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ABSTRACT

Results in nonlinear programming are used to prove a generalized

version of the maximum principle for fixed-time discrete optimal control

problems. Proofs are based upon the implicit function theorem and a

theorem of the alternative for systems of linear inequalities over a

convex set; they do not, as in the past, require Brouwer's fixed-point

theorem.
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Introduction

It is becoming apparent that optimal control theory and nonlinear

programming are highly related. This point of view is illustrated by the

recent text of Canon, Cullum and Polak [1]. It seems yet to be fully ex-

ploited, however.

Our purpose here is to utilize results from nonlinear programming to

establish a generalized version of the maximum principle for fixed-time

discrete optimal control problems. These problems have been treated in

various degrees of generality by a number of researchers [1], [3], [4], [5],

[9], [10], [11]. We shall consider an extension of a version originally

discussed by Halkin [3] and later generalized by Holtzman [4] and Cannon,

Cullum and Polak [1]. Thus, we will not require convexity of the set of

admissible controls (though a certain convexity condition will be imposed)

nor do we require differentiability with respect to the control variables.

We also admit inequality constraints on the state variables as well as

equality constraints on the initial and terminal state vectors.

For motivation, we might note that linear optimal problems trivially fit

out framework. In addition, Halkin [3] has shown discrete approximations to

continuous problems satisfy the hypothesis that we shall impose.

The nonlinear programming approach that we adopt should be contrasted

with previous approaches. We do not require intricate arguments based upon

Brouwer's fixed point theorem, nor do we rely upon canonical approximations

[1]. Instead, we utilize two basic results from nonlinear programming stated

as Lemma's 1 and 2 below. The first result is a direct consequence of the

implicit function theorem and a well-known lemma (see 7] ) due to

Motzkin. It was established by Mangasarian and Fromowitz [7], [8]. A short



2

proof is given in [5]. Though the result is stated as a "maximum principle"

in [7], it has not been previously used in the present optimal control con-

text, but rather as a direct extension of the classical Fritz John theorem of

nonlinear programming applied with differentiability requirements that we

do not enforce.

The second result is essentially a special case of a theorem of Fan,

Glicksburg and Hoffman [2], [7, p.63]. The version that we give can be

easily established via an elementary separating hyperplane argument.

Before stating these results, let us set some notation. R denotes the

real numbers, Rn n-dimensional real space (with the usual topology). Sub-

scripting denotes distinct vectors and superscripting vector components.

This same convention will be applied to functions in the sense that if g:Rn-Rm , then

i dth in
g denotes the i coordinate function, g :R +R.

Vg(x) denotes the matrix (hi) = ( . Similarly, if f:R- Ri ax x=x

is a function, Vf(x) is the gradient vector evaluated at x=x, i.e.,

( x f ) 2 ., y))

i1 ~~R nax ax, x=X
Finally, if a,v £ R and A is a real valued matrix, then av denotes

i n
inner product as does aA and Av, i.e., (Av) = A vJ. Also, vector

j=1 ij

equalities and inequalities hold componentwise.

Lemma 1 (First Linearization Lemma): Let C Rn be a convex set with a non-

empty interior and let f:R, :Rn+Rm l , t:R R be given functions.

Let x solve max f(x)

subject to ¢(x) = 0

i(x) - o

x C



Assume that (x) is continuously differentiable in a neighborhood of

x and that f(x) and (x) are differentiable at x. Then, if the vectors

i{V4 j (x): j=l,...,m 1 } are linearly independent, the system

Vf(x)(Ax) > 0

V(x) (Ax) = 0

V Wi (x)(Ax) < 0 for i{l j < m2: i(x)0}

x + Ax {interior of C }

has no solution in the variables (Ax) k=l,...,n.

Lemma 2: Let C R be a convex set and let A and B be m by n and m2 by n

real valued matrices. If the system

Ax 0

Bx < 0

x C C

m1 m
has no solution, then there exist ER , R , ,(laf) O such that

ao(px) + a(Bx) 0 for all xC. (1)

For convenience, let us record the following special case of this result

to be used later.

