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Abstract

A simple model for simulating deuterium tritium burn in inertial confinement fusion capsules
is developed. The model, called the Isothermal Rarefaction Model, is zero dimensional (rep-
resented as ordinary differential equations) and treats disassembly in the isothermal limit.
Two substantive theoretical developments are contained in this model; one is an improved
treatment of fast alpha slowing down, and the other is a calculation of the fusion product
source distributions and their energy moment. The fast alpha stopping treatment contains
a derivation of the Fraley fractional energy splitting functional form, fe = 1/(1 + xTe),
resulting in an expression for the numerical factor x which will be defined as the Fraley
parameter. The average thermal energy which is lost from the thermal ion distribution
when two particles fuse is found from the energy moment of the fusion product source dis-
tribution. This energy contributes to the energy of the fusion products. A third theoretical
development that is discussed for completeness and future use, but not yet incorporated
in the Isothermal Rarefaction Model, is the 4T theory of matter-radiation energy exchange
in homogenous optically thick media. The isothermal rarefaction model assumes an opti-
cally thin to marginally thick plasma, and only Bremsstrahlung emission and absorption
are treated in this thesis. The 4T theory for optically thick media has been published. A
sampling of results using the Isothermal Rarefaction Model is presented.

Thesis Supervisor: Kim Molvig
Title: Associate Professor of Nuclear Science and Engineering

Thesis Reader: Abhay Kumar Ram
Title: Principal Research Scientist, Plasma Science and Fusion Center





Acknowledgments

I would like to thank Kim Molvig and Mary Alme for all of their help, guidance, and many

enlightening conversations.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Isothermal Rarefaction Model ............................... 12

3 Burn Physics . . . . .. . .. . . . . . . . . . .. . . . . .. . . . . .. . . . . .. . . 18

3.1 Reactivity . .................. ................... 19

3.2 Rate of Energy Loss From Thermal Distribution Due to Fusion ....... . 20

3.3 Distribution of Fusion Products .......................... 24

4 Finite Alpha Range ..................................... 30

4.1 Slowing Down Equation ................... .......... 31

4.2 Limits and Approximations ............................ 35

4.3 Geom etry .......... ..... ....................... 42

5 Radiation .................... ................... 47

6 Simulation Results of the Isothermal Rarefaction Model . ............... 54

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65





List of Figures

1 Geometry for calculating fusion particle source distribution. . .............. 26

2 Range of fast alpha particles in a homogenous medium. The red curve is calculated

assuming only collisions with electrons. The black curve is calculated assuming colli-

sions with both electrons and ions, but the appropriate limits of the Chandresekhar

functions have been taken. The blue curve is calculated the same as the black, but

without the simplifications of the Chandresekhar functions and with Ti = 10 KeV. . 38

3 Fraction of fast alpha particle energy given to the plasma electrons. The green curve

is the well known Fraley result. The red curve is calculated from eq.(159). The black

curve is calculated numerically. ................... .......... 41

4 The geometry for the calculation of the fraction of fast alpha energy that leaves the

fuel sphere. . .................. ................... . .. . . 44

5 Ion and Electron Temperature Profiles ................... ....... 57

6 Radius of Incoming Rarefaction Wave .......................... 57

7 Densities (g/cm3 ) of deuterium and tritium fuel ions and thermalized alpha particles 58

8 Burn Up Fraction ...................................... 58

9 Fraction of fast alpha particles that are depositied in the fuel sphere (blue). Fraction

of total instantaneous fusion power delivered to electrons (green). Fraction of total

instantaneous fusion power delivered to ions (red). . ................ . . 59

10 Ion and Electron Temperature Profiles ................... ......... . 60

11 Radius of Incoming Rarefaction Wave .......................... 61

12 Densities (g/cm3 ) of deuterium and tritium fuel ions and thermalized alpha particles 61



13 Burn Up Fraction ...................................... 62

14 Fraction of fast alpha particles that are depositied in the fuel sphere (blue). Fraction

of total instantaneous fusion power delivered to electrons (green). Fraction of total

instantaneous fusion power delivered to ions (red). . ................... 62

15 Burn up fractions as a function of pR. The 5 KeV and 7 KeV initial temperature

simulations were independent of initial fuel mass . .................. . 64



1 Introduction

With the recent completion of the NIF laser system, the Inertial Confinement method for

controlled fusion has been brought to the front lines in fusion research. With its lasers able to

deliver a few megajoules in 10-20 nanoseconds, researchers will be able to test many codes, models,

and theories and perhaps achieve gains of 30-40. Like magnetic fusion, inertial fusion has been

a long road with many experiments that have failed to break even. The two main laser fusion

experiments which preceded NIF at Lawrence Livermore National Laboratory, Shiva and Nova,

had trouble with the Rayleigh Taylor instability (which still plagues ICF), and scientists have had

trouble maintaining laser focus on the imploding fuel capsules as they shrink. However, more and

more progress is made daily toward the goal of developing an economical fusion reactor.

The goal of this thesis is to develop a system of ODE equations that take into account essential

features of the burn of compressed ICF fuel capsules. This system can be integrated faster than

most one or two dimensional radiation hydrocodes. The set of equations constitutes the Isothermal

Rarefaction Model. Particular attention will be given to the theoretical development of burn physics

and the treatment of fast alpha slowing down as it pertains to burning plasmas in general, as well

as to the specific model developed in this thesis. The isothermal rarefaction model is intended to

be used as an effective quick estimate of the performance of compressed ICF capsules.

The first section, Isothermal Rarefaction Model, will discuss the assumptions and details of

the model, and an initial set of equations will be presented. In next section, Burn Physics, the

dynamics of DT burn will be addressed leading to expressions for the particle and energy sinks and

sources in the rate equations presented in the first section. In particular, the average energy lost

from the thermal ion distribution when two particles fuse will be calculated as an integral over the

cross section. This extra bit of energy is given to the fusion products in addition to the reaction

Q-value. In the third section, Finite Alpha Range, an equation governing the slowing down of fast

alpha particles will be derived, as well as approximate, but accurate, expressions for the alpha

particle range, slowing down time, and fraction of energy given to the electrons. In particular,

the fraction of energy given to the electrons (derived from first principles with approximations)



will be compared with the well known Fraley empirical formula fe = 1 (G. S. Fraley, E. J.

Linnebur, R. J. Mason & R. L. Morse, Phys. Fluids, vol. 17, 474 (1974) 1974). Finally, expressions

specific to the Isothermal Rarefaction Model will be derived. In the fourth section, Radiation, an

expression for the energy loss from the model system due to radiation will be derived including re-

absorption but ignoring scattering and assuming quasi-steady state for the photons. Furthermore,

the radiation dynamics for an optically thick system will be discussed, although this is not assumed

in the current model. Finally, in Simulation Results of the Isothermal Rarefaction Model, the final

equations of the model as well as simulation results will be presented.

2 Isothermal Rarefaction Model

There are two main phases in ICF. The first is the implosion phase, where a driver of some

kind compresses the fuel to densities of the order of 1000 times solid density and forms a lower

density hot spot in the center. The second phase involves the expansion of the material where the

hot spot ignites and propagates a burn wave outward through the colder dense fuel. A rarefaction

wave begins to proceed inwards from the outer surface of the compressed fuel due to the expansion

of the fluid into a vacuum after implosion stagnation. Once burn of the hot spot begins, which

typically ignites at a few KeV, the electrons and ions in the burning fuel are heated rapidly by fast

alpha particles. They are also heated by neutrons, but neutron heating is typically small because

of the neutron's small mean free path. Neutron heating will be ignored in this model.

Since the ion-ion and electron-electron collision rates are fast compared to the ion-electron

energy exchange rates, the ion and electrons can depart in temperature while maintaining Mawellian

distributions. At first, the fast alpha particles primarily heat the electrons. Furthermore, because

the electron-ion energy exchange is fast at small Te due to its TJ- 3/ 2 dependence, the ions are

quickly heated as well. However once the fuel gets up to 20 keV, the ions are dominantly heated

and their temperature runs away, due both to the increasing reactivity and to the drop off in their

rate of cooling to the electrons. The electron's coupling to the radiation is also important. This

will be discussed in the radiation section.



The electron thermal conduction coefficient becomes very large in the burning fuel because it

varies with temperature as T 5/ 2 . This tends to keep the electrons isothermal. At lower electron

temperatures, the strong ion-electron energy coupling tends to keep the ions isothermal before

runaway burn. When the ions run away at higher temperatures upwards of 100 keV, the ion

thermal conduction tends to keep the ions isothermal. The heating from fusion alphas is usually

fairly uniform.

It is a combination of fast alpha particles passing through the hot burning fuel (where their mean

free path is longer) and depositing a large amount of their energy in the colder dense fuel (where

their mean free path is smaller), and the strong conduction into the cold fuel, that propagates the

burn wave. If the burn wave propagates through the colder dense fuel on a faster time scale than

the rarefaction wave proceeds inwards from the outer surface, then the whole fuel quickly becomes

isothermal. The speed of the burn propagation is controlled by the time scales of alpha slowing

down, and electron conduction coupled through ion-electron energy relaxation. These times are

typically of order 1-10 ps(Yigal Ronen Guillermo Velarde Jose M. Martinez-Val, An Introduction to

Nuclear Fusion by Inertial Confinement (Boca Raton, Florida: CRC Press, Inc., 1993) 1993). This

is the physical basis of the isothermal burn model. The specifics of the model and its assumptions

will now be presented in more detail.

The isothermal rarefaction model assumes the fuel has been compressed at implosion stagnation

to a homogenous sphere with a certain radius R0 , and a certain fuel density, ion temperature, and

electron temperature. At the initial time in the model, the fuel begins to burn uniformly as a

rarefaction wave proceeds inwards from the outer radius Ro. As soon as the rarefaction wave

passes a particular fuel element, it is assumed that the density and temperature quickly fall off

and that burn stops in that fuel element. At any given time, the information that the shell is

rarefacting has not reached fluid elements inside the rarefaction wave. These fluid elements still

burn as if they were in a homogeneous medium. This is significant, as it means there is no advection

or hydro motion inside the rarefaction wave. There is only burn physics, possible electron and ion

conduction transporting energy into the rarefacted material, and energy lost to radiation. Once

the rarefaction wave reaches the origin, the burn is over.



