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Abstract

Dynamic Programming (DP) is a fundamental problem-solving technique that has been widely
used for solving a broad range of search and optimization problems. While DP can be invoked
when more specialized methods fail, this generality often incurs a cost in efficiency. We explore a
unifying toolkit for speeding up DP, and algorithms that use DP as subroutines. Our methods and
results can be summarized as follows.

- Acceleration via Compression. Compression is traditionally used to efficiently store data. We
use compression in order to identify repeats in the table that imply a redundant computation.
Utilizing these repeats requires a new DP, and often different DPs for different compression
schemes. We present the first provable speedup of the celebrated Viterbi algorithm (1967) that
is used for the decoding and training of Hidden Markov Models (HMMs). Our speedup relies
on the compression of the HMM's observable sequence.

- Totally Monotone Matrices. It is well known that a wide variety of DPs can be reduced to
the problem of finding row minima in totally monotone matrices. We introduce this scheme
in the context of planar graph problems. In particular, we show that planar graph problems
such as shortest paths, feasible flow, bipartite perfect matching, and replacement paths can be
accelerated by DPs that exploit a total-monotonicity property of the shortest paths.

- Combining Compression and Total Monotonicity. We introduce a method for accelerating string
edit distance computation by combining compression and totally monotone matrices. In the
heart of this method are algorithms for computing the edit distance between two straight-line
programs. These enable us to exploits the compressibility of strings, even if each string is
compressed using a different compression scheme.

- Partial Tables. In typical DP settings, a table is filled in its entirety, where each cell corresponds
to some subproblem. In some cases, by changing the DP, it is possible to compute asymptotically
less cells of the table. We show that E(n3 ) subproblems are both necessary and sufficient for
computing the similarity between two trees. This improves all known solutions and brings the
idea of partial tables to its full extent.



- Fractional Subproblems. In some DPs, the solution to a subproblem is a data structure rather
than a single value. The entire data structure of a subproblem is then processed and used to
construct the data structure of larger subproblems. We suggest a method for reusing parts of
a subproblem's data structure. In some cases, such fractional parts remain unchanged when
constructing the data structure of larger subproblems. In these cases, it is possible to copy
this part of the data structure to the larger subproblem using only a constant number of pointer
changes. We show how this idea can be used for finding the optimal tree searching strategy in
linear time. This is a generalization of the well known binary search technique from arrays to
trees.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Dynamic Programming (DP) is a powerful problem-solving paradigm in which a problem is solved

by breaking it down into smaller subproblems. These subproblems are then tackled one by one,

so that the answers to small problems are used to solve the larger ones. The simplicity of the

DP paradigm, as well as its broad applicability have made it a fundamental technique for solving

various search and optimization problems.

The word "programming" in "dynamic programming" has actually very little to do with com-

puter programming and writing code. The term was first coined by Richard Bellman in the 1950s,

back when programming meant planning, and dynamic programming meant to optimally plan a

solution process. Indeed, the challenge of devising a good solution process is in deciding what are

the subproblems, and in what order they should be computed. Apart from the obvious requirement

that an optimal solution to a problem can be obtained by optimal solutions to its subproblems, an

efficient DP is one that induces only a "small" number of distinct subproblems. Each subproblem

is then reused again and again for solving multiple larger problems.

This idea of reusing subproblems is the main advantage of the DP paradigm over recursion.

Recursion is suited for design techniques such as divide-and-conquer, where a problem is reduced

to subproblems that are substantially smaller, say half the size. In contrast, in a typical DP setting,

a problem is reduced to subproblems that are only slightly smaller (e.g., smaller by only a constant

factor). However, it is often convenient to write out a top-down recursive formula and then use



it to describe the corresponding bottom-up DP solution. In many cases, this transformation is not

immediate since in the final DP we can often achieve a space complexity that is asymptotically

smaller than the total number of subproblems. This is enhanced by the fact that we only need to

store the answer of a subproblem until the larger subproblems depending on it have been solved.

The simplicity of the DP paradigm is what makes it appealing, both as a full problem solving

method as well as a subroutine solver in more complicated algorithmic solutions. However, while

DP is useful when more specialized methods fail, this generality often incurs a cost in efficiency.

In this thesis, we explore a toolkit for speeding up straightforward DPs, and algorithms that use

DPs as subroutines.

To illustrate some DP ideas, consider the string edit distance problem. This problem asks to

compute the minimum number of character deletions, insertions, and replacements required to

transform one string A = ala2 ... an into another string B = bib2... bn. Let E(i, j) denote the

edit distance between ala2 .. ai and b1b2 ... bj. Our goal is then to compute E(n, m), and we can

achieve this by using the following DP.

E(i,j) =min{E(i,j - 1)+1, E(i-1,j) + 1, E(i - 1,j- 1)+diff(i,j)}

where diff(i,j) = 0 if ai = by, and 1 otherwise. This standard textbook DP induces O(nm)

subproblems - one subproblem for each pair of prefixes of A and B. Since every subproblem

requires the answers to three smaller subproblems, the time complexity is O(nm) and the bottom-

up DP can construct the table E row by row. Notice that at any stage during the computation,

we only need to store the values of two consecutive rows, so this is a good example of a situation

where the space complexity is smaller than the time complexity (the number of subproblems).

1.1 Searching for DP Repeats

As we already mentioned, a good DP solution is one that makes the most out of subproblem

repeats. Indeed, if we look at a subproblem E(i, j), it is used for solving the larger subproblem

E(i, j + 1), as well as E(i + 1, j) and E(i + 1, J + 1). However, does the above DP really utilize



repeats to their full extent? What if the string A = A'A' (i.e., A is the concatenation of two equal

strings of length n/2), and B = B'B'. The DP computation will then behave "similarly" on E(i, j)

and on E(i + n/2, j + m/2) for every i = 1,..., n/2 and j = 1,..., m/2. In order for repeats

in the strings to actually induce repeated subproblems we would have to modify the DP so that

subproblems correspond to substrings rather than to prefixes of A and B.

The first paper to do this and break the quadratic time upper bound of the edit distance com-

putation was the seminal paper of Masek and Paterson [72]. This was achieved by applying the

so called "Four-Russians technique" - a method based on a paper by Arlazarov, Dinic, Kronrod,

and Faradzev [ 10] for boolean matrix multiplication. The general idea is to first pre-compute the

subproblems that correspond to all possible substrings (blocks) of logarithmic size, and then mod-

ify the edit distance DP so instead of advancing character by character it advances block by block.

This gives a logarithmic speedup over the above O(nm) solution.

The Masek and Paterson speedup is based on the fact that in strings over constant-sized al-

phabets, small enough substrings are guaranteed to repeat. But what about utilizing repeats of

longer substrings? It turns out that we can use text compression to both find and utilize re-

peats. The approach of using compression to identify DP repeats, denoted "acceleration via com-

pression", has been successfully applied to many classical string problems such as exact string

matching [5, 4), ], , '], approximate pattern matching [i, .4, 49, 82], and string edit dis-

tance [ 2, , , ), , 2]. It is often the case that utilizing these repeats requires an entirely new

(and more complicated) DP.

It is important to note, that all known improvements on the O(nm) upper bound of the edit

distance computation, apply acceleration via compression. In addition, apart from the naive com-

pression of the Four-Russians technique, Run Length Encoding, and the LZW-LZ78 compression,

we do not know how to compute the edit distance efficiently under other compression schemes.

Our string edit distance result. We introduce a general compression-based edit distance al-

gorithm that can exploit the compressibility of two strings under any compression scheme, even

if each string is compressed with a different compression. This is achieved by using Straight-

line programs (a notion borrowed from the world of formal languages), together with an efficient



algorithm for finding row minima in totally monotone matrices. We describe the use of totally

monotone matrices for accelerating DPs in Section 1.2.

Our HMM result. Hidden Markov Models (HMMs) are an extremely useful way of modeling

processes in diverse areas such as error-correction in communication links [ ], speech recogni-

tion [ i 1], optical character recognition [ i], computational linguistics [ ], and bioinformatics [ 1 ].

The two most important computational problems involving HMMs are decoding and training. The

problem of decoding an HMM asks to find the most probable sequence of hidden states to have

generated some observable sequence, and the training problem asks to estimate the model given

only the number of hidden states and an observable sequence.

In Chapter 2, we apply acceleration via compression to the DP algorithms used for decoding

and training HMMs. We discuss the application of our method to Viterbi's decoding and train-

ing algorithms [ ], as well as to the forward-backward and Baum-Welch [ ] algorithms. We

obtain the first provable speedup of the celebrated Viterbi algorithm [ ]. Compared to Viterbi's

algorithm, we achieve speedups of O(log n) using the Four-Russians method, Q ( ' ) using run-

length encoding, t(- -) using Lempel-Ziv parsing, Q( ) using straight-line programs, and nQ(r)

using byte-pair encoding, where k is the number of hidden states, n is the length of the observed

sequence and r is its compression ratio (under each compression scheme).

1.2 Totally Monotone Matrices

One of the best known DP speedup techniques is the seminal algorithm of Aggarwal, Klawe,

Moran, Shor, and Wilber [,] nicknamed SMAWK in the literature. This is a general speedup

technique that can be invoked when the DP satisfies additional conditions of convexity or concavity

that can be described by a totally monotone matrix. An n x m matrix M = (Mi) is totally

monotone if for every i, i', j, j' such that i < i', j < j', and Mi < Mij,, we have that M,'j < M,j,.

Aggarwal et al. showed that a wide variety of problems in computational geometry can be reduced

to the problem of finding row minima in totally monotone matrices. The SMAWK algorithm finds

all row minima optimally in O(n + m) time. Since then, many papers on applications which lead



to totally monotone matrices have been published (see [20 ] for a survey).

Our planar shortest paths result. In Chapter 3, we use totally monotone matrices in the context

of planar graph problems. We take advantage of the fact that shortest paths in planar graphs exhibit

a property similar to total-monotonicity. Namely, they can be described by an upper-triangular

fragment of a totally monotone matrix. Our first result is an O(na(n)) time' DP for preforming a

variant of the Bellman-Ford shortest paths algorithm on the vertices of the planar separator. This

DP serves as a subroutine in all single-source shortest paths algorithms for directed planar graphs

with negative edge lengths. The previous best DP for this subroutine is that of Fakcharoenphol and

Rao [3 5] and requires O(n log2 n) time.

Fakcharoenphol and Rao used this subroutine (and much more) to obtain an O(n log 3 n)-

time and O(n log n)-space solution for the single-source shortest paths problem in directed pla-

nar graphs with negative lengths. In [52], we used our new DP to improve this to O(n log 2 n)

time and O(n) space. This result is important not only for shortest paths, but also for solving

bipartite perfect matching, feasible flow, and feasible circulation which are all equivalent in planar

graphs to single-source shortest paths with negative lengths. Apart from the DP, we needed other

non-DP ideas that are beyond the scope of this thesis. We therefore focus here only on the said

Bellman-Ford variant.

Our planar replacement paths result. Our second result involving total-monotonicity in planar

graphs concerns the replacement-paths problem. In this problem, we are given a directed graph

with non-negative edge lengths and two nodes s and t, and we are required to compute, for every

edge e in the shortest path between s and t, the length of an s-to-t shortest path that avoids e. By

exploiting total-monotonicity, we show how to improve the previous best O(n log 3 n)-time solution

of Emek et al. [3.4] for the replacement path problem in planar graphs to O(n log2 n).

Finally, as we already mentioned, by combining acceleration via compression, and the totally

monotone properties of the sting edit distance DP, we show in Chapter 4 how to accelerate the

string edit distance computation.

Sca(n) denotes the slowly growing inverse Ackerman function.



1.3 Partial Tables and Fractional Subproblems

The main advantage of (top-down) recursion over (bottom-up) DP is that while DP usually solves

every subproblem that could conceivably be needed, recursion only solves the ones that are actually

used. We refer to these as relevant subproblems. To see this, consider the Longest Common

Subsequence (LCS) problem that is very similar to string edit distance. The LCS of two strings

A = aja2 . . . a and B = bb2 ... bm is the longest string that can be obtained from both A and

B by deleting characters. As in the edit distance case, we let L(i, j) denote the length of the LCS

between ala2 .. ai and b1b2 . bj, and we compute L(n, m) using the following DP.

(ij) L(i-1,j-1) +1 ,if a = bj

max{L(i,j - 1) + 1,L(i - 1,j) + 1} ,otherwise

Like the edit distance DP, the LCS DP will solve O(nm) subproblems, one for each pair of pre-

fixes of A and B. However, consider a simple scenario in which A = B. In this case, a recursive

implementation will only compute O(n) distinct (relevant) subproblems (one for each pair of pre-

fixes of A and B of the same length), while DP will still require Q(n 2). To avoid computing the

same subproblem again and again, one could use memoization - a recursive implementation that

remembers its previous invocations (using a hash table for example) and thereby avoids repeating

them.

There are two important things to observe from the above discussion. First, that in the worst

case (for general strings A and B), both the recursion (or memoization) and the DP compute Q(n2)

distinct subproblems. Second, the memoization solution does not allow reducing the space com-

plexity. That is, the space complexity using memoization is equal to the number of subproblems,

while in DP it can be reduced to O(n) even when the number of relevant subproblems is Q (n2).

Surprisingly, in some problems (unfortunately not in LCS), these two obstacles can be over-

come. For such problems, it is possible to slightly change their original DP, so that it will fill

only a partial portion of the DP table (i.e., only the subset of relevant subproblems). It can then

be shown that even in the worst case, this partial portion is asymptotically smaller than the entire

table. Furthermore, the space complexity can be reduced to be even smaller than the size of this



partial portion.

The main advantage of the partial table idea is that a slight change in the DP can make a big

change in the number of subproblems that it computes. While the analysis can be complicated, the

actual DP remains simple to describe and implement. This will be the topic of Chapter 5.

Our tree edit distance result. In Chapter 5, we will apply the above idea to the problem of tree

edit distance. This problem occurs in various areas where the similarity between trees is sought.

These include structured text databases like XML, computer vision, compiler optimization, natural

language processing, and computational biology [1 5, .2 , 5 4, ', ].

The well known DP solution of Shasha and Zhang [88] to the tree edit distance problem in-

volves filling an O(n 4)-sized table. Klein [513], showed that a small change to this DP induces

only O(n3 log n) relevant subproblems. We show that 8(n 3 ) subproblems are both necessary and

sufficient for computing the tree edit distance DP. This brings the idea of filling only a partial DP

table to its full extent. We further show how to reduce the space complexity to O(n 2).

After describing the idea of partial tables, the final chapter of this thesis deals with partial

subproblems. Notice that in both DPs for edit distance and LCS that we have seen so far, the

answer to a subproblem is a single value. In some DPs however, the solution to a subproblem is an

entire data structure rather than only a value. In these cases, the DP solution processes the entire

data structure computed for a certain subproblem in order to construct the data structure of larger

subproblems. In Chapter 6, we discuss processing only parts of a subproblem's data structure.

We show that in some cases, a part of a subproblem's data structure remains unchanged when

computing the data structure of larger subproblems. In these cases, it is possible to copy this part

of the data structure to the larger subproblem using only a constant number of pointer changes.

Our tree searching result. We show how this idea can be used for the problem of finding an

optimal tree searching strategy. This problem is an extension of the binary search technique from

sorted arrays to trees, with applications in file system synchronization and software testing [ ~4,

S07, 83]. As in the sorted array case, the goal is to minimize the number of queries required to

find a target element in the worst case. However, while the optimal strategy for searching an array



is straightforward (always query the middle element), the optimal strategy for searching a tree is

dependent on the tree's structure and is harder to compute. We give an O(n) time DP solution that

uses the idea of fractional subproblems and improves the previous best O(n 3)-time algorithm of

Onak and Parys [x ].



Chapter 2

Acceleration via Compression

The main idea of DP is that subproblems that are encountered many times during the computation

are solved once, and then used multiple times. In this chapter, we take this idea another step

forward by considering entire regions of the DP table that appear more than once. This is achieved

by first changing the DP in a way that regional repeats are guaranteed to occur, and then using text

compression as a tool to find them.

The traditional aim of text compression is the efficient use of resources such as storage and

bandwidth. The approach of using compression in DP to identify repeats, denoted "accelera-

tion via compression", has been successfully applied to many classical string problems. Vari-

ous compression schemes, such as Lempel-Ziv [ i04, 1ti0], Huffman coding, Byte-Pair Encod-

ing [90], Run-Length Encoding, and Straight-Line Programs were employed to accelerate exact

string matching [5, , '~l , 70, Q 1], approximate pattern matching [4, 48, 4), 8i], and string edit

distance [-, ", 1", 29, 69].

The acceleration via compression technique is designed for DPs that take strings as inputs.

By compressing these input strings, it is possible to identify substring repeats that possibly imply

regional repeats in the DP itself. In this chapter, we investigate this technique on a problem that is

not considered a typical string problem as its input does not consist only of strings. We present a

method to speed up the DPs used for solving Hidden Markov Model (HMM) decoding and training

problems. Our approach is based on identifying repeated substrings in the observed input sequence.



We discuss the application of our method to Viterbi's decoding and training algorithms [ ], as well

as to the forward-backward and Baum-Welch [ ] algorithms.

In Section 2.1 we describe HMMs, and give a unified presentation of the HMM DPs. Then,

in Section 2.2 we show how these DPs can be improved by identifying repeated substrings. Five

different implementations of this general idea are presented in Section 2.3: Initially, we show how

to exploit repetitions of all sufficiently small substrings (the Four-Russians method). Then, we

describe four algorithms based alternatively on Run-Length Encoding (RLE), Lempel-Ziv (LZ78),

Straight-Line Programs (SLP), and Byte-Pair Encoding (BPE). Compared to Viterbi's algorithm,

we achieve speedups of O(log n) using the Four Russians method, Q( ' ) using RLE, Q( 1-)

using LZ78, Q(-) using SLP, and Q(r) using BPE, where k is the number of hidden states, n

is the length of the observed sequence and r is its compression ratio (under each compression

scheme). We discuss the recovery of the optimal state-path in Section 2.4, and the adaptation of

our algorithms to the training problem in Section 2.5. Finally, in Section 2.6 we describe a parallel

implementation of our algorithms.

2.1 Decoding and Training Hidden Markov Models

Over the last few decades HMMs proved to be an extremely useful framework for modeling

processes in diverse areas such as error-correction in communication links [ ], speech recogni-

tion [ ], optical character recognition [ ], computational linguistics [ ], and bioinformatics [ ].

Definition 2.1 (Hidden Markov Model) Let E denote a finite alphabet and let X E E', X =

xi, 2, ... , xn be a sequence of observed letters. A Markov model is a set of k states, along with

emission probabilities ek((a) - the probability to observe a E E given that the state is k, and

transition probabilities Pj - the probability to make a transition to state i from state j.

The core HMM-based applications fall in the domain of classification methods and are tech-

nically divided into two stages: a training stage and a decoding stage. During the training stage,

the emission and transition probabilities of an HMM are estimated, based on an input set of ob-

served sequences. This stage is usually executed once as a preprocessing stage and the generated



("trained") models are stored in a database. Then, a decoding stage is run, again and again, in

order to classify input sequences. The objective of this stage is to find the most probable sequence

of states to have generated each input sequence given each model, as illustrated in Fig. 2-1.

IX I I I
X 1  X2  X 3  ....... Xn

Figure 2-1: The HMM on the observed sequence X = xl, x2,.. . , xn and states 1, 2,..., k. The

highlighted path is a possible path of states that generate the observed sequence. VA finds the path

with highest probability.

Obviously, the training problem is more difficult to solve than the decoding problem. However,

the techniques used for decoding serve as basic ingredients in solving the training problem. The

Viterbi algorithm (VA) [99] is the best known tool for solving the decoding problem. Following its

invention in 1967, several other algorithms have been devised for the decoding and training prob-

lems, such as the forward-backward and Baum-Welch [t 3] algorithms. These algorithms are all

based on DP and their running times depend linearly on the length of the observed sequence. The

challenge of speeding up VA by utilizing HMM topology was posed in 1997 by Buchsbaum and

Giancarlo [ 18] as a major open problem. We address this open problem by using text compression

and present the first provable speedup of these algorithms.

2.1.1 The Viterbi Algorithm

The Viterbi algorithm (VA) finds the most probable sequence of hidden states given the model and

the observed sequence, i.e., the sequence of states sl, S2,... , Sn which maximize

e s(xi) Ps', l1 (2.1)
i=l



The DP of VA calculates a vector vt [i] which is the probability of the most probable sequence of
states emitting xl,..., xt and ending with the state i at time t. vo is usually taken to be the vector
of uniform probabilities (i.e., voi] = 1). Vt+l is calculated from vt according to

t+l [i] = ei(xt+l) -max{Pi,j - vt[j]} (2.2)

Definition 2.2 (Viterbi Step) We call the computation of vt+l from vt a Viterbi step.

Clearly, each Viterbi step requires O(k2 ) time. Therefore, the total runtime required to compute the
vector v, is O(nk2 ). The probability of the most likely sequence of states is the maximal element
in v,. The actual sequence of states can then be reconstructed in linear time.

4

6 . . 4,

Xi X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Figure 2-2: The VA dynamic programming table on sequence X = £1, x2, .. ,x13 and states
1, 2, 3, 4, 5, 6. The marked cell corresponds to v8 [4] = e4 (x8) -max{P4,1 .7 1], P4 ,2.v7 [2],..., P4,6
V7[6]}.

It is useful for our purposes to rewrite VA in a slightly different way. Let M' be a k x k matrix
with elements MZ,.- = ei(a) -P,j. We can now express v, as:

v, = Mxn 0 Mn - 
( ) ... M2 O Mxl1 0 Vo (2.3)

where (A 0 B)i,j - maXk{Ai,k ' Bk,j is the so called max-times matrix multiplication. Similar
notation was already considered in the past. In [ 17], for example, writing VA as a linear vector re-
cursion allowed the authors to employ parallel processing and pipelining techniques in the context
of VLSI and systolic arrays.



VA computes v, using (2.3) from right to left in O(nk2) time. Notice that if (2.3) is evalu-

ated from left to right the computation would take O(nk3 ) time (matrix-vector multiplication vs.

matrix-matrix multiplication). Throughout, we assume that the max-times matrix-matrix multipli-

cations are done naively in O(k3 ). Faster methods for max-times matrix multiplication [22, 2"]

and standard matrix multiplication [2, j!4] can be used to reduce the k3 term. However, for small

values of k this is not profitable.

2.1.2 The Forward-Backward Algorithms

The forward-backward algorithms are closely related to VA and are based on very similar DP.

In contrast to VA, these algorithms apply standard matrix multiplication instead of max-times

multiplication. The forward algorithm calculates ft[i], the probability to observe the sequence

x1, X2,..., Xt requiring that st = i as follows:

ft = M xt . M X - 1 . MX 2 . M x . fo (2.4)

The backward algorithm calculates bt [i], the probability to observe the sequence Xt+l, t+2, .. , Xn

given that st = i as follows:

bt = bn - M x n . M x n - 1 ..... M t +2 
. Mx t + 1  (2.5)

Another algorithm which is used in the training stage and employs the forward-backward algorithm

as a subroutine, is the Baum-Welch algorithm, to be further discussed in Section 2.5.

2.2 Exploiting Repeated Substrings

Consider a substring W = 1 w, 2, ... , we of X, and define

M(W) = Mn 0 MWI- 1 0( .0 MW 2 0 MI ' (2.6)



Intuitively, Mi, (W) is the probability of the most likely path starting with state j, making a transi-

tion into some other state, emitting wl, then making a transition into yet another state and emitting

w2 and so on until making a final transition into state i and emitting w.

In the core of our method stands the following observation, which is immediate from the asso-

ciative nature of matrix multiplication.

Observation 2.3 We may replace any occurrence of Mwl 0 MZ " - 1 ... - M" in eq. (2.3) with

M(W).

The application of observation 1 to the computation of equation (2.3) saves f - 1 Viterbi steps each

time W appears in X, but incurs the additional cost of computing M(W) once.

An intuitive exercise. Let A denote the number of times a given word W appears, in non-

overlapping occurrences, in the input string X. Suppose we naively compute M(W) using (IWI -

1) max-times matrix multiplications, and then apply observation 1 to all occurrences of W before

running VA. We gain some speedup in doing so if

(IWI- 1)k3 + Ak2 < A1W; k2

A > k (2.7)

Hence, if there are at least k non-overlapping occurrences of W in the input sequence, then it is

worthwhile to naively precompute M(W), regardless of its size WI.

Definition 2.4 (Good Substring) We call a substring W good if we decide to compute M(W).

We can now give a general four-step framework of our method:

(I) Dictionary Selection: choose the set D = {Wi} of good substrings.

