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Abstract

The combination of the development of modern metamaterials, which are artificial ma-
terials whose constitutive parameters can be engineered to achieve special functions, and
the coordinate transformation theory, has offered an unprecedented opportunity for real-
izing invisibility cloaking. Coordinate transformation theory predicts that by squeezing
the space to form a "hole" in it, any object inside the "hole" becomes completely invisi-
ble from electromagnetic waves. A metamaterial shell can thus be designed to mimic this
space squeezing and function as an invisibility cloak whose user cannot be seen by oth-
ers. In this thesis, a systematic electromagnetic study of transformation-based invisibility
cloaks is provided based on the macroscopic Maxwell equations.

Analytic scattering models are formulated for studying ideal and non-ideal invisibility
cloaks. The physics behind perfect invisibility that the coordinate transformation theory did
not show is explored by analytically calculating the spatial distribution of electromagnetic
fields. Firstly, it is shown that an external electromagnetic wave illuminating a cylindrical
cloak will induce electric and magnetic surface currents along the 0 direction at the inner
boundary of this cloak. These surface currents have no counterparts in the transformation
theory because they do not exist before transformation. Secondly, the reciprocity of a spher-
ical cloak is demonstrated by showing that radiation from an active device in the concealed
region is confined in the concealed region. The mechanism is that the outgoing radiation
will induce surface voltages at the inner boundary of the cloak that reflect all waves back.
These physical surface voltages provides a set of mathematical boundary conditions requir-
ing normal D and normal B to vanish on the interface. Finally, the mechanical response
of the cloak to external electromagnetic waves is analyzed by calculating the Lorentz force
distribution. It is shown that an incoming plane wave tends to expand the bulk of a cloak
while squeezing the outer boundary of the cloak at the same time. The recoil forces of these
forces provides an alternative explanation for the bending of rays or photons.

More realistic cases with perturbed constitutive parameters are analyzed. It is shown
that under certain symmetric lossy conditions, the spherical cloak is still invisible for a
back-scattering detector due to impedance matching, while a cylindrical cloak with the
same lossy conditions is visible. More emphasis is laid on the effect of dispersion asso-
ciated with metamaterials. By applying the Drude and Lorentz types of dispersion to the



radial permittivity and radial permeability of a spherical cloak, it is shown that electromag-
netic waves with different frequencies have different depths of penetration and thus form

a rainbow-like field distribution inside the cloak. A quasi-monochromatic wave will expe-
rience a blue-shift in the forward propagating direction. Transmission of a Gaussian pulse

through this dispersive cloak is discussed. It is shown that group velocity and energy trans-

port velocity are not well-defined when the wave is approaching the inner boundary because

the wave is seriously distorted. However, when the frequency band is narrow enough, we

are still able to define the time-delay of the signal arriving at a target plane behind the cloak.

A counterintuitive volcano-shaped time-delay is demonstrated as a concrete example.
An electromagnetic detection method is introduced for detecting a perfect cloak. While

photons can be guided by the cloak along curved trajectories within the cloak, a moving

charged particle will still follow a straight trajectory due to its inertia and thus generate radi-

ation. We extend the previous Frank and Tamm's theory of Cerenkov radiation in isotropic
and homogeneous media to the case of a perfect spherical cloak that is both anisotropic and

inhomogeneous. From the transformation viewpoint, the radiation is from the nonuniform
motion of the charged particle along a bent curve in the virtual space. The transition radia-

tions that occur at the incident point and emitting point when the particle enters and leaves
the cloak in the physical space correspond to the abrupt velocity changes at the correspond-
ing points in the virtual space. The transition radiation during the piercing process in the

physical space corresponds to the deceleration and acceleration radiation (Bremsstrahlung)
and synchrotron radiation in virtual space. In our demonstrated spherical cloak with inner
radius of 1 pm and outer radius of 2/pm, it is obtained that within the frequency range from

500 THz to 501 THz, a charge package of 1000 electrons moving with 0.9c can generate
radiation energy equivalent to about 78 photons.

The practical implementation is considered. For simplified cloaks that are often pre-

ferred in experiments, the influences of nonlinear transformation and incident angle are

first studied. It is seen that a square root transformation which forces the waves to be

guided close to the outer boundary is more invisible than those generated by either linear
or quadratic transformation. Simplified cylindrical cloaks may produce a larger scattering

at nonnormal incidences than that from an object without any cloak. In addition, we suggest
using a small number of homogeneous and anisotropic metamaterial layers to construct a
practical cloak with satisfying performance with normal incidence and oblique incidence.
Genetic algorithm was used to optimize the practical multi-layer structures. It is shown
that using an optimized 4-layer cloak, the normalized scattering cross section from a per-
fect electric conductor cylinder can be reduced from 2.19 to 0.0039 with normal incidence.
Another optimized 4-layer cloak working for the incidence of 30' is shown able to reduce
the scattering cross section from 1.175 to 0.013. The latter cloak exhibits reduce scattering
over a large range of incidence angles.
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Chapter 1

Introduction and Motivation

From the Greek mythic hero Perseus to the most recent Harry Potter, the concept of invisi-

bility cloaks whose user cannot be seen by others has been appearing frequently in legends

and scientific fiction. Since 2005 the scientific study on invisibility has started in its true

sense. It is the purpose of this thesis to provide a systematic electromagnetic study on the

class of coordinate transformation-based invisibility cloaks.

Before our discussion, the scientific description of invisibility should be clarified. Fig-

ure 1-1 sketches the situation when an object is illuminated by an external electromagnetic

wave. If the object is not identical with the background, it will produce reflection (backward

scattering) and other scattering, which subsequently render the object visible or detectable.

Therefore, the scattering in all different angles are the reasons of visibility of an object. If

there is no absorption, no scattering, and the transmission is identical to the incidence, the

object is completely invisible.

1.1 Historical efforts on invisibility cloaking

From Fig. 1-1, it is seen that the reflection and scattering are the main reasons of visibility

and thus must be minimized to achieve invisibility. Historically, a lot of efforts has been

made to reduce the reflection or scattering. Here we list several typical approaches before

we introduce the transformation theory.

1. Radar absorbing materials



(a) Scattering (b)

Transmission
Incidence Transmission Incidence

S Object's
4 Absorptio 0

Reflection
(Backwarding) No Absorption

ScatteringNo 
ScatteringScattering

Figure 1-1: An external wave incident onto an object. (a) The object is visible due to
reflection (backward scattering), other scattering, and absorption. (b) The object is invisible
if the transmission is exactly the same as the incidence.

It is very intuitive that if all the incident waves are absorbed, at least the reflection

can be very small. Since most radar systems are monostatic (the transmitter and

receiver are at the same location) and detect objects by detecting the reflected waves,

absorbing the incident wave is a good choice to be invisible from the monostatic

radars. Due to this reason, radar absorbing materials (RAM) have been an important

consideration in radar systems [7, 8]. However, this method in general does not work

for bistatic radar systems (the transmitter and receiver are not at the same location).

2. Plasmonic cloaking of nanoparticles

In 2005, a new method was proposed to cloak nanoparticles by coating them with

plasmonic materials whose permittivity is negative within the optical frequency re-

gion [9, 10]. Due to the negative value of the permittivity of the coat, the first or-

der coefficient of Mie scattering, or the polarizability, is minimized. Given that in

the quasi-static limit, only the first order scattering dominates, transparency can be

achieved. This kind of cloaking is only valid for small particles. If the size of the

particle is not small, even though the scattering of first order is minimized, the other

orders of scattering are still nonzero.

3. Anomalous resonance

Another mechanism of cloaking relies on resonant interaction that can mask the



electromagnetic signature of the body to be cloaked [11]. Different from previous

approaches, here the cloaking is achieved in a region external to the cloaking body.

This cloaking is achievable for infinitely long polarizable line dipoles. The field from

the polarizable line dipoles are canceled by anomalous resonance between the line

dipoles and the cylindrical cloak with negative permittivity. However, the field inside

this anomalous resonance region is divergent.

4. Non-local sensing

In this method [12], a lot of sensors are arranged in front of the object to be concealed.

Active sources are also attached on the surface of the object. Once the sensors detect

the incoming wave, they will send signals to the active sources which generate cor-

responding waves to cancel the incident wave in the concealed region. This way the

object can be concealed from the incoming wave. However, this method requires the

signals from the sensors propagate faster than the incident wave. Therefore, it will

be difficult to be applied to electromagnetic waves.

From the above descriptions, we can see that these approaches are not ideal, each of

which has significant limitations. For example, for the first approach, the invisibility is

only in one direction. In the second and the third approaches, only small particles can be

cloaked and the object being cloaked must has specified constitutive parameters. The last

approach is not able to cloak object from electromagnetic waves.

In 2006, Pendry et al. [2] and Leonhardt [13] proposed a new cloaking method based on

coordinate transformation, and this method is able to cloak a large object in all directions

regardless of the object to be concealed. We will introduce the application of the coordinate

transformation in electromagnetics in the following.

1.2 Transformation theory

Analogous to general relativity, where time and space are curved, transformation theory

shows that the space of electromagnetics can also be bent in an almost arbitrary way. The

relation between electromagnetic wave propagation and effective space-time geometries



was considered in early literatures [14], with the basics of transformation concepts estab-

lished later [15]. However, these early literatures were almost forgotten. More recently,

inspired by the transformation concepts and the assumption that metamaterial is able to

realize arbitrary constitutive parameters, Pendry et al. [2] theoretically proposed a general

recipe for designing an electromagnetic cloak in which the space from an original volume

of free space is squeezed into a shell surrounding the object to be concealed and exter-

nal waves which would have struck the object can effectively be guided by the "curved"

space constructed by anisotropic and inhomogeneous metamaterials, as shown in Fig. 1-2.

An arbitrary object can be hidden because it remains untouched from external radiation.

At the same time, Leonhardt [13] described a method where the Helmholtz equation is

transformed to produce similar effects in the geometrical optics limit but with a different

opinion that "one can never completely hide from waves" due to "the wave nature of the

light". Shortly after that, a simplified two-dimensional (2D) model based on Pendry et al.'s

proposal was demonstrated experimentally to show the effectiveness of a transformation-

based invisibility cloak [6]. However, due to its inherent scattering and other imperfections,

this experiment did not answer the question whether perfect invisibility is achievable or not.

(a) Flat space (b) Bent space

Figure 1-2: (a) A flat space in Cartesian coordinates. (b) A bent space generated by co-
ordinate transformation from (a). A light trajectory (thick line) which is straight in (a) is
guided around the central hole in (b).

In this section we will introduce the transformation properties of the constitutive rela-



tions of electromagnetic materials. We first start with the Minkowsky form of Maxwell's

equations [16]

Fa#,, + F,, + F,a,3 = 0 (1.1)
Gf3 = jf

which is form-invariant for general space-time transformations. The tensors in the above

Minkowski form are

0 El E2 E3

(F El 0 -cB 3  cB2(F )E = (1.2)
-E2 cB3  0 -cB 1

-E3 -cB 2  cB1  0

0 -cDi -cD 2 -cD 3

(Gcj) - cD1  0 -H 3  H 2  (1.3)
cD2  H 3  0 -Hi

cD 3  -H 2  H 1  0

cp

(JO)= Ji (1.4)

The space-time coordinate vector is written as (xc) = (ct, x, y, z). All the information

regarding the topology of the space is contained in the constitutive relations

G = (1.5)

where C fl " is the constitutive tensor representing the properties of the medium, including

its permittivity, permeability and bianisotropic properties. C' 1"' is a tensor density of



weight +1, so it transforms as [15]

CO' ' ' = I det(Ac') -A 'A" ' A 'A'Capf "v (1.6)

where the Jacobian matrix is

A -a (1.7)

If we restrict ourselves to transformations that are time invariant, i.e., only the space is

transformed, the permittivity and permeability are also tensors individually. Specifically,

they are tensor densities of weight +1, which transforms as [15]

i' det(A') -1 i'Aj (1.8)

f1A A det (A") lA" A3,pii (1.9)

Now let us put these transformations to use. In Pendry et al.'s original paper [2], a

simple transformation in spherical coordinates is applied by taking all fields in the region

r < R 2 in virtual space and compressing them into the region R 1 < r < R 2 in physical

space, i.e.

r = R 1 + r'(R2 - R 1)/R 2

0 = ' (1.10)

such that a "hole" in the region of r < R 1 is created. Utilizing Eqs. (1.8) and (1.9), a set

of constitutive parameters can be obtained for a spherical invisibility cloak that mimics this

space transformation: for R1 < r < R 2,

R2 1)2
r = r =R2- R r 2  (1.11)

R2
CO = P0 = (1.12)

R2¢ = pp = (1.13)
R2 - R1



while for r < R1, E and p are free to take any value and do not contribute to the electromag-

netic scattering. In other words, any object inside the region r < R 1 is concealed perfectly

from detection without distorting field outside. Any radiation tempting to penetrate into

this region will be guided smoothly within the invisibility cloak [2].

We can also apply similar transformation in cylindrical coordinates from virtual space

(p', 0', z') to physical space (p, 0, z) to create a cylindrical invisibility cloak. For example,

cloaking a central cylindrical region of radius R 1 by a concentric cylindrical shell of outer

radius R 2 can be achieved by the following transformation applied to the region p' < R2 in

virtual space

p = Ri + p(R2 - R)/R 2

(1.14)

z=z

which leads to the following constitutive parameters for a cylindrical invisibility cloak in

physical space:

EP pp p - R1 (1.15)_ - -p - (1.15)
Eo Uo P

S - p (1.16)
o po p - R1

CZ P _( R 2  ) 2 P- R (1.17)
Eo 0LO R 2 - R 1  P

In most simulation studies and experiments, the cylindrical structure is commonly used

due to its relative simplicity. When the normal incidence with only one polarization is

considered, the requirements can be further relaxed by making one constitutive parameter

a constant while maintaining the refractive index. For example, for a normally incident and

vertically polarized (electric field parallel with z axis) wave, the requirements can be

E = Eo(R2 )2 (1.18)
R2 - R1

P0 = Po (1.19)

p = ( p - R1 )2  (1.20)
P



This simplified cloak still has good performance within the limit of geometric optics since

the k surface is kept the same as the original model.

1.3 Current state of research on invisibility cloaks

Theoretical part:

The theory of coordinate transformation was firstly applied by Pendry et al [2] and

Leonhardt [13] to proposing an invisibility cloak model. In Pendry et al's original work,

the approach of ray tracing was adopted to demonstrate the cloaking phenomenon. The

invisibility was explained by perfect guiding of light rays around the concealed region [2].

The ray's approach is an high-frequency approximation of Maxwell's equations, which in-

trinsically omits some properties of the wave nature of electromagnetic waves. For exam-

ple, Pendry et al pointed out that there was a "critical ray" problem in their original model,

i.e. the ray headed directly toward the center of sphere "does not know whether to be devi-

ated up or down, left or right". After the computational confirmation on the effectiveness

of a transformation-based cloak using the ray approach [2, 17], full-wave finite-element

simulations were carried out [3, 18] which provided more information about invisibility

cloaking. However, on the other hand, there were some concerns about the nonexistence

of "finite energy solution" with active sources in the concealed region [19], the possible

violation of causality [20] and energy bluing [21] of the invisibility cloak. Our group did

the first analytic scattering formalism of invisibility cloaks, and used quantitative bistatic

scattering data to evaluate ideal and nonideal cloaks [22, 23, 24]. This work is included in

this thesis.

Practical part:

Most technical studies have been focused on the cylindrical (2D) cloaking. The first

experimental demonstration of 2D cloaking was done with a simplified model where only

the constitutive parameters lying in the 2D plane are varying [6]. It shows that "the cloak

decreases scattering from the hidden object whilst at the same time reducing its shadow"

in the microwave frequency range. The structure of the metamaterial utilized stacked split-

ring resonators, each of which possesses a local resonance and behaves like an effective



atom composing the whole effective cloak. However, the scattering from the simplified

model of cloak exists intrinsically even from a theoretical point of view [25], regardless

of the practical deviations brought during the construction and experiment process. But

this experiment demonstrated that metamaterials can be used to approximate the inhomo-

geneous and anisotropic medium and further suggested that invisibility cloaking created

from coordinate transformation is potentially possible.

Subsequent studies aiming to realize cloaking can be divided into four aspects. The first

involves possible structures of metamaterials. Some designs based on layered structures

have been proposed. Homogeneous and isotropic layers can be stacked to approximate the

required anisotropy of cloak [26]. Wires can be inserted in the radial direction to design

a non-magnetic 2D cloak whose working frequency can be shifted to optical frequency

range for horizontal polarization [27]. Similar structure can also be applied to vertical

polarization [5]. Using concentric ring structure, cloaking in the visible frequency range

has been demonstrated experimentally [28].

For the second aspect, efforts has been made to minimize the total scattering. A

quadratic transformation was used and the impedance matching at the outer boundary was

proposed to minimize the scattering [4]. However, this benefit is associated with some

constraints on the size of the cloak. Other transformations and impedance matching ap-

proaches have been studied [29]. A gap is proposed to be added at the cloak's inner surface

to eliminate the zeroth order scattering [30].

Thirdly, some efforts were carried out to extend the operating frequency range of cloak-

ing. Due to the limitation imposed by causality, the perfect cloaks proposed in Ref. [2] can

only exist at one single frequency. But for an imperfect model, the frequency band can

be extended [31]. In addition, using active instead of passive metamaterials can possibly

realize cloaking in multiple operating frequencies [32].

The last aspect is concerned with the cloaking in different background media and with

different shapes. For example, the background can be multi-layered and gradually changing

media [33], or bianisotropic media and moving media [34]. The cloak's shape can be

adjusted according to different situations [35, 36, 37].



1.4 Organization of the thesis

Though the transformation theory is an elegant exhibition of invariance of Maxwell's equa-

tions, it does not provide a full physical picture of the phenomenon of transformation-based

invisibility cloaking. For example, the original mathematical derivation of transformation

theory is for nonsingular transformation, while a cloak is usually created from a singular

transformation which needs careful examination. In addition, the properties of the trans-

formed media, such as loss, dispersion and other electromagnetic conditions, must be taken

into account. Only after all these situations are studied, can we understand the limitations

and applicability of transformation theory.

The purpose of this thesis is to provide a systematic electromagnetic study of transformation-

based invisibility cloaks. By establishing analytic scattering formalism of invisibility cloaks

of canonical shapes, we are able to analyze both ideal and non-ideal cloaks by strictly

calculating the instantaneous field over the entire physical space and providing quantita-

tive bistatic scattering data. Some fundamental electromagnetic problems with invisibility

cloaks, such as the boundary conditions, reciprocity, signal transport, are studied. The

emphasis has been placed on the physical properties of cloaks and their interpretations.

The results presented here solved some key problems in invisibility cloaking on both the

theoretical and practical levels.

The basis of the theory in this thesis is macroscopic electromagnetic wave theory. The

Chu formulation of electrodynamics [16] is used where magnetic charges and magnetic

dipoles are treated as the sources of magnetization. Throughout this thesis, the materials

considered are assumed to be linear and stationary. In addition, the complex notation is

used to represent time harmonic waves. The time domain fields can be simply written as

E(r, t) = Rj{Ee-iWt}, where w is the angular frequency and R means taking the real part.

The contents of each chapter are as follows.

Chapter 1 provides a general introduction of the background of this thesis work. Previ-

ous efforts on invisibility and the transformation theory are introduced. Current technical

progress is summarized.

Chapter 2 is concerned with the basic physics behind the perfect invisibility cloaking.



The wave functions inside a spherical cloak and a cylindrical cloak are derived. Based on

that, the interaction between a cloak and electromagnetic waves is explained in detail with

some insights that the transformation theory did not show.

Chapter 3 extends the analysis of perfectly matched cloaks to realistic cases. Mis-

matches and losses are introduced as perturbations in the constitutive parameters. A multi-

layer algorithm is developed to take into account the anisotropy, inhomogeneity, and the

dispersion of materials. Some interesting phenomena, such as a rainbow-like field distribu-

tion caused by different penetrations of different frequency components and the blue-shift

effect of a quasi-monochromatic wave, are studied. The signal transport is also studied. A

volcano-shaped time-delay is demonstrated in a physical model.

Chapter 4 describes the radiation generated by a fast moving charged particle going

through a cloak with uniform velocity. The dyadic Green function with an electric dipole

within a spherical cloak is first derived by vector eigenwave expansion. Utilizing the dyadic

Green function and other algebra, we demonstrate the complete time-domain radiation pro-

cess. Total radiated power and the far-field radiation pattern at a particular frequency are

calculated. This method can be utilized to detect a perfect cloak.

Chapter 5 deals with the implementation problems. The first part is about inhomo-

geneous cylindrical cloak with simplified parameters. The second part is concerned with

multi-layered cylindrical cloak with anisotropic and homogeneous layers. Genetic algo-

rithm is used to get optimized multi-layered structures that are closely invisible at normal

incidence and oblique incidence.

Chapter 6 provides the conclusions of this thesis and suggests some potential future

work.

In this thesis, the emphasis has been laid on the linearly transformed cloaks, except

some parts in Chapter 5. For a general cloak created from an arbitrary transformation, the

wave function can be found in Appendix A and Appendix B.
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Chapter 2

Physics of Perfect Invisibility Cloaks

The invisibility cloaks are created from singular transformations that transform a point or

a line into a surface and thus need careful examination. In this chapter, we will focus our

discussion on the behavior of ideal cloaks being able to create perfect invisibility cloaking.

The discussions are strictly based on the Maxwell equations without taking any approxi-

mation.