The classical electron conduction coefficient is(Per Helander & Dieter J. Sigmar, Collisional

Transport in Magnetized Plasmas (Cambridge, UK: Cambridge University Press, 2002) 2002)

2 c Te_ 5/2
Ke = nee = 1.185 rZeff lnAe (1)

where re is the classical electron radius and xe is the thermal diffusivity. An electron conduction

time scale is given by
12

Te= (2)
Xe

where 1 is a scale length for the system. The fusion time scale is given by

1
Tfus v) (3)

where ni is the number density of either the deuteron or triton populations (homogenous equal

mixture assumed). Typical ICF parameters are In Ae a 5.7, Te f 40 keV, Ti x 70 keV, ni

2.5 x 1025 #/cc, and 1 0.01 cm. The times scales compare as T = 4.5 x 10- 11 s and Te =

2.2 x 10- 11s. The parameters are chosen near the beginning of runaway burn, and Ti = 70 keV is

at the peak of the reactivity. As the electron and ion temperatures continue to rise, the fusion rate

will decrease while the conduction rate will increase. The electron conduction rate tends to be of

the same order as the fusion time scale initially, but it is much larger than the fusion rate when

burn is well underway. This gives credibility to the physical picture of the isothermal model.

The ions and electrons are assumed to be Maxwellian at different temperatures. The energy

exchange rate between the ions and electrons is found by taking the energy moment of the Fokker

Plank equation with two Maxwellians. The result is

6 MeC2 3/2
Pie = T mc2) In(Ae) (Ti - Te)E me Zni (4)

8r72 2Te m

where VT = cnec-T is the Thomson rate, and the Thompson cross section is aT = -re, and r is

the classical electron radius. Here the sum is over all of the ion species. This is the energy exchange

rate between the ions and electrons within the homogenous sphere. The electron and ion coulomb



logarithms used in this model are taken from Atzeni(Stefano Atzeni & Jurgen Meyer-Ter-Vehn,

The Physics of Inertial Fusion (Oxford: Oxford University Press, 2007) 2007) and are given by

In Ae = 7.1 - 0.5 In - In Te (5)

In Ai = 9.2 - 0.5 In n + 1.5 In Ti (6)

where the densities are in particles per cc and the temperatures are in KeV.

Once the whole fuel begins burning, fuel ions get destroyed and high energy alpha particles are

born. The alpha particles slow down in the fuel transferring their energy along their path to ions and

electrons. Some stop in the fuel while others leave the fuel and enter the rarefacted material. Once

the alpha particles slow down to thermal speeds, they become part of the thermal ion distribution.

Alpha particles that enter the rarefacted material are assumed lost and do not contribute the

thermal ion population inside the rarefaction wave. It is assumed that the homogenous burning

sphere of fuel stays quasineutral. Since the ion-ion collision rate is very large (Tii = 1.7 x 10-12s

for the typical ICF parameters given above), all of the ion species are thermalized at the same

temperature Ti. Finally, the electrons radiate Bremsstrahlung. If the photon Thompson mean

free path is small compared to system length scales, the photon distribution can build up and

approach black body. The coupling between the photons and electrons then becomes complicated

with re-absorption, Thomson scattering, and even Compton scattering for large enough system scale

lengths. The isothermal model assumes optically thin to marginally thick fuel, and only includes

Bremsstrahlung.

Due to the isothermal assumptions, the fusion heating source terms are calculated as follows.

The fast alpha slowing down time is fast compared to all other dynamic time scales. Therefore it

is assumed that there is no delay between when an alpha particle is born and when it is deposited

at the end of its range., ie, that there are no significant changes in ni, Ti, Te, or the radius of the

rarefaction wave R, during the time it takes any given alpha to slow down. The amount of energy

per second that all of the fast alpha particles born in the homogenous sphere (inside the rarefaction



wave) transfer to the thermal ions and electrons (also within the rarefaction wave) is calculated.

The details of this calculation are given in the Finite Alpha Range section. The details of the burn

physics are given in the Burn Physics section. The details of the coupling between the electrons

and radiation are given in the Radiation section.

The energy equations of the model are

OE
- = us - e- Pcond

OEe
t Pfus + Pie - Prad- Ped (8)

The energy densities of the ion and electron fluids are Ei and Ee, respectively. Units of Ke are

used. The terms on the right hand side of the energy equations are source terms. The total energy

sources for the ions and electrons due to the fusion process are Ps,, and P,. The ion-electron

energy exchange is defined above in eq. (4). The power loss due to conduction is given by the terms

Pcond. An expression for Peond can be written assuming a gradient scale length for Te of order R

at any given time.

A Te 3
Pcond =V Ke = eTe (9)

where A and V are the surface area and volume of the burning fuel sphere. The ion conduction

coefficient becomes important to include at ion temperatures in the hundreds of KeV. It is included

in this ICF model, and similarly given by

A Ti 3
ond V ,iR = 2-iTi (10)

3 C e5/2ci = niTi = 3.9 2 (11)
4 Tr rZ eff In Ai m me ffC2

The effective mass meff is defined as = j nman where j is a sum over all thermal ion species

(deuterons, tritons, and alphas). The equations governing the densities of the thermal ion popula-



tions are

8nD = SD (12)at
OnT = ST (13)

S=So 
(14)

at

The number densities n have units of particles/cc. The source terms SD, ST, and So are determined

by the fusion process. Expressions for these terms will be derived in the Burn Physics section. In

particular, the source term So depends on the finite alpha range treatment, which will be discussed

below. The equations governing the total particle numbers of the ion populations are

OND
t= V (t) SD(t) (15)

ONT
= V (t)ST(t) (16)

aNQ
S= V (t) S (t) (17)

where the volume of the burning fuel sphere is

411
V (t) = -- R3 (t) (18)

dR = -vr (t) (19)

and R (t) is the radius of the incoming rarefaction wave, which moves with velocity v, (t). The total

particle numbers Nj give the total number of particles at a given time in the whole system, including

the rarefacted material. Using these total numbers Nj, the total number of fusion reactions that

take place within the fuel sphere before its volume shrinks to zero can be determined.

The speed of the rarefaction wave is clearly important. It is well known from MHD theory that

the pressure in a plasma fluid equation is the sum of the ion and electron pressures(Francis F. Chen,

Introduction to Plasma Physics and Controlled Fusion (New York, NY: Springer, 2006) 2006). If



the electron inertia is small compared to the ion inertia, which is typically the case in quasi-

neutral plasmas, then the MHD equation of motion is essentially the ion equation of motion. The

only hydrodynamic influence the electrons have on the ions is through the electric field, and the

only difference between the equations of motion for a normal fluid and a plasma fluid (whose

inertia is determined by the ion mass density) is that the plasma fluid has and effective pressure

Peff = Pi + Pe. In an ideal fluid, a rarefaction wave moves at the sound speed. This is given by

2 dP Pv r- (20)
dp p

Also, the pressure is defined by P = nT. For a small disturbance propagating through an isothermal

medium, the temperature is constant and one finds

- = const (21)
n

Therefore the isothermal assumption is like having a 7 = 1 gas. The sound speed is v =

Finally, the rarefaction wave proceeds inwards into the fuel sphere at a speed

Pi () + Pe (t) (22)
yr () = (22)

3 Burn Physics

The physics of DT burn is central to any ICF code. Indeed, it is the DT fusion reaction

on which the entire ICF concept is based. Burn determines the rate at which fuel particles are

destroyed, as well as the amount of thermal energy they take with them. Burn also determines the

sources of high energy alpha particles and neutrons. Once these fast particles are created, they slow

down due to coulomb and nuclear collisions. The process of fast alpha slowing down is described

in the Finite Alpha Range section. The isothermal model of this thesis concerns a homogenous



medium within an incoming rarefaction wave. The burn physics is simplified in this respect, with

a homogeneously isotropic burning region with isotropic fast alpha and neutron production.

In almost all codes, the deuteron and triton populations are assumed to be Maxwellian. In this

case the reactivity comes from integrating a Maxwellian distribution over the DT cross section.

Much work has been done towards obtaining accurate fits for the DT cross sections, as well as fits

for the Maxwellian integrated reactivity. Some codes take into account the enhanced reactivity

due to charged particles slowing down from energies much higher than 3Ti. These high energy

particles are usually fusion products born at high energy, but can also be thermal particles which

get knocked to high energy by 14 MeV neutrons or other fast charged particles through nuclear

collisions. These so called knock-ons can have a significant probability of reacting before slowing

down if the cross sections are large at the corresponding high center of mass energy. However,

neutron heating, knock-ons, and reactions in flight are ignored in this model.

An important effect is the thermal energy which is lost from the thermal ion distribution and

which is added to the energy of the fusion products when two particles fuse. If the ion energies

are around 200 KeV or higher, this can be an important effect. First the Maxwellian averaged

reactivity will be derived, followed by the average thermal energy loss from the ion distribution.

Finally, the kinetic fusion source term for the alpha particles will be derived and then used to find

the average energy with which alpha particles are born.