(II) Encoding: precompute the matrices M(Wi) for every Wi E D.

(III) Parsing: partition the input sequence X into consecutive good substrings so that X =

W, Wi,2 ... Wi ,, and let X' denote the compressed representation of this parsing of X,

such that X' = i1 i 2 ... in"



(IV) Propagation: run VA on X', using the matrices M(W).

The above framework introduces the challenge of how to select the set of good substrings (step

I) and how to efficiently compute their matrices (step II). In the next section we show how the

RLE, LZ78, SLP and BPE compression schemes can be applied to address this challenge, and how

the above framework can be utilized to exploit repetitions of all sufficiently small substrings (this

is similar to the Four Russians method). In practice, the choice of the appropriate compression

scheme should be made according to the nature of the observed sequences. For example, genomic

sequences tend to compress well with BPE [I2] and binary images in facsimile or in optical char-

acter recognition are well compressed by RLE [ , 8, '), 19, (,, 7,]. LZ78 guarantees asymptotic

compression for any sequence and is useful for applications in computational biology, where k is

smaller than log n [ i 7, 2 7, 3].

Another challenge is how to parse the sequence X (step III) in order to maximize acceleration.

We show that, surprisingly, this optimal parsing may differ from the initial parsing induced by

the selected compression scheme. To our knowledge, this feature was not applied by previous

"acceleration by compression" algorithms.

We focus on computing path probabilities rather than the paths themselves. The actual paths

can be reconstructed in linear time as described in Section 2.4.

2.3 Five Different Implementations of the General Framework

In this section, we present five different ways of implementing the general framework, based alter-

natively on the Four Russians method, and the RLE, LZ78, SLP, and BPE compression schemes.

We show how each compression scheme can be used for both selecting the set of good substrings

(step I) and for efficiently computing their matrices (step II).

2.3.1 Acceleration via the Four Russians Method

The most naive approach is probably using all possible substrings of sufficiently small length £ as

good ones. This approach is quite similar to the Four Russians method [ I ], and leads to a O (log n)



asymptotic speedup. The four-step framework described in Section 2.2 is applied as follows.

(I) Dictionary Selection: all possible strings of length f over alphabet IE are good substrings.

(II) Encoding: For i = 2... £, compute M(W) for all strings W with length i by computing

M(W') 0 M(a), where W = W'u for some previously computed string W' of length

i - 1 and some letter a E .

(III) Parsing: X' is constructed by partitioning the input X into blocks of length f.

(IV) Propagation: run VA on X', using the matrices M(Wi) as described in Section 2.2.

Time and Space Complexity. The encoding step takes 0(2|E|'k 3 ) time as we compute 0(2 EI')

matrices and each matrix is computed in O(k3 ) time by a single max-times multiplication. The

propagation step takes 0("2 ) time resulting in an overall running time of 0(2 EZlk 3 + "k2 )

Choosing f logj (n), the running time is O(2x/ k3 + 2nk2). This yields a speedup of2 ). This yields a speedup of

S(log n) compared to VA, assuming that k < . In fact, the optimal length is approximately
lOgl p(n)"

= log n-log log n-log k-1, since then the preprocessing and the propagation times are roughly equal.
log JE

This yields a E({) = E(log n) speedup, provided that f > 2, or equivalently that k < 2njlogn.

Note that for large k the speedup can be further improved using fast matrix multiplication [, ,

2.3.2 Acceleration via Run-length Encoding

In this section we obtain an Q( o' ) speedup for decoding an observed sequence with run-length

compression ratio r. A string S is run-length encoded if it is described as an ordered sequence of

pairs (a, i), often denoted ai. Each pair corresponds to a run in S, consisting of i consecutive oc-

currences of the character a. For example, the string aaabbcccccc is encoded as a3 b2c6. Run-length

encoding serves as a popular image compression technique, since many classes of images (e.g., bi-

nary images in facsimile transmission or for use in optical character recognition) typically contain

large patches of identically-valued pixels. The four-step framework described in Section 2.2 is

applied as follows.



(I) Dictionary Selection: for every c E E and every i = 1,2,..., log n we choose o2 ' as a

good substring.

(II) Encoding: since M(o-2i) M(a 2i- 1) 0 M(o-2i-1), we can compute the matrices using

repeated squaring.

(III) Parsing: Let W1 W2 .. W, be the RLE of X, where each Wi is a run of some 0 E E. X'

is obtained by further parsing each Wi into at most log I Wi I good substrings of the form
-2 .

(IV) Propagation: run VA on X', as described in Section 2.2.

Time and Space Complexity. The offline preprocessing stage consists of steps I and II. The time

complexity of step II is O( E Ik3 log n) by applying max-times repeated squaring in O(k3) time per

multiplication. The space complexity is O(IjEk 2 log n). This work is done offline once, during

the training stage, in advance for all sequences to come. Furthermore, for typical applications, the

O( EIk3 log n) term is much smaller than the O(nk2 ) term of VA.

Steps III and IV both apply one operation per occurrence of a good substring in X': step III

computes, in constant time, the index of the next parsing-comma, and step IV applies a single

Viterbi step in k2 time. Since IX'l = E 1 log Wi, the complexity is

wX'log i l og(II Wl. W2.w,)1 ... --k2 1W' = k2 log(|Wi W) < k 22Og) (n/n' ) 0(n'k2lOg ).
i=1

Thus, the speedup compared to the O(nk2 ) time of VA is Q( -) = "(-r).

2.3.3 Acceleration via LZ78 Parsing

In this section we obtain an Q( o) speedup for decoding, and a constant speedup in the case

where k > log n. We show how to use the LZ78 [1 i] parsing to find good substrings and how to

use the incremental nature of the LZ78 parse to compute M(W) for a good substring W in O(k3 )

time.



LZ78 parses the string X into substrings ( LZ78-words) in a single pass over X. Each LZ78-

word is composed of the longest LZ78-word previously seen plus a single letter. More formally,

LZ78 begins with an empty dictionary and parses according to the following rule: when parsing

location i, look for the longest LZ78-word W starting at position i which already appears in the

dictionary. Read one more letter ar and insert Wa into the dictionary. Continue parsing from

position i + W| + 1. For example, the string "AACGACG" is parsed into four words: A, AC, G,

ACG. Asymptotically, LZ78 parses a string of length n into O(hn/ log n) words [ ], where 0 <

h < 1 is the entropy of the string. The LZ78 parse is performed in linear time by maintaining the

dictionary in a trie. Each node in the trie corresponds to an LZ78-word. The four-step framework

described in Section 2.2 is applied as follows.

(I) Dictionary Selection: the good substrings are all the LZ78-words in the LZ78-parse of X.

(II) Encoding: construct the matrices incrementally, according to their order in the LZ78-trie,

M(Wr) = M(W) 0 M".

(III) Parsing: X' is the LZ78-parsing of X.

(IV) Propagation: run VA on X', as described in Section 2.2.

Time and Space Complexity. Steps I and III were already conducted offline during the pre-

processing compression of the input sequences (in any case LZ78 parsing is linear). In step II,

computing M(Wo) = M(W) 0 M', takes O(k3 ) time since M(W) was already computed for the

good substring W. Since there are O(n/ log n) LZ78-words, calculating the matrices M(W) for

all Ws takes O(k 3n/ log n). Running VA on X' (step IV) takes just O(k2n/ log n) time. Therefore,

the overall runtime is dominated by O(k 3n/ log n). The space complexity is O(k2n/ log n).

The above algorithm is useful in many applications, where k < log n. However, in those

applications where k > log n such an algorithm may actually slow down VA. We next show an

adaptive variant that is guaranteed to speed up VA, regardless of the values of n and k. This

graceful degradation retains the asymptotic ( (1) acceleration when k < log n.
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An improved algorithm with LZ78 Parsing

Recall that given M(W) for a good substring W, it takes k3 time to calculate M(Wo). This

calculation saves k2 operations each time Wa occurs in X in comparison to the situation where

only M(W) is computed. Therefore, in step I we should include in D, as good substrings, only

words that appear as a prefix of at least k LZ78-words. Finding these words can be done in a

single traversal of the trie. The following observation is immediate from the prefix monotonicity

of occurrence tries.

Observation 2.5 Words that appear as a prefix of at least k LZ78-words are represented by trie

nodes whose subtrees contain at least k nodes.

In the previous case it was straightforward to transform X into X', since each phrase p in the

parsed sequence corresponded to a good substring. Now, however, X does not divide into just

good substrings and it is unclear what is the optimal way to construct X' (in step III). Our approach

for constructing X' is to first parse X into all LZ78-words and then apply the following greedy

parsing to each LZ78-word W: using the trie, find the longest good substring w' E D that is a

prefix of W, place a parsing comma immediately after w' and repeat the process for the remainder

of W.

Time and Space Complexity. The improved algorithm utilizes substrings that guarantee accel-

eration (with respect to VA) so it is therefore faster than VA even when k = Q(log n). In addition,

in spite of the fact that this algorithm re-parses the original LZ78 partition, the algorithm still

guarantees an Q( 19) speedup over VA as shown by the following lemma.

Lemma 2.6 The running time of the above algorithm is bounded by O(k 3n/log n).

Proof. The running time of step II is at most O(k 3n/ log n). This is because the size of the entire

LZ78-trie is O(n/ log n) and we construct the matrices, in O(k3) time each, for just a subset of

the trie nodes. The running time of step IV depends on the number of new phrases (commas) that

result from the re-parsing of each LZ78-word W. We next prove that this number is at most k for

each word.



Consider the first iteration of the greedy procedure on some LZ78-word W. Let w' be the

longest prefix of W that is represented by a trie node with at least k descendants. Assume, contrary

to fact, that I WI - Iw' > k. This means that w", the child of w', satisfies IWI - Iw" > k, in

contradiction to the definition of w'. We have established that (W - Iw') < k and therefore the

number of re-parsed words is bounded by k + 1. The propagation step IV thus takes O(k3 ) time

for each one of the O(n/ log n) LZ78-words. So the total time complexity remains O(k 3n/ log n).

Based on Lemma 2.6, and assuming that steps I and III are pre-computed offline, the running

time of the above algorithm is O(nk2 /e) where e = Q(max(1, 12)). The space complexity is

O(k2 n/logn).

2.3.4 Acceleration via Straight-Line Programs

In this subsection we show that if an input sequence has a grammar representation with compres-

sion ratio r, then HMM decoding can be accelerated by a factor of Q(L).

Let us shortly recall the grammar-based approach to compression. A straight-line program

(SLP) is a context-free grammar generating exactly one string. Moreover, only two types of pro-

ductions are allowed: Xi - a and X, -- XXq with i > p, q. The string represented by a given

SLP is a unique text corresponding to the last nonterminal Xz. We say that the size of an SLP is

equal to its number of productions. An example SLP is illustrated in Figure 2-3.

X2 -a 
X5

X3 - X2X1 \ \ I\
X4  X3 X3 X2 X3 X2 X2 Xi

X4 -- X3X2 /\ /\ /\ i /\ " '
X3 X2 X2 Xi X2 X X2 X

X5 -+ X4X3 I \

X6 -+X5X4 
:

X 7  X 6X 5  a a ba a a a a b

Figure 2-3: Consider the string abaababaabaab. It could be generated by the above SLP, also

known as the Fibonacci SLP.

Rytter [ ] proved that the resulting encoding of most popular compression schemes can be



transformed to straight-line programs quickly and without large expansion. In particular, consider

an LZ77 encoding [104i] with n" blocks for a text of length n. Rytter's algorithm produces an

SLP-representation with size n' = O(n" log n) of the same text, in O(n') time. Moreover, n'

lies within a log n factor from the size of a minimal SLP describing the same text. Note also

that any text compressed by the LZ78 encoding can be transformed directly into a straight-line

program within a constant factor. However, here we focus our SLP example on LZ77 encoding

since in certain cases LZ77 is exponentially shorter than LZ78, so even with the log n degradation

associated with transforming LZ77 into an SLP, we may still get an exponential speedup over LZ78

from Section 2.3.3.

We next describe how to use SLP to achieve the speedup.

(I) Dictionary Selection: let X be an SLP representation of the input sequence. We choose

all strings corresponding to nonterminals X1,..., X,, as good substrings.

(II) Encoding: compute M(Xi) in the same order as in X. Every concatenating rule requires

just one max-times multiplication.

(III) Parsing: Trivial (the input is represented by the single matrix representing X,,).

(IV) Propagation: vt = M (X,,) 0 vo.

Time and Space Complexity. Let n' be the number of rules in the SLP constructed in the parsing

step (r = n/n' is the ratio of the grammar-based compression). The parsing step has an O(n) time

complexity and is computed offline. The number of max-times multiplications in the encoding step

is n'. Therefore, the overall complexity of decoding the HMM is n'k3 , leading to a speedup factor

of Q().

In the next section we give another example of a grammar-based compression scheme where

the size of the uncompressed text may grow exponentially with respect to its description, and that

furthermore allows, in practice, to shift the Encoding Step (III) to an off-line preprocessing stage,

thus yielding a speedup factor of Q(r).



2.3.5 Acceleration via Byte-Pair Encoding

In this section byte pair encoding is utilized to accelerate the Viterbi decoding computations by

a factor of Q(r), where n' is the number of characters in the BPE-compressed sequence X and

r = n/n' is the BPE compression ratio of the sequence. The corresponding pre-processing term

for encoding is O(IE'|k 3), where E' denotes the set of character codes in the extended alphabet.

Byte pair encoding [ , , ] is a simple form of data compression in which the most common

pair of consecutive bytes of data is replaced with a byte that does not occur within that data. This

operation is repeated until either all new characters are used up or no pair of consecutive two char-

acters appears frequently in the substituted text. For example, the input string ABABCABCD

could be BPE encoded to XYYD, by applying the following two substitution operations: First

AB -+ X, yielding XXCXCD, and then XC -+ Y. A substitution table, which stores for

each character code the replacement it represents, is required to rebuild the original data. The

compression ratio of BPE has been shown to be about 30% for biological sequences [ ].

The compression time of BPE is O(lE'ln). Alternatively, one could follow the approach of

Shibata et al. [ , ], and construct the substitution-table offline, during system set-up, based on

a sufficient set of representative sequences. Then, using this pre-constructed substitution table, the

sequence parsing can be done in time linear in the total length of the original and the substituted

text. Let a E E' and let W, denote the word represented by a in the BPE substitution table. The

four-step framework described in Section 2.2 is applied as follows.

(I) Dictionary Selection: all words appearing in the BPE substitution table are good sub-

strings, i.e. D = {W, } for all a E E'.

(II) Encoding: if a is a substring obtained via the substitution operation AB -+ a then

M (W) = M (WA) 0 M(W).

So each matrix can be computed by multiplying two previously computed matrices.

(III) Parsing: given an input sequence X, apply BPE parsing as described in [ , ].



(IV) Propagation: run VA on X', using the matrices M(Wi) as described in Section 2.2.

Time and Space Complexity. Step I was already taken care of during the system-setup stage

and therefore does not count in the analysis. Step II is implemented as an offline, preprocessing

stage that is independent of the observed sequence X but dependent on the training model. It can

therefore be conducted once in advance, for all sequences to come. The time complexity of this

off-line stage is O(IE'l1k3) since each matrix is computed by one max-times matrix multiplication

in O(k3 ) time. The space complexity is O(IE'1k2 ). Since we assume Step III is conducted in pre-

compression, the compressed decoding algorithm consists of just Step IV. In the propagation step

(IV), given an input sequence of size n, compressed into its BPE-encoding of size n' (e.g. n' = 4

in the above example, where X = ABABCABCD and X' = XYYD), we run VA using at most

n' matrices. Since each VA step takes k2 time, the time complexity of this step is O(n'k2). Thus,

the time complexity of the BPE-compressed decoding is O(n'k2) and the speedup, compared to

the O(nk2) time of VA, is Q(r).

2.4 Optimal state-path recovery

In the previous section, we described our decoding algorithms assuming that we only want to

compute the probability of the optimal path. In this section we show how to trace back the optimal

path, within the same space complexity and in O(n) time. To do the traceback, VA keeps, along

with the vector vt (see eq. (2.2)), a vector of the maximizing arguments of eq. (2.2), namely:

ut+1[i] = argmaxj{P,j, vt[j]} (2.8)

It then traces the states of the most likely path in reverse order. The last state sn is simply the

largest element in vn, argmaxj {vn[j]}. The rest of the states are obtained from the vectors u by

st-1 = ut [st]. We use exactly the same mechanism in the propagation step (IV) of our algorithm.

The problem is that in our case, this only retrieves the states on the boundaries of good substrings

but not the states within each good substring. We solve this problem in a similar manner.



Note that in all of our decoding algorithms every good substring W is such that W = WAWB

where both WA and WB are either good substrings or single letters. In LZ78-accelerated decoding,

WB is a single letter, when using RLE WA = WB = rlwl/2, SLP consists just of production

rules involving a single letter or exactly two non-terminals, and with BPE WA, WBE E Z'. For this

reason, we keep, along with the matrix M(W), a matrix R(W) whose elements are:

R(W),j = argmaxk{M(WA)i,k D M(WB)k,j} (2.9)

Now, for each occurrence of a good substring W = w1 ,. .. , we we can reconstruct the most

likely sequence of states si, , .. se as follows. From the partial traceback, using the vectors u,

we know the two states so and se, such that so is the most likely state immediately before wl was

generated and se is the most likely state when we was generated. We find the intermediate states

by recursive application of the computation sjwI = R(W)8,Os.

Time and Space Complexity. In all compression schemes, the overall time required for trac-

ing back the most likely path is O(n). Storing the matrices R does not increase the basic space

complexity, since we already stored the similar-sized matrices M(W).

2.5 The Training Problem

In the training problem we are given as input the number of states in the HMM and an observed

training sequence X. The aim is to find a set of model parameters 0 (i.e., the emission and transi-

tion probabilities) that maximize the likelihood to observe the given sequence P(XI 0). The most

commonly used training algorithms for HMMs are based on the concept of Expectation Maximiza-

tion. This is an iterative process in which each iteration is composed of two steps. The first step

solves the decoding problem given the current model parameters. The second step uses the results

of the decoding process to update the model parameters. These iterative processes are guaranteed

to converge to a local maximum. It is important to note that since the dictionary selection step

(I) and the parsing step (III) of our algorithm are independent of the model parameters, we only



need run them once, and repeat just the encoding step (II) and the propagation step (IV) when the

decoding process is performed in each iteration.

2.5.1 Viterbi training

The first step of Viterbi training [l3] uses VA to find the most likely sequence of states given the

current set of parameters (i.e., decoding). Let Aij denote the number of times the state i follows

the state j in the most likely sequence of states. Similarly, let Ei (a) denote the number of times

the letter a is emitted by the state i in the most likely sequence. The updated parameters are given

by:

P = and ei(a) - (2.10)
PJ t Aij E,, EZ(a')

Note that the Viterbi training algorithm does not converge to the set of parameters that maximizes

the likelihood to observe the given sequence P(X 10) , but rather the set of parameters that locally

maximizes the contribution to the likelihood from the most probable sequence of states [30]. It is

easy to see that the time complexity of each Viterbi training iteration is O(k 2 n + n) = O(k 2n) so

it is dominated by the running time of VA. Therefore, we can immediately apply our compressed

decoding algorithms from Section 2.3 to obtain a better running time per iteration.

2.5.2 Baum-Welch training

The Baum-Welch training algorithm converges to a set of parameters that maximizes the likeli-

hood to observe the given sequence P(X 0), and is the most commonly used method for model

training. Recall the forward-backward matrices: ft[i] is the probability to observe the sequence

xl, x2, ... , xt requiring that the t'th state is i and that bt[i] is the probability to observe the se-

quence Xt+1, t+2,..., an given that the t'th state is i. The first step of Baum-Welch calculates

ft [i] and bt [i] for every 1 < t < n and every 1 < i < k. This is achieved by applying the forward

and backward algorithms to the input data in O(nk2) time (see eqs. (2.4) and (2.5)). The second



step recalculates A and E according to

Ai,j = ( S t = j- St+l = iIX, 0)

E() = P(st= iX,) (2.11)
t Xt =-

where P(st = j, st+l = i X, 0) is the probability that a transition from state j to state i occurred

in position t in the sequence X, and P(st = i|X, 0) is the probability for the t'th state to be i in

the sequence X. These probabilities are calculated as follows using the matrices ft [i] and bt [i] that

were computed in the first step.

P(st = j, st+l = i|X, 0) is given by the product of the probabilities to be in state j after

emitting x 1, x2,..., Xt, to make a transition from state j to state i, to emit xt+1 at state i and to

emit the rest of X given that the state is i:

ft[j] " Pi,j -ei(xt+l) -bt+l[i]
P(st = j, st+l = i X, 8) =) (2.12)

where the division by P(XI 0) = Ej fn[i] is a normalization by the probability to observe X given

the current model parameters. Similarly

ft[i] . bt[i]P(st = i|X, 0) = (2. 13)
P(X1 0)

Finally, after the matrices A and E are recalculated, Baum-Welch updates the model parameters

according to (2. 10).

We next describe how to accelerate the Baum-Welch algorithm. It is important to notice that,

in the first step of Baum-Welch, our algorithms to accelerate VA (sections 2.3.2 and 2.3.3) can

be used to accelerate the forward-backward algorithms by simply replacing the max-times matrix

multiplication with regular matrix multiplication. However, the accelerated forward-backward

algorithms will only calculate ft and bt on the boundaries of good substrings. In what follows, we

explain how to solve this problem and speed up the second step of Baum-Welch as well. We focus

on updating the matrix A, updating the matrix E can be done in a similar fashion.
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Figure 2-4: The contribution of an occurrence of the good string W to A12, computed as the some
of the arrow probabilities.

We observe that when accumulating the contribution of some appearance of a good substring

W to A, Baum-Welch performs O(k 2 |WI) operations, but updates at most k2 entries (the size of

A). Therefore, we may gain a speedup by precalculating the contribution of each good substring to

A and E. More formally, let W = w1w2 ... we be a substring of the observed sequence X starting

s characters from the beginning (i.e., W=zX+l1Xs+2 ... s+j as illustrated in Fig. 2-4). According

to (2.11) and (2.12), the contribution of this occurrence of W to Aij is:

s+t-I
E ft[j] " Pi,j -ei(xt+l) - bt+l[i]

t=s P(X| 8)
e-1

P(XI 6 0) ft+s[j] -Pij -ei(wt+) -bt+s+[i]
t=0

However, by equation (2.4) we have

ft+S =- Mxt+ " Mxt+s -1 "" MXl . fo

SMxt+s Mxt+ -1 .. M S+1 . fs

= MWt . MW-1 ..- MW . f

and similarly by equation (2.5) bt+,+l = b+e . Mw -M w -1 - M W t+ 2 . The above sum thus equals



1 e-1

(P(XM M -) ... MwI f )j Pij ei(wt+) - (bs,+ Arew Mw" 1" . MWt+2)i

1 -1 k k

P(XI ) E (Mwt . .. MWl), fs Ia] Pij e(wt+l) - bs+[3] (W A . . t2

t=0 a=l =1

k k 1 e-1
P(xl> O)(M t M O)J' " P ij C i( Wt+l) (Mw"... /wtf+2)0,

a=l 0=1 t=0

RL

k k

- ] -b ] R (2.14)
a=l 3=1

Notice that the four dimensional array R7j3 can be computed in an encoding step (II) in O(Ck 4)

time and is not dependant on the string context prior to Xs or following Xs,+. Furthermore, the

vectors fs and b,+e where already computed in the first step of Baum-Welch since they refer to

boundaries of a good substring. Therefore, R can be used according to (2.14) to update Aij for a

single occurrence of W and for some specific i and j in 0(k 2) time. So R can be used to update

Aij for a single occurrence of W and for every i, j in O(k4) time. To get a speedup we need A, the

number of times the good substring W appears in X to satisfy:

fk4 + Ak4 < Ak 2

£k2

A > (2.15)
f - k2

This is reasonable if k is small. If f = 2k 2 , for example, then we need A to be greater than 2k 2

2.6 Parallelization

We conclude this chapter with a discussion on a parallel implementation of our algorithms. We first

note that the classical formulation of the decoding algorithms by the basic recursion in Eq. (2.2)

imposes a constraint on a parallel implementation. It is possible to compute the maximum in



(2.2) in parallel, and eliminate the linear dependency on k, the number of states. However, the

dependency of vt+1 on Vt makes it difficult to avoid the dependency of the running time on n, the

length of the input.

