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Abstract

There have long been intuitive connections between robustness and regularization in statis-
tical estimation, for example, in lasso and support vector machines. In the first part of the
thesis, we formalize these connections using robust optimization. Specifically

(a) We show that in classical regression, regularized estimators like lasso can be derived by
applying robust optimization to the classical least squares problem. We discover the
explicit connection between the size and the structure of the uncertainty set used in
the robust estimator, with the coefficient and the kind of norm used in regularization.
We compare the out-of-sample performance of the nominal and the robust estimators in
computer generated and real data.

(b) We prove that the support vector machines estimator is also a robust estimator of some
nominal classification estimator (this last fact was also observed independently and si-
multaneously by Xu, Caramanis, and Mannor [52]). We generalize the support vector
machines estimator by considering several sizes and structures for the uncertainty sets,
and proving that the respective max-min optimization problems can be expressed as
regularization problems.

In the second part of the thesis, we turn our attention to constructing robust maximum
likelihood estimators. Specifically

(a) We define robust estimators for the logistic regression model, taking into consideration
uncertainty in the independent variables, in the response variable, and in both. We
consider several structures for the uncertainty sets, and prove that, in all cases, they
lead to convex optimization problems. We provide efficient algorithms to compute the
estimates in all cases. We report on the out-of-sample performance of the robust, as well
as the nominal estimators in both computer generated and real data sets, and conclude
that the robust estimators achieve a higher success rate.

(b) We develop a robust maximum likelihood estimator for the multivariate normal distri-
bution by considering uncertainty sets for the data used to produce it. We develop an
efficient first order gradient descent method to compute the estimate and compare the



efficiency of the robust estimate to the respective nominal one in computer generated

data.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

Statistical estimation has a long and distinguished history. In the context of regression, the

idea of least squares has been used extensively. More generally, the established paradigm is
to use the maximum likelihood principles.

Researchers soon realized that data on which these estimators are based are subject to
error. The origins of the errors can be multiple (measurement, reporting, even classification

(a clinical trial can be classified as success while it can be indeed a failure)). In order to deal
with errors several researchers have introduced regularization methods:

a) Regularized regression. Given a set of observations (yi, xi), yi E I, xi E Rm, i E
{1, 2,..., n}, Tibshirani [49] defines the Least Absolute Shrinkage and Selection Operator

(lasso) estimate as the optimal solution to the optimization problem

min ly - X0 - 3o112 + p1l3III1, (1.1)

where

Yl xt 1

y = , X = 1 = entries, (1.2)

Yn Xn

and p > 0. Tibshirani [49] demonstrated using simulation results that the lasso estimate
tends to have small support which yields more adaptive models and higher empirical
success. Tikhonov and Arsenin proposed the ridge regression estimate, which is the



solution to

mmin Ily - X3 - olII + p1P3I| , (1.3)

see [50].

b) Support vector machines in classification problems, introduced by Vapnik et al. [10].

Given a set of data (y,x i), i E {1,2,...,n}, y E {-1,1}, x~ I R m , the support vector

machines estimate is the optimal solution to optimization problem

n

min II12+P2 P i
3,13o, i=1

s.t. c 2 1 - yi(3'xi +/30),i {1,2,...,n} (1.4)

i > 0,i E {1,2,...,n},

where p > 0. Support vector machines classifiers have been very successful in experiments

(see Scholkopf [43]). Note that Problem (1.4) has a regularization term 110112 in its

objective.

Huber [30] considers any statistical estimator T to be a functional defined on the space

of probability measures. An estimator is called robust, if functional T is continuous in a

neighborhood around the true distribution of the data. Hampel defined the influence curve

to quantify the robustness of statistical estimators [26]. However, they did not provide an

algorithmic way to construct robust estimators.

1.1 Robust Optimization in Statistical

Estimation Problems

In this thesis, we use the paradigm of Robust Optimization to design estimators that are

immune to data errors. Before describing the specific contributions of the thesis, let us give

a brief overview of Robust Optimization.

Robust optimization has been increasingly used in mathematical programming as an

effective way to immunize solutions against data uncertainty. If the data of a problem is

not equal to its nominal value, the optimal solution calculated using the contaminated data

might not be optimal or even feasible using the true values of the data. Robust optimization

considers uncertainty sets for the data of the problem and aims to calculate solutions that



are immune to such uncertainty. In general, consider optimization problem

min f(x; d)
xEX

with decision variable x restricted in feasible set X and data d. The robust version of it, if
we consider uncertainty set D for the errors Ad in the data, is

min max f(x; d + Ad).
xEX AdED

As we observe, the efficient solution of the nominal problem does not guarantee the
efficient solution of the respective robust one.

There are many ways to define uncertainty sets. Soyster [47] considers uncertainty sets
in linear optimization problems where each column of the data belongs to a convex set. Ben-
Tal and Nemirovski [4], [5], [6], follow a less conservative approach by considering uncertain
linear optimization problems with ellipsoidal uncertainty sets and computing robust coun-
terparts, which constitute conic quadratic problems. Bertsimas and Sim [8], [9], consider an

uncertainty set for linear or integer optimization problems where the number of coefficients

in each constraint subject to error is bounded by some parameter adjusting the level of
conservatism, and prove that this problem has an equivalent linear or integer optimization

formulation, respectively.

The idea of using robust optimization to define estimators that tackle the uncertainty of

the statistical data has already been explored. El Ghaoui and Lebret [20] have used robust
optimization to deal with errors in the regression data. They define the robust total least
squares problem, where the Frobenious norm of the matrix consisting of the independent

variables and the response variable of the observations is bounded by some parameter, and
prove that it can be formulated as a second order cone problem.

1.2 Contributions of the Thesis

In this thesis, we apply robust optimization principles to many classical statistical estimation
problems to define the respective robust estimators, that deal with errors in the statistical
data used to produce them. We study the properties of the estimators, as well as their
connection with the uncertainty set used to define them. We develop efficient algorithms that
compute the robust estimators, and test their prediction accuracy on computer generated as
well as real data.

In the first part of the thesis, we formalize the connections between robustness and
regularization in statistical estimation using robust optimization. Specifically



(a) We show that in classical regression, regularized estimators like lasso can be derived by

applying robust optimization to the classical least squares problem. We discover the

explicit connection between the size and the structure of the uncertainty set used in

the robust estimator, with the coefficient and the kind of norm used in regularization.

We compare the out-of-sample performance of the nominal and the robust estimators in

computer generated and real data.

(b) We prove that the support vector machines estimator is also a robust estimator of some

nominal classification estimator (this last fact was also observed independently and si-

multaneously by Xu, Caramanis, and Mannor [52]). We generalize the support vector

machines estimator by considering several sizes and structures for the uncertainty sets,

and proving that the respective max-min optimization problems can be expressed as

regularization problems.

In the second part of the thesis, we turn our attention to constructing robust maximum

likelihood estimators. Specifically

(a) We define robust estimators for the logistic regression model, taking into consideration

uncertainty in the independent variables, in the response variable, and in both. We

consider several structures for the uncertainty sets, and prove that, in all cases, they

lead to convex optimization problems. We provide efficient algorithms to compute the

estimates in all cases. We report on the out-of-sample performance of the robust, as well

as the nominal estimators in both computer generated and real data sets, and conclude

that the robust estimators achieve a higher success rate.

(b) We develop a robust maximum likelihood estimator for the multivariate normal distri-

bution by considering uncertainty sets for the data used to produce it. We develop an

efficient first order gradient descent method to compute the estimate and compare the

efficiency of the robust estimate to the respective nominal one in computer generated

data.

The structure of the thesis is the following. In Chapter 2, the connection between robust

regression and regularized regression is quantified and studied. In Chapter 3, the Sup-

port Vector Machines estimator is proved to be the robust estimator corresponding to some

nominal classification estimator, and its properties are investigated. In Chapter 4, robust

estimators for logistic regression are defined and calculated. In Chapter 5, a robust normal

distribution estimator is defined, and an efficient algorithm to calculate it is developed.



Chapter 2

Equivalence of Robust Regression and

Regularized Regression

2.1 Introduction

A way to improve the performance of the regression estimate is to impose a regularization

term in the objective function of the optimization problem which defines it. Given a set of

observations (yi, xi), y E I m, E i E {1,2,..., n}, Tibshirani [49] defines the Least

Absolute Shrinkage and Selection Operator (lasso) estimate as the optimal solution to the

optimization problem

min 1y - Xp3 - 0/011 + p1 011l, (2.1)
/o,13

where

Y2 2

y = X = 1 = n entries, (2.2)

Yn J Xn

and p > 0.

Tibshirani [49] demonstrated using simulation results that the lasso estimate tends to

have small support which yields more adaptive models and higher empirical success. Candes

and Plan [13] proved that if the coefficient vector 3 and the data matrix X follow certain

probability distributions then, lasso nearly selects the best subset of variables with non-zero

coefficients.



The connection between Robust Optimization and Regularization has been explored in
the past. El Ghaoui and Lebret prove that the minimization of the worst-case least squares
error can be formulated as a Tikhonov regularization procedure [20]. Golub et al proved that
Tikhonov' s regularization method can be expressed as a total least squares formulation,
where both the coefficient matrix and the right-hand side are known to reside in some sets.

In this chapter, we prove that regularization and robust optimization are essentially
equivalent, that is the application of the robust optimization paradigm in statistical estima-
tion leads to regularized solutions. We investigate the nature of the regularized solutions
as the uncertainty sets in robust optimization vary. We present empirical evidence that
demonstrates that the application of robust optimization in statistics, which is equivalent to
regularization, has an improved out-of-sample performance in both artificial and real data.
We further investigate the effectiveness of different uncertainty sets and their corresponding
regularizations. In summary, the key contribution of this section is that the strong empirical
performance of regularized solutions, which we also observe in this paper, can be explained by
the fact that the process of regularization immunizes the estimation from data uncertainty.

The structure of the chapter is as follows. In Section 2.2, we prove that the robust
regression estimate for uncertainty sets of various kinds of norms can be expressed as a
regularized regression problem, and we calculate the relation between the norms used to
define the uncertainty sets and the norms used in regularization, as well as their coefficients.
In Section 2.3, we prove that the optimization problem used to define the support vector
machines regression estimate is the robust counterpart of the e-insensitive regression estimate
problem. In Section 2.4, we report on the improved out-of-sample performance of the robust
and regularized estimates in comparison to the classical ones in the experiments we carried
out on artificial and real data.

2.2 Robust Regression

Given a set of data (yi, xi), y CE R, xi E IRm, i E {1, 2, ... , n}, we consider the Robust LP
Regression optimization problem

min max Iy - (X + AX)/3 - /3ol p, (2.3)
)3,0o AXEAf

where y, X, and 1 are defined in Eq. (2.2) and K is the uncertainty set for AX.

The uncertainty sets for AX are going to be defined by bounding various kinds of norms
of matrix AX. There exist several matrix norms (see Golub and Van Loan [24]). For



example, norm I * Iq,p for an n x m matrix A is defined by

I A9lq,p E sup , qp > 1,
xERm,x$O jjXjjq

see Golub and Van Loan [24], p. 56.

Note that

IIA lq,p = max IIAxl p,
11Xllq=l

and that for some x* E Rm with IIX*Ilq = 1, we have that

IIAIIq,p =IIA *llp,

see Golub and Van Loan [24], p. 56.

Moreover, we define the p-Frobenius norm which is also going to be used in defining uncer-
tainty sets for AX.

Definition 1. The p-Frobenius norm I* tJp-F of an n x m matrix A is

i=1 j=1

Observe that for p = 2, we obtain the usual Frobenius norm.
The following theorem computes a robust counterpart for the robust optimization Problem
(2.3) under the uncertainty sets

N' = {AX E R xm I lAXllq,p < p}, (2.4)

and

N -2 = {AX c Rnx m 1 IIXlpr-F < P}. (2.5)

It proves that the robust regression problems under these uncertainty sets can be expressed
as regression regularization problems.

Theorem 1.

(a) Under uncertainty set .' 1, Problem (2.3) is equivalent to problem

min Ily - Xp - /3oll0p + P113 1|q. (2.6)
,00o



(b) Under uncertainty set N2, Problem (2.3) is equivalent to problem

min Il - X3 - 00o111p + pll11d(p),
13,1o

where .f 1, '2 are defined in Eq.

(4.3).

Proof.

(2.4) and (2.5) respectively, and d(p) is defined in Eq.

(a) The proof utilizes Appendix A.2 that performs certain somewhat tedious vector calcu-

lations. To prove the theorem, we shall first compute a bound for the objective function of

the inner problem in Eq. (2.3) and then, calculate a AX that achieves this bound.

Using the norm properties, we have that

Ily - (X + AX)3 - 00ollP =- ly - X, - 3ol - AX)3ll

< Ily-X3- 3olp + IlAXl3p.

From Golub and Van Loan [24], p. 56, we have that

IlX3llp _ IlAXllq,p 11)-IIl

Thus, for IlAX llq,p < p,

and for any AX cEM,

IlY - (X + AX)3 - /3o111p

AXo =

Ily - Xp - 3olI, + PII 3Pl1q.

We next construct a solution AXo E Nli that achieves bound (2.8). Let

Y - X - 001 [f(P, q) ]T,
|ly - X3 - ollp

-pu[f(, q)] ,

if Y - X3 - 3ol 0,

if y - X - 3ol = 0,

where f(x,p) E rn , x E R , p > 1, is defined in Eq. (A.1) in Appendix A.2, u E RI " is an

arbitrary vector with Ilullp = 1.