3.1 Reactivity

The reactivity is given by

(OV) f d 3 vid3 v 2c (lV1 - v2 ) Vl - V2 fl(Vl)f 2(v 2 )

f d3 vid 3v 2 f(Vl)f(V2 )

where fi and f2 are the distribution functions for the deuterons and tritons. A change of variables

can be made
m2

V 1 = V c + V (24)
mi + m2



V2 = Vc- V
md + m2

d3 vld3v 2 = d3 vcd3 v

(av) = 1  d3vcd 3 vo" (v) v fi(vC + v m2 )f2(VC
nin2 m1 m2

-v )
m 1 + m2

If both distributions are assumed to be Maxwellian at temperature T, this becomes

(ov) = (Tnim2)3/2

(21rT)
3

(v>) = (mir
(2,r

d 3 vd3 v (v) v exp

2)3/2 J ~dVU (V)
T)3 dvd v (v)

mI m2 12mve + V+m
2T mi + m2

v exp (
m 1 + m2

2T

m2 mlIVe - V m 1  12
2T m 1 + m 2 )

1 m 1m 2 Iv12 )

2T ml + m2

where the cross terms have cancelled. The integral over the center of mass velocity is immediate

giving

- (mlm2) 3/ 2  (27rT)3/ 2

(2-rT) 3 (mil + m2) 3/2 (v) v exp

(uv) = p 3/2

1 mim2

2T mi + m2
Iv12) (30)

(31)d3 vU (v) v exp (~j- 2

Converting to spherical coordinates, performing the angular integration, and finally converting to

center of mass energy e = 1/2 ,t v 2 , gives the reactivity

(ov) = 47 3 / 2  dv

Uv) =2 7 2c
r 7tlc 2 T3/2

T (v) v 3 exp

dea (e) e exp

3.2 Rate of Energy Loss From Thermal Distribution Due to Fusion

The average rate of energy loss per unit volume from the thermal ion distribution is given by

1 l
2M2 V2 ) fl (Vl f2(V2)PIos d3 id3v20 (Jv1 - V21) Jl - v21 (mlv +

(25)

(26)

(27)

(28)

(29)

(32)

(33)

/

- 2T(

(34)



Each fusion reaction, with incident particles having velocities vl and v2, removes one thermal ion

with energy 1mlv and another with energy m2v 2. This energy is distributed among the fusion

products in addition to the mass-energy released by the fusion reaction. Performing the change of

variables as was done above gives

= d3cd3 () 21 m2 2
= Jd3vcd3vo" (v)v ( - mlvc + vml m 2

f (ve + vM )f2(Vc - v+ m
mi + m2 M1 + M2

+ 1 m21Vc - V m 1 12
2 mi + m2

Ploss = nln2 /2 d 3cd3vo (v) v(2xT) 3

Sexp (

os 2(mlm2)3 / 2 (4) 2

S2 2 (27rT)3

mi + m2 2V

2T

m1 + m2 12
2 i

1 mlm2 i1 2 )

2 m, + m2

1 mlm2 iv 2

2T mil + m2

exp - -- Mv

It is convenient to break this expression up into two integrals, P1oss = I, + ICM. The first is an

integral over the relative energy e

I l 5/2P(27rT)3/2
nin2 47r2T 3

2 2c e

TIo n t 7hl C2 T3/2 de (

The second is an integral over the center of mass energy

ICM = nln2 M ( m Im 2 )3 / 2 (47r)2
2 (27rT) 3 dvcdv o (v)

3 =2 2 e f
ICM = cTnln2 72T3/2 de a(e)

2 JzI~c2 T3/2 I ~

vv 3 exp
1 2

2T

e exp (-) = 3 Tnln2(av)

Poss (35)

(36)

dvcdv (v) v 2 v3 (Mv + v2)

(37)

(38)

(39)
1 p v2
2T

dv o (v) v 5 exp
1 y v2

2T

e) e2 e Cp -

(40)

(41)

1 V 2

2T
(42)

(43)



This finally gives

Ploss = nln2 3T (ov)

V2 2c
(uv) ri 2 T 3 / 2

(2 2c
(e) = -/1c 2 T 3 / 2

ded- (

de a

+ (cve))

e) e exp -T)

(e) e2 exp -)

For the cross section, the Bosch-Hale fit for DT is used(H.S. Bosch & G.M. Hale, Nucl. Fusion,

vol. 32, 611 (1992) 1992). It is given by

S() exp )

A, + e(A2 + e(A3 + e(A4 + eA5)))s(e) =
1 + e (Bi + e (B 2 + e (B 3 + EB 4 )))

A1 = 6.927 x 101

A 2 = 7.454 x 105

A 3 = 2.050 x 103

A 4 = 5.2002 x 101

A 5 = 0

B 1 = 6.38 x 101

B 2 = -9.95 x 10-1

B 3 = 6.981 x 10- 5

B 4 = 1.728 x 10- 4

= 1182.2

(44)

(45)

(46)

[bn] (47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)



Here the quantities (av) and (ave) are functions of ion temperature only. During burn, a loss term

given by Ploss above should be included in the ion energy equation. Furthermore, the average of

the sum of the charged particle product energies for a single fusion reaction becomes

3 (owe)
Q + (Ti + ) (59)

2 (av)

The first term is the DT reaction Q value, Q = 17590 KeV. The second two terms constitute the

average energy which two particles have when they do fuse and are removed from the thermal

populations. For Ti = 200 keV, the second two terms sum to 496 keV and for Ti = 300 they sum

to 721 keV. Finally, this energy is distributed among the two product particles: a neutron and an

alpha particle. The average energy that the two fusion product particles receive must be calculated

from the initial particle distribution functions and the fusion cross section.

Consider a fusion reaction where the product particles, labeled 3 and 4, have masses m3 and

m4. It is expected that the reaction energy Q and initial relative energy (i6) are distributed by

the opposite mass ratio, for example, the fraction of this energy given to particle 3 is m This

can be derived from elementary kinetic considerations in the center of mass frame where the total

momentum is zero. It is expected that the center of mass energy !Ti is split in proportion to the

particle masses, for example, the fraction of this CM energy given to particle 3 is ~. Therefore,

the initial energy of a neutron and an alpha particles on average is

Eno = Q + + 3Ti (60)
(a) ma + mn 2 ma + mn

- ( o _ve) mn 3 m, (61)

(a) / ma + mn 2 ma + mn

In order to prove this, the kinetic source term for product fusion particles will be calculated under

the assumption that the Q value is large compared to the average center of mass energy. The energy

moment of this source term will result in the first term in the above equations. Furthermore, the

isothermal model assumes all alpha particles are born at their average energy. This is strictly not

correct, as there is a distribution about this average energy. Upon calculation of the kinetic source



term, the width of this distribution can be determined.

3.3 Distribution of Fusion Products

Consider two particles of mass m, and m 2 fusing and producing two particles of mass m 3 and

m 4 . Assume that the fluid velocity is small compared to the average thermal velocity so that the

lab frame and the fluid frame can be considered the same. Let P be the total momentum in the

fluid frame, and E be the total energy, including mass-energy Q released due to fusion. To a good

approximation, conservation of mass still holds, mi + m2 = m 3 + m 4 = M. Conservation of energy

and momentum gives

ml1 + m22 = = - m 3 3 m44 (62)

mlv2 + m2v2 + 2Q = 2E = E = m 3v + m 4v2 (63)

A constraint on i3, taking P and E as given, can be found from these two equations

P - m 2iv3  = m 4v 4 = 2m 4 E - m 4i 3v 3 2 (64)

2 2P.- i 3  P2 - 2m 4 E
V3 - + 3M 0 (65)

If '73 is considered fixed, then the above equation can be considered a constraint on the velocities iv1

and v 2 . The number of fusion reactions occurring per volume per second within dv3dv3 (ie, given

a specific il and v2) is given by

d3 vd3 v2 U (IV1 - v21) IV1 - v 2 fl (vl)f2 (v 2 ) (66)

Therefore, the number of fusion product particles with mass m 3 , produced per unit volume per

second within dv with a velocity v3 in the fluid frame is

S 3 (03) = d 3 vd 3 v 2 (l1 - v2 V - v 2 fl (V1) 2 (V2 ) (67)
(vJ2(2 (6



where C implies that the integration is subject to the constraint eq.(65) for i and v2.

Converting to center of mass coordinates

m2
vi = vc + v M (68)

mi + m2

m1
v2 = Vc - v (69)

mi + m2

d3vl1 d3v 2 = d3 vcd 3v (70)

results in

S 3 (3) = j d3 vcd 3v (v) vf(vc)f(v) (71)

2 + 2 m4 2Q +v 2  0 (72)
3 2c 3 + =V (72)

m3 M

where ft is the reduced mass. The constraint restricts the volume integral over dc to an integration

over a spherical surface in vc space, such that the difference between the fixed vector v3 and Vc

always has magnitude K T 2Q+v 2 . Let the vector '3 lies along the z axis in Vc space. The

integral is easiest to do in terms of a coordinate system whose origin is at the center of the spherical

surface constraint. The geometry and this surface are shown in figure (1).

The result is, noting that everything depends only on the magnitudes of v 3 and v,

S3 (V3) = in dd 3  (v) vf(vc [a, v])f(v) (73)

m 4 2Q + pv2  m 4 2Q + (tV2

V [, v] = v3 + + 2v3  cos (74)
m 3 M m 3 M

Plugging in Maxwellian distributions gives

S3 (v 3 ) d3 exp( -- m M J2T m M ms M

nln (mlm2) 3 / 2 Jd3v (v) vexp ( v2) (76)
2 (2irT)3 2



Figure 1: Geometry for calculating fusion particle source distribution.

Just focusing on the first term

_ dp exp 2T 2 m 4 2Q + v 2
v 3 + +

m3 M
2V3 m 4 2Q + pVu2
2vM3m3 M

M m 4 2Q + v 2  exp
2T m 3 M -1e

v 3M /m4 2Q + v 2

T m3 M

note that the p in front of the relative velocity is the reduced mass, where the other P's are the

angle cosines. The integral is

v 3M /m4 2Q + Iv 2

T m3 M )

2T

v 3M

ms M
-m3 M+ sinh

m4 2Q + v 2
v3M /m 4 2Q+ [Iv2

T V3 M

(79)

= exp 2)
(2T

exp(

(77)

/-

(78)

dy exp



Putting everything together:

S3 (V3 ) =
(mim2)3/2 T M 2\

n1n2 (27rT) 3  M 3 exp

Sd3v(v)vexp( M m4 2Q + m 4 22 3 M

2T inh M m4 2Q + 2

-sinh (3M ,M42Q + v2 exp 2 V

(80)

(81)

(82)

This expression is exact. However, it is complicated. To proceed, the limit 2Q >> Pv2 is taken.

This assumes that the energy released in the fusion reaction is much greater than the energy of the

two thermal particles in their center of mass frame before fusion. This may not always be the case.

Furthermore, the assumption that 2Q >> Mv2 is never made. Continuing with 2Q >> pv 2

(mlm2)3 / 2 T m 3 M
S3(v3) = n1n2 (27rT) 3 v3 M m 4 2Q

(M 2) v M m4 2Q)
ex2T )sinh( T m M

d3v (v) v exp (-_ v2)

M m4 2Q)exp (2T m3 M

where now the integral over the relative velocity is the same as that which gives the reactivity (ov).