Once VA is cast into the form of Eq. (2.3), it is easy to achieve full parallelization, both with

respect to the number of states in the model and with respect to the length of the input. Similar ideas

were previously considered in [I4, '7] in the context of VLSI architectures for Viterbi decoders in

data communications. We describe and analyze the general idea in the CREW (Concurrent Read,

Exclusive Write) PRAM model for the Four-Russians variant of our method. The same approach

applies to the other algorithms described above with the exception of the SLP-based algorithm,

assuming that the parsing step (III) is performed in advance.

Our algorithms, as well as VA in the form of (2.3), are essentially a sequence of matrix multi-

plications (either max-times or regular matrix multiplication) which may be evaluated in any order.

The product of two k-by-k matrices can be computed in parallel in O(log k) time using O(k3 ) pro-

cessors. The product of x such matrices can therefore be calculated in parallel in O(log x log k)

time using O(xk3 ) processors. Therefore, VA in the form of (2.3) can be performed in paral-

lel. The maximal number of processors used concurrently is O(nk3 ), and the running time is

O(log n log k). For our Four-Russians algorithm, we first compute in parallel all possible ma-

trices for words of length 1 logE (n). This corresponds to step (II) of the algorithm. Next, we

perform step (IV) by computing, in parallel, the product of 2n matrices. The maximal num-log 1 (n)

ber of processors used concurrently along this computation is O( ), and the running time islogn "

O(log n log k) = O(log n log k). As can be seen, this does not improve the asymptotic running

time, but does decrease the required number of processors. It should be noted that if the number

of processors is bounded, then exploiting repetitions does improve the asymptotic running time.

Tracing the optimal path can also be done in parallel using O(n) processors in O(log n) time in

both cases.
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Chapter 3

Totally Monotone Matrices and Monge

Matrices

Probably the best known DP speedup technique is the seminal algorithm of Aggarwal, Klawe,

Moran, Shor, and Wilber ['] (nicknamed SMAWK in the literature) for finding the row minima of

a totally monotone n x m matrix in O(n + m) time. A matrix M = (Mij) is totally monotone if

for every i, i', j, j' such that i < i', j < j', and MiGj Mij,, we have that M,j < M ,j,. Aggarwal

et al. showed that a wide variety of DPs in computational geometry can be reduced to the problem

of finding row minima in totally monotone or in Monge matrices.

A matrix M = (Mij) is Monge if for every i, i', j, j' such that i < i', j < j', we have Mij +

MV,4, > Mj,+M ,ij. It is immediate that if M is Monge then it is totally monotone. Monge matrices

were discovered back in 1781 by the French engineer and mathematician Gaspard Monge [77] in

the context of transportation problems. In 1961, Hoffman [46] rediscovered these matrices and

coined the term Monge property. Since SMAWK was introduced, many papers on applications

which lead to Monge matrices have been published (see [20] for a survey).

In this chapter, we present speedups for DPs used for solving planar graphs problems such

as single-source shortest paths, replacement paths, bipartite perfect matching, feasible flow, and

feasible circulation. The speedups are based on the fact that shortest paths in planar graphs exhibit

a property similar to Monge. Namely, they can be described by an upper-triangular fragment of a



Monge matrix.

Shortest paths with negative lengths. The problem of directed shortest paths with negative

lengths is as follows: Given a directed graph G with positive and negative arc-lengths containing

no negative cycles,' and given a source node s, find the distances from s to all the nodes in the

graph.

For general graphs, the Bellman-Ford algorithm solves the problem in O(mn) time, where m

is the number of arcs and n is the number of nodes. For integer lengths whose absolute values

are bounded by N, the algorithm of Gabow and Tarjan [ ] takes O(v/-nm log(nN)). For integer

lengths exceeding -N, the algorithm of Goldberg [ ] takes O(vj-m log N) time.

For planar graphs, there has been a series of results yielding progressively better bounds. The

first algorithm that exploited planarity was due to Lipton, Rose, and Tarjan [ ], who gave an

O(n3/2) algorithm. Henzinger et al. [ ] gave an O(n4/3 log 2 /3 D) algorithm where D is the sum

of the absolute values of the lengths. Fakcharoenphol and Rao [ ] gave an algorithm requiring

O(n log3 n) time and O(n log n) space.

These planarity-exploiting shortest paths algorithms, make use of planar separators [F , ].

Given an n-node planar embedded directed graph G with arc-lengths, a planar separator is a Jordan

curve C that passes through O(v/-) nodes (and no arcs) such that between n/3 and 2n/3 nodes

are enclosed by C. A node through which C passes is called a boundary node. Cutting the planar

embedding along C and duplicating boundary nodes yields two subgraphs Go and G1. Refer to

Fig. 3-2 for an illustration.

All planarity-exploiting shortest paths algorithms use DP for a procedure that can be seen

as a Bellman-Ford step. In this step, we assume that we have already computed the shortest paths

distances in Go and in G1 between every pair of boundary vertices, and stored them in two v x v

matrices 60 and 61. The DP is then used to compute the shortest paths distances in G from an

arbitrary boundary vertex r to all boundary vertices using 6o and 61. Lipton, Rose and Tarjan [,: ]

showed how to do this in O(n 3/2) time, Fakcharoenphol and Rao [ ] improved to O(n log 2 n), and

Mozes [ ] to O(n log n). We show (in Section 3.2) how this DP can be preformed in O(na(n))

'Algorithms for this problem can also be used to detect negative cycles.



time, where a(n) is the inverse Ackerman function. Our speedup is based on the fact that the upper

triangular fragment of 60 and 61 is Monge. We have recently used this speedup in [52] to obtain the

following theorem. In this thesis, we only describe the DP part of this result (i.e. the Bellman-Ford

step).

Theorem 3.1 There is an O(n log 2 n) -time, linear-space algorithm to find single-source shortest

paths in planar directed graphs with negative lengths.

In addition to being a fundamental problem in combinatorial optimization, shortest paths in

planar graphs with negative lengths arises in solving other problems. Miller and Naor [74] show

that, by using planar duality, the following problem can be reduced to shortest paths in a planar

directed graph:

Feasible circulation: Given a directed planar graph with upper and lower arc-capacities,

find an assignment of flow to the arcs so that each arc's flow is between the arc's lower

and upper capacities, and, for each node, the flow into the node equals the flow out.

They further show that the following problem can in turn be reduced to feasible circulation:

Feasible flow: Given a directed planar graph with arc-capacities and node-demands,

find an assignment of flow that respects the arc-capacities and such that, for each node,

the flow into the node minus the flow out equals the node's demand.

For integer-valued capacities and demands, the solutions obtained to the above problems are

integer-valued. Consequently, as Miller and Naor point out, the problem of finding a perfect match-

ing in a bipartite planar graph can be solved using an algorithm for feasible flow. Our speedup thus

accelerates algorithms for bipartite planar perfect matching, feasible flow, and feasible circulation.

Replacement paths with nonnegative lengths. The replacement-paths problem is defined as

follows: we are given a directed graph with non-negative arc lengths and two nodes s and t. We

are required to compute, for every arc e in the shortest path between s and t, the length of an s-to-t

shortest path that avoids e.



Emek et al. [ ] gave an O(n log3 n)-time algorithm for solving the replacement-paths problem

in a directed planar graph. This was achieved by reducing the problem to that of computing the

following n values associated with the diagonal of a certain n x n matrix len. The value of the

diagonal cell (i, i) is the minimal element of the rectangular portion of len defined by rows 1 to

i and columns i to n. The matrix len, defined in Section 3.3, is designed to capture all possible

replacement paths. By exploiting a Monge property of len, we obtain the following logarithmic

improvement for finding these n values.

Theorem 3.2 There is an O(n log 2 n)-time algorithm for solving the replacement-paths problem

in a directed planar graph.

In the following section we describe some preliminary definitions. Then, in Section 3.2, we de-

scribe our speedup for the Bellman-Ford procedure and in Section 3.3 we describe the replacement

paths algorithm.

3.1 Preliminaries

We now describe some necessary definitions regarding Monge matrices and planar graphs.

3.1.1 Monotonicity, Monge and Matrix Searching.

A matrix M = (Mij) is totally monotone if for every i, i', j, j' such that i < i', j < j' and

Mj < Mij,, we also have Mi, < M Aj,. The SMAWK algorithm of Aggarwal et al. [ ] finds all

row-maxima of a totally monotone n x m matrix M in just O(n + m) time. It is easy to see that by

negating each element of M and reversing the order of its columns, SMAWK can be used to find

the row minima of M as well.

We will not give a full description of SMAWK, but let us outline an intuitive explanation

of the basis of SMAWK. Consider an n x n totally monotone matrix M. We want to find the

maximum element in every row of M using only O(n) comparisons. In the beginning, every

element of M is a possible candidate for being its row maximum. Assume for example, that we



then compare Mn a with its adjacent cell M4~+ I. Notice that if MIL a < M a~+ then by total
2'2 2 2 212 - 2 2

monotonicity, M,LL < M, +1 for every i > . In other words, by preforming one comparison,

we have eliminated 1 candidates from being the maximum of their row. If on the other hand

M , > Ma,a+1 then by total monotonicity, M, > M2, +1 for every i < L, and again our one

comparison eliminated - candidates.

Another matrix property related to total-monotonicity is the Monge property. A matrix M is

convex Monge (resp. concave Monge) if for every i, i', j, j' such that i < i', j < j', we have

Mj + M j > Mj, + M,j (resp. Mj + M , 5 Mjl + Mj). It is immediate that if M is convex

Monge then it is totally monotone. It is also easy to see that the matrix obtained by transposing M

is also totally monotone. Thus SMAWK can also be used to find the column minima and maxima

of a convex Monge matrix.

In [5 I] Klawe and Kleitman define a falling staircase matrix to be a lower triangular fragment

of a totally monotone matrix. More precisely, (M, {f(i)}o<i<n+l) is an n x m falling staircase

matrix if

1. for i = 0,...,n + 1, f(i) is an integer with 0 = f(0) < f(1) < f(2) < ..- < f(n) <

f(n + 1) - m + 1.

2. Mij, is a real number if and only if 1 < i < n and 1 < j < f(i). Otherwise, MAj is blank.

3. (total monotonicity) for i < k and j < 1 < f(i), and Mij < Mil, we have Mkj3  Mkl.

Finding the row maxima in a falling staircase matrix can be easily done using SMAWK in

O(n + m) time after replacing the blanks with sufficiently small numbers so that the resulting ma-

trix is totally monotone. However, this trick does not work for finding the row minima. Aggarwal

and Klawe [2] give an O(m log log n) time algorithm for finding row-minima in falling staircase

matrices of size n x m. Klawe and Kleitman give in [5 ] a more complicated algorithm that com-

putes the row-minima of an n x m falling staircase matrix in O(ma(n) + n) time, where a(n) is the

inverse Ackerman function. If M satisfies the above conditions with total monotonicity replaced

by the convex Monge property then M and the matrix obtained by transposing M and reversing



the order of rows and of columns are falling staircase. In this case both algorithms can be used to

find the column-minima as well as the row-minima.

3.1.2 Jordan Separators for Embedded Planar Graphs.

A planar embedding of a graph assigns each node to a distinct point on the plane, and assigns each

edge to a simple arc between the points corresponding to its endpoints, with the property that no

arc-arc or arc-point intersections occur except for those corresponding to edge-node incidence in

the graph. A graph is planar if it has a planar embedding. Consider the set of points on the sphere

that are not assigned to any node or edge; each connected component of this set is a face of the

embedding.

Miller [ ] gave a linear-time algorithm that, given a triangulated two-connected n-node planar

embedded graph, finds a simple cycle separator consisting of at most 2v2-v nodes, such that at

most 2n/3 nodes are strictly enclosed by the cycle, and at most 2n/3 nodes are not enclosed.

For an n-node planar embedded graph G that is not necessarily triangulated or two-connected,

we define a Jordan separator to be a Jordan curve C that intersects the embedding of the graph

only at nodes such that at most 2n/3 nodes are strictly enclosed by the curve and at most 2n/3

nodes are not enclosed. The nodes intersected by the curve are called boundary nodes and denoted

V. To find a Jordan separator with at most 2v"2i- boundary nodes, add artificial edges with

sufficiently large lengths to triangulate the graph and make it two-connected without changing the

distances in the graph. Now apply Miller's algorithm.

The internal part of G with respect to C is the embedded subgraph consisting of the nodes and

edges enclosed by C, i.e. including the nodes intersected by C. Similarly, the external part of G

with respect to C is the subgraph consisting of the nodes and edges not strictly enclosed by C, i.e.

again including the nodes intersected by C.

Let G1 (Go) denote the internal (external) part of G with respect to C. Since C is a Jordan

curve, the set of points of the plane strictly exterior to C form a connected region. Furthermore,

it contains no point or arc corresponding to a node or edge of G1. Therefore, the region remains

connected when these points and arcs are removed, so the region is a subset of some face of



G1. Since every boundary node is intersected by C, it follows that all boundary nodes lie on the

boundary of a single face of G1. Similarly, in Go, all boundary nodes lie on a single face.

3.2 A Bellman-Ford Variant for Planar Graphs

The classical Bellman-Ford algorithm computes the shortest paths from a given source r to all

vertices in a general directed graph with positive and negative lengths. Let ej [v] be the length of

a shortest path from r to v that is composed of at most j edges. Bellman-Ford computes en-1 I[v]

in O(mn) time for all vertices v, where m is the number of edges and n is the number of vertices.

The Bellman-Ford pseudocode is given in Figure 3-1. We denote 6[w, v] as the length of the edge

(w, v), and oc if no such edge exists.

1: eo[v] = 0c for all v E V
2: eo[r]= 0
3: forj = 1, 2,..., n - 1
4: ey[v] = minwv{ej_1[w] + 6[w, v]} , Vv E V

Figure 3-1: Pseudocode for the the Bellman-Ford algorithm that computes the shortest-path dis-
tances from a source vertex r to all vertices of a general directed graph G = (V, E) with positive
and negative edge lengths 6(.).

Since the number of edges m in a planar graph G is O(n), the Bellman-Ford algorithm runs in

O(n2 ) time on planar graphs. Faster planarity-exploiting shortest paths algorithms use a Bellman-

Ford variant as a procedure for computing the distances from r to all boundary nodes (i.e., the

nodes of V). This is done by using the recursively computed 6o and 61 tables, where 6i[w, v] is

the w-to-v distance in Gi for every pair w, v of boundary nodes. The Bellman-Ford variant of [68]

requires O(n 3/2 ) time, the one of [35] runs in O(n log2 n), and that of [79] in O(n log n). In this

section, we prove the following theorem that gives an O(na(n)) Bellman-Ford variant.

Theorem 3.3 Let G be a directed planar graph with arbitrary arc-lengths. Let C be a separator

in G and let Go and G1 be the external and internal parts of G with respect to C. Let 6o and 61

be the all-pairs distances between nodes in V, in Go and in GI respectively. Let r E V be an



arbitrary node on the boundary. There exists an algorithm that, given 6o and 61, computes the

from-r distances in G to all nodes in V, in O(IV, 2a (VI)) time and O( VI) space.

Summary of the Algorithm. A shortest path in G passes back and forth between Go and G1.

Refer to Fig. 3-2 and Fig. 3-3 for an illustration. We use a variant of Bellman-Ford to compute

the distances in G from r to all the boundary nodes. Alternating iterations use the all-boundary-

distances 60 and 61. Because the distances have a Monge property, each iteration can be imple-

mented by two executions of the Klawe-Kleitman algorithm [5 1] for finding row minima in a lower

triangular fragment of a Monge matrix. Each iteration is performed in O(V/a(n)). The number

of iterations is O(./-n), so the overall time is O(na(n)).

/ / ..........\ , 1--7

I
I r

I

.. . . . . ... . .

GI o /
'0

PP
C3O

V
Q Gi 0

(/I C :o

P4- --
Figure 3-2: A graph G and a decomposition us-
ing a Jordan curve into an external subgraph Go
(in gray) and an internal subgraph G1 (in white).
Only boundary nodes are shown. r and v are
boundary nodes. The double-lined blue path is an
r-to-v shortest path in G1. The dashed red path is
an r-to-v shortest path in Go.

Figure 3-3: The solid blue path is an r-to-v short-
est path in G. It can be decomposed into four
subpaths. The subpaths P1 and P3 (P2 and P4)
are shortest paths in G1 (Go) between boundary
nodes. The r-to-v shortest paths in Go and G 1 are
shown in gray in the background.

The rest of this section describes the algorithm, thus proving Theorem 3.3. The following

structural lemma stands in the core of the computation. The same lemma has been implicitly used

by previous planarity-exploiting algorithms.

Lemma 3.4 Let P be a simple r-to-v shortestpath in G, where v E V. Then P can be decomposed

into at most IV, subpaths P = PIP2P3 ... , where the endpoints of each subpath Pi are boundary

nodes, and Pi is a shortest path in Gi mod 2*

f



Proof. Consider a decomposition of P = P1 P2P3 ... into maximal subpaths such that the subpath

P consists of nodes of Gi mod 2- Since r and v are boundary nodes, and since the boundary nodes

are the only nodes common to both Go and G1, each subpath P starts and ends on a boundary

node. If P were not a shortest path in Gi mod 2 between its endpoints, replacing P in P with a

shorter path would yield a shorter r-to-v path, a contradiction.

It remains to show that there are at most 1 subpaths in the decomposition of P. Since P is

simple, each node, and in particular each boundary node appears in P at most once. Hence there

can be at most IV I - 1 non-empty subpaths in the decomposition of P. Note, however, that if P

starts with an arc of Go then P1 is a trivial empty path from r to r. Hence, P can be decomposed

into at most IVI subpaths. I

Lemma 3.4 gives rise to a DP solution for calculating the from-r distances to nodes of C, which

resembles the Bellman-Ford algorithm. The pseudocode is given in Fig. 3.2. Note that, at this level

of abstraction, there is nothing novel about this DP, and it is very similar to the one in Figure 3-1.

Our contribution is in an efficient implementation of Step 4.

1: eo[v] = oofor all v E V,
2: eo[r] = 0
3: for j = 1, 2, 3,... , IV

4: ej[v] ={ minWE {ej-l [w] + 61 [w, v]}, if j is odd Vv e V
minwe {ejl[w] + o [w, v]}, if j is even '

Figure 3-4: Pseudocode for calculating the from-r distances in G to all nodes in Vc using just 60
and 61.

The algorithm consists of IV2 iterations. On odd iterations, it uses the boundary-to-boundary

distances in G1, and on even iterations it uses the boundary-to-boundary distances in Go.

Lemma 3.5 After the table ej is updated by the algorithm, ej [v] is the length of a shortest path

in G from r to v that can be decomposed into at most j subpaths P = PI P2P3 . .. P, where the

endpoints of each subpath Pi are boundary nodes, and Pi is a shortest path in Gi mod 2.

Proof. By induction on j. For the base case, eo is initialized to be infinity for all nodes other

than r, trivially satisfying the lemma. For j > 0, assume that the lemma holds for j - 1, and let



P be a shortest path in G that can be decomposed into P1P2 ... P as above. Consider the prefix

P', P' = PP 2 ... P-1. F' is a shortest r-to-w path in G that can be decomposed into at most

j - 1 subpaths as above for some boundary node w. Hence, by the inductive hypothesis, when e3

is updated in Line 4, ej l [w] already stores the length of P'. Thus ej [v] is updated in line 4 to be

at most ejl [w] + 6j mod 2 [w, v]. Since, by definition, j mod 2 [w, ] is the length of the shortest path

in Gj mod 2 from w to v, it follows that ej [v] is at most the length of P. For the opposite direction,

since for any boundary node w, ej_ [w] is the length of some path that can be decomposed into

at most j - 1 subpaths as above, ej [v] is updated in Line 4 to the length of some path that can be

decomposed into at most j subpaths as above. Hence, since P is the shortest such path, ej [v] is at

least the length of P. I

From Lemma 3.4 and Lemma 3.5, it immediately follows that the table elvI stores the from-

r shortest path distances in G. We now show how to perform all the minimizations in the jth

iteration of Line 4 in O(IVla(|VcI)) time. Let i = j mod 2, so this iteration uses distances in

Gi. Since all boundary nodes lie on the boundary of a single face of Gi, there is a natural cyclic

clockwise order V1, v2,..., vLvI j on the nodes in 14. Define a IVcI x Vc matrix A with elements

Ak = ej-1(Vk) + i(Vk, vc). Note that computing all minima in Line 4 is equivalent to finding

the column-minima of A. We define the upper triangle of A to be the elements of A on or above

the main diagonal. More precisely, the upper triangle of A is the portion {Ak : k < f} of A.

Similarly, the lower triangle of A consists of all the elements on or below the main diagonal of A.

Lemma 3.6 For any four indices k, k', f, 1' such that either Ak, Ak ' , Ak'~ and Ak,, are all in A's

upper triangle, or are all in A's lower triangle (i.e., either 1 < k < k' < f < ' < IVcj or

1 < f < ' < k < k' < V~ ), the convex Monge property holds:

Akf + Ak'e' > AkV, + Ak'e.

Proof. Consider the case 1 < k < k' < f < ' < V~, as in Fig. 3-5. Since Gi is planar, any pair

of paths in Gi from k to f and from k' to f' must cross at some node w of Gi. Let bk = ejl (k)

and let bk' = ej-,(vk'). Let A(u, v) denote the u-to-v distance in Gi for any nodes u, v of Gi. Note



Figure 3-5: Nodes k < k' < e < f' in clockwise order on the boundary nodes. Paths from k to
f and from k' to f' must cross at some node w. This is true both in the internal and the external
subgraphs of G

that A(u, v) = 6i(u, v) for u, v E V. We have

Ak,t + Ak',f' = (bk + A(vk, W) ± (w, v))

+ (bk' + A(Vk', W) + A(w, ve))

= (bk +A (Vk, W)+ A(w, ve'))

+ (bk' + A(vuk', W) + (, vf))

> (bk + A(vk, ve)) + (bk' + A(vk, ve))

=(bk + 6i, ye')) - (bk k, v)) + 6i(Vk', UV))

= Ak,, + Ak,,t

The case (1 < < e' < k < k' < IVI) is similar. I

Lemma 3.7 A single iteration of the DP in Fig. 3-4 can be computed in O(IV ca(IVI)) time.

Proof. We need to show how to find the column-minima of the matrix A. We compute the column-

minima of A's lower and upper triangles separately, and obtain A's column-minima by comparing

the two values obtained for each column.



It follows directly from Lemma 3.6 that replacing the upper triangle of A with blanks yields

a falling staircase matrix. By [ ], the column-minima of this falling staircase matrix can be

computed in O(IVa(I cl)) time. Another consequence of Lemma 3.6 is that the column-minima

of the upper triangle of A may also be computed using the algorithm in [ ]. To see this consider

a counterclockwise ordering of the nodes of IV, v, v ,...; such that v= Vl+1k. This

reverses the order of both the rows and the columns of A, thus turning its upper triangle into

a lower triangle. Again, replacing the upper triangle of this matrix with blanks yields a falling

staircase matrix.

We thus conclude that A's column-minima can be computed in 0(21VI c- a(IV) + IVI)

O(1V,I- I(|)) time. Note that we never actually compute and store the entire matrix A as this

would take O( 12) time. We compute the entries necessary for the computation on the fly in 0(1)

time per element. I

Lemma 3.7 shows that the time it takes the DP described in Fig. 3-4 to compute the distances

between r and all nodes of , is O(V412 . ca(1). We have thus proved Theorem 3.3. The choice

of separator ensures IVl = O(q), so this computation is performed in O (na(n)) time.

3.3 The Replacement-Paths Problem in Planar Graphs

Recall that given a directed planar graph with non-negative arc lengths and two nodes s and t, the

replacement-paths problem asks to compute, for every arc e in the shortest path between s and t,

the length of an s-to-t shortest path that avoids e.

In this section we show how to modify the algorithm of Emek et al. [ ] to obtain an O(n log2 n)

running time for the replacement-paths problem. This is another example of using a Monge prop-

erty for finding minima in a matrix. Similarly to Section 3.2, we deal with a matrix whose upper

triangle satisfies a Monge property. However, the minima search problem is restricted to rectangu-

lar portions of that upper triangle. Hence, each such rectangular portion is entirely Monge (rather

than falling staircase) so the SMAWK algorithm of Aggarwal et al. [ ] can be used (rather than

Klawe and Kleitman's algorithm [ ]).



do not cross P. Two LL paths (i.e., leaving do not cross P. Two LR paths (i.e., leaving

and entering P from the left) are shown. For P from the left and entering P from the right)

i < i' < j < j', the ij path and the i'j' path are shown. For i < i' < J < j', the ij' path
must cross at some node z. and the i'j path must cross at some node z.

Let P = (ut, U2, . up+,) be the shortest path from s = u to t = upa in the graph G.

