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Abstract

Olivine LiMPO 4 (M = Fe, Mn, Co, Ni) compounds have received most attention from the
battery research community as the cathodes for Li-ion batteries because of several
advantages, including a high theoretical capacity, 170 mAh/g, and flat discharge potential
(with respect to Li/Li+) of 3.45 V, 4.1V, 4.8V, and 5.1V, respectively, for Fe, Mn, Co,
and Ni. Among these, LiFePO4 has received the most attention for its likelihood to
provide low price, good cycling stability, thermal stability, and low-toxicity. It is being
utilized in a new generation of Li-ion batteries for high power applications such as power
tools and electric vehicles. However, LiFePO 4 cathodes also have several drawbacks,
such as low electronic conductivity, and slow Li-ion transport during the LiFePO 4/FePO 4
two-phase transformation during the charge-discharge process. This results initially in
poor rate capability and making the practical utility of these compounds unclear.
Numerous studies have attributed the rate capability of olivines purely to chemical
diffusion limitations. Many efforts have been devoted to improving the conductivity and
the rate performance of LiFePO4 cathodes. Since this class of olivines undergoes a first-
order phase transition upon electrochemical cycling, in order to improve rate capability,
an equally important goal is to maximize the rate of phase transformation. In this work,
the impact of phase behavior and phase transformation on electrochemical properties
such as voltage profile, cycle life, and rate capability of olivine compounds was studied
in several aspects. We found that: (1) the phase diagram of LilxFePO 4 is size and
composition-dependent; (2) elastic misfit between the triphylite and heterosite phases
during electrochemical cycling plays a significant and previously unrecognized role in
determining the rate capability and cycle life of olivine compounds; (3) the phase
transformation path of nanoscale olivines Lil_-xMPO 4 (M = Mn, Fe) is much more
complex than their conventional coarse grained counterparts. Upon electrochemical
cycling, a fraction (increasing with increasing size) of the delithiated LiyMPO 4 that is
formed is partially amorphous or metastable. Finally, (4) aliovalent cation substitution is
an effective and controllable way to improve electrochemical properties, especially rate
capability, of the LilxFePO4 olivine compounds.

Thesis Supervisor: Yet-Ming Chiang
Title: Kyocera Professor of Ceramics, Department of Materials science and Engineering
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Chapter 1
Motivation

Lithium-ion batteries have improved performance in a wide variety of mobile electronic

devices such as communication devices, multimedia players, and laptop computers

(Figure 1-1). They have higher volumetric and gravimetric energy densities than other

competing battery technologies, such as lead-acid, nickel cadmium (NiCd), or nickel-

metal hydride (NiMH). This enables lighter and smaller battery packs. New fields of

applications, such as power tools, plug-in hybrid electric vehicles (PHEVs), hybrid

electric vehicles (HEVs), all-electric vehicles (EVs), renewable electrical energy storage,

and electric grid stabilization, require that Li-ion batteries have high safety, durable high

power, long life and low cost. For hybrid vehicles, the materials in the rechargeable

battery must have durable high power being able to discharge fast so that the vehicles can

accelerate quickly or to charge sufficiently fast to take advantage of regenerative braking,

otherwise much of the fuel savings are lost. Li-ion batteries are viewed today as the most

viable electric-vehicle battery chemistry due to their superior performance over other

battery technologies. Some examples of battery packs currently available for electric

vehicles applications are given in Figure 1-2. In such high-power applications, the phase

behavior and phase transformation kinetics of the materials used in the batteries are

critical to the electrochemical performance.

Lithium-ion batteries operate by an electrochemical process in which lithium ions are

shuttled between two host electrodes (cathode and anode) during charge and discharge. A

typical Li-ion battery contains a cathode, anode, electrolyte, and separator (Figure 1.3).

The separator is a polymeric film used to prevent short circuits between the cathode and

the anode. The electrolyte is an electronic insulator but an ionic conductor (i.e. it only

allows ions to pass, but electrons normally are blocked). During discharge, an electrical

circuit is formed, the anode material oxidizes, or gives up electrons, whiles the cathode

material (in this case lithium cobalt oxide), immersed in an electrolyte, becomes reduced,
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or gains electrons. Lithium ions move from the anode to the cathode to neutralize these

charges. The reactions can thus continue and the electrons continue to flow, providing

electrical energy to the connected device. During charging, the process is reversed: the

cathode and the anode are oxidized and reduced, respectively. The electrical energy is

restored to the battery. Ideally, intercalation or de-intercalation during cycling of lithium

ions should leave the host structure intact. In practice, however, variation in lithium

concentrations can lead to structural changes involving several phase transformations

and/or volume changes. Examples of intercalation compounds that undergo a volume

change with composition (because the ions occupy interstitial sites), include materials

cycled predominantly within a solid solution field such as LiCoO 2 and LiMn20 4. The

compounds that undergo a first-order phase transformation include the olivines LiMPO 4

(M = Mn, Fe, Co, Ni), Li4Ti50 12, and the "lithiated spinel" Li2Mn20 4. Extensive research

efforts have focused on understanding these structural changes in the lithium transition

metal compounds and their effects on electrochemical properties. Understanding this

relationship is critical for developing new materials as well as optimizing electrochemical

performance of existing materials.

The main objectives of this research are to study the impact of phase behavior and phase

transformation kinetics during electrochemical cycling on electrochemical properties

such as voltage profile, cycle life, and rate capability, and how these are affected by

particle size and compositions. We choose to use lithium transition metal olivine

compounds LiMPO 4 (M = Fe, Mn) as our model materials, because they represent a class

of cathode materials of great interest to the battery community due to their high potential

uses in EV, HEV, and PHEV applications.

The energy output of lithium rechargeable batteries is dependent on the voltage upon

which lithium ions are inserted and the number of sites that can accommodate the ions in

the host structure. The theoretical voltage of a battery is determined by the type of active

materials it contains. The value can be calculated from free energy data or obtained

experimentally. The voltage is dependent on many factors, including concentration and

temperature, as described by the Nernst equation:
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E = E _RT In [reduction] Equation 1
nF [oxidation]

Where R = gas constant

T = absolute temperature

F = Faraday's constant (96,485 C.mof 1 = 26.8 Ah.mol- 1)

EO = standard potential at 25 0C

n = number of moles of electrons in the reaction (for lithium cells, n = 1)

[Reduction] and [oxidation] = molar concentrations of the ions of the substance

being reduced and oxidized.

The cell potential (AEo) is determined by the thermodynamics of the system, and it is

related to the Gibbs free energy of the system by the expression:

E-EO = AE =-AG Equation 2
nF

The free energy is related to the chemical potentials p of the reactants i, as

AG = v,,u, Equation 3

where vi are coefficients of the ith reactants in the electrochemical reaction. For

substances formed, v is positive, and for substances consumed v is negative. Since

AEO 1 v, I, Equation 4
nF ,

the cell voltage is thus obtained from the chemical potentials of the reactants in the cell.

When a steady current is applied to the electrode upon charging, the voltage or potential

of the cathode moves to a value characteristic of the reactive couple and varies with time

as the ratio of concentration changes at the electrode interface. For the olivine compounds

(LiMPO 4, M = Fe, Ni, Mn, Co), the model of two-phase coexistence between lithiated

and delithiated phases during charge and discharge, according to which a constant
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potential or open-circuit-voltage (OCV) vs. Li/Li+ is thermodynamically required, has

been widely accepted in the battery community. However, any additional contributions to

free energy can have an effect on the absolute value of OCV. Therefore, a study of

equilibrium voltage could provide some useful thermodynamic information about this

system. Moreover, metastable behavior may exist during lithium insertion and de-

insertion of these compounds; therefore, a more complex model is required in order to be

able to fully explain the phase behavior of the compounds under different cell

environments and electrochemical use conditions.

The impact of phase behavior and phase transformation kinetics on cycle life is unclear.

Lithium insertion/ extraction in intercalation compounds should leave the structures

unchanged regardless of its type. However, it has been observed that variation in lithium

content during repetitive cycling can lead to lattice expansion and contraction of the host

structures. This intercalation process has thus been expected to induce structural damage

or irreversible phase changes that could lead to poor cycle life or decrease the energy

output of lithium rechargeable batteries.

Olivine compounds have the advantages of low cost, high thermal stability, non-toxicity,

reasonably high energy density, and high energy capacity. However, the practical use of

these compounds as cathode materials for lithium rechargeable batteries was initially

limited due to its poor rate capability. Recently, significant efforts have been made to

compensate for these shortcomings. Examples are coating with an electron-conducting

phase (mostly carbon), particle size minimization, and/or aliovalent doping. This has

permitted commercialization of LiFePO 4 as a cathode material in batteries. Despite its

commercialization, the mechanisms allowing high power in these compounds are still

extensively debated. It is one of the objectives of this study to understand these

mechanisms.
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Thesis Outline

The main objective of this thesis is to understand the correlation between particle size,

composition (doping), phase behavior and phase transformation kinetics, and their

relation to practical properties for the LiMPO 4 cathode compounds. This study has been

carried out in several stages as will be reported in the following chapters. Chapter 2 will

present an overview of olivine compounds as cathode materials, which includes overall

characteristics, crystal structure, and electrochemical storage mechanism of these

compounds. We expect that there may be fundamental differences such as phase stability,

phase transformations, and lithium transport kinetics between nanoscale particles and

their bulk counterparts; we therefore propose to study the effect of particle size on phase

diagram of this system. The results are shown in Chapter 3. We discovered that when

LiFePO4 is fabricated in nanoscale form, the phase diagram is changed dramatically.

There is much greater extent of solid solution in both the Li-poor and Li-rich coexisting

phases. In other words, the miscibility gap is contracted. We found that the miscibility

gap shrinks dramatically with decreasing particle size and increasing temperature. And

for the doped nanoscale powder, the lithium nonstoichiometry parameters are 2 times

larger than for the undoped powder of equivalent size (Chapter 4). There is much less

lattice mismatch between the two co-existing phases observed as well. We believed that

these changes in phase stability of the materials would have the following effect on

properties:

* Co-existence of Fe2+/Fe 3 + in both phases improves electronic conductivity and

rate capability

* Lower transformation strain when cycling, since there is much less lattice

mismatch between the two co-existing phases. This would allow more facile

phase transformation, and provide for higher rate capability and longer cycle life.

In fact, the mechanisms allowing high power in these compounds have been extensively

debated. Numerous studies have attributed the rate capability of olivines purely to

chemical diffusion limitations. However, as mentioned previously, and to be explained
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further in the later chapters, this class of olivines undergoes a first-order phase transition

upon electrochemical cycling. We thus reasoned that an equally important goal should be

to maximize the rate of phase transformation, regardless of the rate-limiting step. We

propose a model, suggesting by correlations between lattice misfit and rate capability,

that in order to provide high power and long life characteristics for lithium rechargeable

batteries, the electrode materials must exhibit small elastic misfits between the parent and

daughter phases to allow facile phase transformation during electrochemical cycling. Up

to now, we know of no counterexamples in which high rate capability is obtained for a

phase transformation of large misfit. The model (in collaboration with Prof. Carter's

group) demonstrating the role of this "nanomechanics" on battery performance is treated

in detail, and the supporting experimental results are given in Chapter 4.

The topic of phase behavior and transport properties of the olivine compounds is very

interesting. Many of these unconventional phenomena have yet to be fully understood

and will remain to be one of the fruitful topics for battery researchers to explore and

discuss. Chapter 5 shows further interesting behavior that arises from downsizing the

particles- the phase-transformation pathway of nanoscale materials becomes much more

complex and involves transformation to amorphous and/or metastable phase(s). It is well

known that a key feature of the LixFePO 4 cathode is its extremely flat charge/discharge

profile. This is categorized as typical of two-phase reaction systems, even though the

composition and amounts of the two phases can be varied. Finely-resolved equilibrium

voltage measurements can provide insights on how thermodynamics of the phase co-

existence changes with particle size. In fact, we found that phase transformation path

differs significantly between the nanosized (< 40 nm) and "conventional" coarse-grained

(> 100 nm) materials. Whereas coarse-grained LiFePO4 undergoes a conventional two-

phase reaction in which crystalline LiFePO4 and FePO4 co-exist, in nanoscale samples

the following are observed: (1) there is a reduced miscibility gap between co-existing

crystalline phases as shown previously; and (2) upon charge, a fraction (increasing with

increasing particle size) of the crystalline delithiated LiyFePO4 that is formed is partially

amorphous and metastable.
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Isovalent substitutions have been a highly successful route to structure and property

optimization in intercalation compounds used as lithium storage electrodes for

rechargeable lithium batteries. For example in the ordered rock salts LiMO2 compounds,

Ni2+ and/or Mn2+ (i.e. LiCoxNilxO 2, LiCo1/ 3Ni1 /3Mn1/30 2) have been used to replace

expensive Co2+ or for spinels LiM20 4, LiNixMn 2-xO4 has been produced to provide better

structural stability. However, the possibility for, and role of, aliovalent doping with

appropriate charge-compensating point defects of the olivines, which may have as great

or greater impact on structure and transport properties as isovalent substitutions, has

been widely debated. In Chapter 6, we carry out critical tests of the plausible defect

compensation mechanisms using compositions designed to accommodate Mg2+, A13+,

Zr4+, Nb5+ ions on the M1 and/or M2 sites of LiFePO4 with appropriate charge-

compensating defects, and obtain conclusive crystallographic evidence for lattice doping.

Structural and electrochemical analyses show that doping can induce a reduced lithium

miscibility gap, increased phase transformation kinetics during cycling, and expanded Li

diffusion channels in the structure. These have also been discussed throughout this thesis.

We showed in Chapters 3, 4, and 6 that phase transformation kinetics as determined from

time resolved electrochemical and structural measurements were different among

nanoscale, conventional, and doped nanoscale samples.
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Chapter 1 Figures and Tables

Portable Electronics Power Tool
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Figure 1-1: Lithium-ion batteries for various applications including portable electronics, power tools,

and electric vehicles.
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Figure 1-2: Example of battery packs for electric vehicle applications

Source: National Renewable Energy Laboratory
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Electrolyte
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Figure 1-3: Electrochemical processes in Li-ion batteries during charging and discharging. During

discharge, an electrical circuit is formed, the anode material (in this case lithiated carbon) oxidizes,

or gives up electrons, while the cathode material (in this case lithium cobalt oxide) immersed in an

electrolyte becomes reduced, or gains electrons. Lithium ions move from the anode to the cathode to

provide charge neutrality so that the reactions can continue and the electrons can keep flowing

providing electrical energy to the connected device. During charge, the process is reversed: the

cathode and the anode are oxidized and reduced, respectively. The electrical energy is restored to the

battery.
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Chapter 2
Background on Olivine Compounds

Many families of compounds have been developed for use as cathode materials in Li-ion

batteries, such as layered oxides LiMO2 (M = Co, Ni, Mn, or V), manganese spinel

(LiMn20 4), and phospho-olivines LiMPO 4 (M= Fe, Mn, Co, or Ni). Lithium cobalt oxide

is the most common cathode used in Li-ion batteries today; however, the high cost of

cobalt and safety concerns make it impractical for some applications such as electric

vehicle applications. Olivine-type cathodes have become of particular interest for

transportation and energy applications ranging in size scale from hybrid and plug-in

hybrid electric vehicles to utilities-scale power regulation due to its low cost (substituting

of expensive cobalt with cheaper and more abundant iron or manganese), high safety,

high thermal stability, and environmentally friendly characteristics. This family of

compounds is the focus of this thesis.

The crystal structure of LiMPO 4 is well-known and described by the space group P nma.

Figure 2-1 shows the crystal structure of LiFePO4. The structure is based on a nearly

close-packed (hcp) arrangement of oxygen. Iron (Mn, Co, and Ni in the case of other

olivines) is located in a slightly distorted FeO 6 octahedron. Lithium is located in a second

set of octahedral sites (LiO6) which are distributed differently. Phosphorous is located

inside the tetrahedral sites. The LiO 6 octahedron shares edges with four other octahedra,

and FeO 6 shares edges with two octahedra and corners with three P0 4 tetrahedra.

The first published work describing the use of a lithium metal phospho-olivine as the

positive electrode in a lithium rechargeable battery appears to be by Kamauchi et al.,'

who specified the compound LiCoPO 4 as well as other transition metal substitutions.

Most researchers have first become aware of this family of compounds through the work

of Padhi et al.2 Olivine LiMPO 4 (M = Fe, Mn, Co, Ni) compounds have gained attention

from battery research community because of their several advantages, such as high

theoretical capacity, 170 mAh/g, and flat discharge plateaus at 3.45 V, 4.10 V, 4.80 V,
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and 5.10 V (vs. Li/Li+), respectively for Fe, Mn, Co, and Ni. Among these, LiFePO4 has

received the most attention to date as it has the highest potential to provide reasonably

high energy density, low price, good cycling stability, good thermal stability, and low

toxicity.2 However, pure LiFePO4 also has several drawbacks, such as low electronic

conductivity on the order of 10-9 S cm-1, and slow Li-ion transport during the

LiFePO4/FePO4 phase transformation during the charge-discharge process 2-4 resulting in

poor rate capability and making the practical utility of these compounds initially unclear.

Many efforts have been devoted to improving the conductivity of LiFePO 4, as well as the

rate performance of LiFePO 4 cathodes, such as adding-coating conductive media in the

LiFeP0 4 cathodes to increase the conductivity, 6 9 synthesizing nanoscale particles to

shorten the Li transport length, 1 '0 11 forming a percolating nano-network of metal-rich

phosphides 12 to improve electronic conductivity or doping the LiFeP0 4 with other

transition metals.'13 14 After Chung et al. 5 demonstrated high charge capacity at

charge/discharge rates well above 5C in doped nanoscale LiFePO4 (e.g., 115 mAh/g for 6

min continuous discharge (20C rate)) at room temperature, interest in this material grew

rapidly as reflected by a large increase in the number of publications from about 30

publications published between 1997-2001 to about 150 publications published between

2002-03 and more than 1800 publications published between 2002- 2008.

One of the key features of the LiFePO4 cathode is its extremely flat charge/discharge

voltage vs. capacity curve categorized as typical of two-phase reaction systems. When

cycling at room temperature, the two phases are a lithiated triphylite phase, LiFePO4, and

a delithiated heterosite phase, FePO4. Both phases are olivine-type orthorhombic

structures, with the differences being the presence of lithium chains in the triphylite

structure as shown in Figure 2-2. The lattice parameters for each phase are given in Table

2-I. 15 In the literature, a core-shell reaction whereby the newly formed phase uniformly

coats the preexisting phase during lithium intercalation/de-intercalation has been widely

applied. Srinivasan and Newman 15 have found a continuous deviation of the OCV from

the plateau value of 3.45 V at both the beginning (0 < x <ca. 0.03) and end (ca. 0.96 < x <

1) of the charge/ discharge reaction. Combined with their mathematical expression, it was

suggested that there would be a corresponding monophase region, where the overall
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reaction scheme can be represented as Figure 2-3 with the previously published charge-

discharge curves measured at C/20 rate. 16, 18 (Note that charge/discharge rates are usually

reported in C-rate convention, or C/n, where n is the time in hours for complete charge or

discharge of the nominal capacity measured. In this case, C/20 rate means that it takes 20

hours to completely charge the cell to the cut-off voltage). Most of the electrode reaction

is dominated by the two-phase coexistence of LiaFePO 4 and Lil. pFePO 4 but with very

narrow monophase regions (0 < x < a and 1-0 < x < 1) close to the stoichiometric end

members of LiFePO4 and FePO4 at room temperature. These nonstoichiometric

parameters a and p in the two phase region are convenient diagnostics for the electrode

activity because they are directly linked with the density of lithium defect and Fe3+/Fe2+

mixed valence state and hence the hopping probability of both of lithium ions and

polarons. The straightforward estimation of the nonstoichiometric parameters a and P of

LixFePO 4 (0 < x < 1) phases at room temperature has been demonstrated using Rietveld

refinement of X-ray diffraction profiles and found to be a - 0.03 and P - 0.04. In follow-

up experiments 20, neutron diffraction measurements indicated site occupancies of lithium

to be a = 0.05 and 1- P = 0.89. Higher temperature investigations of the LixFePO 4 phase

diagram by Delacourt et al.21 and by Dodd et al.22 confirm the low temperature

immiscibility, but also find an unusual eutectoid point at 150 oC 20 or 200 oC 21 where the

solid solution phase emerges around x -0.45 - 0.65. Above 300 - 400 'C, a solid solution

occurs for all compositions. This phenomenon was explained by Zhou et al.23 They used

first-principles LDA+U calculations and Monte Carlo simulations to determine the phase

diagram based on a coupled cluster-expansion model, and found that while

transformations from low-T ordered or immiscible states are almost always driven by

configurational disorder (i.e. random occupation of lattice sites by multiple species), in

FePO4-LiFePO 4 the formation of a solid solution is almost entirely driven by electronic

configurational entropy. Panels a and b of Figure 2-4 show the phase diagram of

conventional coarse grained-powder studies by Dodd et al. 22 and by Delacourt et al.,21

respectively. Figure 2-4c shows the calculated phase diagram by Zhou et al.23 taking into

account the effect of electronic configurational entropy.
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Background on Experimental Techniques

In order to understand the results presented later, a description of the experimental

techniques including electrochemical measurements, structural analysis based on X-ray

and neutron diffraction, and electron microscopy are presented here.

Electrochemical Measurement: Galvanostatic Cycling

Galvanostatic charging and discharging requires the application of a constant current over

a range of voltage. Voltage is allowed to change freely depending on chemical reactions

that occurred within that voltage range; therefore, this technique can provide information

on the kinetics and mechanisms of electrode reactions. Unless noted otherwise

throughout this thesis, the voltage limits were 2.0 - 4.2 V for the lithium iron phosphate

samples, and 2.0 - 4.5 V for the lithium manganese phosphate. For a system that shows

two co-existing phases during electrochemical cycling such as the olivines, slow

galvanostatic cycling can be used to determine the solid solution limits from the deviation

in voltage with state-of-charge, even though with this technique some polarization always

present, introducing inaccuracy in measuring the solid solution limit.

Electrochemical Measurement: Intermittent Titration Techniques

The Galvanostatic Intermittent Titration Technique (GITT) is a common technique used

to establish the thermodynamic voltage as a function of composition. It is considered to

be a more accurate method for determining the solid solution limit than galvanostatic

cycling. In this technique, the voltage relaxation after the application of constant current

pulses is measured. However, in systems having a first-order phase transition, such as in

olivine compounds, the current pulsing needed in GITT inherently leads to an increase in

overpotential during the pulse, which could introduce hysteresis effects due to the

nucleation or growth of a new phase.