(2.7)

(2.8)

(2.9)

IIAX0lp < pII q,



For y - Xf3 - 31 zol 0:

Ily - (X + AX)3 - /3olIp -

- y

Ily - X3 - 3ol - AXo3P1

]To
P

(y - X3 - 3o1) + I - Xp - olp p
([f(0, q)]T,1 = IIlI0q)

= IIY - X/3 - 01 lp + PIll3 q"

Note that when y - X3 - 3ol = 0, Ily - (X + AXo)f3 - /3 olll = Ily - X3 - /ol|p + p +/ 3 1 q

as well.

Moreover, using Propositions 1 and 3 in Appendix A.2, we have that if y - X3 - /ol = 0,

IAXollq,p = Y - X3 - /3l 1 If(/3, q) Id(q) P

liy - X/3 - /3ollIp

and if y - X3 -3 01= O,

I|AXoII,, = pllullpll, f(, q) Ild() = p.

Thus, AXoE . f.

Consequently, we conclude that

max Ily - (X + AX) 3 - 3o111p = |ly - XO - 3o111p + PIIPl3 q,
axEnr,

which proves the theorem.

(b) Following the same procedure, we conclude that

Ily - (X + AX) - ,3o111 ly - X3 - /3olI, + IIAX0/3 .

From Golub and Van Loan [24], p. 56, we have that

lAX/1p - IIAX ld(p), 11 1 d(p).

y - XO - o1
- Xp -/3ol + p-y -/3o [f ( , q )

|yv- Xp- 01,ll



Using Proposition 2 in Appendix A.2, we conclude that

IIAX)31, < IIAXllp-F 1l01ld(p,

and thus, for any AX E N/2,

IIv - (X + AX)3 - 0olllp, < IY - Xp - 3o1ll + Pll/lld(p)-

Define AX 0 as in Eq. (2.9) with q = d(p). Then,

Ily - (X + AXo)3 - 00olll = liy - X1 - 1ol1I, + PllPlld(p)-

Furthermore, using Propositions 1 and 4 in Appendix A.2, we have that if y - XP3 -ol #' 0,

IIAXoIIPF -= y - X3 - ,3l1 * , f(03, d(p)) = p,Iy - X0 - 013olip P

and if y - X3 - ol = 0,

IlAXollp-F = pllullpllf(3, d(p))lp - p,

and consequently, AXo E NV.

This allows us to state that

max Ily - (X + AX) -- 131I11 = Iy - X3 - /3oill + p 11 |d(p),
AXEAr2

which proves the theorem. O

Theorem 1 states that protecting the regression estimate against errors in the independent

variables data bounded according to certain matrix norms is achieved by regularizing the

corresponding optimization problem. The structure of the uncertainty set determines the

norm which is going to be considered in the regularized problem. The conservativeness of

the estimate is affected by parameter p, which determines the size of the uncertainty set as

well as the contribution of the norm of the coefficient vector to the objective function to be

minimized in the robust counterpart.



2.3 Support Vector Machines for Regression

Consider the E-insensitive regression estimate which minimizes the E-insensitive loss function

n

mm max(0, yi - ,Txi - 30 - E).
i=1

The corresponding robust regression estimate, which immunizes against errors described by

the uncertainty set A3 is

n

minm max max(0, jyi -_ T(xi + Axi) - 13oI - ), (2.10)
P,o AXEA 3 i=1

where '/3 is defined in Eq. (3.4).

We next prove that, under Assumption 1, the robust estimate of Problem (2.10) is the same

as the support vector machines regression estimate.

Definition 2. The data set (yi,xi), i E {1,2,...,n}, y E IR, xi E R m , is called E-

approximable if there exists a (,/3, ) E RIm + 1 such that for any i E {1,2,...,n}, jy -

f3Txi - io0 < E. Otherwise, the data set is called non-c-approximable. In this case, for any

(,, Oo) E R m+l, there exists an i E {1, 2,. .. , n} such that Iy, - 3TXi - _o > 6.

Assumption 1. The data set (y2 , xi), i E {1, 2,..., n}, is non-E-approximable.

Theorem 2. Under Assumption 1, Problem (2.10) has a robust counterpart

n

mmin + pliq
i=1

(< y1 - fTx -- o - 6,i E {1,2,..., n} (2.11)

i >2 -Yi +3Txi + 3o - E, i E {1,2,...,n}

( 0,i E {1,2,...,n},

which is the optimization problem defining the support vector machines regression estimate.

Proof.

Let R, be defined as in Eq. (3.7), and R2 be defined as in Eq. (3.8). Then, similar to

Theorem 3, the inner maximization problem in Eq. (2.10) is expressed as

max E max(0, |yi - iT(xi + Axi) - 0o1 - E), (2.12)
(AX,r)ER2

i=1



which is equivalent to

n

max max Z max(0, |yi - T(x + A iLX) _ - ).
TEREIZ [ Amillp<rip i=1

Consider the inner maximization problem in Eq. (2.13)

n

max E max(O, yjy - T(xi + AX) - 3o1 -).
IIAmillP<rip i=1

(2.13)

(2.14)

This problem has a separable objective function and separable constraints. Consequently,

we can solve problem

(2.15)max max(O, yy - f3T(x, + Ax) - 01 - E).
IIAxillp<rip

for any i E {1,2,.

Problem (2.14).

Since

.. , n} and add the optimal objectives to form the optimal objective of

min (T AXi)
IIAXiIIP<rip

= -riP JI3 Jq,

max (OTAX ) = ripll 3 11q,
1IAus|p<rip

we conclude that:

max max(0, 1yi - 3T(xi + Axi) - Qo - E)
IIAX 1II prip

= max(0, max (Yi- OT(x + Ax) -o -E),
I]xill<rip

max (-y + ,T(X2 + Ax2 ) + P0 - E))
IIAxillp r i p

= max(0, y - TX - 3 o - - min (3TAx),
IlAxilipr p



-yi )+ i+ 0 - E max (TAXi))
IIAxi (lp(rip

= max(0, yi - 3Txi - Oo - E + riPII311,, -yi + OTxi + fo - E + riplI011q)

= max(O, lyi - /3T - o1 - E + riPIJll3 q).

Thus, Problem (2.13) is equivalent to

n

max max(0, Iyj - /Txi - 3o1 - E + ripj I Iq).
rER I i= 1

(2.16)

To solve Problem (2.16), we will bound its objective value and then, construct an r E 1

that achieves this bound.

Observing that

max(0, ly - PTi - o1 - e + rip 13 lq)

< max(O, ly, - PTi - 0o1 - E) + ripl 3 11q),

we conclude that for r E I1,

n

max(0, ly - O - /o - e + rP 3I11q)
i=1

max(O, Iyi - Txi - 3ol1 - 6) +
i=1

5 p If3Ilq

5 max(0, lyi - P)Txi - o0 - E) + PII 3i11q
i=1

Using Assumption 1, the data is non-c-approximable, and thus, there exists an io E

{1, 2,..., n}, such that Iyio - OTXio - /30o > . Let

ri= { 1, i = io,

0, i #io.



For this r E R 1 ,

max(0, yi TXi 01 - 6 +rip q)

= C max(0, fyi - /Txi - /3o - E) + max(0, |yio - 3TX - 0o1 - E + PII 3 Iq)
i=1,i io

= E max(0,
i=l,i io

lyi - fTXi - 0oi E) + IYi' - TXi - 013 - E + PII/ 31q

(lyi, - aTX, - 0ol - E + PII)3ll > 0)

= S max(O, ly -_TXi - o1 - C) + PI1 3 11q.
uently, the optimal objective of Problem (2.12) is e=1ual to

Consequently, the optimal objective of Problem (2.12) is equal to

max(0, Iyj - xO i - 0oi - E) + PI t3 lq,
i=1

and Problem (2.10) is equivalent to

n

mm in max(O, Yi - OTxi - /01 - c) + PIJIq,
i=l1

which can be expressed as Problem (2.11). Ol

Theorem 2 states that the support vector machines regression estimate is a robust opti-

mization estimate, and that the contribution of the regularization term depends on the norm

used to define the uncertainty sets.

2.4 Experimental Results

To compare the performance of the robust and regularized estimators for regression to the
performance of their respective nominal estimators, we conducted experiments using arti-



ficial, as well as real data sets. To solve all the convex problems needed to compute the
estimates, we used SeDuMi [36], [48].

The artificial data set used to evaluate the quality of the robust estimates was developed in
the following way:

1. A set of 200 random points , x, X ... , X200 in R3 was produced, according to the

multivariate normal distribution with mean [1, 1, 1 ]T and covariance matrix 513, where
13 is the 3 x 3 identity matrix.

2. For each xi, yi = P- Ti + /0o + r was produced, where 30 = 1,

13= -3 ,

and r is normally distributed with mean 0 and standard deviation 1.

The data set was normalized by scaling each one of the vectors containing the data corre-
sponding to an independent variable to make their 2-norm equal to 1.
The performance of regular regression, robust regression with (p = 1, q = 1), (p = 1, q = 2),
(p = 2, q = 1), (p = 2, q = 2), E-insensitive regresion, and support vector machines regression
with q = 2 was measured for various values of p according to the following procedure:

1. The normalized data set was divided randomly into two groups containing the 50% of
the samples each, the training set and the testing set.

2. A set of 100 random data points in Ra following the multivariate normal distribution
with mean 0 and covariance matrix 13 was produced. These data points were scaled
by p and added to the training set data points to contaminate them.

3. The contaminated data were used to produce the estimates to be studied.

4. The total error of the predictions of the data in the testing set was recorded for each
estimate.

5. The procedure was repeated 30 times and the average performance of each estimate
was recorded.

Parameter E in E-insensitive regression and support vector machines regression was set to
the 0.01 of the maximum absolute value of the dependent variables of the data.
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Figure 2-1: The average mean absolute error of the regression estimates according to p.

Using this procedure, the average mean absolute error and the average mean squared error

of each estimate in the testing set was calculated for values of p between 0 and 0.045. The

graphs of these errors according to p can be seen in Figures 2-1 and 2-2. The legends "Robust

Regression 1-1", "Robust Regression 1-2", "Robust Regression 2-1", "Robust Regression 2-

2" refer to the robust regression estimates with (p = 1, q = 1), (p = 1, q = 2), (p = 2, q = 1),

and (p = 2, q = 2), respectively.

We observe that as p increases, the difference in the out-of-sample performance between

the robust and the respective classical estimates increases, with the robust estimates always

yielding better results. The support vector and E-insensitive regression estimates performed

the best, while the ordering of the other methods in decreasing performance was: Robust

2-2, Robust 2-1, Robust 1-2, Robust 1-1.

The robust regression estimates were also tested using real data from the UCI Machine

Learning Repository [3]. Again, the sets were normalized by scaling each one of the vectors

containing the data corresponding to an independent variable to make their 2-norm equal

to 1. The sizes of the used data sets can be seen in Table 2.1.

The evaluation procedure for each real data set was the following:

* The data set was divided in three sets, the training set, consisting of the 50% of the

samples, the validating set, consisting of the 25% of the samples, and the testing set,
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Figure 2-2: The average mean squared error of the regression estimates according to p.

Data set n m
Abalone 4177 9

Auto MPG 392 8
Comp Hard 209 7

Concrete 1030 8
Housing 506 13

Space shuttle 23 4
WPBC 46 32

Table 2.1: Sizes of real data sets for regression.



Data set Regular Rob 1-1 Rob 1-2 Rob 2-1 Rob 2-2 E-ins Supp Vector

Abalone 1.7517 1.7234 1.7219 1.7087 1.6700 1.6286 1.5474*

Auto 3.2554 3.2412 3.2378 3.2265 3.1913 2.6661 2.5615*
MPG
Comp 22.9119 21.3412 21.1217 22.6443 22.8445 19.8399 19.8239*

Hard

Concrete 9.2977 9.2387 9.1923 9.1614 8.9876 8.6809 8.3653*

Forest 21.7727 21.6723 21.6321 21.7250 21.7330 18.3198 18.2675*
Fires

Housing 4.4950 4.4586 4.4489 4.4363 4.3821 3.3905 3.2341*

Space 0.5957 0.5617 0.5578 0.5865 0.5737 0.5036 0.4886*
shuttle
WPBC 50.1432 49.9716 49.7623 49.2981 48.9397 49.3230 48.4037*

Table 2.2: Mean absolute error in
the best performance.

testing set for real data sets. * denotes the estimate with

consisting of the rest 25% of the samples. We considered

data set which were selected randomly.

30 different partitions of the

* For each one of the considered partitions of the data set:

- The regular regression estimate based on the training set was calculated.

- The robust regression estimates based on the training set for various values of

p were calculated. For each p, the total prediction error on the validating set

was measured, and the p with the highest performance on the validating set

was considered. The prediction error that this p yielded on the testing set was

recorded.

* The prediction errors of the estimates under examination were averaged over the par-

titions of the data considered.

Parameter c for c-insensitive regression and the support vector machines regression was

chosen in the same way as in the artificial data experiments.

The results of the evaluation process are summarized in Tables 2.2 and 2.3. Under the

mean absolute error criterion, the support vector machines are always performing the best.

