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Abstract

Experiments in a variety of fields generate data in the form of a time-series. Such
time-series profiles, collected sometimes for tens of thousands of experiments, are a
challenge to analyze and explore. In this work, motivated by gene expression data,
we provide several methods and models for such analysis. The methods developed
include new clustering techniques based on nonparametric Bayesian procedures, and
a confirmatory methodology to validate that the clusters produced by any of these
methods have statistically different mean paths.
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Chapter 1

Introduction and Overview

Experimental results often take the form of a time series. This happens in so-called
longitudinal studies or correlational studies that involve repeated observations of the
same items or subjects over periods of time. Longitudinal studies are used in psychol-
ogy to study developmental trends over time, in sociology to study events throughout
lifetimes or generations, and in microarray experiments where the expression level of
the same gene is observed at different time-points. Our goal in this work is to deal

with such time-series data and help cluster subjects with similar profiles over time.

For definiteness, we will relate our ideas to gene expression profiles although they
are applicable to any such longitudinal study. Through the use of expression (and
other) data, biologists have been trying to arrange genes into functionally related
groups, and cluster analysis has been used as an important tool for identifying groups
of genes with similar expression patterns, which in turn could point to the discov-
ery of molecular mechanisms that underlie the biological processes. Such clustering
methods provide us with an important first attempt at modeling the underlying bi-
ological processes that regulate the functioning of these genes and are often the key
to understanding cell mechanisms.

Time-series gene expression experiments have been used to identify the complete set
of genes that participate in the system over time as well as infer causal relationships

and interactions among these genes (see [42]). Time-course microarray experiments
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remain quite common ([60]), and as [49] report, a large fraction— over 30%— of gene
expression experiments are indeed time-series studies (Stanford Microarray Database,

http://genome-www5.stanford.edu).

While such time-course data provide more information than that obtained at a
single time point, analyzing them presents several special and novel challenges. A
number of papers including [32], [36], and [37] present methods of clustering profiles,
time-series or otherwise, by treating them as multivariate vectors. Their methods
cluster the subjects based on their expression profile vectors and thus make the in-
herent assumption that all of them have the same number of measurements taken, and
at the same time-points. Such methods do not take into account missing data that
leads to unequal numbers of observations in each subject, and/or unequally spaced
time points, which might vary for each subject. The profile vector, given the param-
eters, is assumed to be multivariate normal with independent components in many

of these papers.

An alternate approach which fits spline-based curves and uses the spline coeffi-
cients for further analysis, including clustering, can be found in [3]. In [24], the authors
also use spline-fits and consider a Bayesian model-based hierarchical or agglomerative
clustering. More recently, [50] provides a wavelet-based clustering of time-series gene
expression data. Again, while these methods provide smooth curve-fits to the data
and are an improvement over earlier methods, a more explicit acknowledgement of
the time-series progression or a natural method of selecting the number of clusters is

still missing in such models.

To capture this structure, and generate a clustering in which the number of clusters
is flexibly chosen in a natural way from the data itself, we make use of Dirichlet process
(DP) priors (see [18]) and its various extensions. We propose a “semi-parametric”
setup, i.e. a parametric model for the data and a nonparametric model (Dirichlet

process) for the distributions which generate its parameters. If secondary interact-
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ing variables, or covariates, are present, these models can be readily generalized to
incorporate them as well. Unlike spline coefficients, this has the advantage that the
parameters can be physically interpretable quantities, which can be helpful in explain-
ing past and future trends in the expression values. Our proposed methods explicitly
take into account the time-series nature of the data, incorporating both the expression
value as well as the time at which this value was taken, thus capturing the structure

and dynamics of data.

Efficient computational techniques make the Dirichlet process a widely used non-
parametric model for random distributions in a Bayesian setting. As it assigns prob-
ability only on the space of discrete distributions, it is not used directly to model the
data, but rather as a prior for a mixing distribution. We also focus on the Dirichlet
process as a way to model collections of dependent distributions, rather than just as
a tool for modeling exchangeable samples from a single unknown distribution. To
accomplish this, we use hierarchical and nested Dirichlet process models introduced

and discussed in [52] and [45].

