment was then
repeated using half the development time. Using this data one can find the resist etch rate
as a function of exposure dose. This method assumes that the exposure dose is constant

throughout the thickness of the resist, which is valid for thin resists and high accelerating
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voltages. By combining this data with the effective dose profiles it is possible to get the
local etch-rate distribution profile for the exposed microrings.

Using the string-propagation method, with a At of 10 ms and an initial string
segment length of 50 pm, the average width of the ring waveguide for various exposure
doses was calculated. This data was used to find the resonant-frequency dependency on
exposure dose for the oxide-clad SiNx and Si filter designs. The results from these
simulations are compared to the results obtained using the binary model in Fig 4.6. It can
be seen that for PMMA, a high contrast resist, the results from the two simulations agree
quite well. On the other hand for HSQ, a lower contrast resist, there is a significant
difference between the two simulations. The results obtained using the string
propagation method should be more accurate for HSQ since this method takes into

account its low contrast by using the local resist etch-rate distribution.
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Fig. 4.6 Comparison of the frequency dependence on exposure
dose using the two different resist development models.
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4.3 CALIBRATION EXPERIMENTS

To confirm the simulated results for the resonant-frequency dependence on
changes in the microring radius and exposure dose, empirical calibration experiments
were performed. The design of these calibration experiments is critical in order to
eliminate frequency shifts due to external factors. These external factors, which include
variations in the core thickness, long-term drift in the electron-beam current, and
temperature fluctuations during measurement, are capable of causing systematic errors
that can not be factored out by using a large sampling population. For example, if the
thickness of the core layer increases from one side of the wafer to the other by a few
nanometers, and one writes the calibration experiment for changes in dose from top to
bottom on the wafer; the results of the resonant frequency dependence will be a sum of
the dependence on exposure dose and core thickness.

To factor out these external factors the calibration experiment was set up as is
shown in Fig. 4.7. In this setup, each through-port has two filters on it located in close
proximity (~100um) to each other. One filter is a first-order filter and is used as a
reference filter, where all parameters are kept constant in the electron-beam layout. The
other filter is the second-order filter that is being calibrated, where either the radius or the
exposure dose is changed slightly. For calculating the resonant frequency shifts the
resonant frequency of the second-order filter is normalized to the resonant frequency of
the reference filter. Since the calibration filter and reference filter are written close to
each other in distance and time, the drift of the core thickness and electron-beam current

are negligible. Any frequency shifts due to these effects will happen to the reference and
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calibration filter equally, therefore not changing their relative frequencies. Similarly,
since the through responses of the reference and calibration filters are tested at the same
time their temperature is the same. If the temperature of the chip drifts a few degrees
during the testing of the first calibration filters to the last the absolute difference in their
frequency shifts will change but their relative difference compared to their reference filter
will not. Therefore, by normalizing the resonant frequencies of the calibration filters to
their respective reference filters it is, presumably, possible to remove the systematic
errors in the calibration experiment. The results from these experiments for all of the

filter designs are summarized in Table 4.2.

. referencedrop i
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filter 2 7
reference
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Fig. 4.7 Layout used for frequency-calibration experiments. The parameters used to
write the reference filters are kept the same while the exposure dose or the radius of
the calibration filter is changed.

Table 4.2 Frequency Dependence on Radius and Dose from Experiments
SiN, air-clad  SiNy oxide-clad  Si oxide-clad

Dependence on radius  17.3 GHz/nm 14.8 GHz/nom  16.2 GHz/nm
Dependence on dose 17 GHz/% 14 GHz/% 64 GHz/%
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The results for the frequency dependence on changes in the input radius for the
oxide-clad SiNy design is shown in Fig. 4.8 and compared to the simulated results. There
are two reasons for the difference in simulated and calibration dependences. The first is
intrafield distortion of the SEBL address grid, causing the inputted radius change of 6 nm
to differ from the exact change in radius. The second reason, which affects the SiNj filter
only, is that the index of refraction varies slightly from batch to batch and wafer to wafer.
The index used in the simulation was 2.20 and the actual index of the wafers used in that

calibration experiments were between 2.17 and 2.21.

~ OF=— = == Simulation
T —_——— = Experiment
e
r [ * ¥ F]
.E-zoa o
o mmmn
(.>; L > * ]
5'40(1 L]
=
o
e - —
1 9
-600% —

0 6 12 18 24 30 36 42

Radius change (nm)
(6 nm = 1 pixel)
Fig. 4.8 Frequency dependence on changes in radius from
the calibration experiment and simulations for the oxide-

clad SiNy filters.
Fig. 4.9(a) and (b) shows the frequency dependence on dose for each filter design
compared to predictions using the binary model and string-propagation method,
respectively. The graphs show that it is possible to make continuous frequency shifts by

changing the electron-beam dose; one is not constrained by the discrete address grid.

Also, the calibration experiment using PMMA matches up very nicely with the results
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from the binary simulation, but the calibration using HSQ resist does not. This is what
was expected since the binary model works well for high contrast resists like PMMA, but
starts to break down for lower-contrast resists such as HSQ. The more rigorous string-
propagation model, which is able to take contrast into account, predicts the frequency

dependence for HSQ much better.
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Fig. 4.9 Calibration results for the frequency dependence on exposure

dose for the oxide-clad SiNy and Si filters compared to the simulation
results using the (a) binary model and (b) string propagation method.
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It is important to note that there are limitations when varying the dose to control
the resonant frequency of the microring. If the dose is varied by too much the resist will
be either over exposed or under exposed, deteriorating the performance of the microring
resonator. For best results, it is ideal to make large frequency shifts by changing the
radius of the microring and then fine tune the frequency shifts by slightly changing the
exposure dose. This makes it possible to achieve any desired frequency shift for any of
these filter designs without having to deviate by more than 6% from the optimal exposure
dose. Since the radius affects the physical path length and dose affects nes they can be
treated as independent and added.

The standard deviation from the fitted frequency-dependence on dose for the SiNy
and Si filters was 8 GHz and 100 GHz, respectively. This variation comes from two
main sources. The first source is short-term fluctuations of the electron-beam current.
Although the calibration experiment is designed to cancel out long-term current drift it
can not eliminated short-term fluctuations that can occur between the writing of the
reference filter and the calibration filter. For this time scale, fluctuations on the order of
0.5% are possible. This can explain the 8 GHz standard deviation in the measured SiNy
filters and 32 GHz of the 100 GHz standard deviation of the Si filters. The second source
is variation in the waveguide core thickness that occurs over the short distance between
the reference filter and calibration filter. The SiNy filter design is relatively insensitive to
small changes of height and the LPCVD method used to deposit this film produces films
with highly uniform thicknesses, so this source does not contribute significantly to the
standard deviation of the SiNy filters. On the other hand, the Si-filter design is extremely

sensitive to changes in height, ~400 GHz/nm, and the fabrication process used to create
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SOI wafers does not produce films with extremely uniform thickness. The SOI wafers
used for these experiments have a 3-sigma height deviation of 15 nm over the 150 mm
wafer. To explain the rest of the frequency standard deviation, the thickness of the Si
would need to vary only 0.2 nm (approximately the lattice spacing of Si) over the 100 pm

between the reference filter and the calibration filter. This would appear to be possible.

4.4 SCALE-UP

The fabrication technique described relies on SEBL to create the filter bank
devices, which is a slow serial process. The low throughput of this process would make
it suitable only for low level production of high-value chips, most likely for defense
application. To truly transfer this method into mass production products, such as
multicore processors, a path to scale-up needs to be found. In this section, four paths to
scale-up are identified and explained, showing the possibility of using this technique to
aid the mass production of filter banks. These methods utilize standard projection,
nanoimprint, or maskless optical lithography to scale-up the process.

The clearest rout to scale-up is using standard projection lithography since this is
the preferred lithography method for the mass manufacturing of integrated circuits.
Projection lithography uses a mask that is designed to consistently reproduce the features.
The projection masks are made using an SEBL systems so it may be possible to use the
dose modulation technique to make slight changes in the dimensions of all the microrings
on the optical mask. (Masks are generally made using projection electron-beam

lithography rather than the SEBL described here. So dose modulation may not be
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possible.) However, whatever slight changes are made should be replicated during the
projection-lithography step. As an added benefit, the features on the mask are
demagnified by 4X when exposing the photoresist. This means that if the average
microring waveguide width had to be controlled to 25 pm it would only have to be
controlled to 100 pm on the mask. A second way to use projection lithography is to add
in dummy structures in the mask near the microring filters. By controlling the size of
these dummy structures it would be possible to control the proximity effects, or added
dose, that each microring sees. This method although feasible would require complex
simulations since proximity effects in optical lithography depend on phase and intensity.

A third possible rout to scale-up is using nanoimprint lithography. Although not
commonly used for integrated circuits it has been proven to precisely replicate fine
features over a large scale [30]. In this method the SEBL dose modulation technique can
be used to create the master imprint template, which will then be replicated through
nanoimprint thousands of time, spreading out the cost of the template over many chips.
An added advantage of using this method is that if there are frequency errors in the
fabricated filter banks they can be measured and the master template can be altered using
a focused-ion beam, to correct for dimensional errors. There are currently a few
companies developing nanoimprint tools that are suitable for large-scale chip
manufacturing [30,31].