The Potentiostatic Intermittent Titration Technique (PITT) is a technique in which

current relaxation after the application of voltage steps is measured. For determining
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solid solution limits, the capacities above and below the open-circuit voltage

corresponding to two-phase co-existence is measured. We consider the PITT

measurements to be more exacting when there is true two-phase co-existence since they

measure the extent of nonstoichiometry without any overpotential. Also, during two-

phase co-existence, the current measured in PITT is exactly linear to the phase

transformation rate, assuming that there is no capacitive current, or short circuit, or other

regions of lithium accumulation in the sample. Therefore, PITT can provide a direct

measure of each sample's transformation rate as a function of the applied potential as

well.

Electrochemical Measurement: Cyclic Voltammetry

Cyclic Voltammetry or CV is a potentiodynamic electrochemical measurement in which

the potential is ramped linearly versus time; this ramping is known as the experiment's

scan rate (V/s). From the current measured vs. potential, information about the redox

potential and electrochemical reaction rates of the compounds can be obtained. For

example, a sharp increase in current typically indicates a redox process is occuring. As

another example, if the electronic transfer at the surface is fast and the current is limited

by the diffusion of species to the electrode surface, then the current peak will be

proportional to the square root of the scan rate.

Diffraction and Rietveld Refinement

X-ray diffraction is one of the most common techniques applied to battery materials to

obtain information on how structures change under particular circumstances. In addition

to lattice constants, we can obtain the relative strain and crystallite size of each phase,

and in ex-situ or in-situ experiments, can do this as a function of composition. Neutron

diffraction is a method for determining atomic structure with greater precision than is

possible in X-ray diffraction. Complementary to X-ray radiation neutron radiation is most

sensitive to detect "light" elements. However, in general, it is very difficult to calibrate a

neutron diffractometer well enough to trust the absolute lattice parameters (the relative

ones are usually excellent). This is especially true for TOF (Time-of-Flight)
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diffractometers. There are many reasons for this, including sample position and

transparency effects. Thus, x-ray diffraction is a more accurate method to measure lattice

constants. Rietveld refinement is a standard method for obtaining structural parameters of

materials by fitting experimental spectra to theoretical profiles calculated for numerous

materials and instrumental variables. Both diffraction techniques and their Rietveld

refinements are used in this thesis to study the structural changes during electrochemical

tests, as well as the effects of aliovalent substitutions on the structure of the olivine

materials.

Electron Microscopy

Transmission Electron Microscope (TEM) can be used to obtain morphology,

composition, and crystallographic information on materials. Transmission Electron

Microscopy is used to study how the olivine materials change under specific

electrochemical circumstances. Information on defects in these materials before and after

cycling is necessary to fully explain the phase transformation mechanism, the

transformation rate, and fatigue and fracture. Unless noted otherwise TEM work in this

research was done with help from Y.H. Kao in Prof. Chiang's group.
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Chapter 2 Figures and Tables
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Figure 2-1: Polyhedral representation of olivine LiFePO 4 structure projecting along the [001]

direction.
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Figure 2-2: Schematic representation of the system during cycling showing the two phase end-

members; triphylite and heterosite.
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Figure 2-4: Phase diagram comparison of conventional coarse-grained LiFePO4 studied by a) Dodd

et al.,23 b) Delacourt et al., 22 and c) Zhou et al., 24 showing existence of miscibility gap in this system.

At low temperature, two-phase coexistence of the Li-rich (triphylite or T) and Li-poor (heterosite or

H) end-members is observed. At intermediate temperatures, the proposed phase diagram resembles

a eutectoid system, with eutectoid point at around x = 0.45-0.65 and 150 - 200 oC. The disordered (D)

or solid solution phase (SS) is proposed at high temperatures.

Table 2-I: Lattice parameters and unit cell volume for triphylite and heterosite phases as determined

by Rietveld refinement, by Andersson et al. 16

Lattice constant Triphylite (LiFePO 4) Heterosite (FePO4)

a (A) 10.329 9.814

b (A) 6.007 5.789

c (A) 4.691 4.782

Volume (A3) 291.1 271.7
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Chapter 3

Size-Dependent Phase Diagram of Li l.IFePO 4

In this chapter, the size-dependence of the miscibility gap in undoped Lil.xFePO 4 was

measured over the temperature range -200 C to +450 C, using nanoscale powders of

varying particle diameters. Samples A and B are powders with average particle diameter

of 34 and 42 nm, respectively. Sample C is a commercially available "carbon-added"

LiFePO4 powder with an average particle diameter of 112nm. Electrochemical and X-ray

diffraction techniques were used. A new PITT technique for measuring solid-solution

limits in phase-transforming systems without the application of overpotentials was

demonstrated. The miscibility gap contracts systematically (increased solid solution

limits) with decreasing particle size and increasing temperature, reaching a minimum

measured width in this work of ~20% lithium deficiency and -20% lithium excess in

triphylite and heterosite, respectively, at 34nm and 450 C. These effects suggest that the

miscibility gap completely disappears below a critical size even near room temperature.

The implications of increased miscibility on transport properties and the

electrochemically-driven first-order phase transition are discussed.

Reprinted in part with permission from Electrochem. Solid State Lett, 10, Al34 (2007).

Copyright 2007, The Electrochemical Society.
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Introduction

Nanoscale powders have been used in materials technology since long before the

systematization of nanoscale phenomenon that began in the 1980s. In describing the

uniqueness of nanoscale materials, it is useful to distinguish between those variations in

properties that are predictable from known size-scaling laws and unexpected behavior

arising at nanoscale dimensions.' In this respect, the marked increase in rate capability of

doped nanoscale lithium-iron phosphate reported by Chung et al.,2 e.g., > 110 mAh/g

specific capacities at 20C discharge rates at room temperature, which was followed by

several reports of improved rate capability in nominally "undoped" but nanoscale

olivines,3 5 has raised the question: are there fundamental changes in physical properties

of these materials in the nanoscale regime? Some have suggested that the improved

properties can be completely explained by the size scaling expected from conventional

Fickian transport.6 However, as we will show in Chapter 4, the doped nanoscale lithium-

iron phosphates studied by Chung et al. 2 exhibit, at room temperature, nearly ten times

the lithium nonstoichiometry 7 of conventional coarse-grained LiFePO4.8 1'0

In the present work, we conducted a systematic study of the size and temperature

dependence of the miscibility gap in nominally undoped LiFePO4.While the extent of

solid solution at the equivalent particle size is about a factor of two less than that reported

in Ref. 7, a clear and systematic increase in solid-solution nonstoichiometry with

decreasing size and increasing temperature is observed.

Experimental Section

Test Materials

We performed comparative electrochemical tests and X-ray structural analysis of lithium-

iron phosphate powders of three characteristic sizes. Figure 3-1 shows the process flow

chart for these powders. The powders were synthesized using lithium carbonate Li2CO 3

(99.999%, Alfa-Aesar, Ward Hill, Massachusetts, USA), iron (II) oxalate FeC204-2H20

(99.99%, Aldrich, Milwaukee, Wisconsin, USA), and ammonium phosphate NH4 H2PO4

(99.998%, Alfa-Aesar, Ward Hill, Massachusetts, USA) as the source of the main
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components. The starting materials were mixed by ball-milling for 24 hours using

zirconia milling media, in acetone, followed by drying, then grinding with a mortar and

pestle in an Argon filled glove box before calcining at 350 'C for 10 hours in flowing

Argon. Heat treatment to final firing temperatures of 600 and 700 0 C resulted in powders

(samples A and B, respectively) having specific surface areas as measured by the

Brunauer, Emmett, and Teller (BET) method of 48.8 and 39.8 m2/g, respectively,

corresponding to equivalent spherical particle diameters of 42 and 34 nm. These powders

had a fairly narrow particle size distribution, as shown in Figure 3-2. The difference in

average particle size between samples A and B is difficult to resolve in a small sampling

of particles by transmission electron microscopy (TEM). However, both the absolute

values and relative differences between these samples indicated by the specific surface

area are consistent with the values obtained by Rietveld refinement, discussed later. Both

are significantly finer in size than sample C, a commercially available "carbon-added"

LiFePO4 (Aldrich Chemical) having 14.8 m2/g specific surface area and 113 nm

equivalent spherical particle diameter. This material also had a broader particle size

distribution than the other two, and the added carbon material could be clearly seen,

Figure 3-2. Samples A and B showed no signs of a discrete carbon phase.

Electrochemical Tests

Electrochemical tests were performed using electrodes formulated with 79 wt % positive

active material, 10 wt % conductive carbon black (Super P), M.M.M. Carbon, Brussels,

Belgium), and 11 wt % Kynar 2801 binder, using acetone as the solvent. The formulation

was coated onto aluminum foil current collectors at a loading of -5 mg/cm2 of active

material and assembled in Swagelok type or coin cells using Li metal foil as the counter

electrode, a microporous polymer (Celgard 2400, Hoechst Celanese Corporation,

Charlotte, NC, USA) or glass fiber separator, and liquid electrolyte mixtures containing

1:1 by weight ethylene carbonate/dimethyl carbonate (EC/DMC) or EC/diethyl carbonate

(DEC) and 1 M LiPF6 as the conductive salt. Arbin or Maccor instrumentation was used

for the galvanostatic and potentiostatic tests.
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Structural Analysis

For X-ray diffraction structural analysis, fresh Swagelok cells were taken to 50% state-

of-charge (SOC) and disassembled. About 0.5 mg Si powder (Alfa Aesar, USA) was

embedded in the top surface of the electrodes as a standard. X-ray patterns were obtained

using a Rigaku RTP500RC instrument with a rotating anode and Cu Ka radiation and

were slow-scanned at 0.15 0/min over a 20 range from 15 to 1350. The structural

parameters were refined by Rietveld analysis using PANalytical X'Pert HighScore Plus

software. The refinements gave the lattice parameters, crystallite size, and residual strain

of each sample in Table 3-I.

Results and Discussion

Low-Rate Galvanostatic Tests

Room-temperature galvanostatic charging and discharging measurements performed at

C/50 rate on each of the samples are shown in Figure 3-3. (Note that charge/discharge

rates are usually reported in C-rate convention, or C/n, where n is the time in hours for

complete charge or discharge of the nominal capacity measured. In this case, C/50 rate

means that it takes 50 hours to completely charge the cell to the cut-off voltage). Similar

results were seen at a still lower current rate of C/100 (not shown). The voltage-capacity

curves show significant deviations from the two-phase plateau voltage at the beginning of

charge and discharge, respectively. The capacity at which the plateau voltage is reached

upon charge or discharge increases as the particle size decreases, suggesting miscibility

gap that shrinks systematically with decreasing particle size. Upon charge, the coarsest

sample, C, also shows a peak in voltage at the onset of the two-phase plateau that is

absent for the other two samples. This feature has been associated with an elastic energy

barrier to transformation.7 With decreasing particle size, the two-phase plateau voltage

also increases in small but measurable increments of a few millivolts. Similar changes

were observed in the open-circuit voltage (OCV) measurements, discussed later.
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Potentiostatic Intermittent Titration Tests (PITT)

Although the polarization of the cells in galvanostatic measurements was small,

suggesting that the observed voltages are close to equilibrium values, sloping voltage

curves at low and high states of charge are nonetheless commonly seen as a result of

kinetic limitations in electrochemical cells. We sought a measurement that could provide

definitive measurements of the extent of equilibrium nonstoichiometry. Galvanostatic

intermittent titration tests (GITT), in which voltage relaxation after the application of

current pulses is measured, is often used to establish the thermodynamic voltage as a

function of composition. However, in systems having a first-order phase transition, such

as the present one, the current pulsing needed in GITT inherently leads to an increase in

overpotential, which could introduce hysteresis effects due to the nucleation or growth of

a new phase. Although GITT measurements generally gave results consistent with those

presented here, we consider the following potentiostatic intermittent titration tests (PITT)

measurements to be more exacting because they measure the extent of nonstoichiometry

without any overpotential, as is now explained. We use x to denote lithium deficiency in

the lithium-rich triphylite endmember (e.g., Lil-xFePO4) and y to denote lithium excess in

the lithium-poor heterosite endmember (e.g., LiyFePO 4). To measure x and y, the

capacity was measured at small constant-voltage increments progressing through the

OCV of the cell (Figure 3-4). The results are plotted in Figure 3-4 in a manner

resembling cyclic voltammagrams (CVs), except that the vertical axis is capacity and not

current. First, the open-circuit potential of each cell at 50 mol % lithiation well within the

two-phase field was measured to ±2 mV precision. Then, PITT measurements were taken

in which, starting from a fully discharged state (discharged to 2.0 V), the voltage was

increased in 5 mV increments and the capacity available at each constant-voltage step

measured until the current dropped to a C/50 rate. Thus, the capacity available at finely

resolved voltage steps with respect to the equilibrium two-phase potential was measured.

To determine the lithium deficiency of the triphylite phase, x in Lil-xFePO4, the

cumulative capacity up to 5 mV below the OCV was measured. Parameter x was taken to

be the fraction of the total charge capacity represented by this capacity. Similarly, to

measure the solid-solution lithium concentration in the heterosite phase, y in LiyFePO 4,
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the cell was taken to a fully charged state (3.8 V), then discharged at 5 mV voltage

decrements, with the current being measured at each voltage step. The value of y was

taken to be the cumulative capacity measured to within 5 mV above the OCV, relative to

the total discharge capacity. Because only data obtained below the OCV during charging

is used to determine x, and above the OCV during discharging to determine y, it is

assured that the nonstoichiometry is measured in the absence of any electrochemical

driving force for the phase transformation. In galvanostatic or GITT measurements, even

at C/50 or slower current rates, polarization resulting in an applied potential above the

OCV, corresponding to two-phase coexistence, is possible. Thus, the charge capacity

accumulated below the OCV can be attributed to the formation of a lithium-deficient

triphylite solid solution prior to the nucleation of heterosite. Similarly, upon discharge,

the discharge capacity accumulated above the OCV voltage can be attributed to the

formation of a lithium-excess heterosite solid solution prior to the nucleation of triphylite.

These procedures should estimate the true extent of solid solution, because even with an

applied voltage exactly equal to the OCV, nucleation of the new phase should be difficult.

Figure 3-4a shows the PITT results measured at three temperatures for sample A having

the smallest average particle size, and Figure 3-4b shows the results for sample C having

the largest average particle size. The OCVs measured for each sample at each

temperature are also given. The insets show the detail in the vicinity of the OCVs on an

expanded scale. Perhaps the most prominent feature of these capacity spectra is the peaks

of high capacity. The highest capacity peak in each measurement occurs at an

overpotential corresponding to the maximum amount of phase transformation, and the

kinetics can be examined in detail to understand the rate capability of each sample.7 It is

seen that with decreasing temperature a greater overpotential is necessary to propagate

the first-order phase transformation. However, these peaks are not a direct measure of the

nonstoichiometry. Focusing on the capacity in the region near the OCVs of each sample,

it can be seen that for sample A, at both 23 and 450 C there is a continuous distribution of

capacities over the voltage range near the OCV upon both charging and discharging (Fig.

3-4a). From the capacity distribution, the equilibrium nonstoichiometry is obtained as

described above. By comparison, sample C having the largest particle size (Fig. 3-4b)

clearly shows less capacity distributed near the OCV. Results for sample B are not
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plotted but were similar to those in sample A. The phase diagram for nanoscale lithium-

iron phosphate, obtained from the PITT measurements of all three samples at all four test

temperatures, is shown in Figure 3-5. It is clearly seen that the two-phase field shrinks

with decreasing particle size and that for each particle size, the miscibility gap shrinks

with increasing temperature. At 450C, the 34 nm particle size sample (A) exhibits a

maximum solid solution in both endmembers of approximately 20%. Projecting these

data to higher temperatures, it appears that the extent of nonstoichiometry in the

heterosite phase (LiyFePO 4) increases at a higher rate than that in the triphylite phase

(Lil-xFePO 4). We attempted to resolve the phase diagram at temperatures above 450 C but

were not able to obtain reliable data due to noticeable self-discharge in the

electrochemical cells used in this study. Up to 450 C, repeat PITT measurements yielded

closely agreeing results as long as self-discharge was not evident. In fact, in Figure 3-5,

the data points shown for sample C at 450 C are actually three overlapping measurements.

For samples A and B, the 450 C measurements of x include duplicate measurements as

well. Figure 3-6 shows the results plotted against the equilibrium phase diagram of Dodd

et al.' 0

Although there may be practical limits to the particle sizes that can be used in real

applications, it is interesting to speculate whether there exists a size below which a

complete solid solution may be obtained near room temperature in this system. Figure 3-7

plots the particle size dependence of lithium nonstoichiometry for three test temperatures.

The dashed curves are hand-drawn extrapolations through the data at 230 C which while

highly approximate, intersect at a finite particle size. Thus, we suggest that a complete

solid solution is achievable below about 15 nm particle sizes at room temperature; at

450 C, the data suggest a larger critical size of - 25 nm.

Diffraction Studies of Size-Dependent Miscibility at Room Temperature

As an independent measurement of the limits of solid solution for comparison with the

electrochemical tests, we carried out X-ray diffraction measurements of the lattice

parameters of samples that were electrochemically cycled to 50% SOC at room

temperature. Rietveld refinement provided lattice parameters for the coexisting triphylite
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and heterosite phases, as well as the crystallite strain and crystallite size of each phase.

Whereas the PITT measurements approach the solid-solution limits (Figure 3-5) from

compositions outside the miscibility gap, the X-ray diffraction experiment approaches

equilibrium from compositions within the gap, where the phases coexist. Because

diffraction measures the volume-averaged properties of the sample, those results also

allow us to determine whether the size-dependent nonstoichiometry is a surface or bulk

effect. It is possible that in a high-surface-area powder, excess nonstoichiometry arises

from surface sites differing in Li chemical potential from bulk intercalation sites or from

space-charge surface layers' 2 penetrating into the crystal, although the high defect

concentration of the present materials implies a very compact (sub-nanometer) space-

charge width. Figure 3-8 shows the X-ray diffraction patterns collected at room

temperature for each sample. The corresponding lattice parameters and unit cell volumes

are given in Table 3-I. The crystallite sizes obtained from Rietveld refinement are also

shown and are in good agreement with the BET-derived results. Applying Vegard's law

to the unit cell volumes and using results from Ref. 8 as the values for the completely

stoichiometric endmembers, the values of (1 - x) and y in Table 3-II were obtained. As

with the galvanostatic and PITT data, the extent of solid solution obtained from Vegard's

law increases monotonically with decreasing particle size. Comparing in detail with the

PITT-derived values of (1 - x) and y, for sample C the values obtained by the two

techniques are within 1% of each other. However, for samples A and B, with one

exception (y in sample B), the Vegard's law values are smaller than those obtained by

PITT. Yamada et al. 13 also have found, in a sample of unspecified particle size, that

values of x and y obtained from lattice parameters assuming Vegard's law are smaller

than those obtained from galvanostatic titration and neutron diffraction-determined site

occupancies. At 25 0 C, galvanostatic titration yielded values of (1 - x) = 0.89 and y = 0.05,

suggesting that their sample is in between samples C and B in average particle size.

Yamada et al. 13 have also recently reported Vegard's law results showing an increase in

the x value at room temperature from 0.02 in a sample of 280 nm particle size to 0.09 in a

88 nm particle size, which is greater than the present Vegard's law results but in

reasonable agreement with the PITT derived values.
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Another important structural feature that is available from the Rietveld refinement is the

strain within each phase. For these samples analyzed at 50% SOC, Figure 3-7 shows that

A and B have a much greater retained strain than does C. Notice that the largest strain

(sample A) occurs in the sample with the smallest misfit in lattice parameters and unit

cell volume between the triphylite and heterosite phases. In contrast, sample C has the

largest lattice misfit between phases and the least retained strain. One possible

explanation is that coherency stresses arise when the misfit between triphylite and

heterosite phases in a partially transformed particles is small enough to retain a coherent

interface.' As the misfit increases, as in sample C, incoherent interfaces are created that

relieve the strains. As discussed below, both coherency stresses and the Gibbs-Thomson

effect may make important contributions to the free energy and phase equilibria.

Origin of Size-Dependent Nonstoichiometry

Decreases of miscibility-gap widths in Figure 3-6 appear at about 100 nm particle

diameter, and this size-correlated enhanced solubility continues to increase with

decreasing mean particle size. These changes in miscibility gap stem from particle-size-

associated modifications to the molar free energy of mixing for one or both phases. We

suggest the possibility of at least two different origins for these particle size effects: (i)

increases due the relative contribution of particle-matrix surface energy and surface stress,

and (ii) coherency or compatibility stresses in two-phase particles with a coherent

interface. First considering the energy contributions from particle-surface area A,

assuming a surface energy of y,1 J/m 2, typical for inorganic solids, the excess surface

energy, yA for particles of the sizes studied here (3 kJ/mole for 100 nm particles) are

several times larger than the heat of demixing in Lil-xFePO 4, measured by Dodd et al. to

be 500-700 J/mole. 1o At small particle sizes, yA may therefore be a significant

contribution to a phase's molar free energy of mixing. Similarly, the effect of surface

tension also produces an additional pressure, P, within each particle. The contributions of

yA and PA V are not independent. However, the molar free energies of both phases should

be increased by similar amounts because the two phases have similar densities, surface

tensions, and compressibilities. The common tangent and tangency points would translate

to higher energies, but effects on the miscibility gap will depend only on small
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differences between composition-dependent densities, surface tensions, and

compressibilities. The considerations of Gibbs-Thomson on the increased chemical

potential of a soluble component as a function of particle size apply whether the particles

are of the same phase or not. 15 However, the present case concerns the mutual solubility

of two phases of the same particle size in the same medium rather than the relative

solubility of a single phase with different particle sizes in the same medium. Coherency

stresses can, however, result in a contraction of the miscibility gap with decreasing

particle size. 15 Rietveld analyses of the X-ray diffraction data indicates that the

distribution of strain increases with decreasing particle size. To test the hypothesis that

coherency stresses contribute to the increased strain distribution, we consider a model

where the coherent interface lies within an isolated two-phase particle. This coherent

interface could be produced by nucleation of a second phase (triphylite or heterosite) in a

formerly single phase (triphylite or heterosite) particle. In either coherent interface case,

the triphylite phase is under compressive stress because of its higher molar volume, and

the heterosite phase is under tensile stress. Due to the positive partial molar volume of

lithium in both phases (as opposed to LiCoO 2, for example, in which the lattice expands

upon initial extraction of Li), the compressive stress in triphylite should decrease its Li

solubility relative to tensile-stressed heterosite. Thus, the scaling of coherency stresses in

the present samples is qualitatively consistent with the variation in lithium miscibility.