If the assumption 2Q > > v2 is made, it is also a good approximation to assume Q >> T, and

since v3 is the velocity of a fusion product, the approximation 4M 2Q >> 1 is good. Therefore, the
T m3 i epio

hyperbolic sine function just becomes a positive exponential. This results in a simpler expression

(mlm2)3 / 2  T m3 M
S3 (v3) n n2 (27rT)3  2v 3 M m 4 2Q

exp (V3 - 42 d3v (v) v exp ( v2)exp-v 3 M ) ]2

(86)

(87)

(83)

(84)

(85)



Noting that

(v) = ( )
3 / 2

d3 v "(v) v exp
1 v2

(88)

The expression can be written

(mlm2)
3 / 2 T

S3 (v3 ) = n1n 2 (mm 2 )3/2  T
(27T)3 2v 3 M

3 M
42exp

m4 2Q

M

2T
m4-- 2

2

v3 - m3 2Q (v) 27rT 3/2
( )

S3 (v3 ) 3/2
T /m 3 M

2v3 M VM4 -2Qex p
M

V3 -

m4 (Uv)nln2
M3 M )

The total number of m 3 particles produced per second is given by the first moment of the kinetic

source term, and this is expected to be

SdvS 3 (v3) = (ov)nln2 (91)

Given the assumption that Q >> T, it is expected that

1 = 47r (2 )3/2
27rrT

T /m 3 M

2M m'4 2QJ
dv3 v3 exp (-

M

2T
v3 - r 3 Q)

and upon performing the integral, one finds that the distribution is properly normalized. Therefore

in the limit Q << T '/v 2 , the source term for particles of mass m 3 is

S (v 3 ) (M )3/2
S3 (V3) =

\2-rT

m 3 M T

m 4 2Q 2Mv3 exp

M

2T
V3 -

(93)m43 )2 (av)nln2

The normalized source distribution of alpha particles, f dv3S = (Uv)nln2, is

mn + ma m 1
87 (r3 / 2 mQT vexp

mn + ma
2T V3

m) 2Q
Mn 2Q (orv)nln2
ma mn + ma

(89)

(90)

(92)

(94)



The average energy, taking the limit Q << T pv 2 , is found to be precisely

dv3
2 1 2 3 = 4 Q + (95)

4 dv32 3  
4 + 3 4 + m 3 2

which is as expected. The center of mass energy, which does not appear here due to the assumptions

above that 2Q >> pv2 , would be added to the reaction energy Q. This is true on the average

because it is true for every single specific reaction for a given il and V'2. The final result for the

average energy with which an alpha particle is born is given by

(E) = Q + +m T (96)
ma + m (Uv) m + mn 2

This initial alpha particle energy (E,) is used in the finite alpha range model to determine the

slowing down dynamics. This energy effects the alpha particle's range as well as the amount of

energy that gets transferred to the electrons and ions. Now, loss terms due to fusion can be included

in eqs.(7).

OE Pus - nDnT -i (3v) + (ave) - Pie - ond (97)

at Pus + Pie - Prad - Pceond (98)

dnD = -nDnT (av) (99)
at

O-T - nDT (V) (100)
at

On, = S, (101)
at

where Pi,, and PY, correspond to only heating terms due to the energy transfer from fast alpha

particles. They are determined from R, E,, and the details of the slowing down model. The alpha

source term S, is determined from the slowing down model as well.



4 Finite Alpha Range

Fast alpha particles slow down through coulomb collisions with the thermal ion and electron

populations. This typically happens on a fast time scale compared to the fusion rate, as will be

shown below. Therefore it is assumed that when an alpha particle is born, it slows down and

transfers its energy before any of the macroscopic variables change significantly, ie, alphas slow

down in a fixed homogenous background with fixed temperatures and densities. Of course, once an

alpha reaches the spherical shell of the rarefaction wave, it is assumed lost and no longer gives its

energy to the homogenous fuel sphere.

The fast alpha particles transfer part of their initial energy to the electrons and part to the

ions. The fractional splitting is primarily determined by the electron temperature. The electrons

are preferentially heated at low Te (Te < 25), while it is the ions that are preferentially heated

at larger Te (Te >- 25). The ion temperature determines the fusion reactivity, and the ions are

coupled to the electrons which have roughly the same heat capacity. Also, the electrons couple to

the radiation which can be a large heat sink. The fractional energy splitting is clearly important and

effects the whole burn process. Many codes use simple formulae for this fractional splitting, such

as the well known Fraley(Fraley et al. 1974) empirical result fi = 1 where fi is the fractiona+32/Tsewhere fi is the fraction

of fusion energy given to the ions by the fast alpha particles. However, these simple formulas can

lead to significant errors in the burn dynamics. The fractional splitting is not just determined by

the electron temperature but by Zeff, both electron and ion coulomb logarithms, and even the ion

temperature although with somewhat weak dependence.

In this section, an equation governing the slowing down of a fast alpha particle in a background

ion-electron plasma will be derived from the Fokker Plank equation. Upon taking appropriate limits

of the Chandrasekhar function, an analytic expression for the range of an alpha particle including

ion collisions will be derived. Furthermore, the functional form of the Fraley splitting formula

can be found from an asymptotic expansion, resulting in an expression for the numerical factor.

This expression will be compared with numerical results from integrating the slowing down rate

equation. In terms of the ICF burn code, the slowing down equation for the alpha particles will be



numerically integrated at every time step. The details of this will be discussed below. Finally, an

expression for the total energy and number of alpha particles deposited in the finite fuel sphere at

any given time will be derived.

4.1 Slowing Down Equation

The initial assumptions concerning the slowing down of a fast particle are as follows. Fast

charged particles in a background of ions and electrons tend to move in a straight line until their

energy becomes comparable to the ion thermal energy. At this point the deflection frequency

becomes large. Although the homogenous assumption leads to charged particles being isotropically

produced, any given fast charged particle moves on a straight line as if it were emitted from a

source distribution function given by

fa (v) = na, (v - ua) (102)

Of course, this assumption does not deal with the deflection of the charged particles near the

end of their range due to collisions with ions, and it is assumed here that every alpha particle, while

emitted isotropically, follows the average behavior of particles given by the source eq.(102). This

is a shortcoming of the current treatment which ignores particle diffusion.

The Fokker Plank equation in cartesian coordinates is

=fT =Laa2 OF mT a f F (103)
49t v 0v v0v y 8v 0v

LTF - TFe 2 In (AF) eo = for cgs (104)
EomT 4

The T subscript stands for test particle and the F subscript stands for field particle. The test

particles here are the fast alphas and the field particles consist of thermal ions and electrons. The



Rosenbluth potentials 'bF and cpF are given by

OF = 1 u fF (v') dv' (105)

1 fF (v')
PF = - dv' (106)

U = IV - v' (107)

The mean velocity of fast alpha particles with distribution fa is

na

The rate of change of this mean velocity assuming the initial alpha distribution eq.(102) is

Oua, LTF 2 a (
= d3 ( v aD -OF) -c a (109)

at n. 0 a v 9 0 I

Integration by parts on the second term above has the form

d3 v vk d3v Vk - J Vk (110)
Jdv ( 0 &v aJ 3J )&vk

= Jd3v (a Vk - J Vk) -/d"3v 3 6k d3vJk (111)

= - d3vv (f 0  
-g) = d3Vfa (112)

And similarly for the first term

d3VV ( f. OF =-Jd3v (av F = 0 (113)

It is seen that the term responsible for diffusion gives a zero velocity moment, as expected. As

fast alphas slow down, they begin to diffuse and gain a perpendicular velocity component. The

average of this component is however zero. The assumption that every alpha particle moves with

this mean velocity ua is precisely where the diffusion error discussed above enters in. The slowing



down equation is now
Ou.a = LaF ma d3 v f (114)
Ot n. J Ov

Since the alpha distribution is a delta function, the integral is straightforward

&u LaFma n (PF aF a V F(115)= - -no = L (115)
Ot no p 0v v=uo Iv Ov Jv=u

The Rosenbluth potential is spherically symmetric because the field particles are isotropic. It can

be shown that the derivative of the Rosenbluth potential(Helander & Sigmar 2002) is

OF mFnF G (y) (116)
Ov 4r TF

y = Ua/VTh,F (117)

erf (y) - y erf' (y)
G (y) = (118)

2y

where y is the alpha particle velocity normalized to the thermal velocity of the field particles, and

G (y) is the Chandresekhar function. Also, the rate of change of u, is in the direction (negative)

of us. What results is a scalar equation for the magnitude of the mean alpha velocity

Ou L G (y) = LaF a mFnF G (y) (119)at IL 22 v ,F pt 47r TF

O__ nF 2 (mec2 ) 2  MF\
_a - 6 FVTT (mc22 1 + ln(AF)G(y) (120)
at ne TF mac2  m

where / is the alpha velocity normalized to c. The equation has been written so that the Thomson

rate is the only quantity that carries units. The field particles F consist of thermal deuterons,

tritons, alpha particles, and electrons. Because the Fokker Plank equation is linear, the final

expression is just a sum of contributions and is

Sme meC2  me mec2

0/ a = 6 T e f In(Ai) G (yi) - 6 VT In (Ae) G (ye) (121)at ma Ti ma Te



eff = Zeff + 1-E nmZj ) (122)
nem .

where the sum is over all of the thermal ion species, y and Ye are the alpha velocity u, normalized

to the ion and electron thermal velocity, respectively, and an effective parameter Oeff is used to

simplify the notation. When alpha particles thermalize with the homogenous background plasma

and become part of the thermal ion distribution, their mean velocity u, is zero, and all of the initial

energy of each alpha particle, jm'u,, has been given to the thermal electron and ion distributions.

Therefore every alpha particle is born with energy Eao determined by the burn physics, has an

initial velocity uo = ,2E and travels in a straigh line with its slowing down governed by

eq.(121) until its velocity u, is zero. At this point an alpha particle becomes part of the thermal

ion distribution at the end of its range.

The stopping power can also be calculated

OEa 1 OEa Oua
a = ma (123)

Ox =6 VT eff In (Ai) ( G (yi) + 6 In (Ae) G (ye) (124)
X c Ti c Te

where now yi and Ye are expressed as functions of the alpha particle energy E0

meff Ea
Yi F (125)

Ye = (126)
V maTe

It is convenient to re-write the stopping power in terms of dimensionless quantities

Ea VT
E= 2 X = -- x (127)
mec2  c

OE mec2  mec2
= 6 eff In (Ai) meG (yi) + 6 In (Ae) G (Ye) (128)

02 Ci n A)Ti Te



This is the equation which the burn code numerically integrates at every time step. At any point

along the path, the fraction of the energy that instantaneously goes to the ions is given by

fi - Ceff In (Ai) G (yi)

() e ff In (Ai) G (yi) + In (Ae) G (y,) (129)

Once the energy E is integrated to zero along its path, the fraction of the total initial energy E,,o

that is given to the ions, fi, can be found.