A fourth possible rout to scale-up is using zone-plate array lithography (ZPAL) to
fabricate the filter banks. ZPAL is a maskless optical lithography tool that uses an array
of 1000 Freznel zone plates to focus individually modulated beamlits of light [32]. Since

each beamlit can be individually modulated the exposure dose can be controlled precisely
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for each microring filter. The number of zone-plates allows for massive parallelizing of
the exposure, reducing the exposure time greatly. This is ideal for mid-volume
production since there is no high-cost mask or template that must be amortized over a
large number of chips. Parallelism allows for much faster production than single-beam

serial methods such as SEBL.

4.5 CONCLUSION

We have shown that it is possible to precisely shift the resonant frequency of microring-
resonator filters by making dimensional changes in the layout and by changing the
electron-beam exposure dose. The resonant frequency shifts due to dimensional changes
in the layout are limited to relatively large discrete shifts due to the finite size of the
SEBL address grid. We have shown that this limitation can be overcome by varying the
electron-beam dose in order to change the average ring waveguide width with a precision
on the tens of picometer scale. Using a binary resist model it is possible to simulate the
resonant frequency dependence on dose for high-contrast resists, such as PMMA. For
low-contrast resist, such as HSQ, the more rigorous string-propagation method is used to
simulate the resonant frequency dependence on dose. These simulations agreed well with
data from calibration experiments. Also, due to the small exposure dose window it is
best to make large frequency shifts by changing the radius of the microring and then fine
tune the shift by slightly changing the exposure dose. We have also described possible

routes for scaling-up this technique for high-volume manufacturing.
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Postfabrication Tuning

5.1 INTRODUCTION

To fabricate a filter bank with channel spacings that are accurate to within 1 GHz
requires dimensional control of a few tens of picometers. Due to stochastic variations
during processing this is not possible for a large number of channels, or many filter
banks. Even if fabrication was perfect, the channel spacing can still change due to
localized temperature fluctuations, which can be significant in some devices. Ideally, one
would have a means to tune the resonant frequency of each microring after fabrication, to
correct for any fabrication errors, temperature gradients and fluctuations. It is important
that whatever tuning method is used not significantly affect any other property of the
microring-resonator-filter response, including the drop loss and 3 dB bandwidth.

Methods for tuning the resonant frequency can be either dynamic or static.
Dynamic tuning refers to methods that are completely reversible and can be changed
relatively quickly. Examples of dynamic tuning include carrier injection, evanescent
field perturbation, compression, and thermal tuning. For the carrier injection method a
PIN junction must be fabricated were the ring waveguide is the intrinsic center region.

By biasing the junction it is possible to change the carrier density in the ring waveguide,
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slightly changing the refraction index [10]. The problem with this method is that the loss
of the filter increases with carrier concentration. The method of evanescent field
perturbation works by bringing a dielectric probe into close proximity of the microring,
slightly changing the effective index. This can be done with an external probe or an
integrated MEMS structure. The major problem with this method is that it requires the
probe to be in very close proximity to the microring where van der waals forces can be
significant, possibly attracting the probe to the ring [33]. If contact is made it can require
significant force to remove the dielectric probe. It is also possible to change the resonant
frequency by compressing the microring. This tuning method is, however, very
inefficient since it takes a relatively large force to compress the ceramic and
semiconductor materials typically used for the microring core [33]. Thermal tuning,
takes advantage of the temperature dependence of the refractive index. The usefulness of
this method depends on the thermal efficiency and crosstalk of integrated microheaters.
One key characteristic of all the dynamic tuning methods is that they consume
power when in operation. Static tuning methods, on the other hand, are irreversible and
therefore only require energy for initially tuning. The two major forms of static tuning
change the refractive index of the low-index cladding layer. The most common way is to
use a polymer as the cladding material that has a refractive index that is sensitive to UV
light [34]. One can then locally expose the polymer, near each ring, with the dose of UV
radiation needed to tune the resonant frequency. One disadvantage of this method is that
UV light is typically used for optical lithography so any further lithography processing
steps could change the resonant frequency of the filters. An alternative is to use HSQ as

the overcladding material and then locally expose it with an electron beam. When HSQ
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is exposed by an electron beam it undergoes chemical and structural changes that

increase the refractive index.

5.2 DYNAMIC TUNING WITH MICROHEATERS

For the microring resonator filter banks in this project thermal tuning with resistive
microheaters was used as the dynamic tuning method. Thermal tuning shifts the resonant
frequency via the thermo-optic coefficient (An/AT), which is 2.4*10%, 4.0%10°, and
1.5%10° K™! for Si, SiNy, and SiO,, respectively The figures of merit for tuning with
microheaters are the tuning efficiency, optical loss, tuning range and crosstalk. To
increase the tuning efficiency, and lower the crosstalk it is desirable to place the heater as
close as possible to the microring resonator. Since the heater is made from a conductive
material there will be excess loss due to optical absorption if the evanescent field of the
resonant mode couples to it. This would decrease the intrinsic quality factor for the
microring, as seen in Fig. 5.1. Therefore, when choosing the distance the microheater is
above the microring, a compromise between tuning efficiency and optical loss must be
made.

The maximum range over which the heater can tune the resonant frequency, sets a
limit on the maximum fabrication errors that can be tolerated. Ideally, one would like to
be able to tune the resonant frequency over the entire FSR of the microring. However,
the range is limited by the maximum temperature of the heater before failure. The two
modes of failure are oxidation and electro-migration. Oxidation can be prevented by

capping the microheater with an oxygen diffusion barrier. It is important that this

79



Chapter 5

Postfabrication Trimming

diffusion barrier have a low thermal conductivity so as not to increase the thermal
crosstalk between heaters. Preferably, heaters should perform independently of one
another. If the heaters are covered by an oxygen barrier layer that has a high thermal
conductivity the barrier layer will spread the heat over a large area, increasing the thermal

crosstalk between heaters. By choosing the right material combination for the barrier

layer it is possible to prevent oxidation while maintaining low crosstalk.
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Fig. 5.1. The effects on the internal quality factor for the SiNy and
Si filter designs with Ti as a function of at distance measured from
the bottom of the microring waveguide. Propagation loss in the
core material is ignored in these calculations.

5.2.1 Heater Fabrication

After the photonic structures are overclad, using the optimized HSQ process
described in Chapter 7, the sample is ready for heater fabrication. One of the key benefits

of using HSQ to overclad the photonic structures is that it produces a planar surface so
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Titanium is chosen for the microheater material because of its relatively high
electrical resistance. This enables the width of the lines of the resistive heaters to be of
the order of 1 um. The only problem with titanium is that it reacts readily with oxygen,
making it imperative to install a good oxygen diffusion barrier. A 10 nm gold cap was
placed above the titanium heater but this alone is not enough to prevent oxidation. When
looking for oxygen diffusion barriers for this application it important to have low oxygen
diffusion and low thermal conductivity. To achieve this, a bilayer of 100 nm of SiO; and
50 nm of Si3Nj, deposited by sputtering, was used. The SiO, was placed above the
microheaters to limit thermal conductance, but since oxygen diffuses relatively quickly
through SiO,, a second layer of SizN4, which has low diffusion of oxygen, was used.

SisNy could not be used by itself because of its relatively high thermal conductivity.

5.2.2 Tuning Performance

The efficiency of the thermal tuning was calculated by measuring how far the
resonate frequency of the microring shifts for a given input power. For the oxide-clad
SiN; filters a heater design that is optimized for tuning efficiency, shown in the inset of
Fig 5.3, was used [35]. From the tuning data it is found that this heater has a tuning
efficiency of 80 WW/GHyz, slightly worse than the theoretical efficiency of 60 uW/GHz.
The main reason for the slight difference between the measured and theoretical
efficiencies is that the fabricated heater was misaligned with respect to the filter by ~2

um. This increased the power necessary for a given frequency shift by 33%.
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Fig. 5.3. Frequency shift of a second-order SiNy filter
for a given change in heater temperature. (inset) layout
of microring heater design optimized for efficiency.

For the Si filters a heater design, optimized for maximum tuning range, was used
(inset of Fig. 5.4) [36]. This heater design heats an area significantly larger than the
microring, reducing its efficiency, but increasing the tuning range of the filter for a given
maximum heater temperature. It also makes the tuning performance less sensitive to
alignment errors. Using this heater design it is possible to tune a Si microring resonator
over a range of 2.3 THz, which is larger than its 1.6 THz FSR (Fig 5.4). Although the
heater was not optimized for tuning efficiency it still outperformed the SiN, heater with
an efficiency of 17 uW/GHz. This better performance is attributed mainly to the fact that
the thermo-optic coefficient of Si is 5 times larger than that of SiNy, and the required

distance between the heater and microring is significantly smaller. With a Si heater
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on using a UV sensitive polymer as the overcladding material, and exposing it to UV
radiation to cause a change in the refractive index [34]. Since a significant portion of the
resonant mode propagates in the cladding material outside the core, this results in a
resonant-frequency shift. Although this method works it is not viable for CMOS-
compatible integrated photonics. One problem is that organic polymers are generally not
allowed in a CMOS process flow. Another is that UV light is used during optical
lithography which could result in unwanted shifts in the resonant frequency during
additional lithography steps.