Detailed quantitative analyses will appear elsewhere. While this interpretation is

consistent with the experimental results, there may well be other contributions to the free

energy occurring at nanoscale sizes that should be taken into account, including antisite

disorder or other lattice defects. And, there is some possibility that differences exist in the

two types of samples due to their different synthesis methods. Furthermore, a distribution

of particle sizes may cause Gibbs-Thomson influenced variations in lithium miscibility.

In other crystalline systems, it has been known that coherency between coexisting phases

produces changes in phase equilibria very much analogous to those observed here.'15 17

The data for present materials suggests that retained coherency is promoted with

decreasing particle size at nanoscale dimensions. We will consider phenomenon further

within the context of nucleation models that take into account the contribution of elastic

energy to phase transformation.
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Summary and Conclusions

The effect of particle size in a series of undoped samples ranging in size from 113 to 34

nm and temperatures from -20 to 45 oC on phase diagram of LiFePO4 has been studied

using x-ray diffraction and potentiostatic titration tests. We found dramatic changes in the

miscibility gap compared to previous published phase diagram in which the miscibility

gap in undoped nanoscale Lil.xFePO 4 powders contracts with decreasing particle size and

increasing temperature. We predict that below -15 nm, a complete solid solution can be

obtained at room temperature. The implications of increased miscibility on transport

properties and the electrochemically-driven first-order phase transition as well as the

thermodynamics illustration of how elastic stresses should be incorporated in

thermodynamic treatments of electrochemistry are discussed.
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Chapter 3 Figures and Tables

Firing Schedule

Raw material

Li2COa
(NH4)H2PO 4
FeC,O 4 2HO

Ball-milling
24 hours

600 OC 5 hrs
700 oC

3500C
10 hrs

Purge
1hr

BET surface area measurement
(39.8 - 48.8 m2/g)

Nanoparticles
(42-34nm)

Figure 3-1: Sample preparation and firing schedule for the studied powders.

Figure 3-2: Transmission electron microscopy (TEM) images of three powder samples tested, having

the following BET specific surface areas and equivalent spherical particle diameters. (A) 48.8 m2/g,

34 nm; (B) 39.8 m2/g, 42 nm; (C) 14.8 m2/g, 113 nm. Sample C is a "carbon added" commercial

sample in which fibrillar carbon can be seen, in contrast to samples A and B which have no

detectable carbon phase.
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Figure 3-3: Galvanostatic charging (top) and discharging (bottom) at C/50 rate shows the narrower

composition range over which smaller size particles exhibit a constant cell voltage corresponding to

two-phase coexistence. Note also the overpotential measured on charge for the coarsest sample C as

the two-phase plateau voltage is approached, absent for finer particle size samples A and B (inset).

The two-phase plateau voltage also differs measurably for the three samples.
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Figure 3-4: Lithium solubility in the triphylite and heterosite phases is determined from the capacity

vs. voltage measured potentiostatically upon charge and discharge in 5 mV steps. The OCV

measured by taking each cell to 50% SOC and allowing voltage relaxation is indicated for each

sample. Sample A has average particle diameter of 34 nm while sample C average particle diameter

of 113 nm.
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Figure 3-5: Phase diagram for nanoscale lithium iron phosphate showing that the miscibility gap

contracts systematically (increased solid solution limits) with decreasing particle size and increasing

temperature. Numbers in parenthesis indicate the number of data points taken at that temperature

to ensure consistency of the results.
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below -15 nm particle diameter, the miscibility gap may disappear completely at room temperature.
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Figure 3-8: Rietveld refined X-ray patterns for samples A, B, and C respectively, taken on samples at

- 50% state of charge, including the fit to Si powder added as an internal standard. The observed

intensity data are shown by the solid red line, and the dashed blue, aqua, and green lines overlying

them are the calculated intensity of LiFePO4, FePO4, and Si respectively. The difference between the

observed and calculated intensities is shown for each of the patterns.
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Table 3-I: The corresponding structural parameters obtained from the refinements of X-ray

diffraction spectra (Figure 3-8).

Sample A Sample B Sample AC
Composition-state -50% SOC -50% SOC -50%SOC

Specific Surface Area (m2/g) 48.8 39.8 14.8
Carbon content (wt%) 3.48 2.27 1-3

Rexpected (%) 6.956 6.596 5.794

Rweighted profile (%) 7.199 10.422 10.711

LiFePO4 phase
a (angstroms) 10.266(1) 10.3079(7) 10.3289(3)
b (angstroms) 5.9789(6) 5.9973(4) 6.0069(2)
c (angstroms) 4.7060(5) 4.6999(4) 4.6905(2)

V (angstromsA3) 288.8542 290.533 291.0224

Strain (%) 0.39 0.129 0.02

Crystallite size (A) 382 386.9 1145.4

FePO4 phase
a (angstroms) 9.860(2) 9.854(4) 9.8267(3)
b (angstroms) 5.8291(8) 5.815(2) 5.7944(1)
c (angstroms) 4.774(1) 4.787(3) 4.7832(1)

V (angstromsA3) 274.3775 274.3125 272.3572

Strain (%) 0.365 0.245 0.05

Crystallite size (A) 273.1 388.9 799.6

Table 3-II: Comparison of lithium solid-solution limits obtained from Rietveld refinement of X-ray

diffraction spectra (Figure 3-8), assuming Vegard's law, with those obtained by PITT.

Particle
23 OC Diameter (nm) 1-x (XRD) y (XRD) 1-x (PITT) y (PITT)

Sample A 34 0.8811 0.1151 0.8315 0.1236

Sample B 42 0.9608 0.0802 0.8876 0.0656

Sample C 113 0.9738 0.0149 0.9890 0.0100
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Chapter 4
Phase Behavior of Nanoscale LilxFePO4 and
Criterion for Selecting Materials for High-Power
Rechargeable Batteries

High energy lithium-ion batteries have improved performance in a wide variety of mobile

electronic devices. A new goal in portable power is the achievement of safe and durable

high-power batteries for applications such as power tools and electric vehicles. Towards

this end, olivine-based positive electrodes are amongst the most important and

technologically enabling materials. While certain lithium metal phosphate olivines have

been shown to be promising, not all olivines demonstrate beneficial properties. The

mechanisms allowing high power in these compounds have been extensively debated.

In this chapter, we will show that certain high rate capability olivines are distinguished by

having extended lithium nonstoichiometry (up to ca. 20 %), with which is correlated a

reduced lattice misfit as the material undergoes an electrochemically driven, reversible,

first-order phase transformation. The rate capability in several other intercalation oxides

can also be correlated with lattice strain, and suggests that nanomechanics plays an

important and previously unrecognized role in determining battery performance.

Reproduced in part with permission from Adv. Funct. Mater., 17, 1115 (2007). Copyright

2007, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Introduction

Following the first journal publication describing the use of olivine compounds as

rechargeable battery electrodes,1 the potential for reduced cost and improved safety2 of

this class of materials was quickly appreciated, but, because of the lower volumetric

energy compared with compounds such as LiCoO 2 and the poor rate capability, the

practical utility was unclear. Interest in high power applications grew rapidly after Chung

et al.3 demonstrated high capacity at charge/discharge rates well above 5 C in doped

nanoscale LiFePO4 (e.g., 115 mAh g- for 20 C continuous discharge at room

temperature4 ), but it also raised controversy over the origin of the exceptional rate

performance. 5- 0 The ability to obtain high power while retaining reasonably high energy,

along with inherent safety and long cycle life (many thousands of charge/discharge

cycles), seems likely to enable many new classes of applications. However, not all

olivines have exhibited high rate capability, a notable exception being LiMnPO 4, which is

otherwise attractive for its higher theoretical energy."11- 13 Numerous studies have

attributed the rate capability of olivines purely to chemical diffusion limitations.1,3,6- 8',10-

12,14 Indeed, either electronic or ionic conductivity can be rate-limiting under certain

conditions. However, noting that this class of olivines undergoes a first-order phase

transition upon electrochemical cycling, we reasoned that an equally important goal

should be to maximize the rate of phase transformation, regardless of the rate-limiting

step. Thus, we considered whether the phase transformation kinetics, which corresponds

directly to the rate of lithium exchange, might be affected by other, structural, factors.

Experimental Section

Test Materials

We performed comparative electrochemical tests and X-ray structural analysis on two

types of lithium iron phosphates. The first was a recently synthesized material, cation-

doped LiFePO 4 prepared for earlier publications, 3'4 denoted NC. Figure 4-1 shows the

discharge capacity versus rate behavior for a sample of similar performance to those

originally described. For comparison, we used a high-surface-area "carbon-added"
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LiFePO4 (Aldrich Chemical), denoted AC, of similar carbon content to the NC samples

(Table 4-I). This material has a higher rate capability than untreated pure LiFePO4, but its

capacity at rates above 1 C is well below that of the NC sample (Figure 4-1). Identical

formulations, active material loadings, and preparation methods were used to prepare

samples for electrochemical testing, as described in the Experimental section. It is

emphasized that neither material is believed to represent the state-of- the-art capability of

any particular manufacturer, and, the samples are not selected for maximum contrast in

rate capability, but because all of the experiments discussed herein were performed on

them. At the time this study was initiated, sample AC was the only commercially

available "battery grade" LiFePO4. For NC-type samples, partial data were also available

for a number of similar materials and are consistent with the results presented here.

Table 4-I shows the physical and structural characteristics of the two samples along with

data for olivines from several literature reports. The NC sample of Li0.99Nb0.o01FePO 4

composition was prepared according to a published procedure, 3 and has a specific surface

area of. 39.2 m2 g-, corresponding to an equivalent spherical particle diameter of 43 nm.

Sample AC has a specific surface area of 14.8 m2 g-1 corresponding to a 113 nm

diameter, which is high compared to lithium battery cathodes such as LiCoO 2 and

LiMn20 4 (typically < 1 m2 g-1). Although we attempted to increase the particle size of

both materials through heat treatment in order to obtain systematic size variations,

significant changes were not achieved except under temperatures and gas ambient that

also produced detectable amounts (by X-ray) of impurity phases, primarily metal

phosphides. Nonetheless, the samples in this study can be compared with those of several

previous publications, listed in Table 4-I, all of which are expected to have lower rate

performance than either of the two sample types measured here. It should also be noted

that in the case of sample NC, a comparative study of the high rate performance of

various olivines by Striebel et al. 7 included results for an Massachusetts Institute of

Technology (MIT)-supplied electrode that were inferior to those described here and in the

original publications; 3' 4 namely, only ca. 100 mAh g-1 at 10 C rate. There may be a

simple explanation for this discrepancy-Striebel et al. comment that a large additional

impedance was necessary to model the electrode provided,' which suggests that
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delaminating of the electrode coating from the current collector had occurred. In our

measurements, samples of the same type retained up to 85 mAh g' capacity (50% of the

theoretical value) at 50 C-rate at room temperature. Applied in larger-scale cells, similar

materials used in cylindrical lithium ion cells of 26 mm diameter and 65 mm length

provide ca. 3 kWkg- 1 power density and ca. 110 Wh kg- ' energy density. 15

Electrochemical Tests

Electrochemical tests were performed on electrodes formulated with 79 wt% positive

active material, 10 wt% conductive carbon black (Super P, M.M.M. Carbon, Belgium)

and 11 wt% Kynar 2801 binder, using acetone as the solvent. The formulation was coated

onto aluminum foil current collectors at a loading of < 5 mg.cm-2 of active material, and

assembled in Swagelok TM type or coin cells using Li metal foil as the counter electrode, a

microporous polymer (Celgard 2400, Hoechst Celanese Corporation, Charlotte, NC,

USA) or glass fiber separator, and liquid electrolyte mixtures containing 1:1 by weight

ethylene carbonate: dimethyl carbonate (EC:DMC) or ethylene carbonate: diethyl

carbonate (EC:DEC), and 1 M LiPF6 as the conductive salt. Arbin or Maccor

instrumentation was used for the galvanostatic and potentiostatic tests. Charge/discharge

rates are reported in the C-rate convention, or C/n, where n is the time (h) for complete

charge or discharge of the nominal capacity measured at low rates. High rate discharge

capacities were obtained by first charging at C/2 rate to 3.8 V and holding until the

current decayed to C/25, followed by galvanostatic discharge at the desired rate to 2.0 V.

For the PITT measurements, the open-circuit potential of each cell at 50 mol% lithiation

(well within the two-phase field) was first measured to ±2 mV precision, then 10 mV

steps were taken starting from the fully discharged or fully charged state, and the capacity

measured at each voltage increment until a C/50 lower current limit was reached.

Structural Analysis

For X-ray diffraction structural analysis, the Swagelok cells were taken to 50% state of

charge, rested for > 24 h, and disassembled. About 0.0005 g Si powder (Alfa Aesar,

USA) was embedded in the top surface of the electrodes as a standard. X-ray patterns
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were obtained using a Rigaku RTP500RC instrument with a rotating anode and CuK,

radiation, and were slow scanned at 0.150 min' over a 20 range from 150 to 1350. The

structural parameters were refined by Rietveld analysis using a PANalytical X'Pert

HighScore Plus software. The Rietveld refinements gave the structural parameters in

Table 4-I with goodness of fit and weighted residual error parameter (GOF and Rwp)

values of less than 4.0 and 10.0, respectively, indicating reliable refinements.

Thermodynamic Model

The elastic energy of spherical shell and spherical cap configurations were modeled using

Ansys 8.0 software (Ansys Inc., Canonsburg, PA) by Dr. H.Y Huang in Prof. Carter

group. A thermal conduction model of the same geometry was constructed first and

tested, following which the structural model was constructed by switching to an

equivalent structural element. Materials properties and structural symmetry boundary

conditions were specified, and the overall elastic energy was calculated for the different

geometrical configurations.

Results and Discussion

Electrochemical Measurements

Galvanostatic charging and discharging measurements were first performed using lithium

half-cells (Figure 4-2). For each sample, only a small difference in polarization was seen

between C/50 and C/100 rate measurements, indicating that kinetic limitations were

negligible at these slow rates (Figure 4-2). The voltage-capacity curves show deviations

from the two-phase plateau voltage at the beginning and end of charge that suggest a

compositionally narrower two-phase field for the NC materials, Figure 4-2. The plateau

voltage is slightly higher for the NC sample. This is not due to greater polarization, but

instead, due to a difference in the open-circuit voltage (OCV) of about 0.006 V between

the two materials (confirmed by repeat measurements), which reflects a thermodynamic

difference. Although the polarization of these cells was small, suggesting that the

observed voltages are close to equilibrium values, sloping voltage curves at low and high

states of charge in galvanostatic measurements are commonly attributed to kinetic
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limitations. Therefore, we sought a measurement that could provide definitive

measurements of the extent of equilibrium nonstoichiometry. Galvanostatic intermittent

titration tests (GITT), in which voltage relaxation after the application of current pulses is

measured, is often used to establish the thermodynamic voltage versus composition.

However, when a first-order phase transition is present, current pulsing inherently leads

to an increase in the overpotential, which could introduce hysteresis effects when

nucleation of the new phase or migration of the phase boundary occurs. (GITT was

nonetheless performed on some NC samples and gave results consistent with those

presented here.)

Instead, a potentiostatic intermittent titration test (PITT) was used in which the capacity

was measured at small voltage increments progressing through the open-circuit voltage

(OCV) of the cell (Fig. 4-3). After each voltage step, the current decay (to a C/50 rate or

less) provided the charge or discharge capacity available at that voltage. The OCV was

first measured to ± 2 mV precision with the cells at 50% lithiation, a composition that is

well within the two-phase field. PITT was then conducted starting from the discharged or

charged states, approaching the two-phase voltage in 5 or 10 mV steps. By conducting

the measurement in this manner, no thermodynamic driving force is applied for the phase

transformation during charging until the open-circuit voltage (OCV) corresponding to

two-phase coexistence is exceeded. Thus, any charge capacity accumulated below the

OCV can be attributed to states available to lithium ions before the new phase is

nucleated; that is, it is due to the formation of a lithium-excess solid solution, starting

with a delithiated material. Similarly, upon discharge from a higher voltage, there is no

driving force for the phase transition until the applied voltage falls below the OCV (we

will refer to both instances as the imposition of an "overpotential"). Here, any charge

capacity accumulated above the OCV voltage can be attributed to the formation of a

lithium excess solid solution in the lithiated starting material. We use x to denote lithium

deficiency in the lithium-rich end-member (e.g., LilxFePO4 and Li0.99xNbo0.01oFePO4) and

y to denote lithium excess in the lithium-poor end-member (e.g., LiyFePO4 and

LiyNbo.o01FePO 4). The results of the PITT measurements are plotted in Figure 4-3 in a

manner resembling cyclic voltammograms (CV) except that the vertical axis is capacity

-59-



and not current. Sample NC (Fig. 4-3a) exhibits substantial capacity upon both charging

and discharging before the two-phase OCV is reached, while sample AC (Fig. 4-3b)

exhibits virtually no capacity upon either charge or discharge until an overpotential of ca.

30 mV is applied. The maximum extent of solid-solution nonstoichiometry, x and y,

measured with the last voltage increments being within 10 mV of the OCV, is 19.6% and

11.7 %, respectively, for sample NC, and 1.4% and 1.0 %, respectively, for sample AC.

Results for sample AC are consistent with previous findings"' 9' 16,17 of very limited lithium

nonstoichiometry in both end-members near room temperature. A recent neutron

diffraction study does suggest somewhat higher stoichiometry than that derived from

lattice constants.'8 Chung et al.3 proposed that the improved properties of their doped

nanoscale materials resulted from extended lithium solid solubility not achievable in

conventional LiFePO4. The present electrochemical measurements as well as the

structural data presented below support their original interpretation. 4

Diffraction Studies

We determined whether the excess nonstoichiometry measured electrochemically is a

surface or bulk effect. It is possible that in a high-surface-area powder, excess

nonstoichiometry can arise from surface sites differing in Li chemical potential from bulk

intercalation sites. Surface chemical activity can also lead to the formation of space

charge surface layers 19 penetrating into the crystal, although the high defect concentration

of the present materials implies a very compact (sub-nanometer) space charge width. To

distinguish nonstoichiometry occurring at the surface alone from that occurring within

the volume of the particles, we carried out powder X-ray diffraction on samples that were

electrochemically cycled to 50% state-of-charge (SOC). The coexistence of the lithiated

and delithiated phases means that each is at its maximum limit of mutual solid solubility

(maximum nonstoichiometry) at the test temperature. The electrochemically cycled cells

were allowed to rest for more than 24 h before being disassembled and analyzed by X-ray

diffraction (Figure 4-4). The X-ray diffraction results showed that the lattice parameters

of the coexisting phases vary in accordance with the electrochemically determined

nonstoichiometry, indicating that bulk effects must be considered. Rietveld refinement

provided lattice parameters for the coexisting lithium- rich and lithium-poor phases, as
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well as the crystallite strain and crystallite size of each phase. As shown in Table 4-I, the

X-ray crystallite sizes for samples NC and AC are in good agreement with those deduced

from their specific surface areas. In each case the delithiated phase has the smaller unit

cell volume, with smaller a and b parameters and a larger c parameter. For sample AC,

the absolute values of the lattice parameters and the unit cell volume are in good

agreement with literature (Table 4-I). However, in sample NC, the unit cell volumes of

the lithiated and delithiated phases are lower and higher, respectively, consistent with the

lithium nonstoichiometry measured electrochemically. Applying Vegard's law to the unit

cell volume and using the lattice constants reported in the literature, 16 the

nonstoichiometry in sample NC is x = 19.5% and y = 16.5 %, while the nonstoichiometry

in sample AC is nominally zero since the unit cell volumes of the triphylite and heterosite

phases are slightly larger and smaller respectively than the literature data, Table 4-I.

Extended lithium nonstoichiometry is therefore inferred in the NC samples from three

independent tests: low-rate galvanostatic tests (Figure 4-2), PITT tests (Figure 4-3), and

lattice parameter measurements (Table 4-I). Note that the galvanostatic and PITT

measurements approach the phase boundary from a limiting solid solution that is either

fully lithiated or fully delithiated, and thus measures the maximum nonstoichiometry that

can be obtained without requiring nucleation of the other phase. In contrast, the structural

measurements are performed on samples that approach equilibrium from a two-phase

coexistence, namely, from within the two-phase field. The good agreement between these

measurements indicates that the nonstoichiometry is a true, equilibrium feature of the

phase diagram for the NC samples and that the primary cause of the lattice parameter

variations is indeed lithium nonstoichiometry. How the doping combined with nanoscale

particle size in the NC samples stabilizes such large nonstoichiometry is not completely

clear, but we note that the small heat of demixing in the LiFePO 4/FePO 4 system (ca. 600

J mor') 17 implies sensitivity of the phase stability to small changes in composition and

introduced defects. A related study2 0 of undoped nanoscale LiFePO4 has shown that the

miscibility gap shrinks systematically as the particle size decreases, demonstrating clearly

the existence of a size-dependent nonstoichiometry. However, at equivalent size (ca. 40

nm) the extent of solid solution is only about one-half of that measured in sample NC.

Regardless of the origin, the availability of such large nonstoichiometry within both solid
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solution phases, corresponding to coexistence of Fe2+ and Fe3+, suggests that the

electronic structure and transport properties will differ from those of the pure end-

member phases (LiFePO 4 and FePO4) considered in most studies to date.

Coupling between Elastic Misfit, Lithium Nonstoichiometry, and Rate Capability

In correlation with the extended nonstoichiometry (increased mutual solid solubility) is a

large decrease in the lattice misfit between the lithiated and delithiated phases. The

percentage misfit between the lithiated and delithiated phases for the a, b, and c

parameters, the unit cell volume (abc), and the unit cell faces ab, ac, and bc are given in

Table 4-I. There is significantly lower lattice misfit in the high rate NC sample compared

to all others. The volume misfit in sample AC is 6.63 %, within the range 6.45-6.87%

published for LiFePO4, whereas in sample NC it is reduced by one third to 4.15 %. Even

more striking is the difference in misfit between the principal crystal planes. Given the

relatively isotropic elastic constants of LiFePO 4, 21 from purely elastic considerations, we

expect the interface between coexisting phases to form preferentially on the plane of

minimum strain, which is the bc or { 100} plane. Chen et al.22 have recently observed

that cycled LiFePO4 cracks along the {100} plane, consistent with this expectation.