Consider the replacement s-to-t path Q that avoids the ar. e in P. Q can be decomposed as

Q1Q2Q3 where Q, is a prefix of P, Q3 is a suffix of P, and Q2 is a subpath from some ui to some

ujdo that avoids any other vertex in P. If in a clockwise traversal of the arcs incident to some node ui

of P, starting from the are (u, u+) we encounter an arc e before we encounter the arc (i-, ight)

then we say that e is to the right of P. Otherwise, e is to the left of P. The first are ijf Q can be

left or right of P and the last are of Q can be left or right of P. In all four cases Q2t some never crosses

P (see Fig. 3-6 and Fig. 3-7).

For nodes x, y, the x-to-y distance is denoted by 6G(x, y). The distances 6G S, Ui) and SG(Ui,0

forLet P = ., p 1.. are computed from P in ) be the (p) time, and stored in a table.

The p x p matrix lend,d is defined in [34] as follows: for any 1 < i < p and 1 < j < p, let

lendd'(i, j) be the replacemshortest s-to-t path of the form Q can be3 described above where

Q2 starts at hi via a left-going ar if d = L or a right-going ar if d = R, and Q2 ends at uja subpath from some u to some

via a left-goinght of ande if d = Last and a right-going are if ' = R. The length of four cases Q2 is denoted

PAD-queryG,d,d,(i, j). It can be computed in O(log n) time by a single query to a data structure



that Emek et al. call PADO (Path Avoiding Distance Oracle). Thus, we can write

lend,d,(i, j) = G (S, Ui) + PAD-queryG,d,d'(ij) + 6G(j+1, t)

and query any entry of lend,d' in O(log n) time.

The O(n log 3 n) time-complexity of Emek et al. arises from the recursive calls to the Di st r i ct

procedure. We next give an alternative description of their algorithm. This new description is

slightly simpler and makes it easy to explain the use of SMAWK.

Let range(i) denote the rectangular portion of the matrix lend,d, defined by rows 1,..., i and

columns i, ... , p. With this definition the length of the replacement s-to-t path that avoids the edge

(us, ui+1 ) is equal to the minimal element in range(i). Since d E {L, R} and d' E {L, R}, we

need to take the minimum among these four rectangular portions corresponding to the four possible

len matrices. The replacement-paths problem thus reduces to computing the minimum element in

range(i) for every i = 1,2,...,p, and every d,d' E {L, R}.

Given some 1 < a < b < p and some d,d' E {L,R}, District(a,b) computes the

row and column-minima of the rectangular portion of the matrix lend,d, defined by rows a to

[(a + b)/2J and columns L(a + b)/2J to b. Initially, District is called with a = 1 and

b = p. This, in particular, computes the minimum of range([p/2]). Then, District(a, [(a +

b)/2] - 1) and District([(a + b)/2J + 1, b) are called recursively. Notice that the previ-

ous call to District(a, b), together with the current call to District(a, [(a + b)/2J - 1)

suffice for computing all row and column-minima of range([p/4]) (and hence also the global

minimum of range( [p/4J)), as illustrated in Fig. 3-8. Similarly, District(a, b), together with

D i st r i ct( [(a+b)/2] +1, b) suffice for computing all row and column-minima of range( [3p/4j ).

The recursion stops when b - a < 1. Therefore, the depth of the recursion for D i st ri ct (1, p) is

O(log p), and it computes the minimum of range(i) for all 1 < i < p.

Emek et al. show how to compute District (a, b) in O((b- a) log 2 (b- a) log n) time, leading

to a total of O(n log3 n) time for computing District(1,p). They use a divide and conquer

technique to compute the row and column-minima in each of the rectangular areas encountered

along the computation. Our contribution is in showing that instead of divide-and-conquer one can



p/4 p/2
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Figure 3-8: The upper triangular fragment of the matrix lend,d'. The procedure District(1, p) com-
putes the row and column-minima of the area B U C, and therefore also the minimum element in
B U C (i.e. in range(p/2)). Then, District(1, p/2) computes the row and column-minima of the
area A. Together, they enable finding the row and column-minima of A U B (i.e. in range(p/4)),
and in particular the minimum element in range(p/4).

use SMAWK to find those minima. This enables computing District (a, b) in O((b - a) log(b -

a) log n) time, which leads to a total of O(n log 2 n) time for District(1, p), as shown by the

following lemmas.

Lemma 3.8 The upper triangle of lend,d' satisfies a Monge property.

Proof. Note that adding 6G (S, Ui) to all of the elements in the i th row or 6G(Uj+1, t) to all elements

in the jth column preserves the Monge property. Therefore, it suffices to show that the upper

triangle of PAD-queryG,d,d, satisfies a Monge property.

When d = d', the proof is essentially the same as that of Lemma 3.6 because the Q2 paths

have the same crossing property as the paths in Lemma 3.6. This is illustrated in Fig. 3-6. We thus

establish that the convex Monge property holds.

When d ) d', Lemma 3.6 applies but with the convex Monge property replaced with the

concave Monge property. To see this, consider the crossing paths in Fig. 3-7. In contrast to Fig. 3-

6, this time the crossing paths are i-to-j' and i'-to-j. I



Lemma 3.9 Procedure D i st ri ct (a, b) can be computed in O((b - a) log(b - a) log n) time.

Proof. Recall that, for every pair d, d', District(a, b) first computes the row and column-

minima of the rectangular submatrix of lendd, defined by rows a to [(a + b)/2J and columns

[(a + b)/2J to b. By Lemma 3.8, this entire submatrix has a Monge property. In the case of the

convex Monge property, we can use SMAWK to find all row and column-minima of the submatrix.

In the case of the concave Monge property, we cannot directly apply SMAWK. By negating all the

elements we get a convex Monge matrix but we are now looking for its row and column maxima.

As discussed in Section 3.1. 1, SMAWK can be used to find row and column-maxima of a convex

Monge matrix. Thus, in both cases, we find the row and column-minima of the submatrix by

querying only O(b - a) entries each in 0 (log n) time for a total of O((b - a) log n) time. Therefore,

T(a, b), the time it takes to compute District (a, b) is given by

T(a, b) = T(a, (a + b)/2) + T((a + b)/2, b) + O((b - a) log n) = O((b - a) log(b - a) log n).

I



Chapter 4

Combining Compression and

Total-Monotonicity

In Chapter 2 we discussed the acceleration via compression technique, and in Chapter 3 we saw

speedups based on totally monotone and Monge matrices. In this chapter we show how to combine

these two ideas in order to accelerate the string edit distance computation.

Recall the edit distance between two strings over a fixed alphabet E is the minimum cost of

transforming one string into the other via a sequence of character deletion, insertion, and replace-

ment operations [ H10]. The cost of these elementary editing operations is given by some scoring

function which induces a metric on strings over E. The simplest and most common scoring func-

tion is the Levenshtein distance [60] which assigns a uniform score of 1 for every operation (this

is the scoring function we considered in Section 1).

Let us describe again the standard DP solution for computing the edit distance between a pair

of strings A = ala 2 aN and B = bb2. - - - bN. The (N + 1) x (N + 1) DP table T is defined

so that T[i, j] stores the edit distance between ala2 .. ai and bib 2 .. bj. The computation is done

according to the base-case rules given by T[O, 0] = 0, T[i, 0] = T[i - 1, 0]+ the cost of deleting



ai, and T[O, j] = T[0, j - 1]+ the cost of inserting by, and according to the following DP:

T[i - 1, j] + the cost of deleting ai

T[i,j] = min T[i,j - 1] + the cost of inserting bj (4.1)

T[i - 1, j - 1] + the cost of replacing a, with by

Note that as T has (N + 1)2 entries, the time-complexity of the algorithm above is O(N 2).

To this date, this quadratic upper-bound has never been substantially improved for general

strings. However, there are known (acceleration via compression) techniques for breaking this

bound in case the strings are known to compress well under a particular compression scheme. It

is therefore natural to ask whether there is a single edit-distance algorithm that can exploit the

compressibility properties of strings under any compression method, even if each string is com-

pressed using a different compression. In this chapter we answer this question by using straight-

line programs (SLPs). These provide a generic platform for representing many popular compres-

sion schemes including the LZ-family, Run-Length Encoding, Byte-Pair Encoding, and dictionary

methods. Our speedup combines acceleration via SLP compression with the speedup technique of

the previous section, that takes advantage of totally monotone matrices,

4.1 Accelerating String Edit Distance Computation

In Chapter 2, we have already mentioned that the "acceleration via compression" approach has

been successfully applied to many classical problems on strings. Regarding edit-distance compu-

tation, Bunke and Csirik presented a simple algorithm for computing the edit-distance of strings

that compress well under Run Length Encoding (RLE) [ ]. This algorithm was later improved

in a sequence of papers [:, , , ] to an algorithm running in time O(nN), for strings of total

length N that encode into run-length strings of total length n. In [ ], an algorithm with the same

time complexity was given for strings that are compressed under LZW-LZ78, where n again is the

length of the compressed strings. Note that this algorithm is also O(N 2/ Ig N) in the worst-case

for any strings over constant-size alphabets.



The first paper to break the quadratic time-barrier of edit-distance computation was the seminal

paper of Masek and Paterson [7], who applied the "Four-Russians technique" to obtain a running-

time of O(N 2 / lg N) for any pair of strings, and of O(N 2/lg 2 N) assuming a unit-cost RAM model.

Their algorithm essentially exploits repetitions in the strings to obtain the speed-up, and so in many

ways it can also be viewed as compression-based. In fact, one can say that their algorithm works

on the "naive compression" that all strings over constant-sized alphabets have. A drawback of

the Masek and Paterson algorithm is that it can only be applied when the given scoring function

is rational. That is, when all costs of editing operations are rational numbers. Note that this

restriction is indeed a limitation in biological applications [29, 7']. For this reason, the algorithm

in [29] mentioned above was designed specifically to work for arbitrary scoring functions. We

mentioned also Bille and Farach-Colton [6] who extend the Masek and Paterson algorithm to

general alphabets.

Notice that all known techniques for improving on the O(N 2) time bound of edit-distance com-

putation, essentially apply acceleration via compression. In addition, apart from RLE, LZW-LZ78,

and the naive compression of the Four-Russians technique, we do not know how to efficiently com-

pute edit-distance under other compression schemes. For example, no algorithm is known which

substantially improves O(N 2 ) on strings which compress well under LZ77. Such an algorithm

would be interesting since there are various types of strings that compress much better under LZ77

than under RLE or LZW-LZ78.

In this chapter, we introduce a general compression-based edit-distance algorithm based on

straight-line programs (SLPs) and the SMAWK algorithm for finding row minima in totally mono-

tone matrices. Our algorithm can be used on strings which compress well under all the above

compression schemes, including LZ77, and even if each string is compressed using a different

compression scheme. This is due to the ability of SLPs to capture these various compressions.

4.1.1 Straight-line programs

Recall the definition of a straight-line program (SLP) from Section 2.3.4. An SLP is a context-

free grammar generating exactly one string. Moreover, only two types of productions are allowed:



Xi -+ a where a is a unique terminal, and X, -- XpXq with i > p, q where X1, . . . , X , are the

grammar variables. Each variable appears exactly once on the left hand side of a production. The

string represented by a given SLP is a unique string corresponding to the last nonterminal Xn.

We define the size of an SLP to be n, the number of variables (or productions) it has. The

length of the strings that is generated by the SLP is denoted by N. It is important to observe that

SLPs can be exponentially smaller than the string they generate.

Rytter [ ] proved that the resulting encoding of most compression schemes including the

LZ-family, RLE, Byte-Pair Encoding, and dictionary methods, can be transformed to straight-line

programs quickly and without large expansion'. In particular, consider an LZ77 encoding [ ]

with n' blocks for a string of length N. Rytter's algorithm produces an SLP-representation with

size n = O(n' log N) of the same string, in O(n) time. Moreover, n lies within a log N factor

from the size of a minimal SLP describing the same string. This gives us an efficient logarithmic

approximation of minimal SLPs, since computing the LZ77 encoding of a string can be done in

linear-time. Note also that any string compressed by the LZ78-LZW encoding can be transformed

directly into a straight-line program within a constant factor.

4.1.2 Our results

Due to Rytter's results, SLPs are perfect candidates for achieving our goal of generalizing compression-

based edit-distance algorithms. Our main result is the following.

Theorem 4.1 Let A and B be two SLPs of total size n that respectively generate two string A and

B of total size N. Then, given A and B, one can compute the edit-distance between A and B in

O(n1.4 N 1 2) time for any rational scoring function.

We can remove the dependency of rational scoring schemes in Theorem 4.1, recalling that arbi-

trary scoring schemes are important for biological applications. We obtain the following secondary

result for arbitrary scoring functions:

'Important exceptions of this list are statistical compressors such as Huffman or arithmetic coding, as well as

compressions that are applied after a Burrows-Wheeler transformation.



Theorem 4.2 Let A and B be two SLPs of total size n that respectively generate two string A and

B of total size N. Then, given A and B, one can compute the edit-distance between A and B in

O(n1.34N 1.34) time for any arbitrary scoring function.

Finally, we explain how the Four-Russians technique can also be incorporated into our SLP

edit-distance scheme. We obtain a very simple algorithm that matches the performance of [29] in

the worst-case. That is, we obtain a Four-Russians like algorithm with an Q2(lg N) speed-up which

can handle arbitrary scoring functions, unlike the Masek and Paterson algorithm which works only

for rational functions.

4.1.3 Related Work

Rytter et al. [5i] was the first to consider SLPs in the context of pattern matching, and other

subsequent papers also followed this line [59, 76]. In [X5] and [6 i] Rytter and Lifshits took this

work one step further by proposing SLPs as a general framework for dealing with pattern matching

algorithms that are accelerated via compression. However, the focus of Lifshits was on determining

whether or not these problems are polynomial in n or not. In particular, he gave an O(n 3 )-time

algorithm to determine equality of SLPs [6 I], and he established hardness for the edit distance [62],

and even for the hamming distance problems [ I . Nevertheless, Lifshits posed as an open problem

the question of whether or not there is an O(nN) edit-distance algorithm for SLPs. Here, our focus

is on algorithms which break the quadratic O(N 2 ) time-barrier, and therefore all algorithms with

running-times between O(nN) and O(N2 ) are interesting for us.

Recently, Tiskin [9'7] gave an 0(nN1N 5) algorithm for computing the longest common subse-

quence between two SLPs, an algorithm which can be extended at constant-factor cost to compute

the edit-distance between the SLPs under any rational scoring function. Observe that our algorithm

for arbitrary scoring functions in Theorem 4.2 is already faster than Tiskin's algorithm for most

values of N and n. Also, it has the advantage of being much more simpler to implement. As for

our main algorithm of Theorem 4.1, our faster running-time is achieved also by utilizing some of

the techniques used by Tiskin in a more elaborate way.



4.2 The DIST Table and Total-Monotonicity

The central DP tool we use in our algorithms is the DIST table, a simple and handy data-structure

which was originally introduced by Apostolico et al. [, ], and then further developed by others

in [ , --]. In the following section we briefly review basic facts about this tool, mostly its total-

monotonicity property. We begin with the so-called DP grid, a graph representation of edit-distance

computation on which DIST tables are defined.

Consider the standard DP formulation (4.1) for computing the edit-distance between two strings

A = ala2 ... aN and B = bib2 .. bN. The DP grid associated with this program, is an acyclic-

directed graph which has a vertex for each entry of T (see Figure 4- 1). The vertex corresponding

to T[i, j] is associated with ai and bj, and has incoming edges according to (4.1) - an edge from

T[i - 1, j] whose weight is the cost of deleting aj, an edge from T[i, j - 1] whose weight is the cost

of inserting by, and an edge from T[i - 1, j - 1] whose weight is the cost of replacing ai with b,.

The value at the vertex corresponding to T[i, j] is the value stored in T[i, j], i.e. the edit-distance

between the length i prefix of A and the length j prefix of B. Using the DP grid G, we reduce the

problem of computing the edit-distance between A and B to the problem of computing the weight

of the lightest path from the upper-left comer to bottom-right comer in G.

A B C D A B C D

1151 1161 1171 1181 1191 7 8 9 10

A 4l Ol] A

B 1[3 0171 B 8

B I2 006] B 9

D All D 8
0ll 0121 0131 0141 0151 9

014]

Figure 4-1: A subgraph of a Levenshtein distance DP graph. On the left, DIST[4, 4] (in bold)

gives the minimum-weight path from I[4] to 0[4]. On the right, the value 9 of 0[4] is computed

by minil[i] + DIST[i, 4].

We will work with sub-grids of the DP grid that will be referred to as blocks. The input vertices

of a block are all vertices in the first row and column of the block, while its output vertices are



all vertices in the last row and column. Together, the input and output vertices are referred to as

the boundary of the block. The substrings of A and B associated with the block are defined in the

straightforward manner according to its first row and column. Also, for convenience purposes, we

will order the input and output vertices, with both orderings starting from the vertex in bottom-

leftmost corner of the block, and ending at the vertex in the upper-rightmost corner. The ith input

vertex and jth output vertex are the ith and jth vertices in these orderings. We next give the

definition of DIST tables, defined over blocks of G.

Definition 4.3 (DIST [6]) Let G' be a block in G with x input vertices and x output vertices.

The DIST table corresponding to G' is an x x x matrix, with DIST[i, j] storing the weight of the

minimum-weight path from the ith input to the jth output in G, and otherwise oo if no such paths

exists.

It is important to notice that the values at the output vertices of a block are completely deter-

mined by that values at its input and its corresponding DIST table. In particular, if I[i] and O[j]

are the values at the ith input vertex and jth output vertex of a block G' of G, then

O[j] = mmin I[i] + DIST[i, j]. (4.2)
1<i<x

Equation 4.2 implies not only the input-output relation of the DP values of a block, but also that the

values at the output vertices can be computed in linear time from the values at the input vertices.

Indeed, by (4.2), the values at the output vertices of G' are given by the column minima of the

matrix I + DIST. Furthermore, by a simple modification of all oo values in I + DIST, we get

a matrix with the concave Monge property [29] (See Chapter 3 Section 3.1.1 for the definition of

Monge matrices). Recall, the SMAWK algorithm of Aggarwal et al. [ : ] that computes all column

minima of an x x x Monge matrix by querying only O(x) elements of the matrix. It follows that

using SMAWK we can compute the output values of G' in 0(x) time.

We now describe how to efficiently construct the DIST table corresponding to a block in G.

Observe that this can be done quite easily in O(x3 ) time, for blocks with boundary size O(x),

by computing the standard DP table between every prefix of A against B and every prefix of B



against A. Each of these DP tables contains all values of a particular row in the DIST table.

In ['], Apostolico et al. show an elegant way to reduce the time-complexity of this construction

to 0(x 2 Ig x). In the case of rational scoring functions, the complexity can be further reduced to

O(x2 ) as shown by Schmidt [ '].

4.3 Acceleration via Straight-Line Programs

In the following section we describe a generic framework for accelerating the edit distance com-

putation of two strings which are given by their SLP representation. This framework will later be

used for explaining all our algorithms. We will refer to this framework as the block edit-distance

procedure.

Let A and B be two SLP representations of a pair of strings A and B, and for ease of presen-

tation assume that JAI = B31 = n and IAl = IBI = N. Recall the definition in Section 4.2 for the

DP grid corresponding to A and B. The general idea behind the block edit-distance procedure is to

partition this grid into disjoint blocks, and then to compute the edit-distance between A and B at

the cost of computing the values at the boundary vertices of each block. This is achieved by build-

ing in advance a repository containing all DIST tables corresponding to blocks in the partition.

To efficiently construct this repository, we show how to partition the grid in a way which induces

many block repeats. This is possible by utilizing substring repeats in A and B that are captured in

A and B, and imply block repeats in the partitioning of G. The edit-distance of A and B is then

computed by propagating the DP values at the boundary vertices of the blocks using the DIST

tables in the repository and SMAWK. Before giving a complete description of this algorithm, we

need to introduce the notion of xy-partition.

Definition 4.4 (xy-partition) An xy-partition is a partitioning of G into disjoint blocks such that

every block has boundary of size O(x), and there are O(y) blocks in each row and column. In

addition, we require each pair of substrings of A and B associated with a block to be generated

by a pair of SLP variables in A and B.

An xy-partition of G is a partition with a specific structure, but more importantly, one where
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An xy-partition of an edit distance graph
for two SLPs generating the strings
"ABCABCAB" and "BBCBBBCB". The
white blocks are the ones of the partition
and their corresponding SLP variables are
marked in bold. Notice that there are nine
blocks in the partition but only six of them
are distinct.

Figure 4-2: An xy-partition.

each substring is generated by a unique SLP variable of A and B. This latter requirement allows us

to exploit the repetitions of A and B captured by their SLPs. We next give a complete description

of the block edit distance procedure. It assumes an xy-partition of G has already been constructed.

Block Edit Distance

1. Construct a repository with the DIST tables corresponding to each block in the xy-partition.

2. Fill-in the first row and column of G using the standard base-case rules.

3. In top-to-bottom and left-to-right manner, identify the next block in the partition of G and

use its input and the repository to compute its output using (4.2).

4. Use the outputs in order to compute the inputs of the next blocks using (4.1).

5. The value in the bottom-rightmost cell is the edit distance of A and B.

Apart from the repository construction in step 1, all details necessary for implementing the

block edit-distance procedure are by now clear. Indeed, steps 2 and 5 are trivial, and step 4 is

done via the standard DP formulation of (4.1). Furthermore, the SMAWK computation of output

values of a block, given its input values plus its corresponding DIST table (step 3), is explained

in Section 4.2. We next show that, as we are working with xy-partitions where each block is



associated with an SLP variable, we can compute a repository containing all DIST necessary

which is rather small.

The first crucial observation for this, is that any two blocks associated with the same pair of

substrings A' and B' have the same DIST table. This is immediate since any such pair of blocks

have identical edge-weights.

Observation 4.5 A pair of substrings A', B' uniquely identify the DIST table of a block.

Since we required each substring in the xy-partition of G to be generated by some SLP variable,

the above observation actually suggests that the number of different DIST tables is bounded by

the number of variable pairs X E A and Y E B:

Observation 4.6 The number of different DIST tables corresponding to any xy-partition is O(n2).

Therefore, combining the two observations above, we know that a repository containing a DIST

tables for each SLP variable pair X E A and Y E B will not be too large, and that it will contain

a table corresponding to each block in our given xy-partition at hand. We can therefore state the

following lemma:

Lemma 4.7 The block edit-distance procedure runs in O(n2x 2 Ig x + Ny) time.

Proof. We analyze the time complexity of each step in the block edit-distance procedure sepa-

rately. Step 1 can be performed in O(n 2x2 Ig x) time, as we can construct every DIST table in

O(x 2 Ig x) time (see Section 4.2), and the total number of such distinct matrices is O(n 2). Step 2

can be done trivially in O(N) time. Then, step 3 takes 0(x) time per block by using the SMAWK

algorithm as explained in Section 4.2. Step 4 also takes O(x) time per block as it only computes

the values in the O(x) vertices adjacent to the output vertices. The total time complexity of steps 3

and 4 is thus equal to the total number of boundary vertices in the xy-partition of G, and therefore

to 0 (Ny). Accounting for all steps together, this gives us the time complexity stated in the lemma.

I



4.3.1 Constructing an xy-partition

We now discuss the missing component of the block edit-distance procedure, namely the con-

struction of xy-partitions. In particular, we complete the proof of Theorem 4.2 by showing how

to efficiently construct an xy-partition where y = O(nN/x) for every x < N. Together with

Lemma 4.7, this implies an O(nIN- Ig N) = O(n134N 1.34) time algorithm for arbitrary scor-

ing functions by considering x = N /(n Ig N) 1 . In the remainder of this section we prove the

following lemma.

Lemma 4.8 For every x < N there exists an xy-partition with y = O(nN/x). Moreover this

partition can be found in O(N) time.

To prove the lemma, we show that for every SLP A generating a string A and every x <

N, one can partition A into O(nN/x) disjoint substrings, each of length O(x), such that every

substring is generated by some variable in A. This defines a subset of variables in both input SLPs

which together defined our desired xy-partition. To partition A, we first identify O(N/x) grammar

variables in A each generating a disjoint substring of length between x and 2x. We use these

variables to partition A. We then show that the substrings of A that are still not associated with a

variable can each be generated by O(n) additional variables. Furthermore, these O(n) variables

each generate a string of length bounded by x. We add all such variables to our partition of A for

a total of O(nN/x) variables.

Consider the parse tree of A. We want to identify O(nN/x) key-vertices such that every key-

vertex generates a substring of length O(x), and A is a concatenation of substrings generated by

key-vertices. We start by marking every vertex v that generates a substring of length greater than

x as a key-vertex iff both children of v generate substrings of length smaller than x. This gives us

£ < N/x key-vertices so far, each generating a substring of length e(x) (see Figure 4-3). But we

are still not guaranteed that these vertices cover A entirely.