An alternative method presented here is to use HSQ as the overcladding material
and locally cure it with an electron beam. When HSQ (HSiOsp,) is subjected to electron-
beam irradiation Si-H bonds are broken, resulting in a change in density and
transformation from a cage-like to a network structure. (Diagrams of these structures are
shown in Fig. 7.1). Since the refractive index depends on molecular composition and
free volume, tﬁese reactions should cause a change in the refractive index. Simulations
using a 2D cylindrical mode solver have been performed to find how the resonance
frequency of the Si filter depends on the refractive index of the overcladding material, for
overcladding thicknesses of 110 nm and 1 000 nm (Fig. 5.5). It is seen here that just a
small change in the refractive index of the overcladding material can cause significant
shifts in the resonant frequency

For HSQ films prepared using a prebake of 150°C and 200°C for 2 min on
consecutive hotplates it is possible to change the index of refraction from 1.38 to 1.40
with an electron-beam dose of 1.2 mC/cm® [37}. Based on the simulation this will result.

in a resonant frequency shift of ~300 GHz. Using doses higher than 10 mC/cm® at
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Fig. 5.5. Simulated frequency shifts for given change in
overcladding refractive index for Si filters with 110 nm and
1000 nm thick overcladding layer.
elevated temperatures it is possible to form Si-rich films that can have refractive indices
as high as 1.62 [38].

To experimentally find the resonant frequency dependence on the exposure dose
used to cure the HSQ overcladding, a layout consisting of many sets of two first-order
microring-resonator filters was used. The two filters, one a reference and one a
calibration filter, have slightly different radii and share the same through port. The
fabricated test structures were then overclad with 110 nm of HSQ and baked at 90°C to
remove the solvent. The resonant frequencies of all the filters were then measured. Next,
the HSQ overcladding of the calibration filter was electron-beam cured using a dose
ranging from 0.1 to 5 mC/cm?. The resonant frequencies of all the filters were measured
again and, by comparing the change in resonant frequency difference between the
calibration and reference filters on the same through port, before and after electron-beam

curing, it is possible to calculate the resonance-frequency shift. This is shown in Fig. 5.6
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as a function of the electron-beam dose. The overall trend is a decrease in the resonant
frequency, which corresponds to an increase in the index of refraction of the HSQ film.
Below 1400 uC/cm2 the resonant frequency fluctuate quite rapidly. This is due to
chemical reactions and structural changes that occur at lower doses. First at the lowest
doses the main reaction is Si-H scissions causing densification of the caged oligomer
film. As the dose is increased further, more Si-H bonds are broken causing a
transformation from the cage oligomer to the network structure. The network structure
has more free volume than the caged oligomer, resulting in an increased resonant
frequency. As the exposure dose is increased further the network structure slowly
converts to SiO», increasing the refractive index and therefore resulting in a decrease in

the resonant frequency. As this reaction progresses further, Si starts to leave the film in

the form of SiHy, resulting in a decrease in the films density and a corresponding increase
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in the resonant frequency. For electron-beam doses above 1400 },LC/cm2 all chemical
reactions have already gone to completion and the linear decrease in the resonant
frequency is attributed to densification of the network structure.

For statically tuning the resonant frequency of a microring resonator it is best to
operate in the linear regime at high curing doses. For the range of doses used it was
found that the weighted Q of the microrings, 7 750, did not change significantly, showing
that this method does not dramatically increase the loss of the microring. Ideally, this
method would be combined with thermal tuning, i.e., statically tuning with electron-beam

curing all large resonant frequency errors and then thermally tuning smaller errors.

5.4 CONCLUSION

Due to the high level of dimensional accuracy needed to fabricate microring-resonator
filter banks with a resonant frequency spacing accuracy better than 1 GHz,
postfabrication tuning is required. We have demonstrated two types of tuning, dynamic
tuning with integrated microheaters and static tuning using electron-beam curing of HSQ.
Using integrated microheaters tuning efficiencies of 80 uyW/GHz and 17 uW/GHz were
achieved for the SiNy and Si filters, respectively. Also, the crosstalk between heaters for
different rings of the same filter was measured to be 3% and the crosstalk between
heaters for neighboring filters was negligible. Using electron-beam curing of HSQ to
change the index-of refraction for the overcladding materials it is possible to statically
tune the resonate frequency. This method has the advantage of requiring no power to

maintain the frequency shift.
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Chapter 6

Microring-Resonator Filter Banks

6.1 INTRODUCTION

To maximize the value of integrating photonics with electronics, wavelength-division
multiplexing (WDM), (transporting several optical signals through a single waveguide on
several different wavelengths) is typically used [12]. This creates the need for filters to
separate the signals (demultiplex) and combine the signals (multiplex). Currently, in
discrete-component photonic systems this is done with arrayed-waveguide gratings, the
large size of which greatly limits their integratability. The WDM filtering functions can
be achieved using a bank of microring-resonator filters that have resonant frequencies
corresponding to each of the several wavelengths. In HIC material systems, such as
silicon-on-insulator, these microring resonators can have radii as small as 1.5 pm, making
them ideal for integration [13].

The figures of merit when analyzing the performance of a microring-resonator

filter bank are the number of channels, crosstalk between channels, optical loss, and

Parts of this chapter were featured in:

C.W. Holzwarth, A. Khilo, M. Dahlem, M.A. Popovi¢, F.X. Kirtner, E.P. Ippen, and Henry
I. Smith, “Device Architecture and Precision Nanofabrication of Microring- Resonator Filter
Banks for Integrated Photonic Systems,” Submitted to J. Nanosci. Nanotechnol., (2009)
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frequency-spacing accuracy before and after postfabrication trimming. The first part of
this chapter focuses on the architecture of microring-resonator filter banks, with the goal
of maximizing performance while limiting fabrication challenges. This includes
choosing the optimal filter design and core material. In the second part of this chapter the
measured results of fabricated SiN,- and Si-core microring-resonator filter banks are

presented and discussed.

6.2 DEVICE ARCHITECTURE

The four most important characteristics of the microring-resonator filter design
for a filter bank are the FSR, 3 dB bandwidth, internal quality factor, drop-loss, and roll-
off. The FSR, or frequency spacing between resonances of the same microring, defines
the maximum frequency range that can be used by a filter bank. The 3 dB bandwidth of
the filter is the width of a single channel. It also defines the theoretical maximum
channel density, since for even a perfect box filter response (infinite roll-off) the channel
spacing can never be less than the 3 dB bandwidth. The drop loss of the filter is the sum
of the power that is not filtered out of the waveguide and is lost during the filtering
operation. This determines the efficiency of the filter bank and, for most applications,
should be less than 3 dB. The 3 dB bandwidth and the drop-loss are related by the
internal quality factor (Qin). Qin Of a microring resonator is a measure of the rate of
energy dissipation in the ring, normalized to the resonant frequency. Qin is inversely
proportional to the intrinsic loss of the microring due to material absorption, sidewall

roughness, and bending loss. The minimum 3 dB bandwidth achievable with less than
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3 dB of drop loss is twice the resonant frequency divided by Qi The last important
feature is the filter’s roll-off, i.e., how quickly the filter response’s power is reduced
outside the 3 dB bandwidth. The roll-off of the filter ultimately defines the minimum

channel spacing of the filter bank needed to achieve the required level of crosstalk.

6.2.1 Filter Design

To maximize the performance of a filter bank, it is necessary to maximize the
number of channels that fit into one FSR while maintaining minimal crosstalk. To do
this, it is desirable to decrease the filter’s bandwidth and increase the filter’s order (i.e.,
the number of series-coupled rings) to take advantage of the sharper roll-off. For most
application less than -30 dB crosstalk between adjacent channels is required. This, in
turn, implies a minimum channel spacing of ~21, ~3, and ~2 times the filter’s 3 dB
bandwidth for first, second and third-order filters, respectively. The channel density
increase when switching from first- to second-order filters is quite large (7x) and the
increase in fabrication challenge is minimal. On the other hand, the increase in channel
density, from second- to third-order filters is much smaller (1.5x). This increase in
channel density becomes exponential less as the order is increased, with the channel
density of an infinite-order filter being ~2 times the density of third-order filters.

As the order is increased in HIC microring filters the fabrication challenges
increase dramatically due to coupling-induced frequency shifts (CIFS) and proximity
effects. The resonant frequency of an uncoupled and a coupled microring resonator with

the exact same dimension have different resonant frequencies due to CIFS. This occurs
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the resonant frequency of each microring. For first- and second-order filters one can
design the layout with geometric symmetry about every microring so that the SEBL
proximity effects are identical for each microring. This is not possible for third- and
higher-order microring filters (Fig. 6.1). Therefore, to maximize the roll-off with a
minimal increase in fabrication challenges, second-order filters are the logical choice for

filter banks.