Remark I.: Let C c Rm be a convex set; let Al, A2, B1 and B2 be respectively

m1 by N, m by M, m3 by N, and m4 by M real valued matrices. Then, by

Lemma 2 if the system

Alv + A2W + P = O

BlV < 0

B2w < 0

p EC
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ml m3 m4
has no solution, then there exist caR , cER , -pR , < 0, < 0,

(a, i,p) O0 satisfying

aA1 + =B1 0

aA2 + B2 0= 

uap< 0 for all peC.

If there are no B1 and/or B2 constraints, we may eliminate and/or above.

To obtain the equality constraints above, simply take positive and

negative unit vectors for v and w in (*).
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I. Problem Statement

Let QO0Ql ... 'QT- 1 be given subsets of Rr. Assume that each of the

following functions is given:

ft: OQ t * R n (t=0,1,...,T-l)

h: Rn+ R

go: RR

g :Rn+ Rm

m
qt: Rn Rt (t=O,,... ,T) .

Problem: Determine state vectors x0,xl,... xT Rn and control vectors

u0,ul,... uT 1 Rr to

max g (XT)

subject to h(x0) = O

xt+l- xt = ft(xtut) (t=,l,...,T-l)

g(xT) O (P)

t( t) 0 (t=O,1,...,T)

~u ~tF-Qt ~(t=O, ... ,T-l)

Suppose that x0,xl,...,xT and u0,ul,...,UT_ 1 solve P. Some typical hypotheses

for the problem are:

Hi) for every u t the vector valued function ft(x,u) is continuously

differentiable with respect to x in a neighborhood of x=xt (t=0,1,...,T-l)

H2) for every xeR , the set {ft(x,u):u£Qt} is a convex subset of Rn (t=0,1,...,T-:

H3) the vector valued functions h(x) and g(x) are each continuously

differentiable in neighborhoods of xx 0 and x-xT respectively. gO(x)

and the vector valued functions qt(x) (t=0,l,...,T) are differen-

tiable at respectively xT, x=x, ... , x=xT .



H4) the vectors Vh (x) (j=l,...,9 are linearly independent as are

the vectors Vgj (xT) (J=,..., m

H5) For each t=0,1,...,T either no q(xt) = O (i=l,...,m t) or there is no nonzero

X tR , X S satisfying XtVt(xt) =

Xt q (x ) = 0.
t t t

(Note that if for each fixed t, the vectors {Vqt(xt ):qit(xt)=0}are linearly

independent, then (H5) holds.)

The discrete maximum principle for P states that there exists (adjoint)

vectors poPl... PT e Rn,and (multiplier) vectors Xt e Rmt, t 0 (t=0,1,...,T-l),
ttt

vectors aSR , SeR M and a scalar 5 S0 satisfying:
O) Not all the quantities po,P and are zero.

1) Hamiltonian maximization:

for all ut', Pt+l ft(xt'ut) - Pt+l ft(xt 'u) (t=O,l,...,T-l)

2) Adjoint equations:

Pt Pt+ = Pt+l Vxft(xt'ut)+ %t qt(xt)

3) Transversality conditions:

Po = aVh(x0)

PT = 5Vg(xT) + BoVgo(xT) + XTVqT(xT)

4) Complementary slackness: Xt qt(xt) = O (t=0,l,...,T)

Our purpose will be to prove an extended version of the fact that

(H1)-(H5) imply this discrete maximum principle. We will use the first

linearization lemma and Remark 1 as basic tools.

Towards this end, it will be convenient to consider a generalized version

of I'. Let U be a given subset of RL and suppose that each of the following

functions are given:

F : RN + R

H : RN RMxu - Rr

G RN+ Rm

Q RN +R 

: + Rs 2

1Vxft(xt,ut) denotes the matrix Vd(xt) where d(x)-ft(x,ut). This same convention

applies to any function of two or more vectors.



The new problem is:

Determine y R , z R and u RL to

max F(y)

subject to G(y) = 0

Q(y) < O

Q(z) <- 

H(y,z,u) = 0

u £ U .

Assume that y, z, u solve (P'). We shall

(H1)-(H5).

impose the following analogs of

H1) For every uU the vector valued function H(y,z,u) is continuously

differentiable with respect to (y, z) in a neighborhood of (y,z)=(y,z).

H2) For every y£R , zRM , the set {H(y,z,u):ucU} is a convex subset of Rr

H3) G(y) is continuously differentiable in a neighborhood of y=y. F(y) and

Q(y) are differentiable at y=y and Q(z) is differentiable at z=z.