In most cases, the ordering in the out-of-sample experiments is the same as in the artificial

data sets. Under the mean squared error criterion, in five out of the eight real data sets, the

support vector machines show the best performance, whereas in the rest three data sets, the

robust regression estimates yield smaller out-of-sample errors.



Data set Regular Rob 1-1 Rob 1-2 Rob 2-1 Rob 2-2 E-ins Supp vector

Abalone 5.7430 5.6702 5.6543 5.6345 5.5369 5.3050 5.0483*

Auto 18.7928 18.7245 18.7076 18.6981 18.5829 12.8846 12.5251*
MPG
Comp 2026.00 2014.32 1978.12 1965.75 1925.13* 2463.03 2348.29
Hard

Concrete 132.47 131.46 131.32 131.08 129.31 131.53 127.09*

Forest 5526.00 5312.18 5229.14 4994.81* 5266.40 5232.61 5229.52
Fires

Housing 39.8084 39.5412 39.4912 39.4257 39.0716 24.8051 24.6867*

Space 0.5323 0.5201 0.5177* 0.5225 0.5265 0.5582 0.5501
shuttle

WPBC 4723.07 4676.20 4657.98 4630.19 4489.20 4498.14 4410.46*

Table 2.3: Mean squared
the best performance.

error in testing set for real data sets. * denotes the estimate with

2.5 Conclusions

Regularization in statistics can be interpreted as the application of robust optimization

techniques in classical statistical estimates to provide protection against uncertainty in the

data. The robust optimization paradigm offers a more adaptive and comprehensive control

of the estimates through the use of various norms in defining uncertainty sets, while, at the

same time, providing an insight of why the produced estimates yield improved performance

compared to their respective classical ones.
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Chapter 3

Support Vector Machines as Robust

Estimators

3.1 Introduction

Vapnik et al. [10] developed Support Vector Machines (SVM), a method which provides

classification estimates. Given a set of data (yi, xi), i E {1, 2,...,, n},i E {-1, 1}, xi E Im,

the SVM estimate is the optimal solution to optimization problem

n
min I 13I2 + p E i

30 o,4 i=1
s.t. ( > 1 - y(13'ziX +o),i E {1,2,...,n} (3.1)

> 0,i E {1,2,...,n},

where p > 0. The term II3ll2 in the objective function is used to find a hyperplane classifier
n

that is as far as possible from the samples and the term p Z is used to allow misclassified
i=1

samples. Support vector machines classifiers have been very successful in experiments (see

Scholkopf [43]). Note that Problem (3.1) has a regularization term 1 3112 in its objective.

The idea of applying Robust Optimization in defining classification estimators has already

been explored. Lanckriet, El Ghaoui et al. defined classification estimators by minimizing

the worst-case probability of misclassification [34]. The connection of SVM with robustness

has already been explored. Shivaswamy et al. propose a second order cone programming

problem that defines classifiers that can handle uncertainty [44].

In this chapter, we prove that Support Vector Machines are a particular case of robust

optimization estimators (this last fact was also observed independently and simultaneously

by Xu, Caramanis, and Mannor [52]). More specifically, in Section 3.2, we prove that the



support vector machines problem, which yields the respective estimate for classification, is

the robust counterpart of some nominal problem which classifies binary data as well, and

we calculate the relation between the norms of the uncertainty sets and the norm used for

the regularization. In Section 3.3, we report on computational results of the Support Vector

Machines estimators and their respective classical ones.

3.2 Robust Properties of Support Vector Machines

Given a set of categorical data (yi, xi), yi E {1, -1}, x E R m , i E {1, 2,... , n}, we define

the separation error S(/, 3o, y, X) of the hyperplane classifier 8Tx + /o = 0, x E R m , by

n

S(P3, o, Y, X) = ? max(O, 1 - yi(PTx + Qo)), (3.2)
i=1

where

Y1 X1

Y2 X2
y = , and X = [

Yn Xn

According to Eq. (3.2), an observation (yi, xi) contributes a non-zero quantity to S(3,

3o, y, X) only if 3Txi + 0o < 1, fTxi + /0 > -1, for Yi 1, i = -1, respectively. The

amount of the contribution is the distance of 3Txi + o3 from 1, -1, for yi = 1, i -1,

respectively.

The hyperplane which minimizes the separation error is the solution to the optimization

problem

min S(P, O0, y, X), (3.3)

which can be expressed as the linear optimization problem

n

mmin
i=l

s.t. yi(PTi + 00) 1 - ,i E {1,2,...,n}

(4 > 0,i e {1,2,... ,n}.



Consider the uncertainty set

N3 = AX R nxm |Ax (3.4)

where II* lip is the p-norm.

The robust version of Problem (3.3), which immunizes the computed hyperplane against

errors in the independent variables of the data described by the set JN3, is

min max S(8, 30, y, X + AX). (3.5)
1,1o AXEK 3

We next prove that under Assumption 2, this robust estimate is equivalent to the support

vector machines classification estimate.

Definition 3. The set of data (yi, xi), i E {1, 2,..., n}, is called separable if there exists a

hyperplane OTx + Qo = 0, such that for any i E {1, 2,... , n}, y i(3Txi + /o) > 0. Otherwise,

the data set is called non-separable. In this case, for any hyperplane I3TX + /o = 0, there

exists an i E {1, 2,...,n} with yi(3Txi + 3o) < 0.

Assumption 2. The data (yi, xi), i E {1, 2,..., n}, is non-separable.

Theorem 3. Under Assumption 2, Problem (3.5) is equivalent to

n

min 1 i +P II Id(p)
,P= T i= 1

s.t. i > 1 - y(P/Tx + 3o), i E {1, 2,..., n} (3.6)

i 2 0, i E {1,2,...,n},

where d(p) is defined in Eq. (4.3), i.e., I" I*d(p) is the dual norm of II lip.

Proof.

To prove the theorem, we are going to introduce a new set of variables ri, i E {1, 2,..., n},

which will be used to bound each IIAxillp, and thus, to control the contribution of each

IfAxillp to 7 IAxillp, which determines the uncertainty set.
i=1

Consider

= r Rn ri < 1, ri > , i = 1,2,...,n , (3.7)



and

R2= {(AX,r) E Rnxn x I rT E R1, I AxiIp <rip, i -- 1,2,..., n}. (3.8)

It is clear that the projection of R 2 onto AX is N 3. Thus, the inner problem in Eq. (3.5)

can be expressed as

max S(,3, /3o, X + AX),
(AX,r)ER2

(3.9)

which is equivalent to

max max S(, o0, y, X + AX).
rER1 IlAxillprip

Consider the inner maximization problem in Eq. (3.10)

max S(, o30, y, X + AX).
JAxIllp_<rip

(3.10)

(3.11)

Since

n

S(p, Oo, y, X + AX) = max(0, 1 - yi(fT(xi + Axi) + 3o)),
i=1

Problem (3.11) is separable and has separable constraints. Its solution is given by solving

max max(0, 1 - y(P3T(x + Axi) + 3o)).
I Ai,_pI<rip

for any i E {1, 2,..., n} and adding the optimal objectives.

Observe that:

max max(0, 1 - yi(3T(xi + Axi) + 0o)
Jl~xilllrip

= max(0, max (1 - yi(3Txi + /0) - yi TAxi))
IAx zillp <rip

= max(0, 1 - yi(P3Txi + 3o) +

(3.12)

max (-yiTAXi)).
IiAxillp< p



We know that:

max (-yi3T Axi))
IIAxl pfrip

- min fTA ,
IIAxlp<rip

max /3T A x i,

Jlaaxillp<rip

min fT Ax = -riplll311q,
IAxilp<_riP

and

max 3TAX i = ripll1pIq.
IlAxillp<rip

Consequently,

max (-yiTA i ) = riPIlllq,
IlA illprip

and

max max(0, 1 - yi(PT(x + Axi) + ,o))IlAxi lp<rip

= max(0, 1 - yi(3Txi + 0o) + max
IlA illp<riP

(-yiTAXi))

= max(0, 1 - yi ()Ti + 3o) + ripll 31 q)

is the optimal objective of Problem (3.12). Thus, the optimal objective of Problem (3.11) is

n

Smax(O, 1 - yi(3Txi + 10) + riplpI3 q).
i=1

Given this observation, Problem (3.10) is equivalent to

max max(O, 1 - y,(PTxi + 00) + ripl /3 11q).
i=1

(3.13)

To solve Problem (3.13), we find an upper bound for its objective value and then, we construct

if Yi = 1,

if Yi = -- 1,



an r which achieves this upper bound.

Since

max(O, 1 - yi(3Txi + 3o) + ripI 3 11q)

< max(0, 1 - yi(f3Txi + 0o)) + riPII/11q,

we conclude that for r E R

max(0, 1 - yi(3Tix + 00) +P rP q)
i=1

- max(O, 1 - yi(3Txi + s3)) + riPI 0 Iq

n

- S(0, 3o, y, X) + rPpl|/3 |q < S(o, o, y, X) + Pl l q.
i=1

Using Assumption 2, the data is non-separable, and thus, there exists an im E {1, 2,..., n}

such that yim (P3Txim + 0o) < 0. We have:

1 - yi (P3TziXm+ ) > 0,

and

1 - yim(/TXim + o) + PII11 q > 0.

Let

Ti =
i Zim

For this r,

max(0, 1 - y2 (3Txi + 3o) + riPI 01q)
i=1



n

= max(0, 1- yi(3Txi + 3o)) + 1 - Yim (/xim +/o) + p 3 liq
i=l,i im

n

= max(0, 1 - y~i(Oxi + 0o)) + PJIll = S(A 0o, y, X) + PI~ f3II
i=1

Thus, the optimal objective value of Problem (3.13) is S(P3, fo, y, X) + pl fl3Iq and a robust

counterpart of Problem (3.5) is

min S(3, Oo, y, X) + PIIP3 11q,

which is equivalent to Problem (3.6). O

As Theorem 3 states, the support vector machines estimate is a robust optimization

estimate, attempting to provide protection against errors in the independent variables.

3.3 Experimental Results

To compare the performance of the Support Vector Machines to the performance of their

respective nominal estimators, we conducted experiments using artificial, as well as real data

sets. To solve all the convex problems needed to compute the estimates, we used SeDuMi

[36], [48].

The artificial data set used to evaluate the support vector machines classifier was generated

in the following way:

* A set of 100 points in RI3 obeying the multivariate normal distribution with mean

[1, 0, 0 ]T and covariance matrix -._I3 was generated, where 13 is the 3 x 3 identity

matrix. The points were associated with y = 1, and added to the data set.

* A set of 100 points in R 3 obeying the multivariate normal distribution with mean

[0, 1, O]T and standard deviation -I3 was generated. The points were associated with

y = -1, and added to the data set.

The performance of the separation error estimate and the support vector machines esti-

mate was measured for values of p ranging between 0 and 0.045 using the generated data set

and the same procedure as in the regression artificial data case described in Chapter 2. The

results are summarized in Figure 3-1. The performance metric used was the classification

error of the estimate. We observe that the support vector machines estimate, which is the
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Figure 3-1: The average classification error of the classification estimates according to p.

robust version of the separation error estimate, yields a smaller error for most of the values

of p, confirming the effectiveness of the robustness and regularization procedure.

The classification estimates were also tested using real data from the UCI Machine Learn-

ing Repository [3]. The procedure followed was the same as in the regression estimates case

described in Chapter 2, and the performance metric applied was the classification error. The

sizes of the used data sets can be seen in Table 3.1. The results are summarized in Table

3.2. The support vector machines estimate yields better results than the separation error

estimate in all cases. The maximum improvement is obtained in the "Lenses" set, where

the support vector machines estimate, which is characterized by the robust optimization and

regularization ideas, is 6.25% better than the classical estimate.

3.4 Conclusions

Support Vector Machines for classification is a particular case of an estimator defined using

the robust optimization paradigm. We proved theorems that facilitate the choice of the

norm and the coefficient used in regularization based on the structure and the size of the

considered uncertainty sets. The robust estimator shows improved performance in artificial

and real data sets compared to its respective nominal one.



Data set n m
Pima 768 8
Spam 4601 57
Heart 270 13

Ionosphere 351 33
Lenses 24 5

SPECTF 267 44
TAE 151 5

WDBC 569 30
Yeast 1484 8
Wine 178 13

Table 3.1: Sizes of real data sets for classification.

Data set Sep error Supp vector
Pima 0.2451 0.2330*

Spam 0.0779 0.0744*
Heart 0.1676 0.1627*

Ionosphere 0.1496 0.1481*
Lenses 0.2667 0.2500*

SPECTF 0.2505 0.2413*
TAE 0.3311 0.3184*

WDBC 0.0469 0.0445*
Yeast 0.1440 0.1395*
Wine 0.0330 0.0326*

Table 3.2: Classification error in testing set for real data sets. * denotes the estimate with

the best performance.
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Chapter 4

Robust Logistic Regression

4.1 Logistic Regression

Logistic regression is a widely used method for analysing categorical data, and making pre-

dictions for them. Given a set of observations (yi, xi), i E {1, 2, ... , n}, yi E {0, 1}, xi E Rm ,

classical logistic regression calculates the maximum likelihood estimate for the parameter

(/3, 3o) E Rm+ 1 of the logistic regression model (see Ryan [40], Hosmer [28])

exp(/Tx + 3o)Pr[Y = 1X = X] = expT + / (4.1)1 + exp(O3Tx + 30) (4.1)

where Y E {0, 1} is the response variable determining the class of the sample and X E Rm

is the independent variables vector.