6.2.2 Material Selection

Choosing second-order filters for the filter bank fixes the minimum channel
spacing required to achieve less than -30dB crosstalk to about 3 times the 3 dB
bandwidth of the filters. Thus, to increase the number of channels in the filter bank the
3 dB bandwidth of the filters must be reduced and/or the FSR increased. As mentioned
previously, the minimum bandwidth of a microring filter is limited by Qy, and to keep

Table 6.1 Material and Filter Bank Properties for Selected CMOS Materials

Material Index of Index Thermo-Optic Propagation Maximum  Maximum
Refraction  Contrast'  Coeff. (*10°K') Loss (dB/cm) FSR(THZ) Channels

Si0, 1.44 0% 1.5 <0.01 0 0
SiON  1.44-198 0-23% 1.52 0.1 0-1.0 ~30
Si3Ny 1.98 23% 2 ~1.0 1.0 ~30
SiN, 2.19 28% 4 7.5 2.2 ~30
a-Si ~3.73 43% ~24 0.5% 5.5 >128

poly-Si ~3.5 41% ~24 4.0 55 >128
SOl 3.48 41% 24 2.0 5.5 >128

' Index contrast calculated assuming SiO; cladding
? Best reported in literature, typical values range from 10-100 dB/cm
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the drop loss below 3 dB the bandwidth must be at least twice this minimum. Table 6.1
lists the material properties and resulting filter-bank properties for some common CMOS-
compatible materials. Of these materials, both SiNy and crystalline Si appear to be most
suitable for filter bank application.

For microring resonators with a SiNx core and oxide cladding, and a Qin of
~50 000 (propagation loss of ~7.5 dB/cm), it is possible to have a FSR of 2.2 THz
(2.5 THz if air-clad) and a bandwidth of 25 GHz, resulting in a filter bank with a
maximum of 29 channels. The higher index contrast of oxide-clad Si microrings allows
for a much larger FSR of >5.0 THz. Also, due to the lower intrinsic loss of Si
microrings, (Qu of 200000 and larger are routinely reported [39, 40]) bandwidths
smaller than 5 GHz are theoretically achievable, resulting in a maximum of >332
channels. This improvement by switching from SiNx to Si comes at price since the
resonant frequency of Si microrings is a factor of 1.5-10 times more sensitive to changes
in the microring waveguide dimensions, depending on the exact design.

The height of the waveguide is defined by the thickness of the top silicon layer of
the silicon-on-insulator (SOI) substrate. This thickness can be controlled with oxidative
thinning and measured very accurately with an ellipsometer. The microring-waveguide
width, however, is defined during fabrication, and is much harder to control and measure
at the required sub-nm level. To minimize the frequency sensitivity to microring-
waveguide width, a design was chosen that called for heights to widths of 105 X 600 nm
and 105 X 500 nm for the microring and straight waveguides, respectively. For these
cross sections, the frequency sensitivity to average ring-waveguide width, 40 GHz/nm, is

2.5 times less than for a typical Si-waveguide cross section and only 1.6 times more
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sensitive than for the SiNy design used. Choosing this cross section reduces slightly the
achievable FSR to 3.5 THz, due to increased bend radiation loss, but still theoretically
allows for over 128 channels within a single FSR. For the ultra-fast ADC system the
filter FSR has to be larger than 2.0 THz, the spectral width of the femtosecond laser
pulse, and the desired number of channels is only 20. This is possible to achieve using

the SiNx and Si second-order microring designs previously described in chapter 3.

6.2.3 Counter-Propagating-Mode Design

Another way to increase the performance of a filter bank is to use the 2 contra-
propagating modes of each filter. At a given resonant frequency a single microring
resonator supports two resonant modes; one propagating clockwise and the other
propagating counter-clockwise. Back reflections from sidewall roughness can allow
these two modes to couple, causing the resonant peak to split [41]. However, efforts to
reduce surface roughness can eliminate such problematic back reflections in HIC
microrings, eliminating any coupling between the two modes. This means that through
clever design it is possible to take advantage of the contra-propagating modes and
multiplex/demultiplex two signals at the same time. This has been demonstrated already
in an arrayed-waveguide-grating demultiplexer for a polarization-diversity scheme,
eliminating the need for two identical demultiplexers for each polarization [42].

Fig. 6.2 compares a double-filter bank using one mode and a single filter bank
making use of the contra-propagating mode. The functionality of these designs is exactly

the same, in the respect that they can multiplex/demultiplex two twenty-channel signals
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For the contra-propagating design to work, the crosstalk between the two modes
due to back reflections in the microring must be less than -30 dB. A simple experiment
using a first-order Si microring resonator was performed to measure the crosstalk
between the two modes, as well as to check that the resonances of both modes are
identical (Fig. 6.3a). The measured transmission response for both modes shows that

they have identical resonant frequencies and bandwidths (Fig. 6.3b). However, the
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Fig. 6.3. (a) layout of first-order microring-resonator filter. (b) Transmission
response of both propagating modes and crosstalk. (c) Plot of the crosstalk with the
drop factored out, demonstrating ~32 dB extinction at the resonant frequency.
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crosstalk is measured to be -6.5 dB, much higher than expected. Looking more closely at
the crosstalk it is seen that it is the sum of the drop and through response of the filter, not
what would be expected if it was due to coupling between the two contra-propagating
modes in the ring. There are two ways that this sum can occur. The first is that some of
the light that travels past the filter, but is not dropped, reflects off the end facet and then
travels back towards the microring where part of it gets dropped and measured as
crosstalk. The second way is that some of the light that gets dropped by the filter reflects
off the output end facet and travels back past the ring, yielding a through response, that is
then measured as crosstalk. This can be eliminated by reducing the reflections at the end
facets, by adding horizontal couplers and using index-matching fluid. By subtracting the
filters drop response from the measured crosstalk all that is left is the through response
and the crosstalk of the contra-propagating modes (Fig 6.3c). Since this through response
has 32 dB extinction at the resonant frequency, the crosstalk between the counter

propagating modes must be less than -32 dB.

6.3 SiN, FILTER BANKS

Using the SiNy material as a core, three filter banks were fabricated using the process and
designs described in chapter 3. The first filter bank was fabricated using the 50 GHz
3dB-bandwidth air-clad filter design; it contains eight channels. The second filter bank
consisted of two identical twenty-channel filter banks side-by-side using the 25 GHz-
bandwidth oxide-clad design. The third filter bank consisted of only two channels but

demonstrated the possibility of using thermal trimming to correct resonant frequency
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due to a difference of 0.8 GHz/nm between the resonance-frequency dependence on
specified radius at calibration and what was actually seen in the filter banks. This is
within the error of the calibration experiment, which is calculated to be ~1.0 GHz/nm.
The calibration of the resonant frequency dependence on dose was found to be even more
accurate. The average change in microring-waveguide width due to dose is measured to
be 0.34 nm per 1% increase in dose compared to 0.35 nm measured at calibration. This
means that the change in average ring waveguide width per percent exposure dose
increase varied by only 10 pm between the calibration experiment and the filter bank
fabrication. This demonstrates that the technique of dose modulation, after empirical
calibration, has the accuracy needed to fabricate filter banks based on HIC microring
resonators with channel spacings that are not limited by the SEBL system's discrete
address grid.

Controlling the exposure dose was also successful in correcting for the resonant
frequency mismatch in the second-order filters caused by intrafield distortions. Although
the filter design is symmetric, small distortions in the SEBL address grid cause the two
microring to have slightly different resonant frequencies. Without using the electron-
beam dose to compensate for this effect the filters would have a frequency mismatch of
8 GHz, which is equivalent to an average ring waveguide width difference of 0.24 nm
(240 pm) between the two rings. In the fabricated filter banks the frequency mismatch is
random in nature with the best filters having average ring waveguide widths that match
within 23 pm. The reason that the average ring-waveguide-width mismatch is not 23 pm

in all filters is due to uncontrollable, but very small, process variations. These process
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variations resulted in a standard deviation of the average ring waveguide width of
0.12 nm (120 pm).

The 46.6 GHz bandwidth measured in the individual filters of the filter banks is
very close to the designed 50 GHz bandwidth. The bandwidth is determined mainly by
the coupling strength between the bus and ring waveguides, which is very sensitive to the
filter's dimensions at the coupling region. Therefore, this small difference between the
designed and measured bandwidths suggests that the dimensions of the fabricated filters
are very close to the design values. Using the Raith 150 in scanning-electron-microscopy
mode, absolute dimensions of the filters were measured, with 5 nm absolute accuracy,
and compared to the targeted dimensions. The ring waveguide, bus waveguide, and bus-
to-ring coupling gap widths were measured to be 897, 700, and 166 nm, respectively. All
of these measurements are within the 5nm measurement error to their designed
dimensions, demonstrating the high level of absolute dimensional control achieved in the
fabricated filters. |

The low drop loss of 1.5+0.5 dB measured in the filter banks is much better than
the system requirement of 3 dB. The major source of this loss is the propagation loss in
the ring waveguide. From the internal quality factor (Qiy) of 53 000, measured in large,
weakly coupled rings, the propagation loss is calculated to be 7.7 dB/cm, due mainly to
absorption in the SiNx. The SiNy absorption loss was measured in an independent
experiment employing shallow-etched ridge-waveguide paperclip structures to be
8+2 dB/cm. Accounting for the difference in modal overlap between the ridge
waveguides and the rectangular waveguides employed in the filters, the propagation loss

expected due to material absorption alone is 6+2 dB/cm
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frequency mismatch between the two rings of each filter. This was not due to intrafield
distortion, which was measured during the calibration experiments to be 18 GHz and 60
GHz for the top and bottom filter banks, respectively. The explanation of this mismatch
is, once again, the proximity effects from the large number of drop ports. This is further
supported by the fact that the mismatch in the first filter of both filter banks is very small
but gets larger, on average, as more drop ports are added. The second reason for the
increase in bandwidth is a much larger propagation loss than expected. This reduced Qin,
limited the minimum bandwidth of the filter and increased the drop loss. This higher
than expected propagation loss is caused by increased material absorption in the SiN,.
The optical quality of the SiNy film can vary significant from batch to batch.