2.1 Scattering model of invisibility cloaks illuminated by

external waves

In the following we will develop analytic full-wave scattering models for both spherical

and cylindrical cloaks and provide strict analysis for each of them. The scattering models

presented here are extensions of common Mie scattering models [1] that usually deal with

isotropic and homogeneous objects to the cases of invisibility cloaks that are intrinsically

anisotropic and inhomogeneous.

2.1.1 Spherical cloak and its critical ray problem

Figure 2-1 shows that an E, polarized plane wave with unit amplitude, Ei = 'eikoz, is

incident upon the coated sphere along the i direction, where ko = wfV1-i- is the wave

number in air. The time dependence of e- iwt is suppressed. Without loss of generality, we
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Figure 2-1: Configuration of scattering of a linearly polarized plane wave by a sphere
coated with a spherical cloak. The inner and outer radii of the cloak are R 1 and R 2, respec-
tively. The concealed sphere is assumed to be isotropic.

assume that the inner sphere (r < R 1) has the permittivity of e1 and permeability of pl.

The cloak (R 1 < r < R2 ) is a kind of spherically uniaxial media characterized by

= (Er() - Et)f + ~tj

= (Pur(r) - Iit)ff +t (2.1)

where I = ff + 00+ ± , Et and pt are the permittivity and permeability along the 0 and

0 direction, ,r (r) and Pr (r) are the permittivity and permeability along the i direction and

both of them are functions of r. The field expressions for the wave propagation inside the

cloak are first studied. For source free cases, we decompose the fields into TE/TM modes

(with respect to i) by introducing the scalar potentials, "'TM and 'TE:

BTM = V X (~ITrM)

1 -1
DTM = [Vx (I- 1. Vx (rM))]

W (2.2)

BTE = [17 X ( - V ('TE))](

DTE =-V x (TE)



Using Eqs. (2.1)(2.2), and after some algebraic manipulations, we can obtain the wave

equations for "TM and ~TE:

1 02  1 0 1 02 1 2
S - +2 (sin 0 ) + s 0 + A- k  = 0 (2.3)

AR Or2 7r2 sin 0 0 o T2 Sin2 02 AR

where kt = w/Fpit; For TM wave, AR = et/Er, and for TE wave, AR = Pt/r. Using the

separation of variables method and assuming V = f(r)g(O)h(), we get h(4) as harmonic

functions: h(O) = efim ¢, g(0) as associated Legendre polynomials: g(O) = P,(cos0),

and f(r) as the solution of the following equation:

2 + (k2 - AR( + 1) f (r) = 0 (2.4)

If we take the parameters suggested in [2]: Et 0 -= R t Pt = PO R
R2 - ' r 

2  
t R 2 R 1

and Pr = Pt (r then for both TE and TM modes, we get AR = (r )2 . Therefore, the

solution of Eq. (2.4) is:

f(r) = kt(r - R1)b,,(kt(r - Ri)) (2.5)

where b, is the spherical Bessel function. From the above analysis, we see that the solu-

tions of Eq. (2.3) in the cloak layer are composed of a superposition of Bessel functions,

associated Legendre polynomials, and harmonic functions.

In order to match the boundary conditions on the spherical surface, the incident fields

are expanded in terms of spherical harmonics. With the solutions of Eq. (2.3) for the cloak

layer, we can get the scalar potentials for the incident fields (r > R2 ), the scattered fields

(r > R 2 ), the internal fields (r < Ri), and the fields of the cloak layer (R 1 < r < R2)

respectively, to be of the form:

TM - cos a.rt,(kor)P,,(cos 0)
1 i(2.6)

=TE 'll a, (kor)P,1(cos0)
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Figure 2-2: E, field distribution and Poynting vectors due to an E, polarized plane wave
incident onto an ideal cloak with R 1 = 0.5A0 and R 2 = A0.



S-TM = a,,T,) (,, (kor)P, (cos ),

=sin a(2.7)
nt CO a l (M) (kor) P,(cos0),

it os c(t) ,(kr)P (cos 0),

)int  siLn I (N) (2.8)

TE l c, )(kir)P,1(cos 6),
I

"TM = c s {d( M)(kt(r - Ri))+f(,)x(kt(r - R))} P(cos ),

fl (2.9)

TE si1 ({d!N)L d (kt(r - RI))+f, N)X(kt(r - Ri))} P,(cos 0),

(Wi)0 ( ..,(M )  (N)

where a,, = (i) 2 , n = 1,2,3., 7o = p/, ki = . TM), TN)

dI,(M) ,df() fM), and f(N) are unknown expansion coefficients, and, V,,t(), X,,IL() and C,(()

represent the Riccati-Bessel functions of the first, the second, and the third kind respectively

[38]. Using Eq. (2.2), the electromagnetic fields in the three regions can be expanded in

terms of the corresponding scalar potentials. By applying the boundary conditions at the

surface, we can get four equations at r = R 1 and four equations at r = R 2. Note that there

are two equations at r = R 1 given by:

-("N)It(kl R1) = d),IL(0) + fl)x,,(0) (2.10)

Pt !(M)V),(kIR1 = d~m)" r,(O) + f(LMMIL(O) (2.11)
P1

We see that 0,,(0) = 0 and that X,,(0) is an infinite term for all n > 1. Since the field in

the hidden sphere should be finite, fN) and f,M) must be kept zero. We see the field in the

hidden object is decoupled with those in the other regions. From the other four equations



at the boundary of r = R 2, we can calculate the following coefficients:

T (= (2.12)

T(N) ( t)- (77t /T1o)LA(O)V)'n(& t) (2.13)

ipt/o (2.14)M )  a (O)O1,(t) - (r/0o),(( o)¢:,(t)

four equations are simplified to be:

T(M) = T(N) d a, (N) a,, (2.16)

From Eq. (2.16) we see that the scattering coefficients, TM) and T,N) are equal to zero.

Therefore, the bistatic scattering, or the radial Poynting power < Sr >= x {E x H:}-

of the scattered energy conveyed in each direction, is zero. In Chapter 3 we will see the

nonzero bistatic scattering from nonideal cloaks. The exactly zero scattered field indicates

the reflectionless behavior of the perfect cloak [2]. It should be mentioned that the unique-

ness theorem of electromagnetic inverse problems states that zero bistatic scattering from

a scatterer is impossible [39, 40] because the bistatic scattering data carry the information

of the scatterer 's refractive index. However, this theorem is only applicable to isotropic

scatterers while the invisibility cloaks are intrinsically anisotropic [6], so the exactly zero

bistatic scattering shown here does not violate this theorem. Figure 2-2 shows the calcu-

lated electric fields and the Poynting vectors due to an E, polarized plane wave incidence

onto a cloak with R1 = 0.5Ao and R2 = A0 (A0 denotes the wavelength in free space).

We see that the concealed object is completely hidden from the electromagnetic waves,

corroborating the effectiveness of the cloak proposed in [2]. There is no on-axis critical ray

problem [2] here since the Poynting power becomes zero as the field penetrate deep into

the cloak. There is no power flowing at the inner boundary.



It is seen that the bending of power trajectories follow the prediction of ray tracing

approach as shown in Ref. [2]. However, Fig. 2-2 also provides information of phase

evolution inside the cloak. In general, the phase propagation direction is different from

the power propagation direction due to the anisotropy of the cloak. When a wave enters

into the cloak, the phase propagation slows down in the beginning when compared to its

counterpart outside the cloak. In the second stage, the phase inside the cloak propagates

very fast, faster than the speed of light at which the phase propagates outside the cloak.

Finally, the phase inside the cloak slows down again to wait for the catching up of the

phase outside the cloak. After the wave outside the cloak catches up, the waves inside

and outside the cloak converge, resulting in a flat phase front as if nothing happened. It is

worth mentioning that the phase velocity at the inner boundary is infinite meaning that it

takes no time for the phase to cross the concealed region. This is because the concealed

region is a point before the transformation and therefore the whole concealed region should

share the same phase at a fixed moment. We will discuss the speed of power propagation

in Chapter 3.

2.1.2 Cylindrical cloak and its surface currents

Figure 2-3 shows the configuration of the scattering from a cylindrical cloak with the in-

ner radius R 1 and outer radius R 2 in which a time harmonic plane wave Ei is obliquely

incident. Let E E = (iEi + hiEhi)e'k'T, where k = 5k, + ik, k2 = woo, i

and i = hi x k [1]. Without loss of generality, we assume that the concealed region is

filled with an isotropic material with permittivity E2 and permeability A2 . The cloak layer

between R 1 and R2 is a specific anisotropic and inhomogeneous medium with permittivity

tensor E = cpp+eO + c+Ei2 and permeability tensor j = /z~+/z¢ +/zz . According

to Ref. [3, 6], we choose * - e - , 1 - - _ and - t  (.)2P,-
i A1 p 11 c l 1 -R El l 2  p

When E1=Eo and #i1=po, the cloak corresponds to the ideal cloak.

In source free medium, the fields can be decomposed into TEZ and TM' modes with
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Figure 2-3: The
direction of k.

geometry of a cylindrical cloak. The incident wave propagates in the

respect to [41], corresponding to scalar potentials /TM and TE respectively.

HTM= 1- X (Z¢TM)

ETE X (¢TE)

-TM -1 X ( M)]

(2.17)

)TT 1 1
HTE = [ V x (2VE)]

Hereafter the superscript z is suppressed. After substituting Eqs. (2.17) into the Maxwell

equations, we can get the wave equation for the scalar potentials as follows

1 027

(p - R 1) 2 0a2

R2R
4 R2 - (W 2 11¢ +

(R2 1)2
(2.18)

a2) 0) =o
a2

Using the method of separation of variables, the general expression for the two scalar po-

tentials is obtained by

(P -R,)= B,,[R 2 kpi (p eino+ikz (2.19)
(R 2 - R1)

where kpl = l- - - k2, and B,, represents the solutions of Bessel equa-

tion of nth order. Similar to the spherical cloak, the scalar potentials /i, ~", 0' and iFt for

Eo
Vto

1
(P -- Rp

p - R1 dp
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Figure 2-4: A three-layer model with a normally incident wave for demonstrating the sur-
face currents at the inner boundary of a cylindrical cloak. The slab's permeability A1 goes
to infinity while permittivity e1 goes to zero but their product is kept equal to /0oo.

the incident fields (p > R2), the scattered fields (p > R 2), the fields inside the cloak layer

(R 1 < p < R 2) and the internal fields (p < R 1) respectively for both TE and TM waves

can be represented. By matching the boundary conditions, all the expanding coefficients of

these scalar potentials can be deduced.

For convenience of demonstration, we consider firstly a simple TM case where a ver-

tically polarized (E,) plane wave is normally incident onto an ideal cylindrical cloak, i.e.

k, = 0 and Ehi = 0 as well as i1 = po and E1 = co, which appears in Refs. [3, 6, 42]. In

order to match the boundary conditions, the inner boundary of the cloak is set at p = R1 + 6

instead of p = R 1 and then the limit 6 - 0 is taken while the parameters of the cloak are

still unchanged. Consequently, four boundary equations can be listed utilizing the continu-

ities of E, and HO at the outer boundary (Eq.(2.20) and (2.21)) and at the inner boundary



(Eq.(2.22) and (2.23)):

- i-EviJ,,(kR2) + aM)H,,(kR2) = dM)JT(kR2) + fM)N,,(kR 2) (2.20)

- E,,,J,(kR 2) + aM)H,,(kR2) = d(M)J,,(kR 2) + f(M)N(kR2) (2.21)

R 6 R2
R26 , 82 k6) + f N ( k6)][d!fm)J( k0) + f (M)N k(

(R 2 - R 1)R1 2 - R 1  R 2 R- 1

S PoE2 g(M)' (k 2 R1 (2.23)

where J,,, N,, and H,, represent the n-th order Bessel function, Neumann function, and

Hankel function of the first kind, respectively; a$,(, g$), d /), and frM) are unknown

coefficients corresponding to the scattering field, internal field and the field inside of the

cloak, respectively. After solving all the equations, it is seen that aM) = f( = gM) = 0,

indicating that both the internal field and the scattering field are zero. The interesting thing

is that when n = 0, though foM) =0, the product f(M)No( -2 -k) in the limit 5 --+ 0 is

equal to -E._. Obviously, the item of this product in Eq.(2.22) is nonzero only at the inner

boundary, which can be characterized as a magnetic surface current raised by the infinite

/to at the inner boundary of the cloak. Since the tangential electric field on the cloak side

of the inner boundary is Ei, the magnetic surface current with an amplitude E,i shields

the concealed object, making the field inside exactly be zero. Some study [42] mentioned

the "slow convergence" of the scattering coefficients but did not realize that this is actually

due to the surface current at the inner boundary.

In order to further reveal the properties of this surface current, we first consider a sim-

plified case as shown in Fig. 2-4, where a plane wave Ei = Eoeikz is normally incident

onto a slab with el - 0 and p1 - oc but p11 = eo0. This special material has the

same property with that at the inner boundary of a cylindrical cloak, where 1z = 0 and

p = 03 but E 1,p = (R )2. It is easy to obtain that R = 1 and T = 0 after taking

the limits. The electric field at z = 0 is 2Eo while that at z = d is zero. If we treat iwB

as the same role of magnetic current, we will find that the integration fo iwBdz is exactly

equal to 2Eo. Therefore this slab acts like a perfect magnetic conductor (PMC) except that
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Figure 2-5: The field distribution of Ez in the xy plane due to an Ez polarized wave nor-

mally incident onto a cylindrical cloak but with the inner boundary extended inwards. The

radius of the three concentric circles are R2 = 1.33A0 , R 1 = IR 2, and R - !R 2, respec-

tively. The arrows represent the Poynting vectors in the xy plane.

it is the volume displacement current that is distributed in the slab, not the free magnetic

current on the surface of a PMC. When the thickness of the slab becomes infinitesimal, the

volume displacement current becomes surface displacement current.

Similarly, we can introduce the third boundary at p = Ro (Ro < Ri) as shown in

Fig. 2-5. The region between R < p < R 1 is filled with the same material as the inner

boundary at p = R 1, i.e. the region between Ro < p < R 1 is homogeneous, like the slab in

Fig. 2-4. The calculated electric field and the Poynting power due to an E, polarized wave

normally incident onto an ideal cylindrical cloak but with such an extended inner boundary

are shown in Fig. 2-5. It is seen that there is no field in the region of p < Ro, but the Ez

field in the region of Ro < p < R1 is nonzero. The integration fZ' iwBodp will be the

total magnetic current in this region, which has a value of Ez, equal to the surface magnetic

current when p = Ro and p = R 1 overlap as we introduced before. In other words, the



surface magnetic current M, that was previously concentrated at the boundary of p = R1

in the case of Ro = R 1 is now distributed over the region Ro < p < R 1. It should be noted

that with the inner boundary extended (i.e. Ro < R 1), B0 at p = R 1 is finite, while in the

case when p = Ro and p = R 1 overlap (i.e. Ro = Ri), B0 at p = R 1 becomes divergent.

Therefore, the fields at the inner boundary p = R 1 is dependent on the material in the

region of p < R 1, which means it cannot be determined by the coordinate transformation

theory [2]. In addition, although the fields can penetrate through the boundary p = R 1 in

this specific case, the Poynting power along the p direction, Pp, is always zero (because

Ho is always zero in this region), and no power can penetrate into the concealed region.

Besides, compared with the spherical cloak, we can see that the bent trajectories of power

are similar in spherical and cylindrical cloaks. However, the power distribution is different.

While for a spherical cloak the tangential Poynting power decreases to zero at the inner

boundary, for a cylindrical cloak the tangential Poynting power PO at p = R 1 is not zero

except at x axis (y=O).

For a general obliquely incident plane wave with arbitrary polarization, all the coeffi-

cients of TM and TE modes can be derived in the same way. Figure 2-6 shows the distribu-

tion of E, component and the Poynting power in the xy and xz planes when a right-handed

circularly polarized wave is incident with Oi = 45' . It is seen that perfect invisibility can

still be obtained for obliquely incident waves, indicating that the cylindrical cloaking is

not limited to the 2D case only [3, 6, 42]. The oblique rays traversing a cylindrical cloak

have also been shown in [17] but were in the geometric limit. We can conclude that in

order to completely shield a three-dimensional (3D) concealed object, the cylindrical cloak

must be infinitely long. In practice, we have to rely on finite-sized cloaks. Obviously, the

longer the cylinder, the better the cloaking performance. It is also worth mentioning that

in the xy plane, the fields inside the cloak are no longer symmetric with respect to the x

axis, while the flowing power is still distributed symmetrically. This special distribution

property is unique for the obliquely incident wave having both vertical and horizontal po-

larizations. In xz plane, it is seen that the power direction is bent upwards and becomes

more vertical, while the wave vector of the phase front is bent downwards and becomes

more horizontal. Besides, the discontinuities of E, and H, across the inner boundary can
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be similarly attributed to the electric and magnetic surface currents at the inner boundary

of the cloak. For the ideal cylindrical cloak where p/ = po and el = co, the discontinuities

are E sin Oieikzz and Ei sin Oieik z z, being exactly the vertical components of the incident

magnetic and electrical fields respectively.

This phenomenon arises from the coordinate transformation process. In a spherical

cloak, the coordinate transformation approach transforms a field vector at the origin into

radial components at the inner boundary. However, this transformation in a cylindrical

cloak only applies to the transverse components in the xy plane but does not do anything to

the vertical component because the transform coefficient for the z component, Qz [2, 43],

is equal to one. Therefore, there must be a discontinuity across the inner boundary which

induces a surface current if we assume no field exists inside the core. These surface currents

do not exist before the transformation and have no counterparts in the original Cartesian

coordinate system.

2.2 Surface voltage effect of an invisibility cloak with an

active device inside

The mechanism of transformation-based invisibility is to create a "hole" in the transformed

coordinate system and an object in the "hole" can be concealed from detection [2, 13].

From the viewpoint of transformation theory, the hole creation does not result in an elec-

tromagnetic vacuum but rather a complete separation of electromagnetic domains into a

cloaked region and those outside [2, 44]. More precisely, a true cloak should not only

cloak passive objects from incoming waves, but also cloak active devices by preventing

waves from going out and being detected. The effectiveness of a transformation-based

cloak design for hiding a passive object has been quantitatively analyzed in the last section.

On the other hand, however, the electromagnetic wave behavior in this concealed region

with an active device inside remains unknown, due to the fact that the concealed region, or

the "hole", created by the transformation method does not exist before transformation and

has no counterpart in the original Euclidian space. Due to the reciprocity theorem [16], the
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Figure 2-7: Reflection and transmission of electromagnetic waves with an electric dipole
inside the concealed region of a spherical cloak. Region 0: concealed region; Region 1:
cloak layer; Region 2: free space.

wave inside the concealed region is expected to be limited in this region without escaping.

Here we will discuss the physical mechanism behind the reciprocity in this case.

Figure 2-7 shows the configuration of a spherical cloak with outer radius R 2 and inner

radius R 1, which is the same as that in Fig. 2-1. The cloak layer within R 1 < r < R2 is a

specified anisotropic and inhomogeneous medium. Without loss of generality, we assume

that the background material in the region r < R 1 has permittivity e1 and permeability

pl. A time-harmonic electric dipole is put inside as an active device. The electromagnetic

waves from the dipole as well as the response of the surrounding environment can be de-

composed into TE and TM modes with respect to ?, corresponding to scalar potentials WTTE

and WfTM, whose expressions in the current case have been derived in Section 2.1.1.

Since TE and TM modes in such a radially inhomogeneous medium can be shown to

be decoupled [41], the derivations for these two kinds of modes are similar to each other.

We start with the case that an outgoing TM wave is excited in the concealed region. This

outgoing wave will induce a standing wave in region r < R 1, an outgoing wave and a

standing wave in region R1 < r < R 2, and an outgoing wave in region r > R 2 [41], as



shown in Fig. 2-7. Thus the scalar potentials in these three regions can be written as

I'Tit = [C(,(kir) + RTM"n,,(kir)]Pr,(cosO)eim¢ (2.24)

\TM = [dn"P,,(kt(r - R 1)) + fr"XL(kt(r R1))]P,"(cos)eim¢  (2.25)

out = TTM ,,(kor)P,,"(cosO)eim (2.26)

where ),,, X,,, and (,, are Riccati-Bessel Functions of the first, the second, and the third

kind respectively; RTM, dm', fM, and TTM are the unknown expansion coefficients. Espe-

cially, RTM and TTM are called the general reflection coefficient and general transmission

coefficient, respectively [41].

For the sake of illustration, the inner boundary of the cloak is set at r = R 1 + 6 instead

of r = R1 and then the limit 6 -- 0 is taken. Consequently, four boundary equations can

be listed utilizing the continuities of tangential E and tangential H at the outer boundary

(Eq.(2.27) and (2.28)) and at the inner boundary (Eq.(2.29) and (2.30)):

1/p[d'(kt(R 2 - Ri)) + f;,X,(kt(R2 - R1))

= 1/ poi T T TM((koR 2 ) (2.27)

1/Pt[dr,,(kt(R2 - R 1)) + fXL(kt(R2 - R 1))]

= 1/PoTTM,, (koR 2) (2.28)

1/p -c[((1 k(R 1 + 6)) + R ±M.(ki(R +6))

= 1/V-p[dMb,(kt6) + ffX'(kt6)] (2.29)

1/tl[(,,(ki (R 1 + 6)) + RTMO",,(k 1(R 1 + 6))]

= 1/pt[dfM,(kt6) + fM"x,,(kt6)] (2.30)

After solving all the equations, it can be obtained that dm = fM = TTM = 0, indi-

cating that no field exists in the region r > Ri. Meanwhile we can get that RTM =

-(,,(kiR 1)/t,,(kiR1 ), which is important for later use. In addition, it follows that in the

limit 6 - 0, f X',(kt6) is nonzero. Obviously, the value of this product in Eq.(2.29) is

nonzero only at the inner boundary, leading to the discontinuity of the tangential E field
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Figure 2-8: Reflection and transmission of (a) a TM wave in Cartesian coordinate system
incident from free space onto an uniaxial medium whose c, goes to zero; and (b) an out-
going TM wave in spherical coordinate system from the homogeneous and isotropic hole
through a homogeneous uniaxial background medium whose radial permittivity goes to
zero.

across the inner boundary. This result is very interesting. Since both p and e are finite

everywhere and no conductive media exist, there is no surface current to support this dis-

continuity, as the common boundary conditions of perfect conductor do. It should be noted

that due to the same reason the displacement surface currents introduced in the cylindrical

cloak [23, 45] are not applicable in the present case.