Very frequently, the observations used to produce the estimate are subject to errors. The

errors can be present in either the independent variables, in the response variable, or in

both. For example, in predicting whether the financial condition of a company is sound, the

economic indices of the company used to make the prediction might have been measured

with errors. In predicting whether a patient is going to be cured from a disease given several

medical tests they undertook, the response variable demonstrating whether the patient was

indeed cured might contain errors.

The presence of errors affects the estimate that classical logistic regression yields and

makes the predictions less accurate. It is desirable to produce estimates that are able to
make accurate predictions even in the presence of such errors.

In this thesis, robust optimization techniques are applied in order to produce new robust
estimates for the logistic regression model that are more immune to errors in the observations'
data. The contributions achieved include:



1. New notions of robust logistic regression when the estimates are immunized against

errors in only the independent variables, in only the response variable, and in both the

independent and the response variables are introduced.

2. Efficient algorithms based on convex optimization methods on how to compute these

robust estimates of the coefficients (0, iO) in Eq. (4.1) are constructed.

3. Experiments in both artificial and real data illustrate that the robust estimates provide

superior out-of-sample performance.

The structure of the chapter is as follows. In Sections 4.2, 4.3, and 4.4, the methodology

of computing robust logistic regression estimates that are protected against errors in their

independent variables, in their response variable, or in both respectively is outlined. In

Section 4.5, the performance of the proposed algorithms in comparison with the classical

logistic regression for both artificial, and real data sets is reported.

4.2 Robust logistic regression under independent vari-

ables uncertainty

Given a set of observations (yi, ji), i E {1, 2,..., n}, we assume that the true value of the

independent variables of the observations is xi + Axi, where the p-norm of Axi is bounded

above by some parameter p, that is Il Axilp < p.

Let X be the matrix in which row i is vector xi, AX be the matrix in which row i is

vector Ax, and y be the vector whose i-th coordinate is yi, i = 1, 2,...,n. Let function

P(y, X, 1, /o) denote the log-likelihood on the given set of observations

n

P(y, X, 3, /o) = [yi(TTxi + o) - ln (1 + exp(/Txi + /o))] (4.2)
i=1

Let

d(p) = p > 1. (4.3)
p-i'

We also define that d(1) = oc and d(oo) = 1. Note that * I d(p) is the dual norm of * lip.

Let

S1 = {AX I IAxi ll p, i= 1,2,...,n}. (4.4)



The robust estimate we propose is defined by:

max min P(y, X + AX, 3, o). (4.5)
3,3o AXES 1

In other words, (/3, ,o) is evaluated by the worst case log-likelihood as the error in the

measurement of the independent variables lies in the uncertainty set S1.

In the next theorem, we calculate an analytical formula for the optimal objective of the

inner minimization problem in Eq. (4.5) as a function of (3, /o).

Theorem 4.

(a) An optimal solution to

Z1(3, o) = min P(y, X + AX, /, ,o) (4.6)
AXES1

is AX 0 , where the i-th row Ax? of matrix AXo, i E {1, 2, ... , n}, is given by

Ax - (- 1)Yi p f (, d(p)), i C {1, 2,..., n}, (4.7)

and f(x,p) E Rm , x E R m, p 2 1, is defined in Appendix A.1.

(b) The optimal objective value Z1 (/3, /3) is given by

n

Z(p)3, o) = [yi(P T X i + o + (-1)"PIlllld(p))
i=1

- In(1 + exp(3Txi + /o + (-1)•YiPI3IJd(p)))] (4.8)

Proof.

(a) Given that the objective function of Problem (4.6) is separable and that each of its

constraints involves a single Axi, the optimal solution for each Axi is the optimal solution

to

min yi [3T(i + Axi) + 3o] - In (1 + exp(3T(xi + Axi) + 30)). (4.9)
IlIAxilp<p

Defining

gi(w) = yiw - In 1 + exp(w) = 2, ...,n,



we observe that the objective function of Problem (4.9) is equal to

gi( T(xi + Ax) + 0o).

The first derivative of gi(w) is

exp(w)
dgi(w) exp(w) 1 + exp(w) <  0, if yi = 0,

dw 1 + exp(exp(w) > 0, ifyi = 1.

Thus, for yi = 0, function gi(w) is strictly decreasing, whereas for yi = 1, function gi(w)

is strictly increasing. This implies that to solve Problem (4.9), it suffices to maximize or

minimize 3TAX2 , according to whether yi = 0 or yi = 1 respectively.

Using Holder's inequality (see Boyd [12], p. 78), we conclude:

For any AX E S 1, we have that IlAxillp < p and hence,

-plPlld(p) < 1 T AXi - P IIjlld(p). (4.10)

Let AXo be defined as in Eq. (4.7). Using Proposition 1 in Appendix A.1, we have that:

f3TAx = 3T (-1)i p f (, d(p)) = (-1)Y p f (, d(p))T 3 = (-1)y p IIplld(p).

Thus, if yi 0, P TAxi attains its maximum value PlIIlld(p) in Eq. (4.10), and, by the

monotonicity of gj(w), Ax ° is an optimal solution to Problem (4.9). Similarly, if yi = 1,

OTAzx attains its minimum value -Pll lld(p) in Eq. (4.10), and hence, it is an optimal

solution to Problem (4.9). We conclude that AXo is an optimal solution to Problem (4.6).

(b) Using the observation that 3 TAx? = (-1)YiplIlJd(p), we conclude that the optimal

objective value of Problem (4.6) is given by Eq. (4.8). O

Function P(y,X + AX, P, 3o) is concave in (3, 3o) for any AX E S1 (see Ryan [40],

Hosmer [28]). Thus, Z 1(3, 3o) = min P(y, X + AX, 3, 3o), which constitutes the mini-
AXES 1

mum value of P(y, X + AX, , o) over the feasible set SI, is concave in (/3, 3o) (see [12],

p. 81).



Using Theorem 4, the robust counterpart of Problem (4.5) is formulated as

max Z1 (/3, 3o). (4.11)

Problem (4.11) is an unconstrained concave maximization problem. However, the func-

tion Z1(/3, 3o) is not differentiable at any (/3, io) E Rm+1 with 3 = 0. For this reason, we

apply the subgradient maximization method (see Shor [45]), which converges to the optimal

solution of (4.11). The details of the method are outlined in Appendix B.1.

4.3 Robust logistic regression under response variable

uncertainty

Given a set of observations, the response variable of each one can either be affected by an

error or not. In this model, we immunize the estimate under the uncertainty set defined by

an upper bound F on the number of errors in the response variable of the observations. In

this way, we restrict "nature" to modify up to F observations. The parameter F makes a

tradeoff between robustness and optimality.

Let Ayi be a binary variable which is equal to 1, if there is an error in the nominal

value of the response variable of observation i, and 0, otherwise. The true value of the

response variable of observation i is then equal to lyi - Ayi|. Let Ay be the vector whose

i-th coordinate is Ayi, i E {1, 2,..., n}. Each value of the parameter (/3, 3o) is evaluated as

the worst case of P(Iy - Ayl, X, /3, o), when Ay lies in the uncertainty set

S2 = AYE{0, 1}n Ayji . (4.12)

Formally, the robust estimate in this case is the optimal solution to

max min P(Iy - Ayj, X, 0, o), (4.13)
0,,o AyES 2

where P(y, X, 3, 3o) is defined in Eq. (4.2).

A substantial difference between the uncertainty set S2 considered here and the uncer-

tainty set S1 considered in Section 4.2 is that the uncertainties in S1 are separable, whereas

in S2 are not. In the next theorem, we calculate an equivalent maximization problem for the
inner minimization problem in Eq. (4.13).



Theorem 5. Problem

min P(jy - AyI, X,, 0o)
AyES2

has the same objective value as problem

(4.14)

max p + E qi + [yi(iTxi + o/) - ln(1 + exp(Txi + 3o))]
i=t. i=+ q +

s.t. p qi+(-1)l-Y(PTi+Po) IO, i E {1,2,...,n}
(4.15)

p < O,q <0.

Proof. Since |yi - Ay il = (-1)YiAyi + yi, the objective function of (4.14) is expressed as

n

P(y - Ayl, X, 0, /) = [Ii - Ayil(fTxi + /o) - In (1 + exp(I3Txi + /3))]

n n

= E(-1)'(0Ti oi [y i ( T i + 0) - In (1+ exp(0Tx4 + o)) . (4.16)
i=1 i=1

The only term in Eq. (4.16) affected by Ay, is E(-1)Y(Tx i + /o)Ayi, implying that
i=1

the optimal solution of Problem (4.14) is the optimal solution of the integer optimization

problem

n

min E(-1)'( 3Tx + Oo)Ay
i=1

s.t. Ay E S2.

(4.17)

Since the polyhedron {Ay I ZAy < r, 0
i=l

< Ayi < 1} has integer extreme points,

Problem (4.17) has the same optimal solution as its linear optimization relaxation

min E(-1)Y'(3TXi + 0)Ayi
i=1

n

s.t. E AY <

0 < Ayi < 1, i E {1,2,...,n}.

By strong duality in linear optimization, the optimal objective value of Problem (4.18)

(4.18)



is equal to the optimal objective value of its dual

n

max Fp + qi

i=1 (4.19)s.t. p + qi < (-1)Yi(T + 0)

p 0,q 0,

and hence, Problem (4.15) has the same optimal objective value as Problem (4.14). O

Using Theorem 5, we express the robust counterpart of Problem (4.13) as

max Z 2 (p, q, /3 0 )

s.t. p + qi + ( 1)l-i( Txi + 30o) < 0, i E {1, 2,..., n} (4.20)

p < O,q < 0,

where

n n

Z2(p, q, 3,3o) = Pp + qi + [yi (/3Tx i + 30) - In(1 + exp(3Txi + /3))]
i=1 i=1

The objective function of Problem (4.20) is concave in (p, q, 3, 3o) subject to linear

constraints. Problem (4.20) is a concave maximization problem with twice continuously

differentiable objective function and twice continuously differentiable constraints, solvable

with an interior point method (see Bertsekas [7], Boyd [12]). The details of the method are

outlined in Appendix B.2.

4.4 Globally robust logistic regression

Globally robust logistic regression provides an estimate for the parameters (/3, o3) of the lo-
gistic regression model taking into consideration that both the independent and the response

variables of the observations are subject to errors.

The proposed estimate is defined as the solution to

max min P(jy - Ay, X + AX,3, 3o), (4.21)
X,So axES1,AyES 2

where P(y, X, 0, o) is defined in Eq. (4.2), and S1, S2 are defined in Eq. (4.4), Eq. (4.12),
respectively.

In Theorem 6 below, we calculate a formula for the optimal value of the inner minimization
problem in Eq. (4.21). To present this formula we need to introduce some notation.



Definition 4. If v 1  (vi, v,..., v 1 ), v 2 = (v, 2, ... , v 2 ) are length n binary sequences,

v 1 is lexicographically smaller than v 2, or equivalently v 1 <lex v2, if there exists some io E

{1, 2 ... ,n} such that for any i E {1, 2 ... io - 1}, v = ando <

If a = (al, a2 ,..., an), let S(a) be the set of optimal basic feasible solutions to problem

n

min Zaixi
i=1

n (4.22)
s.t. Zxi <

i=1

O xi _ 1, i= 1,2,...,n.

Let

ns(a)= IS(a)j,

and sq(a), q = 1, 2, ... , ns(a), be the binary sequence which is placed at position q if we

order the binary sequences of set S(a) according to relation "<lex", i.e.,

sl(a) <ex s 2 (a) <lex ... <lex sns(a)(a),

where relation "<lex" is defined in Definition 4.

For example, if a = (al, a 2 ,..., a6 ) with

al < a2 = a3 = a4 < 0 = a5 = a6

and F = 3, then

S(a) = {(1,1,1,0,0,0),(1,1, 0,1,0,0),(1,0,1,1,0,0)},

ns(a) = 3,

s'(a) = (1, 0, 1, 1, 0,0),

s 2 (a) = (1,1,0,1,0,0),

s"(a) = (1,1,1,0,0,0).



Note that if h is a strictly increasing function with h(O) = 0, then

S(h(a))

ns(h(a))

= s(a),

= s(a),

sq(h(a)) = s'(a), q= 1,2, ... , ns(a),

where h(a) is a vector whose i-th coordinate, i = 1, 2,..., n, is h(ai).

We also define functions U(3, Oo), nu(,, 3o), uq(3, 3o), q = 1,2,..., nu(, 3o), (/, 3 o) E

Rm+l, as

U(3, 3o) = (a)

nu(3,0o) = ns(a),

u ( , 3o) = sq(a), q = 1, 2,..., ns(a),

where a = (a, a2,... , an) and

ai = (-1)Yi(lTxi + /o),i = 1, 2,..., n.

The next theorem solves the inner minimization problem in Eq. (4.21).

Theorem 6.

(a) An optimal solution to

Z3(/3,o) = min P(Iy - Ay l, X + AX, ,, o),
AXES1 ,AyES 2

is (AXo, Ayo) = (R(ul(W, 3o)), ul(p, i3o)),

where u'(P, 30) is defined in Eq. (4.23), R(v) is a matrix whose i-th row is vector

r (v) = (-1)y -v i l p f (,, d(p)), i E {1, 2,... n},

v is a length n binary sequence, and f(x,p), x E Rm, p > 1, is defined in Appendix A.1.