Equally important, their observations show that the misfit in conventional LiFePO 4 is

large enough, even along the plane of minimum strain, to cause rupture. The fracture

plane appears to be dominated by these simple elastic considerations, even though faster

lithium diffusion along the b axis might be expected to produce a preference for growth

of the ac plane ((010} plane). For sample AC as well as the literature data, the strain in

this plane is 1.65-1.79 %. By contrast, in the high rate sample NC, the strain is reduced to

0.73 %, which, as we show, should allow the interface to remain coherent and permit

facile phase propagation with reduced accumulated elastic or plastic strains. The PITT

tests also provided a direct measurement of each sample's transformation rate as a

function of overpotential. During two-phase coexistence, and assuming no capacitive

current, no short circuits, or other regions of lithium accumulation, the current measured

in PITT is exactly linear to the phase transformation rate. The PITT data showed

completely different kinetics in the two types of samples (Figure 4-5). Firstly, a smaller

overpotential (ca. 15 mV) is required to propagate the first-order phase transition in
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sample NC compared with sample AC (ca. 30 mV). The NC sample shows a maximum

current at the start of each voltage increment, followed by rapid but monotonic decay.

Significantly, sample AC shows a completely different response in which the current is

initially low, rising slowly to reach its maximum value ca. 4 h later. This kinetic response

clearly cannot be modeled by any "simple" diffusional process, and suggests a phase

transformation barrier that is gradually overcome at constant potential as the phase

transformation proceeds. Similar results were obtained upon discharge, and after multiple

cycles. The amount of retained crystallographic strain in the partially transformed

materials further shows that these materials can be distinguished on the basis of elastic

misfit. The formation of a coherent interface implies that the adjoining crystals, if

misfitting, have been strained in order to maintain the coherence. On the other hand, the

formation of an incoherent interface implicitly relaxes lattice strain. These effects are

well-known for other phase transformations and in the growth of epitaxial thin films.

Because of the high elastic moduli of inorganic compounds, percent-level differences in

strain can have enormous impact on failure and coherency (the strain to failure of ceramic

crystals is typically much less than 1 %). Even in very thin films, less than ca. 1% lattice

strain is typically required in order to obtain a coherent interface. 23 Sample NC, despite

having a lower lattice misfit than sample AC, nonetheless shows higher retained strain in

both the triphylite and heterosite phases, 0.66% and 0.36 %, respectively (Table 4-I). This

suggests that if coherency is producing the retained strain, the misfit has not been

relieved. Sample AC, by contrast, has negligible retained crystallographic strain (0.02%

and 0.05 %). This would be consistent with the formation of incoherent, strain-relieving

interfaces. However, an alternative explanation for the retained strain is a variation in

lithium stoichiometry due to a distribution of particle sizes. Although particles within a

composite electrode such as those used here are expected to rapidly come to equilibrium

with one another, the Gibbs-Thomson effect dictates that their individual compositions

may vary. The importance of this effect can be evaluated once the particle size

distributions are known.
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Thermodynamic Model

Stored elastic energy may therefore contribute to the thermodynamics of two-phase

reactions. While electrochemically induced volume changes leading to fracture of storage

materials have been widely postulated as a cause of capacity loss and poor cycle life

(these strains have also recently been used to advantage for mechanical actuation 24' 25), to

our knowledge the thermodynamic effects of mechanical strain energy have not been

treated. Interfacial energy terms may also be important in opposing or promoting phase

transformation, especially in nanoscale materials. The following nucleation theory for

strained intercalation compounds takes these contributions into account. Although the

principles apply to any intercalation compound that undergoes a volume change with

composition (i.e., the ions occupy interstitial sites), including materials cycled

predominantly within a solid-solution field such as LiCoO 2 and LiMn20 4, for simplicity

we consider compounds that undergo a first-order phase transition, a class that includes

the olivines, Li4Tis5 12,26 and the "lithiated spinel" Li 2Mn204.27 The molar free energy

versus lithium concentration at fixed temperature for two coexisting bulk phases in the

absence of elastic energy is depicted in Figure 4-6a. Considering a positive electrode and

a negative electrode of constant lithium chemical potential (e.g., lithium metal), the cell

voltage is ILi = (+ - 4f, the difference in chemical potential is ILi = Lt+Li - 9 Li, and at

equilibrium the two are related by ZFA4 = - ApLLi if there are no other effects

accompanying the production of a second phase such as those considered below.

Electroneutrality requires Zne moles of electrons to be transferred for nLi moles of the

ion; Z= 1 for lithium. The tangent to the free energy curve intersects the right vertical

axis (representing one mole of lithium transported at chemical potential ,+Li) at a value -

F A (x) that gives the equilibrium cell voltage. The cell voltage A (x) decreases with

increasing lithium concentration for compositions in the left single-phase field up to x =

x', has a constant value for compositions in the two-phase field between x1 and x2, and

decreases again within the right single-phase field for x > x1. Now consider the formation

of a new phase with lattice distortion compared to the pre-existing phase. If the interface

between the two phases does not permit sliding (i.e., a perfectly coherent interface) or the

geometry of the two phases within the particle prohibits sliding (e.g., a spherical shell
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surrounding a sphere of one phase), then the stored elastic energy raises the system's

potential energy. Considering reversible isothermal changes in the system's potential

energy, it can be shown that two-phase equilibrium occurs when

FZAO = Ap, + Vd, (1)
C VcI

where Vf is the volume fraction of phase 2 in a total volume VT of electrode material, C is

the number of lithium atoms to convert phase 1 to phase 2, VIM is the molar volume of

initial phase 1, and uelstc is the elastic energy per volume VT.

A "core/shell" model' whereby the newly formed phase uniformly coats the pre-existing

phase has been widely adopted to explain the behavior of olivines. Approximating the

electrode material as spherical particles, the new phase would form a spherical shell, in

which case uelste can be calculated exactly and directly from the equations of isotropic

elastic equilibrium assuming identical elastic constants E (Young's modulus) and m

(Poisson's ratio) for both phases. For small AVM/VN'M, this exact result for the elastic

energy density is approximated by

e : )2EV(Vf -1) (2)
9(1- u)

where AVM=V"M- VlM is the difference in molar volume.

For at least two reasons, the assumption of a shell of uniform thickness is implausible.

First, there are alternative configurations of lower elastic energy. We used a finite

element method to calculate uelstc for a geometry consisting of a spherical cap of phase 2

with a flat coherent interface separating it from the rest of the sphere of phase 1. The

calculated elastic energy is less than that of the shell (Eq. 2) by a factor of 10/3 as shown

by Figure 4-7. In anisotropic crystals such as the present one, the ability to choose planes

of low misfit and orientations of lower elastic modulus further reduces the energy of the

cap configuration. Although the computed increases to the equilibrium potential A due
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to elastic energy alone are modest, on the order of tens of millivolts, the cap

configuration is clearly preferred. A second reason the spherical shell geometry is not

preferable derives from nucleation considerations: the first infinitesimal increment in Vf

requires a finite interfacial area (the sphere area) for the spherical shell configuration but

an infinitesimal interfacial area for the cap configuration. Thus to formulate a nucleation

model, we first take the major components of the volumetric energy to be the chemical

and elastic energies. Referring to Figure 4-6b, a slightly super-saturated solid solution of

the delithiated phase (e.g., LiyFePO 4) that is stress-free has a lower equilibrium potential

A (x) than that of the equilibrium composition. When any portion of the supersaturated

solution then transforms to a two-phase configuration, the molar free energy change,

represented by the vertical distance AAvr, can be positive or negative depending on the

lattice misfit, elastic constants, geometrical configuration of the initial and nucleated

phases, and the magnitude of the applied overpotential. Evaluating numerically, we find

that a several folds larger overpotential is required for AAvr to become negative for the

spherical shell than for the cap configuration. Upon adding the interfacial energy between

phases 1 and 2, which is the product of interfacial tension, c, and the interfacial area

(readily written in terms of VT and Vf for the shell and cap geometries), the driving force

for the energetically-preferred spherical cap configuration is

AAa,(V,) = AMAVTVf + g yV' /" (3)

where g is a geometrical constant of order unity related to the interfacial area. Note that

the first term is negative and the second positive; both include a dependence on the

transformed fraction, Vf. There exists a critical Vf at which the driving force for

transformation becomes negative (otherwise a solid solution is preferred), given by Verit

Vf= " 8g 'y' (4)
S 27(AAOW)'Vr

A large negative volume energy Aovr reduces the critical fraction while the strong

sensitivity to interfacial energy, c, indicates that a large misfit creating incoherent

interfaces will increase the overpotential needed to induce transformation. The interfacial
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energy barrier to nucleation is minimized by having low interface tension c, which for the

present olivines is probably best satisfied by interfaces forming on the {100} plane.

Although the present calculation is for spheres, this will be true for any relatively

equiaxed particle shape, as well as anisometric shapes where the smallest cross-section

falls on the {100} plane. Returning to the experimental data, in light of these

considerations, for sample AC, both an abrupt overpotential seen during the continuous

charging at the beginning of the two-phase voltage plateau (Figure 4-2) and the unusual

kinetic response at constant overpotential (Figure 4-5) strongly suggest that a barrier to

phase transformation must be overcome. Both features are absent in the high rate

capability sample NC of lower misfit. Note that the form of the elastic energy versus

volume fraction transformed (Figure 4-6b and Figure 4-7) is similar to the rate of phase

transformation (current flow) versus extent of transformation at a constant overpotential

in Figure 4-5.

Kinetic Limitations in the Presence of Incoherent Interfaces

For sufficiently large elastic misfit, other, kinetic limitations must also be considered. We

hypothesize that for large enough lattice misfit, and at a critical volume fraction, interface

dislocations are nucleated and cause the interface to become incoherent. The incoherent

interface should have a markedly slower migration rate. Unlike a coherent interface that

can migrate due to Li transport alone, the strain-accommodating dislocations in an

incoherent interface comprise discontinuities in the other atomic sub-lattices of the

olivine structure (e.g., Fe, P, or 0) and cannot be removed simply by the addition or

removal of lithium. Instead, as with other such interfaces, the phase boundary may only

move at a rate slow enough to allow the dislocations to be annihilated by climb and glide

processes to the particle surface. This means that diffusion of an atomic species other

than lithium may become rate-limiting. Under cyclic conditions, we may imagine that the

transforming crystal faces the following dilemma. Either the phase transformation

proceeds at a slow rate limited by dislocation migration, or additional dislocations may be

generated with each pass of the interface. The first creates a rate-limiting step that is

likely much slower than the chemical diffusion rate of lithium, and the second presents an

additional energy barrier to the transformation, as well as accumulating damage that can
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eventually cause fracture of the particles. Indeed, transmission electron microscopy of

sample AC after 30 high-rate charge/discharge cycles reveals a high density of

dislocations (Figure 4-8), as observed in other compounds such as LiCoO2. 28 Extended

defects of any kind were difficult to detect in the NC particles.

Summary and Conclusions

Extended lithium nonstoichiometry has been observed in both end-member phases of

high rate doped nanoscale lithium iron phosphates, associated with which is a reduction

in the lattice misfit between coexisting phases in comparison to conventional materials.

In the NC sample studied here, the nonstoichiometry measured at room temperature

would otherwise be attained in a conventional material only at elevated temperatures of

200-400 oC. 9,17 The coexistence of Fe2+ and Fe3+ in the solid solution, and the associated

changes in lattice parameters and bond lengths of the nonstoichiometric solid solutions,

should be expected to alter the electronic structure, increase electronic conductivity, and

possibly influence ionic conductivity in comparison with conventional samples. As

proposed previously,3 it is likely that electronic conductivity will be improved to where it

is no longer rate-limiting. Beyond altered transport coefficients, however, the elastic

strain affects both thermodynamic and kinetic aspects of the phase transition. It is

suggested that high-rate materials are able to retain coherent interfaces throughout

nucleation and growth of the new phase, providing "facile" phase transformation. A

partially transformed material may consist of two-phase particles, or may relax to an

assembly in which each particle is purely one phase or the other in order to avoid the

energy penalty of a retained interface. However, lithiation or delithiation of the

assemblage as a whole will require nucleation and propagation of a new phase within

individual particles. In olivines, reduced misfit along the { 100} plane may be an

important factor. This, we suggest, is as important to high rate capability as

improvements in ionic and electronic transport. Generality of the proposed model is

suggested by correlations between elastic misfit and rate capability in several other

lithium intercalation oxides exhibiting first-order phase transitions. The poor rate

capability of LiMnPO4 compared to LiFePO 4 has been attributed solely to its low

electronic conductivity."11 12 However, there is also a much larger misfit between the
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phases (ca. 10 vol %, Table 4-I) than in LiFePO4. The fact that even nanoscale LiMnPO4

has a much poorer rate capability 13 than conventional LiFePO 4-based materials suggests

that lattice misfit plays an important role. Li4 Ti50 1 2 , on the other hand, is a cubic spinel

known for having nearly zero dimensional change between its lithiated and delithiated

phases,26 and is also known for having exceptional rate capability when produced in

nanoscale form.28 A third example is the spinel LiMn20 4. Between the composition limits

MnO 2 and Lio 5MnO 2, there exists a continuous solid-solution cubic spinel that is known

for its high rate capability-this spinel is the basis for certain high-power lithium-ion

batteries. However, upon further lithiation, a first-order phase transition from Lio.sMnO 2

to tetragonal "Li2Mn204" occurs with a 5.6% volume misfit and 16% change in the c/a

ratio.26,29 The rate capability in this regime is found to be markedly inferior to that of the

cubic spinel. 30 We know of no counterexamples in which high rate capability is obtained

for a phase transformation of large misfit. Thus, a strain-based predictive criterion for the

design and selection of high power battery electrode compounds is suggested.
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Chapter 4 Figures and Tables
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Figure 4-1: Comparison of specific discharge capacity versus galvanostatic C rate for samples NC

(top) and AC (bottom), representing high-rate doped nanoscale and "carbon-added" lithium iron

phosphates respectively, measured in lithium half-cells of SwagelokTM type. Before each discharge,

cells were charged at C/2 rate and held at 3.80 V until the current decays to C/25 rate.
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Figure 4-2: Galvanostatic charging (left) and discharge (right) at C/50 and C/100 rates shows the

narrower composition range over which high rate doped nanoscale powders (sample NC) exhibit a

constant cell voltage indicating two-phase coexistence, compared to the lower rate carbon-added

sample AC. Note also the overpotential measured on charge for sample AC as the two-phase plateau

voltage is approached, absent for sample NC (inset). OCV differs slightly for the two samples as

discussed in text, indicated in inset.
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Figure 4-3: Capacity versus voltage measured potentiostatically upon charge and discharge in 10 mV

steps. The OCV is indicated for each cell. a) Nb-doped nanoscale sample NC; b) carbon-added

undoped LiFePO4 sample AC. c) Full-scale representation of the data.
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Figure 4-4: Rietveld refined X-ray patterns for samples NC and AC respectively at ca. 50% state of

charge, including the fit to Si powder added as an internal standard. The observed intensity data are

shown by the solid red line, and the dashed blue, aqua, and green lines overlying them are the

calculated intensity of LiFePO 4, FePO4, and Si respectively. The dashed lines are the calculated

intensity of the aluminum peaks from the current collector. The difference between the observed and

calculated intensities is shown for each of the pattern. The structural results are shown in Table 4-I.
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Figure 4-6: a) Molar free energy of two positive electrode phases illustrating tangent construction

relating chemical potential differences and electromotive force in the absence of stored elastic energy.

The reference energies are scaled so that the common tangent has zero slope. b) Within the two-

phase region, a coherent interface between phases differing in molar volume produces an additional

contribution to the molar free energy and is illustrated for the case of a spherical shell and spherical

cap.
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Figure 4-7: Elastic energy normalized to volume and Young's modulus E, vs. volume fraction

transformed phase, for the case of a spherical shell and a spherical cap. Poisson's ratio v is assumed

to be 1/3.

Figure 4-8: Transmission electron micrographs of starting powders of Sample AC (left) and after

high rate cycled showing a high density of dislocations (right).
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Table 4-I: Physical and structural characteristics of a high rate doped nanoscale (Sample NC) and

lower-rate "carbon-added" lithium iron phosphate (Sample AC), compared with literature data for

LiFePO4 and LiMnPO4.

Sample NC Sample AC Padhi (1) Yamada (16) Yamada (16) Yamada (18) Andersson (33) Yamada (32)

Compositional Solid solution
state -50% SOC -50%SOC Stoichiometric Stoichiometric limits Stoichiometric Stoichiometric Stoichiometric

Specific
Surface Area
(m

2
/g) 39.2 14.8 Not reported 7-13 7-14 Not reported Not reported Not reported

Carbon
Content (wt%) 2.4 1-3* Not reported 8 8 Not reported Not reported Not reported

LiFePO
4

phase LiMnPO4

a (A) 10.232 10.3289 10.334 10.323 10.309 10.32287 10.329 10.46

b (A) 5.941 6.0069 6.008 6.0065 6.001 6.00496 6.0065 6.11

c (A) 4.73 4.6905 4.693 4.693 4.698 4.69094 4.6908 4.75

V (A) 287.502 291.0224 291.392 290 99 290.64 290.784 291.02 303.58

Strain (%) 0.66 0.02

Crystallite size
(A) 266 1145.4

FePO4 phase MnPO 4

a (A) 9.887 9.8267 9 821 9 817 9.829 9.81465 9.8142 9.64

b (A) 5.838 5.7944 5.792 5.79 5.7995 5.7887 5.7893 5.92

c (A) 4.7786 4.7832 4.788 4.7822 4.7793 4.78107 4.782 4.773

V (A3) 275.824 272.3572 272.357 272.82 272.44 271.632 271.7 272.39

Strain (%) 0.355 0.05

Crystallite size
(A) 276.3 799.6

Misfit (O/o)

Linear Strain

a axis 3430 4 983 5.091 5.025 4 767 5047 5.111 8.159

b axis 1.749 3.601 3.661 3.671 3.415 3.667 3.683 3 159

c axis -1.022 -1.957 -2.004 -1.883 -1.716 -1.903 -1.926 -0.483

Volume strain 4.146 6 626 6 753 6.445 6.464 6.811 6.867

10.830

Planar Strain

a-b plane 5.178 8.581 8.747 8.691 8.179 8.711 8.790 11.311

a-c plane 2.408 3.027 3.087 3.143 3.052 3.145 3.187 7.677

b-c plane 0.727 1.645 1.657 1.788 1.700 1.765 1.757 2.676

*Quoated by
manufacturer

**Taken as the
difference/mean value
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Chapter 5

Electrochemically Induced Phase Transformation
in Nanoscale Olivines LilxMPO 4 (M = Fe, Mn)

We previously documented several key differences in phase transformation behavior

between conventional particle sized and nanoscale (<100 nm) olivine positive electrodes.

Using electrochemical titration and structural (Vegard's law) measurements, it was

shown that nanoscale (<50nm) Lil-.FePO4 has a size-dependent, reduced miscibility gap

compared to coarser-grained materials (Chapter 3). In doped nanoscale phosphates the

miscibility gap is narrower still (Chapter 4). To further study stability and phase

transformation kinetics of Lil.xMPO4 olivines, in this chapter, nanoscale (<100 nm

primary particle size) Lil,.FePO4 and Lil-xMnPO 4 are chosen as model systems for

comparison with a coarser-grained LiFePO4 that exhibits a conventional two-phase

reaction.

Here, the state-of-charge and time dependence of the open-circuit voltage of half-cells

and detailed examination of the structural parameters and phase content were

investigated. It is shown that the phase transformation path differs significantly between

the nanoscale and (<100nm) and conventional Lil.xMPO 4 materials. The evolution of

structural parameters supports the existence of a coherency-stress influenced crystal-

crystal transformation. However, an additional response, the preferential formation of

amorphous phase at nanosize scale, is identified. In Lil.xMnPO 4 of 78 nm particle size,

the electrochemically formed delithiated phase is highly disordered. These phenomena

are interpreted from the effect of surface and bulk energetic on phase stability of a

nanoscale material.
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Introduction

Although the applications for lithium transition metal olivine cathodes were initially

uncertain due to their inferior energy density compared to, for instance, LiCoO 2, the

recent commercialization of compositionally modified nanoscale olivines in applications

such as cordless power tools' and hybrid electric vehicles (HEV)2,3 suggests an important

future role in high power, safe, long-lived rechargeable batteries. In these applications,

the phase behavior and phase transformation kinetics are critical, given that the

equilibrium phase diagram shows limited solubility between the lithiated and delithiated

phases4-6 and requiring a first-order phase transformation during electrochemical cycling.

We previously documented several key differences in phase transformation behavior

between conventional particle sized and nanoscale (<100 nm) olivine positive electrodes.

Using electrochemical titration and structural (Vegard's law) measurements, it was

shown that nanoscale (<50nm) Lil.xFePO 4 has a size-dependent, reduced miscibility gap

compared to coarser-grained materials.' In doped nanoscale phosphates the miscibility

gap is narrower still.8,9 A size-dependent phase diagram has also been reported for Li-

TiO2 by Wagemaker et al..'0 In the olivines, it was furthermore shown that when the

lattice mismatch between the co-existing lithium-rich and lithium-poor phases is

sufficiently reduced, the phase transformation kinetics as measured by potentiostatic

intermittent titration test (PITT) are qualitatively different than for samples of even

slightly coarser size (113nm) in which the coexisting phases have a larger misfit.8 At

small overpotentials, the latter show nucleation-limited behavior with phase

transformation rates that increase slowly over many hours and cannot be modeled by any

simple diffusion law," while the doped nanomaterials show facile transformation with a

rapid, monotonic decay in transformation rate. Combined with X-ray diffraction

evidence for higher retained strain in the nanomaterials, it was proposed that relief of the

misfit strain facilitates high rate capability.8 It was suggested that reducing the elastic

misfit was a fruitful approach to obtaining high ion exchange rates in phase-transforming

systems in general.

There may furthermore be differences in the way a single particle accommodates the

phase transformation compared to a multiparticle assembly that is able to redistribute
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lithium between particles in order to reduce excess energy. Clearly a single particle that

is partially transformed must accommodate both phases within the same crystallite,

assuming no fracture. However, a partially-transformed multiparticle system can relax to

a more energetically favorable assembly consisting of a mixture of single-phase particles

of the two phases, since the retention of partially transformed particles possessing either

coherency stresses or incoherent interfaces is metastable. Whether this state is achieved

in practice depends on kinetics: the rate of lithium redistribution relative to the time scale

on which the material is being electrochemically cycled. This led us to expect a possible

evolution of the phase distribution over time in electrodes that are at a fixed overall

composition (i.e., state-of-charge).