In order to understand this discontinuity, let us first consider a similar case in Cartesian

coordinates as shown in Fig. 2-8(a), where a TM wave Hi = ^eiks,.+ikzz is obliquely

incident (k. ' 0) from free space onto an uniaxial medium with permittivity tensor edi +

EtYY + t ~ and permeability [t. The dispersion relation in this medium is k2t,/(2 Etlt) +

k2f/(w26x1t) = 1. Thus, when ex is very small, ktz becomes imaginary and the transmitted

wave becomes evanescent. In the limit ex -+ 0, it can be found that all fields in the region

x > 0 vanish. More interestingly, in the limit ex - 0, the integration fo0 Etdx has a finite

value -2irlo cos Oeikzz/kz. In other words, Etx is compressed on the interface like a delta

function. This special finite and nonzero value can be named as an electric surface voltage

VE. The name of "voltage" is because when a free charge q moves to the interface, this

voltage will push it to the other side and transfer energy qVE to it. This voltage is not caused

by conductive charges but an extreme polarization of the material on the interface, i.e. it
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Figure 2-9: Reflection of a right-handed circularly polarized wave from (a) a PEC and (b)
a medium with normal permittivity and permeability go to zero simultaneously. The dotted
arrows represent the direction of rotation.

corresponds to a distribution of polarized dipole moments on the interface. In addition, the

tangential electric field at the left side of the interface is Eiz + Erz = -2rlo cos Oeikzz while

that at the right side is zero, meaning the tangential E field is discontinuous across the

interface. However, since (Eiz + Erz)Az + VE(z2) - VE(Z1) = 0, as shown in Fig. 2-8(a),

Faraday's law still holds on this interface. Clearly, using this uniaxial material, which is the

same with the inner boundary of the cloak, E becomes a delta function at the boundary

and forms the electric surface voltage which supports the discontinuity of the tangential E

field. Meanwhile, the reflection coefficient becomes -1, meaning that this medium behaves

like a PMC by means of controlling the medium's electric response. There is no physical

magnetic charges flowing on the surface, but only a distribution of electric dipoles with

some phase shift to match the transverse wave vector k,.

Similarly, the reflection coefficient for a TE wave is also -1 if , goes to zero. Thus,

the special uniaxial medium whose E, and p, go to zero simultaneously behaves like a

PMC for TM waves due to electric surface voltages, and a PEC for TE waves due to mag-

netic surface voltages. This leads to another interesting aspect of the reflection. First, in

the sense that there is a complete reflection, the interface behaves like a mirror. Second,

this special mirror not only keeps the polarization but also the phase information of the re-

flected waves. For example, for a right-handed circularly polarized wave incident onto this

boundary, the reflected wave retains its handness, but for a mere PEC or PMC boundary,



the reflected wave becomes left-handed, as shown in Fig. 2-9. This property is similar to

the soft and hard surface (SHS) boundary used in radar and microwave engineering [46].

But for a SHS with its conducting vector fixed, if the incident plane changes, the phase of

the reflected wave also changes. However, the phase of the reflected wave in Fig. 2-9(b) is

independent on the incident plane, meaning it only depends on the optical path the wave

travels. So, this mirror behaves the same in any plane of incidence, and the information of a

source including the polarization and phase is entirely retained in the reflected wave. From

above discussion, we can see that the boundary of this special uniaxial medium is in fact a

mixture of both PEC and PMC. If we treat this special uniaxial medium as a black box and

only consider its boundary conditions on its surface, we can simply denote the boundary

conditions as D - h = 0 and B - i = 0, where Fi is the normal direction of the surface.

This set of boundary conditions are different from commonly used boundary conditions

(tangential E and H being continuous) and have the physical mechanism of corresponding

surface voltages.

The above discussion in Cartesian coordinate system shows that the surface voltages in-

troduced by zero permittivity and zero permeability in the normal direction of the interface

contribute to the discontinuity of the tangential electromagnetic fields across the boundary.

This is also true for a spherical interface in spherical coordinate system. For example, as

shown in Fig. 2-8(b), a sphere with permittivity e1 and permeability p, is embedded in the

homogeneous background medium with permittivity tensor = = cr + Ect( + iEt¢ and

permeability pt. Similar to the case in Fig. 2-8(a), our derivation shows that for TM waves,

in the limit e, -+ 0, no fields exist in the region r > R 1, but the electric surface voltage

VE is induced at the boundary. Since Ei"tRid0 + VE(O + dO) - VE(O) = 0, Faraday's

law still holds across the boundary. The similar result can be obtained for E0 component.

Outgoing TE waves have similar derivation when p, goes to zero. Therefore the condi-

tion that the material at the inner boundary of a spherical cloak has radial permittivity and

permeability of zero is sufficient for total reflection of all waves back by inducing surface

voltages, no matter whether the outside medium satisfies the relation of constitutive param-

eters proposed in Ref. [2] or not. Mathematical treatment in time domain in Ref. [47] has

also gotten the similar result on the point of complete reflection. Similar to the previous



case in Cartesian coordinate system, if we are interested only in the boundary conditions,

we can denote them as D - f = 0 and B - = 0 in the spherical coordinates case. This set

of boundary conditions result in the reflection coefficients of both TM and TE waves to be

-(,,(klR1)/0,,(kRR ), as we have obtained before. We noted that there was a mathemat-

ical treatment of cloaking using the traditional boundary conditions (tangential E and H

being continuous) that concluded that "finite energy solutions" to Maxwell's equations did

not exist in this case [19]. Obviously, the reason is because the boundary conditions need

to be modified by introducing surface voltages.

Based on the above discussion, the electric and magnetic surface voltages at the inner

boundary as well as the field distribution inside the concealed region due to an electric

dipole ~ located at an arbitrary position (r',0','), where r' < R 1, can be derived. By ex-

panding the wave from the dipole into spherical waves, the corresponding scalar potentials

IFI'M and T'E for the incident waves can be obtained. Since it is known that the reflection

coefficient for both TE and TM waves is -(,,(klR1)/,,(klR), the scalar potentials of

reflected waves, TE and MT,' can be easily obtained. Consequently, the induced electric

and magnetic surface voltages at the inner boundary of the spherical cloak can be calculated

as follows

VE = Erdr _= (M + TM)r=R 1 , (2.31)

R 1  -OTi O

VH Hdr = (E ±'TE)r=R1 . (2.32)

Figure 2-10 plots the amplitude of VE at the inner boundary of a spherical cloak and the

field Hy inside the concealed region in the xz plane, due to an electric dipole pointing in i

direction and located at (R 1/2, 7r/4, 7r). Firstly, it is seen that surface voltage distributions

are not uniform on the surface. But for an outside observer, the dipole is invisible since no

wave propagates outside. Secondly, the field inside exists in the form of standing waves.

Figure 2-10(b) shows the field at the moment that the magnetic field reaches maximum.

After a quarter of cycle, the magnetic field becomes zero while the electric field reaches

maximum. Since E and H are always out of phase, the time-averaged Poynting power



is zero everywhere within the cloak, meaning no time-averaged power flowing inside. In

other words, the energy radiated from the dipole at this moment will be returned to the

dipole the next moment. Thus the total energy inside will not blow up.

It can be calculated from Eqs.(2.31) and (2.32) that, in the presence of an electric dipole

inside, when w decreases to zero, VH becomes zero while VE survives. Similarly, if a static

magnetic dipole is inside instead of a static electric dipole, VE vanishes while VH survives.

The cloak for the static magnetic field can be realized artificially [48]. Since there is no

magnetic charge in nature, this magnetic surface voltage induced by a static magnetic dipole

must exist in the form of its equivalent electric surface current. The inner boundary in

Ref. [48] is made of superconductor which makes this surface current realizable.

Furthermore, the value of surface voltages can relate to another parameter directly. In

derivation of the scalar potential in Ref. [22], the condition -92rTM = iweAq0 [49], where

p, represents the auxiliary electric scalar potential, is applied. It is interesting to note

that VE = 0~-l =. Similarly, VH = .Om1r=R . Thus these auxiliary scalar potentials,

p, and mp,, which were introduced originally as mathematical tools, have direct physical

counterparts at the inner boundary of the cloak, i.e. surface voltages in this case.

2.3 Mechanical responses of invisibility cloaks

When an electromagnetic wave interacts with an invisibility cloak, though the overall result

is that as if no object is there, the local effect exerted by the electromagnetic waves to the

cloak cannot be ignored. Electromagnetic waves propagate with power and momentum.

Therefore, the cloak need to withstand some mechanical forces to guide the wave. On the

other hand, according to Einstein's theory of general relativity, the gravity we commonly

see is due to the bending of time-space, or, the bending of time-space and the gravity are

just two aspects of the same thing. Applying the similar principle to a cloak created by

squeezing the electromagnetic space, we might be able to make an analogy of the gravity

and conjecture that a "force field" must exist in the cloak. The electromagnetic waves

propagate along the curved trajectories because of this force field. In this section we study

the mechanical interactions between the cloak and the electromagnetic wave. We take the
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position that when the electromagnetic waves exert some local forces to the cloak, at the

same time the cloak in turn exerts the corresponding recoil forces to the electromagnetic

waves.

2.3.1 Electromagnetic forces on a spherical cloak

We first take the spherical cloak as an example and study the mechanical effects of elec-

tromagnetic wave on the spherical cloak by directly calculating the Lorentz force inside of

the cloak. The bulk bound charge density and surface bound charge density are calculated,

and therefore the forces of the wave imposed on these charges can be derived.

We start with a three dimensional spherical cloak with the inner radius R 1 and the outer

radius R 2. The cloak shell within R 1 < r < R 2 is a radially uniaxial and inhomogeneous

medium with permittivity tensor 6 = Er + EtO + IEtq(q and permeability tensor f =

LPr + Pt0 + ±t q5. Here we consider an arbitrary radial compression function f(r) as

the transformation mapping from the the physical spherical coordinate system (r, 0, #) to

the original spherical coordinate system (r', 0', 0'), where r' = f(r), 0' = 0 and 0' = 4.

The constitutive parameters et, 6r, tt, and Pr can be derived based on the transformation

method:
f 2(r)

Et = Eof'(r), = EOr2f(r )
f2(r) (2.33)

Pt = pof'(r), Pr = PO 2f(r )

where co and po are the permittivity and permeability of free space. An E, polarized

plane wave with unit amplitude, E = ieikoz, is incident upon the spherical cloak, where

ko = w p/- is the wave number in air. The electromagnetic field inside the cloak layer

can be calculated as follows:

Er = f '(r) sin 0 cos 0 eiko f (r) cos

E f (r) cos 0 cos eikof (r) COS 0 (2.34)

E = sin eikof (r) cos t
r



H = 1 f'(r) sin 0 sin eikof (r) coS

H 1 f (r) cos 0 sin eikof(r)cosO (2.35)
rio r)

ro rH 7 1 f (r) cos b ezkof(r)cosO

Note that the field in the core is zero while the field outside of the cloak (free space

region) can be expressed using Eqs. (2.34) and (2.35) except that the transformation func-

tion in the free space region is determined by fir(r) = r. Once the field inside of the

spherical cloak is obtained, the force inside of the medium can be calculated directly using

the Lorentz force formula. The time-averaged Lorentz force density due to time-harmonic

excitation wave is [50]

< 7 >= {-(-V P)E + (-V. ,oM)H
~--,

-iwP x B + iwpoM x D } (2.36)

where R means taking the real part of a complex quantity and * denotes the complex

conjugate. The polarization and magnetization are defined as P = D - 0oE and 0oM =

B - p0 H, respectively. The first two terms in Eq. (2.36) contribute via a force density on

bound electric and magnetic charges, while the final two terms represent the force density

on both bound and free electric and magnetic currents. In a source free region, V • D = 0,

V B = 0, we can get -V . P = 0V ' E and -V 0M = p0oV H. It should be

noted that in a homogenous material, both V -E and V • H are zero everywhere, therefore

the force density on the bound electric and magnetic charges exist only at the boundary of

two homogenous materials. However, in the spherical cloak case, the materials are both

anisotropic and inhomogeneous, the force density on bound electric and magnetic charges

may exist in the whole region of the cloak. Substitution of Eqs. (2.34) and (2.35) into

Eq. (2.36) yields the bulk force density in the region of R1 < r < R 2:

- 1i 2f'(r) 2f (r)1
< fbulk >= o0 Sin f 

f (r ) + r r2

• ff'(r) sin 0 + fr- cos 0 (2.37)



On the outer surface of the cloak, Eq. (2.36) is simplied to be

< fiurf >= 2I{Pe vy + phHav } (2.38)

where p, = 6" -( r  ), Ph = " o(F irU  - H7) are the bound electric and magnetic

surface charge density respectively, and Evy = (Eai + E)/2, Hav, = (Hi + H)/2 are

the average electric and magnetic field at the surface. It is worth mentioning that the use

of the average is not just a matter of choice. From the physical point of view, the charges

at the boundary produce a local field in normal direction that has the same magnitude but

opposite directions on the two sides of the interface. Therefore it is this locally generated

field that is responsible for the field's discontinuity. Averaging the field across the interface

eliminates the local field, since the charge cannot exert a force on itself.

Substitution of Eqs. (2.34), (2.35) and the field equation in the free space into Eq. (2.38)

yields the surface force density at r = R2:

-1 2
< fr, > 2 sin 0 i 2 [1- f (R 2)] sin0 +0[1 - f'(R2 )] cos j (2.39)

Similarly, the surface force density at the inner surface of the cloak (r = R 1) can be

derived by assuming the field inside the inner core is zero:

< 7fr=R, >= o60f' 2 (R 1) sin 2 0 (2.40)

It can be seen that neither the bulk force density nor the surface force density have ¢

component, which means there is no angular momentum transfer with respect to the z axis

due to the rotational symmetry of the spherical cloak. In addition, the surface force at the

inner boundary has only r component, because there are no tangential field components

at the inner surface. However, the surface force at the outer boundary has both r and 0

components.

For a linearly transformed spherical cloak where f(r) = _ (r - Ri), the constitutive

parameters of the spherical cloak are Et = 0o R , r = c (r-R) 2 , t = R
R 2 -Ri' R 2 -R 1  r R2 -R 1 '

r = 0  _ (_ .)2 . Substituting the linear transformation function into Eqs. (2.41,
Ar, = /-10R2-R1r



2.52, 2.53), we can get the force distribution inside the linearly transformed cloak:

RiR 2  1 R
< fbulk >=osin O R 1)2  2 sin 0 + I - cos O (2.41)

(R2o - 1fO -2 R

1 -R1 2R2- R1
< =R2 >= -Eo sin 0 - R)sin 0 + 0 cos 0 (2.42)

- ,1 R 2  2
< fr=R1 >= 0  R 2 - sin 2  (2.43)

Assuming the incident wave has a wavelength of AX = 0.1 m, we can calculate the total

electric field intensity in the xz plane and the bulk force density inside of the cloak as well

as the surface force density on the inner and outer boundaries as shown in Fig. 2-11. If we

define the polar axis to be along the wave propagation direction (z direction), we can see

that the force at the polar regions which corresponds to 0 = 0 and 0 = r is exactly zero.

This means that the polar region (at 0 = 0 and 0 = 7r) which is directly impinged upon

by the electromagnetic waves withstands no electromagnetic force while the equatorial

region (at 0 = 7r/2) withstands finite optical forces. The maximum bulk force density is

3.53 x 10-1 0N/m 3 . The maximum value of the surface force density on the outer surface is

6.63 x 10- 12N/m 2 located at (r, 0) = (R 2, 7r/2). The maximum value of the surface force

density on the inner surface is 8.84 x 10-1 2 N/m 2 located at (r, 0) = (R, 7r/2).

In order to view the bulk force clearly, we plot each component of the bulk force in

Fig. 2-12, where Fig. 2-12(a) shows the r component of the force while Fig. 2-12(b) shows

the 0 component of the force in the xz plane. The r component of the force is dominant and

is always pointing outward, tending to expand the cloak medium. The force is much bigger

at the equatorial region of the cloak corresponding to 0 = r/2 than that at the polar regions

corresponding to 0 = 0 and 0 = r. The 0 component of the force shown in Fig. 2-12(b) is

smaller by an order of magnitude when compared to the r component. The 0 component

shows a symmetric pattern in the xz plane, and the force in the region of 0 > 0 is positive

while in the region of 0 < 0 is negative.



Ex (V/m)

2

2.5

2

1.5

1

0.5

Z 0

-0.5

-1

-1.5

-2

-2.5

Figure 2-11: E, field distribution and Lorentz force density distribution in the xz plane
due to an Ex polarized plane wave incident onto an ideal spherical cloak with R 1 = A and
R2 = 2Ao.

-2 -1 0 1 2

X



x 10 (N/r3)
3H2

-3
-11

10 (N/m3)

3

2

1

0

-1

-2

-3

Figure 2-12: (a) The r component and (b) 0 component of the bulk Lorentz force density in
the xz plane inside the spherical cloak with R 1 = 1Ao and R 2 = 2Ao due to an Ex polarized

plane wave passing through. A0 = 0.1 m.
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Figure 2-13: Bulk and surface Lorentz force density distributions in the xy plane within
an ideal spherical cloak with R 1 = 1A0 and R 2 = 2A0 due to an Ex polarized plane wave
passing through. Ao=0.1 m.

It should be noted that all the bulk force and the surface force are rotationally symmetric

with respect to the z axis, as shown in Fig. 2-13, where we plot both the bulk force density

(marked in black) and the surface force density (marked in white) in the xy plane. The

surface force density has a unit of N/m 2 and the bulk force density has a unit of N/m3 .

Since the force distribution are symmetric with respect to the z axis, the total Lorentz force

for an ideal cloak is exactly zero, which means there is no momentum transfer from the

electromagnetic waves to the cloak. However, the expanding force along the f direction

and the shrinking force along the - direction are not in balance. The total force on the

half cloak located at x > 0 is :1.82 x 10- 13N while the total force on the other half cloak

located at x < 0 is -.i1.82 x 10- 13N. These two forces of the same amplitude pull the two

halves of the cloak in an opposite direction. Therefore, the effect is to expand the cloak but

the total radiation force on the whole cloak is zero.

The Lorentz force density on the spherical cloak can also be calculated by using the

Maxwell stress tensor [16, 51]:

S 1
< f >= -- R{V . T} (2.44)

2



where

< >= 1( 02 E 2 + H|2) - 0E E - ~oH H (2.45)

takes the Chu's formulation of the Maxwell stress tensor [52]. The total force F on the

cloak is found by integrating a surface that just encloses the entire cloak so that T is evalu-

ated at r = Rz+,

F = - A dA[ . T()] (2.46)

The calculated total force using tensor form is also shown to be zero because the scattering

field is zero. Therefore, the Maxwell stress tensor and the distributed Lorentz force are in

agreement when applied to calculating the force.

After calculating the Lorentz force distribution, we can discuss the effects exerted by

the cloak to the electromagnetic waves. From Fig. 2-11 we can see that most of the forces

are pointing outwards except those on the outer boundary which are pointing inwards.

While Lorentz forces are exerted to the cloak by electromagnetic waves or photons, we

can also consider that the electromagnetic waves or photons are subject to the recoil forces

since the force action is mutual. Now we discuss the reason why directions of forces on

the outer boundary and inside the cloak layer are quite different. By tracing the trajectory

of a ray (or photons) through the cloak, we can see that it is bent three times. The first

occurs on the outer boundary when the photons start entering into the cloak. We can see an

abrupt direction change of the ray at this incident point on the outer boundary, meaning the

photons at this point are pulled abruptly. The second is the turning around of the ray inside

the cloak layer, as if the photons are doing circular motion. The third occurs at the outer

boundary when the ray goes out. This emitting point, symmetric with the incident point,

is the place where the photons are pulled back to their original trajectory. The bending at

the incident point at the outer boundary is due to the surface bound charges. Since these

bound charges are concentrated on the boundary, they are able to change the direction of

rays abruptly. We can see that by bending the ray or photons at the outer boundary, the

recoil force must point outwards, meaning the Lorentz force on the outer boundary need



to point inwards. Within the cloak layer, photons are moving along curvatures, requiring

a centripetal force. The centripetal force is the recoil force of the Lorentz force exerted

to the cloak layer. Therefore we can see that the dominant r component of the Lorentz

force is always positive because the force needs to drag the photons to turn around the

center. However, this turning around is not strictly centered at the origin, but has a slight

deviation. Therefore, the 0 component of the bulk force is important to tune the center of

the circulating motion slightly, though its value is relatively small.