Given the complex nature of these models, it is nearly impossible to find ex-
plicit closed form expressions of the posterior distributions (which is a common prob-
lem with complex Bayesian modeling). We thus employ Markov chain Monte Carlo

(MCMC) methods to fit the models to observed data.

In Chapter 2, we provide an introduction to Dirichlet process and its clustering
property. In Chapter 3, we model the individual-level trajectories as a function of
time and use such models to classify subject profiles into clusters with similar trajec-
tories. This model is very flexible in allowing one to have time-points that are not
equidistant, or subject profiles with missing data values. In Chapter 4, we model
the joint distribution of the expression levels of a subject over time as a multivari-
ate vector with a certain individual mean and a correlated covariance structure. We

consider two cases depending on whether all the subjects have the same covariance
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or have their own individual covariances. After putting appropriate priors depending
on the context, we develop clustering methods for these subjects. Such dependent
covariance structures extend what has been done in the literature so far. In Chapter
5.2 we use a Nested Dirichlet process, a concept introduced very recently in [45],
which allows subjects with similar distributions to cluster together. Although this
first-stage clustering (of subjects) is the primary objective here, this model also pro-
vides clusters of time-points that are nested within such subject clusters. In Chapter
5.3 we discuss what might be conceptually considered a special case of this, by clus-
tering subjects based on their summary statistics, rather than on their distributions.
In Chapter 6, we provide a confirmatory technique based on growth curve modeling
to say how significant any of these clusters are, from a statistical testing perspective.
Each of the models developed and the corresponding confirmatory tests, have been
applied to a portion of the yeast time-series data due to [51] primarily for illustrative
and comparative purposes. We conclude in Chapter 7 with some comparisons and
comments regarding the different models introduced and by suggesting directions for

possible future work.
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Chapter 2

Dirichlet Process Mixtures and

Clustering

2.1 Introduction

Parametric modeling and inference concerns situations where the data is assumed
to come from a family of distributions whose functional form is known, but which
may involve a finite number of unknown parameters. The goal then is to infer (i.e.
estimate, test hypotheses etc.) about these unknown parameters, based on the data.
This is how classical inference proceeds and even Bayesian inference in such a context
is rather straightforward because of the finite-dimensional nature of the parameter
space which allows computation of the posterior distributions either theoretically or
computationally. Nonparametric or model-free inference, on the other hand, involves
data that is assumed to come from a general (completely unspecified) distribution. A
Bayesian analysis in such a nonparametric context involves putting a prior on a rich

class of distributions.

Since a prior based on a Dirichlet process plays a prominent role in all our sub-
sequent discussion and developments, we give a brief introduction and review of this
important stochastic process in this chapter. We also outline different methodologies

that one can use to obtain clusters based on the Dirichlet process mixture models.
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Dirichlet process has been applied in a variety of contexts and some recent applica-
tions include Finance ([27]), Econometrics ([12]), Genetics ([36], [15]), Medicine ([28],
[6]) and Auditing ([31]).

2.2 The Dirichlet Process and Some Properties

The Dirichlet Process (DP) is a very useful prior in the context of nonparametric
Bayesian modeling of data, and was introduced by Ferguson ([18]). Let {Q, B, P}
be a probability space and P be the space of probability measures on {Q, B} so that
P € P. The DP prior is a distribution on the set of all probability distributions P. The
name Dirichlet process comes from the fact that it gives rise to Dirichlet distributed

finite dimensional marginal distributions, just as the Gaussian process has Gaussian

distributed finite dimensional marginals. Recall that for any a;, ..., @n41 > 0, an
m-dimensional random vector (X, ..., X,,) is said to have a Dirichlet distribution,
denoted by (X, ..., Xmn) ~ Dir(ay,...,0m;@ms1) if it has the pdf

I‘(a1+-~-+a +1) -1 _ _
mrpm=l gl — gy — .. =g, )0 ]
T(ay) - T(amsr) - (1= 2 m)

flxy,...,zm) =

m

for {z; > 0,3 ", z; < 1}. This reduces to the Beta distribution when m=1. For a

good source of reference on the Dirichlet distribution and its properties, see [59).