H4) The vectors VGJ(y) (j=l,...,m) are linearly independent.

H15) Let A = {iE{1,...,sl3: Qi(y)= },

A = {i£{1,...,s2}: Q'(z)= 0} and

s=IAI, s 2=1il (1 ' is cardinality.)

Also, let Q :R R denote the vector valued function defined by

restricting the Qi (i=l,...sl) to A and similarly define QA(z). Then

A=0 or there is no non-zero R l, P< 0 with 1 AQA(A)=O and

A=0 or there is no. non-zero Ae RS2 , A< 0 with AQA(z)=0.

Note that problem P corresponds to the case where
U= l 1 'Y = XT

uT-

7

(P')
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U = QoXQl x . XSKT_1

F(y) = g(XT)

G(y) = gT(XT)

h(xo)

x0 +f (xO'u0 )

H(y,z,u) =

-x1

Xl+f 1 (x 1' u 1)

* -XT-2

XT-1+f T-(XT- 1 ,UT1)

qO(xo)

Q(Z) = q1 (X1)

Q(y) = qT(XT)

Note that Vh(x0)

[V H(y,zu),VyH(y,z,u)]= I+V 0(xOu 0)
Z 

-I

I+vf 1 (x1,)U1) -I

I+VxfT-xT-1)

With these associations (H1)-(H5) are direct consequences of (H1)-(H5).

-x2

. .

I



9

II. Generalized Discrete Maximum Principle

The proof of a generalized discrete maximum principle that we are

to give will be based in part upon an elementary fact concerning matrix

valued functions. Let U be a given set and suppose that for each uU)4(u) is

a real valued matrix. We will call linearly independent

over U if there is no neRdl, r0O such that Tl(u) = 0 for all u U.

Remark 2: 1 is linearly independent over U if and only if there are
Ul,...,UD U such that the matrix

M = [p(Ul), (2),. .,(UD)]

has full row rank.

dl
Proof: IffHER , T0O and 7r(u) = 0 for all ucU, then M 0 for any

choice of ul,u2,...,UDEU. Thus no M above has full row rank.

Conversely, suppose that is linearly independent over U and

that M is given. Let rows rl,...,rk , k < d be linearly independent

rows of M spanning its row space. Then any other row rk+l of M can

be expressed uniquely via M = 0 with rk= 1, i= 0 irlr 2, .. ,rk.

By the linear independence of , there is a uD+l such that (UD+1 ) ~ 0'

Thus, rows rl... ,rkrk+l of [(u 1),...,I(uD),l(uD+l)] are linearly

independent. This matrix either has full row rank or we may continue

adding (u3 ) as above until the resulting matrix does. ///

ARemark 3: Suppose that above is given by (u) (B ) for fixed real

matrices A and B where (u) is a real valued matrix. Then is

linearly independent if and only if there are ul,...,uDEU such that

(B l)..,(uD)

has full row rank.

Proof: The row ranks of K 1) A A B

and M' are the same. ///

Using these results, the first linearization lemma and Remark 1, we now show:
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(Generalized Discrete Maximum Principle)

Let y-y, x-x and uu solve control problem P'; assume

H1-H3 and H5. Then there exist a real number 0 0 0 and vectors ~ER m , ,-Rr
N

cR 1. , 2 6cRN with 0 - (B0 2,,0)0, satisfying

(a) -6 = 0oV F(y) + SV G(y) + pV Q(y)

(b) 6 = oV yH(y,z,u)

0 = oV H(y,z,u) + pV Q(z)

(c) PQ(y) = 0, pQ(z) = 0

(d) a[H(y,z,a) - H(y,z,u)] > 0

Proof: If the matrix valued function

4(u) v ( )
VyH,,) (y,zu) V H(y,u)

for all uU.

H(y,z,u)

is not linearly independent over U, then there are BEm,

(B,o) 0 such that

6 - V G(y) = oV H(y,z,u)

oV H(y,z,u) = 0
z

6H(y,z,u) = 0 for all uEU.

Note that a 0 since by H4 the rows of VG() are linearly independent.

Taking BO, , all zero and incorporating H(y,z,u)-O in aH(y,Z,u) = 0,

(a)-(d) is satisfied.