2.3.2 Electromagnetic forces on a cylindrical cloak

In the above section we discussed the Lorentz force distribution inside a spherical cloak.

The same procedure can also be applied to a cylindrical cloak.

Take a cylindrical cloak with inner radius R 1 and outer radius R 2 for instance. The cloak

shell within R 1 < p < R 2 is an anisotropic and inhomogeneous medium with permittivity

tensor : = cppp + co ¢ + Ec, and permeability tensor = ppt + /t¢¢ + p, i. Here we

consider an arbitrary radial compression function f(p) as the transformation mapping from

the the physical cylindrical coordinate system (p, 0, z) to the original cylindrical coordinate

system (p', 0', z'). The constitutive parameters ep, co, ez, ,p, [to and t~ can be derived based

on the transformation:

f (p) pf' (p) f (p)f' (p)
, = Opf,(p) = o , EZ = o P

f (p) p f '(p) f (p) f (p) (2.47)

pf (p) f (p) p

where co and po are the permittivity and permeability of free space. The time-harmonic

incident wave is Ei = (fiEvi + hiEhi)ekrT , where k = kp, + ik, k2 = wtoc, hi

and i) = hi x k [1]. Here we only consider the case of vertical polarization, i.e. Ehi = 0.

The horizontal polarization, i.e. Ei = 0, can be considered as the dual case. The incident

angle a can be defined as a = tan- .The electromagnetic field inside the cloak layer



can be calculated as follows:

E = -f'(p) sin a cos 0 eikpf(p) cos + i
kzz

E = f ( ) sin a sin eikpf(p) cos +ikz z (2.48)
P

E c = cos a eikpf
( p ) 

cosO+ikzz

He = - -f' (p) sin eikpf(p) cos O+ikzz

H = - f) os eikpf (p) cos +ik z (2.49)
Vo P

Applying the Lorentz force formula Eq. (2.36), we can get the force densities exerted

to the bound charges within the cloak and on the boundaries.

< fbulk >-= o - P n2 a+ f 2(P) + + sin 2
P P1

+sin cos cos2 a - isinacosacos} (2.50)
P

< p=R2 > - f(R)) 1 + f(R 2) (sin s2 Cos2 + sin2 ) (2.51)< fp: 2 >=2( f(R)) 2

+si sin cos OS2 - i sin acos acos (2.52)

< p=1 >= Eo f'(R1) {3f'(Ri)(sin2 a cos 2 ¢ + sin2 )

-z sin a cos a cos ¢} (2.53)

It is easily seen that for the p and ¢ components, due to the symmetry, the total integration

of these components must be zero. For the z component, its integration over ¢ from 0 to 27-

will automatically give the result of zero. Therefore the total force exerted to the cylindrical

cloak must be zero.

For simplicity of demonstration we consider normal incidence. By setting R 2 = 2R 1 =



Ez (V/m)

1.5

1.0

0.5 0.5

Y O 0

-0.5
-0.5

-1.0
-1

-1.5
-1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x

Figure 2-14: E. field distribution and Lorentz force density distribution in the xy plane

due to a vertically polarized plane wave incident onto an ideal cylindrical cloak with R 2 =

1.33A0 and R 1 = R2 at normal incidence. A0 = 0.94 m.

1.33A0 (A0 = 0.94 m) and the incident angle a = 0, we can plot the force distribution

inside the cylindrical cloak when a vertically polarized wave is normally incident with E

filed of unit amplitude, as shown in Fig. 2-14. It is seen that the force distribution is similar

to the case of a spherical cloak. The forces at the outer surface of the cloak point inward

while the forces in the other regions point outward. There are slight differences between

the forces within the cylindrical cloak and the forces within the spherical cloak due to the

geometrical difference.

When the incident angle is tilted and set to be a = r-/4, the force distribution is quite

different, as shown in Fig. 2-15. It is seen from Fig. 2-15(a) that in the xy plane, the force

along the y axis (0 = 0 and 0 = r) is not zero. From Fig. 2-15(b), we can see that all the

bulk forces and surface forces have z components. It is interesting to note that within the

cloak, the bulk forces are perpendicular to the direction of Poynting powers in the xz plane

while the power's direction still remains a straight line. This phenomenon is different from

conventional cases in a common material and may need more studies.
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2.4 Summary

In this chapter, the physics behind perfect invisibility cloaks is explored by analytically

calculating the spatial distribution of electromagnetic fields. The scattering models of the

spherical cloak and the cylindrical cloak are firstly established and wave functions inside

the cloak are derived. Main conclusions are as follows.

* Perfect invisibility can be characterized as exactly zero bistatic scattering.

* An external electromagnetic wave illuminating a cylindrical cloak will induce elec-

tric and magnetic surface currents at the inner boundary of this cloak. These surface

currents do not exist in the original electromagnetic space and have no counterparts

in the transformation.

* A spherical cloak is able to cloak perfectly an active device that radiates from the

concealed region. The mechanism is that the outgoing radiation will induce surface

voltages at the inner boundary of the cloak that reflect all waves back. These surface

voltages lead to a new set of boundary conditions.

* The mechanical response of the cloak to external electromagnetic waves is analyzed

by calculating the Lorentz force distribution. It is shown that an incoming plane wave

tends to expand the bulk of a cloak while squeezing the outer boundary of the cloak

at the same time. The recoil forces can be treated as the reason of bending of ray

trajectories.
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Chapter 3

Effects of Imperfections on Invisibility

Cloaks

The requirement for perfect invisibility is quite stringent. The constitutive parameters must

satisfy the specific conditions which contain continuously varying anisotropy and inho-

mogeneity. Especially, the constitutive parameters possess extreme values, either zero or

infinity. All of these factors imply that it is quite difficult to implement the required consti-

tutive parameters in practice and thus it is necessary to study imperfect cases. This chapter

is concerned with imperfections caused by mismatches and frequency dispersions.

3.1 Scattering from mismatched cloaks

3.1.1 Spherical cloak with perturbed constitutive parameters

In last chapter we derived the wave equations and showed the exactly zero scattering from

a perfect spherical cloak from Eqs. (2.12-2.15). In fact, Eqs. (2.12-2.15) are able to

provide further information. For example, it is known that loss is often an important issue.

When the electric and magnetic loss tangents are introduced, the scattering coefficients

TM) and TN) become nonzero. In Fig. 3-1, we plot the bistatic scattering as a function

of the scattering angle 0 for the loss tangent of 0.01, 0.1, and 1, respectively. The vertical

axis represents the normalized differential scattering cross sections, k( , 2 9 where0 2 k0F2
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Figure 3-1: Normalized differential scattering cross sections IS1(0) 12/(krR') and S2(0)12
/(kIrR) [1] for a cloak (R1 = 0.5A0, R2 = A0) with a specified loss tangent introduced in
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S1(0) and S2(0) are defined by [1]:

S1(-) z (2n + 1) [T(M)T(6) + T(N)()]
n(n + 1)

S2(2n + + (3.1)
S2() = (2n + 1)[T(M)T,() ± TN)r,,(6)]

n n(n + 1)

In the above two equations 7r, (0) and ,, (0) are related to the associated Legendre functions

by 7r,,(0) = -P2os0) and 7,,(0) = -- (c respectively [38]. For the configuration

shown in Fig. 2-1, S1 (0) and S2 (0) represent the scattering patterns in the yz and xz planes

respectively. The two curves of S1 (0) and S2(0) overlap because T,M) = TIN). From

Fig. 3-1 we see that the scattered power increases as the loss increases. A more interesting

phenomenon is that the backscattering magnitude is always zero (because TIM) = TN),

and 7r,,(0) = -7,,(0) 0=180o), which is very different from conventional scattering from

regular particles [1]. The calculated field distribution in the xz plane for the spherical

cloak with tan 6 = 0.1 (Fig. 3-1, inset) is similar to the simulation results of a cylindrical

cloak with the same type of loss [3]. However, our analytical calculation shows that only



the spherical cloak in this particular lossy case exhibits exactly zero backscattering. This

unique property of the spherical cloak indicates that the cloaked object can still completely

hide from a monostatic radar detection.

Since the constitutive parameters for a perfect cloak are very difficult to realize, non-

ideal material parameters are more often used in the measurements [3, 6]. Hence, it is worth

studying how the mismatched material parameters quantitatively affect the performance of

the cloak. We calculate the normalized scattering cross section Q,, = (ko) (2n +

1)(|TIM) 2 + IT(N) 2) [1] as et changes under three cases: (Case I) keep Pt = PO R2

constant; (Case II) keep the impedance qt = Vit/et= 7/o constant; and (Case III) keep the

refractive index t - _ - R constant. The results are shown in Fig. 3-2(a), whererefractive index R2 - R 1

the horizontal axis et is normalized by the ideal parameter o . We see that when et

is equal to the ideal parameter, the corresponding pt in the three cases are all equal to

ILo R2 , and Qst is equal to 0, meaning the cloak is perfect. When et is slightly changed

from the ideal parameter, Q,,t in Case I and Case II increase from zero more rapidly than

that in Case III. This is because in Case III, the refractive index is kept constant, and the

direction of Poynting vector inside the cloak is mostly close to the ideal case, as shown

in Fig. 3-2(b). Therefore, we can conclude that the bistatic scattering performance of the

cloak is more sensitive to 77t = ,'Pt/t than nt = V-te. However, it should be noted that

from Eqs. (2.12, 2.13, 3.1) the cloak in case II is still invisible with monostatic detection

since the matched impedance results in a zero backscattering.

It is important to note that all the above analysis are valid independent of the material

parameters of the hidden object. Even when the material parameters of the cloak are imper-

fect, the incident fields still cannot penetrate into the hidden object, and the scattered power

is totally introduced by the cloak itself. This unusual phenomenon is based on the assump-

tion that the material parameters of the cloak in the radial and transverse axis always have

the same form of r, = t (r r2 where , represents p or e. Hence, Eqs. (2.5, 2.10, 2.11)

always hold, leading to f(N) = 0 and f =M) = 0, and the material parameters in the hidden

object give no contribution to the outside field. If some perturbations are introduced in

the relationship of the radial and transverse material parameters, the solution of Eqs. (2.4)

should be revisited, and the interaction of the outside field with the hidden object cannot be
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omitted.

3.1.2 Cylindrical cloak with perturbed constitutive parameters

For a cylindrical cloak, though the geometry is relatively simpler, the condition for perfect

invisibility is still difficult to be realized. Here we apply the same procedure as that in last

section to a cylindrical cloak.

By taking the far-field approximation, we can get the far-field scattering information

from a cylindrical cloak with some loss or mismatch. The scattering cross section (nor-

malized by the geometrical cross section 2R 2) Q ,,t can be derived correspondingly as

follows,

2wr 0 sin Oi
(E E + Eh )R 2

S al) 12 + la M) 2 (3.2)
€0 =-oo o n=- c

Where an , and aN) are the scattering coefficients for TM and TE waves respectively. The

differential scattering efficiency in each unit radian angle can also be derived as follows,

Wr o sin Oi
Qt/angle =(Ev2 + Ehi)R 2 7r

((00 
1 00

1 a(N)e"(-i) 2 + (M) ( (3.3)

CO n= 0 n=-0

We introduce a loss tangent for each component of the constitutive parameters of an

ideal cylindrical cloak, similar to the case we studied in last section. Figure 3-3 plots the

differential normalized scattering cross sections as a function of the scattering angle in the

xy plane for loss tangents of 0.001, 0.01, 0.1 and 1 respectively, due to a 2 GHz vertically

polarized and normally incident wave. The size of the cloak is the same as that in Sec.

2.1.2. Generally, with the increase of loss, the scattering increases. However, the backward

scattering is no longer zero, which is different with the spherical cloak with the same losses.

It is worth noting that the scattering angle at which the minimum scattering occurs is 1800,
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i.e. the backward direction, only when the loss tangent is small. With the increase of the

loss tangent, this angle decreases, meaning the backward direction is no longer where the

minimum scattering occurs.

Another issue is how the mismatches of the constitutive parameters affect the cloak

performance. We find that a slight mismatch of constitutive parameters while keeping the

refractive index constant can still provide a good performance of a cylindrical cloak. This

property is very similar with the spherical cloak as shown in last section.

3.2 Dispersion effect on invisibility cloaks

All materials in nature are intrinsically dispersive, i.e. the constitutive parameters are func-

tions of frequency. For metamaterials, which are the building blocks for invisibility cloaks,

the dispersion is even more significant since a typical metamaterial works by constructing a

local resonance to tune its electric and magnetic responses [53, 54]. Here we use a spherical

cloak as an example and focus on the effect of dispersion.

In an ideal spherical cloak, the radial constitutive parameters Er and ,r are required to

vanish at the inner boundary [2] at the single frequency which can be named as the "cloak-

ing frequency". Since any physical wave has nonzero bandwidth, the transition of ~, and

~r from positive to negative will be formed within the cloak at frequencies entirely below

or above the cloaking frequency because of dispersions which usually possess the forms

of Drude and Lorentz types for most metamaterials. Similar positive-to-negative transi-

tion of constitutive parameters has been shown to cause some peculiar phenomena such

as negative refraction [54] and superlens [55]. Resonances caused by surface polaritons

between positive and negative index media has also been shown to produce strong anoma-

lous scattering [56]. Therefore, it is necessary to analyze the influence of this transition of

constitutive parameters on the performance of the cloak.

3.2.1 Multi-layer algorithm applicable to a dispersive cloak

The configuration of a 3D spherical cloak with inner radius R 1 and outer radius R 2 follows

that in Fig. 2-1. The cloak shell within R 1 < r < R2 is a radially uniaxial and inhomoge-



neous medium with permittivity tensor 6 = E,(r)~ + etO0 + Et¢¢ and permeability tensor

S= i,(r)ff + Pt + Pt. An E, polarized plane wave, E~ = ieikoz, is incident upon

the cloak. The electromagnetic wave in the cloak shell can be decomposed into TM and TE

modes with respect to f [41], corresponding to scalar potentials "'TM and TTE. Since TM

and TE modes have similar derivations, we focus on the former. The r dependent function

f(r) of q'TM satisfies Eq. (3.4) (i.e. Eq. (2.4) in Section 2.1.1), where k2 
= W26t1_t .

{2 + [kt- (/) r f (r) = 0. (3.4)

By utilizing the relation between constitutive parameters specified in [2] at the cloaking

frequency, i.e. E, = ~( ,r f(r) can be converted to the Riccati-Bessel function [22].

However, Et/er is a function of frequency and position, which makes this specified relation

no longer hold at a deviated frequency.

In order to solve this difficulty, we shall revisit Eq. (3.4). Since Er does not vary much

with variation of r, we can divide the cloak shell in R 1 < r < R 2 into a lot of thin layers,

which is similar to the recipe applied in practice [6]. Then both E, and Et in each layer of

R( j ) < r < R (j l ) can be treated as constants, such that Eq. (3.4) has solutions

f(r) = aj,, ,(ktr) + a3J,,R,~ "(ktr), j = 1, 2,... N (3.5)

where ,, and ~, are Riccati-Bessel functions of the first and the third kind, respectively,

with a complex order v = n(n + 1) + - , and RT, is defined as the general reflec-

tion coefficient of nth order in the jth layer. The field solution in each layer can then be

expressed with different coefficients aj,, and Rj,M as unknowns. By matching the boundary

conditions between adjacent layers, we first calculate the reflection and transmission coef-

ficients due to a single reflection and transmission across the interface between adjacent



layers numbered j and j - 1 as follows,

l ,j-l (k, RU - )), '(k,-R -1)

(t,3,L 

, 

, 

gCk3

_ / / r R(-)t3 t'J "v: l t: , " ) j3ty ( -
(3.6)

- tj ",j (kt,3R(

(3.7)~t,,At'j ,,j-,(kt,j-,R(j-1))(,,j '(kt,jR(j-1))
'Lt,3 Et,) (vj(kt-jR(j-1)).,j l (kt,j-lR(-1

lt,3j -1t,3-1

i
At j O -(k,j- R(3-)) ,,j'(k ,jR (j -1))

Atj s 1
-- t, , 1 t,j(kt,jR(j-1))f ,j l(kt,j-R(j-1))

(3.8)

(3.9)
,3t, , , (ktj -R -))(Vj (ktjRU-

After obtaining these single reflection and transmission coefficients, we can easily get the

general reflection coefficients by

TM ?TM R T TM
?TM TM +J-1,j"j-1,-2 j,3

- 1

RTMj R -  _ l,_ T (3.10)
l 3,3-1 + R TM j TMj-1 , j-1-,j-2

Moreover,
Zj+ lj

aj = T aj+l,n1 - Ry,3 +1R ,j-1
(3.11)

The coefficients for TE waves can be treated as a dual case and obtained similarly. There-

RTM,j 1 -

pTM

T
TM
j-1

T TM

-1) )10 ,3_ 1 (kt,j -lR 
( j - l ) )

- ,- (kt,jR(j- 1)))( ,j I'(kt,j-IR(3-1)

t,3 - ,j-(kt,j-iR(j-))(v,'(kt,jR (j- ))
. t,j



fore, all the fields over the whole space can be determined in a straightforward manner.

To validate this algorithm, we study the dependence of normalized scattering cross

section (normalized to 7rR ) on the number of layers. The parameters at each layer's center

are set to match those proposed in Ref. [2] and R2 = 2R 1 = 1.5A0 at the cloaking frequency

of 10 GHz, where A0 = 3cm. The concealed region r < R 1 is specified to be a PEC. It can

be found that as the number of layers increases, the scattering cross section drops rapidly.

When the number of layers reaches 100, the normalized scattering cross section reaches

10- 7, which is close to "perfect invisibility".

3.2.2 Distributed penetration depth and blue-shift effect

Since each layer's parameters can be specified arbitrarily, we are able to deal with more

complicated situations including cases with anisotropic loss and dispersion. Since et and

pt are larger than 1 and do not vary within the whole cloak shell, they can be treated as

constants over the frequency band of interest. The radial constitutive parameters er and

pr can be thought of as being achieved by embedding radially uniaxial metamaterials in a

background with Et and Pt. Subsequently, Drude model [57] and Lorentz model [58] are

applied to e, and pr, respectively, as follows:

Er =t (1 - f (3.12)
f(f + i7i)

r = t(1 -1+ (3.13)
1 + i72f - f2/f2

For simplicity, we set y'= = = -y and F = 0.78. Forcing the real parts of parameters at

the center of each layer to match the relation proposed in Ref. [2] at the cloaking frequency,

the corresponding fp and fo for each layer can be calculated as well as subsequent er and

pr at other frequencies.

Now we first consider the case where 7 - 0. Then r in Eq. (3.4) is always nonzero.

Figure 3-4 shows the normalized scattering cross section spectrum of a dispersive cloak

with different losses where the number of layers is set as N = 100. By decreasing 7,

the curve of normalized scattering cross section is convergent. It can be seen that though
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invisibility is sensitive to frequency deviation, extremely low normalized scattering cross

section can still be obtained within a small finite bandwidth around the cloaking frequency.

This result excludes the possibility of some kind of large anomalous scattering [56] in the

vicinity of the cloaking frequency. Moreover, the working bandwidth of the cloak depends

on the sensitivity of the detector outside. For example, if we set 0.04 as the upper limit

of the undetectable normalized scattering cross section, then the working bandwidth of the

cloak is about 100 MHz around the cloaking frequency of 10 GHz. An arbitrary nonzero

scattering cross section limit can always be satisfied by narrowing the bandwidth.

Next we consider the other case where -y = 0. What is different in this case is that, if

the frequency is below the cloaking frequency, then the normal dispersion requires that ,.

(or pT if TE waves are considered) close to the inner boundary be negative and Eq. (3.4)

has a singularity at the position where e, is zero. This singularity will form an impenetrable

wall for TM waves as we will demonstrate in the following. Similarly, another singularity

caused by p, of zero value will form a wall for TE waves. Figure 3-5(a) shows the distri-

bution of E, in xz plane when a Ex polarized incident plane wave (Ei = : eikz) is passing



through the cloak along z direction. For the sake of illustration, we choose the frequency

deviation to be -532 MHz and -y = 0.0001GHz. Since most contribution of Ex field in

xz plane except near the z axis comes from TM waves, it can be seen that the TM field

is expelled by a very thin "wall" within the shell which little TM field can penetrate. The

position of this "wall" coincides with the position where Er is zero. In yz plane which is

not shown in this letter, we can see a similar "wall" for H, field except with a different

location because p, has different dispersion and thus different location of zero value. The

influence of loss on the field distribution is shown in Fig. 3-5(b) where the amplitude of

Ex field along the direction (0 = 27r/3, q = 0) where TM field is dominant is plotted. It

can be seen that with decreasing y, the field outside of the "wall" (r > R M) is almost

unchanged and the field inside of the "wall" (r < R M) is decreasing fast while the "wall"

at r = R ~ becomes thinner and sharper. Further decreasing of - requires increasing the

number of layers N which is not shown in Fig. 3-5. In the limit of y - 0, the field at

r = RTM (or r = R E for TE waves) will diverge and all TM fields will be blocked for

r > R TM while for TE fields, for r > R wE. Similar "wall" effects have been found to

prevent waves excited by an active device inside the concealed region from going out at

the cloaking frequency, as we have seen in Section 2.2. But here this effect is induced by

the incoming wave directly when the frequency is deviated from the cloaking frequency. A

more rigorous argument can be made as follows. Following the derivation in Section 2.2,

suppose a layer within the cloak shell has Er and thickness d, then it can be found that in the

limit of Cr -+ 0, the TM field inside this layer as well as all the space it encloses decreases

to zero while the TM field on the surface of the layer diverges, no matter how small d is.