The average drop loss of the filters in the filter bank was measured to be 12 dB
with a deviation as high as 8 dB. The reason the deviation was much higher than what
was seen in the eight-channel filter banks is that as the bandwidth is reduced the filter
shape, drop—l(;ss and bandwidth, become much more sensitive to small frequency
mismatches between the two rings in the same filter. So, even though the variance of
frequency mismatches stayed about the same as for the fabricated eight-channel filter
banks, the smaller bandwidth makes them more noticeable. This demonstrates the
importance of removing these frequency mismatches by some postfabrication tuning
method as one goes to smaller bandwidth filters

Another important parameter measured for these two filters banks is how well
their transmission responses match each other. The average channel frequency mismatch
is measured to be 0.9 GHz (23 pm) with a standard deviation of 8 GHz (200 pm). This

demonstrates that there are no systematic differences between the resonant frequencies of
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the two filter banks that are fabricated in close proximity. The standard deviation of the
frequency error between the two filters corresponds to a dimensional variation of 200 pm,
which is very close to what is expected from small random process variations like those
seen in the fabricated eight-channel filter banks. It is expected however, that for filter
banks fabricated far from each other in time and distance, that there will be a systematic
shift in their transmission response, but not in channel spacing, due to a combination of
changes in the thickness of the core material and long term drift in the electron-beam

current. This is evident in the experimental results.

6.3.3 Thermally Corrected Filter Bank

After fabrication of the filter bank, any errors in the resonant frequency of each
microring can be corrected using thermal tuning. The refractive indices of SiNy and Si
change slightly with temperature. Therefore, by heating a microring it is possible to
change its resonant frequency by changing nsr. In Fig 6.6, the transmission response of a
two-channel filter bank is shown, before and after thermal tuning. Before thermal tuning
one of the filters has a drop loss of 13 dB due to a frequency mismatch of 63 GHz
between the two rings, the other filter has a drop loss of 8 dB and a frequency mismatch
of only 5 GHz. After thermal tuning, the frequency mismatch for each filter is reduced to
less than 1 GHz and the drop loss is 8 dB for both filters. The thermal crosstalk between
the individual heaters for each ring of the same filter is only 3%, and the crosstalk
between heaters for different filters is less than 0.1%. In addition to correcting for the

frequency mismatch between two rings of the same filter, thermal tuning can also be used
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power than the SiNy filter bank. If a channel spacing of 100 GHz is acceptable, the

power consumption can be reduced to 0.064 W.

6.5 CONCLUSION

For high-performance filter banks second-order microring filters were used, balancing the
tradeoffs between channel density and fabrication challenges. This fixed the channel
density at three times the filter bandwidth. Therefore, to increase the number of channels
one must either increase the FSR or decrease the bandwidth. Two CMOS-compatible
materials, which allow for a FSR greater than 2.0 THz, are SiNy and Si. Using these
materials two-, eight-, and twenty-channel filter banks were fabricated. The frequency
control was better for SiNy filter banks due to the lower dimensional sensitivities. The
best SiNj filter banks had an average channel-spacing error of only 3 GHz, corresponding
to control of the average ring waveguide width of 75 pm However, when moving to
smaller bandwidths, the material absorption of the SiNy resulted in a high drop loss, of
8 dB. By switching to Si, this drop loss was reduced to 1.5 dB, but at the price of larger
frequency errors. Fortunately, the tuning efficiency for the Si filter was better than for
SiN,, making the total power to correct for all frequency errors approximately the same

for the twenty-channel SiNy and Si filter banks.
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Chapter 7

Hydrogen Silsesquioxane Overcladding

7.1 INTRODUCTION

In HIC photonic devices the majority of the emphasis is put on the high-index core
material, usually treating the low-index cladding material(s) somewhat as just an
afterthought. This is not the best approach because the cladding material serves many
purposes beyond just providing the index contrast needed to help guide the optical mode.
For single-mode HIC photonic structures a large fraction of the optical mode, sometimes
more than 50%, travels outside the core in the cladding material. Hence, it is important
that the cladding materials have low optical loss. The cladding also protects the photonic
devices from the outside environment. For example, if a microring resonator is left
unclad, dust particles that land on the device or changes in the chemical composition of
the atmosphere can cause the resonant frequency to shift. The latter effect has, in fact,
been exploited to make chemical sensors [43]. It is also important that the cladding

material be uniform and fill all gaps between photonic devices. This is especially

Parts of this chapter were featured in:

C.W. Holzwarth, T. Barwicz, Henry I. Smith, “Optimization of hydrogen silsesquioxane films
for photonic applications,” J. Vac. Sci. Technol. B, vol. 25, no. 6, pp 2658-2661 (2007).
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in the case of SOI wafers, two thermally-oxidized wafers are bonded and then one of
them is cut using smart-cut technology [44]. Thermal oxidation, however, is not an
option for the overcladding layer because there is no silicon source for the oxide. The
other options for depositing oxide include PECVD with various source gasses, LPCVD,
sputtering and evaporation. Most of these options either form low quality oxides
containing pin-holes, pores, and Si-H bonds, or they have difficulty filling in high-aspect-
ratio gaps. Tetraethyl orthosilicate (TEOS) deposition is one method that is capable of
meeting these requirements, but it requires expensive equipment and must be optimized
for gap filling.

A cheaper and simpler alternative to TEOS is to use hydrogen silsesquioxane
(HSQ), a spin-on glass, to form the overclading oxide layer. HSQ is a non-organic
polymer with a chemical composition of [HSiO3x]s. It was developed as a spin-on low-k
dielectric, but it also functions as a negative electron-beam lithography resist. It is also
well know to have excellent gap-filling and self-planarization properties making it a
promising candidate for an overclading material [45]. However, an HSQ film prepared
using the standard thermal annealing recipe results in a film that contains Si-H bonds, is
about 21-24% porous, has reduced thermal conductivity, and is under high tensile stress,
limiting the maximum thickness to less than 1.2 um. By optimizing the annealing
process it is possible to eliminate these problems and fully convert HSQ so that it has
essentially the same optical properties as thermally-grown SiO,, while retaining the

excellent gap-filling and planarization properties.
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7.2 CONVERTING HSQ TO SiO,

The subject of converting HSQ to SiO; has been touched on in many journal articles,
most of the time with the objective of improving the etch resistance of HSQ after SEBL
[46, 47, 48]. The methods used include O, plasma treatments and thermal annealing at
high temperatures in either N or O, atmospheres. Treating the films with an O, plasma
in only effective in converting the first few nanometers from the surface into SiO,, which
although successful for improving the etch resistance of HSQ it is not helpful when one is
trying to convert thick films of HSQ into SiO,. Previous efforts using high temperature
thermal anneals involved thin films, less than 200 nm, and therefore were not concerned
with stress in the film. The stress, however, is critical for photonic applications because
the overcladdings thickness must be 1.0-2.5 um, depending on the exact design. Also,
the confirmation that these HSQ films were in fact converted to SiO, is incomplete.
Usually only the change in Si-H bonds was measured and it was assumed that once these
bonds are completely removed the film is SiO,. This is a faulty assumption that does not

give information about the stoichiometry or porosity of the film.

7.2.1 Thermal Annealing

Since we were concerned with achieving thick SiO, films (> 1 pm) for the
overcladding we placed our efforts on optimizing the thermal-annealing process. The
optimized annealing process must be successful in removing the tensile stress, porosity,

and Si-H bond content of the film, while achieving the same index of refraction as
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thermally-grown SiO, and maintaining the excellent gap-filling and planarization
properties.