On the other hand, if is linearly independent over U, then by

Remark 3, there are Ul,...,uDcU such that

M'= V G(y)

Vy H(y,z,u) V H(y,z,u).. H(y,z,u1) ... H(y,z,uD) H(y,z,u)y~~~~~ 

has full row rank. This will provide the hypothesis for an application

of Lemma 1.

Theorem 1

oaEracEE ,
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D+l
Let uU be fixed. By H2, given any e. 0 (j=i,...,D+l), Z E . < 1,

j j=1 J

yRN, zERM, there is a u(61, ... D+lY ,z)U such that

D+l D

H(y,z,u( 1,..., D+lyz)) = (1- Z 0 )H(y,z,) + 0 H(y,zuj)
j=l j=l 

+ 0D+1 H(y,z,u)

Consequently, yy, z=z, ej=0j - O (j=l,... ,D+l) must solve the problem

(in the variables y, z, 1 . ,0D+1):

max F(y)

subject to G(y) 0 O

QA (Y) 0
(P)

Q (z) 0
D+1 D

(1- )H(y,z,u) + Z 0jH(y,z,u.) + D+lH(Y,zu) 0
j=l j=l j , ,j

(Y,Z,01,. ,D+l )cC = {(y,z, 1,...,0D+1):yRN, zRM

D+l
Z 9 < 1, 0> O (j=l,...,D+l)}

Utilizing H1 and H3, we see that this problem satisfies the hypothesis

of the first linearization lemma with the association x = (y,z,,... eD+ 1) )

and the obvious associations for and . Note that V C(x) = M' above

which has fullrow rank. By that lemma, the following system has no solution:

V F(y)v > 0 (1)

V G(y)v = 0 (2)

V QAy)v < 0 (3)

V Q (z)w < (4)
D

V H(y,z,u)v + VH(y,z,u)w + Z H(y,z,uj)0 + H(y,z,u) =+ 0 (5)
j=1 J 0) D+i

D+l 
. < 1, 0. > 0 (j=l,...,D+l) . (6)

j=l

Observe that we have used H(y,z,u) = 0 here.

Note that by scaling (1)-(6) has no solution if and only if (1) -(5) and

j # 0 (j=l,... ,D+l) (6')
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has no solution. Also note that we may write (5) as

D
Vy H(,,ii,) v + VH(y,,ii) w + jZl H(y,z,u;) j + = 0y J j

where p = H(y,z,u) %D+l

Consequently (1)-(4), (5') and (6') have no solution for any

peS = {H(,z,u) eD+1 for some usU, 9D+> 0 1

Observe that S is a convex set, since if P1, P2 S

h
then p1 = H(y,!,u) 8D+l

a n p D ~ y ~ ul 

and P2 =H(y,i,u') D+1

But then for any Xs[0,1],

XP1 +(1-X) 2 -

for some u,u'EU, D+l> 0, D+ >D+1 D+i

[XeD+l + (1-X) D+l] {i l + (1-X)D+l
Dfl D+l

H(y,z,u)

+ H(y,z,u') 

X D1+ ( 1-X) D+

By H2, the bracketed term equals H(y,z,u) for some TizU; thus

%p 1+(1-) P2 S

Consequently we may apply Remark 1 to system (1)-(4),(5') and (6') over S,

i.e., there is a scalar 0 > 0 and vectors ,eRm, aoRr, A eRSl- ,AERs2 with
A -A A -A

< 0, i < and (SOSa, A , ) 0 satisfying

R0 VF(y) + VG(y) + A VQ () + oV H(y,zu) = 0y

aVZH(9,z,i) + Ap QA(z)
z Q z

= 0

oH(-,z,uj)e8 < 0 for all .J> 0
-- 3~~~~~~~~2

(j-l,...,D)

oH(~,i,u) 8 D+1 < 0 for all 8D+ > 0 and ueU.D-l - Dtl

(5')

(1-x)e-D+l
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If A # 0, then a 0 by H5. If A = 0 and a = 0, then (, B) 0 O

by H5. Thus (,B,a) # O. Also, the last consequence of Remark 1 above

implies that oH(y,z,u) < 0 for all uU. Incorporating H(y,z,u) = 0 in this
i i

last statement, defining 6 =aV H(y,z,u) and letting p =o for iA, = 0
Y

for iA, (a)-(d) is satisfied.