Since this "wall" for TM waves requires the tangential H field to vanish, it can be treated

as a PMC wall. Similarly, another wall expelling TE waves is a PEC wall.

This peculiar "wall" effect will form a rainbow-like field distribution inside the cloak

since different frequency components penetrate into different depths from r = R 2 to

r = R 1, as shown in Fig. 3-6 where six frequencies are considered. Such a frequency

selection challenges a basic concept in optics, group velocity. The group velocity at the

inner boundary of the cloak has been calculated from the point of view of geometrical op-

tics to study causality of the cloak [20, 21]. However, what really happens at the inner
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boundary should be based on the field solution directly. As we all know, the group velocity

at the cloaking frequency of f, represents the speed of the envelop formed by two close

frequency components f, - 6f and f, + 6f. For the wave with frequency f, + 6f, it is able

to reach the inner boundary r = R 1. But for the wave with frequency f, - 6f, as we have

shown, will be stopped somewhere in-between by the PMC and PEC walls and thus never

reach the inner boundary r = R 1. Therefore the group velocity at r = R 1 is meaningful

only for the frequencies above the cloaking frequency, i.e. f > f,. As a result, the group

velocity at r = R 1 at the cloaking frequency loses its physical meaning.

The different responses of cloak to different frequencies can lead to another interesting

phenomenon. At the cloaking frequency f,, the strictly monochromatic wave will pass

through the cloak without any distortion [2, 17, 22]. So an observer looking at an object

emitting or reflecting this monochromatic wave behind the cloak will see exactly the same

object as if there is no block in front of it. But is this true for a more physical quasi-

monochromatic wave possessing a narrow band? For the wave with frequency slightly

deviated above at f' + 6f, the most part of the cloak shell does not change much except

the part close to the inner boundary r = R 1. Thus only a narrow spectrum of wave can

reach the PEC core within r < R 1. From the view of the observer outside, the scattering

looks as if it is from a very small PEC particle, i.e. Rayleigh scattering occurs in this

case [20]. For a very small PEC particle with kR << 1, the first order scattering coefficients
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R~M and RT E becomes dominant [16], where RTM  = -0'i(kR)/('(kR) .. 2i/3(kR)3

and R TE = -O(kR)/((kR) , -i/3(kR) 3 . The phase of scattering wave in the forward

direction (0 = 0) depends on the phase of -i E(R TM + R,E) [1] which in this case is

-i(R TM +RTE ) - +1/3(kR)3 . The positive sign indicates that the forward scattering field

will constructively interfere with the original incident field. Thus the wave after passing

the cloak will be reinforced. But for the incident wave with frequency slightly deviated

below at f, - 6f, the observer outside will regard the scattering of TM waves as if it is

from a PMC particle and the scattering of TE waves as if it is from a PEC particle because

of the PMC and PEC walls close to the inner boundary. Thus in this case RM = R TE =

-V(kR)/(kR) . -i/3(kR) 3 , which gives -i(RTiM + RTE), a negative value. Thus the

field after the wave passes the cloak will be decreased. After noting these differences, we

can study the behavior of this quasi-monochromatic wave passing through the cloak. Since

the frequency components f > f, are reinforced while the other frequency components

f < f, are weakened, the frequency center of this incident wave will be blue-shifted after

passing the cloak in the forward direction, i.e., shifted toward a higher frequency. Thus

the observer looking at the object emitting or reflecting this quasi-monochromatic wave

behind the cloak will see a blue-shifted wave. Figure 3-7 plots this shift effect for a quasi-

monochromatic incident plane wave with Gaussian distribution in frequency spectrum with

mean of 10 GHz and variation of 502 MHz2 . The transmitted wave is measured at the

location 30A0 apart from the cloak. It should be noted that this blue-shift is caused by

the shift of frequency center of the narrow band wave, which does not mean any change of

frequency itself. Furthermore, this blue-shift effect does not depend on the size of the cloak,

but the normal dispersions of radial constitutive parameters. For anomalous dispersions

which rarely occur, a red-shift effect will arise.

3.2.3 Signal transport and time-delay

How a light signal propagates through a physical dispersive invisibility cloak is one of the

fundamental problems in studying transformation-based invisibility cloaking. Here, we

present a full-wave method on the transmission of a Gaussian pulse through a spherical



invisibility cloak with causal dispersions. This study helps to provide a complete picture of

energy propagation through an invisibility cloak.

To study the light signal propagation through a physical dispersive cloak, we consider

several key quantities: group velocity, energy transport velocity, time-delay, and distortion

of energy distribution. Previous single frequency analyses [2, 3, 6, 13, 17, 22, 23, 27, 42,

59, 60] did not provide results of the group velocity and the energy transport velocity. Some

studied the group velocity and the energy transport velocity inside a cloak from the view

of ray theory [20, 21]. Ray theory gives good demonstrations for a dispersionless case, be-

cause it can show the paths of rays inside the cloak. However, when it is applied to a disper-

sive cloak, the analysis in Ref. [20] raised the issue that such a cloak may violate causality,

since the group velocity at the inner boundary diverges. In addition, Ref. [21] stated that a

ray would take nearly infinite time to reach from one side of the cloak to another side if it

points at the origin of the cloak, since the energy transport velocity approaches zero at the

inner boundary. Furthermore, the ray theory approach applied in previous studies did not

address the issues of scattering and distortion of energy distribution during the process of

energy transport. Time-domain simulation [61] does produce some useful results, but is not

able to provide as much insight into the physics to answer these questions as an analytical

approach does. These problems must be carefully examined before we get a clear picture

of energy propagation through a dispersive invisibility cloak.

We study these problems by using a real signal (a Gaussian pulse) together with full-

wave analysis. The instantaneous field and Poynting vector at each point in space and

time can be calculated, from which we show that inside the cloak, the local group velocity

and the energy transport velocity may no longer be clearly defined due to the serious local

distortion of the signal. However, if the bandwidth is sufficiently narrow, we can still define

the time-delay of the signal on a target plane behind the cloak, and examine the spatial

distortion of the transmitted pulse/energy.

Figure 3-8 shows an isolated signal carried with carrier-frequency fo (with period To

and wavelength A ) and characterized by a Gaussian envelope C(t) = e- t2 /202 . Thus the

complete signal of this Gaussian pulse sent at the input plane at z = -dl is E(t, -di) =

C(t) cos(27rfot). This :-polarized Gaussian pulse is incident along i direction onto a
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Figure 3-8: Propagation of an isolated narrow-band Gaussian pulse through a frequency-
dispersive spherical invisibility cloak with a target plane set up at z = 12 cm. The pulse
peak is at z = -6 m when t = 0. R2 = 2R 1 = 9 cm.

dispersive spherical cloak that is designed to conceal arbitrary objects perfectly only at

the carrier-frequency fo [2]. The cloak layer within R 1 < r < R 2 is an anisotropic and

inhomogeneous medium with permittivity tensor F = EPc? + fEt9 + tbq and permeability

tensor it = fpf +pt +pt . It is chosen such that at fo, Et/io = pt/po = R2 /(R 2 - R 1)

and Er/Et = pl,./pt = (r - Ri)2 /r 2 [2]. We adopt the same dispersion types as in Section

3.2.2, i.e.

Er = 6t(1 - (3.14)
f (f + i71)
FPr = pt(1 - ) (3.15)

1 + iy2/f - f02/f2

where Et and pt are assumed to be constants over the frequency range of interest, f, and

fo are parameters for Drude model and Lorentz model respectively, F = 0.78, and 'yl and

-Y2 are set to be zero. The background is free space. We set a target plane at z = d2. The

signal propagation through each point in this target plane is monitored.



The original Gaussian pulse can be expressed by a Fourier integral as follows

Eic(T, t) = iR {j Eirc(w)eik(z+dl)-iwtdwu (3.16)

where R means taking the real part, Ei,,c(w) is the Fourier transform of E(t, -dl) and

k = w i-.. To facilitate calculation, we truncate the original signal from -T to T

and let it be periodic with a period of 2T. A very large period of 2T will not affect our

treatment of a single Gaussian pulse significantly. The Fourier integral can then be written

as a Fourier series

EiLc(F, t) E= { einko(z+d)iwt (3.17)

where E,, is the coefficient of the nth order item, wo = 7r/T and ko = woViijo. Due to the

narrow band property of the original signal, we can discard the items in the Fourier series

except those from n = N1 to n = N 2 with frequencies close to fo. Thus the total electrical

field in presence of the dispersive spherical cloak can be expressed as

E(, t) = R [E,,einko(z+dj) + Escat(F)] e - inwot (3.18)

where E,,at is the scattering field for nth order item with frequency nwo, which can be

solved by using a multi-layer algorithm as we have shown in Section 3.2.2. After obtaining

E(T, t) in time-domain, we are able to predict the signal or the energy propagation.

As a concrete example, an input Gaussian pulse is modulated at fo = 10 GHz with

cr = 20To = 2 ns. We truncate this signal from -20 ns to = 20 ns (T = 20 ns). Then

the frequency spectrum is discretized by the sampling gap 6f = 25 MHz. We choose the

time-harmonic plane wave items covering the range from 10 GHz - 375 MHz to 10 GHz +

375 MHz. In other words, we reconstruct the original Gaussian pulse by using 31 time-

harmonic plane waves with different frequencies. Amplitude of each plane wave can be

determined with straightforward calculation. The outer radius of the spherical cloak R 2

is 9 cm (3A 0) and the inner radius R 1 is 4.5 cm (1.5A0 ). Region r < R 1 is PEC. In the

multi-layer algorithm, the number of layers N is set to be 200. We set dl = 200A0 = 6 m
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Figure 3-9: E, field distribution when the Gaussian pulse is passing through the dispersive
spherical cloak at (a) t = 20 ns and (b) t = 23 ns.

and d2 = 4Ao = 12 cm.

To be consistent with Ref. [62] about the definition of the arrival moment as the ex-

act moment when the main part of the signal arrives, we first calculate the instantaneous

Poynting power transferred through the target plane as

Sz(t, x, y, d2) = E(t, z, y, d2) x H(t,x, y, d2) - i (3.19)

where (x, y, d2 ) is a point in the target plane. Then the total accumulated energy that would

transport through a given point in the target plane can be calculated as W = Jf4T+2T Szdt.

In our numerical integration, the integration step length is set as 6t = To/20 = 0.005 ns.

Based on that, we can pick the exact moment when half of the total accumulated energy

has been transferred as the arrival moment t, of the signal reaching the target plane. Time-

delay of the signal is defined as ta - ti,,, where tin, is the arrival moment of the incident

signal in absence of the cloak and the PEC core.

Now let us discuss the results. Figure 3-9(a) and (b) show the Ex field distribution at the



moments of t = 20 ns and t = 23 ns, respectively. At t = 20 ns, the peak of the incident

Gaussian pulse is passing the center of the cloak. It is seen that the energy, or the wave

envelope, is slowed down inside the cloak. When the pulse is passing by, some energy is

stored inside the cloak. After the pulse leaves, the energy is released. It is worth mentioning

that during the whole process, the phase of the signal exhibits minimal disturbance. The

reason is that, although the cloak is created from the coordinate transformation theory, the

theory itself does not provide any direct information about the energy propagation but only

shows the perfect transmission of the wave's phase through an invisibility cloak. Therefore,

the causality of the cloak cannot be judged by analyzing the behavior of an infinitely long

sine wave at a single frequency but should be based on tracing the motion of the wave

envelope which represents the energy's location. We can see from Fig. 3-9(b) that the

transmission of the pulse through the cloak is delayed due to a longer physical distance

when compared to a free space case. Vividly, the ray's true path in physical space has been

elongated as shown in Refs. [2, 13]. However, is it true that a longer ray path must lead to

a larger delay of the wave signal and energy propagation?

Figure 3-10 shows the instantaneous Poynting power S, at the points (4.5, 0, 12), (2.25,

0, 12) and (0, 0, 12) cm in the target plane compared to the incident signal's instantaneous

Poynting power in absence of the cloak and the PEC core. It should be pointed out that the

instantaneous Poynting power has fast oscillations inside the modulation envelope. We can

see that the signals transported through the cloak have well-defined arrival moments and

are indeed delayed when compared to the incident signal. However, it is very interesting

to note that the signal coming along the center of the cloak, i.e. passing through (0, 0, 12)

cm in the target plane, is faster than signals at some other points. In Fig. 3-11, we plot the

time-delay distribution using the previously defined arrival moment in the target plane, and

it exhibits a volcano-like shape with a pit at the center. This result is quite counterintuitive,

since according to the geometrical description, the rays traveling closest to the z axis should

have the longest distance to go. In fact, calculation based on geometric optics shows that the

ray pointing at the center of the cloak would take nearly infinite time to reach from one side

to the other of the cloak [21]. However, the energy propagation is governed by Maxwell's

equations and it may not satisfy the ray approximation. Historically, it has been shown
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Figure 3-11: Time delay distribution of the signal arrived at the target plane after passing
through a dispersive spherical invisibility cloak. Maximum delay is 1.755 ns while the
delay at the center is 1.395 ns.

that the geometrical model of energy propagation is inadequate in certain cases, where

a well-known example is the Poisson's spot [63]. Similarly, in the case of a dispersive

spherical cloak, when the wave energy is approaching the inner boundary of the cloak, it

cannot be approximated by a geometrical ray anymore. We have shown in last section that,

for the dispersive model we are using, only the frequency components with frequencies

above the cloaking frequency can reach the inner boundary, while all the other will be

expelled completely. Therefore, no matter how narrow the bandwidth of the signal is,

when it approaches the inner boundary, the signal will be seriously distorted and the precise

location or arrival moment of the signal or energy is not well-defined in the regions near

the inner boundary. Full-wave calculation strictly from Maxwell's equations is necessary

in this case. In other words, there is no precise path for the "ray" traveling along the center

of the cloak to follow.



Regarding the issue of the group velocity [20] and the energy transport velocity [21],

it has been shown that they practically equal to the signal velocity except in anomalous

dispersion with high absorption [62]. However, this conclusion has not taken into account

the effect of anisotropy. The constitutive parameters e, and Mr close to the inner bound-

ary follow normal dispersions around their plasma frequencies. Yet the anisotropy causes

the response of the material to be quite different even with an extremely small frequency

change: an extremely small frequency change which causes the transition of , and A, from

positive to negative expels fields abruptly. Hence the response is strongly frequency sensi-

tive but the material has normal dispersion. Therefore, besides anomalous dispersion with

high absorption [62], in this particular case of a spherical dispersive cloak, the group ve-

locity and the energy transport velocity are no longer equivalent to the signal velocity (the

group velocity is infinity close to the inner boundary [20], the energy transport velocity is

zero close to the inner boundary [21], while the signal velocity is finite and nonzero [62]).

Even when the cloak is embedded in a medium with a large refractive index [2], it does

not help to change this nonequivalence. As a result, the strong distortion still cannot be

avoided.

In Fig. 3-12, we plot the accumulated energy transmission through each point of the

target plane. It can be seen that the energy of the signal after traveling through the cloak

is redistributed in the target plane due to diffraction, and the energy transported through

the center in the target plane is neither the smallest nor the largest in this particular case.

In other words, the cloak illuminated by the Gaussian pulse produces a distorted pattern

over the target plane with the center being neither the darkest nor the brightest as shown in

Fig. 3-12.

From the viewpoint of the ray model used in Refs. [2, 13, 17, 21], the problem we have

is a symmetric one and thus any response of the cloak should be rotationally symmetric

with respect to the z axis. However, it is interesting to see from Fig. 3-11 and Fig. 3-12

that neither the time-delay nor the redistributed energy at the target plane is rotationally

symmetric. The variation along x axis is different from the variation along y axis. If the

polarization of the incident light wave rotates by an angle, the time-delay and the energy

redistribution patterns will be rotated by the same angle.
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3.3 Summary

In this chapter, we studied more realistic situations of transformation-based invisibility

cloaks. Influences from the imperfections due to loss and mismatches are analyzed. Dis-

persion effect in a spherical cloak is explored in details. The main conclusion are as follow.

* Under certain specific lossy conditions, the spherical cloak is still perfect for a back-

ward scattering detector, while a cylindrical cloak with the same lossy conditions is

visible.

* It is shown that electromagnetic waves with different frequencies have different depths

of penetration and thus form a rainbow like field distribution inside the cloak whose

radial permittivity and permeability are of Drude and Lorentz types. A quasi-monochromatic

wave will gain a blue-shift of the frequency center in the forward propagating direc-

tion.

* The group velocity and energy transport velocity are not well-defined when the wave

is approaching the inner boundary because the wave is seriously distorted. However,

when the frequency band is narrow enough, we are still able to define the time-delay

of the signal arriving at a target plane behind the cloak. A volcano-shaped spatial

time-delay of the transmitted signal is demonstrated in a concrete example.



Chapter 4

Radiation by a Fast-moving Charged

Particle through a Perfect Cloak

Physical laws that describe the nature govern the behavior of an object in space and time.

For example, two sets of basic physical laws, Newton's laws of motion and Maxwell's

equations, are both functions of space and time, while they apply to different physical

objects-one is a concrete object with inertia, the other can be an electromagnetic wave, or

a photon with zero stationary mass. In general, the space where theses physical laws apply

is flat if gravity is ignored. In previous chapters, we have known that analogous to general

relativity where time and space are curved, the space for light can also be bent, even in an

almost arbitrary way [64]. The possibility of perfect invisibility cloaking [2, 13, 22, 59] was

subsequently proposed, where metamaterials that construct the cloak mimic the coordinate

transformation, squeezing the originally flat electromagnetic space and forcing light to fol-

low curved trajectories [65]. The act of cloaking is commonly believed to be undetectable

simply because the concealed region is not a part of the original electromagnetic space.

Recent experimental progresses on cloaking are approaching this destination closer [6, 66].

Though the prediction of perfect invisibility is important, on the other hand, it is of the

same importance to find a way to detect a perfect cloak no matter which frequency band it

is working in and whether it is broad band or narrow band.



4.1 Motion in two spaces

The theoretical foundation behind transformation optics is the symmetry [67] of Maxwell's

equations: the coordinate transformation does not change the form of Maxwell's equations

but only change the permittivity and permeability tensors as well as the field values. An

invisibility cloak, therefore, is like a "mirror" that images the the originally flat electromag-

netic space into the physical space by squeezing the electromagnetic space. Looking at the

"mirror" from outside, one can only see the illusion of a flat electromagnetic space. When

a photon propagates through the bent electromagnetic space, it actually does not know the

bending of the space, since it is completely located inside the electromagnetic space and

there is no other reference for it to judge whether the space is bent or not. Therefore this

photon will be cheated by the cloak as if it is passing a flat space. However, one should

notice that when the space for Maxwell's equations (electromagnetic space) is squeezed,

the space for Newton's laws of motion (mechanical space) is still flat. Before the coordi-

nate transformation, they share the same physical space, but after transformation, they are

separate. In other words, at the same physical location, a bent electromagnetic space and a

flat mechanical space overlap. If one chooses the flat mechanical space as the reference, the

bending of electromagnetic space is perceivable. This asymmetry can be utilized to detect

a perfect cloak no matter which frequency band it is working in and whether it is broad

band or narrow band.

In order to make a judgement whether the electromagnetic space is bent or flat, one

must perceive both the electromagnetic space and the mechanical space at the same time,

the latter of which will be chosen as the reference. Inside the cloak, all photons or elec-

tromagnetic waves propagate in the bent electromagnetic space, while an inertial particle

moves in the flat mechanical space. Generally, these two spaces are not connected directly.

The only bridge from the flat mechanical space to the bent electromagnetic space is the

charge attached to a particle. A charged particle possesses both mechanical properties and

electromagnetic properties, meaning that it is able to move inside these two spaces simul-

taneously. The charge, which goes together with the mass, moves uniformly in the flat

mechanical space if the energy loss is negligible compared to the particle's kinetic energy.



At the same time, it is moving nonuniformly in the transformed electromagnetic space.

This motion couples to photons and generates radiation.

Now we discuss the origin of this asymmetry. Though the transformation theory is

strictly derived from Maxwell's equations, Maxwell's equations themselves do not govern

the motion of charges directly, so the motion of the charged particle is determined in the flat

space to be along a straight line. Once the charge of the mass couples to the photons, these

photons' motion are governed by Maxwell equations and they propagate in the bent space.

In short, this asymmetry of transformation theory stems from the inequality of positions

between photons and charges in electromagnetic theory.

After understanding the difference of the appearance of electromagnetic space to charges

and photons, we can study how much radiation the fast-moving charged particle will gen-

erate. From the transformation viewpoint, the charge is doing nonuniform motion in the

virtual electromagnetic space and therefore it will generate radiation. We can also look at

the same problem from the side of physical space.

In 1934, Cerenkov studied that liquids and solids emit visible radiation when bom-

barded by fast-moving electron beams [16]. Later, Frank and Tamm used the macroscopic

theory and established that an electron moving uniformly in a medium radiates light when

the electron velocity is greater than the velocity of light in the medium [16]. After that,

a lot of studies has been carried out for the radiation generated by fast-moving charged

particles through different kinds of media, homogeneous or heterogeneous, isotropic or

anisotropic [68, 69]. However, most of these studies are only for simple geometries like

planar plates or stratified layers, and for simple anisotropy like homogenous anisotropy.

Few studies considered both anisotropy and inhomogeneity. Here we extend the Frank and

Tamm's theory to a perfect spherical invisibility cloak with a fast-moving charged particle

going through.