HSQ is commercially available from Dow Corning and comes in the form of a
cage oligomer [HSiO3/,], in a 4-methylpentan-2-one solution (Fig. 7.2a). This solution is
spun onto a wafer to form a thin film. The standard thermal cure for HSQ consists of
three consecutive 1 min hot plate bakes at 150, 200, and 350°C and then a final 1 hr

anneal at 400°C in a N; atmosphere [49]. Each part of this curing process has a very
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Fig. 7.2: Bonding structure of HSQ in the (a) cage oligomer form
and (b) a network structure.

specific role. The first hot plate bake at 150°C is responsible for removing the solvent
from the thin film. The second bake at 200°C allows the HSQ oligomers to flow, filling
in gaps and creating a planar surface. In the third bake at 350°C there is an exchange of
Si-O and Si-H bonds between neighboring oligomers causing the HSQ oligomers to start
forming a network structure, following the chemical Eqs. 7.1-3, providing some

mechanic stability.
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2HSiO3/2 > H,Si0 + Si02 7.1
HleO + HSiO3/2 > SIOQ + H3Si01/2 7.2
H3Si01/2 + HSiO3/2 > SiOQ + SiH4 7.3

The final anneal at 400°C in a N atmosphere completes the formation of this network
structure resulting in the evolution of SiH4 and H, (Eq 7.4-5) and marked by an increase
in porosity and slight reduction in refractive index. The final HSQ film is the network
structure shown in Fig. 7.2b containing up to 15 at% hydrogen and having a porosity near
24%.
4 HSiO3, > 3Si0, + SiH, 74
SiH, > Si + 2H, 7.5
For optimizing the annealing process it was decided to not change the first two
hotplate steps since they are responsible for removing the solvent, filling in gaps, and
planarizing the surface, things that are needed for the overcladding. It was also quickly
evident the third hot plate anneal should not be changed, since without this step most
films cracked prior to the final anneal, demonstrating that the mechanical stability
provided by this step is essential. This means that only the final annealing step should be
modified to create a film with the desired properties. The four major variables that are
controlled in this final annealing step are the ambient gas, temperature, anneal time and
ramp speed.
The two ambient gasses explored were N, and O,. At temperatures above 350°C
oxidation of Si-H can occur, increasing the incorporation of SiO, bonds in the film and
removing hydrogen in the form of H,O (Eq. 7.6). This results in an increase in the

refractive index of the film and a more SiOs-like structure, but at the same time
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increasing the stress of the film. On the other hand, when annealed in a N, atmosphere
hydrogen is removed from the film as SiH4 and H, (Eq. 7.4-5) and the stress in the film is
significantly less [50]. Since we want both a SiO; structure and a low stress film it was

initially unclear which ambient would be better.
2HSiO3/2 + 02 > H,0O + Si0Os 7.6

For the experiments a quartz tube furnace and rapid-thermal processing (RTP)
were used. These tools allowed testing of anneal temperatures between 400°C and
1150°C. It has been reported that pores in HSQ films start to collapse at temperature
greater than 435°C and complete removal of Si-H bonds occurs at temperatures above
650°C, suggesting an anneal temperature above 650°C should be used [52]. Once again
there is a trade off with stress since it has been shown that the stress in the film also
increases as the anneal temperature increases. By using the RTP tool it is also possible to
test the properties of films that are annealed for a very short period of time ~1 min.
compared to the | hr anneal time used in the quartz-tube-furnace anneals. Also RTP
allowed us to ramp to the anneal temperature very quickly, 50°C/s, compared to the slow
ramp rate of a quartz furnace, ~10°C/min. This allowed us to bypass stress states that
occur as the temperature is ramped up to the final anneal temperature.

For the experiments blanket HSQ films of various thicknesses were prepared by
spin coating FOx-25 onto a silicon substrate using spin speeds of 1000, 2000, and
5000 rpm. After spin coating, all samples were heated on three consecutive hot plates at
150, 200, and 350°C for 1 min each. One set of samples was set aside after the three hot-
plate bakes as the first control sample. Another set of samples was subjected to the

standard final cure of 1 h at 400°C in a N, atmosphere and set aside as the second control
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sample. The rest of the sample sets were subjected to anneals in either a quartz tube
furnace or a RTP tool, using either an N, or O, atmosphere. After annealing, samples
were inspected under an optical microscope for the presence of microcracks to
qualitatively check the stress. The thickness and refractive index of uncracked samples
were measured using a Sopra spectroscopic ellipsometer over a wavelength range of 0.4—
1.8 pm. This data was used to determine the film shrinkage, chromatic dispersion, and
the refractive index at 1550 nm for each annealing process. Fourier transform infrared
(FTIR) measurements were also performed to check for the presences of Si-H bonds and

the structure of the Si-O bonds.

7.2.2 Measured Material Properties

Table 7.1 shows the results of the refractive index at 1550 nm and the film
shrinkage for each anneal. It is important to note that all films annealed in the quartz
furnace above 800°C cracked and their data is not shown. From this data it is seen that as
the film shrinkage increases the refractive index increases. At lower temperature, 400°C,
the pores are not able to collapse so the changes are attributed to the removal of Si-H
bonds and the formation of the network structure. The amount of shrinkage increases
when a longer anneal time is used and when annealed in an O, atmosphere. This is
expected since at the lower temperatures the reactions to remove the hydrogen and form
the network structure is slow and the presence of O; is known to act as a catalyst for the
reaction. At higher temperatures the increase in refractive index and decrease in

thickness are due to the removal of hydrogen from the film and the collapsing of the pore
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structure. All films annealed above 800°C showed shrinkage of at least 21% signaling
the complete removal of the pores. For samples annealed at temperatures above 1000°C
the shrinkage is higher for samples annealed in N; than samples annealed in O, the
opposite of what is found at low temperatures. The reason for this is that when annealed
in N, the majority of the hydrogen is removed as SiHy and H, compared to H,O for

Table 7.1 Refractive Index and Film Shrinkage Results for HSQ Films

Temperature ~ Furnace  Time® Ambient Refractive index (1550 nm)  Shrinkage

350°C Hotplate 1 min Air 1.361 0%

400°C Tube 1hr N, 1.370 3.6%
400°C Tube 1hr 0, 1.386 7.9%
400°C Tube 12 hr N, 1.414 11.3%
650°C Tube 1hr N, 1.432 19.4%
800°C Tube 1hr 0, 1.419 21.7%
1000°C RTP 1 min N, 1.521 32.4%
1000°C RTP 1 min 0, 1.439 23.4%
1150°C RTP 1 min N, 1.585 37.9%
1150°C RTP Imin N, O 1.451 30.0%
1150°C RTP 1 min 0, 1.442 23.7%

* Time does not include ramp to anneal temperature
® Ramp performed in N», anneal performed in O,

samples annealed in O,. This means that in addition to the pores collapsing some of the
Si is also removed in the N, samples. Also, without the presence of O, no additional
oxygen can be incorporated into the film to correct the stoichiometry, resulting in the
formation of a silicon-rich oxide. This is confirmed by comparing the wavelength-
dependency of the refractive indices of the samples annealed in N» at 1150°C with those
annealed in the presence of O (Fig. 7.3). The refractive index of the films annealed in N>
have a much higher chromatic dispersion than the sample annealed in Oz, which is

characteristic of silicon-rich oxides [53]. These silicon-rich oxides are undesirable for

118



Chapter 7 Optimized Hydrogen Silsesquioxane Overcladding

photonic overcladdings as they often show higher optical loss, in part from the presence
of silicon nanoclusters [54]. The sample annealed at 1150°C in O, has the same
chromatic dispersion and refractive index as thermal SiO,. To prevent the formation of

silicon-rich oxides the optimal final anneal must be performed in an O, atmosphere.

1.657—~ g T g §
- :
- -~ ; i i
~Se ; !
8P 1oy,
{ -
18 | 11 Se—
2185
g -, 2 §
8 .,
‘g 15 ».,%
“'.‘" 'uu (
\( - * T 'o‘z'imgg.{
ras| . RIElisrco, anneal J—
14 T f 1
400 600 800 1000 1200
Wavelength {nm)

Fig. 7.3: Reactive index versus wavelength for the three
different RTP anneals at 1150°C. The two samples annealed
with Nj present have higher chromatic dispersion.

The FTIR spectra for select HSQ annealing recipes are shown in Fig. 7.4. All
peaks are normalized to a film thickness of 1 um and the spectra offset for easy

comparison. The important peaks in the spectra are the Si-H stretching peak at 2250

cm™, the three Si-O-Si (Si0,) peaks at 1090 cm™, 800 cm™, and 450 cm™, and the

multiple peaks from 800-900 cm™ that are characteristic of suboxides (Si—O-H) [55, 56].
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From the spectra it is seen that for all samples annealed above 650°C the Si-H and
suboxide peaks are completely removed, therefore, all bonded hydrogen is removed, as is
consistent with previous published results. The FTIR data also show that the Si-O-Si
stretching peak gets larger in intensity and narrower as the anneal temperature is
increased and the ambient is changed to O, suggesting that the HSQ film is being
converted to SiO» via a combination of pyrolysis and oxidation. For the sample annealed
at the highest temperature in an O, atmosphere the FTIR spectrum is identical to that of

thermal Si10;.
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Fig. 7.4: FTIR spectra of HSQ films for selected final anneals. The spectra have been
offset and all normalized to a film thickness of 1 pm for easy comparison.
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7.2.3 Creating Thick Layers

The maximum thickness of HSQ films is limited by tensile stress. This tensile

stress can form during the anneal and as the samples cools down to room temperature.
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During the anneal, tensile stress develops from film shrinkage and the transformation of
H-Si-O to Si-O-Si bonds [50]. Also, during cool down, stress can form from the
coefficient of thermal expansion (CTE) mismatch between the annealed HSQ film and
the Si substrate. The CTE of HSQ has been found to correlate with the Si-H to Si-O
bond ratio [51]. When this ratio is over 0.2 the CTE of the film is between 10 and 20
ppm/°C, significantly higher than the CTE of Si, 2.6 ppm/°C, causing tensile stress to
increase when the sample is cooled down to room temperature. Once the ratio falls
below 0.2 the CTE decreases dramatically, and is approximately 1 ppm/°C, similar to the
CTE of SiO,, when all Si-H bonds are removed. Therefore, for anneals above 650°C,
containing no Si-H bonds, the CTE mismatch between the HSQ and Si substrate can be
ignored, leaving only the tensile stress formed by film shrinkage and the transformation
of the bond network during the anneal. This stress starts to form at 350°C and 360°C for
films annealed in O and Ny, respectively [50].