(b) The optimal objective value Z3( (, fo) is given by

n

Z3()3, o)=C [ly_-1(0,0)l ()3Xi+0o+ (_jy-u:,) - I~p,))

- n(1 + exp(/3Tx + o + (-1) IY-U('0o)IP 0/3 ld(p)))] (

(4.23)

(4.24)

(4.25)

(4.26)



Proof.

(a) Problem (4.24) can be expressed as

min min P(Jy- Ay,X+AX,3,3o).
AyES 2 AXES 1

(4.27)

Using Theorem 4, we conclude that the optimal solution to the inner minimization problem

in Eq. (4.27) is R(Ay), and its optimal objective value is

n

y [I- Ayl(3TX i+ o + (-1)y p I3d(p)
i=1

- In(1 + exp(OTXi + /o + (-1)Iy-Ayi PII3JIId(p)))]

Thus, Problem (4.24) is equivalent to

n

min
AYES2 Z [Iy - AyI(iTx + /o + (--1) IY-AypIp I d(p))

- ln(1 + exp(I3Tx + o/ + (-1)IYi-yilpl0/31 d(p))))]

(4.28)

Defining

F, o()3, 3o) = yi(3 T Xi + /o + (-1)YPII/3 l1d(p))
- In(1 + exp(/3Tx + /0 + (-1)iPIIPll3 d(p))), i E {1, 2,..., n},

Fi,1(, /o) = (1 - yi)(/3Zi + /o + (-1)1 -Ypll|31d(p))

- In(1 +exp(/3Txi i 3o + (-1)-YpJJ3Pl3d(p))), i E {1, 2,...,n},

we observe that

Iyi - ,Ayi (/3Xi + io + (-1)pv'i yi'p1 Id(p))
- In(1 + exp(f3TXi + +00o ( )I i-AyilplJd(p))

Fi,o(0, o), if Ayi = 0,
Fi,1(0, o), if Ayi = 1,



- Fi,o( 3, Oo) + E (Fi,1( , 00) - Fi,o(, 00)) Ayi.

Problem (4.28) has the same solution as

n
min E(F,(0, )3o)- F,o (, 0o))Ayi.

AYES 2 i=1

Defining

hi(w) = w - (-1)Ypl Id(p) ln (1 + exp((-1)Yiw + (-1)Y'P II|Id(p))
1 + exp((-1)Yw - (-1)Yip /13|d(p)) '

we express

We observe that

dhi(w)
dw

(-1)Yi(exp((-1)iw + (-1) p PI d(p)) - exp((-1)Yw - (-1)Yi'pII jId(p)))
(1+ exp((-1)Yiw + (-1)Yip II11d(p)))(1 + exp((-1)Yiw - (-1) p[ II d(p)))

=1 exp((-1)Yiw - (-1)YiP I[Id(p))(-I)Yg[exp(2(-1)i pI3 ld(p)) - 1]
(1 + exp((-1)Yiw + (-1)YpIIj ,d(p)))(1 + exp((-1)Yiw - (-1)YipII/P3 d(p)))

Since for yi = 0,

exp(2(-1)p II[p3d(p)) - 1 0,

and for yi = 1,

exp( 2 (-1)pYiPPIId(p)) - 1 < 0,

we have that

dhi(w)
> 0)dw

implying that function hi(w) is strictly increasing in w.

(4.29)

Fil(, o) - Fi,o()3, /o) = h ((-1)Y (3 T xi + 1o)). (4.30)



Furthermore,

1 + exp((-1)Y pl 0ld11(p)) 0.
h(0)= -(-)YpiI/3i(p) +n 1 + exp(-(-1)Ypl/3Jld(p)) )

Given Eq. (4.30), the fact that hi(w) is strictly increasing in w, and the fact that hi(0) = 0,

we conclude that u1 (/3, 30), defined in Eq. (4.23), is an optimal solution to Problem (4.29)

and that (AX 0, Ayo) = R(u'(,, 3o), ul(03, o)) is an optimal solution to Problem (4.24).

(b)If we apply (AX, Ay) = (R(u 1l(0, /o)), u'l(3, o)) to the objective function of (4.24),

we obtain the expression in Eq. (4.26) for the optimal objective. O

Given Theorem 6, Problem (4.21) has a robust counterpart

max Z3 (/3, o). (4.31)

Function P(ly - Ay|, X + AX,/3, 0o) is concave in (3, /00) for any AX E S1, Ay E S2 (see

Ryan [40], Hosmer [28]). Thus, function

Z 3 (/, 3 0) = min P(ly - AyI,X + AX,3,/30 ),AXES1,AyES 2

which is equal to the objective function of Problem (4.31), is concave in (0, 3o) (see Boyd

[12], p. 81). Problem (4.31) is an unconstrained concave maximization problem.

Since function Z3 (/3, /o) depends on u1 (/3, 3o), which in turn depends on the ordering of

(-1)Yi(3Txi + 1/30), i E {1,2,. .. ,n}, it is not differentiable at all (0/3,/) E R m +l . Hence, we

need to calculate left and right derivatives, which is conceptually simple, but notationally

cumbersome, and therefore, we present the details of the calculation in Appendix C.

Since Problem (4.31) is an unconstrained maximization problem with a concave objective

function, it can be solved using the subgradient method. The details of the method are

outlined in Appendix B.3. Note that if p = 0, we have another method to calculate the

robust logistic regression under response variable uncertainty estimate. In this method,

we calculate the objective function of the inner minimization problem in Eq. (4.13), and

apply the subgradient method to find its optimal value, whereas the method in Section 4.3

computes the dual of the inner minimization problem in Eq. (4.13), and then, unifies the

outer with the inner maximization problems.



4.5 Experimental Results

In this section, we report computational results on the performance of the methods outlined

in Sections 4.2, 4.3 and 4.4 involving both artificial and real data sets. The results were

produced using Matlab 7.0.1, where the algorithms for calculating the robust and the classical

estimates were coded.

4.5.1 Artificial Data Sets

To evaluate the proposed robust estimates, we produced an artificial data set in the following

way:

* A set of 100 points in R3 obeying the multivariate normal distribution with mean

[1,0, 0 ]T and covariance matrix lI3 was generated, where 13 is the 3 x 3 identity

matrix. The points were associated with y = 1, and added to the data set.

* A set of 100 points in RI3 obeying the multivariate normal distribution with mean

[0, 1, 0]T and standard deviation I3 was generated. The points were associated with

y = 0, and added to the data set.

The generated data set was normalized by scaling each one of the vectors containing the

data corresponding to an independent variable to make their 2-norm equal to 1.

The performances of the classical logistic regression and the robust logistic regression under

independent variables uncertainty estimates were measured for various values of p according

to the following procedure:

1. The normalized data set was divided randomly into two groups containing the 50% of

the samples each, the training set and the testing set.

2. A set of 100 random data points in R33 following the multivariate normal distribution

with mean 0 and covariance matrix 13 was produced. These data points were scaled

by p and added to the training set data points to contaminate them.

3. The contaminated data were used to produce the estimates to be studied.

4. The prediction success rate in the testing set was recorded for each estimate.

5. The procedure was repeated 30 times and the average performance of each estimate

was recorded.
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Figure 4-1: Success rate of the robust logistic regression under independent variables uncer-
tainty estimate in the testing set.

Figure 4-1 illustrates the results of the experiment. We observe that the robust estimate
is always superior to the classical one. As p increases, the success rate for both estimates

drops, and the difference between the estimates grows.

To evaluate the performance of the robust logistic regression under response variable
uncertainty estimate for various values of F, we followed the same procedure. The contam-
ination of the response variable data was simulated by producing a random permutation of
the 200 samples of the training set and changing the value of the response variable for the
first F samples in the permutation. Figure 4-2 illustrates the results. The robust estimate
yields a better success rate and its performance drops at a lower rate as F increases.

To evaluate the performance of the globally robust logistic regression estimate for various
values of p and F, we followed the same procedure as for the other robust estimates and
produced contamination of both the independent and response variables in the same way.
Figures 4-3 and 4-4 illustrate the results. For both values of F, the robust estimates have a
higher success rate than the classical one.

4.5.2 Real Data Sets

The following real data sets were used to test the performance of the robust logistic regression
estimates:
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Figure 4-2: Success rate of the robust logistic regression under response variable uncertainty
estimate in the testing set.
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Figure 4-3: Success rate of the globally robust logistic regression estimate in the testing set
(F = 1).
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Figure 4-4: Success rate of the globally robust logistic regression estimate in the testing set
(r = 2).

1. "Banks" from N. R. Patel [35]. The independent variables are the ratio of the total

loans and leases over the total assets and the ratio of the total expenses over the total

assets of the bank. The response variable is equal to 1 or 0, according to whether the

bank is financially strong or weak respectively. It consists of 20 samples.

2. "WDBC", the Breast Cancer Wisconsin Diagnostic Data Set, from the UCI Repository

[3]. The data set consists of 569 samples, each one referring to a patient who was

examined for breast cancer. The independent variables are 30, the mean, the standard

deviation and the mean of the 3 largest values for 10 real-valued characteristics of the

cell nucleus. The response variable is 0 or 1, according to whether the person suffers

from the disease or not respectively.

3. "Chocs" from SAS Real Data Sets [2], [42]. To produce the data, 10 people were given

8 chocolate bars with varying characteristics. After eating the bars, they were asked to

choose their favorite. The independent variables are DARK, which denotes if it is milk

or dark chocolate, SOFT, which denotes if it has a hard or soft center, and NUTS,

which denotes whether it has nuts. Each person were given a chocolate for each one of

the eight combinations of those 3 variables, and their preference or no preference was

listed. There is a sample for each combination of a person and a chocolate category,

making 8. 10 = 80 samples totally.



Data set n m
Banks 20 2
Breast 569 30
Chocs 80 3
Crash 58 3
PTSD 948 5

Table 4.1: Sizes of real data sets.

4. "Crash dumies" from SAS Real Data Sets [2], [42]. It provides information for the

calibration of crash dummies in automobile safety tests. There are 3 independent

variables, the acceleration, the velocity, and the designed "age" of the crash dummy.

It consists of 58 samples.

5. "PTSD" from SAS Real Data Sets, [2], [42]. The samples were generated by inter-

viewing 316 people who survived residential fires in the Philadelphia area at 3, 6, and

12 months after the fire. The dependent variable PTSD is coded 1, if the person had

symptoms of post-traumatic stress disorder, and 0, otherwise. The independent vari-

ables are CONTROL, a scale of a person's perceived control over several areas of life,
PROBLEMS, the total number of problems reported in several areas of life, SEVENT,
the number of stressful events reported since the last interview, COHES, a scale of

family cohesion and TIME, equal to 1, 2, or 3 if the interview is 3, 6 or 12 months

after the fire respectively. There is a sample for each combination of a person and an

interview, making 3 -316 = 948 samples in total.

The sets were normalized by scaling each one of the vectors containing the data corre-

sponding to an independent variable to make their 2-norm equal to 1. The sizes of the used

data sets can be seen in Table 4.1.

The evaluation procedure for each real data set was the following:

* The data set was divided in three sets, the training set, consisting of the 50% of the

samples, the validating set, consisting of the 25% of the samples, and the testing set,
consisting of the rest 25% of the samples. We randomly selected 30 different partitions

of the data set.

* For each one of the considered partitions of the data set:

- The classical logistic regression estimate based on the training set was calculated.

- The robust logistic regression under independent variables uncertainty estimates

based on the training set for various values of p were calculated. For each p,



Data set Classical Robust Indep Robust Resp Glob Robust
Banks 0.7120 0.7133 0.7667* 0.7133
Breast 0.6182 0.6589* 0.6378 0.6421
Chocs 0.7833 0.8509 0.8502 0.8517*
Crash 0.8098 0.8133 0.8444* 0.8133
PTSD 0.6861 0.6861 0.6987* 0.6861

Table 4.2: Success rate in testing set for real data sets. * denotes the estimate with the best
performance.

the success rate on the validating set was measured, and the p with the highest

performance on the validating set was considered. The success rate that this p

yielded on the testing set was recorded.

- The robust logistic regression under response variable uncertainty estimates based

on the training set for various values of F were calculated and the same procedure

was followed to determine the F which was used to calculate the success rate of

this estimate in the testing set.

- The same procedure involving combinations of values of p and F was used to

determine the success rate of the globally robust logistic regression estimate.

* The success of the estimates under examination were averaged over the partitions of

the data considered.

The results of the evaluation process are summarized in Table 4.2. The robust estimates

have a higher success rate than the classical ones. In three of the data sets, the estimate

that is shielded against errors in the response variable has the highest success rate. The

improvement that the robust estimates yield ranges from 1.84% in the "PTSD" data set to

8.73% in the "Chocs" data set.

4.6 Conclusions

In this chapter, the robust optimization paradigm was applied in producing estimates for

the logistic regression model. Uncertainty sets for the independent variables, the response

variable, and both of them were considered. The robust logistic regression estimates im-

proved the success rate in the out-of-sample prediction compared to the classical one in both

artificial and real data sets.