Figure 4-1 shows the geometry of a spherical cloak with a fast-moving charged particle

going through with a uniform velocity. The spherical cloak is created by squeezing the

virtual space such that a "hole" of r < R 1 in physical space is generated. In the physical

space, the light ray is bent around the concealed region r < R 1 to make it "invisible",

while the particle follows a straight line with a constant velocity. However, if we treat the
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Figure 4-1: Trajectory of a fast-moving charged particle inside the cloak compared with

the trajectory of the light ray in (a) the physical space and (b) the virtual electromagnetic

space.

same problem in the virtual space as shown in Fig. 4-1(b), the particle's trajectory is bent.

We can also see that the velocity of the particle is larger close to the outer boundary while

smaller in the middle.

Suppose the attached charge to the particle is q and the velocity v is in i direction

along the line x = xo and y = Yo. We can write down its current density as follows,

J(T, t) = iqv6(x - zo)5(y - yo)6(z - vt). Since the cloak is created by the transformation

T = f(F') characterized by the Jacobian A ,, the corresponding current density in the virtual

space can be obtained as [15]

'(f', t) = A -'A - J(f, t) = qA - v6(f - f7- 1 (lxo + Yo + ivt))

We can see that the charge is moving nonuniformly in the original flat electromagnetic

space with the velocity A- v, as shown in Fig. 4-1(b). It is well-known that a nonuniformly

moving charge will generate radiation. In the following, we will demonstrate the radiation

process in the physical space directly. The first step is to derive the dyadic Green function

of an electric dipole within the cloak.



4.2 Dyadic Green function by vector eigenwave expansion

We start with studying the dyadic Green function GE when an electric dipole is put within

the cloak. Since GE = GE + GE, where GE is the dyadic Green function when there is no

reflection from the boundaries r = R 1 and r = R2 , while GE represents the contribution

of these reflections, we first derive GE.

The expression for the scalar potentials inside a linearly transformed spherical cloak is

shown in Section 2.1.1, which is I = kt(r - Rl)j,,(kt(r - Ri))P,m(cos O)eim, where kt =

koR2/(R2 - R 1) and j,, is the spherical Bessel function of the nth order. By introducing

an auxiliary tensor T = ff(r - Ri)2 /r 2 + 00 + 00, we first define the vector eigenwaves

inside the cloak,

M,,m = V x j (4.1)

N,m = -V x (T - M,,m) (4.2)

Explicitly, they can be written as

Mn,m = Ikt(r - Rl)j,,(kt(r - Ri))P (cos 0)imeimk
Rr sin 0

-Ikt(r - R)j,,(kt(r - Ri)) -- P,(cosO)eimo (4.3)

( - R)
Nn,m = n(n + 1)j,,(kt(r - Ri))P7m(cos O)ei m o

10 0
+0 (r - Rl)j,,(kt(r - R1)) aP (cosO)e

i m o
r Or ao

1 0
+ I [(r - Rl)j,,(kt(r - Ri))]PT(cos6)imeimo (4.4)

r sin 0 Or

It is easily seen that

1
Mn,m = -v x (T -N,,m) (4.5)

So the vector eigenwaves M,,m and N,,,m satisfy symmetric relationships of Eqs. (4.2) and

(4.5).



We define an inner product between vetors A and B as

(A, B) = foo f2r
(A -T -B)r 2 sin OdrdOdo (4.6)

Under this definition, we can show the orthogonality between M,,,m and Nn,m.

(Mn,m(), Nn,-m m(W)) = 0

(Nn,m(W), -m ))-m()) = 2rn+l) (_1)266mm'(c - w)

(Mn,m(W),m,, M ,'(W')) = 27r
2 n(n+)1 ( 1)mr, mm,(w - 0W') (4.7)

= =

The electric and magnetic dyadic Green funtions GE and GH satisfy the Maxwell equa-

tions as follows,

V x (T V x GE) - T . k GE = 76(f- ') (4.8)

V x (T • Vx GH) - T. ktGH = Vx [6(f- r')T] (4.9)

According to the Ohm-Rayleigh method [70], we can write the right part of Eq. (4.9)

Vx [6(f - F')T] = f0dr E [NLn ,m( ri)An,m(ti) + Mr,m( )Bn,m(S')]
n,m

Utilizing the orthogonality between Mn,m and Nn,m and applying the inner product as

defined above to Eq. (4.10) as

(N,,,, (~), V x [6( - F')T])

= (N.,,,-m' ('), foO dn En,m [N,m(')Arn,m(r) + Mn,m(i)B,'m(,)]) (4.11)

we are able to get

2n + 1
A,m()27r2n(n + 1)2ir2 ri

1)m -m1 ) m tIM ( ')
-/1

ST (4.12)
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where the prime means replacing F by '. Similarly,

2n+ 1 I=.-
Bn,,m() = 2r 2n(n + (-1)m Nm() (4.13)

We can write GH in the similar expansion as Eq. (4.10) as follows,

-o =-1 D 2n + 1
G, = T d 2r2n(n + 1)

{a( )N,,,m(K)M,-m(K) + b(K)Mn,m(.)Nnm(') T (4.14)

we can finally get that

G = -1 (2n + 1)(-1) m

H = 2 27r2n(n +
rL,m

( m ,-m -m(1) m )-1 (4.15)
N,,mM,,-m + M,,m ,) -T , r < r'

where the superscript (-)' means replacing (r, 0, 0) by (r', 0', q') and (.)(1) means replacing

the spherical Bessel function j,, by the spherical Hankel function of the first kind h.,' ).

The electric dyadic Green function GE can be obtained similarly as follows,

o =r-1 iTr =-1E (2n + 1)(-1)m
GE = -6(T - T)T + -T 2

2kt 27r2n(n + 1)
n,m

/--(m1) ==/ 1) - \_-1
Mm ,_m + Nm nm T , r > r'( (1) - (1) -- -1 (4.16)
M+Im n,_m -+ _V,m a, m) T , r < r'

Then by matching the boundary conditions at r = R 2 and r = R 1, we can further get that
-r -=11 o

GE = 0. Therefore GE = GE. The transmitted field in the region of r > R2 can be written
=12

by the dyadic Green function GE

=12 i7" (2n 1)(-1) M  -- ut ---out-
GE = 2kMt E (2 n + 1) M ' M  - m "+ rN, m) T (4.17)

n,m
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where Yut and Nout are directly obtained from M and N by letting R 1 = 0.

The electric field generated by a dipole inside the cloak can thus be written as

=12
iwpt fff GE " J(r')dV', r > R 2

-11
E(T, t) = iwt fff GE • J(r')dV', R1 < r < R2 (4.18)

0, r < R 1

4.3 Instantaneous field evaluation

From above discussions, we have known that a uniformly moving charged particle though

an invisibility cloak will generate radiation because the particle is moving nonuniformly

in the virtual electromagnetic space. In this section we calculate the radiation directly in

the physical space. For a fast-moving charge q with velocity v in i direction along the

line of x = xo and y = yo, we can write down the expression for its current as J(r) =

iqv6(x - xo)5(y - yo)6(z - vt), as we have shown at the end of Section 4.1.

In order to take into account of the dimension of the charge, we replace 6(z - vt) by

a Gaussian function e - (
z 

- t)2 /(2C 2 ) while 5(x - xo)6(y - yo) is kept. Therefore the

current now is

J(T, t) = 2qvs(x - xo)6(y - yo) - e-(zv) 2 /(2u2 ) (4.19)

It is similar to the case that a bunch of electrons are shot along the same line and are moving

together. Or we can treat it as a small segment of an electron beam. In practice, this kind

of electron bunching has been used in studying Cerenkov radiation [68]. When a = 0, the

Gaussian function returns to a delta function.

We first Fourier transform the time varing current into frequency domain, as follows

-) J(T, t)ezw t dt (4.20)

= 6(x- xo)6(y - yo)e 2, 2 /2v2 iz/v
27i

where we decompose the original time-varying current into a lot of time-harmonic current
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line sources, each havings its own frequency. For each time-harmonic current line source,

the field distribution can be solved utilizing the dyadic Green function derived in last sec-

tion. Therefore, through inverse Fourier transformation, the response of the cloak due a

fast-moving charged particle going through can be solved. In the following, the detailed

calculation procedure will be shown.

We first perform a simple manipulation to the time-harmonic current source as follows,

J(f) = Q 6(x - xz)6(y - yo)e 2w/2v 2 eiwz/v
27

6( - zo) 6 (y - yo)e 2w 2 /2v 2 eiwz/v(U(Z _ Z1) - u(z - 2 ))
27
+ 6(x - Xo)6(y - yo)e-_ 2W 2/2v 2 eiWi/(u(z- Z1) - u(z - z 2)) (4.21)
2w

where u(z) is the step function and zl and z 2 correspond to the end points between which

the segment of the line source complely lies inside the cloak. This seemingly trivial step is

in fact very important to the calculation. The first two terms on the right side of the equal

sign in the above equation corresponds to the current line source after cutting the segment

inside the cloak. The last term is the true segment inside the cloak. The first two terms

can be treated as they are in free space while the last term must involve the dyadic Green

function we derived in last section.

Now we deal with the first source term at the right side of the equal sign in Eq. (4.21).

The electric field in free space due to this source term satisfies the following equation,

q 22 iV x V x E() - kE() = (x- zo)6(y - yo)e- 27 z (4.22)
27

By shifting the z axis to the line of x = xo and y = yo and establishing a new cylindrical

coordinate system (pp, ,p, z), we can easily obtain the solution as

q 2q O2 HM
E(r) = -- e 2v eZz {(k 0 - (2 ) Ho (k,pp) - p--p 1 (kppp)} (4.23)

87wco v v

where H(1) and H 1 ) are Hankel functions of the first kind to the zeroth order and first

order, respectively. The relation that H)'(x) = -H( 1 (x) is used in the derivation.

The second source term on the right side of the equal sign in Eq. (4.21) is a finite
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segment. We use the well-known dyadic Green function in free space,

(- 1 efikol _ 'I
E(T) = iwp I + VV dV' 47r (4.24)

iii ]4o -' (4.24)

The integration can be done numerically. We cut the segment between zl and z 2 into N

small pieces. By denoting xP = x - xo, yp = y - Yo and rp = I - , we can evaluate the

electric field as

S iWPO(z) I1 i 1

t=1 47 rr kor , kr r.3)

_,zr, k2  3iko 3
k 2 T3 r 4  r 5

0 yr l pr pr,

+z ( - + eikorpn (4.25)

where
q  2,2 Z2 - Z1Ie(",) = -e - e~n N (4.26)

27r N

Subtracting Eq. (4.25) from Eq. (4.23), the electric fields due to the current line source

after cutting the segment inside the cloak can be obtained. Here we need to mention that

the fields we calculated are in free space. Since it has been proved that when the source

is outside of a cloak, the electric field inside the cloak can be obtained by the coordinate

transformation directly, the true fields inside the cloak layer due to the current line source

after cutting the segment inside the cloak are obtained from transformation.

The last source term is dealt with by Eq. (4.18). Then the total fields generated by

the complete time-harmonic line source are obtained by combining all the source terms'

contributions. In order to get the fields in time domain, we still need to do the inverse

Fourier transform.
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According to the inverse Fourier transform, the fields in time domain are

E(F, t) = dwE(f)e - iwt

= 2R{ dwE(T)e iwt} (4.27)

and

H(F, t) = 2R {j dw-H(f)e - iwt} (4.28)

Therefore, the total energy radiated out through an imaginary sphere with radius r is

W = j' r 2 sin OdOd - dtE(T, t) x H(, t) -f

j f r 2 sin OdOd J dt

21 dw [ERe cos(wt) + Eim sin(wt)]

x2 dw' [HRe cos(w't) + Him sin(w't)] .

= r 2 sin dd. 4 j dW (Eae x Hae + Elm X Him) (4.29)

where the subscripts of Re and Im denote the real part and the imaginary part of corre-

sponding vectors, respectively.

The energy radiated per unit frequency is

d - 10 r 2 sin OdOd - 47r (Ee x HRe + Elm x Him) - f (4.30)

4.4 Radiation process

In this section we are concerned with demonstrating the physical radiation process. Before

we start, we classify all kinds of possible radiations that will appear in our discussion.

For a uniformly moving charged particle, Cerenkov radiation will occur if the velocity of
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the particle is larger than the phase velocity of light inside the medium. In addition, if

the particle is moving through inhomogeneous media, transition radiation will occur at the

interface and inside the media, and there is no threshold for the particle's velocity. For

a nonuniformly moving charged particle in isotropic media, there are some other kinds

of radiation besides Cerenkov radiation. The Bremsstrahlung occurs when the particle's

acceleration is parallel with its velocity. Synchrotron radiation occurs when the acceleration

of the particle is perpendicular with its velocity.

The cloak we choose is a spherical cloak with inner radius R 1 = 1pm and outer radius

R2 = 2pm. The constitutive parameters inside the cloak layer satisfy the relations that

E = rrr + ±tO + Et/x and = r# + ptO + IAt, where Et = E0 - 6 = Et 2

RR 2 -R 1 (r 2r
2

Pt = Po-a , and P~ =Pt tir2 The particle's velocity is fixed at v = 0.9c, where c

is the speed of light in free space. The parameter a in the Gaussian distribution function

of the current description is chosen to be a = 0.05pm. The total charge q is set to be the

equivalence of 1000 electrons.

In the physical space, the charged particle is moving uniformly. In the virtual space, as

shown in Fig. 4-1(b), the charged particle is doing an nonuniform motion. We first plot the

radiation process in the physical space as shown in Fig. 4-2. We can divide the radiation

process into two stages, one for t < 0 and the other for t > 0, if we specify that when t = 0,

the particle is located in the middle of its trajectory, i.e. at ((R 1 + R 2)/2, 0, 0) (point B in

Fig. 4-1). We can see that in the beginning at t = -7 fs, the charged particle is approaching

the cloak but is still outside. There is no radiation generated. As the particle enters into the

cloak, some radiation is generated. At t = 0 fs, the charged particle is located at point B.

It is interesting to see that the wave front has already passed the particle and is propagating

away, meaning that the first stage of radiation generation has finished. At t = 3 fs, the

radiation generated in the first stage has completely separated from the charged particle.

However, the charged particle starts to generate another radiation, meaning the second

stage of radiation generation has started. At t = 7 fs, the charged particle has come out

from the cloak, so the second stage of radiation generation has finished too. It is seen that at

t = 7 fs, the radiation from the second stage is composed of two particular shapes. One is a

rough shape of a cone while the other is like a circle. At t = 11 fs, all radiations propagate

106



away from the cloak and are separated from the charged particle.

We can explain the above process by comparing the motion in the physical space and

that in the virtual space. When the particle enters the cloak, its velocity in the virtual space

in Fig. 4-1(b) has an abrupt change at point A, which will generate some radiation in virtual

space. This radiation corresponds to the transition radiation occurs at the incident point at

the outer boundary of the cloak in physical space (point A in Fig. 4-1(a)). Similarly, when

the particle comes out at the other side of the cloak, another abrupt velocity change occurs

in the virtual space (point C in Fig. 4-1(b)), which corresponds to the transition radiation

occurred at the emitting point at the outer boundary of the cloak in physical space (point C

in Fig. 4-1(a)). During the motion of the particle inside the cloak in the physical space (seg-

ment AC in Fig. 4-1(a)), it keeps on generating transition radiation due the inhomogeneity

and anisotropy of the cloak materials. Regarding its motion in the virtual space (curved

segment ABC in Fig. 4-1(b)), it can be mainly divided into two parts-motion along AB

and motion AC, corresponding to the two radiation stages. During the motion process, the

particle's velocity keeps on changing the direction as well as the absolute velocity value,

which gives rise to Bremsstrahlung and synchrotron radiation due to the acceleration. An-

other kind of radiation that exists in the regions close to the outer boundary of the cloak

in the model we use here (close to A or C in both Fig. 4-1(a) and (b)), is the Cerenkov

radiation when the velocity of the particle is larger than the speed of light.

It is easier to examine the velocity difference between the light and the charged particle

in the virtual space since in the virtual space, the light propagates with c everywhere and

the particle's velocity is scaled accordingly. When the particle enters the cloak in the vir-

tual space (point A in Fig. 4-l(b)), it actually generates two radiations, one due to abrupt

velocity change at point A the other due to its motion within the cloak near point A. The

corresponding radiations in the physical space are those as follows. One is the transition

radiation due to the impinging of the particle on the outer boundary and the other is the

transition radiation from the particle's motion inside the inhomogeneous medium near the

outer boundary. In either physical or virtual space, it is difficult to distinguish these two

radiations since they start at the same time when the particle enters the cloak. When the

particle moves close to point B in the virtual space (Fig. 4-1(b)), its velocity in the virtual
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Figure 4-2: Intensity of IE(T, t) during the radiation process of a charged particle going

through a spherical invisibility cloak. The dotted line represents the trajectory of the parti-

cle. The small arrow indicates the exact position of the particle's center along its trajectory.

The inner radius and outer radius of the cloak are lipm and 2jim, respectively. Net charge

amount is equal to 1000 electrons. v = 0.9c.
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space slows down compared to the speed of light. Thus the light from the first radiation

stage has chance to catch up and overtake the particle. In our calculated case, when the

particle is close to point B, the radiation generated by this particle at this moment is quite

small because of its small velocity in the virtual space. After the particle leaves point B,

the particle in the virtual space is accelerating. When its velocity gets higher, it is able

to generate obvious radiation, the radiation in the second stage. The radiation generated

along the segment BC in virtual space is very similar to the previous studies on acceler-

ating charges [71]. An important point is that when the velocity is increased to be large

enough (in the regions close to point A in the model used here), the Cerenkov radiation

will occur and contribute to the total radiation [71]. It is interesting to see that when the

particle comes out, the radiation from the second stage exhibits two different shapes. The

rough shape of a cone is the transmission of radiation generated along the segment BC in

the virtual space before hitting point C. The circle-like shape is the radiation due to the

abrupt velocity change at point C. Because this abrupt velocity change only occurs at one

point, the radiation is basically a spherical wave, and thus form a circle-like wave front.

The reason these two shapes of radiation are distinguishable is because they start at differ-

ent times. The shape similar to a cone is formed earlier than the circle-like radiation. At

the incident point A, two similar radiations exist too, but they start at the same time and

their wave fronts are mixed together.

Since the impinging only happens at one point, the radiation it generated must similar

to a spherical wave. However, the other branch of the second radiation is from the previous

motions of the particle inside the cloak and it is just transmitted across the outer boundary.

Therefore it still keeps that shape of a rough cone. Consequently, we see two branches in

the second radiation while we did not see in the first radiation an obvious distinguishability

between the radiation due to the impinging and the radiation due to the motion inside the

cloak. This is because they start at the same time when the particle enters into the cloak,

being mixed with each other.

The total radiated energy can be calculated to be 2.89 x 10- 14 J. In Fig. 4-3, we plot the

frequency spectrum of the radiated energy. It is shown that the bandwidth of the radiation

is generally broad-band and can be further controlled by the parameter of Gaussian dis-
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Figure 4-3: Frequency spectrum of the radiated energy from the fast-moving charged par-

ticle through the invisibility cloak. The inner radius and outer radius of the cloak are 1/Im
and 2Cpm, respectively. Net charge amount is equal to 1000 electrons. v = 0.9c.

z

Particle's
Velocity

Figure 4-4: Spatial radiation pattern at 500 THz by the fast-moving charged particle
through the invisibility cloak. The inner radius and outer radius of the cloak are Ipm
and 2pzm, respectively. Net charge amount is equal to 1000 electrons. v = 0.9c.
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tribution. The energy distribution in frequency domain increases in the beginning, which

is similar to the radiation caused by a single electron going through a typical medium,

while the energy distribution goes down when the frequency is high, which is because the

Gaussian shape of the charge profile has determined the concentration of most frequency

components over the low frequency part. It can be shown that, over the frequency range

from 500 THz to 501 THz, each of this charge package of 1000 electrons will generate

radiation energy equal to about 78 photons. The radiation pattern at 500 THz is shown in

Fig. 4-4. So the radiation energy with amount of about 78 photons within 500 THz and 501

THz is distributed roughly according to the pattern in Fig. 4-4.

4.5 Summary

This chapter is devoted to the radiation generated by a fast-moving charged particle through

a spherical invisibility cloak with uniform velocity. The reason of radiation is ascribed to

the nonuniform motion in the virtual electromagnetic space. The transition radiations that

occur at the incident spot and emitting spot when the particle enters and leaves the cloak

correspond to the abrupt velocity changes at the corresponding points in the virtual space.

The transition radiation during the piercing process corresponds to the deceleration and

acceleration radiations (Bremsstrahlung) and synchrotron radiation in the virtual space. In

addition, in regions where the particle's velocity is large enough, the Cerenkov radiation

will also occur. The total radiated energy, the frequency spectrum and the radiation pattern

at a particular frequency are provided. Based on the results in this chapter, we claim that

an invisibility cloak can be detected by simply using an electron gun to shoot electrons

through the invisibility cloak.
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Chapter 5

Practical Implementation of Invisibility

Cloaks

There have been a lot of practical designs of invisibility cloaks proposed to work at dif-

ferent frequencies [3, 4, 5, 27, 28, 32] and experiments using different metamaterial struc-

tures [6, 60, 72, 73]. However, due to the lack of appropriate methods to model and evaluate

the performance of a practical cloak, the design procedures in previous studies were very

inefficient.

This chapter is concerned with the practical implementations through accurate electro-

magnetic modeling. The inhomogeneous simplified cloaks are discussed. The focus is on

the potential improvements and simplifications of constructing a metamaterial based invis-

ibility cloak. Finally, we suggest to use only a few homogenous metamaterial layers to

construct a practical cloak with satisfying performance at normal incidence and oblique

incidence.