The increased surface area to volume ratio alone of nanoparticles may also lead to a

contribution of surface defects or solute segregation to the observed phase behavior. To

cite some previous examples, interfacial solute segregation has been observed to increase

the "macroscopic" solubility limit of CaO in nanocrystalline TiO2,12 and increased

nonstoichiometry has been observed in nanoscale CeO2x due to the lower oxygen

vacancy formation enthalpy at interfaces. 13 The well-known formation of space-charges

at surfaces and grain boundaries in ionic compounds also arises from the segregation of

native defects or solutes. 14-16 While the high bulk defect concentration of lithium

intercalation compounds implies a very compact space-charge layer, changes in

composition at the surface or the "core" of the grain boundary nonetheless will contribute

to deviations in overall composition or nonstoichiometry if there is preferential

segregation of solutes or defects.

These and other effects occurring in nanoscale intercalation compounds may be

measurable through a combination of structural and electrochemical methods. We

expected internal stress to be a function of the state-of-charge and time, possibly resulting

in measurable changes in the lithium chemical potential. To explore this we measured

the time- and state-of-charge dependence of the open-circuit voltage (OCV, vs. Li/Li+),

and the corresponding crystal lattice parameters in electrochemically cycled olivines.

Nanoscale (defined as <100 nm primary particle size) LilxFePO4 is compared with a

coarser-grained LiFePO4 that serves as an example of the conventional two-phase
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reaction. The electrochemically-induced transformation in Lil.xMnPO 4 is examined as

well. We find support for the coherency stress effect where each crystalline phase affects

the structure and composition of the other. However, we also identify an additional

response, which is the formation of a co-existing amorphous state upon cycling materials

of nano size scale. This tendency to disorder appears to be greater for Lil-xMnPO 4 than

for Lil.xFePO 4. These phenomena are interpreted from the elastic misfit between co-

existing phases and the effect of surface energetics on nanoscale phase stability.

Experimental Section

Test Materials

Model nanoscale materials of undoped LiMPO 4 compositions were selected for

comparison. For examination of the lithium iron phosphate system we compared in detail

two triphylite samples from a previous study representing the limiting cases of a

"conventional" material and a nanoscale sample showing significant contraction of the

miscibility gap.7 Transmission electron microscopy (TEM) images and specific capacity

vs. C-rate tests of the samples studied are shown in Figure 5-1.

The nanoscale sample (sample A) has a specific surface area measured by the BET

method (Brunauer, Emmett and Teller) of 48.8 m2/g, corresponding to an equivalent

spherical particle diameter of 34 nm, and was synthesized as described in ref 17. In brief,

Li2CO3, FeC204-H20 (or MnCO3), and NH2H2PO4, each assayed by the manufacturer or

by us in order to determine the true metals content, were weighed in an Ar-filled

glovebox (<3ppm oxygen and water), then mixed by ball-milling in acetone for 24 h

using zirconia milling media. The powder was dried and calcined at 3500 C for 10 h in

flowing Argon, then at 600 0C in flowing Argon for 5 h. The crystallite size in sample A

as derived from X-ray line broadening (Scherrer formula) was 32 nm, in good agreement

with the measured specific surface area as well as the TEM images. The TEM results

also show that the powder particles are equiaxed in shape, exhibiting no apparent faceting

on any particular crystal plane. Sample A showed the smallest miscibility gap (largest

mutual solid-solubility) between the triphylite and heterosite phases in the previous study
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of undoped Lil-.FePO4, based on both X-ray measurements of lattice constants (Vegard's

law) as well as electrochemical titration tests.7 Sample C is a commercially purchased

"carbon-added" LiFePO 4 (Aldrich Chemical) having 14.8 m2/g specific surface area and

113 nm equivalent spherical particle diameter. TEM showed that this material had a

broader particle size distribution than sample A as well as a clearly observable carbon

phase. The specific discharge capacity vs. C-rate performance of samples A and C are

shown in Figure 5-1. A lithium manganese phosphate (lithiophilite) sample, sample M,

was also examined in this study; this material was also made by the method of ref 17 and

had a specific surface area of 22.2 m2/g corresponding to an equivalent spherical diameter

of 78 nm, consistent with the TEM imaging of this sample in Figure 5-1C.

Electrochemical Tests

Electrochemical tests were performed using electrodes formulated with 79 wt% positive

active material, 10 wt% conductive carbon black (Super PTM, M.M.M. Carbon, Brussels,

Belgium) and 11 wt% Kynar 2801 binder, using acetone as the solvent. The formulation

was coated onto aluminum foil current collectors at a loading of -5 mg/cm2 of active

material, and assembled in SwagelokTM type cells using Li metal foil as the

counterelectrode, a microporous polymer (Celgard 2400TM, Hoechst Celanese

Corporation, Charlotte, NC, USA), and liquid electrolyte mixtures containing 1:1 by

mole ethylene carbonate: dimethyl carbonate (EC:DMC) or ethylene carbonate: diethyl

carbonate (EC:DEC), and 1 M LiPF 6 as the conductive salt. Arbin or Maccor

instrumentation was used for the galvanostatic and potentiostatic tests.

For X-ray diffraction structural analysis of the electrochemically transformed materials,

freshly assembled SwagelokTM cells were first galvanostatically cycled through two

complete cycles. This was done at a C/10 rate at room temperature for samples A and C,

from which the specific capacity of the material was established. Then, each cell was

charged at the same rate to a percentage of the C/10 capacity corresponding to a desired

state-of-charge (SOC). Thus the SOC is here defined with respect to the practical

capacity measured at the experimental voltage limits, rather than the theoretical capacity.

Sample M was galvanostatically cycled at C/50 rate at 500 C (due to its slower kinetics at
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room temperature), following which it was charged at the same rate to a desired SOC. A

freshly assembled cell was used for each measurement of OCV or structure in order to

avoid accumulating any history-dependent effects. Over the course of this study over 100

cells were constructed and tested. For the lithium iron phosphate samples the cycling

voltage limits were 2.0-4.2V while for the lithium manganese phosphate it was 2.0-4.5V.

To measure the equilibrium OCV as a function of the SOC, cells were galvanostatically

charged or discharged to the desired SOC, and then the OCV was allowed to relax for

200h, after which the rate of voltage decay, dV/dt, was less than 10-7 V/h. These

measurements were carried out with the cells being held in a temperature-controlled oven

at 220 C ±0.20 C. The voltage was measured to 0.1 mV resolution. The average OCV

measured at lh intervals over the last 20h was used as the equilibrium or "fully relaxed"

electrical potential.

Structural Analysis

For measurement of structure by X-ray diffraction as a function of the SOC, cells were

galvanostatically charged or discharged to a desired SOC, then immediately disassembled

in an argon-filled glovebox. The positive electrodes of sample C were mounted on an

aluminum sample holder for X-ray diffraction. X-ray patterns were obtained using a

Rigaku RTP500RC instrument with a rotating anode and Cu-K, radiation, at a slow can

rate of 0.18 0 /min over a 20 range from 15 to 1350. For nanocrystalline samples A and M,

the delithiated phases were found to be very sensitive to air exposure, exhibiting an

exposure-related loss of crystallinity that may be due to reaction with air-borne water. In

order to exclude such effects, XRD spectra were obtained using sample holder designed

by the manufacturer for air-sensitive samples, which we sealed using 2 layers of 7.5

micron thick KaptonTM tape. These samples were characterized using Cu-Ka x-rays and

the PANanalytical X'Pert PRO XRD system using a slow scan rate of 0.15 0/min over a

20 range from 15 to 1350. Control experiments were conducted which showed that the

cycled samples did not change over the time scale of the measurements. The structural

parameters of all X-ray data were refined by Rietveld analysis using PANalytical X'Pert

HighScore Plus software and the backgrounds were manually fitted. Note that the
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backgrounds for the electrodes will include contributions from the binder, electrolyte, and

possibly side reaction products. As a result, the appearance of amorphous phases upon

cycling of the active materials can be difficult to detect. We instead used crystalline

phase fractions quantified by careful Rietveld refinement of high quality X-ray spectra

obtained in slow scan experiments carried out at various SOC. For the spectra obtained

from sample C, the best estimate residual parameter (Rexp) and weighted residual profile

error parameter (Rp) values were less than 2.0 and 7.0%, respectively, indicating

excellent data quality and reliable refinements. For the spectra obtained from sample A,

the background profiles also included contributions from the KaptonTM tape and therefore

the signal to noise was slightly worse. Nonetheless, Rexp and Rp for sample A were still

less than 3.0 and 12.0%, respectively, again indicating high data quality and reliable

refinements. Crystalline size and micro-strain were determined using the Williamson-

Hall analysis and NIST silicon 640c was used as an external standard.

Results and Discussion

Time- and State-of-Charge Dependence of OCV

In the conventional view of intercalation compounds undergoing a two-phase reaction,

the lithium chemical potential is pinned at a constant value (at constant temperature and

pressure) as required by the Gibbs phase rule, and the positive electrode potential relative

to Li/Li should theoretically be constant across the two-phase coexistence field. This

was found not to be true in the present materials when the OCV is examined at a sub-

millivolt scale of resolution. For sample A, panels A and B in Figure 5-2 show the time

dependence of OCV after charging and discharging, respectively, to various SOC (or

state-of-discharge, SOD) between 20 and 80%. There is a clear relaxation of the OCV

that takes place over tens of hours. This is remarkable given that sample A can be

effectively cycled at rates >10C (Figure 5-1), which corresponds to roughly a 1x10 4

shorter time constant and suggests that the phase assemblage produced by

electrochemical cycling is metastable. This phase assemblage nonetheless clearly has

high lithium exchange rate. It is also seen that the OCV is not in fact constant with

composition but increases with SOC in sample A. For sample C, the OCV relaxation
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during charging to various SOC is shown in Figure 5-2C. Here also, a relaxation of the

OCV over 20-40 h as well as an SOC dependence is observed. However, the relaxation

occurs faster for sample C, the variation of OCV with SOD is weaker, and has opposite

sign to that in sample A.

To compare the composition range over which the OCV varies with the phase diagram of

the respective materials, we plot in Figure 5-3A the temperature-dependent miscibility

data for samples A and C from ref. 7, as well as the equilibrium phase diagram of Dodd

et al.6 for bulk Lil-.FePO4. The dramatic shrinking of the miscibility gap at nanoscale

particle size is clearly seen here.

The terminal (fully-relaxed) OCV for sample A at room temperature is shown as a

function of SOC in Figure 5-3B. Results for both charge and discharge are shown, and

galvanostatic curves for the same material measured upon charge and discharge at a C/50

rate are also plotted for comparison. The SOC range of 30 to 75% lies within the room

temperature miscibility gap. The OCV measured upon both charge and discharge shows

a slight increase with increasing SOC within the miscibility gap. There is also a

hysteresis in the OCV between charge and discharge of about 7 mV. The variations in

OCV seen here is much greater than can be accounted for by temperature variation during

the experiment. For comparison, in Ref. 7 we measured the OCV of sample A at 50%

SOC and temperatures ranging from -200 C to +450 C, and found it to vary by 3mV over

this temperature range. The variation in OCV with SOC of sample A, shown in Fig. 5-

3B, is -10 mV despite temperature being constant to ±0.20 C. Thus the OCV variation

cannot be attributed to temperature variation. Figure 5-3C shows the relaxed OCV and

the C/50 galvanostatic curve for sample C compared to those for sample A. The wider

SOC range over which the OCV is shown corresponds to the wider miscibility gap

(Figure 5-3A). However, sample C also shows a measurable variation of OCV with

SOC. Interestingly, it has the opposite slope, with the OCV decreases with increasing

SOC. Furthermore, within its miscibility gap, sample C has a lower OCV by between 5

and 10 mV than sample A, which at room temperature corresponds to a difference in

lithium chemical potential of 500-1000 J/mole. Clearly, the co-existing phase
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assemblages and/or compositions are not identical in samples A and C during

electrochemical cycling.

State-of-Charge Dependence of "Triphylite" and "Heterosite" Phase Fractions

We next compare the evolution of the lithium-rich ("triphylite") and lithium-poor

("heterosite") phase fractions as a function of SOC in samples A and C, as determined by

Rietveld refinement of the X-ray diffraction spectra. The compositions of both phases

can be nonideal; consistent with previous notation7'8 we will use Lil-.FePO 4 to denote the

lithium-rich endmember having a lithium deficiency x with respect to its ideal

composition (e.g., triphylite or lithiophilite) and LiyFePO 4 to denote the lithium-poor

endmember having a lithium excess y with respect to its ideal composition (e.g.,

heterosite or purpurite). The evolution of phase fractions in sample C followed nearly

ideal two-phase behavior. Figure 5-4A shows a sequence of X-ray diffraction spectra

taken as a function of SOC from starting material through 95% SOC. The systematic

variation in intensity of the heterosite (200), (201), and (301) peaks (labeled "H") relative

to the same peaks for triphylite (labeled "T") with SOC is clearly seen. "C" refers to the

(002) peak of graphite, resulting from the carbon additive used in the electrode

formulation. Even at 5 and 95% SOC, the minority phases heterosite and triphylite

respectively were readily detected. Figure 4B shows the evolution of the triphylite and

heterosite phase fractions between 5 and 95% SOC, obtained by Rietveld-refinement of

X-ray spectra taken after 200h relaxation time. They vary linearly with SOC, as expected

from the ideal two-phase model. The unit cell volumes determined from Rietveld

refinement of the triphylite and heterosite structure as a function of SOC are also shown

in Figure 5-4B. Note that the triphylite unit cell volume remains essentially constant

across the entire SOC range; there is no evidence for induced nonstoichiometry x upon

formation of the heterosite phase. However, the heterosite unit cell volume is measurably

higher when the phase is first nucleated, then decreases with increasing SOC. We

attribute this behavior to size and strain effects. Since the initially nucleated LiyFePO 4

will have finer length scale and/or different morphology than the triphylite phase, it may

be expected to have higher lithium nonstoichiometry y if, for example, coherency stresses

are initially present between the parent triphylite and nucleated heterosite phase. As the
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heterosite fraction grows, the evolution of unit cell volumes shows that both phases

become "fully-relaxed" and approach limiting values consistent with previous literature

data for these two compounds as bulk phases. The microstrain obtained from Rietveld

refinement was consistent with this interpretation, with the triphylite phase having

-0.05% strain across the SOC range while the heterosite phase had an initially higher

microstrain of 0.15% when first measured at 5% SOC, declining to 0.09% by 50% SOC

and remaining at that value to 95% SOC. The difference in unit cell volume approaches

6.6%, which is typical of coarse-grained Lil.xFePO4.7'8

In Figure 5-4C, we compare the normalized mole fractions of triphylite and heterosite

with the C/50 galvanostatic voltage curve for sample C. The deviations in voltage at the

very beginning and end of charge corresponding to the formation of heterosite and

disappearance of triphylite are seen. With the exception of the deviation in unit cell

volume when the heterosite phase first forms, sample C behaves in a manner completely

consistent with the conventional two-phase reaction viewpoint. The slight decrease in

OCV as the heterosite unit cell volume relaxes to its bulk value indicates that the Li

chemical potential is actually slightly higher (OCV lower) when both phases are fully

relaxed.

Figure 5-5 shows that the phase-evolution behavior is markedly different for the

nanocrystalline material, sample A. X-ray diffraction spectra for this sample as a

function of SOC from starting material through 100% SOC are shown in Figure 5-5A.

Here, 100% SOC corresponds to the extraction of lithium from a fully lithiated

(discharged) material to a specific capacity of 155 mA h g-1' The higher background is

due to the KaptonTM tape used to hermetically seal the sample holder.

The normalized phase fractions of Lil-xFePO 4 and LiyFePO 4, these being the only

detectable crystalline phases aside from the carbon additive, are shown in Figure 5-5B as

a function of SOC, along with their unit cell volumes. The nonstoichiometry parameters x

and y calculated from Vegard's law are also given next to each unit cell volume datum.

The triphylite Lil.xFePO 4 unit cell volume decreases monotonically with increasing SOC

even at compositions within the miscibility gap where two crystalline phases are present.
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The decreasing unit cell volume corresponds to increasing lithium deficiency x in the Lil.

xFeP0 4 phase. Note that with increasing SOC, there is a small but sudden decrease in the

unit-cell volume of Lil.xFeP0 4 occurring concurrently with the first appearance of the

heterosite LiyFeP0 4 crystalline phase at -30% SOC. The initial LiyFePO 4 formed at 25-

30% SOC also has slightly larger unit-cell volume, corresponding to larger lithium

concentration (y-0.13 9 -0.1 4 6 ) than it does at higher SOC values (y-0.130-0.140). At

100% SOC, the LiyFePO 4 unit cell volume reaches its minimum value, as expected. The

difference in unit-cell volume at intermediate SOCs when both phases coexist is about

5.2%, significantly lower than for the coarse-grained sample C. The microstrain obtained

from Rietveld refinement was significantly higher across the entire SOC range than for

sample C, consistent with the presence of coherency stresses.8 The microstrain in the Lil.

,FePO 4 phase was in the range of 0.2 to 0.3%, while that in the LiyFePO 4 phase varied

from 0.2 to 0.5%.

At the beginning and end of charge when only a single phase exists, we expect the unit

cell volume to vary continuously due to the existence of a single phase field. Judging

from the SOC values at which the minor phase is first detected by XRD in Figure 5-5, the

solid solution fields extend to x-0.25 and y-0.2, respectively, which are larger values

than are observed for the same sample after charging to 50% SOC and allowing a long

period of rest.7 Within the miscibility gap, however, the present data indicate a significant

new result: even in two phase coexistence, the compositions evolve continuously. This

is completely consistent with the results above (Figure 5-3) showing that the OCV varies

with SOC continuously within the two-phase field. The initial decrease in LilFePO4

unit-cell volume when LiyFePO 4 nucleates, the continuous variation over the SOC range

where they coexist, and the smaller difference in unit-cell volume when both phases

coexist as compared to sample C, are all consistent with the coherency stress model7' 8 in

which the mechanical constraint imposed by each phase upon on the other causes their

respective lattice constants (and lithium concentrations) to approach one another due to

Vegard's stresses. Thus in sample A, the compositions of the crystalline fractions behave

as we have described previously.7
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However, further anomalous behavior becomes evident when the phase fractions are

quantified. In Figure 5-5C, the crystalline phase fractions and the C/50 galvanostatic

charge curve for sample A are shown as a function of SOC. The boundaries of the

miscibility gap at this temperature are drawn as broad vertical lines, encompassing the

range of numerical values determined from PITT measurements and Vegard's law.7 The

phase fractions shown are the Rietveld-refined results for the two crystalline phases. It is

seen that the variation of phase fraction with SOC is nonlinear, namely in violation of the

lever rule for co-existence of two phases within a fixed immiscibility field. Specifically,

there is a deficiency of LiyFePO 4 relative to that expected from the lever rule below 60-

65% SOC, and an excess above. The converse is true for the crystalline LiyFePO 4 phase,

the behavior of which is furthermore anomalous in that it is not detected until the sample

reaches 25% SOC, a composition that is well within the crystalline miscibility gap

determined in the previous study.7 (In contrast, this phase was clearly detectable in

sample C at 5% SOC, Figure 5-4.) The triphylite Lil-xFePO 4 phase also disappears by

80% SOC, before the Li-rich phase boundary is reached.

Additional Amorphous or Disordered Phases

Using the graphite (002) peak from the carbon additive as a qualitative internal standard

(Figures 5-4A and 5-5A), we had noted that the integrated intensity of the crystalline

phase peaks in sample A appeared to be much lower than that in sample C. Given the

nearly identical specific capacities of the two samples at C/5 rate (Figure 5-1), this alone

suggested a substantial noncrystalline fraction in sample A. TEM analysis of the samples

indeed showed the presence of amorphous particles, but we could not rule out the

possibility that these formed upon exposure to air. However, quantification of the

amount of amorphous or disordered phase was possible because we had experimental

measurements of three independent quantities: 1) the crystalline phase compositions, via

the unit cell volumes; 2) the crystalline phase fractions from Rietveld refinement of the

diffraction data, and 3) the overall Li concentration from electrochemical cycling. One

may then apply mass balance relationships to determine the amount or concentration of

the noncrystalline phases. The simplest such relationship assumes a single amorphous
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phase a-LizFeP0 4 co-existing with the two observed crystalline phases. At a given state

of charge where the overall composition is LipFeP0 4, mass balance requires that:

aLil.FeP0 4 + bLiyFeP0 4 + ca-LizFeP0 4 = LipFeP0 4  (1)

where a, b, and c are the molar fractions of each respective phase (a + b + c =1), and

lithium mass balance is given by (1-x)a + yb + zc =,8. We currently do not know z and c

independently but can place bounds on the product zc. For example, taking (I-x)=0.91

and y=0.14 , representing the results in Figure 5-5 at 50% SOC (with the ratio of

Li. 91FePO 4 phase to Li0.14FePO4 phase of -2:1) if the amorphous phase is assumed to be

completely delithiated (z=0), then at 50% SOC there is 51 mole% of Lio0.91FePO4, 26

mole% of Lio.14FePO4, and 23 mole% of the amorphous phase a-FePO 4. This is a

substantial fraction of amorphous phase. If the amorphous phase is assumed to be

partially lithiated, then its molar percentage will be even higher than this limiting value.

For example, if the amorphous phase is assumed to have composition Lio0. 2FePO4, then at

50% SOC we have 44 mole% of Li0.91FePO4, 22 mole% of Li0.14FePO4, and 34% of the

amorphous phase a-Lio0. 2FePO 4.

The curves for the crystalline phase fractions vs. SOC in Figure 5-5 have a sigmoidal

shape, crossing the straight lines that define the two-phase lever rule at between 60% and

65% SOC. This means that only in this narrow range of composition is it possible to

explain the overall composition 3 from a mixture of the two crystalline phases alone.

(Co-existence of an amorphous phase is not ruled out, however.) Below this SOC, there

is a deficiency of the delithiated phase LiyFePO 4, and mass balance requires the presence

of an additional noncrystalline delithiated phase. Above this SOC, there is a deficiency

of the lithiated phase Lil,FePO4, and the noncrystalline phase must be substantially

lithiated to satisfy mass balance. It is unlikely that there is such a complex evolution

where at low SOC there is first a delithiated amorphous phase, then no amorphous phase

at 60-65% SOC, and finally a lithiated amorphous phase at higher SOC. Instead, we

believe that an amorphous phase is present throughout, in which the lithium

concentration z increases systematically with SOC. The amount of noncrystalline phase

required to satisfy mass balance is in general well beyond that which can be provided by
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a surface atomic layer alone, given the surface to volume ratio of these powders. Thus

we do not believe the results can be explained by surface enrichment or depletion of

lithium at sites having a different chemical potential than the bulk, although the

amorphous phase may well form as a surface coating, as discussed later. Detailed

knowledge of the amorphous phase composition will allow a more precise estimate of the

phase fractions. It is also possible that more than one noncrystalline phase is present.