To fix this, consider the ordering vl, v2,... , v on the current key-vertices induced by a left-to-

right postorder traversal of the parse tree. This way, vi+l is "to the right of" vi. If every vi generates

the substring Ai then A = A'A 1A'A 2 ... A'Ae+A,, where every Ai is of length E(x), and every



The key-vertices vi and vi+1 both
generate substrings of length E (x),
and their least common ancestor is

ui. The white vertices "hanging"
V O(n) of the vi-to-vi+l path are the added

Vkey-vertices. Together, they gener-
ate the substring that lies between

(x) (x- ) the substrings of vi and vi+1 .
O(x) O(x)

Figure 4-3: A closer look on the parse tree of an SLP A.

A' is the "missing" substring of A that lies between A_ I and Aj. We now show that every A' is a

concatenation of substrings of length smaller than x generated by at most 0(n) vertices.

Let ui be the lowest common ancestor of vi and vi?+ and let Pi (resp. Pil) be the unique path

between ui and vi (resp. vi+l). For every vertex v E Pi - {u} such that v's left child is also

in P mark v's right child as a key-vertex. Similarly, for every vertex v E P+I - {ui} such that

v's right child is also in P+I mark v's left child as a key-vertex. It is easy to verify that A' is

the concatenation of substrings generated by these newly marked key-vertices. There are at most

2n of these key-vertices since the depth of the parse tree is bounded by the number of different

SLP variables. Moreover, they each generate a substring of length smaller than x for the following

reason. Assume for contradiction that one of them generates a string of length greater than x. This

would imply the existence of some vertex between vi and vi+l in the v 2, v2,.., v ordering.

To conclude, we showed that A = A'A AIA2  ... A'AeA/ 1 where f < N/x, every Ai is of

length E(x) and is generated by one vertex, and every A' is a concatenation of 0(n) substrings each

of length smaller than x and generated by one vertex. Overall, we get that y = O(ne) = O(nN/x)

vertices suffice to generate A for every x < N. It is easy to see that we can identify these vertices

in O(N) time thus proving Lemma 4.8. By choosing x = N-/(n lg N) 1 , and using the block edit

distance time complexity of Lemma 4.7, this implies an O(n1.34N 1. 34) time algorithm for arbitrary

scoring functions.



4.4 Improvement for Rational Scoring Functions

In this section we show that in the case of rational scoring functions, the time complexity of the

block edit distance procedure can be reduced substantially by using a recursive construction of the

DIST tables. In particular, we complete the proof of Theorem 4.1 by showing that in this case the

repository of DIST tables can be computed in O(n 2x 1.5) time. This implies an O(n 14N1 2) time

algorithm for rational scoring functions by considering x = N0 8/n0 4 and the xy-partition with

y = nN/x.

Before we describe how to compute the repository in O(n2 x 1 .5) time, we need to introduce

some features that DIST tables over rational scoring functions have. The first property, discovered

by Schmidt [St], is what is known as the succinct representation property: Any x x x DIST table

can be succinctly stored using only O(x) space. This follows from considering the vector obtained

by subtracting a DIST column from the column to its right, and observing that this vector has only

a constant number of value changes. The second property is that succinct representations allow to

efficiently merge two DIST tables. That is, if D 1 and D2 are two DIST tables, one between a pair

of substrings A' and B' and the other between A' and B", then we refer to the DIST table between

A' and B'B" as the product of merging D 1 and D2. A recent important result of Tiskin [96(] shows

how to utilize the succinct representation of DIST tables in order to merge two succinct x x x

DIST tables in O(x1 5) time.

Lemma 4.9 The block edit distance algorithm runs in 0(n22 x 1 5 + Ny) time in case the underlying

scoring function is rational.

Proof. To prove the lemma it suffices to show how to compute the repository of DIST tables

in step 1 of the block edit-distance procedure in 0(n 2x1.5) time, in case the underlying scoring

function is rational. We will work with succinct representations of the DIST tables as described

above. Say X -- XpXq and Y - YYt are two rules in the SLPs A and B3 respectively. To compute

the DIST table that corresponds to the strings generated by X and Y, we first recursively compute

the four DIST tables that correspond to the pairs (Xp, Y,), (Xp, Y), (Xq, Y,), and (Xq, Yt). We

then merge these four tables to obtain the DIST table that corresponds to (X, Y). To do so we



use Tiskin's procedure to merge (Xp, Y,) with (Xp, Y) into (Xp, YTt), then merge (Xq, Y,) with

(Xq, Y) into (Xq, YT), and finally we merge (Xp, YT) and (Xq, Y T) into (XpXq, Y T) =

(X, Y). This recursive procedure computes each succinct DIST table by three merge operations,

each taking O(x15 ) time and O(x) space. Since the number of different DIST tables is bounded

by O(n2 ), the O(n2 x1.5 ) time for constructing the repository follows. I

To conclude, we have shown an O(n 2x 1.5 + Ny) time algorithm for computing the edit dis-

tance. Using the xy-partition from Lemma 4.8 with x = N0 8 /nO. 4 and y = nN/x, we get a time

complexity of O(n1.4 N 12 ) .

4.5 Four-Russian Interpretation

In the previous sections we showed how SLPs can be used to speed up the edit distance computa-

tion of strings that compress well under some compression scheme. In this section, we conclude

the presentation of our SLP framework by presenting an IQ(lg N) speed-up for strings that do not

compress well under any compression scheme. To do so, we adopt the Four Russions approach of

Masek and Paterson [ ] that utilizes a naive property that every string over a fixed alphabet has.

Namely, that short enough substrings must appear many times. However, while the Masek and

Paterson algorithm can only handle rational scoring functions, the SLP version that we propose

can handle arbitrary scoring functions.

Consider a string A of length N over an alphabet E. The parse tree of the naive SLP A is a

complete binary tree with N leaves2. This way, for every x < N we get that A is the concatenation

of O(N/x) substrings each of length e(x) and each can be generated by some variable in A. This

partition of A suggests an xy-partition in which y = N/x. At first glance, this might seem better

than the partition guarantee of Lemma 4.8 in which y = nN/x. However, notice that in the naive

SLP we have n > N so we can not afford to compute a repository of O(n2) DIST tables.

To overcome this problem, we choose x small enough so that E x, the number of possible

substrings of length x, is small. In particular, by taking x = log1  N we get that the number of

2We assume without loss of generality that N is a power of 2.



possible substrings of length x is bounded by IEIx = vN. This implies an xy-partition in which

x =1 log,:l N, y = N/x, and the number of distinct blocks n' is O(N). Using this partition, we

get that the total construction time of the DIST repository is O(n'x2 Ig x). Similar to Lemma 4.7,

we get that the total running time of the block edit distance algorithm is O(n'x2 Ig x + Ny) which

gives O(N 2/ lg N).
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Chapter 5

Partial Tables

In typical DP settings, a table is filled in its entirety, where each cell corresponds to some sub-

problem. For example, the naive DP table used for solving the edit distance problem between two

strings A and B of length n (see previous section) has n2 cells. This entire table is filled row by

row, where the cells stores the edit distance between any two prefixes of A and B. In some cases

however, by changing the DP, it is possible to compute asymptotically less cells of the table (i.e.

only a subset of relevant subproblems). The advantage of this technique is that a small change

in the DP can make a significant improvement in both time and space complexity. Although the

complexity analysis can be difficult, the actual DPs are very simple to describe and to implement.

In this chapter, we use this technique for DPs that measure the similarity between two trees. In

Section 5.1 we explain how the similarity of trees is captured by the tree edit distance metric, and

we give a simple and unified presentation of the two well-known tree edit distance algortihms on

which our algorithm is based. These algorithms, as well as ours, are based on the same DP and

differ only in the actual DP entries that they compute. We present and analyze the O(n3 ) time-

complexity of our algorithm in Section 5.2, and show how the space-complexity can be reduced

to O(n2 ) in Section 5.3. In Section 5.4 we prove the optimality of our algorithm among the

family of decomposition strategy algorithms by tightening the known lower bound of Q(n21log2n)

to Q(n 3), matching our algorithm's running time. This family, which also includes the previous

fastest algorithms, consists of all algorithms that are based on the same DP and differ only in the



relevant subproblems that they compute. Finally, in Section 5.5, we show how tree edit distance

can be used in computational biology for comparing RNA sequences.

5.1 Tree Edit Distance

The problem of comparing trees occurs in diverse areas such as structured text databases like

XML, computer vision, compiler optimization, natural language processing, and computational

biology [ , , , , ]. The tree edit distance metric is a common similarity measure for

rooted ordered trees. It was introduced by Tai in the late 1970's [ ] as a generalization of the

well-known string edit distance problem [ ]. Let F and G be two rooted trees with a left-to-

right order among siblings and where each vertex is assigned a label from an alphabet E. The

edit distance between F and G is the minimum cost of transforming F into G by a sequence of

elementary operations consisting of deleting and relabeling existing nodes, as well as inserting

new nodes (allowing at most one operation to be performed on each node). These operations are

illustrated in Fig. 5-1. Formally, given a non-root node v in F with parent v', relabel changes the

label of v, delete removes v and sets the children of v as the children of v' (the children are inserted

in the place of v as a subsequence in the left-to-right order of the children of v'), and insert (the

complement of delete) connects a new node v as a child of some v' in F making v the parent of a

consecutive subsequence of the children of v'. The cost of the elementary operations is given by

two functions, CdCl and c.latch, where cdel (T) is the cost of deleting or inserting a vertex with label

7, and catch h(T1, 7T2) is the cost of changing the label of a vertex from 1i to 72 . Since a deletion in

F is equivalent to an insertion in G and vice versa, we can focus on finding the minimum cost of

a sequence of just deletions and relabelings in both trees that transform F and G into isomorphic

trees.

Previous results. To state running times, we need some basic notation. Let n and m denote the

sizes Fl and G of the two input trees, ordered so that n > m. Let nlaves and mleave denote the

corresponding number of leaves in each tree, and let nheight and mheight denote the corresponding

height of each tree, which can be as large as n and m respectively.



Relabel node x to y Delete node y

Relabel node y to x Insert node y

TT2 Tk T2 Tk TT2 Tk

Figure 5-1: The three editing operations on a tree with vertex labels.

Tai [95] presented the first algorithm for computing tree edit distance, which requires

O(n eavesm eavesnm) time and space, and thus has a worst-case running time of O(n3 m3) = O(n6 ).

Shasha and Zhang [88] improved this result to an O(min{nheight, nleaves}) minmheight, mleaves}

nm) time algorithm using O(nm) space. In the worst case, their algorithm runs in O(n2m2 ) =

O(n 4) time. Klein [53] improved this result to a worst-case O(m 2n log n) = O(n3 log n) time al-

gorithm using O(nm) space. These last two algorithms are based on closely related DPs, and both

present different ways of computing only a subset of a larger DP table; these entries are referred

to as relevant subproblems. In [32], Dulucq and Touzet introduced the notion of a decomposition

strategy (see Section 5.1.3) as a general framework for algorithms that use this type of DP, and

proved a lower bound of Q(nm log n log m) time for any such strategy.

Many other solutions have been developed; see [7, 15, 98] for surveys. The most recent de-

velopment is by Chen [26], who presented a different approach that uses results on fast matrix

multiplication. Chen's algorithm uses O(nm + nmaves + nleavesmlves) time and O(n + (m +

n~eaves) min{nleaves, nheight}) space. In the worst case, this algorithm runs in O(nm2 5) = O(n35 )

time. Among all these algorithms, Klein's is the fastest in terms of worst-case time complexity,

and previous improvements to Klein's O(n3 log n) time bound were achieved only by constraining

the edit operations or the scoring scheme [25, 87, 89, 102].

Our results. We present a new algorithm for computing the tree edit distance that falls into

the same decomposition strategy framework of [32, 53, 88]. In the worst case, our algorithm

requires O(nm2(1 +log _)) = O(n3 ) time and O(nm) space. The corresponding sequence of edit



operations can easily be obtained within the same time and space bounds. We therefore improve

upon all known algorithms in the worst case time complexity. Our approach is based on Klein's,

but whereas the recursion scheme in Klein's algorithm is determined by just one of the two input

trees, in our algorithm the recursion depends alternately on both trees. Furthermore, we prove a

worst-case lower bound of Q(nm2 (1 +log n)) time for all decomposition strategy algorithms. This

bound improves the previous best lower bound of Q(nm log n log m) time [ ], and establishes the

optimality of our algorithm among all decomposition strategy algorithms. Finally, we show how

our algorithm can be adapted (with the same time and space bounds) to a computational biology

setting in which k consecutive deletions are more probable to occur than k separate deletions.

Notations Both the existing algorithms and ours compute the edit distance of finite ordered E-

labeled forests. These are forests that have a left-to-right order among siblings and each vertex is

assigned a label from a given finite alphabet E such that two different vertices can have the same

label or different labels. The unique empty forest/tree is denoted by 0. The vertex set of a forest

F is written simply as F, as when we speak of a vertex v E F. For a forest F and v E F, o(v)

denotes the label of v, F, denotes the subtree of F rooted at v, and F - v denotes the forest F after

deleting v. The special case of F - root(F) where F is a tree and root(F) is its root is denoted F °.

The leftmost and rightmost trees of a forest F are denoted by LF and RF and their roots by eF and

rF. We denote by F - LF the forest F after deleting the entire leftmost tree LF; similarly F - RF.

A left-to-right postorder traversal of F is the postorder traversal of all its trees LF,..., RF from

left to right. For a tree T, the postorder traversal is defined recursively as the postorder traversal

of the forest T' followed by a visit of root(T) (as apposed to a preorder traversal that first visits

root(T) and then To). A forest obtained from F by a sequence of any number of deletions of the

leftmost and rightmost roots is called a subforest of F.

Given forests F and G and vertices v E F and w C G, we write Cdel (v) instead of cdel (u(v)) for

the cost of deleting or inserting o(v), and we write cinatch (v, w) instead of ...atch ( ( ), u(w)) for

the cost of relabeling a(v) to a(w). 6(F, G) denotes the edit distance between the forests F and

G.

Because insertion and deletion costs are the same (for a node of a given label), insertion in



one forest is tantamount to deletion in the other forest. Therefore, the only edit operations we

need to consider are relabelings and deletions of nodes in both forests. We next briefly present the

algorithms of Shasha and Zhang, and of Klein. This presentation, inspired by the tree similarity

survey of Bille [ 5], is somewhat different from the original presentations and is essential for

understanding our algorithm and the idea of partial tables.

5.1.1 Shasha and Zhang's Algorithm

Given two forests F and G of sizes n and m respectively, the following lemma is easy to verify.

Intuitively, the lemma says that in any sequence of edit operations the two rightmost roots in F and

G must either be matched with each other or else one of them is deleted.

Lemma 5.1 ([88]) 6(F, G) can be computed as follows:

S6(0, 0) =

* 6(F, 0) = 6(F - rF, 0) + del(F)

* 6(0, G) = 6(0, G - TG) + Cdel(G)

6(F - F, G) + Cdel, (F),

* 6(F, G) = min 6(F, G - rG) + cdel(rG),

6(R , R ) + 6(F - RF, G - RG) + Cmatch(F G)

Lemma 5.1 yields an O(m2n2 ) DP solution. If we index the vertices of the forests F and G

according to their left-to-right postorder traversal position, then entries in the DP table correspond

to pairs (F', G') of subforests F' of F and G' of G where F' contains vertices {i, i + 1,... , ji }

and G' contains vertices {i2, i2 + 1, j 2} for some 1 < iZ < ji < n and 1 < i2 < j2 < m.

However, as we will presently see, only O(min{nheight, nleaves} minlmheight, mleaves}) nm)

different relevant subproblems are encountered by the recursion computing 6(F, G). We calculate

the number of relevant subforests of F and G independently, where a forest F' (respectively G')

is a relevant subforest of F (respectively G) if it occurs in the computation of 6(F, G). Clearly,



multiplying the number of relevant subforests of F and of G is an upper bound on the total number

of relevant subproblems.

We now count the number of relevant subforests of F; the count for G is similar. First, notice

that for every node v E F, F is a relevant subproblem. This is because the recursion allows us

to delete the rightmost root of F repeatedly until v becomes the rightmost root; we then match v

(i.e., relabel it) and get the desired relevant subforest. A more general claim is stated and proved

later on in Lemma 5.3. We define

keyroots(F) = {the root of F} U {v E F I v has a left sibling}.

It is easy to see that every relevant subforest of F is a prefix (with respect to the postorder indices)

of Fv for some node v E keyroots(F). If we define v's collapse depth cdepth(v) to be the number

of keyroot ancestors of v, and cdepth(F) to be the maximum cdepth(v) over all nodes v E F, we

get that the total number of relevant subforest of F is at most

SIFv = cdepth(v)< cdepth(F)= IFlcdepth(F).
vEkeyroots(F) vEF vEF

This means that given two trees, F and G, of sizes n and m we can compute 6(F, G) in

O(cdepth(F)cdepth(G)nm) = O(nheightmheightnm) time. Shasha and Zhang also proved that

for any tree T of size n, cdepth(T) < min{lheight, flleaves}, hence the result. In the worst case, this

algorithm runs in O(m2 n2 ) = O(n4 ) time.

5.1.2 Klein's Algorithm

Klein's algorithm is based on a recursion similar to Lemma 5.1. Again, we consider forests F and

G of sizes IFI = n > IGI = m. Now, however, instead of recursing always on the rightmost roots

of F and G, we recurse on the leftmost roots if ILFI < IRFI and on the rightmost roots otherwise.

In other words, the "direction" of the recursion is determined by the (initially) larger of the two

forests. We assume the number of relevant subforests of G is O(m2 ); we have already established

that this is an upper bound.



We next show that Klein's algorithm yields only O(n log n) relevant subforests of F. The

analysis is based on a technique called heavy path decomposition [43, 93,]. We mark the root of

F as light. For each internal node v E F, we pick one of v's children with maximal number of

descendants and mark it as heavy, and we mark all the other children of v as light. We define

Idepth(v) to be the number of light nodes that are proper ancestors of v in F, and light(F) as the

set of all light nodes in F. It is easy to see that for any forest F and vertex v E F, ldepth(v) <

log I F + 0(1). Note that every relevant subforest of F is obtained by some i IF, I consecutive

deletions from F, for some light node v. Therefore, the total number of relevant subforests of F is

at most

SIF, 5 1 + Idepth(v) < (log F I + 0(1)) = O(lF log IF ).
vElight(F) VEF vEF

Thus, we get an O(m 2n log n) = O(n3 log n) algorithm for computing 6(F, G).

5.1.3 The Decomposition Strategy Framework

Both Klein's and Shasha and Zhang's algorithms are based on Lemma 5.1, and both compute a

different subset of relevant subproblems. The difference between them lies in the choice of when

to recurse on the rightmost roots and when on the leftmost roots. The family of decomposition

strategy algorithms based on this lemma was formalized by Dulucq and Touzet in [ 32 ].

Definition 5.2 (Strategy, Decomposition Algorithm) Let F and G be two forests. A strategy is a

mapping from pairs (F', G') of subforests of F and G to {left, right}. A decomposition algorithm

is an algorithm based on Lemma 5. 1 with the directions chosen according to a specific strategy.

Each strategy is associated with a specific set of recursive calls (or a DP algorithm). The

strategy of Shasha and Zhang's algorithm is S(F', G') = right for all F', G'. The strategy of

Klein's algorithm is S(F', G') = left if LF'I < IRF'I, and S(F', G') = right otherwise. Notice

that Shasha and Zhang's strategy does not depend on the input trees, while Klein's strategy depends

only on the larger input tree. Dulucq and Touzet proved a lower bound of (mnn log m log n) time

for any decomposition strategy algorithm.



The following lemma states that every decomposition algorithm computes the edit distance

between every two root-deleted subtrees of F and G.

Lemma 5.3 Given a decomposition algorithm with strategy S, the pair (F,, G') is a relevant

subproblem for all v E F and w E G regardless of the strategy S.

Proof. First note that a node v' E F, (respectively, w' E Gw) is never deleted or matched before v

(respectively, w) is deleted or matched. Consider the following computational path:

- Delete from F until v is either the leftmost or the rightmost root.

- Next, delete from G until w is either the leftmost or the rightmost root.

Let (F', G') denote the resulting subproblem. There are four cases to consider.

1. v and w are the rightmost (leftmost) roots ofF' and G', and S(F', G') = right (left).

Match v and w to get the desired subproblem.

2. v and w are the rightmost (leftmost) roots ofF' and G', and S(F', G') = left (right).

Note that at least one of F', G' is not a tree (since otherwise this is case (1)). Delete from

one which is not a tree. After a finite number of such deletions we have reduced to case (1),

either because S changes direction, or because both forests become trees whose roots are

V, W.

3. v is the rightmost root ofF', w is the leftmost root of G'.

If S(F', G') = left, delete from F'; otherwise delete from G'. After a finite number of such

deletions this reduces to one of the previous cases when one of the forests becomes a tree.

4. v is the leftmost root of F', w is the rightmost root of G'.

This case is symmetric to (3). 1



5.2 Our Tree Edit Distance Algorithm

In this section we present our algorithm for computing 6(F, G) given two trees F and G of sizes

IF = n '> JG = m. The algorithm recursively uses a decomposition strategy in a divide-and-

conquer manner to achieve O(nm2 (1 log _)) = O(n 3) running time in the worst case. For

clarity we describe the algorithm recursively and analyze its time complexity. In Section 5.3 we

give an explicit DP and prove that the space complexity can be made O(mn) = O(n2 ).

Before presenting our algorithm, let us try to develop some intuition. We begin with the ob-

servation that Klein's strategy always determines the direction of the recursion according to the

F-subforest, even in subproblems where the F-subforest is smaller than the G-subforest. How-

ever, it is not straightforward to change this since even if at some stage we decide to choose the

direction according to the other forest, we must still make sure that all subproblems previously

encountered are entirely solved. At first glance this seems like a real obstacle since apparently we

only add new subproblems to those that are already computed. Our key observation is that there are

certain subproblems for which it is worthwhile to choose the direction according to the currently

larger forest, while for other subproblems we had better keep choosing the direction according to

the originally larger forest.

The heavy path of a tree F is the unique path starting from the root (which is light) along heavy

nodes. Consider two trees, F and G, and assume we are given the distances 6(F,, G') for all

v E F and w E G. By lemma 5.3, these are relevant subproblems for any decomposition strategy

algorithm. How would we go about computing 6(F, G) in this case? Using Shasha and Zhang's

strategy would require O( FI GI) time, while using Klein's strategy would take O(IFI GI2) time.

Let us focus on Klein's strategy since Shasha and Zhang's strategy is independent of the trees.

Note that even if we were not given the distance 6(F, G') for a node u on the heavy path of F,

we would still be able to solve the problem in O( F IG2) time. To see why, note that in order to

compute the relevant subproblem 6(Fu, Gw), we must compute all the subproblems required for

solving 6(F, G,) even if 6(Fu, G) is given.

We next define the set TopLight(F) to be the set of roots of the forest obtained by removing

the heavy path of F. Note that TopLight(F) is the set of light nodes with Idepth 1 in F (see



Figure 5-2: A tree F with n nodes. The black nodes belong to the heavy path. The white nodes

are in TopLight(F), and the size of each subtree rooted at a white node is at most L. Note that the

root of the tree belongs to the heavy path even though it is light.

the definition of Idepth in Section 5.1.2). This definition is illustrated in Fig. 5-2. It follows

from Lemma 5.3 that if we compute 6(F,, G) for all v E TopLight(F), we would also compute

all the subproblems 6(F,, Go) for any w E G and v' not on the heavy path of F. Note that

Klein's strategy solves 6(F, G) by determining the direction according to F, even if IF, < IGI.

We observe that we can do better if in such cases we determine the direction according to G. It

is important to understand that making the decisions according to the larger forest when solving

6(Fv, Go) for any v E F and w E G (i.e., regardless of whether v is on the heavy path or not)

would actually increase the running time. The identification of the set TopLight(F) is crucial for

obtaining the improvement.

Given these definitions, the recursive formulation of our algorithm is simply:

The Algorithm. We compute 6(F, G) recursively as follows:

(1) If IFI < IG , compute 6(G, F) instead.

(2) Recursively compute 6(F, G) for all v E TopLight(F).

(3) Compute 6(F, G) using the following decomposition strategy: S(F', G') = left if F' is a

tree, or if fF' is not the heavy child of its parent. Otherwise, S(F', G') -= right. However

do not recurse into subproblems that were previously computed in step (2).