Given a probability distribution Gy and a scalar parameter M > 0, we say that a
random distribution G with induced probability measure P given by P((—o0,a]) =
G(a) has a Dirichlet process prior with baseline distribution Gy and precision param-
eter M, denoted by

G|(M, Go) ~ D(M, Go)
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if, for any finite partition By, ..., By of the sample space over which G(-) is defined,

(G(B1),-.-,G(Bn)) ~ Dit(MGo(By), . .., MGo(Bm); MGo(Bmn+1))

Blackwell and MacQueen ([8]) characterize the DP in terms of its predictive
distribution as follows: if (8y,...,60,-1) is an iid sample from G and G|(M,Gy) ~
D(M, Gy), then after integrating out the unknown G, one can show that the condi-

tional predictive distribution of a new observation

001, ... By ~ M+ 0+ZM+ (2.1)

where dy denoted a probability distribution with point mass at 8. This result relating
the Dirichlet process to a Polya urn scheme is the basis for many standard computa-
tional tools used to fit models based on the Dirichlet process. Another computation-
ally useful formulation of the DP is the “stick-breaking representation” ([47, 46]). In

this formulation, a distribution G ~ D(M, Gy) can be represented in the form
G() =) mby, (")
k=1

where 6 d Gy, and the weights 7, are given by m, = kaf;ll(l vs) with vy ud
Beta(1,M). The infinite sum in the definition of G(-) above, can be approximated
by a large enough finite sum for practical computational purposes. This formulation
goes on to demonstrate the surprising and somewhat unwelcome consequence that

the DP assigns probability 1 to the subset of discrete distributions.

This “stick-breaking” formulation has been exploited to generate efficient alter-
native MCMC algorithms for sampling from the posterior distribution. It has also
been the starting point for the definition of many generalizations of DP that allow

dependence across a collection of distributions, as we do later in defining a Nested DP.
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Conjugacy is one of the appealing properties of the Dirichlet process. It has been
shown that [2], if 6y,...,6, % G and G|(M,Gy) ~ D(M, Go) then the posterior
distribution of G is given by

M 1 <
G|(6y,...,0,) ~ D(M +n, G > bs,).

M+n O+M+ni=1

As a consequence, the optimal estimator of G(-) under squared error loss, is given by

G() = 3= Gol) + 3= D20 ()

i=1

which converges to the empirical cdf as the sample size n — oc.

2.3 Dirichlet Process Mixtures and Clustering

In typical parametric Bayesian modeling, the observations are assumed to come from
a distribution F'(-), which is characterized by a few parameters. One puts a prior on
these parameters to obtain their posterior distribution and inference is done using
this posterior distribution. In nonparametric Bayesian modeling, one puts a prior on

this entire distribution F', and the goal is to infer F', given the observed data.

Mixture models, which are able to accommodate several data anomalies like mul-
timodality, heavy tails, etc, have often been used in model-based clustering of data.
They are indeed a natural choice if the observed population can be thought of as
a combination of several subgroups and the number of subgroups is known. See for
example [55] for Bayesian analysis of models of this type. However such finite mixture
models can end up with problems of “identification”; ie., the interplay between the
number of components in the mixture and the parameters in the component-models

are sometimes not fully identified by the data. A potentially appealing alternative to
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such finite-mixture models is to take continuous mixtures of the form

fwlg) = / f(wl)a(8)d (2.2)

with an appropriate mixing distribution g(-). Such a ¢(-) can be a member of a para-
metric family, the choice of which again involves some level of arbitrariness. An even
better approach is when this mixing distribution and the number of components can
be suggested nonparametrically by the data itself, as is done when using a Dirichlet
Process. The resulting mixture distribution is called a Dirichlet Process mixture and

is described below.

The DP mixture model induces a prior on f(-) indirectly through a prior on the
mixing distribution G. A popular choice is a mixture of Gaussians where 6 = (p1, X))

f(.|8) = Np(.|p, ), the p-variate normal distribution.

Antoniak ([2]) utilized DP in the context of mixture models, by replacing Equation
2.2 with

4IG) = / F(W8)dG ()

where G ~ D(M, Gy). This makes the family f(.) a nonparametric mixture family
where G(6) plays the role of the conditional distribution of 8 given G.