5.1 Inhomogeneous cloaks with simplified parameters

To construct a perfect cloak is very difficult due to its stringent conditions on constitu-

tive parameters of tensor forms. In studies of the transformation-based invisibility cloaks,

simplified cylindrical cloaks for normally incident waves with only one polarization are

often used in experimental demonstration [6], simulations [3, 74], and other practical de-
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signs [4, 5, 26, 27, 31, 75]. However, the scattering evaluation at normal incidence is not

sufficient to describe the full performance of such simplified cloaks. Furthermore, scat-

tering results for normal incidence were obtained only semi-analytically from simulation

tools [25, 29] by coefficient fitting with simulated field patterns, being neither convenient

nor strict. Therefore, a fully analytic method to evaluate the performance of simplified

cylindrical cloaks at both normal and oblique incidences is needed in designing invisibility

cloaks.

Overall, previous studies on simplified cloaks are not complete due to the lack of an-

alytic tools. For example, the main reasons for scattering from a simplified cloak are the

mismatches at the outer and inner boundaries. There were studies on the mismatch at the

outer boundary that showed that impedance matching at the outer boundary applied by a

high-order quadratic transformation in Refs. [4, 29] is able to decrease the scattering effi-

ciently, while there is little study on the mismatch at the inner boundary.

5.1.1 Analytic scattering analysis using state-variable approach

The configuration of scattering from a cylindrical cloak with outer radius R 2 and inner

radius R 1 follows that in Fig. 2-3 where a time harmonic plane wave Ei = ( iEvi +

hiEhi)ei~' is incident with ki = :k, + ke, k? = w2p-~o, hi = , and f)i = hi x ki. In' Zixk, I

this section we focus on incident waves with vertical polarization, i.e. Ehi = 0 while our

method can also be applied to horizontal polarization. Another point here is that the cloak

layer between R 1 and R 2 with permittivity tensor r = t Ep + E€ + Ez £ and permeability

tensor = = ±pp i + po ±+ p£ is a simplified cylindrical cloak. Without loss of generality,

we assume that the concealed region of p < R 1 is a PEC. We denote a = 7r/2 - Oi as the

incident angle such that ac = 0 corresponds to the normal incidence.

In the region of p > R 2 , we use scalar potentials O'TM and O/E to describe the TEZ

and TMZ harmonic cylindrical waves [23], as we did in Section 2.1.2. The difficulty of

the current problem is that the wave function inside the cloak has no closed-form solution.

Instead of resorting to commercial simulation softwares, we derive the state propagator

matrix in the cloak shell using state-variable approach [41] in the following to handle this
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difficulty. We denote E = E , + E, and H = H , + H,, where Ep and H , are components

parallel to , while E, and H, are components perpendicular to 3, and V x = V, x +V, x,

where

Faraday's law

0 -a a 0Oz p90

Vx = 9 0 0 and Vx = 0

and Ampere's law can be written as

and Ampere's law can be written as

V, x E, = iwPH,

V, x H + V, x H, = -iw(eg# + E z ) -E,

V, x H5 = -iwEpE

(5.2)

(5.3)

Noting that for harmonic cylindrical waves of order n, the field has ei"O and eik z de-

pendencies, hence the state transfer equation can be deduced after eliminating Ep and Hp

in Eqs. (5.2) and (5.3) as follows:

0

0

inlr+

-iwcE + i"W~lpp
2

Ez

o E _

op Hz

H4

0 i k

iin
2

iWqE- 5 0

inkz 0
wlApP

-iw/L 4¢ + ik

WEpp

LOP
0

1
p

(5.4)

Here another assumption that all the constitutive parameters are functions of only p is used.

We let the state function be the four-dimensional vector of V = [Ez E4 Hz H0]T and

denote the matrix in Eq. (5.4) as T. We cut the cloak shell between p = R 1 and p = R2
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Figure 5-1: Normalized scattering cross section Qsmct (normalized to 2R 2) from an ideal

cylindrical invisibility cloak whose inner boundary is set at R 1 + 6. 6 = 0.01R 1 . R 2 =

1.5A = 2.08R 1 .

into N layers, each of which has thickness of Ap. It follows from Eq. (5.4) that

V(pj+,) - V(pj) = ApT(pj) -V(pj) (5.5)

Subsequently,

V(R 2 )= (7 + ApT(pj))J •V(R 1 ) (5.6)

j=1

By choosing a sufficiently large N and matching the boundary conditions at p = R 1 and

p = R2 , we are able to solve the field solution for various cylindrical cloaks with continu-

ously varying parameters.

In order to validate this algorithm, we first study the scattering from an ideal cylindrical

cloak whose closed-form solution for arbitrary incident angle has been derived in Section

2.1.2. The constitutive parameters for an ideal 2D cylindrical cloak satisfy the relation that

Ep/co = pp/po = (p - Ri)/p, O/EO0 = po/Po = P/(P - R1), and Ez/Eo = pz/Po =
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[R2/(R 2.- R1)]2(p - R)/p [3, 6]. Since constitutive parameters of infinite values at the

inner boundary of p = R1 are unachievable in practice, we peel a part of the cloak close to

the inner boundary, i.e., to set the inner boundary at p = R 1 + 6, where 6 = 0.01R 1,

without changing constitutive parameters otherwhere. In Fig. 5-1 we plot the normal-

ized scattering cross section Qa,,t = 2wlo cos a/[(E2 + E -)R2] {1/c1 ',= aN)12 +

I/p E' )2a, |2}I [23] of this ideal but perturbated cylindrical cloak. It can be seen

that the current algorithm provides strict results. In addition, it is interesting to see that

the horizontal polarization has almost zero scattering. As we have discussed in Section

2.1.2, the surface currents at the inner boundary of a perfect cylindrical cloak is important

to prevent waves from coming into the concealed region and being scattered. Obviously, by

peering a small part from the inner boundary, these surface currents do not exist any more.

However, for horizontal polarization, the PEC core happens to provide the electric surface

current which is necessary for the perfect cloaking. Therefore, little scattering is caused for

horizontal polarization.

5.1.2 Influence of nonlinear transformation

Physical Space
p

Square root transformation
R2

R1 Linear transformation

Quadratic transformation

0 R2 Virtual Space

Figure 5-2: Different transformations in cylindrical coordinates to construct cylindrical
cloaks. Linear transformation: p = R 1 + (R 2 - Rl)p'R 2 [2, 3]. Quadratic transformation:
p = [1 - R 1/R 2 + (p' - R2)R 1/R2]p' + R 1 [4, 5]. Square root transformation: p =
R1 + (R2 - R 1) /R 2.

The original model proposed in Ref. [2] and implemented in Ref. [6] were gener-
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ated from linear transformation. Yet we can use different kinds of transformations to

construct cloaks and compare their performances using our analytic algorithm. Now we

consider different transformations from virtual space p' to physical space p as follows:

linear transformation as p = R 1 + (R 2 - R1)p'/R 2 [2, 3]; quadratic transformation as

p = [1 - R 1/R 2 + (p' - R 2)R1/R2]p, + R 1 [4, 5]; and square root transformation as

p = R 1 + (R 2 - R 1) Vp/R 2 . The linear transformation allows the formation of virtual

space within physical space, which is compressed linearly in the radial direction during the

process. In the quadratic transformation, such compression is denser near the inner bound-

ary. In the square root transformation, such compression is denser near the outer boundary.

They can form different simplified cylindrical cloaks: (a) Linear simplified cloak [3, 6, 25]

with E6 = O[R2/(R2 - R 1)]2 , p = p [(p - R1) p]2 and pp = po; (b) Impedance matched

linear simplified cloak [29] with Ez = EoR2/(R2- R 1), pp = oR2/(R 2 - R 1)[(p- R1)/p]2

and ptL = poR 2/(R 2 - Ri); (c) Impedance matched quadratic simplified cloak [4, 5] with

Ez = Eo/[2R 1p'/R2-2Ri/R 2+I]2, p = fo(p'/p)2[2Rip'/R2-2R1/R 2+1]2 and po = Po;

and (d) Impedance matched square root simplified cloak with E, = eo2R 2 (p - R 1)2/(R 2 -

R 1)3 , pp = poR 2 (p - R 1) 2/[2(R 2 - Rl)p 2 ] and pp = po2R 2 /(R 2 - R 1). Note that (a) and

(b) are both from linear transformation and (b), (c) and (d) have matched impedance at the

outer boundary [4, 5, 29].

Figure 5-3 shows the electric field distribution in xy plane of different simplified cylin-

drical cloaks illuminated by a normally incident plane wave with vertical polarization. In

the region of p > R 2 , only the scattered field is plotted. In Fig. 5-3(a), the linear simplified

cloak has some intrinsic scattering [25], especially in the backward direction due to the

impedance mismatch at the outer boundary. From Fig. 5-3(a) to Fig. 5-3(b), the field pat-

tern inside the cloak shell (the bending effect of waves) does not change much, since these

two cases are both from linear transformation. However, the scattered field (normalized

scattering cross section Q,,,t [23]) is reduced significantly because the impedance at the

outer boundary has been matched. The ring-like scattered field pattern is mainly from the

zeroth order scattering [23, 25], which is impossible to be completely eliminated by sim-

plified cloaks due to the lack of surface magnetic current in this case [23, 45]. When the

waves reach the inner boundary, instead of inducing magnetic current along q direction in
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Figure 5-3: Electric field distribution of different simplified cylindrical cloaks illuminated

by a vertically polarized and normally incident plane wave. Only scattered field is plotted

outside of the cloak. R2 = 1.5Ao = 2.08R 1. (a) Linear simplified cloak; (b) Impedance

matched linear simplified cloak; (c) Impedance matched quadratic simplified cloak; (d)

Impedance matched square root simplified cloak. From (a) to (d), the normalized scattering

cross section (normalized to 2R 2) is 0.299, 0.125, 0.360 and 0.034, respectively.

the case of an ideal cylindrical cloak [23, 45], they induce electric current along i direction

on the surface of PEC core which reradiates and contributes to scattering. From Fig. 5-

3(b) to Fig. 5-3(c), the impedance at the outer boundary stays matched, but the quadratic

transformation in Fig. 5-3(c) forces most waves to be bent close to the inner boundary.

Thus, more energy of the incident waves is blocked by the PEC core in Fig. 5-3(c) than in

Fig. 5-3(b), forming a shadow behind the cloak characterized by a strong forward scatter-

ing as shown in Fig. 5-3(c). It is worth noting that the normalized scattering cross section

in Fig. 5-3(c) is even larger than that in Fig. 5-3(a). This result does not contradict with

that in Ref. [4], since in the case studied in Ref. [4], the surface electric current on the

PEC core happens to be helpful for complete cloaking [23, 45]. In Fig. 5-3(d), the square
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root transformation forces most waves to be bent away from the inner boundary and thus

produces a very small scattering cross section. Figure 5-4 shows the far-field differential

normalized scattering cross section [23] of cases (a) to (d) in Fig. 5-3. It can be seen that all

the simplified cloaks having matched impedance at the outer boundary are able to suppress

the backward scattering efficiently. But the impedance matched quadratic simplified cloak

has so large forward scattering which leads to an even larger total scattering cross section,

while the impedance matched square root simplified cloak is able to suppress both back-

ward and forward scattering, which therefore results in the smallest total scattering cross

section.

10- 1

-- 2

10-3L
0 20 40 60 80 100 120 140 160

Scattering Angle (degree)
180

Figure 5-4: Comparison of the far-field differential normalized scattering cross sections of
different simplified cylindrical cloaks illuminated by a vertically polarized and normally
incident plane wave. R2 = 1.5Ao = 2.08R 1.

5.1.3 Performance with oblique incidence

We can further calculate the scattering at nonnormal incidences. For each simplified cloak,

since only ez, /p and MO are specified, we require that p/z/o = E/EO, p/EO = p/0LO

and E/eo = I//po for the purpose of demonstration. As shown in Fig. 5-5, the reduced

scattering cross section can only be achieved within a limited range of incident angles, be-
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yond which the scattering is even larger than a bare PEC without any cloak. This result is

reasonable since the simplified cloaks are all designed for only normal incidence while the

scattering performance at other incident angles has not been considered. Therefore it can

be expected that as the incident angle increases, the scattering will increase. But an im-

portant question is what is the critical incident angle beyond which a simplified invisibility

cloak no longer makes an object "invisible" but makes it even more "visible". Obviously,

this critical incident angle is of great importance in practical applications of simplified

invisibility cloaks.

3.5
S- Linear simplified cloak

" 3 Matched quadratic simplified cloak
* , Matched linear simplified cloak 4

U , Matched square root simplified cloak
o 2.5- 4--- - Bare PEC without any cloak

. -2

U)

0 0.5
z

0 10 20 30 40 50 60 70 80 90
Incident Angle(degree)

Figure 5-5: Dependance of normalized scattering cross sectioin (normalized to 2R 2 ) on
incident angles for different simplified cloaks. R 2 = 1.5A0 = 2.08R1.

5.2 Multi-layered cloaks with homogeneous anisotropic lay-

ers

The difficulty in constructing a perfect invisibility cloak is the requirement of continuously

varying inhomogeneity and high anisotropy with extreme constitutive parameters. We have

known from last section that simplified parameters based on the coordinate transformation

can be utilized to facilitate the physical realization [3, 6, 27], in expense of the inherent
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scattering [25]. However this simplification still has not brought much convenience to

practical construction using metamaterial structures. A feasible way to construct a cloak in

reality is to use multi-layered structures to approximate the spatially changing constitutive

parameters. The first sample of cylindrical cloak was created using multi-layered meta-

materials [6]. Bi-layered isotropic media was also proposed for achieving the effective

anisotropy [26], but a lot of thin layers are needed which increases the construction com-

plexity. Moreover, the transformation theory did not predict the performance of a practical

construction composed of discontinuous layers of homogeneous anisotropic metamateri-

als. Therefore, it is very necessary to provide a better way to design a practical cloak with

satisfying performance.

Here by utilizing the analytic scattering model of a multi-layered cylindrical cloak and

utilizing genetic optimization, we are able to show that, although only a few layers of

anisotropic materials are used, an optimized multi-layered invisibility cloak with almost

zero scattering can still be achieved

5.2.1 Analytic formalism at normal incidence

In order to get the exact behavior of a multi-layered cloak, the analytical model of a cylin-

drical cloak created with multi-layered anisotropic materials needs to be studied. We use a

cylindrical cloak as an example. Without loss of generality, the case of a vertically polar-

ized (E field parallel with z axis) plane wave with unit magnitude normally incident onto

an M-layer cylindrical cloak (from region 1 to M) is considered, as shown in Fig. 5-6.

The case of horizontal polarization can be analyzed similarly. The radii of the boundaries

of different layers within the cloak are denoted by R(m) (m = 0, 1, - , M). The relative

constitutive parameters in region m are assumed to be constants denoted by Ppm, I~om and

Ezm while the region m = 0 is assumed to be free space and there is a thin PEC coating

on the boundary between region M and region M + 1. Any object inside region M + 1 is

guaranteed to be untouched from external electromagnetic waves due to the PEC coating.

The remaining task is to minimize the scattering from the whole structure.
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Figure 5-6: Configuration of a multi-layered cylindrical cloak with each layer being
anisotropic and homogeneous.

The electric fields Ezm in the region m satisfy the following equation,

1p ( E ) + 1 ( 1 OE,,m + k 2zEzzm = 0 (5.7)
aP m oP P 2 pm a0

By applying the method of separation of variables, the general expression for the electric

fields in region m can be expressed as

Do

Ezm = am,, (Jvmn,(kmp) + rm(m+l)nHv,1) (kmp)) ei"n¢  (5.8)

where vm,, = nv ICPm/Ppm and the wave number in region m is km = kov.zmLqm. Dif-

ferent from the isotropic layered case, here ,,mn is a fraction. Symbols of JVmn and H()m

represent the Um,,th order Bessel function and the um,,th order Hankel function of the first

kind, respectively. Besides, am,, is the unknown coefficient and fm(m+1),, is the general

scattering coefficient from the boundary Rm if we treat the Bessel function as the incident

wave and the Hankel function as the reflected wave. When a wave is incident from re-

gion m onto the the boundary Rm, the direct reflection coefficient is rm(m+l),, = (j'jl -

rim/rlm+ljj )/(-h'jl + rm/Tm+lhj'), and the direct transmission coefficient is tm(m+l)rn =

-2i/(rkmRm)/(-h'ji + rlm/Tlm+lhj'). Here j = Jv,,,mn(kmRm), i' = Jmn(kmRm),
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ji = Jv(,+l)n(km+lRm), ji = J(+~ (km+lRm), h = Hvm(kmRm), h' = Hm(kmRm),

hi = H(m+l>) (km+lRm), h' = H$(m+±l) (km+1Rm), and 77m = I/em/~zm. Similarly, for

an outgoing wave the direct reflection and transmission coefficients on R(m) are r(m+1)m,, -

(h'lh - rm+1/77mhlh')/(-j'h + ?m+1/7mjih') and t(m+l)m,, = 2i/(rkm+,Rm)/(-j'h +

i7m+1/mjlh'). Therefore, the scattering coefficient in layer m (m=0, 1, ..., M-1) can be

written as [41]

rm(m+1)n, = rm(m+1)n + t(m+1)mn, (5.9)

where t(m+1)m,, = tm(m+l),rt(m+l)mr(m+1)(m+2),t/(1 - r(m+1)mnT(m+1(m m+2)n) represents

the wave coming out from Rm due to the multiple reflections and transmissions on the

boundaries inside R(m). At R(M) (i.e. Ri), TM(M+)n = -JM,f(kMRM)/Hm (kMRM),

therefore all the im(m+1),, can be derived using Eq. (5.9), and am,, can also be derived

by matching the boundary conditions. The coefficients of the scattering fields in region 0

are b0o, = a0OrT01,,. Based on the cylindrical scattering model, the far-field total scattering

efficiency or the scattering cross section normalized by the geometrical cross section for

the multilayered cylindrical cloak is obtained as

Qscka 1  1 bo, 12  (5.10)
rn= --

In practice, the ideal parameters obtained from the transformation method need to be

discretized for realization, which will destroy the perfect invisibility of the cloak. Using the

proposed method, such effects of descretization and simplification of the transformation-

based cloak can be quantitatively analyzed. For example, Schurig et al. proposed a 10-

layer simplified cloak with po = 1 for the experiment [6], in which the copper cylinder

core with radius 0.709A0 is coated by a multilayered cloak with inner radius 0.768A0 and

outer radius 1.670Ao. Utilizing the parameters including the losses in the metamaterials in

Ref. [6], and assuming the core to be PEC for convenience, for the normal incidence of

a vertically polarized plane wave, the near field distributions can be calculated using our

method. For example, Fig. 5-7 shows the electric field distribution of the case studied in
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Figure 5-7: E, field distribution for a vertically polarized (electric field perpendicular with
the xy plane) plane wave incident from left to right onto the 10-layer cloak proposed in
Ref. [6].

the previous experiment. Our analytical model shows some qualitative agreement with the

experimental field distribution shown in [6], where both reduced forward scattering and

reduced backward scattering can be observed.

5.2.2 Genetic optimization of a cloak at normal incidence

Genetic algorithm is a widely used optimization method in engineering and science that

enables the individuals of candidate solutions to an optimization problem evolve to better

solutions [76]. In genetic algorithm, all input variables are encoded as chromosomes. A

population of chromosomes of candidate solutions are generated in the beginning and then

evolve from generation to generation. In each generation, the fitness of every individual in

the population is evaluated, based on which better individuals are selected from the current
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Wnext gene

Figure 5-8: Flow chart of genetic algorithm.

population, and modified (crossover and mutation) to form a new population. The new

population is then used in the next iteration of the algorithm. The whole procedure is as

shown in Fig. 5-8. Commonly, the algorithm terminates when either a maximum number

of generations has been produced, or a satisfactory fitness level has been reached for the

population. Here our criterion of terminating the algorithm is that the best fitness of the

population doe not change in a round of 30 generations.

In this section we will show that our proposed method can realize a general multi-

layered cloak without following the ideal transformation parameters, but still possess-

ing a satisfying performance. Meanwhile, the extreme values exist in a conventional

transformation-based cloak can be avoided. In applying the genetic algorithms, the in-

ner radius of the cloak is fixed and the chromosome is a string of Os and is represent-

ing a set of constitutive parameters of each layer and the outer radius in the form of

Ezi, p1, p , 7 EzM, I pM, IpoM, R(o)}. The value of each parameter is determined by a

linear mapping from the integer denoted by the binary number to the search space. The
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Optimized cloak TB full parameter cloak
layer [tp PO Ez 77/170 Pp t z 7q/770

1 0.674 2.002 3.384 0.769 0.186 5.391 4.349 1.113
2 0.057 5.001 7.258 0.830 0.140 7.147 3.280 1.476
3 0.151 6.836 3.532 1.391 0.089 11.245 2.085 2.322
4 0.010 7.508 7.008 1.035 0.032 31.735 0.739 6.551

Table 5.1: The relative constitutive parameters for the optimized 4-layer cloak and the

transformation-based (TB) full parameter 4-layer cloak.

thickness of each layer is set to be identical and can also be considered as an optimization

input. The fitness of an individual is chosen to be 1/Qscat, where Q,,,t is the total scattering

of this individual shown by Eq. (5.10). After making use of the roulette wheel selection,

in which individuals with larger fitness have larger chance of going forward to the next

generation, setting the single point crossover probability and the mutation probability to be

0.6 and 0.05, respectively, and ensuring that the fittest individual is able to propagate to the

next generation, evolution is carried out and optimization is obtained finally.