The algorithm's first step makes sure that F is the larger forest, and the second step makes sure

that 6(F,, Go) is computed and stored for all v' not in the heavy path of F and for all w E G.

Note that the strategy in the third step is equivalent to Klein's strategy for binary trees. For higher

valence trees, this variant first makes all left deletions and then all right deletions, while Klein's

strategy might change direction many times. They are equivalent in the important sense that both

delete the heavy child last. The algorithm is evidentally a decomposition strategy algorithm, since

for all subproblems, it either deletes or matches the leftmost or rightmost roots. The correctness of

the algorithm follows from the correctness of decomposition strategy algorithms in general.

Time Complexity. We show that our algorithm has a worst-case running time of O(m2 n(1 +

log n)) = O(n3 ). We proceed by counting the number of subproblems computed in each step of

the algorithm. We call a subproblem trivial if at least one of the forests in this subproblem is empty.

Obviously, the number of distinct trivial subproblems is O(n2). Let R(F, G) denote the number of

non-trivial relevant subproblems encountered by the algorithm in the course of computing 6(F, G).

From now on we will only count non-trivial subproblems, unless explicitly indicated otherwise.

We observe that any tree F has the following two properties:

(*) : F,J < IF . Because F, and F,, are disjoint for all v, v' E TopLight(F).
vETopLight(F)

(**) JIF < ~i for every v E TopLight(F). Otherwise v would be a heavy node.

In step (2) we compute 6(F, G) for all v E TopLight(F). Hence, the number of subproblems

encountered in this step is vETopLight(F) R(F,, G). For step (3), we bound the number of relevant

subproblems by multiplying the number of relevant subforests in F and in G. For G, we count all

possible O(IG12) subforests obtained by left and right deletions. Note that for any node v' not in

the heavy path of F, the subproblem obtained by matching v' with any node w in G was already

computed in step (2). This is because any such v' is contained in F, for some v E TopLight(F), so

6(F ,, G') is computed in the course of computing 6(F,, G) (by Lemma 5.3). Furthermore, note

that in step (3), a node v on the heavy path of F cannot be matched or deleted until the remaining

subforest of F is precisely the tree F,. At this point, both matching v or deleting v result in the



same new relevant subforest F,. This means that we do not have to consider matchings of nodes

when counting the number of relevant subproblems in step (3). It suffices to consider only the

IF subforests obtained by deletions according to our strategy. Thus, the total number of new

subproblems encountered in step (3) is bounded by G 2 F1.

We have established that if F > IGI then

R(F,G)< G 21F I+ R(F,, G)
vETopLight(F)

and if IF| < IG then

R(F, G) < F 12GI + E R(F, G,)
wETopLight(G)

We first show, by a crude estimate, that this leads to an O(n3 ) running time. Later, we analyze

the dependency on m and n accurately.

Lemma 5.4 R(F, G) < 4(IFI G )3/2.

Proof. We proceed by induction on |F I + G1. In the base case, IF| + GI = 0, so both forests are

empty and R(F, G) = 0. For the inductive step there are two symmetric cases. If IFI > |GI then

R(F, G) < G 2 FI + ZvTopLight(F) R(Fv, G). Hence, by the induction hypothesis,

R(F,G) < G 2 FI 4(|Fv IG) 3 / 2 
- 2 F -4Gl3/ 2  F 3/2

vETopLight(F) vETopLight(F)

< G 2 F + 4G3/2 E F max JIV/
vETopLight(F) vETopLight(F)

< IG2 FIF + 4G 3/ 2 F = IGF F +F(F G|12FI + FIGD)3/2 < 4(IFI G) 3/ 2

Here we have used facts (*) and (**) and the fact that IFI > IGI. The case where IF| < IG is

symmetric. I

This crude estimate gives a worst-case running time of O(n 3). We now analyze the dependence

on m and n more accurately. Along the recursion defining the algorithm, we view step (2) as only



making recursive calls, but not producing any relevant subproblems. Rather, every new relevant

subproblem is created in step (3) for a unique recursive call of the algorithm. So when we count

relevant subproblems, we sum the number of new relevant subproblems encountered in step (3)

over all recursive calls to the algorithm. We define sets A, B c F as follows:

A {a E light(F) : IFal > m}

B = {b E F-A: b E TopLight(Fa) for some a E A}

Note that the root of F belongs to A. Intuitively, the nodes in both A and B are exactly those for

which recursive calls are made with the entire G tree. The nodes in B are the last ones, along the

recursion, for which such recursive calls are made. We count separately:

(i) the relevant subproblems created in just step (3) of recursive calls 6(Fa, G) for all a E A,

and

(ii) the relevant subproblems encountered in the entire computation of 6(Fb, G) for all b E B

(i.e., EbEB R(Fb, G)).

Together, this counts all relevant subproblems for the original 6(F, G). To see this, consider the

original call 6(F, G). Certainly, the root of F is in A. So all subproblems generated in step (3) of

6(F, G) are counted in (i). Now consider the recursive calls made in step (2) of 6(F, G). These are

precisely 6(F,, G) for v E TopLight(F). For each v E TopLight(F), notice that v is either in A

or in B; it is in A if IF,I > m, and in B otherwise. If v is in B, then all subproblems arising in

the entire computation of 6(F,, G) are counted in (ii). On the other hand, if v is in A, then we are

in analogous situation with respect to 6(F,, G) as we were in when we considered 6(F, G) (i.e.,

we count separately the subproblems created in step (3) of 6(F,, G) and the subproblems coming

from 6(F,, G) for u E TopLight(F)).

Earlier in this section, we saw that the number of subproblems created in step (3) of 6(F, G)

is |G|2 Fl. In fact, for any a E A, by the same argument, the number of subproblems created in

step (3) of 6(Fa, G) is G 2 Fa I. Therefore, the total number of relevant subproblems of type (i) is

G 2 aEA IFa . For v E F, define depthA(v) to be the number of proper ancestors of v that lie in



the set A. We claim that depthA (v) 1 + log - for all v E F. To see this, consider any sequence

ao,..., ak in A where ai is a descendent of ai-1 for all i E [1, k]. Note that Fa, I< IFa, I for all

i E [1, k] since the ais are light nodes. Also note that Fa,, < n and that Fak > m by the definition

of A. It follows that k < log -, i.e., A contains no sequence of descendants of length > 1 + log L.

So clearly every v E F has depthA (v) < 1 + log .

We now have the number of relevant subproblems of type (i) as

G 12 S Fa r< 2  1 + depthA(v) < m2 E(2 + log ) = m2n(2 + log ).
aEA vEF vEF

The relevant subproblems of type (ii) are counted by EbEB R(Fb, G). Using Lemma 5.4, we

have

3 R(Fb, G) < 41G| 3 /2  Fb 3/2 < 4G 3/ 2  Fb Imax Fb 4G 13 /2 F VL- = 4m 2n.
bEB bEB bEB

Here we have used the facts that |Fb < m and EbEB Fb| I IF (since the trees Fb are disjoint

for different b E B). Therefore, the total number of relevant subproblems for 6(F, G) is at most

m2n(2 + log -) + 4m2n = O(m 2n(1 + log g )). This implies:

Theorem 5.5 The running time of the algorithm is O(m 2 n(1 - log ))'

5.3 A Space-Efficient DP formulation

The recursion presented in Section 5.2 for computing 6(F, G) translates into an O(m2n(1 +log ))

time and space algorithm (by using memoization). Apart from the overhead of using recursion,

the space complexity is an obvious drawback. In this section, we present a DP formulation of our

algorithm that solves the relevant problems from smaller to larger, and requires only O(mn) space.

We achieve this by ordering the relevant subproblems in such a way that we need to record the edit

distance of only O(mn) relevant subproblems at any point in time. For simplicity, we assume the

input trees F and G are binary. At the end of this section, we show how to remove this assumption.



The algorithm TED fills a global n by m table A with values A,, = 6(F,, G) for all v E F

and w E G.

TED(F, G)

1: If FI < GI do TED(G, F).

2: For every v E TopLight(F) do TED(F,, G).

3: Fill A,, for all v E HeavyPath(F) and w E G.

Step 3 runs in O( FIlG 2 ) time and assumes A,, has already been computed in step 2 for all

v E F - HeavyPath(F) and w E G (see Section 5.2). In the remainder of this section we prove

that it can be done in O(IFI GI) space.

In step 3 we go through the nodes vi,..., vt on the heavy path of F starting with the leaf vl

and ending with the root vt where t = IHeavyPath(F)1. Throughout the computation we maintain

a table T of size G 2. When we start handling vp (1 < p < t), the table T holds the edit distance

between F,,-, and all possible subforests of G. We use these values to calculate the edit distance

between Fp and all possible subforests of G and store the newly computed values back into T.

We refer to the process of updating the entire T table (for a specific v,) as a period. Before the first

period, in which F,, is a leaf, we set T to hold the edit distance between 0 and G' for all subforests

G' of G (this is just the cost of deleting G').

Note that since we assume F is binary, during each period the direction of our strategy does not

change. Let left(v) and right(v) denote the left and right children of a node v. If vp- 1 = right(vp),

then our strategy is left throughout the period of vp. Otherwise it is right. We now explain what

goes into computing a period. This process, which we refer to as COMPUTEPERIOD(vp), both uses

and updates tables T and A. At the heart of this procedure is a DP. Throughout this description

we assume that our strategy is left. The right analogue is obvious. We now describe two simple

subroutines that are called by COMPUTEPERIOD(Vp).

If Fp_1 can be obtained from Fvp by a series of left deletions, the intermediate left subforest

enumeration with respect to Fvp_1 and F,, is the sequence Fp_l = F, F ... , Fk = FvP such that

Fk'-1 = Fk' - £Fk, for all 1 < k' < k = JF, I - IFp_1I. This concept is illustrated in Fig. 5-
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Figure 5-3: The intermediate left subforest enumeration with respect to Fp 1 and F,, is the

sequence of forests Fv,,l = Fo, F1, .. , F5 = F, .

3. The subroutine INTERMEDIATELEFTSUBFORESTENUM(F_, , F,,) associates every Fk', with

£Fk, and lists them in the order of the intermediate left subforest enumerations with respect to

Fvpl and FP,. This is the order in which we access the nodes and subforests during the execution

of COMPUTEPERIOD(v), so each access will be done in constant time. The intermediate left and

right subforest enumerations required for all periods (i.e., for all of the vps along the heavy path)

can be prepared once in O(FI ) time and space by performing IFI deletions on F according to our

strategy and listing the deleted vertices in reverse order.

Let wo, wl,. .. , WIG|-1 be the right-to-left preorder traversal of a tree G. We define Gi,o as the

forest obtained from G by making i right deletions. Notice that the rightmost tree in Gi,0 is G,,

(the subtree of G rooted at wi). We further define G,j as the forest obtained from G by first making

i right deletions and then making j left deletions. Let j(i) be the number of left deletions required

to turn Gi,o into the tree Gw,. We can easily compute j(),..., j( GI - 1) in O(IGI) time and space
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Figure 5-4: The indexing of various subforests (shown in solid black) of G (shown in gray). The

right-to-left preorder traversal of G is wo, Il,..., WIGI-1. The subforest Gi,j is the forest obtained

from G by first making i right deletions and then making j left deletions. All nonempty subforests

of G are captured by all 0 < i < IGI - 1 and 0 < j 5 j(i) = IGI - i - ICj, . The index of G

itself is G0,0. In the special case of Gw,1 = G2,4 we sometimes use the equivalent index G1,5 .

by noticing that j(i) = GI - i - IGw, (. Note that distinct nonempty subforests of G are represented

by distinct Gijs for 0 < i < lGI - 1 and 0 < j 5 j(i). For convenience, we sometimes refer to

Gi as Gi,j(i)+l and sometimes as the equivalent Gi+l,j(i). The two subforest are the same since the

forest Gl,J(j) is the tree Gw, so making another left deletion, namely Gi,j(i)+l is the same as first

making an extra right deletion, namely G+lj(-). The left subforest enumeration of all nonempty

subforests of G is defined as

G GI-1,j(jGI-1),... , GIG-1,1, GGI-1,0 , ... , 2,j(2), ... , 2,1 , 2 , 0 , 7Gi,(1), .. ., GI,1, C1 ,0  , Go0 ,0

The subroutine LEFTSUBFORESTENUM(G) associates every G,j with the left deleted vertex

fGij, and lists them in the order of the left subforest enumeration with respect to G, so that we will

be able to access fGi,, in this order in constant time per access. This procedure takes O(IGI) time

and space for each i by performing first i right deletions and then j left deletions, and listing the

G 0= G,

W 10 AW9

W4 Ww

6, 5

7 1lw

W W4 WW 2

W10 9 6 W3

Gl
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left deleted vertices in reverse order. The entire subroutine therefore requires O( G 2) time and

space. The above definitions are illustrated in Fig. 5-4. There are obvious "right" analogues of

everything we have just defined.

The pseudocode for COMPUTEPERIOD(vp) is given below. As we already mentioned, at the

beginning of the period for vp, the table T stores the distance between Fvp_ and all subforests

of G and our goal is to update T with the distance between Fvp and any subforest of G. For each

value of i in decreasing order (the loop in Line 3), we compute a temporary table S of the distances

between the forests Fk' in the intermediate left subforest enumeration with respect to F,, _ and F,

and the subforest Gij for 0 < j < j(i) in the left subforest enumeration of G. Clearly, there are

O(1 F G ) such subproblems. The computation is done for increasing values of k' and decreasing

values of j according to the basic relation in Line 4. Once the entire table S is computed, we

update T, in Line 5, with the distances between Fk = F,, and Gij for all 0 < j < j(i). Note

that along this computation we encounter the subproblem which consists of the root-deleted-trees

F, = Fk-1 and G = Gi,j(i-1). In line 7, we store the value for this subproblem in A ,w_.

Thus, going over all possible values for i, the procedures updates the entire table T and all the

appropriate entries in A, and completes a single period.



COMPUTEPERIOD(Vp)

Overwrites T with values 6(F,,, G') for all subforests G' of G, and fills in A with values

6(Fv , Go) for every w E G.

Assumes T stores 6 (FP-,, G') for all subforests G' of G, and v, 1 = right(vp) (if vp_ 1 = left (vp)

then reverse roles of "left" and "right" below).

1: Fo,..., Fk - IntermediateLeftSubforestEnum(Fvp_,, Fvp)

2: Gll-1,j(jGl-1), ... , Gll-1,O, ... , GI,j(, ... , G1,0, Go,,(o), ..., Go,o +- LeftSubforestEnum(G)

3: fori= G -1,...,0do

4: compute table S (Fk'I i, k'=1,...k via the dynamic program:
j=( ....0

c del ( k,) + a(Fk'-1, -1 , )I

6(Fk,, Gi,j) = min Cdel( Gij) + 6(Fk', Gi,j+l),
C k/ G) + L°  L° ) + 5 (Fk,-LFk,, Gj-LJ)
Cmatch (Fk Gij) (, Gij) + (F-LFk l  

G4-LG

5: T 6(Fvp, Gj) for all 0 < j < j(i), via S

6: Q 6- (Fk,, Gi,j(i_1)) for all 1 < k' < k, via S

7: A 6(F;', Gij(i_)) via S

8: end do

The correctness of COMPUTEPERIOD(Vp) follows from Lemma 5.1. However, we still need to

show that all the required values are available when needed in the execution of Line 4. Let us go

over the different subproblems encountered during this computation and show that each of them is

available when required along the computation.

6- when (Fk Gi , F is it i already stored in T from the previous period.):

- when k' = 1, Fo is Fv_,l, so it is already stored in T from the previous period.



- for k' > 1, 6(Fk,-a, G,j) was already computed and stored in S, since we go over values of

k' in increasing order.

6(Fk', Gi,j+i):

- when j = j(i) and i + j(i) = IG - 1, then G?,j(j)+I = 0 so 6(Fk,, 0) is the cost of deleting

Fk,, which may be computed in advance for all subforests within the same time and space

bounds.

- when j = j(i) and i+j(i) < G|-1, recall that 6(Fk', Gi,j(i)+l) is equivalent to 6(Fk,, Gi+l,j())

so this problem was already computed, since we loop over the values of i in decreasing order.

Furthermore, this problem was stored in the the array Q when line 6 was executed for the

previous value of i.

- when j < j(i), 6(Fk', Gi,j+) was already computed and stored in S, since we go over values

of j in decreasing order.

6(L ,, LOc j)

- this value was computed previously (in step 2 of TED) as A,,, for some v E F-HeavyPath(F)

and w E G.

6 (Fk-LFk , Gi,j-LGij):

- if j - j(i) then Fk' - LFk, = Fk" where k" = k' - ILFk,l and Gij - LGj = Gj, where

j' = j + LGij I, so 6(Fk",,, G,j,) was already computed and stored in S earlier in the loop.

- if j = j(i), then G,j is a tree, so Gi,j = LG, 3. Hence, 6(Fk,-Lk,, Gi,-Lc,j) is simply the

cost of deleting Fk",.

The space required by this algorithm is evidently O(IFIIGI) since the size of S is at most

IFIIGI, the size of T is at most IGI2, the size of Q is at most IFI, and the size of A is FIIGI. The

time complexity does not change, since we still handle each relevant subproblem exactly once, in

constant time per relevant subproblem.



Note that in the last time COMPUTEPERIOD() is called, the table T stores (among other things)

the edit distance between the two input trees. In fact, our algorithm computes the edit distance

between any subtree of F and any subtree of G. We could store these values without changing the

space complexity. This property will be useful in the application described in Section 5.5.

This concludes the description of our O(mn) space algorithm. All that remains to show is

why we may assume the input trees are binary. If they are not binary, we construct in O(m + n)

time binary trees F' and G' where F'J < 2n, IG'I < 2m, and 6(F, G) = 6(F', G') using the

following procedure: Pick a node v E F with k > 2 children which are, in left to right order,

left(v) = vl, v 2 ,..., k = right(v). We leave left(v) as it is, and set right(v) to be a new node

with a special label E whose children are v2 , V3,... , vk. To ensure this does not change the edit

distance, we set the cost of deleting e to zero, and the cost of relabeling e to 00. Repeat the same

procedure for G. We note that another way to remove the binary trees assumption is to modify

COMPUTEPERIOD() to work directly with non-binary trees at the cost of slightly complicating it.

This can be done by splitting it into two parts, where one handles left deletions and the other right

deletions.

5.4 A Tight Lower Bound for Decomposition Algorithms

In this section we present a lower bound on the worst case running time of decomposition strategy

algorithms. We first give a simple proof of an Q(m 2 n) lower bound. In the case where m = O(n),

this gives a lower bound of Q(n 3) which shows that our algorithm is worst-case optimal among all

decomposition algorithms. To prove that our algorithm is worst-case optimal for any m < n, we

analyze a more complicated scenario that gives a lower bound of Q(m 2n(1 -+log ')), matching the

running time of our algorithm, and improving the previous best lower bound of OQ(nm log n log m)

time ["'].

In analyzing strategies we will use the notion of a computational path, which corresponds to

a specific sequence of recursion calls. Recall that for all subforest-pairs (F', G'), the strategy S

determines a direction: either right or left. The recursion can either delete from F' or from G'

or match. A computational path is the sequence of operations taken according to the strategy in a



specific sequence of recursive calls. For convenience, we sometimes describe a computational path

by the sequence of subproblems it induces, and sometimes by the actual sequence of operations:

either "delete from the F-subforest", "delete from the G-subforest", or "match".

We now turn to the Q(m2n) lower bound on the number of relevant subproblems for any strat-

egy.

Lemma 5.6 For any decomposition algorithm, there exists a pair of trees (F, G) with sizes n, m

respectively, such that the number of relevant subproblems is Q(m 2n).

(F) (G)

w

v, v

Figure 5-5: The two trees used to prove an Q(m 2n) lower bound.

Proof. Let S be the strategy of the decomposition algorithm, and consider the trees F and G

depicted in Fig. 5.4. According to lemma 5.3, every pair (F,, G') where v E F and w E G is a

relevant subproblem for S. Focus on such a subproblem where v and w are internal nodes of F and

G. Denote v's right child by vr and w's left child by we. Note that F, is a forest whose rightmost

root is the node v,. Similarly, G' is a forest whose leftmost root is we. Starting from (F,, G'),

consider the computational path c,,w that deletes from F whenever the strategy says left and deletes

from G otherwise. In both cases, neither vr nor we is deleted unless one of them is the only node

left in the forest. Therefore, the length of this computational path is at least min{ IF , IGw, } - 1.

Recall that for each subproblem (F', G') along c,, the rightmost root of F' is v, and the leftmost

root of G' is we. It follows that for every two distinct pairs (vl, wl) = (v2 , w2) of internal nodes

in F and G, the relevant subproblems occurring along the computational paths c,,w and cv2 ,W 2

are disjoint. Since there are ' and ' internal nodes in F and G respectively, the total number of



subproblems along the cv, computational paths is given by:

S min{ Fvi, CGj} - 1 = min{2i, 2j} = (m 2n)
(v,w) internal nodes i=1 j=1

The SQ(m 2n) lower bound established by Lemma 5.6 is tight if m = 8(n), since in this case our

algorithm achieves an O(n3) running time. To establish a tight bound when m is not E(n), we use

the following technique for counting relevant subproblems. We associate a subproblem consisting

of subforests (F', G') with the unique pair of vertices (v, w) such that F,, G, are the smallest trees

containing F', G' respectively. For example, for nodes v and w with at least two children, the

subproblem (Fv, G') is associated with the pair (v, w). Note that all subproblems encountered in

a computational path starting from (Fv, G') until the point where either forest becomes a tree are

also associated with (v, w).

Lemma 5.7 For every decomposition algorithm, there exists a pair of trees (F, G) with sizes n >

m such that the number of relevant subproblems is Q(m 2n log n).

(F) (G)

., w

Figure 5-6: The two trees used to prove an OQ(m2n log n) lower bound.

Proof. Consider the trees illustrated in Fig. 5-6. The n-sized tree F is a complete balanced binary

tree, and G is a "zigzag" tree of size m. Let w be an internal node of G with a single node wr as

its right subtree and we as a left child. Denote m' = IG,|. Let v be a node in F such that F, is a



tree of size n' + 1 where n' > 4m > 4m'. Denote v's left and right children vt and vr respectively.

Note that IF, = F, I = "

Let S be the strategy of the decomposition algorithm. We aim to show that the total number

of relevant subproblems associated with (v, w) or with (v, we) is at least -(n' - 2). Let c be

the computational path that always deletes from F (no matter whether S says left or right). We

consider two complementary cases.

CASE 1 : -left deletions occur in the computational path c, and at the time of the - th left deletion,

there were fewer than - right deletions.

We define a set of new computational paths {cj } <j< - where cj deletes from F up through

the jth left deletion, and thereafter deletes from F whenever S says right and from G whenever S

says left. At the time the jth left deletion occurs, at least -> m' - 2 nodes remain in F,, and

all m' - 2 nodes are present in G,,. So on the next m' - 2 steps along cj, neither of the subtrees

F, and G,, is totally deleted. Thus, we get m' - 2 distinct relevant subproblems associated with

(v, w). Notice that in each of these subproblems, the subtree F,, is missing exactly j nodes. So

we see that, for different values of j E [1, )], we get disjoint sets of m' - 2 relevant subproblems.

Summing over all j, we get T-(m' - 2) distinct relevant subproblems associated with (v, w).

CASE 2: 7n right deletions occur in the computational path c, and at the time of the ! th right

deletion, there were fewer than - left deletions.

We define a different set of computational paths {, }l , where -j deletes from F up through

the jth right deletion, and thereafter deletes from F whenever S says left and from G whenever S

says right (i.e., yj, is cj with the roles of left and right exchanged). Similarly as in case 1, for each

j E [1, -] we get m' - 2 distinct relevant subproblems in which F,, is missing exactly j nodes. All

together, this gives (mn' - 2) distinct subproblems. Note that since we never make left deletions

from G, the left child of wi is present in all of these subproblems. Hence, each subproblem is

associated with either (v, w) or (v, we).

In either case, we get - (m'- 2) distinct relevant subproblems associated with (v, w) or (v, we).



To get a lower bound on the number of problems we sum over all pairs (v, w) with G, being a tree

whose right subtree is a single node, and IF,| > 4m. There are 4 choices for w corresponding to

tree sizes 4j for j E [1, m4]. For v, we consider all nodes of F whose distance from a leaf is at least

log(4m). For each such pair we count the subproblems associated with (v, w) and (v, we). So the

total number of relevant subproblems counted in this way is

m m
log n 4

Fv(Gw| - 2) |= (4 - 2) = .2' E(4J - 2) = Q(m 2 n log n4 " IFv (4J - 2) = - m
v,w v j=1 i=log 4m j=1

Theorem 5.8 For every decomposition algorithm and n > m, there exist trees F and G of sizes

8(n) and E(m) such that the number of relevant subproblems is Q(m 2n(1 + log )).