Chapter 5

Robust Maximum Likelihood In

Normally Distributed Data

5.1 Introduction

In Chapter 4, we defined robust estimators for logistic regression. In this chapter, we develop

a robust maximum likelihood estimator for the multivariate normal distribution. We develop

an efficient algorithm to calculate the robust estimator. More specifically, in Section 5.2, we

formally define the estimator, and provide a first order gradient descent method to calculate

it. In Section 5.3, we use computer generated data to show the efficiency of the robust

estimator in providing accurate predictions even in the presence of errors. We test and

compare the nominal and the robust estimator under various circumstances.

5.2 Method

Consider samples xi, i = 1, 2,..., n, for which it is known that they follow a multivariate

normal distribution parametrized by its mean t E Rm and its covariance matrix E, a

symmetric positive semidefinite m x m matrix. Multivariate normal distributions arise in

many practical situations, such as in studying large populations. The maximum likelihood

method receives this set of samples and returns estimators i and t for parameters A and

E. Let f(, ; x) be the probability density function for the data:

f (u, E;x) - (2)m/2 i1/2 exp - - )TE-(X - ) . (5.1)

If the values of the parameters used to generate the samples are ti and E, and the samples



xi are independent, the probability density function evaluated at them is fi f(p, E; xi). The
i=1

maximum likelihood method returns the values of p and E that maximize this density, or

equivalently the logarithm of this density.

Let X be the n x m matrix having sample xi in its i-th row. If we define

O(p, E; X) = log f(p, E; xi) = max E log(f(, E; xi)), (5.2)
(=1 i=1

the maximum likelihood estimates for ti and E are the solution to

max (tL, E; X). (5.3)

The solution to Problem (5.3) is proved to be given by

I n

Anom = EXi, (5.4)
i=1

Enom =- (x - nom)(Xi tnom)T, (5.5)
i=1

see [31].

Maximum likelihood seeks the values of the parameters which maximize the density

evaluated at the observed samples. It is a Bayesian method, assuming no prior knowledge

on the parameters, and thus, concluding that the parameters maximizing the density of

the data have the highest probability to be the true parameters. Following the robust

optimization paradigm, we consider an uncertainty set for the samples and define the robust

normal distribution estimate to be the value of the parameter which maximizes the worst-

case density. In this way, we seek an estimate which is secured against errors residing in the

uncertainty set. Let xi, i= 1, 2,..., n, be the samples contaminated with errors, and X be

the n x m matrix having the contaminated sample xi in its i-th row. We use the decision

variable Axi, i = 1, 2,..., n to model the error of the i-th sample. The n x m matrix AX

has Axi as its i-th row. Then, the true value of sample i is xi + Axi. Formally, the robust

normal distribution estimator is the solution to

n

max mi n (p, E( ; X + AX) = max minm log(f (p, E;i + Ai)), (5.6)
p,E AXE.A ,E AXeNi i=1



where N is given by:

AX=

Ax 1

Ax 2  IIAxiI12 <I A i= 1,2,... n

Ax"

(5.7)

Through this uncertainty set, the error for each sample is restricted to be in a ball with

radius p. Notice that there is no correlation among the errors of the samples, which is

reasonable for errors in reality.

We define O(Mj, E; X) to be the worst-case density, which is the objective value of the inner

minimization problem. Formally,

(1, E; X) - min (., E; X + AX).
AXE.N

(5.8)

Knowing how to calculate 0(p, E; X) and at least its first derivative at any (eu, E) enables

us to compute the robust estimates, using a gradient ascent method.

Consider the inner minimization problem in Eq. (5.6) where uncertainty set NV is defined

in Eq. (5.7):

¢(i, E; X + AX) = min I(p, E; X)
AXE./

m= in nm log(27r) - nlog
IIAaJll2<p 2 2

n

'+ S--2(xi + A x i - L)TE-I(x i + x i  - L).
i=1

(5.9)

Problem (5.9) has separable objective function and separable constraints in Axi, i =

1, 2,..., n. Thus, to solve it, it suffices to solve

min -(xi + Ax,- )T-1(xi + AX i - ,)
IIAXIIl2<p 2

(5.10)

for each i = 1, 2,...,n.



Since the objective function of Problem (5.10) can be written as

1(X i + Xi - + )Ty-I(i -- /X i - 1)
2

1 1
-AzT -la - [E-i(X - )]TA - ( - )T I-1(. - ),2 2

it is a trust region problem. This is solved via its convex dual, which has 0 duality gap [12].

To express the dual, we introduce some special notation. Consider the spectral decomposition

of matrix E:

m

E= Z q q . (5.11)

Let ?min be the minimum eigenvalue of E, or, more formally,

(5.12)7min = min {rj}.
j E {1,2,...,m}

Let Hmin be the set of indices corresponding to the minimum eigenvalues of E

Hmin - {j {1,2,... ,m} I? = -min} . (5.13)

Define

12mi' +C00) if for all j
12 ?min/

( 1
27min'

E Hmin, (Xi - p)Tqj = 0,

(5.14)

otherwise,

[(xi - pj)Tqj]2

2j(2Aq - 1)
-Ap 

2  [(- i)[x]2

2j=j=1

Ac, ,1+00) ,
277min

[(xi - )Tj Qj2

2T(2Aqr - 1)

0, if (x i - p)Tqj = 0 and 2Arqj - 1 = 0,

if (x i - p)T qj 0 and 2Aqj - 1 = 0.

and

m

wi(A) = -
j=1

i= 1,2,...,n,

where

(5.15)



Using this notation, a dual to Problem (5.10) is

max wi(A)

s.t. A Ai,
(5.16)

see [12]. Problem (5.16) can be solved using a gradient ascent method to obtain the optimal

solution A .

Since the derivative of the objective function of Problem (5.10) is given by

VX, (( + AX, - ,i)TE-1(xi + Ax,- /)) = _-IAx_ -I(X -),

and the derivative of its constraint is 2Axi, using the Karush-Kuhn-Tucker conditions [12],
we conclude that any z E Rm that satisfies

-E-z -- E-l(xi - p) + 2tz = 0,

z z = p2,

(5.17)

(5.18)

> 0 (5.19)

is an optimal solution to Problem (5.10). We will use these conditions to express an optimal

solution to Problem (5.10). To achieve this, we are going to introduce some special notation.

Define

(5.20)

(Xi - -) T q j

2AX - 1

)1/2
0, jEKi(L,)

0,

jE Ki(/, E),

j = min ({1, 2,... ., m}\Ki(t, E)),

otherwise,

i= 1,2,. .. ,n, j= 1,2,. .. ,m,

and

(5.22)A *([I, E) = u4jj, i= 12,...,n.
j=1

Ui,j (5.21)

Ki(M, E) = j E {1,2,...,m} I 2A*,qj -1 > 0}, i= 1,2,... ,n,



We can easily verify that Ax*(p, E) satisfies the Karush-Kuhn-Tucker conditions (5.17),

(5.18), (5.19), for K = A* and, thus, is an optimal solution to Problem (5.10). Let Ax*,j( , E)

be the j-th element of Ax*(p, E) and AX*(p, E) be the n x m matrix having Ax*(P, E)

in its rows. Since Problem (5.9) is separable in Axi, AX*([L, E) is an optimal solution to

Problem (5.9).

We have developed a method to calculate 0(p, E; X) using

0(4, E; X) = 0(p, E; X + AX*(tL, E)). (5.23)

We now show how we can use AX*(p, E) and E(, ; AX) to calculate the derivatives

VO,(Q (/(p, E; X)). We will prove that:

VI,I( ( , E; X)) = VP,,('P, E; X + AX*)), (5.24)

where AX* = AX*(t, E). Let Ax* be the i-th row of AX* and Axi,j the j-th element of

the i-th row of it.

Using the chain rule of derivation, we have that:

V,,.((, E; X)) = V,,(((t, E; X + AX*(,I, E)))

= V.,((, E; X + AX*)) + A, ; x + AX*) V,(Ax (, ))
i=1 j=1 '

Since AX* is an optimal solution to the inner Problem (5.9), there exist v1 , v2 ,..., V, > 0,

such that:

d(L, E; X + AX*)
+ 2vx* 0.

2 izj i, -

Thus,

n m

vp,(O(., E; X)) = V,EV(tt., F; x + AX*)) - i1i E 2AxjV,.,(Ax*j(jt, E))
i=1 j=1

n m

Sv,( , X; x + AX*)) - V (Ax 3j(i, E)) 2
i=1 j=1



- V~(b( , C; X ± AX*)) - vVi, .!IAxc4t, C)I2 (I x*(, C)I z = p))

= V, (4( , E; X + AX*)).

In this way, we can calculate the derivatives of 0(p, E; X) using AX*(IL, E) and Eq.

(5.24), and use a gradient ascent method to calculate the robust estimator.

The objective function 0(p, E; X) in not convex in both ji and E, because its second

derivative is not a positive semidefinite matrix. Thus, the solution algorithm converges to

a local minimum. In summary, the algorithm to calculate the robust normal distribution

estimator defined in Eq. (5.6) is:

1. Start with some initial i and E.

2. For each i = 1, 2, ... , n, find the optimal solution Ax (p, E) of Problem 5.10, via its

dual Problem (5.16).

3. Use

Ax*(A, E)

zx* (A, E) = 2 )

and Eqs. (5.23) and (5.24) to calculate 0(/t, E; X) and its derivative.

4. Update 1L and E using the descent direction given by the derivative of 0(tt, E; X),

until the norm of the derivative is smaller than some tolerance parameter E.

The convergence of the algorithm is linear, since it is a first order method.

We investigate the possibility of using second order mathods. If we apply the chain rule to

obtain the second derivatives of 0(i, E; X), we obtain:

V , (¢(p, E; X)) = V2 (0(, E; X + AX*(t, s)))

= V , ((, E; X + AX*))

+n m av,(E((, F; X + AX*)) (V.(AX/j(L 2,E)))T
i=1 j=1 '



We observe that the second derivative consists of two terms. The first term is the sec-

ond derivative of the objective function of the nominal problem and the second term ac-

counts for the dependance of the worst case error AX* on t and E. The calculation of

V,a(Ax*j(tL, E)) complicates the calculation of the second derivatives of O(t, E; X).

5.3 Experiments

To evaluate the robust estimator, we conduct experiments using computer generated random

data. We generate samples following a multivariate normal distribution. As our estimators

are designed to deal with errors in the samples, we generate errors following both a normal

and a uniform distribution, and use them to contaminate our samples. First of all, the

worst-case and the average value of the probability density function is calculated for both

the nominal and the robust estimator. Furthermore, the nominal and the robust estimator

are calculated on the true and the contaminated samples and their performance in prediction

is evaluated. Finally, a comparison in the performance between the cases of normally and

uniformly distributed errors is conducted.

More specifically, the following process is followed in conducting the experiments. A

number of n = 400 samples in IR4 following the multivariate normal distribution with some

random mean and some random covariance matrix is generated randomly. Let Xtrue be the

400 x 4 matrix having the samples in its rows, and Xrue, i = 1, 2,... ,400, be the samples.
xtrue are the true samples, which are not affected by any errors.

Also, we generate errors for the samples in the following way. AXk, k = 1, 2,..., 40, is a

400 x 4 matrix containing errors corresponding to the samples in the 400 x 4 matrix X. The

errors in AXk follow the normal distribution with mean 0 and covariance matrix 14, where

0 is the zero vector in R 4 and 14 is the 4 x 4 identity matrix. The reason we use normally

distributed errors is that most real errors are closely related to this distribution.

We are going to evaluate the performance of the estimators using the worst-case and

average value of the probability density, as well as their distance from the value of the

nominal estimator on the true data. Initially, we are going to use the normally distributed

errors. In the end, we are going to compare the results with the case that we have uniformly

distributed errors.

The experimental section is organized as follows. In Section 5.3.1, we evaluate the esti-

mators based on the worst-case and average value of the probability density. In Section 5.3.2,
we evaluate the estimators based on their distance from the nominal estimator on the true

data. In Section 5.3.3, we compare to the case that we have uniformly distributed errors.



5.3.1 Worst-Case and Average Probability Density

As defined in Eq. (5.6), the robust estimator maximizes the worst-case density evaluated on

the observed samples. Therefore, in order to check the efficiency of the estimator, we are

going to check the worst-case and the average value of the probability density, as we add

properly scaled errors from the set denoted by AXk to the true values of the data.

In particular, we calculate the robust maximum likelihood estimate mrob (Xtrue, p), :rob

(Xtrue, p), on the true data Xtrue, for the values of p varying between 0 and 3 with a step of

0.1. For p = 0, we have the nominal estimates nom (Xtrue), -nom(Xtrue). To calculate the

nominal estimates, we use Eqs. (5.4) and (5.5). To calculate the robust estimates, we use

a first order gradient descent method with initial point the robust estimate for the previous

value of p, in the considered p sequence.

For each estimate #, t that we calculate, we compute the probability density of the

observed samples V(f, t; Xtrue + apAXk), k = 1, 2,..., 40, where p is the same parameter

as the one used to compute the robust estimate. We record the worst-case value, as well

as the average value over the set of errors indexed by k. We consider the cases a = 0.5,

a = 1.0, and a = 1.5.