4.2 Limits and Approximations

Some very useful formulae can be derived by taking simple approximations of the slowing down

equation and stopping power. The Chandrasekhar function has the following limits

G(y) 2y y <<1 (130)

1
G(y) 1 y >> 1 (131)

For a good range of an alpha particle's energy, its speed is slower than the electron thermal speed

and faster than the ion thermal speed. For Te = 30 KeV, Ti = 100 KeV, and an alpha particle that

is just born with E, = 3500, yi = 148 and y, = 4. As the alpha partcle slows down, Yi decreases

while ye increases. Therefore, the ion G (yi) can take the y >> 1 limit and the electron G (ye)

can take the y << 1 limit. If these approximations are made, the stopping power eq.(128) can be

integrated to give an analytic expression for an alpha particle's range. The slowing down eq.(121)

can be integrated to give an analytic expression for an alpha particle's velocity as a function of

time. An expression for the stopping time, as well as an expression for the energy splitting fraction,

can be derived from this.

Taking the appropriate limits, the stopping power equation becomes

OE m,1 m mec2)3/2
0 = 3eff In (Ai) e-- + 4 In (Ae) m c3 (132)

meff E rm ( Te



meff = Znjmj (133)

It is seen that the stopping power depends only weakly on the ion temperature through the ion

coulomb log. The stopping power eq.(132) can be integrated

0 _Ra
EE = B d (134)
E1/A3 + E3/2 J

Eao 0

BRa = 2 + - f 2 an + In(135)
3 vA (A + V Eo 2

A = ' eff nAi ma /3 Te (136)
L4  lnAe meff V me mc 2

B= 41n(Ae) a (mec2 )3/2 (137)V Te ) (3

where Ra is the dimensionless range of an alpha particle and Eo is the dimensionless alpha particle

initial energy found from eq.(96). The dimensionless parameters A and B are used for notational

simplicity. The above range expression is only valid if the alpha particle slows down in a homogenous

medium. It should be noted that a nice analytical expression cannot be found for the alpha particle

range as a function of path length, E (2). Only when the energy is integrated to zero does the above

expression result.

It turns out that A 4 mT . Therefore, for small Te (and hence small A), an expansion can

be made.
4Br A3

BRa 2 E 0  A + (138)
3V Eao

To lowest order this just becomes

Ra 2 (139)
B



c /rmac 2 Eao 3/2 (140)
2 VT In (Ae) (mec2) 5/ 2  e

As can be seen from the definition, the quantity A can be thought of as a measure of the importance

of the ions on an alpha slowing down. If the ions are ignored, then A -= 0, and the range is given

by eq.(140). If an equi-molar mixture of DT is assumed, this range becomes

T3/2
Ra = 0.107 e [cm] (141)

pln (A)

where ne = NAp/2.5 was used (assuming pure 50/50 DT plasma). This is precisely the value

given in Atzeni eq.(4.6), (Atzeni & Meyer-Ter-Vehn 2007). A plot of the range as determined by

both eq.(135) and eq.(140) is shown in figure (2) for nD = nT = 6 - 1024 #/cc, p = 50g/cc, and

Ti = 100.

As can be seen, the range calculated including thermal ion collisions is much shorter than

otherwise, especially as Te gets large. The range as calculated by numerically integrating eq.(124),

using the Chandrasekhar functions, lies directly on top of the black curve when Ti = 100. It lies

slightly above the black curve for Ti = 10. This shows that for these parameters, the approximate

slowing down equation resulting from taking the appropriate limits of the Chandrasekhar function

is very accurate. This also shows that while the range is very dependent on whether or not ions

are included in the slowing down equation, it varies little with ion temperature.

An expression for the velocity as a function of time can similarly be found. Taking the appro-

priate limits of the Chandrasekhar function, eq.(121) becomes

O 6  m 2  1 4 me mec2 3/2
a= 6T e ff In (i) e + T In (Ae)- (142)

at mameff 2 me Te

This equation can be integrated resulting in

,3a (t) = [(A + 3 ,) exp (-S3BTt) - A] 1/ 3 (143)
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Figure 2: Range of fast alpha particles in a homogenous medium. The red curve is calculated
assuming only collisions with electrons. The black curve is calculated assuming collisions with both
electrons and ions, but the appropriate limits of the Chandresekhar functions have been taken. The
blue curve is calculated the same as the black, but without the simplifications of the Chandresekhar
functions and with Ti = 10 KeV.

f me In (A) ( T )3/2
V 2 mff C-eff In (Ae) mc 2

4 ln(Ae) me mec2\ 3 /2
B In (Ae) Te= 727ma ( Te

(144)

(145)

where A and B are again defined as useful dimensionless parameters. The stopping time is found

by finding the time at which the alpha particle velocity becomes zero, 8a (ts) = 0.

(146)
1 (A + 3)

3BvT I A



Taking nD = nT = 2 - 1025 #/cc, p = 166g/cc, Ti = 70, and Te = 30,

tfus = 5.6 -10- 11 s (147)

t, = 6.1 - 10- 12s (148)

where Ti was chosen near the peak of the DT reactivity. The alpha stopping time is about an

order of magnitude less than the fusion time scale. Also note that evaluating Ti at the peak of the

reactivity gives a minimum fusion time scale.

Finally, the fraction of energy that an alpha particle gives to electrons can be found. The rate

of change of the energy of an alpha particle is

E l(A) me 1 4 mec2) 3/ 2

t mf=VT ff In ( ) + vT ln ( A e ) 2 Te (149)
at me a 2Te

This can be written as the sum of the rate of change of energy given to the electrons and ions

a- =- - aE + M-e (150)at at at

Since the velocity /P (t) is now known, the energy given to the electrons can be written

t t 4 2 3m/c2 3 2Ee = dt Tln(Ae) 3/2 T() (151)Sv' 27 Te (151)

0

and the fraction of energy given to the electrons, fe,

fe Ee - 4 ln (Ae) (mec2) 5/2 dt [(A + 3o) exp(-3BVTt) - A] 2 / 3  (152)
Eao Ea0V r T3/ 0

The integral for the electron fraction fe results in a hypergeometric function, F2 E2, , , e], which



is a power series in the quantity e A7,i-v'.

4
f = In (Ae)

v/2]

(mec2) 5/ 2  2

EaTe3/2  2B

F 2 [ 1 1 , 61

(153)

(154)S1 + + (2)

In an equimolar DT plasma, the dimensionless parameters are Oeff a 1.6, n() 1.8, A

0.0024 ( 3/2,and f3o = 8 - 10- 5 . Therefore the quantity e appearing in the power series is

A 1

A + /3 o  1+0.03( mC2 3/2Te

(155)

For small electron temperature Te, e becomes a good expansion parameter. If Te, 10, the para-

meter e is about 0.1. Assuming that, c1/ 3 , e << 2 = 1.21, the hypergeometric function term in

the electron fraction fe can be ignored

Ee 4 (mec2) 5/ 2

fe= - n (Ae)
E ao EaoTe3/2

o2B
2B

2wT A 2/ 3

3 , B
(156)

Plugging in the dimensionless parameters A and B gives for the electron energy fraction

47r4/3 /3
fe = 1 - - m eff

665/ 6 (meff c2) 2 /3 (mec2)1/ 3
In Ai 2/3 mac2

In A E Te

The coefficient in front of the electron temperature Te will be defined as the 'Fraley parameter' x,

4465/6 (/3  (Me 2)

x /65/6 (meffC2)2/3 (mec2)1/3

( In Ai 2/3

in Ae
mac

2

Ea

If the quantity xTe is small, then the electron energy fraction can be written

1
fe =

1 + xTe

(157)

(158)

(159)

A2/3 27-

B (3V3
1[ 1 4 ]

+ e1/3 F2
3' 3'3'



This is the same functional form as the Fraley result, hence the definition of x as the Fraley

parameter. This parameter evaluated for a homogenous DT plasma with In Ae = In Ai is found to

be 1 1/32.7. This value is very close to the value of 1/32 found in the empirical Fraley fit. However,

this expression for the electron energy fraction fe has been derived from first principles and a series

of approximations, most significantly the approximation that the electron temperature Te is small.

However this result turns out not to be that bad for larger Te as can be seen in figure(3). One note

of significance is the dependence of the Fraley parameter x on Zeff (through Ceff), and the ratio

of the coulomb logarithms, which is not necessarily unity. A plot of the fraction of energy given to

electrons by an alpha particle slowing down in an equimolar homogenous DT plasma is shown in

figure (3). The parameters used are noD = nT = 2. 102 5#/cc, p = 166g/cc, Ti = 70.
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Figure 3: Fraction of fast alpha particle energy given to the plasma electrons. The green curve
is the well known Fraley result. The red curve is calculated from eq.(159). The black curve is
calculated numerically.

The black curve is the electron energy fraction fe calculated by integrating eq.(149). The curve



found by integrating eq.(121) lies virtually on top of the black curve. The red curve is eq.(159) with

the Fraley parameter given by eq.(158), while the green curve is eq.(159) with x = 1/32 (empirical

Fraley fit). One can see how the approximate formula eq.(159) approaches the numerical result for

small Te: precisely the assumption under which it was derived. The main difference between the

black and green curves is due the ratio of the coulomb logarithms. If the coulomb log ratio is 1,

then the Fraley parameter is 1/32. However, given the formulas from Atzeni for the coulomb logs,

eq.(5) and eq.(6), the Fraley parameter is 1/21. It clear that this ratio has a noticeable effect on the

energy splitting fractions fe and fi. More importantly, assuming that the ion coulomb log equals

the electron coulomb log underestimates the energy given to ions throughout the entire burn, as

the ion coulomb log is almost always larger than the electron coulomb log.

4.3 Geometry

In this section, the fraction of alpha energy given to the ions, fai, and the fraction of alpha

energy given to the electrons, fe, will be derived for the specific case of the isothermal rarefaction

model where not all of the alpha particles actually stop in the fuel sphere. The zero-D model of an

ICF capsule consists of a homogenous sphere of plasma at specific ion and electron temperatures

and densities. The radius of the homogenous sphere is R, which is just the radius of the inward

moving rarefaction wave. At any given point in the sphere, alpha particles are emitted isotropically

from fusion reactions. Once an alpha is emitted, it follows a straight path in a certain direction

until it travels a distance Ra, which is the range of an alpha particle in the homogenous plasma,

or until it leaves the sphere. The alpha particle loses energy to the plasma along its path. The

energy of an alpha particle is given by a function of the path length the alpha has traveled, Ea (x).