Phase Transformation upon Cycling of Nano-LilxMnPO 4

Experiments were also conducted on LiMnPO 4, sample M, in which we expected an even

greater tendency towards amorphization for reasons discussed later. Figure 5-6 shows X-

ray patterns from the sample in its starting state, and after charging to 40% SOC at C/50

rate and 500 C. The sample was first given two complete cycles under these conditions.

"L" and "P" in Figure 5-6 refer to lithiophilite and purpurite, the lithium-rich and lithium-

poor endmembers of this system, respectively. "C" again refers to the (002) peak of

graphite, resulting from the carbon additive used in the electrode formulation. It can be

seen that the peaks for the delithiated LiyMnP0 4 phase after charging are extremely

broad, indicating that the newly formed phase is highly disordered if not amorphous.

General Discussion

The observed behavior of these crystalline olivines at nanoscale particle sizes bears

similarities to several other surface and nanoscale phenomena in which a disordered

noncrystalline phase, despite having higher volume free energy, is stabilized under the

influence of surface energy, mechanical stress, or other short-range interactions. In

surface premelting, which is best known for ice18-20 but also occurs in certain elemental

metals,2 1 the surface of a crystal begins to melt below the bulk melting point (by -2K for

ice) due to the lower surface energy of the liquid compared to the crystal. The premelted

layer is constrained in its thickness by the increase in volumetric energy upon thickening

as well as by dispersion interactions across the nanometer-thick film. Similar effects

cause melting point suppression in nanocrystalline metals.22' 23 The surface-energy-

stabilized disordered phase may be a glass rather than a liquid. In binary oxides,
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nanometer-thick solid amorphous films of compositions that do not appear in the bulk

phase diagram are stabilized on crystalline oxide surfaces for similar reasons. 24 26 These

films also take on nanometer-scale thickness, as they are prevented from thickening

further by their higher volume free energy compared to the crystal. Intergranular

amorphous films of similar character have been widely reported; note that these are not

"wetting" liquids in the conventional sense but disordered solid films that form to

minimize interfacial energy.27-29 Thus a nanoparticle system which has a lower surface

energy for its glass than the corresponding crystal should become amorphous with

decreasing size (increasing surface to volume ratio), first at the surface of the particle and

eventually stabilizing the entire particle in the glassy state. This phase conversion has

been shown in nanocrystalline zirconia,3 0 where high-temperature oxide melt solution

calorimetric measurements confirm the existence of a phase stability crossover from the

bulk-stable monoclinic phase to metastable tetragonal and then amorphous phases with

increasing specific particle surface area.

The present metal phosphates do appear to readily form disordered solids. Like other

"III-V" analogs to SiO 2 such as AlPO4,31'32 FePO4 is stable at atmospheric pressure in the

quartz structure33 but is a good glass-former. Iron phosphate glasses are readily made by

quenching from the melt,34 and amorphous anhydrous FePO4 is readily formed by heating

of FePO4 " nH20, retaining an amorphous structure until about 5000C.3 5 38 The latter can

also be chemically lithiated without crystallization. 37 Thus the volume free energy

difference between the glassy and crystalline form of FePO 4 appears to be relatively

small. MnPO 4 is less well studied but should behave similarly. As with SiO2, a glass

structure that is in general a continuous-random-network consisting of corner-linked

oxygen tetrahedra38 alternatively filled with Fe3+ (or Mn 3+) and P5+seems likely. Upon

lithiation, the present experimental data as well as ref 37 indicate retention of the glassy

structure, which may correspond to Li+ in interstitial positions like those occupied by

alkali ions in common alkali-modified silicates,4 0 charge-compensation being provided

by the Fe3+ in tetrahedral coordination. However, the disordered structures of melt-

quenched, dehydrated, and electrochemically transformed disordered structures (the

present case) may differ significantly in the details of their short-range order. In AlPO4,
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what was thought to be a simple crystal-to-glass transition under high pressure was later

shown to be, first, a transition to a disordered crystalline phase with short-range order,

prior to true amorphization at higher pressures.3 1 The electrochemically-driven crystal-to-

amorphous transition in the present materials may also have complex behavior.

Glassy FePO4 and MnPO4 should be structurally similar in local coordination to their

quartz isomorphs in the same way that amorphous SiO2 is similar to quartz. If so they

should have generally lower surface energy than their crystalline counterparts. Parks41

compared the interfacial energies of quartz and amorphous silica based on their

solubilities in aqueous solutions (Gibbs-Thomson effect), and found a difference of -0.3

J/m2. For the free surfaces, an even larger difference is implied if the dehydroxylation

energy is included. The surface energy of liquid SiO2 extrapolated from high temperature

data to room temperature is -0.3 J/m2,41 whereas the fracture surface energy of quartz

ranges from -0.4 J/m 2 (for (10T 1) and (T011) orientations) to -1 J/m 2 ((1010) and

(1120) orientations). Because of the isotropic shape of the present particles (Fig. 5-1) the

relevant comparison is between the amorphous glass surface and an orientational average

of crystalline surface energies, which in the case of SiO2 is a difference of at least 0.3

J/m2 .

The avoidance of coherency stresses8 is another factor that will promote amorphization.

Consider a crystalline particle that is undergoing delithiation, and for which substantial

crystalline misfit stresses must be accommodated if it is to transform according to the

conventional two-phase reaction model. The particle may: (1) form an incoherent

interface between the Lil-,MPO 4 and LiyMPO 4 phases, and accept a higher interfacial

energy as the penalty for relieving lattice strain energy; (2) form a coherent interface of

lower energy, and accommodate the misfit as lattice strain and corresponding deviations

in the co-existing phase compositions; or (3) simultaneously relieve the interfacial energy

by forming a crystal-glass interface, and the volume strains by forming the amorphous

phase. Between the present work and previous publications, 78 we have evidence for each

mode of behavior occurring depending on the specific material in question. LiMnPO 4 is

clearly more prone to amorphization upon delithiation than LiFePO 4. While a complete

understanding of the differences between these two compounds requires additional data
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on the volumetric and surface energies involved, a contributing factor may be the much

larger crystalline misfit in the LiMnPO4-MnPO4 system, 11% difference in unit cell

volume for the stoichiometric compositions. In elemental silicon, which also adopts a

continuous-random-network glassy structure,39 the structural misfit between parent phase

and lithiated intermetallic compounds is even larger than in the present materials; and a

previous study has shown that lithiation of crystalline Si results in solid-state-

amorphization as well.43

The several possible phase transformation pathways between lithiated and delithiated

phases elucidated by the present work are illustrated in Figure 5-7. A coarse, single

crystalline particle that is effectively isolated from any neighbors undergoes conventional

nucleation and growth, with the multiphase particle having excess interfacial and strain

energy in the partially transformed state (Figure 5-7A). In general, the morphology will

not be of a "core-shell" configuration due to the influences of anisotropy in elastic

constants, diffusion, or surface energy. '" In a multiparticle assembly (Figure 5-7B), the

same partially-transformed state may initially occur. This state, however, is metastable

with respect to a two-phase mixture of single-phase particles in which coherency strain

and interfacial energies are removed. Whether the endpoint in Figure 5-7B is reached

depends on kinetics; for example the two-phase particles observed by Chen et al.44 are

clearly frozen in the partially transformed state. The metastability of a delithiated olivine

with respect to amorphization is illustrated in parts C and D in Figure 5-7, respectively.

The additional coherency strain and interfacial energy of the partially transformed state

may be relieved by forming an amorphous surface phase or grain boundary phase

between particles within an aggregate (Figure 5-7C). This can simultaneously lower the

surface and strain energies, although it comes with an increase in volume free energy due

to the formation of the amorphous phase. Further delithiation may result in complete

amorphization. (Another configuration not shown in Figure 5-7 would have an

amorphous film separating the crystals in order to relieve volume strain energy; this is

analogous to the amorphous grain boundary and heterointerfacial films27 29 and may have

been observed by Chen et al. 44) Finally, for small enough particles, complete

transformation to the amorphous state may occur even at partial delithiation if the
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reduction of surface and strain energy is more than the increase in volume free energy

(Figure 5-7D).

Each of these transformation pathways has specific implications for electrochemical

performance in a practical battery system. One is that the often-cited limitation in

crystalline olivines of "one-dimensional diffusion" (along the [010] lithium channel

direction) may be moot, if lithium transport occurs primarily in an amorphous phase that

is structurally isotropic. Another is that the relevant surface for any considerations of the

influence of surface defects on electrochemical potential may be the amorphous rather

than crystalline surface. Perhaps most importantly, the electrochemical response of

olivines undergoing the complex phase transitions shown here is expected to be sample

history dependent, and inherently hysteretic. For example, the recent observation of

single phase particles in partially charged LiFePO4 by Delmas, 45 which are in conflict

with the observation of multiphase phase particles by Chen et al.,44 may reflect

differences in the extent of phase redistribution following delithiation (such as Figure 5-

7A vs. 7B). And an example of hysteretic response is that the OCV values upon charge

and upon discharge to the same lithium composition may not ever converge (Figure 5-3).

Tuning nanoscale olivines to take advantage of disorder while minimizing possible

detrimental effects, may be a fruitful approach to improve materials.

To identify the actual transformation path(s) for nano-LixMPO 4, concurrent efforts in

experimental and theoretical development are necessary. Among various modeling

methods at different length and time scales, continuum-level models are promising to

reveal general trends in phase transformation pathways of LixMPO 4 particles during

delithiation/lithiation. For example, Johnson 46 considers spinodal decomposition confined

in spherical particles in a generalized diffuse-interface (phase-field) model. Model

calculations show that the solubility limits of the phase-separating phases increase with

decreasing particle size, which may account for the observed size-dependence of

miscibility gap in the Lil,.FePO4/LiyFePO 4 nanometer-scale particles. We recently

applied a phase-field model47' 48 that treats spatial variation of structural order

("crystallinity") in polycrystalline materials to predict the formation of intergranular

amorphous films in ceramics and metallic alloys.49'50 Based on this work, a modified
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model, which is specific to LixMPO 4 systems and incorporates the surface and stress

effects on phase stability, is being developed to explain the experimental observations. 51

Summary and Conclusions

A comparative study of the structural and phase changes taking place during

electrochemical cycling of nanoscale (< 100 nm) and conventional Lil-.MPO 4 has been

conducted. By measuring the state-of charge dependence and time dependence of the

open-circuit voltage and the co-existing phase content, it is shown that the phase

transformation path differs significantly between the two types of materials. Coarse-

grained LiFePO 4 (113 nm) is shown to undergo a conventional two-phase reaction in

which crystalline LiFePO4 and FePO 4 are the predominant co-existing phases. In

nanoscale samples, we observe that co-existing crystalline phases have greater mutual

solubility for lithium (reduced miscibility gap), and find that the appearance of each

phase constrains the unit cell parameters of the other in a manner consistent with

coherency stress effects. In addition, it is shown that the compositions of the crystalline

phases are not constant within the miscibility gap as expected for simple two-phase co-

existence, and that at least one disordered phase is simultaneously present. Thus the

phase transformation path in nanoscale olivines during electrochemical cycling can be

much more complex than previously thought. The possible paths, and their implications

for electrochemical performance in rechargeable battery systems, are discussed.
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Chapter 5 Figures and Tables
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Figure 5-1: Three powders used in this study: (a) sample A, LilxFePO 4 having 34nm average

particle size as determined from the BET specific surface area, (b) sample C, LiFePO4 having 113

nm average size, and (c) sample M, Li-.xMnPO 4 having 78 nm average particle size. The specific

capacity vs. C-rate is shown for samples A and C.
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Figure 5-2: Time dependence of OCV of (A) sample A after charging to various states of charge,

SOC; (B) sample A after discharging to various states of discharge, SOD; and (C) sample C after

charging to various SOC. A relaxation of the OCV that takes place over as long as 100 h is seen in

sample A, and over 20-40 h for sample C. The relaxed value of OCV is seen to be a function of SOC

and SOD.
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Figure 5-3: (A) Temperature dependent miscibility data for samples A and C from ref 7 plotted

against the equilibrium phase diagram of Dodd et al..6 (B) Room temperature terminal OCV and

galvanostatic voltage curve at C/50 rate measured on both charging and discharging of sample A. (C)

Terminal OCV and C/50 galvanostatic charge curves measured at room temperature as a function of

state-of-charge for samples A and C.
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Figure 5-4: Results for sample C showing nearly ideal two-phase reaction. (A) XRD spectra taken as

a function of state-of-charge from starting material to 95% SOC with "H" representing heterosite,

"T" representing triphylite, and C denoting the graphite (002) reflection from carbon additive in the

electrode formulation. Only a portion of the full spectra obtained from 15* to 135* 2-theta are shown.

(B) Unit cell volumes and the normalized crystalline phase fraction of triphylite (unfilled symbols)

and heterosite (filled symbols). (C) Galvanostatic voltage curve at C/50 measured at room

temperature.
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Figure 5-5: Results showing phase evolution in nanocrystalline sample A. (A) XRD spectra taken as

a function of state-of-charge, from starting material to 100% SOC. Only a portion of the full spectra

obtained from 150 to 135* 2-theta are shown. (B) Unit cell volumes and the crystalline phase fraction

of LiyFePO 4 (filled symbols) and LilxFePO4 (unfilled symbols). The nonstoichiometry parameters x

and y calculated from Vegard's law are given next to each unit cell volume datum. (C) Galvanostatic

voltage curve measured at C/50 rate at room temperature. The phase boundaries measured in ref 7

by electrochemical (PITT) and x-ray diffraction (Vegard's law) techniques are shown as shaded

vertical lines.
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Figure 5-6: XRD spectra of sample M in its starting state and after charging to composition

Lio.6 MnPO4. The sample exhibits broadened peaks for the delithiated LiyMnPO 4 (labeled "P") phase

indicating that the newly formed phase is highly disordered.
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Figure 5-7: Phase transformation pathways between lithiated and delithiated phases in LiMPO 4

olivines.
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Chapter 6

Aliovalent substitutions in olivine lithium iron
phosphate and impact on structure and properties
Nanoscale (<100nm) derivatives of the olivine family LiMPO4 (M = Fe, Mn, Co, Ni)

have become of particular interest for transportation and energy applications ranging in

size scale from hybrid and plug-in hybrid electric vehicles to utilities-scale power

regulation. Following the previous paradigm set with intercalation oxides, most studies

have focused on the pure ordered compounds and isovalent transition metal substitutions.

In contrast, the possibility for, and role of, aliovalent doping of the olivines has been

widely debated.

In this chapter, we carry out critical tests of the plausible defect compensation

mechanisms using compositions designed to accommodate Mg2+, Al3+, Zr4+, Nb5+ ions on

the Ml and/or M2 sites of LiFePO 4 with appropriate charge-compensating defects, and

obtain conclusive crystallographic evidence for lattice doping, in the case of Zr up to

more than 10 atomic percent added solute. Structural and electrochemical analyses show

that doping can induce a reduced lithium miscibility gap, increased phase transformation

kinetics during cycling, and expanded Li diffusion channels in the structure. Aliovalent

modifications may be an effective tool for introducing controlled atomic disorder into the

ordered olivine structure to improve battery electrode performance.
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Introduction

In previous intercalation oxides used as lithium storage electrodes for rechargeable

lithium batteries, such as the ordered rock-salts LiMO2 and spinels LiM 20 4, a highly

successful route to structure and property optimization has been the mixing of transition

metals and other isovalent substitutions. However, in ionocovalent compounds it is also

possible to introduce aliovalent solutes along with appropriate charge-compensating point

defects, and these may have as great or greater impact on structure and transport

properties as isovalent substitutions. Although this possibility was first discussed for

lithium iron phosphate by Chung et al.1 in 2002, numerous groups have since challenged

whether aliovalent doping is even possible in this family of compounds. For example,

Ravet et al.2 stated that "Contrary to spinels, the olivine structure is unfavorable to

aliovalent doping." and "It is thus unlikely that dopants on either Ml or M2 sites with

charges varying from 1+ to 5+ could: i) dissolve in the lattice; ii) create vacancies; or iii)

induce high conductivity...." Subsequently, Islam et al.3 concluded from atomistic

simulations that "LiFePO 4 is not tolerant to aliovalent doping (e.g., Al, Ga, Zr, Ti, Nb, Ta)

on either Li (Ml) or Fe (M2) sites," a point that is further reinforced in a recent paper.4

Experimental studies from established groups that raised similar doubts include work by

Delacourt et al.5 in which it was remarked that "Nb was never observed, through

elemental analysis techniques, within the LiFePO4 crystallites themselves," and by Ellis

et al.6, where it was concluded that "(a) Zr does not act as an internal dopant to stabilize

lithium substoichiometry to any large extent; and (b) the Zr is likely primarily located on

the surface of the particles." Since the present work was completed and presented,' a

communication 8 by some of the same authors as ref. 6 reverse their earlier conclusion, and

reinforces some of the conclusions of the present work. Nonetheless, despite recent

defect chemical studies in support of some mechanisms of aliovalent doping 9, other

scientific opinion is exemplified by comments such as those by Zaghib et al. 10 on "The

impossibility for doping LiFePO4... " and that "Of course, doping LiFePO4 with

pentavalent ion is even more impossible..." Clearly, aliovalent doping has not been a

generally accepted mechanism of crystal-chemical modification in lithium transition
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metal olivines. Research directions leading to critically needed improvements in battery

technology may be overlooked with such a view.

Experimental Section

Experimental Strategy

We carried out an experimental strategy aimed at testing each of the most probable solute

substitution mechanisms in LiMPO 4. The charge compensation of supervalent solutes

requires formation of defects with a negative effective charge (herein we will use Kr6ger-

Vink notation to denote effective charge). Like other oxides based on a close-packed

oxygen sublattice, oxygen interstitials are expected to have a large free energy of

formation compared to vacancy defects. Thus charge compensation of supervalent

cations is most likely to be accomplished through cation vacancies. With two non-

equivalent octahedral cation sites (Ml and M2), the number of distinct defect

mechanisms is relatively small. Model compositions, Table 6-I, were prepared to test the

four limiting-case ionic defect compensation schemes (Mechanisms 1-4). In each case,

the overall cation ratios were adjusted to promote a particular solid solution mechanism,

with the dopant substituting on either the Ml or M2 sites, and being charge-compensated

by vacancies formed on the Ml or M2 sites. The phase content, unit cell parameters,

atomic site occupancy, and dopant distribution in the experimental materials were

characterized. This approach using compositions of controlled cation ratio to determine

preferred mechanisms of solute incorporation has previously been used to great effect in

perovskites." To represent aliovalent cations of 2+ through 5+ valence, we used the

dopants Mg2+, Al3+, Zr4+ and Nb5, each of which has ionic radius close to (slightly

smaller than) that of the host cations Li+ and Fe2+, and should readily substitute onto the

host sites. Mechanism 1, formulated with the dopant on the Ml site and charge

compensating vacancies also on the Ml site, and Mechanism 3, having the dopant on the

M1 site and charge compensating vacancies on the M2 site, are two mechanisms

specifically proposed by Chung et al. 1 Mechanism 2 with a supervalent solute substituted

for Fe and charge compensated by Ml vacancies is the model which Amin et al. 9 have

concluded applies to their float-grown Al-doped single crystals. In Table 6-I, the charge
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compensation schemes are given in terms of the overall composition of the sample and

also in Kroger-Vink notation for Mechanisms 1-4, taking Zr4+ as an example.

Mechanism 5 represents the case where the dopant oxide MxOy is simply added to a

stoichiometric LiFePO4 with no attempt to promote a particular defect compensation

mechanism. This experimental framework allows us to determine: 1) whether aliovalent

solutes are in fact soluble in the olivine structure; 2) if so, which defect compensation

mechanisms provide the largest solubility and the most significant changes to the

structure; and 3) the effect of doping on the phase stability and other electrochemical

properties. An undoped LiFePO 4 sample prepared by the same method was used as a

control.

Test Materials

The samples were prepared using a previously described synthesis method.1 The

procedure and firing schedule are depicted on Figure 6-1. Li2CO3, FeC204-H 20, and

NH2H2PO4, each assayed to determine the true metals content, were weighed in an Ar-

filled glovebox (<3ppm oxygen and water), then mixed by ball-milling in acetone. The

cation dopants were added using the following salts of reagent-grade purity (Alfa-Aesar,

Ward Hill, Massachusetts, USA): Mg2C204-2H 20, Al(OC2 H5)3, Zr(OC 2H5)4, Nb(OC6 H5)5 .

The powder was dried and calcined at 3500 C for 10 h in flowing Argon, then at 7000 C in

flowing Argon for 5 h. The specific surface area of the resulting powders was measured

by the BET method (Brunauer, Emmett and Teller), and the equivalent spherical particle

diameter calculated assuming 3.6 g/cm 3 crystal density.

Structure Analysis

X-ray patterns of the powders were obtained using a Rigaku RTP500RC or

PANanalytical X'Pert instrument with a rotating anode and Cu IK radiation, with a slow

scan rate of 0.180 min-' over a 20 range from 15' to 1350. High quality data sets were

obtained, as indicated by Rexp values of -1.5. Time-of-flight (TOF) neutron diffraction

data were collected at the General Purpose Powder Diffraction (GPPD) beamline at the

Intense Pulsed Neutron Source at Argonne National Laboratory, USA. Neutron data were
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collected at room temperature using a vanadium canister and from 3 detector banks to

ensure good data quality at low, medium, and high collecting angles. The structural

parameters for each of the four aliovalent dopants added at a 5 at% level according to

mechanisms 1-5 were determined by Rietveld refinements of X-ray spectra. The

structural parameters and site occupancy of the 5% Zr doping level according to

mechanism 1 were determined through simultaneous Rietveld refinements of combined

neutron and X-ray data using the EXPGUI interface 32 and the General Structural

Analysis Suite (GSAS) software. 33 Starting lattice parameters and atomic positions were

taken from Ref.19 and starting isotropic temperature factors were taken from Ref.20

(with conversion from Biso to Uiso values).