Figure 5-1 shows the results. As we observe, for small values of p, the nominal and the

robust estimator depict almost the same performance. As p grows, the difference between

them increases, with the robust always showing a better performance than the nominal. This

is true for both the worst-case and the average value of the probability density. It can be

explained by the observation that for larger errors, the robust has an advantage, because

it always considers the worst-case. The superiority of the robust is detected for values of p

greater than or equal to 1. The robust is better than the nominal up to a factor of 10%. As

a increases, both nominal and robust performances deteriorate at a higher rate.

00 0

-e -1 a = 0.5 -1a = 0.5

-2 Robu - Ru

-4 -4

-5 -5
i a a=1.5

+ -6 = 1.5 + -6

-7 -7

-9 % E -9

. -10 1 0Nominal 9 -10 l R-ob
Robust I - Robust

-11 0.5 1 115 2 2.5 3 0 0.5 1 1.5 2 2.5 3

P 
P

Figure 5-1: Worst-case (left) and average (right) value of 0, normal errors



5.3.2 Distance From the Nominal Estimator

The purpose of defining the robust estimator is to be able to deal with errors. Thus, to

evaluate its perfomance, we compute both the nominal and the robust estimator on con-

taminated data having errors of various magnitudes. Then, we compare it to the nominal

estimator computed on the true data, which is the estimator we would get if there were no

errors.

More specifically, we compute the robust maximum likelihood estimators Arob(Xtrue +

6AXk, p), rob(Xtrue + 6 Xk, p) on the contaminated data X t
rue + 6AXk, for the sets of

errors k = 1, 2,..., 40, for the values of 6 ranging between 0 and 1 with a step of 0.05, and

for the values of p ranging between 0 and 3 with a step of 0.1. For p = 0, we have the

nominal estimators f,nom(Xtrue + 6 AXk), -nom(Xtrue + 6AXk).

For each estimate that we computed, we calculate its distance from the nominal estimate

on the true data

I Arob(X t r u e + b Xk, P) - A nom(X t rue) 112

and

IIrob(X t r u e + SAXk, P) - nom(Xtrue) lfro.

Note that IIAlIfro is the Frobenius norm of an n x m matrix A defined by

IIAIfro E A'
i=1 j=1

where Aij is the (i,j)-element of matrix A. We average the calculated distances over the

error sets k, k = 1, 2,. . ., 40. We use the Frobenius norm because it takes into consideration

the differences of the variances of the variables, as well as their cross-correlation terms.

Figure 5-2 shows the results. The performance of the nominal estimator is the one

showed for p = 0. In all cases, for an interval of p starting from 0, the robust shows an

almost stable performance, equal to the nominal one. As p grows, the performance of the

robust improves compared to the nominal one up to some point. There is an interval of p,

where the robust is up to 15% better than the nominal. Then, the performance of the robust

deteriorates significantly. This can be expected, because, in this interval, p is big compared

to the magnitudes of the errors that are added to the true samples and the robust estimator

becomes very conservative.



The area where the robust outperforms the nominal depends on 6, the size of the errors.

As 6 increases, the interval where the robust shows increased performace moves to the right.

This is explained by the fact that the robust estimator is secured against errors with norm

up to some p, and thus, it cannot deal with higher errors. The errors in p and E estimation

show the same qualitative patterns, as we would expect.

5.58
20
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4 a*** 6 = 0.25 1* 
=

-8= 1.00 12 -- 8= 1.00
3- 10

S2.5 -

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 3

p p

Figure 5-2: Error in p (left) and E (right), normal errors

5.3.3 Comparison of the Error Distributions

To check the dependance of our observations on the distribution that the errors follow,

we conduct the same experiments using uniformly distributed errors. Now, AXk, k =

1, 2,..., 40, is a 400 x 4 matrix, where each of its rows follows the uniform distribution in

the ball with radius 1. The uniform distribution is also closely related to real errors.

In Figure 5-3, we can see the performances of the nominal and the robust estimators in the

case of uniformly distributed errors. The same patterns, as in the case of the normally dis-

tributed errors, apply. However, by comparing Figure 5-3 to the respective one for normally

distributed errors Figure 5-2, we observe that for the same 6, the region where the robust

is superior is moved to the left. This is explained by the fact that the uniform distribution

has its samples concentrated in the ball with radius 6, whereas the normal distribution can

have samples outside of this region.

5.4 Conclusions

In this chapter, we defined a robust maximum likelihood estimator in normally distributed

data to deal with errors in the observed samples, based on the robust optimization principles.
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Figure 5-3: Error in p (left) and E (right), uniform errors

We developed an algorithm to efficiently calculate the robust estimator. We conducted

extensive experiments to compare the performance of the robust estimator to their respective
nominal one, which confirmed that the robust estimator, when correctly tuned, can be
resistent to errors.

I1A.



Appendix A

Algebraic Propositions

We define function f(x, p) E R m , x E R m , p > 1, which is used in vector calculations, and

prove some propositions on the matrix norms which are considered in the uncertainty sets.

A.1 Properties of function f(x,p)

Definition 5. Function f(x,p) E R m , where x E IRm, and p > 1, is defined by

[f (xp)], =
sgn(xi) (11 X ipJ

0,

, if 0o,
j = 1, 2,

ifx = 0,

where function sgn(x), x E R, is defined by

sgn(x) = {2
l1

if x > 0,

if x < 0.

Function f(x, p) has some interesting properties.

Proposition 1. For any x E R m and p > 1:

(a) [f(x,p)]T x = lx llp.

(b) Ilf(x,p)lld(p) = 1, where d(p) is defined in Eq. (4.3), i.e. II * lid(p) is the dual norm of

I 0 lip.,

Proof.

(A.1)



(a) For x 7 0:

(sgn(xj)xj = xjl)

lII p-1X p-1 xp

Note that for x=, f(xp)]x = 0 = Ixp Also, note that ifp c,

Note that for x = 0, jf(x,p)Tx = 0 = lix l1p* Also, note that if p = oc,

1, if j = argmax(xj1D),

0, if j # argmax(|xj,l),
jl

I( lx-~ p-iIlx ll =1.

If (x, P) Id(p) =

S1 m

j=1

1/d(p)

S1/d(p)

lx. P) = 1.

A.2 Propositions on matrix norms

The following proposition connects the norm *I ld(p),p with the p-Frobenius norm I* ip-F.

Proposition 2. For any n x m matrix A,

IAlIad(p),p < A p-F,

[f(x, p)]T x

m

= sgn(x)
j=1

xjl ,p-
1

U-4p)

(11X11P) P-1-

and if p = 1,

(b) We observe that:

1/d(p)

j=1 Izl

m
S p-1 Xl p

li ip j=l

I [f (x Ip) jId(p)

N



where d(p) is defined in Eq. (4.3).

Proof.

For some x E Rm with Ilx lld(p) 1,

IAlld(p),p = IIA p (,= Axl)p

where Ai is row i of matrix A.

Using Holder's inequality,

IAxl < IIAilljllxlld ,)= IIAillp.

Thus,

AjP) = IIAIIl-F.

Norms II * lq,p and II Ilp-F can be expressed through the product of norms of vectors for

special kinds of matrices, as the following propositions state.

Proposition 3. For u l E IR", u 2 E IRm, p, q > 1

lIUiUTllq,p = JlljU plju2lld(q).

Proof.

Since for any x E Rm,

lluiu =xl 1- II(u2 x)ull = IU XUllluI IP,

we have that:

IIUU T llq,p = max Iluju2x|lp = max (luT XIIlullp) = IIUil p max IuTxl.
SIIll q=l IIllq=1 in ej |=1

Using Holder's inequality,

lu Z = |ZT u21 2llXllU21 d(q),

n m
i=1 j=1

IA l p1,/p 1 x ) /p

IJA~~ld~p) i= < j jj



and for any x E R m with Ilxii = 1,

We have that:

luI f(u 2, d(q)) - If(u2, d(q))T u 21- IIU21ld(q).

Thus,

max ITx = IIU2ld(q),

and

iIU1U T lq,p = IIU ip ax lu = IIUllIplIu2 d(q)-
IXllq=1

Proposition 4. For ul E R", u2 E Rm, p > 1,

IIU1U llp-F = iIUliplIU2 lip

Proof.

We have that:

IU1 ,iU2,jP) I/p

lUl,il E lu2,j I p u2 p

j=1

U2XI 5IU21ld(q)-

UlU p- yn m

( i=1 j=1



Appendix B

Robust Logistic Regression

Algorithms

B.1 Robust logistic regression under independent vari-

ables uncertainty solution algorithm

At any (3, 3o) E IRm+1 with /3 $ 0, the subdifferential of Z 1 contains VZI(/3, o). At

any (/3, o) E IRm+ 1 with /3 = 0, the subdifferential of Z 1(/3, 3o) contains any vector

( 8ZI1 +(S, so) E Rm + ', s = (s1, s2, ... ,sm), in the box defined by a-
az 1 j Sj < Z 1 -z

8Z1
j E {1,2,...,m} and so= -

a00
Let e1 be a convergence parameter. The subgradient method used to find the optimal solution

of Problem (4.11) is (see Shor [45]):

1. Initiate (0/, o) := (0, 0).

2. If there exists a vector (s, so) in the subdifferential of Z 1(/3, 3o) such that | (s, so) loo <

6E, then, terminate.

3. Determine a descent direction (s, so), s = (Sl, S2,..., Sm), in the following way:

* If /3 0,

Z1
--=-, j=1,2,...,m.



* If3 = 0,

+ (a j = 1,2,... Im.

* So = oaz,

4. Apply the Armijo rule on direction (s, so) to update (3, 3o) (see Bertsekas [7], p. 29).

5. Go to Step 2.

B.2 Robust logistic regression under response variable

uncertainty solution algorithm

The interior point method for solving Problem (4.20) involves the solution of the uncon-

strained problem

max H(p, q, 3, 3o),
p,q,o3,0

(B.1)

where

H(p, q,13, /o) = Z 2(p, q, 3, 0 ) + t ln(-p - qi + (-l1)3Ti + 3o))
i=1

(B.2)

for various values of t > 0, through the Newton method.

Let 62 be a convergence parameter and p a running parameter. The interior point algorithm

used to find the optimal solution of Problem (4.20) is (see Bertsekas [7], Boyd [12]):

1. Initiate (p, q, 3, o) := (-1, -1, 0, 0), t := 1.

2. Calculate

(Ap, Aq, A3, A3o) = -(V 2H(p, q, 0, 0o))-'VH(p, q, 3, /3o).

3. If IVH(p, q,03,30o) oo < -2, go to Step 6.

11 n

+ 1 ln(-p) + In(-qi),
i=1

1 8Z 1
s= -- (-03



4. Apply the Armijo rule on direction (Ap, Aq, A/3, AOo) to update (p, q, 3, 3o) (see

Bertsekas [7], p. 29).

5. Go to Step 2.

n+m+2
6. If + m + 2 2, terminate.

t

7. t:= p-t.

8. Go to Step 2.

B.3 Globally robust logistic regression solution algo-

rithm

At any (3, fo) E R rm+1, the subdifferential of Z3 (f3, 3o) contains any vector (s, so) E In + l1

S(, S2,...,sm), in the box defined by y --- , j C {1, 2,..., m}, and

-3) +< o < (,o o

Let E3 be a convergence parameter. The subgradient method used to find the optimal solution

of Problem (4.31) is (see Shor [45]):

1. Initiate (/3, o) := (0, 0).

2. If there exists a vector (s, so) in the subdifferential of Z3 (P, 3o) such that I (s, so) Ilo <

63, then, terminate.

3. Determine a descent direction (s, so, s = (sl, 2,., Sm), in the following way:

1 ((DZ3  - (Z 3
+

* s3= ± - + ) j = , 1,2...,m.

* so = I (a ( & + (-o(

4. Apply the Armijo rule on direction (s, so) to update (P3, 3o) (see Bertsekas [7], p. 29).

5. Go to Step 2.
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Appendix C

The partial derivatives of Zi(P, 30) and

Z3(3, 30)

In this section of the Appendix, we describe the way to calculate the partial derivatives

of functions Z 1( 3, 3o) and Z3 (13, ,o), that return the optimal objective values of the inner

minimization problems in robust logistic regression.

Define:

D (y, x, p, p, 3, o) = ([ 13Tx +)3 + (-1)YPI13Id(p)] 
T

opj

xj + (-1) pf(0,p), O, j 2 1,

= j t (-1)Yp P = O, j _ 1,

1, j = 0,

j > O,y E , 1},x E R',p > O,p 1,13 E R m ,/3o E IR.

Using DT (y, x, p, p, , 3o), we express

( 8Z1 )
-b(y, ,, AA , o0)(- 1)'- exp((I y,)(1 ,TX + Io + (-1)yiPoIllld(p)))

1 + exp(Txi + 0o + (-1) 'plII d(p))

j {1, 2,...,m}.

To calculate the partial derivatives of Z 3(, /30), we need to introduce some special nota-



tion. Consider vector a = (al, a2 , ... an)-

Definition 6. O(a) is the set of permutations of {1, 2,..., n}, such that if il preceeds i2 in

the permutation, then, ail < ai2.

We observe that O(a) contains all the permutations of the members of {1, 2,... , n}, such

that as the index i of the permutation increases, the value ai stays the same or increases.

Definition 7.

ni(a) {i {1,2,...,n} I ai < 0}.

Definition 8.

no(a) {i E {1,2,...,n} ai < 0} .