Remark 4: If the vectors VGJ(y) (j=l,...,m) are linearly independent,

then theorem 1 holds by taking VG(y)=O, S#0 and (BO,a,p,i,6)=O. Thus

H4 will rule out this trivial case.

Corollary 1.1 (Discrete maximum principle) Let ut=ut, (t=O,...,t-l) and

x t=xt (t=0,...,T) solve control problem P; assume H through H5. Then the

discrete maximum principle holds.

Proof: We previously showed that P is a special case of P' and that H1-H5

hold when we make this association. Let a,p,p and 6 from Theorem 1

be given by:

a (-,pOPl . . . .P T _ 1)

p = XT

- = (1'',XT-1)

6 =-PT

In these terms, consequences (a)-(d) of Theorem 1 are translated into

the following terms for P.

(a) PT 0 VgO(XT) + g(XT) + XTqT(T)

(b) -PT = -PT

- Vh(x O) + P1[I+ Vxf(XoUo)] + Xoqo(io) = 0

-Pt + Pt+l[I+ Vxft(xtJit)] + tqt (Xt) = 0 (t1l,...,t-l)

T-1

(c) ATqT() = 0' tO tq(t) 0

T-1 T-1
(d) Pt+ ft( t) t-O t+lft(t't) for allt=O t+l t' t - t=O Pt+l ttut

(UO'... lu _ 1) Enea1X. .. X2T
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Defining PO = Vh(xo), (a) and (b) become the adjoint equations

and transversality conditions. Since qt(xt) < 0 and t < 0 (c) implies

the complementary conditions Xtqt(t) = 0 (t=O,...,T-l). Successively taking

uj=uj (jit) for tO,l,...,T-l, (d) implies Hamiltonian maximization for

each t=O,...,T-l. Finally, pOpl...,pT , B and 80 are not all zero

from Theorem 1 and the above associations.

Remark 5: (i) As in remark 4, H4 rules out the trivial case where

aVg(y) = 0 and is the only non-zero multiplier or adjoint variable. Similarly

H4 rules out the analogous case where Vh(5)=0, aO0.

(ii) In the case of no inequality constraints on state variable, non-

singularity of [I+V xft(t,t)] (t=O,...,t-l) implies that

pt 0(t=0,l,...,T-l). If in addition the vectors Vg (xT),Vg ..., T)

are linearly independent then PT#0.

III. An extension

Holtzman [ 4] extended the discrete maximum principle by allowing g to

be a function of u as well as xt and introducing the concept of directional

convexity. We show here that an analogous assumption permits our proof of

the generalized maximum principle to be easily extended. When only F and H

below are functions of u, assumption H2' is equivalent to Holtzman's definition

of directional convexity (see [1]).

Suppose that y-y, zz, u=u solves the control problem:

max F (y,u)

subject to G (y,u) < 0

Q (y,u) < 0 (P")

Q (z,u) < 0

H (y,z,u) - 0

uU

Let H1' be the same as H and modify H2-H5 to:

N N
H2') for every yR N , zeR , ueU, u'eU, Xs[0,1] there is a

ueU such that
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F(y,) > AF(y,u) + (l-X)F(y,u')

Q(y,u) < AQ(y,u) + (l-X)Q(y,u')

Q(z,~u) < XQ(z,u) + (l-X)Q(z,u')

G(y,i) = XG(y,u) + (l-X)G(y,u')

H(y,z,u) - XH(y,z,u) + (l-X)H(y,z,u')

H3') For every uU, G(y,u) is continuously differentiable
in a neighborhood of y=-, F(y,u) and Q(y,u) are differentiable
at yy, and Q(z,u) is differentiable at z=z.

1H4') The vectors VGj (,U) (j=l,...,m) are linearly independent.

1H5') H5 with Qi(y) and Qi y) replaced by Qi(y,u) and

Q (z,u) in the definitions of A and A.

With these modifications Theorem 1 becomes:

Theorem 1A:

Let y=y, x=x, u=u solve control problem P"; assume H1'-H3' and H5'.