As always, we start with data Y7, ...,Y, which are independent observations that

come from unknown underlying densities
Yilo: "% f(yil6),

0,,G % G

and

G|(M,Go) ~ D(M, Go)

where G serves as a DP mixture over the vector parameter §. Data points are clus-

tered by virtue of their sharing identical values of the parameter 6;.
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Clustering property: The Polya urn representation given in Equation 2.1 implies

that with positive probability, random samples obtained from a distribution G are

not all distinct, when G ~ D(M, Gp). Let 6, ..., 6, be the distinct values of
1, ..., 8, with the corresponding multiplicities being n;, ..., n,, respectively, where
ny + -+ - +ny, = n. This induces a partitioning of the set {1, ..., n} into m different

groups, this can be used in natural clustering of data in the following sense. We will
say that observations Y; and Y; cluster together if and only if 6; = 6;. The predictive

distribution in Equation (2.1) can be thus rewritten as:

M i Nk
Ons1lb1, ..y On ~ M+nG0+k2=;M+n50’:

indicating that past frequent distinct values are more likely to recur.

Remark: The parameter M in a DP D(M, Gy) is called the precision parameter.
The larger the value of M, the more certain we can be that Gy is indeed the true
value of GG, while small M results in a large uncertainty in the randomness of G. M
also guides the amount of clustering in the 8;’s, with larger M giving rise to larger
number of clusters. The choice of the precision parameter M in a DP is a matter
of debate since a high value of M favors the adoption of the base measure Gy as
the posterior for the #; making it smoother, while small values will favor using the
empirical cdf of the data as this posterior. One can get around this issue partially,

by putting another prior on this parameter M.

Since the expected number of clusters is given by

= M
Bm =2 31
i=1

one can use this as a guideline in choosing M or a prior on M.
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2.4 Clustering in a Dirichlet Process

At each iteration of the Gibbs sampler, an “incidence matrix” E = ((e;;)) is ob-
tained, where e;; = 1 if observations i and j cluster together, 0 otherwise. Such
matrices are averaged over, say, 10,000 iterations of the Gibbs sampler to get the
matrix P = ((p;;)), where p;; can be interpreted as the estimated proportion of times
observations i and j cluster together. The matrix D = ((1 — p;;)) can be interpreted
as a matrix of “distances” on which one can use standard hierarchical clustering pro-

cedures to obtain clusters of the observations.

Alternatively, one may use the “least-squares clustering” estimator proposed in
[14] which goes as follows. Run the Gibbs sampler an additional 10,000 times (say,)
and for each iteration, note the cluster structure generated and its corresponding inci-
dence matrix E. Find the cluster structure that results in |E — P||? = > (e — pij)?
being the smallest among them. This is chosen to be the cluster structure that repre-
sents the data. This empirical approach to finding the clustering that comes closest to
the already observed average, has the flavor of minimizing the posterior expected loss,
assuming equal costs of clustering mistakes (see [7]) and is not very computationally

demanding even with a large number of genes.

On the other hand, it is clear that the incidence matrix Ey which minimizes
||E — P||? is to take e;; = 1 when p;; > .5 and 0 when p;; < .5. Since this may not
result in a cluster graph (a vertex-disjoint union of cliques), however, one might ask
what the fewest changes to the edge set of this input graph Fj, so that it becomes a
cluster graph would be. This problem has been addressed by [48].
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Chapter 3

Clustering Based on Trajectories

3.1 Introduction

In time series gene expression data, one may attempt to model individual level tra-
jectories as a function of time and use such models to classify genes with similar
trajectories into subgroups or clusters. In this chapter a Dirichlet process prior is
used to model the distribution of the individual trajectories. The Dirichlet process
leads to a natural clustering, and thus, sharing of information among genes with
similar trajectories. A fully Bayesian approach for model fitting and prediction is
implemented using MCMC procedures and as a test case, applied to a selection of
time series data due to [51]. This model allows us to pool information from individual

genes with similar profiles, so as to obtain improved parameter estimates.

This idea is similar in spirit to modeling longitudinal data as is done in [57],
[9], [25] and [22] while providing an alternative approach to cluster identification in

microarray studies as in [36, 24, 32].