This is precisely the function found by integrating eq.(124) from x' = 0 to x' = x. This function

is Ea, 3.5 Mev at x = 0 and zero at x = Ra. Given E, (x), the fraction of total alpha power

which is delivered inside the sphere can be found. It is actually easier to first calculate the total

instantaneous power that leaves the sphere in the form of alpha particle kinetic energy. This is

given by

Plo t- / dadV Eo (x [r, ]) Na (160)



This expression involves a volume integral over the sphere. Na is the rate of production of alpha

particles which are emitted in direction fl at point r. Due to the homogenous assumption of the

model, Na does not depend on n or r. Clearly, f dQdV Na = 167r2 R 3 N /3 is the total rate of

production of alpha particles in the sphere and Na = RDlTQ). Each alpha particle produced at

point r in direction f travels a distance x [r, f] upon reaching the surface of the sphere, provided

Ra > x [r, f]. The energy that these particles have when they reach the surface is Ea (x [r, f]),

and this energy is deposited in the rarefacted material which is not considered in this model. Of

course, E0 (x [r, l]) is zero if Ra < x [r, ]. Due to spherical symmetry, a spherical coordinate

system can be chosen at a particular point r with the z-axis pointing radially outward. This point

can be moved around on the surface of constant radius r with the z axis always pointing radially

outward without changing the geometry. Therefore, the angular part of the volume integral just

gives a 4r factor. In other words, the calculation can be done for one point on this spherical surface

because it is the same for all other points on this same surface. Krokhin and Rozanov perform a

very similar calculation for constant alpha stopping power(O. N. Krokhin & V. B. Rozanov, Soviet

Journal of Quantum Electronics, vol. 2, 393-394 (1973) 1973).

At radius r with 2 = i and with fl being defined by the angles 0 and ¢, the power is

Post = 4 J r 2 dr do sin (9) dO E, (x [r, 0, 0]) N (161)

Finally, this is also independent of the angle ¢, resulting in

Post = 87 2 J r 2dr sin (0) dO Ea (x [r, 0]) Na (162)

x[r, O]= R2+r2 (cos(0)2 -1)- rcos (0) (163)

The geometry for this calculation is shown in figure (4), and was worked out by O. N. Krokhin and

V. B. Rozanov(Krokhin & Rozanov 1973).

Changing variables to dimensionless radius p = , t = cos (0), and dimensionless path length



Figure 4: The geometry for the calculation of the fraction of fast alpha energy that leaves the fuel
sphere.

Plost = 87r2NaR 3 2dp jdp Ea [y (p, p)]
-1

Y = 1 + p2 (2 -1)- p

Since the alpha particle energy as a function of path length, E [y], is explicitly known, it is convenient

to change integration variables from 0 to y.

dy = p p
1 + p2 2 _ 2

fYmax

Ymin
dy jl-y

1
p dp

- 1) du

p' [, p1

(166)

Ea (Y) (167)

1 p+2 ( 2l[yp2 -1)

(164)

(165)

Post = -87r2NaR 3



Post = 47r2 NR 3  dy pdp (y 2 + 1 p2) E (168)
rain --y

The limits on p should be noted here. y is defined as the distance from the point in question to the

surface of the sphere. Clearly, given y, the smallest p can be is 1 - y. This occurs at u = 1. The

maximum p can be is 1. Therefore, the limits on p are 1 - y to 1. The lower limit on y is zero. The

upper limit on x is the minimum of the range Ra and twice the radius R, min (2R, Ra). The upper

limit on x is really 2R, the diameter of the sphere, as this is the largest that x could be. However,

since E, (x) = 0 for x > R0 , there is an effective limit of Ra. In terms of y this gives

Imin(2,Ra/R) 1

ot = 4 2 NaR3  dy pdp ( 2 + 1 - p2 ) (y) (169)

Finally, the integral over the dimensionless radius p can be done

PNot = 4ir2 N 3  /R) dy (1 - E (y) (170)

This gives for the fraction of power deposited in the sphere, 1 - 1 where PC = 167r2 R 3N 0 Eao/3,P.

3 min(2,R/R) 1_2 Ea (y)
fin =1- m(2R/R) dy 1 - (171)

4 o 4 )Eao

O. N. Krokhin and V. B. Rozanov(Krokhin & Rozanov 1973) arrive at this same result. The

fraction of alpha particles that stay in the sphere for Ra > 2R is

fna =1 - dy 1- =0 (172)

as expected. For Ra < 2R, the fraction that stay in the sphere is

n = 1 3 Ra/R dy 1 1 3  R/R dy (1 = - 3 R+ 1 (173)

The fraction of energy given to the ions can be found as follows. The energy of an alpha

particle as a function of distance along its path is found by integrating eq.(128) or eq.(132). Take



for example the approximate eq.(132). This can be written as

AE oEi OE,
Oxt Ot a

___i m0  1
= 3 0eff In (Ai) E ()

meff Ea(2)

(174)

(175)

This can be integrated giving

(176)E() = /3 eff In (Ahi) m -
Meff Ea (2')

and similarly for the electrons. Now that Ei (x) is known, the fraction of fast alpha energy given

to the ions is

Pions 47r2 NcR3 f min(2,Ra/R) dy(1- E () 3
raur2 R3 16 "  0

Pproduced +fincEi (Ra/R) 1""2 R3 N. 16r2R3NaEao

3 fmin(2R,Ra) -1 (x)2) E(x) Ej(Ra)
fai = dx 1  - + f na-  (178)

4R 4 R Eao Eao

Finally, the fraction of alpha power delivered to the fuel sphere fin, the fraction of alpha particles

that stay in the sphere fn, the fraction of energy given to the ions fai, and the fraction of energy

given to the electrons fe is

(177)

3 min(2R,Ra)
fin = 1 - 0 dx 1( I Ea, (

4 R Eao

3 Ra 1 (Ra 3
-n- =1-- + R a <2R4R 16 R

fn = O Ra > 2R

3 jmin(2R,Ra) d 1 (X)2) Ei (Ra)
fai = dx1 + f1 uE 1

4R o 4 R Eao Eao

(179)

(180)

(181)

(182)



e 3 min(2R,Ra) 1x Ee () Ee (Ra)fe = -d 1 -+ f na (183)
4RO o4 R Eao Eao

These are the energy splitting fractions used in the isothermal rarefaction model. Note that in the

limit of a very large sphere, R = 00oo, the fraction of alpha particles that stay within the burning

fuel approaches 1 and the energy splitting fractions become

Ei (Ra)
fi = -E (R (184)

Ee (R&)
fae = (185)

Eao

which is what they would be in an infinite homogenous medium.

5 Radiation

There are two main limits where the radiation can be treated in a simple fashion. When the

photon mean free path, including reabsorption and scattering, is very short compared to system

scale lengths, the system is optically thick. In this situation, the radiation diffusion approximation

is valid and the radiation pressure is isotropic and equal to a third the radiation energy density.

Furthermore, the radiation tends to be driven to an equilibrium distribution, and equations gov-

erning the macroscopic quantities given by the moments of the photon distribution determine the

photon behavior. Conventionally the photon equilibrium distribution is assumed to be black body.

This assumption leads to significant errors in burn dynamics. A new photon treatment, called 4T

theory(Kim Molvig, Marv Alme, Robert Webster & Conner Galloway, Physics of Plasmas, vol. 16,

023301 (2009) 2009), has been developed to accurately describe the radiation during runaway burn

in optically thick media, and is discussed below.

When the photon mean free path is very long compared to system scale lengths, emission

dominates scattering and absorption. Photons tend to free stream out of the system at the speed of

light, and the energy loss from the electrons is just volumetric Bremsstrahlung loss at temperature



Te. At system length scales that are comparable with an average absorption mean free path (Planck

mean free path), absorption can be treated without too much difficulty provided the Thomson

mean free path is still large. Typical ICF capsules operate in the optically thin regime with small

but noticeable reabsorption, and this regime is what will be treated in the isothermal model. A

discussion of the optically thick case is first given for completeness.

It is conventionally understood that the photon distribution in a quasi-steady optically thick

medium is black body. This can be seen from a kinetic point of view, where the full Bremsstrahlung

operator in the photon kinetic equation drives the photons to a black body distribution. This black

body distribution is completely characterized by a single temperature, which under matter-radiation

equilibrium is the electron temperature. Gradients of the photon black body distribution give rise

to photon energy fluxes in the diffusion limit. Because the photon distribution depends only on

temperature, the photon energy fluxes are proportional to the temperature gradients, and the

proportionality constant involves the Rossaland mean opacity. A strong assumption is commonly

made that the photon distribution can depart from equilibrium with the electrons and be described

by a black body distribution with a separate radiation temperature. However, this conventional

assumption leads to significant errors in burn dynamics. During burn Compton scattering can

dominate Bremsstrahlung, and the equilibrium photon distribution can shift from black body to a

diluted Planckian (Bose-Einstein distribution with non-zero chemical potential). Since scattering

cannot produce photons, the heating of the photons that accompanies Compton scattering when

the electron temperature is greater than the radiation temperature, Te > TR, moves the photons to

higher energy, leaving a diluted region at low energies. When Compton scattering is the only matter-

radiation interaction process in an infinite, homogeneous plasma, it drives the photon distribution

to a diluted Planckian. In such a situation the Compton energy exchange between matter and

radiation is effectively eliminated. This is in contrast to the energy exchange rate computed with

the 3T equations (assumption of black body radiation at radiation temperature TR) which has a very

large Compton exchange rate. Even with the other matter-radiation interaction processes included,

the reduction of the Compton cooling of the electrons can be substantial(Molvig et al. 2009). This

is the situation addressed by 4T theory. The isothermal rarefaction model does not cover optically



thick media.

The dominant interaction of radiation and matter in typical ICF systems is Bremsstrahlung.