Of all @e anneals measured none, of them achieved a single layer thickness of
2.0 pum. In fact, most of them cracked due to stress at thickness less than 1 pm, as seen in
Table 7.2. To achieve the 2.0 pm thickness needed for the overcladding layer one must
resort to a multilayer film. The problem with this is that if the tensile stress is still
present in the first layer the addition of the stress in the second layer will cause the film to
crack. To qualitatively determine if the stress is still present after the anneal, a second
layer of HSQ was added and the sample subjected to the same final anneal. The only
samples that did not crack were samples that had been processed by RTP at temperatures
above 1000°C in either a N, or O, atmosphere. For these samples it was possible to add a

third and fourth layer, reaching the desired overcladding thickness of 2.0 um, without the
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Knowing this, it was of interest to understand why the films annealed in the
quartz tube furnace at 1000°C cracked since stress is annealed out at temperatures above
1000°C. The main difference in the two experiments was the time the samples spend
between 350°C, where tensile stress starts to form, and 1000°C, where the stress can
relaxed out. For the quartz-tube furnace the ramp rate was approximately 10°C/min
while the ramp rate used in the RTP experiments was 50°C/s. This resulted in the
samples being between the temperature of 350°C and 1000°C for 40 min and 13 s for the
quartz and RTP anneals, respectively. (The samples were loaded into the quartz furnace
at 600°C.) This led us to speculate that the films in the quartz tube furnace were cracking
due to stress before they reached the temperature at which the stress can be annealed out.
To confirm this we tried various ramping rates for the RTP anneals and found that as the
ramping rate was decreased the maximum single-layer thickness of the film, achievable
without cracking, was also reduced. This means that by using the quick ramp rates,
attainable through RTP, it is possible to heat the sample to 1000°C before the stress
builds up to the critical value needed to crack the film.

Therefore, the optimal anneal includes a quick ramp rate of ~50°C/s using the
RTP tool. It is also necessary to heat the sample above 1000°C in order for the tensile
stress in the film to relax, enabling multilayer films. Also, to avoid the formation of sub-
oxides the annealing step must be performed in an O, atmosphere. Elsewhere in this
thesis the optimized anneal refers to annealing the HSQ film at 1150°C for 60s in an O,

atmosphere using RTP with a ramp rate of 50°C/s.
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7.8). This is consistent with the best published data for Si3sN4 microrings fabricated using
TEOS as the overcladding material [43]. This demonstrates that HSQ can be used as an
alternative to TEOS for overcladding photonic structures without adversely affecting

device performance.
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Fig. 7.8: Measured transmission response of a weakly-

coupled Si3N4 microring resonator filter with a Q of 240 000.

7.3 CONCLUSION

In conclusion, we have presented an anneal process that optimizes the properties of HSQ
for photonic overcladding applications. The optimized final step of the anneal consists of
heating the sample to over 1000°C in an O atmosphere with a ramp rate of 50°C/s, using
RTP. This anneal is successful in removing the Si—H bonds, collapsing the pores, and
removing the tensile stress, enabling thick films to be formed through multiple spins. We
also demonstrated that the excellent planarization and gap-filling properties of HSQ are

retained after this annealing process. As a proof of principle, a weakly-coupled SizNy
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microring resonator overclad with optimized HSQ was fabricated and tested. The
measured Q of 240 000 is the same as the highest reported value found in the literature

for a microring with the same core material and TEOS overcladding.
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Localized Substrate Removal

8.1 INTRODUCTION

Almost all research in CMOS-compatible HIC photonics, including all work mentioned
so far in this thesis, starts with a silicon wafer as the substrate, with a thick (>2 pum) layer
of SiO; and a high-index core material on top of it (Fig. 8.1a). This thick layer of SiO;
between the substrate and the high-index core material is necessary to prevent the optical
mode carried in the waveguide from “tunneling” (leaking) into the high-index silicon
substrate. However, for high-performance electronics, such as processors, this thick layer
of Si0; is not allowed due to the ever increasing need for the silicon substrate to transfer
the heat away from the electronics. In order to integrate photonics monolithically with
high performance Si circuitry one must eliminated this thick SiO; layer and work
completely within the constraints of commercial CMOS process flows, utilizing the given
material layers, thicknesses, processing steps and tools. Any additional fabrication steps
must be performed as post-processing steps that meet the backend-processing thermal
budget requirement of no steps above 400°C. This is no easy task, but the potential of
photonic interconnects to break the energy-efficiency and bandwidth-density bottlenecks

in scaled CMOS processor cores make it worth the effort.

Parts of this chapter were featured in:

C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popovic, V. Stojanovic, J. L. Hoyt, R. J. Ram,
and H. L. Smith, “Localized Substrate Removal Technique Enabling Strong-Confinement
Microphotonics in Bulk Si CMOS Processes,” in Conference on Lasers and Electro-
Optics/Quantum Electronics and Laser Science Conferenc,e (2008).
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depositing the gate layer of the transistors. The 50 nm of SiO; is much thinner than the
STI layer in the upcoming technology nodes and the 80 nm of polysilicon is about the
same thickness as the transistor gate. Paperclip waveguide structures, for loss
measurements (Appendix A), were then patterned using a positive photoresist and contact
lithography. The pattern was transferred into the polysilicon layer using a Cl, based RIE
process, taking great care to not etch through the 50 nm of thermal SiO,. The photoresist
was then striped and a 500 nm thick protective layer of SiO, was deposited using
PECVD. Half of the samples were annealed at 800°C for an hour to close up any
pinholes in this layers, the other half were left unannealed. This SiO; layer is used to
protect the polysilicon waveguide from being etch by the XeF, gas and simulate the
dielectric layers used in a CMOS process. Holes were then patterned next to the
waveguides using a positive photoresist and contact lithography. The holes were then
transferred into the 500 nm PECVD and 50 nm thermally grown SiO; layers exposing the
silicon substrate beneath. The photoresist was then stripped with acetone before
performing the XeF, etch.

The XeF, etch cycle was set up with a 60 s etch time with a 30 s pump down
between etches. The sample was placed into the chamber and etched for 5 cycles (5 min
total etching) and then examined with an optical microscope. Under the optical
microscope it is possible to see how much of the substrate had been removed due to the
differences in index of refraction of air and SiO,. The sample was then placed back into
the XeF, etching tool, etched for another 5cycles, and viewed under the optical
microscope to see how far the etch had progressed. This was repeated until the substrate
in close proximity to the waveguides had been completely removed, as seen in Fig. 8.8.
This required a total of 30 cycles. The sample was then cleaved to expose the end facets
of the polysilicon waveguides for optical testing.

Three key observations were made during this fabrication. First, the polysilicon
waveguides were slowly etched by the XeF, in the samples that were not annealed at
800°C. This demonstrated that XeF, can travel though pinholes in the PECVD oxide
layer only a few nanometers in diameter. This was not a problem in the samples that
were annealed. The second observation is that as the undercut increased the etch rate

decreased. The pump-etch-pump technique should not allow this to happen since the
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These loss measurements are two orders of magnitude lower than the 1000 dB/cm
expected if the substrate had not been locally removed. Note that the loss increases
substantially at shorter wavelengths. The reason for this is two fold. First, the
confinement of the optical mode in the polysilicon waveguide is higher at shorter
wavelengths. Assuming that the majority of the loss is caused by absorption in the
polysilicon this would imply that if the optical absorption is constant with wavelength the
propagation loss is proportional to the confinement factor. In addition to this, the optical
absorption is also thought to be higher at the shorter wavelengths. The optical absorption
in polysilicon can be broken down into two sources. One is optical absorption due to
mid-band gap states which are present in polysilicon due to the dangling Si bonds at grain
boundaries. The other is optical absorption from above-band gap states. The bang gap of
crystalline silicon is 1.1 eV, which means that the optical absorption for wavelengths
below 1130 nm will be substantial. In going from crystalline silicon to polysilicon the
band gap edge is blurred so that the absorption no longer has a sharp transition at
1130 nm but instead there is an absorption tail that can extends out to longer

wavelengths.

8.3 CREATING WAVEGUIDES IN A CMOS LINE

Although the initial experiment demonstrated that the localized substrate removal method
worked and that the polysilicon has low enough loss for testing devices, there is still
much that needs to be worked out to transition this process to an actual CMOS chip. First
and foremost is to make the waveguide-fabrication flow fit in seamlessly with the CMOS
fabrication flow. Also, the CF4 RIE step must be able to etch though all the materials in
the dielectric stack to reach the Si surface. There are also questions about how wide of an
area of the substrate can be locally removed before stress in the dielectric stack becomes

a problem.
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8.3.1 Transparent Fabrication

The most difficult aspect of this challenge is to make the process flow completely
transparent, that is that the set of process steps are the same for a chip containing
photonic structures and one with only electronics. This is important since it would enable
companies to simply submit their mask layouts to any Si foundry and have their devices
fabricated without the need for a specialized fabrication line, greatly reducing the cost.
As mentioned earlier, the first step for creating the waveguide is to deposit and pattern
the polysilicon gate layer above the STI layer. Although this polysilicon is doped in later
steps either P or N-type there is a dopant blocking layer that can be used to prevent this.
Also, normally the top surface of the polysilicon is silicided to provide good electrical
contact, but there is also a silicide block layer that can be used to prevent this from
happening to the waveguide. Once the waveguide is fabricated it is important to keep all
metallization layer at least 1 pm away. This requires a block of metal layers 1 and 2
above the photonic structures. These metal layers have to be manually designed so that
they meet the metal-fill requirements of chemical-mechanical polishing (CMP) while
maintaining a minimum distance from the photonic components.