3.2 Trajectory Models

In this section we discuss a basic trajectory model with Gaussian errors, and then

introduce a more general and elaborate model which allows the error variances for the
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genes to be different, and for the errors to come from a scale mixture of Gaussians,
allowing for fat-tailed error distributions like the t-distribution. We assume that the
observed data set consists of information on N genes and on each gene, measurements
have been recorded at p time points. Let y;; denote the expression level of the ith
gene measured at j** time point, i.e., at time denoted by ¢;; withi=1, ..., N; j =

1, ..., p).

Our “change-point model” assumes the following form:
yi; = ¥ilti;) + eij (3.1)

where 9;(-) is the trajectory function of the expression level for the ith gene and
e;; is the random error associated with the jth measurement on the ith gene. The

trajectory function is assumed to have the following form:

p
Yi(t) = i+ bt + Z Ba(t — ta)+, (3.2)

=1

where the notation u, is used to define the spline:

u ifu>0,
U+ =
0 otherwise.

ty (1 <1 < p) is the I** time point of measurement and is known. For gene i, ;o
can be interpreted as the random intercept, d;; as the random slope and (;’s as the
random changes in slopes at the respective time points of measurement. To allow
for the possibility that different genes (trajectories) may have different numbers and
locations of changepoints, we assume that the slope changes §; have a distribution
with point mass at zero. This very general and novel formulation thus includes the

possibility of having anywhere between 0 and p changepoints for any trajectory.
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3.2.1 Basic Trajectory Model

In this model, the random errors e;; are assumed to have independent zero-mean

normal distributions i.e.
iid )
eiil(0)~N(0,02), (=1,...,D

where o2 is the common error variance. In this case, if Y'; = (y;1, ..., ¥ip) denotes
the vector of observations on the ith gene, its contribution to the likelihood is given

by:
p/2 _ 4
fY i), 6, 02) o (%) exp [27:12 ;{yij — it} (3.3)

e

where 8; = (6i0, di1, Bit, ---, Bip)-

3.2.2 A General Trajectory Model

In a more general setting, it is possible that the error variance o2 does not stay the
same across all the genes, and a Gaussian error distribution is inadequate to model the
errors. There is considerable literature to indicate that scale mixtures of Gaussians
provide a very general class of error distributions in such a case (see for instance [1],
[56].)

The random errors e;; are then assumed to have independent zero-mean normal

distributions as follows:
2 iid o2 )
eil(07, m) ~ N {0, =), =1, ..., p

where o2 is the common error variance and 7); is the gene-specific scale factor to allow

for possible heterogeneity in error variances.

Define Y; = (i1, .-, ¥ip) to be the vector of observations on the ith gene. The
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contribution of the observations on the ith gene to the likelihood is then:

N\ P/2 - &
FYilyi(-), 04, mi, 02) o <g%> exp [2;7; D vy —ilt)|, (34)
e j=1

€

where 0; = (60, 0i1, Bi1s -+, Bip)'-

3.3 Prior information

As above, let the random effects for the ith gene be denoted by 8;. We assume a

nonparametric prior for @; as follows:
0,|Go %Gy

where

Go|(Mp, Gog) ~ D(Mp, Gog).

This choice of prior is made primarily to make the model robust to mis-specifications
and also flexible enough to accommodate various shapes of trajectories. Other ad-
vantages are the rich class of algorithms for drawing posterior samples as well as the
natural clustering property of random effects giving rise to clusters of genes with same

mean trajectory. We assume, under Gyg,

84 ~ N(&, o3) (=0, 1),

(3.5)
B ~ Pl5{0}+ (1 _pl)N(/Bla 0,(231) (=1, ..., p),

where d¢,} denotes the point mass at a. The (p + 2) components of equation (3.5)
are assumed to be mutually independent for each ¢ under the baseline distribution
Gos- This choice for the baseline distribution of the random slope-changes §;; allows
for the possibility that with positive probability p;, there is no change in slope in the
ith trajectory at the potential changepoint ¢; (thereby making it a non-changepoint),
with these probabilities potentially differing for the different changepoints. The ad-

vantage of such a model specification is to allow for varying number of changepoints
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for different genes.