Recall that S(a) is the set of optimal basic feasible solutions to problem

min E aixi

(C.1)s.t. Z xi < r
i=1

O<xzi<1, i = 1,2,...,n.

Lemma 7. S(a) is the set of length n binary sequences v, such that there exists a permutation

o E O(a), and il, min(nz(a), F) < ii < min(no(a), F), with vo, = 1, for i < ii, and vo, = 0,

for i > ii.

Proof. Consider the following algorithm that returns a set of length n binary sequences:

1. T := 0.

2. For each o E O(a) and for ii = min(nl(a),F), min(ni(a), F)

construct binary sequence v, such that v, = 1, for i < il, and

v to set T.

+ 1,..., min(no(a), F),

Vo, = 0, for i > il. Add

3. Return T.

is obvious that T contains the optimal basic feasible solutions of Problem (C.1) and that

= S(a). E



Using the same principles, we now define another set of length n binary sequences that

takes into consideration the ordering according to length n vectors a and b = (bl, b2,..., b).

This is a hierarchical ordering. In the case that al and ai2 are equal, their ordering is

determined by the relation between bi, and bi2.

Definition 9. O(a, b) is the set of permutations of {1, 2, ... , n}, such that if il preceeds i2

in the permutation, then, either ail < ai2 holds, or ai, = ai2 and bi, _ bi2 both hold.

Definition 10.

nt(a,b) - {i E {1,2,...,n} ai < 0 or (ai = 0 and bi < 0)}.

Definition 11.

no(a,b)- {iE {1,2,...,n} ai < 0 or (ai =0 and bi <0)}.

Definition 12. S(a, b) is the set of length n binary sequences v, such that there exists a

permutation o E O(a, b), and ii, min(ni(a, b), F) < ii min(no(a, b), F), with v, = 1, for

i < il, and v,i = 0, for i > ii.

Let

ns(a, b) = IS(a, b)|,

and sq(a, b), q = 1, 2,..., ns(a, b), be the binary sequence which

we order the binary sequences of set S(a, b) according to relation

where relation "<iex" is defined in Definition 4.

We also define functions W j (1 3, 3o), n7 (03, 3o), w q'j' (/3, 3o),

()3, Oo) E Rm+l, as

is placed at position q if

C <Iex" i.e.,

q = 1,2,.. .,n (3, o),

W'j (O,3o) = S(a,b),

nwT (0, /3o) = ns(a, b),

wq,,(a3o, o) = s(a,b), q= 1,2,...,n j(a,b),

where a = (al, a 2 , . .. , an), b = (b, b2 , ... , bn) ,

ai = (- 1)()rxi +/ 3o), i = 1,2,...,n,

s'(a, b) <lex 82( a , b) <ex .. - <lex sns(a,b)(a, b),



bi = F(-1) y  x,,
1,

if j > 1
i , i= 1,2,...,n, j=1,2,...,m.

if j =0,

It is obvious that

wJ' (3, /o) C U(, o), j = 1,2,..., m,

because WJ" (3, /o) is produced using a "stricter" ordering than the one used to produce

U(/3, /o).

Definition 13. dj'- E R m +1 is the vector having -1 at the coordinate corresponding to 3j
and 0 at all other coordinates, j = 1, 2,..., m. dj + E R m +1 is the vector having 1 at the

coordinate corresponding to 13j and 0 at all other coordinates, j = 1, 2,...,m. d3 is the

component of dj'- corresponding to /3 and d7f is the component of d T corresponding to /o.

The following theorem is used to calculate the partial derivatives of Z3 (/3, o) with respect

to any member of 3 and o3.

Theorem 8. For any (/3, 3o) E Rm+1 and any direction dj , there exists an E > 0 such that

for any 0 < t < E,

Z3((/, io) +±d _) - wfjT (0, 00o) (3TX i (0 + (_1)IYi-w2'J:(Oo)Ip /d(p))
n(= ex

-In(l + exp(BT i + o + (-1)I *'( °), Ip) Pacp))]•

Proof. Let

ai(t) = (-1)Yi[(3 + td~T )Txi + (3o + tdo ,

and

b Ti) xi,jbi = =](-1) i S1,
if j > 1,
if j = 0,

Since

W ' o(, o) c u(0, o),

and



we conclude that

Z3(, o) - ,o) (P i f+ + (-)IYi-w'j '(330)'pj,3) Id(p))

- n(1 + exp(/Txi + /3o + (-)IY-wi' "(3,00)lpOlf d(p)))1

It is obvious that there exists an E > 0 that preserves the ordering of i E {1, 2,...,n},

according to ai, i.e. if ail (0) < ai,2(0), then, ai,(t) < ai,(t). We observe that:

Da (t)bi = at i= 1,2,...,n.

Thus, if a (0) = ai 2 (O), the ordering of ai (t) and ai2 (t) is the same as the ordering of bi,
and bi,, for 0 < t < e. This implies, that

Wj (0, 3o) C U((13, /7o) + td3 '"),

which completes the proof. O

The following is a direct corollary from Theorem 8.

Corollary 9. The partial derivatives of Z3 (3, 0o) are:

( aZ3 
n

= 1Dj-(|yi - w'j'T- (3, /o) , xp, p, p3, 3o)
i=1

-W 1,j,po/f
1)1 -y- o)l

exp((1 - lyi - wf(, o)I)(Ti + o + (-1)Yi-wl' (300o)IpIIId(p))

1 + exp(I3Txi + /o + (-1)Ii7-wP3'j(,00)IpllI d(p))

j G {1,2,...,m}.



86



Bibliography

[1] J. Aldrich, R. A. Fisher and the Making of Maximum Likelihood 1912-1922, Statistical

Science, Volume 12, Number 3, pp. 162-176, 1997.

[2] P. D. Allison, Logistic Regression Using the SAS System: theory and application, SAS

Institute, Cary, NC, 1999.

[3] A. Asuncion, D.J. Newman, UCI Machine Learning Repository,

http://www.ics.uci. edu/-mlearn/MLRepository.html, University of California,

School of Information and Computer Science, Irvine, CA, 2007.

[4] A. Ben-Tal, A. Nemirovski, Robust convex optimization, Mathematics of Operations

Research, Volume 23, Issue 4, pp. 769-805, 1998.

[5] A. Ben-Tal, A. Nemirovski, Robust solutions of Linear Programming problems con-

taminated with uncertain data, Mathematical Programming, Volume 88, Number 3,

pp. 411-424, 2000.

[6] A. Ben-Tal, A. Nemirovski, Robust solutions to uncertain programs, Operations Re-

search Letters, Volume 25, Issue 1, pp. 1-13, 1999.

[7] D. P. Bertsekas, Nonlinear Programming, Second Edition, Athena Scientific, Belmont,

Massachusetts, 1995.

[8] D. Bertsimas, M. Sim, Robust Discrete Optimization and Network Flows, Mathemat-

ical Programming, Volume 98, Numbers 1-3, pp. 49-71, 2003.

[9] D. Bertsimas, M. Sim, The Price of Robustness, Operations Research, Volume 52,

Issue 1, pp. 35-53, 2004.

[10] B. E. Boser, I. M. Guyon, V. N. Vapnik, A training algorithm for optimal margin clas-

sifiers, Proceedings of the Fifth Annual ACM Workshop on Computational Learning

Theory, pp. 144-152, New York, NY, 1992.



[11] S. Boyd, C. Barratt, Linear Controller Design: Limits of Performance, Prentice-Hall,
1991.

[12] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.

[13] E. J. Candes, Y. Plan, Near-ideal model selection by £1 minimization, Technical Re-

port, California Institute of Technology, 2007.

[14] D. R. Cox, Analysis of Binary Data, Chapman and Hall, London, 1969.

[15] J. M. Danskin, The theory of Max-Min, With Applications, SIAM Journal of Applied

Mathematics, Volume 14, Number 4, July 1966, USA.

[16] A. S. Deif, Advanved Matrix Theory for Scientists and Engineers, Gordon and Breach

Science Publishers, 1991.

[17] R. A. Fisher, Frequency Distribution of the Values of the Correlation Coefficient in

Samples from an Indefinitely Large Population, Biometrika, Volume 10, pp. 507-521,
1915.

[18] R. A. Fisher, On an absolute criterion for fitting frequency curves, Messenger of Math-

ematics, Volume 41, pp. 155-160, 1912.

[19] M. Foster, An application of the Wiener-Kolmogorov smoothing theory to matrix

inversion, Journal of SIAM, Volume 9, pp. 387-392, 1961.

[20] L. E. Ghaoui, H. Lebret, Robust Solutions to Least-Squares Problems with Uncertain

Data, SIAM Journal on Matrix Analysis and Applications, Volume 18, Issue 4, pp.

1035-1064, 1997.

[21] G. Giorgi, A. Guerraggio, J. Thierfelder, Mathematics of Optimization: Smooth and

Nonsmooth Case, Elsevier, 2004.

[22] A. S. Goldberger, Econometric Theory, J. Wiley & Sons, Madison, Wisconsin, 1963.

[23] G. H. Golub, P. C. Hansen, D. P. O'Leary, Tikhonov Regularization and Total Least

Squares, SIAM J. Matrix Anal. Appl., Volume 21, pp. 185-194.

[24] G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns Hopkins University

Press, Baltimore and London, 1996.

[25] W. H. Greene, Econometric Analysis, 5th edition, Prentice Hall, 2003.

88



[26] F. R. Hampel, The influence curve and its role in robust estimation, Journal of the

American Statistical Association, Volume 62, pp. 1179-1186.

[27] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: data min-

ing, inference, and prediction, Springer, New York, 2001.

[28] D. W. Hosmer, S. Lemeshow, Applied Logistic Regression, Wiley Series in Probability

and Statistics, New York, 2000.

[29] R. J. Huber, Robust Estimation of a Location Parameter, University of California,

Berkeley, 1963.

[30] P. J. Huber, Robust Statistics, John Wiley & Sons, Cambridge, Massachusetts, 1980.

[31] R. A. Johnson, D. W. Wichern, Applied Multivariate Statistical Analysis, Pearson

Prentice Hall, Upper Saddle River, New Jersey, 2007.

[32] E. L. Lehmann, G. Casella, Theory of Point Estimation, Springer, 2nd edition, 1998.

[33] A. J. McCoy, New Applications of Maximum Likelihood and Bayesian Statistics in

Macromolecular Crystallography, Current Opinion in Structural Biology, Volume 12,

Issue 5, pp. 670-673, October 2002.

[34] G. R. G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, M. I. Jordan, A Robust Minimax

Approach to Classification, Journal of Machine Learning Research, Volume 3, 2002,

pp. 555-582.

[35] N. R. Patel, Logistic Regression, http://ocw.mit. edu/NR/rdonlyres/

Sloan-School-of-Management/ 15-062Data-MiningSpring2003/

B2EC3803-F8A7-46CF-8B9E-DODO80E52A6B/O/logreg.pdf.

[36] I. Polik, Addendum to the SeDuMi User Guide, version 1.1.

[37] I. Popescu, Robust Mean-Covariance Solutions for Stochastic Optimization, Opera-

tions Research, Volume 55, Number 1, pp. 98-112, January-February 2007.

[38] F. Rendl, H. Wolkowicz, A Semidefinite Framework for Trust Region Subproblems

with Applications to Large Scale Optimization, CORR Report 94-32, 1996.

[39] W. W. Rogosinsky, Moments of Non-Negative Mass, Proceedings of the Royal Society

of London, Series A, Mathematical and Physical Sciences, Volume 245, Number 1240,

pp. 1-27, 1958.



[40] T. P. Ryan, Modern Regression Methods, Wiley Series in Probability and Statistics,
New York, 1997.

[41] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2nd

edition, 2003.

[42] SAS Real data sets, http://ftp.sas. com/samples/A55770.

[43] B. Scholkopf, A. J. Smola, Learning with Kernels, The MIT Press, Cambridge, Mas-

sachusetts, 2002.

[44] P. K. Shivaswamy, C. Bhattacharyya, A. J. Smola, Second Order Cone Programming

Approaches for Handling Missing and Uncertain Data, Journal of Machine Learning

Research, Volume 7, 2006, pp. 1283-1314.

[45] N. Z. Shor, Minimization Methods for Non-Differentiable Functions, Translated from

the Russian by K. C. Kiwiel and A. Ruszczynski, Springer Series in Computational

Mathematics, Berlin, 1985.

[46] J. E. Smith, Generalized Chebychev Inequalities: Theory and Applications in Decision

Analysis, Operations Research, Volume 43, Number 5, September-October 1995.

[47] A. L. Soyster, Convex Programming with Set-Inclusive Constraints and Applications to

Inexact Linear Programming, Operations Research, Volume 21, Issue 5, pp. 1154-1157,
1973.

[48] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optimization Methods and Software, Special Issue on Interior Point Methods

(CD supplement with software), 1999.

[49] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal

Statistical Society, Series B (Methodological), Volume 57, Number 1, pp. 267-288,
1995.

[50] A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems, V. H. Winston &

Sons, 1977.

[51] R. L. Wu, C. X. Ma, M. Lin, G. Casella, A general framework for analyzing the genetic

architecture of developmental characteristics, Genetics, Volume 166, pp. 1541-1551,
2004.



[52] H. Xu, C. Caramanis, S. Mannor, Robustness, Risk, and Regularization in Support

Vector Machines, Journal of Machine Learning Research, 2009.