Although metal layers 3 through 5 are far enough away from the photonic
structures as to not cause optical absorption, care must be taken to leave a metal-free area
in order to couple the light into the photonic structures through vertical couplers. Also,
metal-free areas must be formed in order to etch holes through to the silicon substrate.
Once again, it is important to meet the mandatory metal fill requirements for CMP. It is
also advantageous to place metal structures around the etch holes to help in alignment of
the post-processing etch holes. If the alignment to the open etch hole area is poor the
metal around the etch hole will act as a mask during the RIE etch steps. This is important
since the lithography step for opening up the etch vias is done as a post-processing step

where the alignment will very likely be worse than what is used in the actual CMOS line.

139



Chapter 8 Localized Substrate Removal

8.3.2 Post-Processing

This post-processing localized substrate-removal technique was tested on actual
ICs to test its feasibility. The ICs were manufactured by Texas Instruments in their
65 nm-node CMOS manufacturing line. Although fabricated as part of a 300 mm wafer
we received the chips after they had already been diced into 2 mm squares. When
spinning resist onto chips this small a significant portion of the chip is taken up by the
edge bead, formed at the edge of the chip. This edge bead, which can be tens of microns
thick, posed a significant challenge since contact lithography was going to be used to
define the etch holes. This problem was overcome by sticking the chip on a bigger wafer
and placing tape around the chip that was the same thickness as the chip. This, in effect,
made the resist not sense the effect of the chip’s edge, eliminating the edge bead.

An 8 um-thick layer of resist was spun on the chip using this method and then
contact lithography was used to define the etch hole pattern. An RIE step was then
performed using CF4 gas and a 250 V bias to etch through the dielectric stack. This etch
takes a total of 2 hours but is broken up into 5 min steps with a 5 min break between each
etch. The reason for this is that the sample heats up during the etch, which can cause the
photoresist to burn making it very difficult to remove.

Once the etch holes have reached the surface of the silicon substrate the resist is
removed with acetone. The chip is than placed on a piece of tape and the sides of the
chip are coated with photoresist. This is done to prevent the XeF; from etching the
substrate form the bottom or edges, the only exposed silicon is now at the bottom of the
etch holes. The chip was than placed in the XeF; etch chamber and etched for 5 cycles of
1 min. After the 5 cycles the sample was viewed under the optical microscope to see how
much of the substrate had been removed. Fig. 8.11 shows the etch front as it undercuts
some of the photonic structures on the chip during the XeF, etch. Undercuts with
diameters as large as 80 um were produced without any noticeable effects of stress in the
dielectric stack. Once the substrate has been locally removed from under the entire

photonic structure the etching is stopped and the chip is now ready for optical testing.
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fabricated polysilicon waveguides with a measured propagation loss ~10 dB/cm, two
orders of magnitude lower than the ~1000 dB/cm of loss expected if the substrate was not
locally removed. We also demonstrated how this post-fabrication process can be used on
integrated circuits, fabricated in a commercial CMOS line, enabling transparent

integration of photonics with CMOS electronics.
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Conclusion

9.1 SUMMARY OF ACCOMPLISHMENTS

In this work, novel nanofabrication techniques for electronic-photonic integrated circuits
(EPIC) were developed and characterized. This included ways to precisely control the
resonant frequency spacing of microring resonator filters, enabling the fabrication of the
high-performance filter banks needed for many EPIC systems. Also, supporting
technologies for integration were developed including an optimized annealing process for
HSQ and a localized substrate-removal method. The latter enabling the transparent
integration of photonics with CMOS electronics.

The most advanced microring-resonator filter banks were fabricated, using SEBL,
which enabled control in the average ring-waveguide width on a scale two orders of
magnitude smaller than the SEBL address grid. This was achieved by using the electron-
beam dose to precisely control the width of the ring waveguide on the tens of picometer
scale. The average channel spacing of the best fabricated filter banks was within 3 GHz
of the target. A dynamic postfabrication tuning method, using integrated microheaters to
reduce the frequency errors in a fabricated filter bank to less than 1 GHz, was
demonstrated. A static tuning method, consisting of electron-beam curing the HSQ
overcladding was presented as a means to correct frequency errors without requiring
constant power. This full complement of frequency control enables the fabrication of
efficient, high-performance microring-resonator filter banks.

An optimized annealing process for HSQ, a spin-on glass, was developed to form
a high quality overcladding material for high-index-contrast photonics. The optimized
anneal consisted of heating the HSQ film in a rapid thermal processing tool to a

temperature above 1000°C in an O, atmosphere. Using this method it was possible to
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achieve a film thickness of 2.0 um that had essentially the same optical properties as
thermal SiO; with excellent gap-filling and planarization properties.

To enable the seamless integration of photonics with CMOS electronics a
postfabrication method of localized substrate removal was demonstrated. This process
relies on using RIE to etch through the backend dielectric stack, and using XeF, gas to
locally remove the silicon substrate proximate to the photonic structures. This enables
the fabrication of photonics without a thick SiO, undercladding layer, which is not
allowed in high performance electronics due to thermal constraints. Using this technique
it was demonstrated that waveguides with a propagation loss of ~10 dB/cm can be

fabricated using the gate polysilicon, deposited on 50 nm of SiO», as the core.

9.2 FUTURE WORK

Of the work presented here I see three main areas that are in need of further research.
The first is developing a way to scale-up this process so that it does not rely on the slow
serial process of SEBL. The second is further exploration of static tuning of the
microrings with electron-beam curing. The third is the fabrication of low-loss photonic
devices in a commercial CMOS line utilizing the localized substrate removal
postfabrication technique.

A few methods of process scale-up were presented in section 4.4. The two that I
believe are of the most interest to academic research are nanoimprint lithography and
zone-plate-array-lithography (ZPAL). Using the SEBL techniques described in this
thesis it should be possible to make a nanoimprint template for microring-resonator filter
banks. Since nanoimprint lithography is always described as capable of accurately
replicating features on the imprint template, it should be able to replicate the resonant
frequency spacing of the filter bank. Also, by measuring the resonant frequency spacing
of filter banks fabricated using nanoimprint, it will be possible to confirm how well the
dimensions are replicated. The advantage of using ZPAL to scale up this process is that
it would demonstrate how new maskless lithography tools help address some of the
unique fabrication challenges of photonic devices. ZPAL might not out perform

projection lithography in minimum feature size, but it may be able to make superior filter
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banks by taking advantage of its ability to adjust the exposure dose for each microring
individually.

The work presented here on static tuning of the resonant frequency by electron-
beam curing of the HSQ overcladding only scratches the surface of the potential of this
method. Two aspects that need to be explored further are; how the thermal annealing
history of the HSQ affects the electron-beam dose needed for the desired tuning and, are
there any other types of overcladding materials for which this method could be used. I
believe that this could make a good masters project for an interested student.

The post-processing method of localized substrate removal makes it possible to
fabricate low-loss photonics in a commercial CMOS process. It has, however, been very
difficult to do this for three main reasons. One is that there is much secrecy in the actual
CMOS fabrication flow, preventing an outside researcher from knowing all the details
that may effect photonic device performance. The second is the long research cycle. It
can take 6 months to a year from the time of design of the chip to its actual delivery,
making it a very slow process to debug. The final reason is that the area on a wafer in a
CMOS process flow is very expensive and the sample size typically received is only
2mm X 2 mm. This small size makes every part of the fabrication process more difficult
due to handling challenges and edge effects. For progress in this area to be made at an
acceptable rate, I believe the research needs to be an equal collaboration between a
CMOS foundry and academic researchers. This in itself can be a challenge due the
“openness” of university research and the proprietary nature of industry. However, the
recent surge in fab-less and fab-lite IC companies have put pressure on CMOS foundries
to be more open with their processing details, possibly laying the ground work for

university collaboration.
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Appendix A

Loss Measurement Methods

When fabricating photonic devices one question that always needs to be answered is,
what is the propagation loss? Propagation loss can be very difficult to measure. Over the
course of my thesis work I have employed three different methods for measuring the
propagation loss. Each method has its own advantages and disadvantages, making it
important to have structures in every fabricated layout that can be used for each method
The first loss measurement method is cut-back. In this method, one measures the
transmitted power through different lengths of waveguides. By plotting this data as
power (dB) versus length (cm) the slope will equal the propagation loss. One problem
with this method is that for each length the sample must be cleaved. The randomness of
the cleaving will result in a significant coupling-loss variation which will add to the error
of the measurement. To avoid this problem, one can use so-called “paperclip” structures,
shown in Fig. A.1, to measure different lengths without having to recleave the sample. In
the paperclip structures the length of the straight section is different for each paperclip,
but the length of curved sections is kept the same. A few disadvantages of using the cut-
back method is that it does not work well for samples with very high or very low

propagation loss. If the loss is too high (>50dB/cm), it will not be
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