2

2 is assumed to

In the simpler model with Gaussian errors, the error variance o

have an

az ~ IG(ay, bs)

prior, whereas in the more general model, in addition, we assume the error scale

factors to have the following prior distribution:

iid
77i|Gn ~ Gm

Gn'(Mm G()n) ~ D(Mm GOn)

ard Go, = x2/r. Thus, under the baseline distribution of the Dirichlet process prior,
the errors are assumed to have a ¢ distribution with r degrees of freedom. The result
of this prior choice is the robustification of the error distribution allowing for “fatter

tails” than a normal distribution as well as heterogeneity of error variances.

We further assume

iid
0%07 0'31 ~ IG(G,&, b&);
iid
U?ﬂ, ceey ng ~ IG(ag, bﬁ)

and

iid
P1y --y Pp~ POy + (1= p)U(0, 1).

We also assume that

&~ N(dy, 03), (=0, 1)

and

ﬁ[ ~ N(bl, ng), (l = ]., ceay p).

Finally, we assume

My ~ G(aq, bs),
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M, ~ G(ay, bn),

and r ~ DU(1, H), where “DU(a, b)” is the discrete uniform distribution on the set
{a, a+1, ..., b}. The hyperparameters as, bs, ag, bg, p, di, 0%, b, 0%, ae, bs, ay, by
and H are assumed to be known. In practice, lacking additional information, these
hyperparameters will be chosen so that the priors are as non-informative as possible,

while maintaining propriety of the corresponding priors.

3.4 Computational Details

Due to lack of a closed form expression, the exact posterior distribution of the model
parameters is intractable. However, the availability of simple univariate conditionals
allows easy sampling from the posterior through the Gibbs sampler. The expressions

of the univariate conditionals of the model parameters are given in Section 3.4.1.

Due to the non-conjugate baseline prior specification, the random effect vectors
8, are updated using Algorithm 8 of [39] as follows: At any step of the iteration of
the Gibbs sampler, let 8,, ..., Ox be the current values of the changepoint vectors
associated with the N individuals. Due to clustering property of DP [2], there will be
ke (1 < kg < N) distinct random effects. Let them be denoted by 67, ..., 6}, with
the jth distinct value being 8} = (63, &%, B, -, B5,)- Let ¢ = (cf, ..., &) be
the associated “configuration vector” indicating cluster membership, where ¢ = s if
and only if 8; = 8. The configuration vector can be used to identify the cluster struc-
ture of the changepoints, and, when combined with the distinct values, can recreate
the values associated with each subject. Algorithm 8 proceeds in two steps — first it
updates the configuration vector and then it updates the distinct values arising from
the resulting cluster structure. The configuration vector is updated by introducing
temporary auxiliary variables, corresponding to components that are not associated
with any of the observations, such that the marginal distribution remains invariant.

Each distinct value @, is updated component-wise, using the Adaptive Rejection Sam-
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pling (ARS) method of [23], since the corresponding densities are log-concave. Since
each (3} has a 2-component mixture distribution, we use an associated variable wj

indicating the component membership.

Updating of the scale factors 7; proceeds in a similar fashion, except that due to
conjugacy, we use Algorithm 2 of [39] to update the cluster structure and the distinct
values. Updating details of all parameters and hyperparameters of the model are
given in Section 3.4.1. All code for fitting this model was written in C and can be

found in Appendix A.

3.4.1 Posterior conditionals

For the posterior updates here as well throughout this work, we need the following

proposition which can be checked rather easily using Bayes Theorem.

Proposition 1 () If

X|p~N (u,a2)
and

p~ N (po,7°),
then o

L+ 5 1
s N (555 )

(i) If

(%) lo® ~ x;
and

o* ~ IG(a,b),
then

a®|lV =v ~ IG(a*b%),
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where a* =a+ % and b* = (3 + %)_1.

|
Let 65 = (0%, 071, Bj1s ---» Bjp) be the jth distinct value of the random effect vector
(=1, ..., ke) and 1} be the jth distinct value of the scale factor 7, (G=1, ..., k).

The configuration structure ¢ = (cf, ..., %) of the random effects is updated using
[39)’s Algorithm 8. Similarly, the configuration structure d” = (df, ..., d},) of the
values is updated using Algorithm 2 of [39).