Proof. If m = 8(n) then this bound is Q(m2n) as shown in Lemma 5.6. Otherwise, this bound is

OQ(m 2n log n) which was shown in Lemma 5.7.

5.5 Tree Edit Distance for RNA Comparison

One major application of tree edit distance is the analysis of RNA molecules in computational

biology. Ribonucleic acid (RNA) is a polymer consisting of a sequence of nucleotides (Adenine,

Cytosine, Guanine, and Uracil) connected linearly via a backbone. In addition, complementary

nucleotides (AU, GC, and GU) can form hydrogen bonds, leading to a structural formation called

the secondary structure of the RNA. Because of the nested nature of these hydrogen bonds, the

secondary structure of RNA (without pseudoknots) can be naturally represented by an ordered

rooted tree [42, 1 i ] as depicted in Fig. 5.5. Recently, comparing RNA sequences has gained in-

creasing interest thanks to numerous discoveries of biological functions associated with RNA. A

major fraction of RNA's function is determined by its secondary structure [78]. Therefore, com-

puting the similarity between the secondary structure of two RNA molecules can help determine

the functional similarities of these molecules.



backbone

(a)\ (b) (c) G

Bonds between complementary nucleotides CCGUAGUACCACAGUGUGG A G U A G U

rooted ordered tree.

Shasha and Zhang [88] where the first to suggest representing RNA sequences as rooted ordered

trees, and RNA similarity as tree edit distance. In this way, any tree editing algorithm (and therefore

ours as well) can be used to compute the edit distance of two RNAs. In RNA sequences however,

as in many other biological applications, the deletion of say k consecutive nucleotides is more

probable to occur than k separate deletions. In this section, we show how any decomposition

strategy DP can be adapted to account for this phenomena without changing the time and space

bounds.

Notations. An RNA sequence R is an ordered pair (S, P), where S = sl ... ssl is a string over

the alphabet E = {A, C, G, U}, and P Cf {1,..., ISI x {1,..., IS } is the set of hydrogen bonds

between bases of R. We refer to a bond (i', i) E P, i' < i, as an arc, and i' and i are referred

to as the left and right endpoints of this arc. Also, we let IRI denote the number of nucleotides

in R, i.e., IR = bS .Any base in R can bond with at most one other base, therefore we have

V (i', i), ( j',j) E P, i' a j' r i = j. Following Zuker [105, 106], we assume a model where

the bonds in P are non crossing, i.e., for any (i', i), (j', j) E P, we cannot have i' < j' < i < j

nor j' < i' < j < i. This non-crossing formation conveniently allows representing an RNA as

a rooted ordered tree. Each arc (i', i) is identified with a set of ordered children which are all

unpaired bases j such that i' < j < i, and all outermost arcs (f, f') with i < C < f' < i' (see
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Figure 5.5). We denote the two RNAs to be compared by R 1 = (S1, PI) and 72 = (S 2, P2 ), and

we set IRZ1 = JS1 = n and IR21 = IS 2 | = m. We assume without loss of generality that m < n.

5.5.1 RNA Alignment

As in the case of strings, RNA edit distance is analogous to RNA alignment. An alignment of RT

and R2 is another way of viewing a sequence of edit operations on these two RNAs.

Definition 5.9 (Alignment) An alignment A of R and R 2 is an ordered subset of {1,..., n} U

{- } {1,..., m} U {-} satisfying the following conditions:

1. (-, -) A.

2. V(i,j) E {1,...,n} {1, ... ,m} :i and j appear exactly once in A.

3. V(i', j'), (i, j) E An {1, ... , n} x {1,..., m} : i' <i j' < j. That is, any two pairs

in A are non-crossing.

4. V(i,j) E A { . . n} x 1,... , m} : i is a left (resp. right) arc endpoint in R 1 = j

is a left (resp. right) arc endpoint in 1Z2.

5. V(i',i) E P1, (j',j) E P2 : (i',j') E A E=4 (ij) E A That is, the left endpoints of any

pair of arcs are aligned against each other in A iff their right endpoints are also aligned

against each other in A.

The ordering of the pairs in A is required to be a linear extension of the natural ordering between

pairs of integers. That is, (i', j') is before (i, j) iff i' < i or j' < j.

In terms of editing operations, a pair (i, j) E An {1,..., n} x 1,..., m} corresponds to relabeling

the ith nucleotide (unpaired or not) of R1 so it would match the jth nucleotide of Z2, while pairs

(i, -) and (-, j) corresponds to deleting the ith and jth nucleotides in R and K 2 respectively. The

ordering between the pairs corresponds to the order of edit operations. The first three conditions in

the above definition require any position in R1 and R2 to be aligned, and that (-, -) A, since

(-, -) does not correspond to any valid edit operation. The next condition enforces the order of the
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subsequences to be preserved in A, and the last two conditions restrict any arc to be either deleted

or aligned against another arc in the opposite RNA. Figure 5-8 gives two example alignments for

a pair of RNA sequences.

AAG-CCCUG-U AAGCCCU---- G-U

A-GACCC-GUU A-G----ACCCGUU

Figure 5-8: Two example alignments for a pair of RNA sequences.

5.5.2 Affine Gap Penalties

We now show how to extend any decomposition strategy algorithm to handle affine gap penalties

in the same time and space bounds. Given an alignment A of R1 and 72, a gap is a consecutive

sequence of pairs (i, -) E A or a consecutive sequence of pairs (-, j) E A. For example, in the

left alignment of Fig. 5-8 the gaps are (A, -), (-,A), (U, -) and (-, U); whereas in the right

alignment the gaps are (A, -), (CCCU, - - -- ), (- - -- ,ACCC) and (-, U).

In biological context, one single long gap is more probable to occur than a multitude of

separated short gaps. This situation can be modeled by using an affine gap penalty function

f(k) = g + ka, where f(k) is the score of a gap of length k, g is an initiation penalty to a

gap, and a is the cost of extending a gap by one. This was first introduced by Gotoh [ ] in the

context of string editing, and we extend the technique to ordered tree editing.

Notice that deleting an arc means deleting its two endpoints, each of which might be a part of

a different gap. To account for this, we slightly modify the construction of an ordered tree from an

RNA sequence. To each node in the tree that corresponds to some arc (i, j) we add a leftmost child

i* and a rightmost child j*. Both i* and j* are leaves, and relabeling them to anything costs oo.

When we delete the rightmost (respectively leftmost) root we also delete its rightmost (respectively

leftmost) child, and when we match a node we remove both its leftmost and rightmost children.
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In what follows, we modify the decomposition strategy recursion of Lemma 5.1 to handle

sequential affine gap penalties. In order to modify the recursion, we notice that any deletion may

either continue an existing gap or may start a new gap. For forests F and G, we define nine

different "problems". Denoting by CF and rF the leftmost and rightmost roots of a forest F, these

problems are:

- [F, G] is the edit distance with affine gap penalties between F and G.

- [F, G] (respectively: G [F, G], [F, G],, [F, G]G) is the edit distance with affine gap penalties

between F and G subject to the condition that CF (respectively: CG, rF, TG) is deleted.

- [F, G], (respectively: , [F, G]G, G[F, G],, [F, G]G) is the edit distance with affine gap

penalties between F and G subject to the condition that both CF and rF (respectively: CF and

rTG, G and TrF, G and rG) are deleted.

The following recursion computes the values of all the nine problems. Our recursion can follow

any given decomposition strategy that determines the direction of the recursion in every recursive

call. We present the recursion for a recursive call in which the strategy says left, the case in which

the strategy says right is symmetric (simply replace the left and right subscripts of the '['s and ']'s).

For every X E {F, G, E} (where E is used to denote the empty string):

F [F, G]x,
- [F, G]x = min G [F, G]x,

[FF -fF, G CG ] + [F-FF, G-G eGJ + cost of relabeling CF to .G-

- F[F, G]x = min ,[F - F, G]x + a,

[F - F, G]x g+ a.

- [F, G]x = min ,[F, G - G]x + a,

[F,CG- ]x +9 g+O.

The halting conditions of this recursion are:

- [0, 0] = 0
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- 0, 01 [ = 0,01 = 01, ] = [ 0 F, F [,] =[, 0 9

- F [0o,o] = [, OIF = 2g

- [0, G] = [0, G]G = [O, G] = G [O, G]G = g + aIGI

- [F, 0] = [F, 0], = ,[F, 0] = [F, O], = g + clF

- [F, 0]G = G [F , 0] = G [F, Q] = F[F ! G] = G[F , 0], = 2g + aIFI

- [0, G], -, [O, G] = [O, G], F= [0, G] G = [O, G], = 2g + alG|

Time and space complexity. For every subproblem encountered by the decomposition strategy,

the above recursion encounters nine subproblems. Therefore, since the number of subproblems

corresponds to the time complexity, our recursion requires O(m2n(1 + Ig -)) time by using our

strategy from Section 5.2. Computing these subproblems can be done in O(mn) space as shown

in Section 5.3.
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Chapter 6

Fractional Subproblems

In the chapters we have seen so far, the solution to a subproblem of a DP is some unique number

that we want to compute. In some DPs however, the solution to a subproblem is an entire data

structure rather than a single number. In such DPs, the entire data structure of a subproblem

is processed and used to construct the data structure of larger subproblems. In this chapter, we

discuss the idea of processing only parts of a subproblem's data structure.

We show that in some cases, such fractional parts of a data structure remain unchanged when

constructing the data structure of the larger subproblem. The general idea is to partition the data

structure of the smaller subproblem into two parts. Then, to construct the data structure of the

larger subproblem, one of these parts will be read and processed while the other part will be copied

as is (using a constant number of pointer changes). We show how this idea can be used for the

problem of finding the optimal tree searching strategy in linear time.

This chapter is organized as follows. In Section 6.1 we describe the problem of finding an

optimal tree searching strategy as a generalization of the well known binary search technique.

In Section 6.2 we outline the machinery required for devising DP solutions to this problem, and

in Section 6.3 we give a new O(n 2 )-time DP. The fractional subproblems idea is described in

Section 6.4 and is used to reduce the time complexity to O(n). Our solution represents the optimal

strategy in the form of a weight function on the tree's edges. In the final Section 6.5 we show how

to convert this representation into a decision tree representation in O(n) time.
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6.1 Finding an Optimal Tree Searching Strategy in Linear Time

The binary search technique is a fundamental method for finding an element in a sorted array or a

totally ordered set. If we view the sorted elements as a line of vertices connected by edges, then

searching for the target element is done by querying edges such that a query on edge e tells us

which endpoint of e is closer to the target. It is well known that in such a search, the optimal way

to minimize the number of queries in the worst case is to perform a binary search (see Knuth's

book [ ]). This technique repeatedly queries the middle edge of the searched segment and elimi-

nates half of the segment from further consideration. Binary search can therefore be described by

a complete decision tree where every decision node corresponds to a query on some edge and has

degree two, associated with the two possible outcomes of the query.

The problem of locating an element in a sorted array naturally generalizes to the problem of

locating a vertex in a tree [ , , ]. Again, we are allowed to query an edge to find out which

of each endpoints is closer to the required vertex. Another natural generalization is searching in

partially ordered sets (posets) rather than totally ordered sets [ , , , ]. When searching a

poset for a target element x, the queries are of the form "x < y?" for some member y of the poset.

A negative answer to a query means that either x > y or that x and y are incomparable. These two

generalizations are equivalent when the partial order can be described by a forest-like diagram.

Both search problems can be formalized as follows. Given a tree (or a partially ordered set),

construct a decision tree of the lowest possible height that enables the discovery of every target

element. A decision node corresponds to a query and has degree two associated with the two

possible outcomes of the query. Unlike searching in a sorted array or a totally ordered set, the

optimal decision tree is now not necessarily complete and depends on the structure of the input

tree (or the partial order diagram). This is illustrated in Figure 6-1 for the case of searching a tree.

A searching strategy based on this decision tree is called the optimal strategy and is guaranteed to

minimize the number of queries in the worst case.

Carmo et al. [ ] showed that finding an optimal strategy for searching in general posets is

NP-hard, and gave an approximation algorithm for random posets. For trees and forest-like posets,

however, an optimal strategy can be computed in polynomial time as was first shown by Ben-
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Asher, Farchi, and Newman [ 4]. Ben-Asher et al. gave an O(n 4 log 3 n)-time algorithm that

finds an optimal strategy. This was improved to O(n3 ) by Onak and Parys [: ] who introduced a

general machinery of bottom-up DP for constructing optimal strategies. Laber and Nogueira [57]

gave an O(n log n)-time algorithm that produces an additive Ig n-approximation. This yields a

2-multiplicative approximation, since the depth of a valid decision tree is always at least Ig n.

Our Results. We follow [ 14, 57, :] and focus on trees and forest-like posets. That is, we are

interested in computing the optimal strategy for searching a tree where querying an edge tells us

which endpoint of the edge is closer to the target. We present a worst-case O(n)-time algorithm

for this problem, improving the previous best O(n 3 )-time algorithm. Our result requires a novel

approach for computing subproblems in the bottom-up DP framework of [8 ]. In addition to

proving the correctness of this approach, we introduce two new ideas that are crucial for obtaining

a linear-time algorithm. The first is a method for reusing parts of already computed subproblems.

This is the technique we refer to as fractional subproblems and is the main theme of this chapter.

The second idea is a linear-time transformation from an edge-weighed tree into a decision tree.

Our result improves the running time of algorithms for searching in forest-like partial orders as

well, as discussed in [3 ].

Applications. One practical application of our problem is file system synchronization. Suppose

we have two copies of a file system on two remote servers and we wish to minimize the commu-

nication between them in order to locate a directory or a file at which they differ. Such a scenario

occurs when a file system or database is sent over a network, or after a temporary loss of connec-

tion. The two servers can compare directory or file checksums to test whether two directories or

files differ. Such a checksum test can detect if the fault is in a subdirectory or in a parent direc-

tory. Directories are normally structured as rooted trees and a checksum test on a rooted subtree

is equivalent to an edge query on an unrooted subtree. Notice that we assume edge queries on

unrooted trees but this is equivalent to subtree queries on rooted trees.

Software testing or "bug detection" is another motivation for studying search problems in

posets (and in particular in trees). Consider the problem of locating a buggy module in a pro-
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gram where dependencies between modules constitute a tree. For each module we have a set of

exhaustive tests that verify correct behavior of the module. Such tests can check, for instance,

whether all branches and statements in a given module work properly. Minimizing the worst-case

number of modules that we test in order to locate the buggy module reduces to our searching

problem.

Related research. Many other extensions of binary search are reported in the literature. These

include querying vertices rather than edges [ ], Fibonaccian search [ ], interpolation search [ ],

searching when query costs are non-uniform [ , , ], and searching an order ideal in a poset [ ,

After publishing our result in SODA 2008, we discovered that the problem of tree ranking is

highly related to our problem of searching in trees. The term tree ranking is essentially identical

to the term strategy function that we use, and results for tree ranking and tree searching were

developed in parallel for more than ten years now. To our knowledge, the relation between these

problems has never been stated. This is probably because the applications differ a lot. While the

applications for tree searching are filesystem synchronization and bug detection, applications for

tree ranking are in VLSI design and matrix factorization.

For the problem of tree ranking, Torre, Greenlaw, and Schaffer [ ] gave an O(n3 log n)-time

algorithm, Iyer, Ratliff, and Vijayan [ ] gave a 2-multiplicative approximation algorithm running

in O(n log n) time, and finally, Lam and Yue [ ] presented an optimal O(n) solution. While

the high level descriptions of the Lam-Yue algorithm and of ours are similar, the two solutions

differ in the representation of visibility lists and choice of data structures (i.e. in implementing

the fractional subproblems technique). In addition, unlike Lam and Yue's algorithm, our solution

achieves 0(n) running time without using word-level parallelism ("bit-tricks"). Finally, we show

how to transform in linear time a ranking/strategy into the corresponding decision tree. This is an

important component that is unique for the tree searching problem and was not required for the

tree ranking problem.
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6.2 Machinery for Solving Tree Searching Problems

In this section we review the techniques required for a bottom-up construction of the optimal

strategy as introduced by Onak and Parys [N ].

Strategy functions. Recall that given a tree T = (V, E), our goal is to find an optimal strategy

for searching in T. This strategy should minimize the worst-case number of queries required to

locate a target vertex, or equivalently, correspond to a correct decision tree of the lowest possible

height. Onak and Parys showed that finding an optimal strategy is equivalent to finding an optimal

strategy function. A strategy function f: E -- Z+ is a function from the set of edges into the set

of positive integers that satisfies the following condition. If f takes the same value on two different

edges el and e2, then on the simple path from el to e2, there is an edge e3 on which the function

takes a greater value (i.e. f(e 3) > f(el) = f(e 2 )). An optimal strategy function is one with the

lowest possible maximum. We make use of the following lemma.

Lemma 6.1 ([83]) For every tree T, the worst-case number of queries in an optimal searching

strategy in T equals the lowest possible maximum of a strategy function on T.

The intuition behind strategy functions is that if f(e) = k, then when we query the edge e we have

at most k more queries until we find the target vertex. It turns out that a strategy function f with

maximum k easily transforms into a searching strategy with at most k queries in the worst-case.

The first query in the strategy being constructed is about the edge with the maximal value k. If we

remove this edge, the tree breaks into two subtrees and the problem reduces to finding the target

vertex in one of the subtrees, say T'. The second query is about the edge with maximal value in

T' and we continue recursively. By definition of the strategy function f, in the ith query there

is a unique edge with maximal value. An example of a strategy function and the corresponding

search strategy is illustrated in Figure 6-1. In Section 6.5 we present an O(n)-time algorithm that

transforms a strategy function into a decision tree.

Bottom-up DP. Our objective is thus to find an optimal strategy function f. To do so, we ar-

bitrarily root the tree T, and compute f(e) for every e E E using DP in a bottom-up fashion.
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(a,b)? (el)?

(bd) c (e)? (k1? (f )? (hi)?

b d e j k I f h i

b d e ' k 1 f h i

Figure 6-1: (a) a sample input tree with its optimal strategy function. (b) the corresponding optimal

decision tree. The height of the decision tree is equal to the maximum value assigned by the

strategy function

More formally, suppose we have a node u with children ul,..., uk connected to u by the edges

el,..., ek. Assuming that f has already been computed for all T(ul),..., T(Uk) (where T(u) is

the subtree rooted at u), we extend the function to T(u) by computing f(el),..., f(ek) without

changing f(e) for any e 0 {el,... ,ek}. This means that the restriction to T(ui) of our desired

optimal strategy function for searching T(u) is optimal for searching T(ui) for every 1 < i < k.

To describe this extension we need the notion of visibility. We say that an edge e is visible

from a vertex u, if on the simple path from u ending with the edge e there is no edge e' such that

f(e') > f(e). In other words, the visible values from u are those which are not "screened" by

greater values of f. Note that by the definition of a strategy function, each value of f is visible

from u at most once. The enumeration in descending order of all values visible from u in T(u) is

called the visibility sequence of u.

Note that in order to extend the strategy functions on T(ul), T(u2),... T(uk) to a correct strat-

egy function on the entire T(u), it suffices to know just the visibility sequence of each ui. Denote

by si the visibility sequence at ui in T(ui). We want to assign values to the edges el to ek so that

we achieve a correct strategy function on T(u). We need to make sure that:
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- For every two edges ei - ej, f(ei) # f(ej).

- For every edge ei, f(ei) is not present in si.

- For every edge ei, if f(ei) is present in sj, then f(e 3 ) > f(ei).

- If the same value v appears in two visibility sequences si and sj, where i $ j, then the

maximum of f(ei) and f(e 3 ) is greater than v.

One can easily verify that these conditions suffice to obtain a valid extension of the strategy func-

tions on T(ul),..., T(uk) to a strategy function on T(u).

Consider a lexicographical order on visibility sequences. A valid extension that yields the

smallest visibility sequence at u is called a minimizing extension. An extension is called monotone

if increasing the visibility sequences at the children does not decrease the visibility sequence which

the extension computes for their parent. Onak and Parys proved that extensions that are both

minimizing and monotone accumulate to an optimal strategy function. They further showed that,

for the tree searching problem being considered, every minimizing extension is also monotone.

Lemma 6.2 ([83]) The bottom up approach yields an optimal strategy if at every node we compute

a minimizing extension.

6.3 Computing a Minimizing Extension

In this section we describe a novel algorithm for computing a minimizing extension. An efficient

implementation of this algorithm is presented in Section 6.4. This implementation uses the frac-

tional subproblems technique and yields an O(n)-time algorithm for computing an optimal strategy

function.

6.3.1 Algorithm Description.

We first describe the intuition behind the algorithm, and introduce helpful notions. Along the

explanation we refer to the relevant line numbers in the pseudocode of the algorithm, which is
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1: let all gi = 0
2: let all entries of the array U contain the value free
3: add the value 0 to every si
4: v - largest value in all si
5: while not all edges assigned a positive value:
6: if v is exposed at least twice or v = 0:
7: w - smallest i s.t. i > v and U[i] is free
8: T {i {1, ... , k} : si contains an exposed value smaller than w}
9: j any i E T such that si >w s, for every i' E T

10: U[w] - taken
11: for all values w' in sj such that w' is exposed and v < w' < w:
12: U[w'] -- free
13: gj +- w
14: else
15: U[v] -- taken
16: v +- largest exposed value in S smaller than v

Figure 6-2: Algorithm for computing a minimizing extension

given in Figure 6-2.

Consider a vertex u with k children ul, u2 ,.. , uk, connected to u along edges el, e2,..., ek

respectively. Let S = {sl S2, s . . , Sk} be the set of already computed visibility sequences at the

children. To understand the intuition leading to the formulation of the algorithm, Consider the

largest value that appears in more than one of the visibility sequences. Denote this value v (Line

6). In a sense, v is the most problematic value, since any valid assignment of values to the edges

must assign some value w > v, to one of the edges corresponding to the visibility sequences in

which v appears.

What would be a good value for w? We say that a positive value is free if it is not visible from

u. The set of free values changes as we modify the values assigned to el, e2, ... , ek during the

execution of the algorithm. Obviously, choosing a value which is not free for w will not result in a

valid visibility sequence. Our algorithm therefore chooses the smallest free value greater than v as

w (Line 7). But to which edge should w be assigned?

If we assign w to an edge ej, all values in si that are smaller than w become "hidden" from all

the edges not in T(uj). In other words, these values, which were not free until w was assigned (they
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appeared in si), may now become free, and will not contribute to the resulting visibility sequence

at u. This means that we should assign w to such an edge so that the greatest possible values will

be freed. In other words, we should assign w to an edge whose visibility sequence contains the

greatest elements smaller than w (Lines 8-9,13). We call such an edge maximal with respect to

w, a notion that is formalized in Definition 6.4. It turns out that it is worthwhile to assign w to

the maximal edge with respect to w regardless of whether this edge contains an occurrence of the

multiple value v we originally wanted to take care of.

Once w is assigned to ej, we only care about values in si that are greater than w. We refer

to these values as exposed values. The values in si that are smaller than w no longer affect the

visibility sequence in u (Lines 11-12). We then repeat the same process for the largest value

currently exposed more than once in S (Lines 5,16). Note that this value may still be v, or some

other value smaller than v. The process is repeated until no value is exposed multiple times. Note

that during this process we may decide to assign a greater value to an edge ei that was previously

assigned a smaller value. However, as we will see, this procedure never decreases the values we

assign to the edges ei. It is important to emphasize that the only values assigned by the extension

algorithm are to the edges ej, connecting u to its children ui. We never change values of edges

in the subtrees T(ui). Once all values are exposed at most once, we have to assign values to any

edges that were not yet assigned. This is done by assigning the smallest free value according to

the same considerations described above. In Section 6.3.1 we prove that the values assigned to the

edges at the end of this process constitute a valid minimizing extension.

We now formally state the necessary definitions.

Definition 6.3 (si > sj) The > relation denotes lexicographic order on visibility sequences. We

define si > sj analogously.

Definition 6.4 (s >, sj) We say that si is larger than sj with respect to v, denoted si >, sj, if

after removing all values greater than v from both visibility sequences, si is not lexicographically

smaller than sj. We define the relations >, and =, analogously.

For example, if sl = {5, 1} and s2 = {3} then sl >6 S2, S1 >2 S2, but S2 >4 Sl*
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Throughout the execution of the algorithm, we maintain values g2, which keep track of the

values assigned to the edges. Eventually, at the end of the execution, these values describe our

extension. Below we define two different kinds of values.