Electron Microscopy

Imaging and elemental mapping was done using a VG HB603 scanning transmission

electron microscope operating at 250 kV accelerating voltage (Vacuum Generators, East

Grinstead, UK), equipped with a Link Systems (Oxford Instrument,High Wycombe, UK)

energy-dispersive X-ray analyser.

Electrochemical Tests

Electrochemical tests were performed using electrodes formulated with 79 wt% positive

active material, 10 wt% conductive carbon black (Super PTM, M.M.M. Carbon, Brussels,

Belgium) and 11 wt% Kynar 2801 binder, using acetone as the solvent. The formulation

was coated onto aluminum foil current collectors at a loading of -5 mg/cm 2 of active

material, and assembled in SwagelokTM type cells using Li metal foil as the

counterelectrode, a microporous polymer (Celgard 2400TM, Hoechst Celanese

Corporation, Charlotte, NC, USA), and liquid electrolyte mixtures containing 1:1 by

mole ethylene carbonate: dimethyl carbonate (EC:DMC) or ethylene carbonate: diethyl

carbonate (EC:DEC), and 1 M LiPF6 as the conductive salt. Electrochemical cells were

galvanostatically cycled for 2 cycles within 2.0 - 4.2V voltage range at room temperature

before studied with potentiostatic intermittent titration technique (PITT) with a 5 mV
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voltage step within 2.0-3.8V voltage range and cut-off current of C/50 using Arbin or

Maccor instrumentation.

Results and Discussion

Bulk Solid Solution of 2+ through 5+ Aliovalent Dopants

X-ray and neutron diffractions were used to determine structural parameters (this Section)

and site occupancies (Section 5). We first compare results for each of the four aliovalent

dopants added at a 5 at% level. Lattice parameters and unit cell volumes determined by

Rietveld refinements of X-ray spectra are shown in Figure 6-2. The dashed horizontal

lines are the values for the undoped control sample. With increasing dopant valence, we

see an unmistakable increase in the a and b lattice parameters, with the c-axis changing

rather less except in the instance of mechanism 1. Measurable solid solubility for each

of the five composition families is clearly indicated by the systematic variation in unit

cell dimensions and volume. Doping according to Mechanism 1 produces distinctly

larger increases in each of the cell parameters and in the unit cell volume. In the

remainder of this paper, we focus on this doping scheme, which has the aliovalent dopant

(or Fe2+) occupying the Ml site with charge compensation being provided by M1

vacancies. Detailed results for the other compensation mechanisms will be published

elsewhere.

A series of compositions Lil-4yZryFePO 4 were prepared, with y ranging from 0.01 to 0.10.

Figure 6-3a shows limited 20 ranges of the X-ray diffraction spectra for seven of the

compositions in this series. High-quality spectra (Rexp - 1.5) were collected using a

Rigaku RTP500RC instrument at scan rates of 0.180 min-1 over the 20 range from 150 to

1350. Lines for NASICON phases of several compositions are shown for comparison.

At low Zr levels the predominant phase is the olivine, although vague "shoulders" around

the peak at 300 20 do not allow us to rule out the presence of trace Fe2P207. With

increasing Zr content, a single NASICON phase becomes clearly detectable and grows in

amount. The peak positions for this NASICON phase shift slightly to lower angles with

increasing overall Zr doping level, suggesting an evolution in composition from
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Li2FeZr(PO4)3 towards the pure Zr NASICON LiZr2(P0 4)3. We refined the X-ray spectra

assuming a mixture of these two phases and obtained the unit cell parameters and phase

fractions of olivine and NASICON. The variation in olivine unit cell volume with Zr

concentration is shown in Figure 6-3b. Note that the olivine unit cell expands almost

linearly in volume with the Zr doping level and has not yet saturated at 10 at%. Clearly,

Zr is highly soluble in LiFePO 4 when the overall composition is formulated to allow for

cation substitution onto the M1 sites with charge compensating Ml vacancies. As further

support, Figure 6-4 shows STEM analyses of a 5% Zr sample doped by this mechanism,

in which Zr is uniformly detected in the crystallites.

In several previous studies attempting to dope LiFePO4 with aliovalent solutes,5' 6 the

appearance of a secondary phase, such as NASICON in the present samples, has been

taken to mean that the solid solubility limit has been exceeded. Here we explain why this

reasoning is thermodynamically incorrect and why the appearance of one or more

additional phases in such a multicomponent system does not mean that the solubility limit

of the olivine has been exceeded. Furthermore, we present experimental evidence

showing that this is precisely what occurs in Zr-doped LiFePO4.

The Li-Fe-Zr-P-O system is a five-component system if the concentration of each

element is free to vary (as in a metal alloy), but one compositional degree of freedom is

lost and the number of components is reduced to four if all elements have a single

valence state. This is because charge neutrality then constrains the ratios of elements in

any phase. (If two iron valences are allowed in the ionic compounds a degree of freedom

is gained back, Fe2+ and Fe3  being then treated as separate components.) Taking the

most restrictive condition (smallest number) of four components, at fixed temperature

and pressure the Gibbs phase rule allows for three degrees of freedom (F = 3) when

olivine and NASICON are the only coexisting phases (P = 2). (F = C - P + 1, where F is

the number of degrees of freedom, C the number of components, and P the number of

phases.) Allowing for another minor phase would still leave two degrees of freedom.

Under such conditions the thermodynamic activity of components is not fixed, and it is

perfectly permissible for the Zr solubility in the olivine to vary with the overall

composition despite the presence of NASICON (or other phases, until F = 0). Many
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examples of such behavior exist in multicomponent systems; for a simple illustration we

point to a ternary phase diagram no.9775a in Phase Diagrams for Ceramists 12, where a

three-component system exhibits a wide two-phase coexistence field within which the

compositions of the two phases (joined by tie-lines) vary continuously.

The results in Figure 6-5 show that Zr-doped compositions (Mechanism 1) exhibit such

behavior. With increasing Zr doping level the relative amount of NASICON phase

(open circles) increases almost linearly, reaching just under 20 wt% NASICON at the

highest Zr content tested (0.10 mole fraction), while the weight percentage of olivine

decreases linearly (open squares). However, the olivine unit cell volume (closed squares)

increases linearly showing continued incorporation of Zr. The NASICON unit cell

volume (closed circles) also varies continuously but not in a linear manner; it increases

sharply from zero to about 0.02 mole fraction Zr and then increases with a shallower

slope with Zr level. Clearly the Zr activity is not constant in either the olivine or

NASICON phase across this composition range. In experiments on the same

composition system, Ellis et al.6 erroneously took the appearance of the Zr-rich

NASICON phase to indicate that the solubility of Zr in the olivine has been exceeded,

which would only be correct if the system had reached zero compositional degrees of

freedom. Instead, with increasing Zr doping the amount of Zr in both the olivines and

NASICON phases continues to increase. The same thermodynamic principles apply for

any dopant. There is a common belief often expressed in literature that a single-phase

doped sample is somehow a "good" sample and that one containing additional phases is

inferior, which these considerations show to be fallacious. From the linear variation of

unit cell volume with Zr doping (Vegard's law) in Figure 2b, the variation in Zr level in

the olivine phase can be obtained if the lattice concentration is known for any one doped

sample. This information is obtained independently from structural refinement of

neutron diffraction data in the later section.

Effect of Particle Size on Dopant Solubility

Particle-size dependent solid solubility can occur for various reasons, but most frequently

when there is a sufficiently large surface/volume ratio and the solute in question is
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surface-active. Nanoscale TiO2 is one system in which size-dependent solid solubility

due to interfacial segregation of dopants has been studied. 13 Since the powders prepared

in this study generally had <100nm particle size, it was of concern to us to determine

whether the observed high dopant solubility is due to, or at least influenced by, the small

crystallite size. Although the interfacial segregation of solutes has not been studied (in

part since, until now, solid solution behavior has not been accepted), some predictions are

possible from basic theory. For aliovalent solutes in ionic compounds, there in general

exists an electrostatic driving force for interfacial segregation, which has been studied for

a number of oxide systems doped with supervalent and subvalent cations. 14 -17 For doped

olivines with extrinsic defect structures such as those in Table 6-I, it can be shown from

basic theory 1' 4 18 that the introduction of bulk cation vacancies will cause an initially

neutral surface will develop a negative charge, adjacent to which forms a positive space-

charge penetrating the crystal. If the supervalent cations are sufficiently mobile, they will

accumulate in the space-charge in response to the negative surface charge. (Other

charged defects will also redistribute.) The dopant may also have other driving forces for

segregation, such as the elastic energy due to ion size misfit, which can cause segregation

at surface sites (or other lattice discontinuities) resulting in further contributions to the

total amount of interfacial segregation.

We tested the size-dependent solid solubility hypothesis by taking one highly doped

sample, having 7.5% Zr (Mechanism 1), and heat treating it to coarsen the particle size

from an initial average particle size of 45 nm. As shown in Figure 6-5, under firing

conditions that result in coarsening of the powder particle size to size scales well beyond

that at which significant size-dependent effects are expected (>1 rtm), there is a slight

decrease in the unit cell volume, which points to some role of size-dependent solubility.

However, even at the highest firing temperature (coarsest particle size) the unit cell

volume remains well above that of the undoped sample. This indicates that the high solid

solubility of Zr (and by inference other dopants) is fundamentally a bulk phenomenon.

Nonetheless, these size-dependent solubility effects are interesting and warrant further

study.
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Site Occupancies in Doped Solid Solutions

Having indications from the change in unit cell parameters that bulk doped solid

solutions do exist, we next used X-ray and neutron diffractions together to determine the

atomic site occupancy and the detailed changes in structure upon doping. Simultaneous

Rietveld refinements of multiple-data sets (three neutron diffraction profiles covering low,

medium and high angle reflections, and X-ray diffraction from 15'-135' 20) were carried

out using initial lattice parameters and atomic coordinates from Ref. 19 and isotropic

thermal parameters from Ref. 20. Figure 6-7 shows the Rietveld refinement results when

different M1/M2-site occupancy models are applied to the neutron diffraction profile for

a single sample doped with 5% Zr according to Mechanism 1. It can be seen that the

quality of the Rietveld refinement was least satisfactory when an ordered stoichiometric

LiFePO4 was assumed (Figure 6-7b, x2 = 2.422) or when M2-site substitution by the Zr

with charge compensation by M2 vacancies was assumed (Figure 6-7c, X2 = 3.432). The

quality of refinement improved significantly when the theoretical site occupancy of this

sample, Lio.80 Zro.o5Ao.15FePO4, was assumed (Figure 6-7d, X2 = 1.980). When Li and Zr

were confined to the Ml site and Fe to the M2, but the concentration of each was allowed

to vary, the best fit was obtained for the site occupancy

(Lio0. 84 5Zro0.04 3 A. 112)(Feo.979 A.0 2 1)PO 4 (X2 = 1.885), Figure 6-7a. The refinement thus

provides an independent determination of the actual amount of Zr in solid solution: at 4.3

mole %, it is 86% of the overall doping level (5 %). It is reasonable that the amount in

solution in the olivine is somewhat reduced from the overall level given that there is

about 9% NASICON phase at this doping level (Figure 6-6). Extrapolating linearly the

olivine unit cell volume with doping level (Vegard's law) in Figure 6-3b indicates that at

the highest Zr doping level tested, the amount in solid solution is about 8.6 mole %.

Even this level must be regarded as only a lower limit to the maximum Zr solubility since

Figure 6-3b shows no deviation from linearity yet at this doping level. Overall, the

refined site occupancies indicate that the defect compensation mechanism is very close to

the theorized extrinsic mechanism: 3[ZrLi'] = [VLi']. The site-occupancies, atomic

coordinates, and thermal parameters of this sample are summarized in Table 6-II. For

each of the other solutes (Mg 2+, A13+, Nb5+) doped according to Mechanism 1, the
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refinements also indicated that the dopant predominantly occupies the Ml site, as will be

discussed elsewhere.

Since the concentration of charge-compensating vacancies increases with the valence n of

the dopant, the relationship being given specifically by [VLi'] = (n-1)[MLi(n-l)' ] for

Mechanism 1, we are able to conclude from the present results that all else being equal,

lithium vacancies cause the olivine unit cell to expand. Figure 6-2 shows a

monotonically increasing unit cell expansion with dopant valence n even though each of

the dopants (Mg2+, A13+, Zr4+, Nb5+) has smaller 6-fold ionic radii (0.072, 0.054, 0.072,

and 0.064 nm respectively) than both Li+ (0.076 nm) and Fe2+ (0.078 nm). This

conclusion is further supported by the linear expansion upon Zr doping shown in Figure 2.

Thus the partial molar volume of lithium is shown to be negative in this compound. Note

that this conclusion is not in conflict with the nearly linear decrease in unit cell volume

observed in Lil,.FeP0 4 solid solutions with increasing x, since in that case delithiation is

accompanied by the replacement of Fe2+ (0.078 nm) with the smaller Fe3+ (0.065 nm) ion.

Doping with aliovalent solutes that are charge-compensated by Li vacancies therefore

produces an expansion of the olivine lattice relative to ideal stoichiometric LiFePO 4,

whereas delithiation causes lattice contraction.

We were interested in whether the lattice expansion induced by doping could influence

the kinetics of ion transport. Examination of bond lengths in the doped samples showed

that the increased unit cell volume was associated with increased lithium-oxygen and

oxygen-oxygen bond lengths. In the olivine structure (Pnma), inspection suggests that

Li+ will not migrate directly through the shared edge (01-02) between LiO 6 octahedra,

but instead should follow a curved migration path through the adjacent interstitial space,

illustrated in Figure 6-8. The activation energy for this migration path, which traverses

an opening defined by the oxygen bond lengths 0 1-02-03, has been modeled by Morgan

et al.2 1 and Islam et al.3 with the values obtained differing by more than a factor of two

(270 meV and 550 meV, respectively). Nonetheless, its plausibility is supported by

recent experiments by Nishimura et al.22 that provide an elegant and direct experimental

visualization of the Li migration path. In Table 6-III, we show bond length data obtained
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from the undoped control sample and four samples doped according to Mechanism 1 with

10% Mg, 5% Al, 5% Zr, and 5% Nb respectively. The 0-0 bond lengths are increased in

all of the doped samples compared to the undoped control sample, with the largest

expansions being as follows: 01-02, +0.02 A; 02-03, +0.013 A; 01-03, +0.006 A. The

Li-O bond lengths are also all increased: Li-Ol1, +0.012 A; Li-02, +0.008 A; and Li-03,

+0.010 A, as are certain of the Fe-O bond lengths. Comparing the A13+, Zr4+ and Nb5+

series at the same 5% doping level, each of the 0-0 bond lengths increases

monotonically with the valence of the dopant (i.e., the number of charge-compensating

vacancies introduced per dopant atom). Although we have not done so, this structural

data could be used to compute changes in lithium migration activation energy. For

example, a comparable expansion of 0.02 A of the lithium slab spacing in Li(Mn,Ni)0 2

results in a 20-30 meV decrease in the calculated Li migration energy. 23 However, any

consideration of Li migration in the olivine structure must also take into account the

effects of less mobile cations occupying the [010] Ml channels, a point we return to later.

Potentiostatic Titration Measurements of Lithium Immiscibility and Phase

Transformation Kinetics

Although the main focus of this work was the elucidation of dopant solubility and defect

mechanisms, we also obtained some results relating to the effect of doping on the lithium

miscibility and phase transformation kinetics. These characteristics have been correlated

with the ability of nanoscale olivines to deliver stored energy at high charge/discharge

rates in previous work.24'25  Potentiostatic intermittent titration tests (PITT) are

particularly useful for characterizing such behavior, for the following reasons. Since true

two-phase coexistence is characterized by a constant open circuit voltage (OCV), careful

measurement of the charge capacity above, and discharge capacity below, the OCV can

be used to measure directly the extent of solid solution (phase boundaries). Unlike

galvanostatic tests, PITT allows the capacity at a given potential to be measured without

the application of any overpotential. In the absence of an overpotential, there is no

thermodynamic driving forces for phase transformation until the OCV is exceeded. In

this methodology, 24 the room-temperature OCV of the cells is first measured with the

samples at 50% SOC, well within the miscibility gap, to obtain the OCV for an
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equilibrated two-phase state. Then, the cumulative charge capacity below the OCV is

measured upon charging in small constant-voltage steps (5 mV), allowing the current to

relax to <C/100 at each voltage. The cumulative discharge capacity above the OCV is

similarly measured upon discharge from the fully charged state. The accumulated charge

capacity below the OCV is then a measure of the solid solution x in the Li-rich

endmember, e.g., Lil.xFePO4, and the accumulated discharge capacity above OCV is a

measure of the solid solution y in the Li-poor phase, e.g., LiyFePO 4.

The most complete set of results compared a 5% Mg sample doped according to

Mechanism 1 with an undoped control sample of identical particle size, and are discussed

here. Figure 6-9 shows results from the PITT measurement, in which it can be seen that

there are substantial capacities above and below the OCV both during charge and

discharge of the cell. The Li-nonstoichiometry x was calculated to be -10.6% and the Li-

nonstoichiometry y to be -13.3%. PITT responses of the undoped control sample, the

conventional coarse-grained sample, and 1% Nb doped nanoscale sample are plotted to

the same scale in Figure 6-9 for comparison.

Compared to undoped Lil.xFePO 4, which already exhibits a strong size-dependent

miscibility gap in this particle size range,20' 25 the doped samples exhibit even greater

lithium miscibility. Figure 6-10 shows the equilibrium phase diagram for bulk Lil_

xFePO 4 published by Dodd et al.26 compared with the solid solution limits measured

using PITT for several materials. Conventional LiFePO 4 of 113nm mean particle size

shows very limited solid solution, whereas the lithium miscibility gap contracts

significantly for undoped powder at 42nm mean particle size.25 At the same particle size

(as determined from BET measurements of the specific surface area) the miscibility gap

is compressed further still for the 5% Mg doped nanoscale sample. The lithium-poor

phase, LiyMgo.osFePO 4, has a Li excess, y, of -13.3%, more than twice that in the

undoped nanomaterial at the same (room) temperature, while the lithium-rich endmember,

Lio.90-xMg.05FePO 4, has a Li deficiency, x, of -10.6%, which is about the same as for the

undoped nanoscale composition. The 1% Nb-doped sample shows still further

contraction of the miscibility gap on both sides.24

-120-



Doping therefore appears to have the effect of reducing the miscibility gap beyond that

which can be obtained by size reduction alone. We attribute this to atomic disorder in the

olivine lattice produced by the aliovalent solute and its charge-compensating defects.

The results in Figure 6-10 suggest that aliovalent solutes of higher valence (e.g., Nb5+ or

even dopants such as W6+) have greater impact on the phase diagram per unit

concentration, which may be related to the higher lithium vacancy concentration that is

introduced per dopant atom.

PITT measurements can also be used to directly measure the phase transformation rate in

the two-phase field, since the current measured in PITT is proportional to the phase

transformation rate when the co-existing phases have fixed composition. Meethong et

al.24 have shown that the cycling-induced phase transformation in olivines is made more

facile by reducing the lithium immiscibility, and misfit strain, between the co-existing

phases. Figure 6-11 shows similar measurements performed on the 5% Mg sample and

the undoped control of nearly identical particle size. The voltage vs. time curves are the

constant-voltage PITT steps separated by 5 mV. During each constant voltage hold, the

time-dependence of current (data points in red) were recorded, and show the rate of

lithium exchange out of (during charge) or into the sample (during discharge). For the

doped sample, the current flow starts at a maximum value when the voltage is first

stepped up during charging (Figure 6-11a) or stepped down (Figure 6-11b) during

discharging, then decays monotonically from there). This behavior qualitatively differs

from that of the undoped Lil-xFePO 4 in which (Figure 6-1 lc) there is a local maximum in

the current suggesting that a barrier to transformation is being overcome. It is unlikely

that these differences in PITT kinetics are due to extrinsic factors such as electrode

polarization since all of the electrodes were formulated and processed identically, the

absolute currents recorded during the constant voltage holds are all less than -C/15, and

the voltage increments are only 5 mV in magnitude. We believe these characteristics

represent true differences in lithium exchange behavior at the nanoparticle level. Note

that the undoped sample of 42nm size already has considerable lithium nonstoichiometry,

yet shows sluggish phase transformation kinetics compared to the doped sample. The

undoped nanoscale sample has qualitatively similar behavior during charge to a 113 nm
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undoped carbon-coated material reported in reference. 24 The detailed modeling of the

current transients in terms of kinetic steps has proven to be complex, but may provide

additional insight when complete.

At high doping levels, the improvement in kinetics does not come without penalty,

however. The fast kinetics of the 5% Mg sample is mitigated by lower absolute values of

charge and discharge capacities, 114 and 110 mAh/g respectively (compared to typical

capacities >150 mAh/g in less highly doped samples). This reflects a compromise that

must be struck in designing doped compositions between lithium channel blocking and

the beneficial effects of phase diagram manipulation and, possibly, lithium diffusion

channel expansion.

Summary and Conclusions

The present results show that aliovalent solutes of 2+ through 5+ valence are readily

accommodated in the olivine lattice, especially when the overall composition is

formulated to allow the simultaneous introduction of cation vacancies for charge

compensation. The approach of intentionally producing a nonstoichiometric cation ratio

to accommodate the introduction of an aliovalent solute and its charge-compensating

defect, demonstrated long ago in other ionic compounds," appears to be effective in

olivines as well. The total energies for such compensation processes were not considered

in recent computational studies that concluded that aliovalent solutes are insoluble.3' 4

Chung et al.' had originally proposed that supervalent solutes smaller in size than the host

Li+ and Fe2+ should preferentially occupy M1 sites, rather than exchanging sites with Fe2 +

for example. This tendency is supported by the present results. The recent results of

Wagemaker et al. 8 explore a single mechanism (our Mechanism 1) and are in general

agreement with our results at low doping levels. However, whereas they conclude that

only low levels up to about 3 mol% are soluble (see also Ref. 6), here we show that the

olivine structure can accommodate much higher solubility, up to at least -10 mole% in

the case of Zr. As discussed in Section 3, neglecting the implications of the Gibbs phase

rule for multicomponent systems leads to the mistaken interpretation that solid solution

limits have been reached when a second phase appears. It should also be emphasized that
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although Mechanism 1, having Ml site occupancy by the supervalent dopant and charge-

compensation by lithium vacancies, results in the largest change in lattice constants, it

does not necessarily provide the highest solubility; other defect mechanisms (Table 6-I

and Figure 6-2) may have equivalent or higher absolute solubilities.