Since starting temperatures for burn from a compressed state are of the order of a few KeV, the

hydrogen plasma is fully ionized. Therefore there are only free-free transitions involved in pho-

ton absorption and production. Consider a homogenous system at some temperature T where at

time t = 0 there is no radiation field. Immediately, there will be spontaneous emission occurring

uniformly in the medium. The rate of production of photons per unit time, angle, volume, and

photon energy is given by the emission coefficient j, (the conventional emission coefficient has units

of energy, not number. Here a particle distribution function approach is taken). However once the

radiation field builds up, the processes of absorption and stimulated emission, which are propor-

tional to the photon distribution f, occur. The rate of absorption less stimulated emission for a

given photon frequency is given by ct,, and a mean free path for this process for a given photon

frequency is 1/E, where Ke is the absorption coefficient corrected for stimulated emission. It can

be shown that if the system mean free path is much longer than 1/KE for the relevant frequency

range, then the radiation field builds up toward black body on a time scale of order 1/c ( e) (Ya. B.

Zel'dovich & Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phe-

nomena (Mineola, New York: Dover Publications, Inc., 2002) 2002). Here the averaging is with

respect to a black body photon distribution at temperature T. This is related to the Planck mean

absorption coefficient 1/c (r,) = 1/pllc.

For a system whose length scales are comparable to an average photon mean free path, the

photon distribution never has a chance to fully build up to black body. Photons that would be

reabsorbed are lost through the system boundaries. These photons that are lost take energy with

them, and this constitutes a radiation energy loss from the system. If L is a scale length of the

system, and if L/c and 1/ (,) time scales are short compared to all other time scales, then the

photon distribution can be assumed to be in quasi equilibrium at all times. This is typically the

case for ICF.

Within the homogenous fuel sphere, photons are isotropically produced and then free stream

in a straight line until they leave the sphere or are reabsorbed. It is assumed that once photons



leave the sphere, they are not re-radiated back due to the longer mean free paths in the rarefacted

material. This of course is an approximation, but it is conservative. An exact solution of the

transport equation for the photon distribution as a function of position, energy, and angle inside

the ICF sphere can be found from the full Bremsstrahlung operator, including absorption and

stimulated emission, assuming the fuel sphere is homogenous and the photon distribution is always

in quasi-steady state. Once the photon distribution is found, the flux of energy leaving the sphere

can be calculated and the radiative power loss term Prad determined.

The Bremsstrahlung operator is(A.S. Kompaneets, Soviet Phys. JETP, vol. 4, 730 (1957) 1957)

CB - 47r T, V-e -e/2Ko (e/2) [ ~1 - n (e - 1)]

where n is the photon occupation number. The photon kinetic equation is

of + cfi-V f = CB = j - cr, f

where f is the number of photons at position r at time t with energy e moving in direction fi in

phase space volume ArAe dQ, and

J4r T e 2 e-e/1 2K (e/2)

VB ne mec2 1
C N, e 2 e-/2K (e/2) (e - 1)

8T 3

N (Te) = h3 c3  (186)

4
VB = Z3/2 Zeff avT (187)

where j, and iK are the absorption and emission coefficients that are assumed constant across the

ICF sphere, N is a density and comes from the photon density of states, Ko is the modified bessel

function of the second kind, and e is a dimesionless photon energy h. The fine structure constant is



a = 1/137. The units of i, are carried by c and a bremsstrahlung rate vB, through the Thompson

rate VT = necaT. The absorption coefficient can also be written as

VB 3 7 2 (mec 2 \ 7/2 1

Ke = nVh ere 2,- - -
3  T / e-/2Ko (e/2) (e' - 1) (188)

C a3 Te

where a is the fine structure constant and re is the classical electron radius. Note that this definition

of r, includes stimulated emission. The quasi-equilibrium assumption leads to

fi-Vf (e, fi, r) = l j (e) - Ir (e) f (e, fi, r) (189)

where the functional dependences are made explicit. The term on the left hand side is a directional

derivative. This can be formally solved by using an integrating factor. In general j, (e, fi, r') can

depend on position and angle. If r' is the vector that locates the original source of a photon

(determined by j,) which free streams in direction fi a distance y to a location r, and further has

probability per unit length of being absorbed during its travel to point r given by iE (e) /c, then

eq.(189) can be integrated as

& 1
(f exp[ e, (e) r- fi]) = - (e) exp [ , (e) r- fi]

f= dy j (e, fi, r-yfi) exp [- iE (e) y] (190)
0o c

This expression can be simplified by taking into account spherical symmetry. At a given field

point r, a certain number of photons are propagating in direction fi. In the absence of scattering,

the photons traveling in this direction where emitted back along the -fi direction. The variable y

measures this distance back along this ray. The integral in eq.(190) sums up the sources from all the

points along this ray that contribute to the number of photons propagating in direction fi at point

r. The exponential takes into account that the further a photon has to travel, the more likely it is to

be absorbed. For this ICF model j, is constant in the sphere and zero outside. Therefore eq.(190)

can be solved as follows. Because of isotropy and homogeneity of j, and i,, choose the vector

r to point along the z-axis in spherical coordinates. Because of spherical symmetry, the photon



distribution will be independent of ¢ and only depend on 0, thus the problem can be reduced to

geometry on a circle. At the point r, let 0 define the direction fi, measuring the angle from i. Let y

be the distance from the point at r in the -fi direction to the surface of the sphere. This distance

is given by the law of cosines and the quadratic formula

y = r cos (0) + V/R 2 -2 +2 cos2 ()

When 0 = 0 this distance is y = R + r, when 0 = it is y = V/R2 ,- 2 , and when 0 = r it is

y = R - r. Over this distance y, je is constant and eq.(190) becomes

f (e, , r) = 1 ( dy' exp [- E, (e) y ] (1 -exp [- r~ (e) y])c 6o CC ()

f (, 0, r)= 1j() 1-exp -T () jcos(0) + 1- 2sin2 (0)) (191)Cj (6) (

7 (e) = R r (e) (192)

The distribution function evaluated at r = R is

f (e, 0) = j  () (1 - exp [- 7 (e) (cos (0) + Icos (0)1)]) (193)
CK6 (E)

As expected, if 0 is greater than 7r/2 (corresponding to a photon coming from outside into the

sphere), f (e, 0) is zero. The total energy produced in the sphere equals the total energy which

leaves the sphere through its surface. The total sphere power loss is

V = T 2  e de dQdVphere (j- CKE f) (194)

Using eq.(189) this becomes

V = Tj e de dQdVsphereC f-Vf = cT e 6de dQ dA - fif (195)



= 4rR2cT2 e de dQ cos (0) f (196)

The power loss is

P,2= 8 7 2 2 e00 7r/2
P = 87r2 cR 2 T e de dO sin (0) cos (0) f (E, 9) (197)

0 J0

Evaluating the angular integral

J7/2SdO sin (0) cos (0) f (e, 0) 
(198)

S E) dO sin (0) cos (0) - dO sin (0) cos (0) exp [- -2 () cos ()] (199)cKE W (0 o
j( j dx- dxxexp [- 2(e) x] (200)

j () 1 1 - (1 + 27 (-e)) exp [- 2r ()] (201)
c KE (e) 2 4T (6) 2

results in

= 415R2 BT 1 - (1 + 2 (e)) exp [- 2T ()] (202)

4 0 (e - 1) 2 (E)2

The two limits of T (e) = oo and 7 (e) = 0, corresponding to an optically thick and thin system

respectively, can be checked. The first limit is easy to see. In this limit the integral term vanishes

and

F = 4rR2asBTe4  (203)

which is just the power emitted by a black body multiplied by the surface area. This is expected

when the optical depth is very small compared to the radius of the capsule. In the other limit

P, = 4rR 2uBTe4 1( - dE 1) - 7- (e) + (2) (204)

12 4 15 3 4
P, = 47rR2 asBT 4  iJ0 de 1-- E) 3 r () (205)

e. 4j 0 (eE - 1)3



P-, = eT dee-e/2 Ko (e/2) (206)3 Te 2Te Jo

4 R 3 Bne mec2

P = x e Te T 2 (207)

This is precisely the total energy moment assuming pure emission,

STe J e de dQdVsphere je (208)

which is expected in the limit of an optically thin capsule. The final radiation energy loss term is

given by

Prad = SB 15 0 3 1 - (1 + 27 ()) exp [-2T () (209)
R -4 0 (eE - 1) 27 (e)2

7 () = R c 2 1 /2K (/2) (e - 1) (210)

It should be noted again that this expression is valid only in the thin to marginally thick limit.

For optically thick systems, scattering can be important and the quasi static assumption no longer

holds. This expression for the radiation power loss Prad is used in the isothermal rarefaction model

code.

6 Simulation Results of the Isothermal Rarefaction Model

The equations of the isothermal rarefaction model can now be written down in full including

fusion heating by alpha particles and cooling of the electrons through Bremsstrahlung. The inde-

pendent variables are the electron and ion internal energy densities Ee and Ei; the number densities

of deuterons, tritons, and thermal alpha particles within the burning fuel sphere nD, nT, and na;

and the total particle numbers of deuterons, tritons and thermal alphas, ND, NT, and N,. The



equations for the energy densities are

-- (ve) 3 fi (av) 3
(Q Q v) + -Tim T (mv) + (ave) nDnT - Pie - Pcond

at (av) m Mn + ma 2
(211)

Ee ( (ve) mm,3 faenDnT(UV)
= Q + m + n Tim + Pie - Prad - Pond (212)t (v) 2 mn + ma

where Q is the reaction energy. The fraction of fast alpha energy given to the ions and electrons, fai

and fae, are given by eqs.(182) and (183), and the electron-ion energy exchange Pie, the electron

and ion conduction losses Peond and Piond, and the radiation power loss Prad are given by eqs.(4),

(9), (10) and (209). The equations for the number densities are

anD
= -nDnT (v) (213)

anT
= -nDnT (cv) (214)

an0Ot = fncnDnT (Uv) (215)

where the fraction of fast alpha particles that stay within the burning sphere, fn, is given by

eq.(180). The equations for the total particle numbers are

OND
= -V nDnT (av) (216)

ONT
- = -v nDT (av) (217)
at

aNo
= V nDnT (Ov) (218)

4r
V = R3 (219)

OR
at -Vr (220)

where vr is the velocity of the rarefaction wave front eq.(22). Some of the dependent variables

written here for clarity are the total ion and electron number densities ni and ne, the mass density



p, the ion pressure Pi, and the effective ion mass meff.

ni = nD + nT + n. (221)

ne =nD + nT + 2n, (222)

p = mDnD + mTnT + mana (223)

Pi = niTi (224)

meff = P (225)
ni

The equations above were solved in Matlab. The initial conditions that one sets in the code

are Ti, Te, noD, nT, and R. Equivalently, one may specify initial fuel pR, the total mass (assuming

equal molar DT mixture), and the temperatures. For all of the simulations, an initial equi-molar

mixture of DT was assumed nD = nT. The code stops running when either the ion temperature

falls below 2 KeV, or the radius of the rarefaction wave reaches zero. Two specific cases were run.