Then there exist a real number >0 and vectors 8ER , acRr, pERs 1,

TeR s2, oER r with <P<0, <0, ( 0,8,0) # 0 satisfying

(a') -6 = V yF(y,u) + V G(y,u) + V yQ(-y,u)

(b') 6 = aV H(Y,i,U)

0 - aV H(y,z,u) + 7VzQ(F,I)

(c') Q(y,u) - 0, Q(7,u) O

(d') [,)(u) -)(u) > 0 for all ucU

wlere)(u) (%F(y,u) + 'C(,(j,u) + Q(,u) + -IQ(,u) +

oH(yIzu)

Proof: The proof is analogous to that of Theorem 1 and will be

omitted. We simply note that (u) is now defined as

/VG(,u) G(y,u)
4(u) =

VyH(, z,u) V H(,z,u) H(3y,z,u)
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A -A
Also, in problem P. functions F, G, Q and Q are each

replaced by analogs of the form for H in that problem.

For example, F(y) is replaced by,

D+1 \D
1- . 0 F(y,u) + Z 9. F(y,uj) + + F(y,u)

j=l -

Remark 6: H4' admits a statement analogous to Remark 4. In addition,

the statement of Theorem A can be specialized to an extended version

of problem P, giving an extension of the discrete maximum principle.

Details are omitted.
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IV. A Separation Property

l,et us consider the following linearized version of (') about (y,z,1u):

max VF (y)v

subject to VG(y)v = O [v=(y-y), w=(x-x) 

VQ (y)v < 0

-A
VQ (z)w < 0

V H(y,z,u)v + V H(y,z,u)w+ H(y,z,u) = 0
y z

u U .

This is a standard first order strict inequality approximation except for the

linearized H equation. Here we have omitted G(y)=O, (y)=0, QA(i)=O, H(y,z,,u)=O

and the constant term F(y).

Let S1 = {vRn: VF(Y)v>O, VG(y)vO, VQA ()v<O} and

S2 = {vER VQ (z)w<O, VyH(y,,u)v + V H(y,z, )w+H(y,z,u) = 0

M
for some UEU, weR }

S1 and S2 each reflect half of the above linearized problem.

Halkin's [3] approach to the discrete maximum principle was to first

prove that there is a hyperplane separating S1 and S2. He considered the case

with no state constraints Q or Q and with H having the associations for the

control problem P that were given in section I. Since this separation

property may be of independent interest, let us see how it results from the

arguments of Theorem 1.

Lemma 3 (Second Linearization Lemma):

Let y=y, x=x and uu solve control problem P'; assume H-H3 and H5.

and that the matrix [VyH(Y,i,u),V H(y,i,U)] has full row rank.

Then S1 and S2 are separated by a hyperplane

Proof: For the most part, the proof is the same as the proof of

Theorem 1. Consequently, we adopt the notation there and

only sketch modifications to that proof.

If (u) is not linearly independent over u, then let

(,o) # 0 and 6 be defined as before, that is
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6 -VG(y) = aV H(y,i,U)

aV H(y,z,i) = 0

oH(Y,J,u) = 0 for all uU

Then consider the hyperplane {x:6x=0}. Note that 60 since the

rows of VG(Y) are linearly independent as are those of

[VyH(y,z,U),VzH(,z,u)]. For veS1, 
6v= -VG()v=0. For vcS2 there

are weRM and uU so that 6v=aV H(Y,z,,i)v [VH y(y,z,)v+V H(y,iz,i)w+H(,z,u)]=0.

Thus {x: 6x=O} separates S1 and S2.

If (u) is linearly independent over u, then let

* N A
S2 = (iVeR: VQ (z)w<0,

D ^ 
VH(Y,,Z)v+V H(,,TU)w+ H(,,)+H(,)D+ = 0
y Z1 D+l

D+ ^ M
z j.< 1, Gj>0, (j=l,...,D+l) for some uU, weR }

j=l

where ul, ...,u are defined as in the proof of Theorem 1. By the

argument used previously to show that the set S is convex, we can

easily establish that S2 is convex. Since S1 is convex and equations

(1) - (6) in Theorem 1 have no solution for uU, S1 and S2 are

disjoint hence separated by a hyperplane. But S2 c closure S
2 2

(let D+1 -) so that S1 and S2 are also separated.
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