If it is then accepted that aliovalent solutes are in fact highly soluble in the olivines, the

effects of doping on properties are of much interest. The present work provides

additional support to previous results 24,25 that at nanoscale particle sizes (<100 nm), the

size-dependent lithium miscibility gap in undoped Lil.xFePO 4 can be further manipulated

by doping. The correlation between a reduced lithium miscibility gap, reduced elastic

misfit between the phases participating in the first-order phase transition, and a faster rate

of phase transformation during electrochemical cycling,24 is upheld here. Gibot et al.27

recently reported complete Li miscibility at room temperature in undoped but disordered

nanoscale LixFePO 4. As they point out, Li-Fe disorder by itself is expected to be highly

dependent on the synthesis method used. While the details of how the phase diagram is

influenced by disorder and defect type remain to be understood, any such manipulation is

more easily controlled by extrinsic doping.

Returning to the issue of [010] M1 channel blocking by less mobile ions, in addition to

arguments against Ml site doping, Li-Fe disorder in LiFePO 4 has been widely considered

to be detrimental to electrochemical properties for the same reason.2 8 This may well be

true at large particle size or for single crystals, but at nanoscale particle sizes the actual

number of blocking cations per Li channel should be considered. The [010] channels

have 2 Ml sites per 0.6 nm, so a 30 nm particle having 1% of the Ml sites occupied

would have on average one Ml dopant atom per channel. Since both ends of the [010]

channel remain open for Li extraction and insertion, there should be almost no loss of

accessible lithium. These considerations lead to the expectation of a tradeoff between

[010] channel blocking and other effects of doping at particle sizes of a few nanometers,

and doping levels of a few percent.

Another effect of inducing a greater lithium nonstoichiometry range x and y is that greater

Fe2+/Fe 3+ multivalency will be incurred in the solid solutions produced during
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electrochemical cycling, or even during the synthesis of materials. The effect of lithium

nonstoichiometry on lattice electronic conductivity is another topic of much debate, and

is not directly addressed by the results presented here. However, it is notable that Amin

and Maier 29 have recently observed a 103 increase in the electronic conductivity of

undoped and carbon-free Lil-,FePO4 upon introducing lithium deficiency of x<40 ppm

through heat treatment in "inert atmosphere," presumably a much less reducing

environment than the forming gas atmosphere used by Herle et al. 30 to produce

phosphide-laden samples of high conductivity. While full discussion is beyond the scope

of this paper, we wish to correct an assertion by Wagemaker et al." that some among the

present authors have suggested the existence of Fe in aliovalent doped olivines as a

cause of increased conductivity, citing a patent document.3 1  Wagemaker et al.

misrepresent what is a simple typographical error. The only instance where Fe+ appears

in the entire cited reference is a mistyped formula (column 34, line 16 of Ref. 31): Li'+l_

a-xM3+x(Fe2+1-a+2xFe+a-2x)(PO4)3- where M3+ represents a trivalent dopant on the M1 site.

There are in fact two typographical errors in the formula, which is not electrically neutral

as written. From the context of the cited reference the formula is clearly intended to read:

Li 1+-a-xM3+x(Fe2+ 1-a+2xFe3+a-2x)(PO4)3-. This formula in fact represents an M1-site doped

composition with an extended lithium solid solution range, a composition supported by

the present work.

Thus we show that aliovalent solute doping of LiFePO4 is not only possible, but has

several distinct consequences which may be manipulated to improve battery electrode

properties. We find that the olivine lattice can accept aliovalent cations of 2+ through 5+

at concentrations of at least several percent, with charge-compensation by M1 vacancies

being at least one available defect mechanism. The disorder produced by these

substitutions cause the lithium miscibility gap to be contracted, and by modifying the

crystal structure so as to expand the lithium migration channels, may have the effect of

increasing lithium mobility. Along with nanoscaling and other compositional

modifications of the olivines, controlled aliovalent doping is a methodology that may be

used to advantage in the ongoing worldwide effort to develop improved battery

technologies for energy applications.
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Chapter 6 Figures and Tables

Firing Schedule
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Figure 6-1: Sample preparation and firing schedule of the studied materials.
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Figure 6-2: Lattice parameters and unit cell volumes for four dopants each at 5 at% overall doping

level, formulated according to Mechanisms 1-5, compared to the undoped control sample (dashed

horizontal line). Values are from Rietveld refinements of X-ray diffraction spectra. The unit cell
parameters increase as the valence of the dopant increases; Mechanism 1 in which the solute
substitutes onto the M1 site with charge compensation by Li vacancies gives the largest unit cell
expansion
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Figure 6-3: a) X-ray diffraction spectra for samples with varying Zr doping level showing olivine (0),

NASICON (N), and trace Fe2P 20 7(F). High-quality spectra (Rexp  1.5%) were collected using a

Rigaku RTP500RC instrument at scan rates of 0.180 min- ' over the 20 range from 150 to 1350.

Limited 20 ranges are shown on an expanded scale for clarity. Lines for NASICON phases of several

compositions are shown for comparison. With increasing Zr content, the single NASICON phase in

the sample increases in amount and exhibits a peak shift to lower angles indicating increasing Zr

content in this phase. b) Unit cell volume expansion for Zr-doped samples shows nearly linear

increase with increasing Zr doping level up to 10% without saturation.
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90nm

Figure 6-4: STEM composition maps of the 5 mol % Zr sample, doping according to mechanism 1,

showing that Zr is uniformly detected in the crystallites.
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Figure 6-5: Rietveld-refined phase fractions (E]: Olivine, O: NASICON) and unit cell volumes (U:

Olivine, 0: NASICON) for olivine and NASICON in Zr-doped compositions prepared according to

defect mechanism 1. As is permitted by the Gibbs phase rule, the relative amounts and unit cell

volumes (reflecting Zr concentration) vary continuously as the overall Zr doping level is increased.

Thus the solubility of Zr in both phases increases with Zr content.
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Figure 6-6: Olivine unit cell volume vs. firing temperature for a 7.5% Zr-doped composition,

compared to results for undoped LiFePO4. The unit cell volume decreases slightly upon coarsening

of the particle size to >1 gm from an initial average particle size of 45 nm (determined from BET

measurement), but remains significantly greater than that for the undoped sample, showing that the

solid solubility of Zr is slightly size-dependent.
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Figure 6-7: An example of neutron diffraction spectrum from a 5 mol% Zr sample doped according

to Mechanism 1. Two additional neutron and one XRD spectra were simultaneously refined

according to the following models: a) (Lio.s84 Zro. 43Ao.112)(Feo.9 79Ao.02 1)PO4; b) stoichiometric LiFePO 4;

c) Li(Feo.90Zro.osAo.os)PO4; and d) (Lio.sZro.osAo.15)FePO4. A represents vacant lattice sites. The

observed intensity data are shown by the solid line, and the overlying dotted line is the calculated

intensity. Vertical markers below the diffraction patterns indicate positions of possible Bragg

reflections. Differences between the observed and calculated intensities are plotted in the same scale.

The best goodness-of-fit (smallest Rp, Rp, and X2 parameters) is obtained for models a) and d) in

which the Zr is assumed to occupy the M1 sites, and especially for model a) in which the Zr site

concentration is allowed to vary.
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Figure 6-8: Curved Li migration path in the olivine [010] direction 3, 21,22, for comparison with the Li-

O and 0-0 bond length changes in Table 6-II. Note that the diffusion path lies out of the x-y plane

and passes through 01-02-03 triangle.
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Figure 6-9: Capacity versus voltage measured potentiostatically upon charge and discharge in 5 mV

steps for the 5 mol% Mg doped nanoscale sample (bottom). Solid solubility regions x,y can be

measured and calculated from the accumulated capacities below and above the OCV for x in the Li-

rich Lil_,FePO 4 phase and y in the Li-poor LiyFePO 4 phase, respectively. The solid solubility x and y

are calculated to be 10.6% and 13.3%, respectively. PITT responses of the undoped control sample,

the conventional coarse-grained sample, and 1% Nb doped nanoscale sample were plotted for

comparison (top).
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Figure 6-10: Comparative phase diagram shows the miscibility gap contraction of nanoscale Mg and
Nb doped samples as compared to the undoped control of similar particle size (42 nm) and a coarser
conventional powder (113nm), each measured using the same PITT protocol. The equilibrium phase
diagram for bulk LilxFePO4 (micron size) published by Dodd et al. 16 is also shown for comparison.
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Figure 6-11: Potentiostatic intermittent titration tests (PITT), showing 5 mV voltage steps (blue) and

corresponding current relaxation (red). a) 5% Mg doped sample during charge; b) 5% Mg doped

sample during discharge; c) Undoped sample during charge; d) Undoped sample during discharge.

The 5% Mg-doped nanoscale sample exhibits a characteristic of fast phase transformation with a

peak current at the start of each voltage step followed by monotonically decay, at all overpotentials.

The undoped sample exhibits slower rate of current decay and, at some potentials, rise in current as

a phase transformation barrier is overcome. The cut-off currents were C/100 for the 5% Mg doped

sample and C/200 for the undoped sample, respectively.
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Table 6-I. Ideal crystal compositions and defect compensations mechanisms tested, with M"+

substituting on M1 and/or M2 sites. M" represents Mg2+, Al3+, Zr4+or Nb5+ ions.

# Ideal crystal composition Defect compensation Defect Compensation

mechanism (Kroger-Vink notation)

Li-substitution & Li-vacancy [VLi] = (n-1)[MLi(n ' )']

Lil_nyMn+yFePO4

1 compensation [VLi ] =3[ZrLi

Fe-substitution & Li-vacancy [VLi] = (n-2)[MFe(n -2) ]

Lil-(n-2)yM n+yFel.yPO4

2 compensation [VLi'] =2 [ZrFe ]

2[VFe = (n-1)[MLi(n )']

Li-substitution & Fe-vacancy

3 compensation 2[VFe ] =3 [ZrLi ]

2[VFe '] = (n-2)[MFe
(n-2)' ]

LiMn+Fel-n/2P Fe-substitution & Fe-vacancy

4 compensation [VFe ] = [ZrFe i

Defect compensation
LiFePO4 + MxOy Stoichiometric & impurity

5 undetermined
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Table 6-II: Rietveld refined site occupancies (g), atomic coordinates (x, y, z) and thermal parameters

for a 5% Zr doped sample doped according to defect mechanism 1. The site occupancies correspond

to an approximately charge-neutral composition of (Lio.845Zro.o43A. 112)(Feo. 979 Ao.o2 1)PO 4 . Lattice

parameters also shown.

g

0.845(4)

0.979(1)

1

1

1

1

0.043(1)

x

0

0.2822(4)

0.0957(7)

0.0982(7)

0.4577(7)

0.1659(6)

0

0.000(1) 0.2822(4)

0

0.25

0.25

0.25

0.25

0.0478(1)

0

0.97

0.41

0.74

0.2(

0.2k

0.25 0.97

z 100*Uiso

0 1.61(5)

50(10) 0.69(1)

98(1) 0.78(2)

,25(2) 1.06(2)

)45(2) 0.81(2)

851(1) 1.01(1)

0 0.69(1)

50(10) 0.69(1)

Rwp= 2.48% Rp = 1.91% X2 = 1.885

a= 10.33531(11) A b= 6.01025(7) A c= 4.704072(0) A

a = 900 13 = 900 y = 900
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Table 6-III: Goodness-of-fit parameters and bond lengths of doped compositions based on defect

Mechanism 1, M1 site doping with Ml-site vacancy compensation mechanism, compared to undoped

control sample. The Mg2+ results are for a 10% doping level while the Al3+, Zr4+ and Nb 5+ results are

for 5% doping level. Systematic expansion of the oxygen-oxygen and lithium-oxygen bond lengths is

observed upon doping at these levels.

Bond Lengths

Ion-pair Undoped Mg 2+ Al Zr4+ Nb 5+

Rwp (powder total)

Rp (powder total)

Fe-O(1)

Fe-0(2)

Fe-0(3) (x

Fe-0(3) (x

Li-O(1)

Li-0(2)

Li-0(3)

P-O(1)

P-0(2)

P-0(3) (x 2)

0(1)-0(2)

0(1)-0(3)

0(2)-0(3)

1.504

0.024

0.018

2.193

2.106

2.067

2.237

2.171

2.088

2.190

1.525

1.539

1.553

2.965

2.903

2.476

1.178

0.033

0.025

2.183

2.099

2.064

2.235

2.179

2.096

2.200

1.521

1.539

1.555

2.988

2.913

2.482

1.493

0.022

0.017

2.196

2.106

2.067

2.242

2.176

2.091

2.193

1.520

1.541

1.549

2.975

2.911

2.474

1.885

0.025

0.019

2.194

2.110

2.071

2.245

2.182

2.093

2.197

1.518

1.543

1.551

2.981

2.914

2.475

1.846

0.021

0.016

2.199

2.105

2.070

2.245

2.179

2.097

2.197

1.522

1.544

1.548

2.985

2.916

2.479
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Chapter 7

Conclusions

Summary

Olivine compounds LiMPO 4 have the advantages of low cost, reasonable high energy

density, high thermal stability, and non-toxicity. However, its practical utility as a

cathode material for lithium ion batteries was initially limited. It was believed to only be

capable of cycling at low rates due to its sluggish mass and charge transport.' In the past

few years the electrochemical performance of these phospho-olivine cathodes has been

substantially improved via surface coating with an electron-conducting phase (mostly

carbon), 2 3 particle size minimization,4" and/or doping.6 Nanoscale olivines have already

been commercialized as a cathode material in batteries for power tools and other high

power applications, and are a serious candidate for future batteries in hybrid, plug-in

hybrid electric or all-electric vehicles. It can also be commercialized for other

applications requiring a low-cost and safe battery. Nevertheless, there is more room for

improvement and still a great deal to be learned about LiMPO 4.

The use of nanoscale samples has proven to be an effective way to improve the

electrochemical properties of these battery materials due partially to the reduction of solid

state transport length and increase in surface reactivity. However, unexpected behavior

arising at nanoscale dimensions is an interesting topic which was not yet explored. At the

beginning of this study, the impact of phase behavior and phase transformation kinetics

on electrochemical properties was not well understood and literature results were limited

to primarily coarse grained samples (> 100 nm). For example, the phase composition of

nanoscale samples during electrochemical cycling was not well characterized. The

mechanism of the transformation between the two phases (triphylite and heterosite),

which becomes more complicated as particle sizes approach nanometer dimensions, was
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not known. Understanding such correlations was the primary goal of this thesis. Even

though only the olivine compounds were studied in this thesis, the understanding

achieved here can be applicable to other lithium intercalation compounds.

The major results of this thesis and the application of these results are as follows:

We found that the phase stability of this system could be easily manipulated by changing

particle size and by doping (Chapter 3 and Chapter 4). We found dramatic changes in the

miscibility gap compared to the previous published phase diagrams. The miscibility gap

in undoped nanoscale Lil-.FePO 4 powders contracts with decreasing particle size and

increasing temperature. In aliovalent substituted olivine the miscibility gap is reduced

further, exhibiting about 2 times larger lithium nonstoichiometry at room temperature

than the undoped powder of equivalent size (Chapter 4). These changes in phase stability

of the materials have been shown to have significant effects on structure and properties of

this system.

The greater extent of solid solution in both the Li-poor and Li-rich coexisting phases is

also correlated with a reduced lattice mismatch between the two co-existing phases

during electrochemical cycling (Chapter 4). We showed that the olivine cathodes with

reduced lattice mismatch during electrochemical cycling have substantially better rate

capability than the materials with larger misfit (Chapter 4). The correlation between

elastic misfit and rate capability can explain the rate capability behavior in several other

lithium intercalation oxides exhibiting first-order phase transitions as well. For example,

LiMnPO4 has a much larger misfit between the co-existing phases than LiFePO4, and

exhibits a very poor rate capability even in its nanoscale forms. Li4 Ti 5sO12, on the other

hand, is a cubic spinel known for having nearly zero dimensional change between its

lithiated and delithiated phases, and is also known for having exceptional rate capability

when produced in nanoscale form. A third example is the spinel LiMn20 4. Between the

composition limits MnO2 and Li.sMnO2, there exists a continuous solid-solution cubic

spinel that is known for its high rate capability. However, upon further lithiation, a first-

order phase transition from Li.sMnO2 to tetragonal "Li2Mn2 04" occurs with a 5.6%
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volume misfit and 16% change in the c/a ratio. The rate capability in this regime is found

to be markedly inferior to that of the cubic spinel. We know of no counterexamples in

which high rate capability is obtained for a phase transformation of large misfit. Thus, a

strain-based predictive criterion for the design and selection of high power battery

electrode compounds is suggested.

In addition to the changes in phase stability arising from particle size reduction or doping,

we found that the phase transformation kinetics as determined from time resolved

electrochemical and structural measurements were qualitatively different among

nanoscale, conventional, and doped nanoscale samples as well (Chapter 4, Chapter 5, and

Chapter 6). Detailed analysis of the differences is ongoing and will be published

elsewhere.

Moreover, we show that the product of the transformation becomes more complicated as

particle size approaches nanometer dimensions (Chapter 5). We conducted a comparative

study of the structural and phase changes taking place during electrochemical cycling of

nanoscale (< 100 nm) and conventional Lil-.MPO 4 and found that phase transformation

path differs significantly between the two types of materials. Whereas coarse-grained

LiFePO4 undergoes a conventional two-phase reaction in which crystalline LiFePO4 and

FePO4 co-exist, in nanoscale sample there is a reduced miscibility gap between co-

existing crystalline phases; and upon charge, a fraction (increasing with increasing size)

of the crystalline delithiated LiyFePO 4 that is formed is partially amorphous and

metastable.

Questions regarding whether LiMPO 4 olivines can be doped with aliovalent ions have

stimulated considerable interest and controversy in the Li-ion battery field. For the

purpose of understanding plausible defect compensation mechanisms and determining the

aliovalent ion solubility in the olivine compounds, we conducted a systematic study using

model compositions designed to accommodate Mg2+, Al3+, Zr4+, Nb5+ ions in solution on

the Ml and/or M2 sites of LiFePO4 with appropriate charge-compensating defects

(Chapter 6). We showed that aliovalent solute doping of LiFePO4 was not only possible,
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but had several distinct consequences which could be manipulated to improve battery

electrode properties. We find that the olivine lattice can accept aliovalent cations of 2+

through 5+ at concentrations of at least several percent, with charge-compensation by M1

vacancies being at least one available defect mechanism. The disorder produced by these

substitutions cause the lithium miscibility gap to be contracted, and by modifying the

crystal structure so as to expand the lithium migration channels, may have the effect of

increasing lithium mobility. Along with nanoscaling and other compositional

modifications of the olivines, controlled aliovalent doping is a methodology that may be

used to advantage in the ongoing worldwide effort to develop improved battery

technologies for energy applications.

Future Work

Lithium Transport Kinetics in Olivine Cathodes

A future study of potential importance is to determine the lithium transport mechanism

limiting electrochemical cycling of these materials. Electrochemical transport in all Li

insertion electrodes can be complicated because, in many cases, they involve interfacial

transfer, solid-state diffusion, and phase transitions. Olivine LiFePO 4 electrodes are a

classic example of battery materials in which any one of the three processes can be rate-

limiting. The kinetic characteristics, however, can be analyzed and distinguished by

electrochemical methods such as potentiostatic intermittent titration tests (PITT) and

impedance spectroscopy (IS). It is believed also that the exact lithium

intercalation/deintercalation mechanism in different samples depends on the size,

morphology and surface chemistry of the samples. Fundamental understanding of the

various contributions to the kinetics of olivine electrodes is important to the future

development of phosphate battery technology.
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Electrochemically Driven Phase Transformations Studies using In-situ X-ray

Diffraction

Our findings (Chapter 5) that the phase transformations during electrochemical cycling of

nanoscale olivine cathodes involved transitions to amorphous or metastable phase(s) has

led Ming et al.7 to develop a model to assess the conditions under which non-equilibrium

phase transitions may occur in LiMPO 4 particles. Their model is based on the diffuse-

interface model and developed for the effects of overpotential, size, and misfit strain. The

overpotential is defined as the difference between the electrical potential imposed on a

particle and the equilibrium potential corresponding to the composition and phase state of

the particle. There were three major predictions resulting from this model. First, it was

predicted that, due to the lower surface energy of the amorphous phase, an initially

crystalline phase may undergo amorphization during cycling when the particle size is

below a critical value. Second, the effect of applied electrical overpotentials on the phase

stability was predicted to strongly influence the phase transition pathways of small

particles. Third, the tendency to amorphize was predicted to be significantly affected by

the magnitude of the misfit strain between the lithiated and delithiated crystalline phases.

It was shown that there should be a critical misfit strain above which the preferred

transformation pathway is amorphization, regardless of the particle size. This model

provides a useful road map to future experiments.

We are currently conducting critical experiments using in-situ synchrotron X-ray

diffraction at Brookhaven National Laboratory beamline X14A of the National

Synchrotron Light Source to track the overpotential and time dependence of phase

evolution in samples of various compositions and crystallite size scales. Ex-situ XRD (as

shown in Chapter 5) can provide information on the equilibrium or near equilibrium

states of the material. However the phase transformation and the misfit strain relaxation

may occur too fast to be observed by ex-situ XRD. We have therefore used in-situ

synchrotron XRD for a more thorough understanding of the phase behavior of LiFePO4

during charge and discharge in actual electrochemical cells. Since in-situ XRD can

simultaneously monitor the structural changes during electrochemically cycling, it can
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give us information related to the effects of overpotential, size, misfit strain, and even

crystalline anisotropy, given the right kind of sample.

Mixed Transition Metal Olivines Cathodes for Li-ion Batteries

A cathode material with high theoretical voltage is usually desirable in high energy

density rechargeable batteries, because the energy output is mainly determined by the

product of the voltage and the specific capacity of the cell. In the olivine-type LiMPO 4

family, the Ptet-O-Moct linkage in the structure induces the superexchange interaction that

tunes the M3+/M2+ redox energy to useful levels -3.4, 4.1, and 4.8 V for Fe3+/Fe 2+

Mn3+/Mn2+, and Co3+/Co 2+, respectively. '8 Olivine-type solid solutions such as

Li(MnyFel.,)PO4 or Li(CozFel.-)PO 4 can be promising alternatives and should be

investigated further, since they have the potential to generate higher energy density than

pure LiFePO4 electrodes. Li(MnyFel-y)PO 4 looks especially promising because it operate

at 3.4-4.1 V vs. Li/Li+. This is providential, because it is not so high as to decompose the

organic electrolyte but is not so low as to sacrifice energy density. In addition it would be

interesting to see the particle size dependence effect on phase stability in these olivine-

type solid solution compounds as well.
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