1. Sample My in 2 steps [17)]:

(a) Sample latent variable ¢y|(ks, Mp) ~ B(My+1, N)

(b) Sample My|(dg, ko) ~ meG(ag + ko, (b(;1 ~log ¢g) ™) + (1 — )G (ag + ko —
1, (6" —logdp)™)

2. Similarly, sample M, in 2 steps.

-1
3. Sample ¢2|--- ~ IG (aa + 22, [% + 3 S Ln >r (i — ¢z‘(tz’j))2] )
2 k -1 1 ko * 2 -1
4. Sample o3| --- ~ IG | a5 + %, {65 +§Zj=1( jl_él) }
2 1 \ko * -1, 15ke *\( 3% 217!
5. Sampleogy|--- ~ IG | ag + 3 > 2, (1 — w}), {bﬁ + 32221 —wi)(B5 — B) }

6. Sample w|--- ~
ple | Bernoulli T )’" — otherwise
p:+——‘—,——2m[2ﬂ exp(;%’?)
) 0 if U = 1
7. Sample py| - -+ ~ 0} . .
By ;L wh+1, kg—3 ;2 wh+1) otherwise
) if 0
8. Sample |- -+ ~ ) n7
Bernoulli(p) otherwise
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10. Sample Bj|---~ N

-1
11. Sample nj|--- ~ G (% + 52 idim [% + 527 Dicdimd 2ot Wi — ¢i(tij)}2] )

=
a
3

12. Sample r from log f(r|---) = %’L(logr - log2) + Q(Zﬁl logn; — Zfl1 m) -
kylogI'(3),r €41, 2, ..., H}
13. Sample 6}, from log f (85| -+ +) = const. — gz 20500 M 2y {4 — Yiltis)}2 —

(N
2073,

14. If wr, = 1, set B, = 0, otherwise draw 3, from log f(8%,|---) = const. —
ﬁ* _ﬂ 2
2z it T e (Y5 — i(t)}? — LA

2‘7131

3.5 Data Analysis

3.5.1 Synthetic Data

First, the basic and general models were compared using a synthetic data set. This
data consists of N = 60 genes each measured at p = 10 timepoints, generated from
3 different classes (clusters) of size 20 each. The class means follow slightly different
trajectories (the trajectory parameters are given in Table 3.1), and the class variances
are all different: 0.25, 1, and 0.04 respectively. The clustering results, namely the
heatmap and dendrogram, for the basic and general trajectory models on this data
are shown in Figures 3-1 and 3-2. We fully recover the original clustering with the
general model 3-2, but the high variance cluster is fragmented into smaller groups
(see 3-1) when one uses the basic model (which assumes equal variances) for such
data. This demonstrates the ability of the more general model to take into account

inherent variance differences across genes, resulting in superior clustering of the data.
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Class 1 | Class 2 | Class 3
d; 0 0 -1.0
d; 0.5 0.5 0.2
Bi1 0 0 0
Bi2 0 0 0
Bis 0 0 0
Bia 0 0 0
Bis 0 -1.5 0
Bis 0 0 0
Bi 0 0 0
Bis 0 0 0

Table 3.1: Synthetic data trajectory parameters.

Next, in order to assess how well our general model clusters and recovers param-
eters from data with this basic structure in the presence of noise, we examined a few
variations on the synthetic data set. In particular, we chose to examine 1) the effect
of sample size, and 2) the effect of varying noise. One could also look at the effect of
varying the distance between trajectories of the different classes, but this is related
to varying the noise, as it is the combination, i.e., the distance between trajectories
with respect to noise (Mahalanobis distance of sorts), which is the relevant quantity.
We continue to use 3 classes, with trajectory parameters as given in Table 3.1, which
divide our data set into 3 equal clusters. However, we use 2 different sample sizes, of
N =60 and 120 (small sample size/large sample size), and 2 different class variances,
of (0.25,1,0.04) and (1,4,0.16) (small variance/large variance) respectively, resulting

in 4 variations in all.

We note that in the low variance cases, the clustering coincides with the true class
assignments (similar to 3-2) regardless of the sample size, but in the high variance
cases we see from 2 — 6% misclassification error.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>