The first case is a configuration with a robust pR and strong runaway burn, while the second case

is more marginal. After these are discussed, a plot of burn fractions as a function of pR for many

different initial conditions is presented.

Shown below are a series of plots as a function of time for the initial conditions Ti = Te = 5

KeV, R = 0.01 cm, noD = nT = 5 x 1025 #/cc, p = 418 g/cc, total mass m = 1.7 mg, and pR = 4.2

g/cm2. Burnup is defined as the fraction Y = -N- evaluated at the end of the run. Here N, is the

total number of alpha particles that were produced during the burn, and Npo is the total number

of initial DT pairs. This is just equal to NDo and NTo because nDo = nTo-

The ion and electron temperatures are shown for this run in figure (5), and the radius

of the rarefaction wave is shown in figure (6). It takes about a hundredth of a nanosecond for

runaway burn to begin. During this time, the rarefaction wave proceeds inwards relatively slowly

as the fuel is slowly heated. As can be seen in figure (9), most of the alpha particles stop in the

fuel sphere and predominantly heat the electrons. The fuel radius R has only shrunk by a small
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Figure 9: Fraction of fast alpha particles that are depositied in the fuel sphere (blue). Fraction
of total instantaneous fusion power delivered to electrons (green). Fraction of total instantaneous
fusion power delivered to ions (red).

fraction by the time runaway burn begins. Correspondingly, the fraction of alphas that stay in the

fuel sphere f,a decreases slowly until t - 0.006 ns. At this point, the rapidly increasing electron

temperature (due to the high fe) increases the range of alpha particles (&Ra c /2 for small Te)

resulting in a larger fraction of alphas that leave the fuel sphere. This can be seen by the fast

decrease in fa at t :- 0.008 ns. However, as the electron temperature continues to rise, the range

of alpha particles 'saturates' due to ion collisions, and no longer goes like Te3 / 2 . A brief plateau

is seen in f,,, at t 0.01 ns. At this point, the alpha particles predominantly heat the ions and

the system enters the runaway burn regime. The rarefaction wave proceeds inwards quickly and

the fraction of alpha particles deposited in the sphere continues to decline to zero at t ; 0.04 ns.

At this time the range of an alpha particle is greater than twice the fuel radius. The dropping

electron temperature causes the electrons to be predominately heated by the alpha particles until

the rarefaction wave reaches the origin at t s 0.05 ns. One can see from figure (8) that most of the
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fuel is burned up between t P 0.01 and t ; 0.02 seconds during the initial runaway. In the later

stages of the burn, the volume of the fuel has been decreased considerably, and significant burnup

does not occur. Time histories of the density within the fuel sphere are shown in figure (7). The

final burnup fraction is 0.21.

Shown below are the same profiles but for the more marginal case with smaller burnup fraction.

The initial conditions are Ti = Te = 5 KeV, R = 0.0126 cm, nD = nT = 1.42 x 1025 #/cc, p = 119

g/cc, total mass m = 1 mg, and pR = 1.5 g/cm2 .

Figure 10: Ion and Electron Temperature Profiles

In this case, more of the alpha particles leave the system and the runaway burn is less pro-

nounced. In the previous case the fraction of alpha particles deposited within the fuel sphere, f,,

briefly plateaued around t - 0.01 ns, whereas here there is no such effect. The fraction steadily

declines to zero. Most of the energy that the ions receive is transferred at the end of the range

of alpha particles (Bragg peak). When runaway burn begins to develop, too many alpha particles

are leaving the system and the increase in ion energy fraction fai is marginal. The final burnup

fraction in this case is 0.085.
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Figure 11: Radius of Incoming Rarefaction Wave
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Figure 13: Burn Up Fraction

Figure 14: Fraction of fast alpha particles that are depositied in the fuel sphere (blue). Fraction

of total instantaneous fusion power delivered to electrons (green). Fraction of total instantaneous

fusion power delivered to ions (red).
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The dependence of the fractional burnup on the initial fuel pR will now be discussed. A common

approximate formula for the burn up fraction was given by Fraley(Fraley et al. 1974)

Y = pR (226)
Hb + pR

where pR corresponds to the initial configuration. The burn parameter Hb is typically of the order

10. An expression for the burn parameter derived from simple considerations is given in Atzeni

eq.(2.28), (Atzeni & Meyer-Ter-Vehn 2007)

Hb (T) = 2Tief f 8 g/cm2  (227)
(av)

Clearly, the larger the initial fuel pR, the larger the burn fraction Y.

Another way to see the significance of pR is to look at the alpha particle range. As seen in

eq.(141), the range of an alpha particle scales inversely with the mass density of the fuel, Ra oc 1/p.

If the range of alpha particles is small enough compared to the radius of the fuel sphere, the strong

runaway burn regime can be reached. This can be seen in the two simulations above. In the

marginal run, the fraction of alphas that stay in the sphere, f,, was about 0.4 and was falling

rapidly as the system was trying to undergo runaway burn. In the first run with larger pR, not

only was f.a 0.7 as the ions began to run away, but f, had plateaued. The larger fraction of

alpha particles remaining in the fuel f,, and the plateauing effect of this fraction, play a key role

in achieving higher burnup fractions. Therefore it is required that the following scaling hold

pR oc >1 (228)

Using eq.(141) this can be made more explicit

R In (A)
I /2 pR 0.7pR > 1. (229)

S 0.107Te3/2

where a value of Te - 15, typical of electron temperatures right before runaway, was used. It is



then expected that for pR's greater than about 1.5, good burnup will occur, while for fuel spheres

with pR < 1.5, burnup will be marginal. Note that for a real hot spot surrounded by cold dense

fuel, ignition can occur for pR's smaller than 1. This is because the alpha particles that 'leave

the sphere', or hot spot, get stopped a very short distance into the denser surrounding fuel. Their

energy is not completely lost and can still effect the hot spot dynamics. Furthermore, the cold fuel

acts as a tamper, and there is no rarefaction that occurs into the hot spot from the dense fuel at

ignition.

Shown below in figure (15) is a plot of a series of burn fractions as a function of pR for different

initial temperatures and total fuel masses. The electron and ion initial temperatures were the same,

and the mixtures were equimolar.
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Figure 15: Burn up fractions as a function of pR. The 5 KeV and 7 KeV initial temperature
simulations were independent of initial fuel mass.



The two runs with initial temperatures of 5 and 7 KeV (turquoise and black curves) were the

same for m = 0.1, 1, and 10 mg. For an initial temperature equal to 5 KeV or greater, the burn

fraction does not depend on the initial fuel mass, only the initial pR. Furthermore, as pR increases,

the burn fractions for the 5 and 7 KeV case approach each other. This behavior is expected from

eq.(226) for pR > Hb. It is also seen that for pR < 1.5, the burn fractions begin to drop quickly.

However, there is clear mass dependence for the runs beginning at 3 KeV. This is due to the

reabsorption of photons. The ideal ignition temperature for a pure homogenous DT fuel with only

Bremsstrahlung emission is 4.7 KeV. This is well known in magnetic fusion, where reabsorption of

photons is negligible. If photons are reabsorbed, less energy is lost from the fuel and the effective

ignition temperature is lowered. In the limit where the fuel is very optically thick, then no photons

will be lost from the system (aside from the boundaries). The radiation field will tend to build

up toward a black body, or possibly diluted Planckian(Molvig et al. 2009). If there is enough

total energy input from fusion (and/or other sources) to raise the matter and black body radiation

to over 5 KeV, the system can run away. The average reabsorption mean free path is inversely

proportional to the matter density, lp c li/p. However, p oc (pR)3/ 2 /V Ti. Therefore, fuel spheres

with a larger mass for a given pR will have a larger re-absorption mean free path. More energy will

leave the system and runaway burn may not be as pronounced. This behavior is seen in the figure

(15) where there are clear 'yield cliffs' located at different pR for the different masses. The burn

fraction of the lower mass run increases sharply at pR w 1.5, while the burn fraction of the higher

mass run increases sharply at pR - 2.5. For larger pR the burn fractions approach the same value.

The curves shown in figure (15) do not exactly match the functional form of eq.(226). However,

the large pR limit of the 5 and 7 KeV runs are consistent with Hb 14. Evaluation of the burn

parameter in equation (227) gives Hb = 19 for T = 5 KeV and Hb = 7.3 for T = 7 KeV.

7 Conclusion

The goal of this thesis was to develop a system of ODE equations that model essential features of

the burn of compressed ICF fuel capsules, and that can be integrated faster than most one or two



dimensional radiation hydrocodes. Particular attention was given to burn physics, the treatment

of the slowing down of fast alpha particles, and the theory developed was then applied to the

isothermal rarefaction model. Many effects were seen in the simulations using this model such as

runaway burn, strong preferential heating of ions or electrons, effects of photon reabsorption, yield

cliffs, and dependence of burn up on pR. This model can be used as an effective quick estimate of

the performance of a compressed ICF capsule.

The most significant drawback of this model is that it is zero-D and assumes a homogenous state.

The code does not model hot spot ignition, which is seen as a necessity by most. In real capsules,

significant burn may occur while the whole fuel is very non-isothermal. An understanding and

ability to simulate hot spot ignition and burn propagation are essential for a detailed ICF design.

Furthermore, the radiation transport is simplified in that scattering and explicit time dependence

is ignored. Scattering can be important even in the near-thin limit, and in cases where the diffusion

approximation is valid, explicit time dependence definitely cannot be ignored.

However, the theory developed here can readily be applied to more sophisticated codes which

have explicit spatial dependence. For instance, an explicit 1-D code can integrate alpha particles

along a certain number of rays from every cell in the geometry using equation (124) to find the fusion

source and sink terms for each cell for each time step. Each cell can be considered homogenous.

Advection, diffusion, and viscous terms in the momentum and energy equations would have to be

added. A more sophisticated radiation treatment could be added as well, although in many cases

assuming pure Bremsstrahlung emission is not that bad of an approximation.
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