Definition 6.5 (Exposed values) Let v be a value in a visibility sequence si. During execution,

we say that v is exposed in si if v is greater than or equal to the current value of gy. We define

exposed(si) to be the set of exposed values in si.

Definition 6.6 (Free values) A positive value v is free at a given time during execution if at that

time it is neither exposed in any visibility sequence si, nor equals any g.

We keep track of the free values using the array U. Recall that the algorithm in the form of

pseudocode is given in Figure 6-2.

Proof of Correctness. Let us start with a simple observation about the algorithm.

Observation 6.7 The algorithm has the properties:

1. The values gj never decrease.

2. If gj > 0 then gj is greater than v's current value.

3. If gj > 0 then gj is not exposed in any of the input sequences.

4. The current v in the algorithm is always greater than or equal to the current largest value

exposed at least twice.

5. If gj > 0 then there are no values greater than gj which are exposed more than once.

To be able to describe the state of the algorithm at intermediate stages, we introduce a slightly

modified problem. This problem captures the fact that some edges have already been assigned a

value, and that our algorithm will never decrease this value. We will discuss a natural one-to-one

correspondence between instances of the modified problem and of the original one.

Definition 6.8 (Modified problem)
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Given a set of k sequences S = {s1,...,Sk}, where each sequence s C {0,1,..., n}, find a

sequence of non-negative values F = fi,..., fk such that:

1. (no duplicates within sequence) Vi fi si

2. (no duplicates between sequences) V1 < v n : {i : v = f } U {i : v E i and v > f2 }l 1

3. (no decreasing assignments) Vi : fi > 0 - fi > min(9i)

The modified problem can be used to describe intermediate situations, where some of the edges ei

were already assigned a value.

Definition 6.9 (S(S, G)) Let S be the original set of visibility sequences at the children and G =

91,..., 9k be the values assigned to the edges so far (gi = 0 if ei was not assigned any value).

We define the modified problem S(S, G) associated with S and G as the set of modified input
def

sequences si(si, g9) degf 9i} U exposed(si).

Obviously, gi is the smallest element in gi(si, 9i). If gi = 0, then ei must be assigned a positive

value by fi (the first condition in definition 6.8). If gi > 0, then we do not have to assign a value

to ei, so f, may be zero. We may, however, increase the assigned value by choosing f, > g if we

wish to (the last condition in definition 6.8).

Definition 6.10 (Q(S, F)) Let Q(S, F) be the set of visible values at the root for a valid solution

F of the original problem S.

Definition 6.11 (Q(S, F)) Let Q(S, F) def Uqi(~, f2) be the set of visible values at the root u for

a valid solution F of the modified problem S. q (gi, fi) def f, if fi > O) U {v : v Ge and v > fi .

In other words, ti(i, fi) is the set consisting of max(gi, fi) and all values in si greater than

max(gi, fi). Note that the validity of the solution F assures that the qi's are disjoint sets.

The correspondence between intermediate situations of the original problem and inputs to the

modified problem leads to a correspondence between valid assignments of the two. The formal

proof of this observation is omitted for brevity.
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Observation 6.12 Let G = gl, .. ., gk be an intermediate assignment in the execution of the algo-

rithm for input visibility sequences S = sl,... , sk. Let S = S(S, G). The minimal Q(S, F), where

F ranges over valid solutions to S and such that for each i, fi > gi, equals the minimal Q(S, F'),

where F' ranges over valid solutions of S.

We now proceed with the proof of correctness. Consider the running of our algorithm and let w

be as in Line 7 of our algorithm. That is, if v is the maximal element which is exposed at least

twice in S, then w is the smallest free element greater than v. Also, let G denote the current values

assigned to the edges (G is the set of values assigned when Line 13 was executed in the previous

loops).

Lemma 6.13 In any valid assignment F for S(S, G), there is a value z E F such that z > w.

Proof. Let F be a valid assignment for S. Assume, contrary to fact, that w' < w is the largest

value in F. If w' < v, then v appears twice in Q(S, F) in contradiction to the validity of F (the

second condition in Definition 6.8 is violated). Otherwise, w' > v. The fact that w is the smallest

free element greater than v implies that w' E si for some i. If fi = w', then the first condition in

definition 6.8 is violated. Otherwise, fi < w', so the second condition in Definition 6.8 is violated..

We next prove the main technical lemma which essentially shows that the way our algorithm

assigns values to edges does not eliminate all optimal solutions.

Lemma 6.14 Let G = gl, ... , g be an intermediate assignment in execution of the algorithm for

input visibility sequences S = si, . . . , sk. Furthermore, let sj be as in Line 9 of the algorithm.

That is, sj contains an exposed value smaller than w, and sj >, si, for any si that has an exposed

value smaller than w.
- def -

There is an optimal solution F to the problem S S(S, G) such that fj > w.

Proof. Let F' be an optimal solution to S(S, G). If f > w, we are done. Otherwise, f; < w.

Case 1: If w F', then consider the smallest w' in F' such that w' > w. Such w' must exist by

Lemma 6. 13. Let i be such that f' = w'. We know the following:
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1. gi < f' = w' (by Definition 6.8, third condition).

2. F' does not contain any values in the range {w, w + 1, ... , w' - 1} (by definition of w').

3. No value greater than or equal to w appears in S more than once (by definition of w).

4. The value w does not appear in S and F'.

def def
Consider the assignment F with f, {w if w > gi, 0 otherwise} and fe f' for all other values

of f. By the above properties, F is a valid assignment with Q(S, F) < Q(S, F') in contradiction

to the optimality of F'.

Case 2: If w E F', then let i be such that f' = w.

Case 2.1: If 9i does not contain any values smaller than w, then gi must be greater than w. We

have gi > w = fl > 0, in contradiction to the validity of F' (the third condition in Definition 6.8

is violated).

Case 2.2: If 9i contains just a single value smaller than w, then this value must be gi.

- If gi = 0, then we may exchange the values assigned to ei and ej. The desired assignment F
def def def

is therefore: fj de f = w, f def= max{ fj, gj }, and f f' for all other values of .

- If gi > 0, then there was no need to increase the value assigned to ei from gi to w. In

particular, gi must equal f,, for some m. Otherwise, by setting ff to 0 in F', we would get

a valid solution better than F'. To be able to assign gi to ei, we must assign a different value

to em. The assignment F" with f" def, w, f d 0, and f," de fi, for all other values

of £, is a valid assignment with Q(S, F") = Q(S, F'). We may repeat the entire proof with

F" in the place of F'. The fact that gm < fm = gi assures us that we will not repeat entering

this case indefinitely.

Case 2.3: If 9i contains more than one element smaller than w, then exposed(s) is not empty, so

i E T in Line 8 of the algorithm.

- If exposed(sj) =,exposed(si), then by property 5 in Observation 6.7, gi = 9j = 0. We may

therefore exchange fj and fi, and we are done.

117



- Otherwise, exposed(s3 ) >,exposed(s). To see that, consider mi and my, the largest exposed

values smaller than w in si and sj respectively. Since sj > si, we get that mj > m. If

my = mi, then by property 5 in Observation 6.7, gi = gj = 0, so si = exposed(si) $,
exposed(sj) = sj. Therefore, exposed(sj) >w exposed(si). Let x be the largest value

smaller than w that is exposed in sj but not in si. Consider the assignment F with f df
f = w, fid_ rnax {f, x} and f ' f for all other values of f. Q(S, F) is not larger than

Q(S, F'), so F is an optimal solution with fj = w. F is valid because max{f , x} is not

exposed in s,. x is not exposed in si by definition, and if ff > x then ff cannot be exposed

in sj since exposed(sj) >, exposed(s). I

Theorem 6.15 Our algorithm finds an optimal assignment infinite time.

Proof. We will show that there is an optimal assignment F = fl,..., fk, such that throughout the

execution of our algorithm, Vi : gi < fi, where gi are the values assigned to the edges in Line 13

of our algorithm.

We proceed by induction on t, the number of times Line 13 has been executed. For t = 0, gi = 0

for all i, so the claim trivially holds. Assume that the claim is true for t- 1 and let G = {g1, .. , 9k

be the values assigned to the edges just before the t-th time Line 13 was executed. On the t-th time

we execute Line 13, gj will be increased by setting it to w, where w, j are as in the conditions of

Lemma 6.13 and Lemma 6.14. Applying Lemma 6.14 with G shows that there exists an optimal

solution F which assigns fj > w, as required to prove the inductive step.

Since the algorithm keeps increasing the assigned values gi, and since the sum of g1's in an

optimal solution is bounded, the algorithm will eventually terminate..

6.4 Linear Time Solution via Fractional Subproblems

In this section we show that the algorithm for computing a minimizing extension can be efficiently

implemented, so that the total time spent on the bottom-up computation of an optimal strategy

function is linear in the number of nodes. The proof is composed of two parts. First we bound the
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amount of time required for the computation of a single extension. Next, we use this to bound the

total time required to find the optimal strategy function.

One might be tempted to think that the sum of lengths of all visibility sequences at the children

of a node v is a lower bound on the time required to compute a minimizing extension and the

resulting visibility sequence at v. This, in fact, is not true. An important observation is that in many

cases, the largest values of the largest visibility sequence at the children of v appear unchanged as

the largest values in the visibility sequence at v itself. By using linked-lists we reuse this part of

the visibility sequence when computing an extension without ever reading or modifying it. This

idea is what we refer to as the fractional subproblems idea.

To state this idea accurately, we define the quantities k(v), q(v) and t(v) at each node v in the

rooted tree as follows.

- k(v) is the number of children of v.

- Let S denote the set of visibility sequences at the children of v, and let sl be the largest

sequence in S. We define q(v) as the sum of the largest values in each sequence over all

input sequences in S except sl. If a sequence is empty, then we say that its largest value is

0. If S is empty, q(v) = 0.

- Let s be the visibility sequence at v. We define t(v) to be the largest value that appears in s

but does not appear in sl. If S is empty, t(v) = 0.

Lemma 6.16 bounds the time required to compute a minimizing extension and the resulting vis-

ibility sequence. The proof constructively describes how to implement each line of the algorithm.

The important points in the proof are that we never read or modify any values greater than t(v) in

sl, and that by using the appropriate data structures, we are able to find the desired sequence in

Lines 8-9 of the algorithm efficiently.

Lemma 6.16 A minimizing extension and its resulting visibility sequence can be computed in

O(k(v) + q(v) + t(v)) time for each node v.

Proof.
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We keep visibility sequences as doubly-linked lists starting from the smallest value to the

largest. This allows us to reuse the largest values of the largest input sequence.

We assume for simplicity that there are at least two input sequences. If there is no input

sequence, then v is a leaf, and the corresponding visibility sequence is empty, so we can compute

it in constant time. If there is just one input sequence, then we should assign the smallest positive

value which does not appear in the input sequence to the edge leading to the only child of v. We

can find this value in O(t(v)) time by going over the list representing the input sequence. We then

create a new visibility sequence that starts with this value. The rest of the list is the same as the

portion of input visibility sequence above t(v).

Assume, without loss of generality, that sl, s2,... are ordered in descending order of the largest

value in each sequence. Let 11, 12 be the largest values in si, s2 respectively. We say that the largest

value of an empty input sequence is zero. Note that we can compute 12 in O(k(v) + q(v)) time

by simultaneously traversing all the lists representing the input sequences until all but one are

exhausted.

We modify the algorithm so that instead of starting from v = 11 in Line 4, we start from v

equal 12. Clearly, there are no values greater than 12 that appear in more than one sequence, so the

only difference this modification introduces is that all the values between 12 and l1 that belong to

sl would have been marked by the original algorithm as taken in the vector U (Line 15), but are

not marked so after this modification. We will take care of such values when we discuss the data

structure that represents the vector U below.

Representing the vector U. The vector U is used in the description of our algorithm to keep

track of free and taken values. It is modified or accessed in Lines 2, 7, 12 and 15. We maintain the

vector U using a stack. Values on the stack are free values. The stack always keeps the following

invariant: values on the stack are ordered from the largest at the bottom to the smallest at the top.

We do not mark all elements as free as in Line 2. Instead, the stack is initially empty, and if, when

we decrease v in Line 16, we encounter a value that is not exposed at all, we insert this value into

the stack. When implementing the loop in Lines 11-12, we insert to the stack all values greater

than v that are currently exposed, and are about to become free. Since all of them are smaller
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than the current w, and as we will see below, all values on the stack are greater than the current

w, we may insert them in decreasing order to the stack and maintain the stack invariant. We now

describe how to find the value w in Line 7. If the stack is not empty, we pop the value from the

top of the stack and use it as w since this is the smallest free value greater than v. If the stack is

empty, then we must find a free value greater than 12 (remember that such values were not inserted

into the stack because we changed Line 4 to start from v = 12). In this case, we traverse the list

representing si to find the smallest value that does not appear in it. In total, we will not spend more

than O(t(v)) time on traversing sl in order to find such values.

The next two data structures we describe are used to efficiently find the correct sj in Lines 8-9.

Lists of sorted sequences. For each i between 0 and 12, we maintain a list Li of the visibility

sequences sorted in descending order according to <i. Moreover, the following invariant always

holds: a sequence sj appears in Li if the greatest value in sj is at least i, and there is an exposed

value in sj that is not greater than i.

Initially, we create the lists as follows. We use a modification of radix sort. Lo is simply the

list of all sequences in an arbitrary order. To create Li, we take Li-1 and create two lists, L'

and LT. L contains all the sequences in Li- 1 that contain i, and L- contains all the sequences

in Li-_ that do not contain i, but do contain a value greater than i. In both new lists, sequences

occur in the same order as in Li_-. Li is a concatenation of L+ and L . By induction, Li contains

sequences in descending order according to <. The total length and total setup time of all the lists

Li is O(k(v) + q(v)). Within the same time constraints we keep pointers from each sequence to

its occurrences in the lists Li, which will be used to remove them from the lists in constant time

per removal. To maintain the invariant, we have to update the lists if at some point gj is increased

in Line 13. When this happens, we remove sj from all Li such that i is smaller than the smallest

exposed value in sj. If the new value of gj is greater than the largest value in sj, then we remove

sj from all the lists. Since initially, the total size of the lists Li is O(k(v) + q(v)), we do not

spend more than O(k(v) + q(v)) time on modifying the lists along the entire computation of the

extension.
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Counters of long sequences with exposed values. We introduce one more structure. For each i

from 0 to 12, let C, keep track of the number of sequences whose maximal value is exposed and not

smaller than i. We need to update this structure only if we set gj in Line 13 with a value greater than

the maximal exposed value, m, in sj. If this happens, we subtract I from all Co to Cm (certainly,

if m > 12, we stop at C12). Since this happens at most once for each visibility sequence, and by the

definition of k(v) and q(v), we spend at most O(k(v) + q(v)) time on all such subtractions.

Finding the correct sj in Line 9. We can finally describe how to find the correct sequence sj in

Lines 8-9. Suppose first that w is at most 12.

- If L, is empty, then all the sequences corresponding to indices in T have their largest ex-

posed values smaller than w. To find the correct sj, we start from Co and look for i such that

Ci+j = C,, but Ci > C,. The first sequence in Li is the required sequence. This is true

since there are no sequences with exposed values between i and w, and all sequences with

an exposed value of i are in Li, and the first sequence in L is the largest sequence with an

exposed value i with respect to i and therefore also with respect to w. Each sequence can be

found this way at most once because once it is found and assigned the value w, it no longer

has any exposed values. Therefore, over the entire computation of the extension we pay for

this case at most O(k(v) + q(v)).

- Suppose now that L, is not empty. We look at the first, and largest with respect to w,

sequence s. in L,. It may be the case that there is a greater sequence with respect to w

among the ones that have an exposed value smaller than w, but that the maximal value of

this sequence is also smaller than w, and therefore, this sequence does not appear in L,. Let

m be the maximal value in s, that is smaller than w. If Cm = C, then we did not miss

any sequence, and s, is indeed the required sequence. Note that we found it in 0(1) time.

If Cm > C,, but Cm+l = C,, then m is the largest exposed value smaller than w, and the

first sequence in L, is the required sequence (again we have found the right sequence in

constant time). If both Cm and Cm+1 are greater than C,, then there exists a sequence that

has an exposed value greater than m and smaller than w that is not present in L,. We find
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the largest exposed value i smaller than w as in the case of an empty L. Note that this value

is at the same time the largest value of the first sequence in Li. As was the case for an empty

L, the desired sequence is the first one in Li, and the total time spent on this case is at most

O(k(v) + q(v)).

Now assume that w is greater than 12. If Sl, the largest sequence, contains an exposed value

smaller than w, then s, is the right sequence. We may keep track of the smallest exposed value in

sl greater than 12 in no more than O(t(v)) time. Then, we can check if this is the case in constant

time. If sl has no exposed values between 12 and w, we proceed as in the case of w < 12, since it

suffices to find the maximal sequence with respect to 12.

Conclusion. We have already presented fast implementation of most of the steps of our algo-

rithm. The remaining Lines 4, 6, and 16 can be efficiently implemented as follows. First, as we

have already mentioned, we initialize v in Line 4 to 12 instead of 11. When we look for the next

value of v, we simultaneously traverse the lists representing all sequences whose maximal element

is at least v, and as v decreases we include into our working set new sequences that become rele-

vant since v is their largest value. For each v we consider, we can check in constant time if there

are such new relevant sequences, if we sort the sequences according to their maximum values less

than 12 in O(k (v) + q(v)) time at the beginning of the algorithm. The total time spent on decreasing

v is at most O(k(v) + q(v)). When we find a new v, we count the number of times it is exposed,

and we update this counter as some of them are removed. This way we implement the conditional

statement in Line 6 efficiently. Finally, the total number of times we increment the value of gi at

all edges is at most k(v) + q(v) + t(v), because each time at least one value in the corresponding

sequence becomes unexposed. After we have computed the minimizing extension we create the

new visibility sequence at v from the assigned values gi and the exposed values we encounter while

simultaneously traversing all visibility sequences until we reach the smallest value in sl, the largest

visibility sequence, that is greater than 12 and than any gi. This takes O(k(v) + q(v) + t(v)) time.

To this newly created linked list we link the remaining unscanned portion of sl in constant time.

We have thus shown the total amount of time required to compute the extension and the resulting
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visibility sequence is thus O(k(v) + q(v) + t(v)). I

Theorem 6.17 An optimal strategy function can be computed in linear time.

Proof. Recall that we arbitrarily root the input tree. For every node v, given the visibility functions

and sequences on the subtrees rooted at the children of v, we compute a minimizing extension of

them to a function and a visibility sequence at the subtree rooted at v. By Lemma 6.16, this takes

O(k(v) + q(v) + t(v)) time at each node v. Eventually, according to Lemma 6.2, we get an optimal

strategy function. The total computation thus takes

0 ( k(v) + q(v) + t(v)

Obviously, the total number of sequences that are used in the computation of different se-

quences is n - 1, that is, E k(v) = n - 1.

We next bound the sums of q(v) and t(v). We first show that E t(v) < 2(n - 1) + E q(v),

which implies that it suffices to bound q(v). Recall that t(v) is the largest new value that appears in

the largest visibility sequence. Let 12 (v) be the maximal value in the second largest sequence, or 0

if there is no such sequence or if it is empty. Obviously, 12 (v) < q(v) for every node v. What is the

sum of all t(v) - 12 (v)? If t(v) - 12 (v) > 0, then at some point in our algorithm we assign t(v) to

one of the edges. This means that all the values 12 (v) + 1to t(v) - 1 are taken at that moment. Each

of them is taken either by a value assigned to one of the new edges or by an exposed value in the

largest input sequence. If there are indeed exposed values between 12 ( v) + 1 and t(v) in the largest

input sequence, then our algorithm assigns t(v) to the edge corresponding to the largest sequence,

so all of these exposed values will not be visible in subsequent computations at the ancestors of

v. It follows that each edge contributes to the sum of all t(v) - 12 (v) at most once in each case.

Hence,

ZL(V) Zt(V) - 12(V) + )12 (V) < 2(n - 1) + 1: q(v).
V V V V

Now, it suffices to bound the sum of all q(v). We show by induction that the sum of all q(v)

in the subtree T(v) rooted at v is at most n(v) - r(v) - 1, where n(v) is the number of nodes in

124



T(v), and r(v) is the maximum value in the visibility sequence computed for v. If v is a leaf, then

q(v) = 0, n(v) = 1, and r(v) = 0, that is, our claim holds. Suppose that v has k = k(v) children,

and that the claim holds for each of them. Let ul, u,..., uk be the children of v. Assume, without

loss of generality, that ul has the largest visibility sequence among the children of v. This implies

that r(v) < r(ul) + k, since we can create a valid extension by assigning the values r(ul) + 1 to

r(ul) + k to the edges between v and its children. Then,

k k

qeiv') - 1: i) +: 1 q(u')
v'ET(v) i=2 i=1 u'ET(ui)

k k

< 1: r() + Z n(ui) - r(ui) -1
i=2 i=1

= (n(v) - 1) - r(u) - k n(v) - r(v)- 1.

This concludes the inductive proof and implies that E q(v) < n - 1. Putting everything together

we get

k(v) + q(v) + t(v) < (n - 1) + (n - 1) + 3(n - 1) = O(n).

Thus proving that the time required to compute the optimal strategy function along with the inter-

mediate visibility sequences at all nodes is linear in n. 1

6.5 From a Strategy Function to a Decision Tree in Linear Time

In this section we show how to construct an optimal decision tree in linear time using an optimal

strategy function. We begin with some additional definitions and assumptions. To avoid confusion

between the input tree and the decision tree we will refer to the decision tree by the acronym DT.

Each node in DT represents an edge in the input tree. We refer to each node in DT by the edge in

the input tree which it represents. Let r be the root of the tree. We introduce an additional node

r', and connect it to r. We assign the value oo to the edge (r', r), and from now on we treat r' as
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a root of the tree. For an edge e, let top(e) denote the end point of e closer to the root of the tree

and bottom(e) the end point of e farther from the root. The node e in DT will have exactly two

children, one for the case when the query about e returns top(e) and the other for the case when it

returns bottom(e).

Initially, the nodes in DT are disconnected. We now describe an algorithm that uses the com-

puted strategy function and visibility sequences to connect the nodes in DT. We assume that along

with each value in each visibility sequence we keep a link to the edge to which that value is as-

signed. Clearly, this can be done within the same time complexity.

The Algorithm. We processes all edges of the input tree in any order. For each edge e, let s be

the visibility sequence at bottom(e).

If s contains no values smaller than f(e), then

(1) set bottom(e) as the solution in DT when the query about e returns bottom(e).

Otherwise, let v < v2 . < vk be the values smaller than f(e) in s, and let ei be the edge vi is

assigned to.

(2a) set node ek in DT as the solution when the query on e returns bottom(e).

(2b) for every 1 < i < k set the node ej in DT as the solution when the query on ej+l returns

top(ei+l).

(2c) set top(el) to be the solution in DT when the query on el returns top(el).

Finally, after applying the above procedure to all edges in the input tree, the root of DT is the only

child of the DT node (r', r).

Correctness and Time Complexity. Let e be an arbitrary edge. We prove that in DT, the children

of e corresponding to the answers top(e) and bottom(e) are assigned correctly and exactly once. It

is easy to see that the algorithm assigns bottom(e) exactly once - when we process edge e. Recall

that if the query on e returns bottom(e), then the next query should be on the edge with largest

value smaller than f(e) which is visible from bottom(e) in the subtree rooted at bottom(e). This is
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done in (2a). If there is no such value, there is no next query either, and bottom(e) is the solution

to the searching problem. This case is handled in (1). Therefore, bottom(e) is assigned correctly

and exactly once for each e in the input tree.

We now show that top(e) is also assigned correctly and exactly once. Let e' be the first edge

with value greater than f(e) on the path from top(e) to r'. Such an edge always exists since we

assigned the value oc to the edge (r', r). First notice that top(e) is assigned exactly once - when

we process edge e'. It therefore only remains to show that top(e) is assigned correctly. Recall that

when a query about e returns top(e), then the next query should be on the edge with greatest value

smaller than f(e) that is visible from top(e) in the entire tree (viewing the tree as unrooted). Note

that this edge is also the edge with greatest value smaller than f(e) that is visible from bottom(e')

in the subtree rooted at bottom(e') (viewing the tree as rooted). If such an edge exists, we make

it a child of e in (2b). If there is no such edge, then obviously, when the query about e results in

top(e), then top(e) is the solution to the searching problem. We handle this case in (2c). Therefore,

top(e) is assigned correctly and exactly once for each e in the input tree. We have thus established

the correctness.

To analyze the time complexity, notice that for each edge e, the algorithm runs in time propor-

tional to the number of values in the visibility sequence of bottom(e) that are screened by f(e).

Since no value can be screened twice, the total runtime is linear.
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