Since it is much easier to create a cloak with only a few layers of matematerials, we

consider the 4-layer cloak as an example. The inner radius of the cloak is R(4 ) = 0.709Ao,

the same as the size of the copper cylinder used in previous experiment [6]. Taking into

account the practical constraints on the constitutive parameters of the metamaterials, the

search space of all the relative constitutive parameters is between 0.01 and 8. The outer ra-

dius R(O) is set between 0.8A0 and 1.67Ao. Using our proposed method, we design a 4-layer

optimized cloak with outer radius 0.894A0 and with the parameters shown in Table 5.1.

Figure 5-9 shows the calculated electric field distribution when a vertically polarized plane

wave normally incident from left to right onto the optimized cloak. It is shown that in the

near-field region of the cloak, the incident electric fields remain almost unperturbed.

Figure 5-10 shows the far-field differential normalized scattering cross sections when

a vertically polarized plane wave normally incident onto different types of cloaks. When

there is only a bared PEC cylinder with radius 0.709Ao, the differential scattering cross

section is shown by the solid line in Fig. 5-10, and the total scattering Q ,,t (normalized

to 2R 1) is found to be 2.19. For Schurig's cloak (dashed line), the forward and backward

scattering have been reduced by about 4.8dB and 4.1dB, respectively, and its Q,,,t is 0.49.
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Figure 5-9: Electric field distributions for a plane wave incident from left to right onto the

optimized 4-layer cylindrical cloak. The total normalized scattering cross section (normal-
ized to 2R 1) is 0.0039.
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Figure 5-10: Comparison of the differential normalized cross sections when a vertically

polarized plane wave normally incident on to the PEC cylinder without cloak (solid), the

PEC cylinder with the cloak proposed in Ref. [6] (dash), a 4-layer transformation-based

(TB) full parameter cloak (dash dot), and the optimized 4-layer cloak (dot).

For comparison, we use a transformation-based full parameter cloak, whose dimensions are

the same as the optimized cloak but with parameters of each layer obtained from sampling

the ideal inhomogeneous parameters at the center of each layer, as indicated in Table 5.1.

Its differential normalized scattering cross section (dash doted line) is shown and its Q,,t

is 0.11. When the optimized cloak is used (dotted line), more than 20dB improvement is

achieved in all different angles and Q,,t is greatly reduced to be 0.0039.

It is interesting to see from Table 5.1 that the optimized parameters are quite different

from the parameters obtained by the coordinate transformation theory. Taking the b com-

ponent as an example, as shown in Table 5.1, the value of relative permeability in the most

inner layer is optimized to be 7.508, instead of the value 31.735 as suggested by the trans-

formation method. The parameters achieved here are relatively small and within the limit

of metamaterials, which will increase the possibility of realizing such an optimized cloak.

This is very important to the implementation of a cloak in practice. As we have known,

for an ideal cylindrical cloak, the 4 component of constitutive parameters need to approach
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infinity at the inner boundary to support the surface currents. Such an extreme value near

the inner boundary is nearly impossible to realize. Though a truncation method [23, 42, 45]

at the inner boundary can be used to avoid this extreme value, however, scattering will be

aroused and it has been shown that the performance of such a truncated cloak is sensitive

to the perturbations near the inner boundary [23, 42]. In order to get a performance as

good as our proposed cloak, here Qs,,,t is 0.0039, only about 7 x 10- 6A0o truncation is al-

lowed near the inner boundary, which means extremely large values of permeability about

105to is needed in the q5 direction near the inner boundary. This is a disadvantage of the

transformation-based cloak in practical implementation.

The reason why nearly perfect invisibility can still be achieved in a cloak with only a

few layers can be physically explained as follows. The scattering of such kinds of multi-

layered cloaks is determined by the recurrence equation of Eq. (5.9). When m = 0,

Eq. (5.9) indicates that the nth order scattering is the sum of the direct scattering at R (O)

denoted by rol,, and the wave coming out from R (O) caused by the multiple reflections

and transmissions at the inner boundaries, denoted by tlo,. In order to minimize the total

scattering, the parameters of the cloak should be chosen so that ro1,, and tio,, cancel each

other. As denoted by Eq. (5.9), f01 ,, are determined simultaneously by um,,, km and r/m in

all the layers. Thus the matching of impedances between adjacent layers does not assure a

small total scattering. For example, the extreme case of filling all 4 layers with air (perfect

match) will result in a large scattering corresponding to the solid line in Fig. 5-10. On the

contrary, the mismatch of the impedances, as shown in Table 5.1, can be utilized to form

multiple reflections and transmissions among the inner layers, which eventually produces a

transmission to the free space being able to destructively interfere with the direct reflection

occurs at the outer boundary. In our proposed optimized cloak, the Oth direct reflection

coefficient at R (o) is rolo = -0.1135 - 0.3172i, while the Oth transmission coefficient

from R (o) is tolo = 0.1130 + 0.2947i, therefore, the Oth scattering coefficient is ol00 =

-0.0005 - 0.0225i which is very small, due to the destructive interference. This is also

similar to the one-dimensional multi-layered case of the Fabry-Perot etalon filter, where the

impedances of each layer are not necessary to be matched in order to get zero reflection.
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5.2.3 Optimized cloak at oblique incidence

In Section 5.1.3, we have shown that the performance of certain simplified cloaks dete-

riorates quickly with the increase of incident angle, because these simplified cloaks are

designed only for normal incidence. It is desirable to have some other method to construct

a more easily realizable cloak working for even oblique incidence. Here we will demon-

strate the multi-layered cloak working for oblique incidence after the optimization.

For oblique incidence, the difficulty here is that there is no closed-form solution to the

wave equation inside each layer. We have provided a method to calculate the scattering

from a general cloak under oblique incidence in Section 5.1.1 based on the state-variable

approach [41]. Therefore, for each layer, we can apply this method to calculating each

state propagator matrix and their product will be the final state propagator matrix. Taking

a 4-layer cloak as an example, the state propagator equation will be

j=3N+1 Lj=2N+1

N (I + ApT(PJ)) " l[ (I + ApT(pj)) • V(R 1) (5.11)
j= N+1 I j=1

After obtaining the state propagator matrix, we can solve the field distribution over the

entire space, as we have done in Section 5.1. Now by applying the genetic optimization,

we are able to get a multi-layered cloak to work with oblique incidence.

For comparison with the performance of simplified cloaks at oblique incidence, we

consider a cylindrical structure with the same size as in Section 5.1, where the inner radius

R2 = 1.5Ao = 2.08R 1. We set the number of layers to be 4. Each layer has the same

thickness. Another condition is that we force all relative parameters in each layer to be less

than 10. The geometry is as shown in Fig. 5-11. The incident wave is vertically polarized,

i.e. only electric field has z component. The incident angle is chosen to be 300. We fist

choose the scattering from the bare PEC core with radius R 1 = 0.721Ao as the reference,

whose E, field distribution in the xy plane is shown in Fig. 5-12. It can be seen that the

scattering is quite large. The normalized scattering cross section (normalized to 2R 2) is

1.175 in this case.
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Figure 5-11: Configuration of a 4-layer cloak when a vertically

obliquely incident with the incident angle of 30'.
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Figure 5-12: Ez field distribution in xy plane due to scattering from a bare PEC cylinder

when a vertically polarized plane wave is obliquely incident with the incident angle of 30'.

The normalized scattering cross section (normalized to 2R 2) is 1.175.
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I Optimizing three parameters
layer Pp 4  E, Ep E Pz

1 0.962 1.423 1 1.154 1 1
2 1.128 0.160 1 0.598 1 1
3 0.792 2.754 1 1.321 1 1
4 0.665 1.025 1 2.625 1 1
II Optimizing six parameters

layer tip /0 Ez Ep Plz

1 0.550 2.320 1.725 0.438 1.781 3.409
2 0.283 3.584 1.657 0.262 3.953 0.037
3 0.224 8.204 0.614 0.189 8.674 1.754
4 0.057 9.994 0.015 1.540 9.069 0.030

Table 5.2: The relative constitutive parameters for the optimized 4-layer cloak by (I) opti-
mizing three parameters each layer and (II) optimizing six parameters each layer.

We have two sets of optimizations. One is to control Ez, p, and [Lo for each layer

(the simplified cloaks only need these three parameters), while keeping relative ep, e6 and

Mz as constant of 1. The other is to control all these six parameters for each layer. The

performances of these two optimized 4-layer cloaks are shown in Fig. 5-13 and Fig. 5-

14. Their relative constitutive parameters are shown in Table 5.2. It is seen in Fig. 5-13

that by controlling only three parameters each layer, the total scattering has reduced much

when compared to the bare PEC core in Fig. 5-12. The normalized scattering cross section

(normalized to 2R 2) is reduced from 1.175 to 0.498. After optimizing all six parameters

for each layer of the cloak, the normalized scattering cross section (normalized to 2R 2 ) is

0.013, close to "invisibility" as shown in Fig. 5-14. It is worth mentioning that the 4-layer

cloak in Fig. 5-14 that is optimized at the single incident angle of 300 is still valid for other

incident angles. In Fig. 5-15, we can see that this cloak has good performance over a large

range of incident angles.

We can generally ascribe this low scattering phenomenon to the cancelation of the first

reflection on the outer boundary and the total transmission from inside the cloak to outside

the cloak, similar to the reason described in last section. However, with oblique incidence,

the description of the wave behavior is much more complicated. For normal incidence,

since vertically polarized waves and horizontally polarized waves are decoupled, only ver-

tically polarized scattering will be generated in response to the vertical incidence. When
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Figure 5-13: Ez field distribution in the xy plane due to scattering from a 4-layer cloak

when a vertically polarized plane wave is obliquely incident with the incident angle of 30'.

The cloak's ez, pp and Atp in each layer are optimized while the relative ep, eP and P, are

kept as constant of 1. The normalized scattering cross section (normalized to 2R 2 ) is 0.498.
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Figure 5-14: Ez field distribution in the xy plane due to scattering from a 4-layer cloak
when a vertically polarized plane wave is obliquely incident with the incident angle of 300.
All six parameters of each layer within the cloak are optimized. The normalized scattering
cross section (normalized to 2R 2) is 0.013.
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Figure 5-15: Dependence of normalized scattering cross section (normalized to 2R 2 ) on

the incident angle for the 4-layer cloak created by optimizing all six parameters of each

layer within the cloak. The dotted line corresponding to the normalized scattering cross
section (normalized to 2R 2) of the bare PEC core is shown for comparison.

the incident angle is tilted, vertically polarized and horizontally polarized waves become

coupled to each other. So both vertically polarized and horizontally polarized waves will

be generated even when the incident polarization is only singly polarized.

From above discussion, we can see that the combination of analytic formalism and

genetic algorithm is a powerful tool which may find more applications in the practical

implementation of invisibility cloaks in the future.

5.3 Practical limitations on invisibility cloaks

To evaluate the applicability of transformation theory to invisibility cloaks, it is necessary

to discuss the practical limitations on invisibility cloaks, like how large an object can be

concealed with the current technology of metamaterial fabrication, and how many layers

we need to approximate a transformation-based cloak. In this section, we compare the

performance of spherical cloaks with different sizes and different losses, and we also study
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the influence of the number of layers.

Loss is an important issue in the application of metamaterials. Table 5.3 shows the

scattering from spherical cloaks with different inner radius and different thickness when

the loss tangent of 0.01 is applied to all constitutive parameters. The concealed object

within r < R 1 is PEC. The thickness of the cloak is d = R2- R 1. It can be seen that, when

the size of the object to be concealed increases, the scattering generally increases as well.

For a given size of the object to be concealed, using a thin cloak is helpful for reducing the

scattering. However, a very small thickness of the cloak will challenge the fabrication, since

the constitutive parameters need to vary sharply within this small thickness. In addition,

it can be seen that the larger the object, the more difficult it is to cloak it using lossy

metamaterials with the same loss tangent. Generally speaking, in order to achieve obvious

cloaking effect, as shown in Table 5.3, the sizes of the cloak and the object to be concealed

need to be in the same order of a wavelength within the extent of current metamaterial

technologies.

It is also important to study how much loss is allowed to achieve a required scattering

cross section for a particular object to be concealed. Table 5.4 shows the maximum loss

tangent allowed for all constitutive parameters if the required normalized scattering cross

section (normalized to 7rR2) is fixed to be 0.01. It can be seen that generally, to achieve the

normalized scattering cross section of 0.01, the loss needs to be very small. The larger the

cloak and the object to be concealed, the smaller loss is required. Typically, the loss tangent

of the cloak is larger than 0.01 for microwave frequencies [6], which means that using

current metamaterial technology, it is very difficulty to achieve small scattering (reduced

by 2 orders) for the transformation-based invisibility cloaks.

In practice, the continuously inhomogeneous cloak is of ten approximated layers of

metamaterials [6]. Figure 5-16 shows the dependence of normalized scattering cross sec-

tion (normalized to 7rR ) on the number of layers. It can be seen that cloaking an object

with the radius of 4A needs more layers to reach a stable scattering than that with the radius

of 1 A. A little loss will expedite the converging of scattering as the number of layers in-

creases, because loss makes the discretization of the cloak more homogeneous. However,

as we can see, the scattering from a lossy cloak that converges fast has a larger scattering
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Radius of PEC sphere R1
d/R1 1A 2A 4A 6A 8A 10A 100A 1000A
1/1000 0.0067 0.0254 0.0856 0.1613 0.2417 0.3206 0.9811 1.0073
1/100 0.0068 0.0263 0.0884 0.1664 0.2491 0.3299 0.9992 1.0255
1/10 0.0097 0.0365 0.1205 0.1847 0.3301 0.4322 1.1896 1.2165
1/8 0.0106 0.0398 0.1306 0.2414 0.3553 0.4636 1.2454 1.2724
1/6 0.0123 0.0457 0.1489 0.2732 0.3998 0.5192 1.3412 1.3685
1/4 0.0162 0.0594 0.1905 0.3451 0.4993 0.6418 1.5432 1.5710
1/2 0.0332 0.1179 0.3617 0.6316 0.8849 1.1065 2.2330 2.2624
1 0.1013 0.3410 0.9638 1.5732 2.0846 2.4888 3.9901 4.0222

Table 5.3: Normalized scattering cross section (normalized to 7R 2) from spherical cloaks
with different sizes. R1 is the radius of PEC sphere to be concealed and d is the thickness
of the cloak. The loss tangent for all constitutive parameters is set to be 0.01.

Radius of PEC sphere R 1

d/R 1  1A 2A 4A 6A 8A 10A 100A 1000A
1/1000 1.24E-2 6.04E-3 3.00E-3 1.99E-3 1.49E-3 1.19E-3 1.19E-4 1.20E-5
1/100 1.21E-2 5.93E-3 2.94E-3 1.96E-3 1.47E-3 1.17E-3 1.17E-4 1.17E-5
1/10 1.01E-2 4.96E-3 2.46E-3 1.64E-3 1.23E-3 9.82E-4 9.85E-5 9.87E-6
1/8 9.66E-2 4.74E-3 2.35E-3 1.56E-3 1.18E-3 9.38E-4 9.37E-5 9.39E-6
1/6 8.90E-3 4.39E-3 2.18E-3 1.45E-3 1.09E-3 8.71E-4 8.69E-5 8.70E-6
1/4 7.75E-3 3.81E-3 1.89E-3 1.26E-3 9.49E-4 7.58E-4 7.55E-5 7.55E-6
1/2 5.30E-3 2.62E-3 1.30E-3 8.67E-4 6.51E-4 5.20E-4 5.21E-5 5.21E-6
1 2.93E-3 1.45E-3 7.25E-4 4.83E-4 3.63E-4 2.90E-4 2.89E-5 2.89E-6

Table 5.4: The maximum loss tangent that can be applied to all constitutive parameters of a
spherical cloak with different sizes when the normalized scattering cross section (normal-
ized to 7rR 2) is fixed to be 0.01. R 1 is the radius of PEC sphere to be concealed and d is the
thickness of the cloak.
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Figure 5-16: Dependence of normalized scattering cross section (normalized to 7rR 2) on

the number of layers. The concealed object is PEC. The two curves correspond to lossless

case and lossy case where a loss tangent of 0.01 is applied to all constitutive parameters.

(a) Both the radius of PEC and the thickness of the cloak are 1 A. (b) The radius of PEC is

4A while the thickness of the cloak is A.
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than a lossless cloak with the same number of layers.

Another question is whether we can use isotropic dielectrics to construct a cloak instead

of anisotropic metamaterials. Here we emphasize that anisotropy is of key importance in

the cloaking phenomenon and thus cannot be eliminated. We can use Fig. 1-2 to explain

our arguments. In Fig. 1-2(a), the horizontal lines can be treated as phase fronts propagating

upwards and the vertical lines are the corresponding power propagation directions. After

transformation, as shown in Fig. 1-2(b), the mesh is distorted. As long as this transforma-

tion is not a conformal mapping, the angles between horizontal lines and vertical lines are

no longer conserved, meaning the phase propagation direction and the power propagation

direction will not be in the same direction. Anisotropy is necessary in this case. Therefore,

using isotropic dielectrics to construct a transformation-based invisibility cloak is generally

impossible.

5.4 Summary

In this chapter, two parts of practical implementations are considered. The first part is

for inhomogeneous simplified cloaks that are often used in experiments. The effects of

nonlinear transformation and incident angle are studied. The second part is for optimized

multi-layered cloaks whose layers are homogeneous and anisotropic. Genetic algorithm is

adopted to optimize the practical multi-layer structures. For both parts, analytic treatments

are developed. Finally, practical imitations of size, loss and anisotropy are discussed. Main

conclusions are as follows.

* Simplified cylindrical cloaks may produce a larger scattering at nonnormal inci-

dences than that from an object without any cloak, making this object more "visible".

* The impedance-matched high-order transformation forces waves to be bent closer

to the inner boundary and thus may produce stronger scattering than the simplified

'For example, in Fig. 1-2, the segment of the originally vertical red line in the first quadrant is bent coun-
terclockwise due to the squeezing from the "hole", while an originally horizontal line in the same quadrant
is bent clockwise under similar squeezing effect to avoid the "hole". Therefore the angle between these two
lines is no longer right angle, meaning that the power direction and phase propagation direction are not the
same. As long as the "hole" creation is necessary in the transformation, anisotropy is generated during the
squeezing process.
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linear one without impedance matched at the outer boundary. A square root transfor-

mation can improve scattering by guiding waves away from the inner boundary.

* Utilizing genetic algorithm, a multi-layered cloak can be optimized using homoge-

neous and anisotropic layers to be close to invisible at normal incidence.

* It is demonstrated that by optimizing the performance of the cloak at 300 incidence,

the multi-layered cloak provides low bistatic scattering over a wide range of incident

angles.

* In order to reduce the scattering from a PEC object by 2 orders, the loss tangent of

the cloak generally cannot be larger than 0.01. This has implied important limitations

on the applicability of transformation theory to invisibility cloaks.



142



Chapter 6

Conclusions

This thesis presents a systematic electromagnetic study of transformation-based invisibil-

ity cloaks. The theoretical analysis is based on macroscopic electromagnetic wave the-

ory. The emphasis has been placed on the physical interpretation of the phenomenon of

transformation-based invisibility with a better fundamental understanding. The results pre-

sented here solved some key problems in invisibility cloaking on both the theoretical and

practical levels.

6.1 Conclusion of theoretical analysis

On the theoretical part, the work in this thesis studied three main aspects.

1. Interaction of a perfect invisibility cloak with electromagnetic waves

Firstly, the effectiveness of transformation-based invisibility cloaks are confirmed. By

establishing the scattering models for the spherical and cylindrical cloaks, we are able to

calculate the electromagnetic fields analytically over the whole space, based on which a

better understanding can be obtained. It is shown that the spherical cloak proposed in

Pendry et al.'s original work is indeed perfect for a monochromatic incident wave. This

conclusion helps to resolve the disagreement between Pendry et al.'s paper and Leonhardt's

paper on the point that whether perfect invisibility is theoretically achievable or not. For

a cylindrical cloak, our full-wave results show that it is perfect not only for normal inci-
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dence but also for oblique incidence. It is emphasized that at the inner boundary of an

ideal cylindrical cloak, the external incident wave will induce electric and magnetic surface

currents. These surface currents introduced here are formed by polarized currents and have

no counterparts in the original virtual space. Therefore they cannot be predicted directly

by the transformation theory.

Secondly, an invisibility cloak is able to cloak active sources. The principle of the trans-

formation theory is to guide waves around the object to be concealed. Though the trans-

formation theory demonstrated the effect of cloaking a passive object, it did not provide

information on whether electromagnetic radiation originating from inside the concealed

region can be kept from getting out or not. This means that anything emitting electromag-

netic radiation might be instantly detectable. Our study shows that the invisibility cloak

created by the transformation theory is still perfect for cloaking an object emitting elec-

tromagnetic radiation. We demonstrate that this phenomenon is due to the surface voltage

effect at the inner boundary of the cloak.

Thirdly, mechanical response of an invisibility cloak is studied. Though the wave passes

through the cloak as if nothing is there, the cloak is in fact subject to some local forces. We

show that the outer boundary of the cloak withstands pressure forces from the incoming

wave, while the bulk and the inner boundary withstand the forces attempting to extend the

volume. Since the force are mainly in radial direction, we can roughly treat the recoil forces

exerted to the electromagnetic wave as the centripetal forces under which the photons are

able to do the circulating motion within the cloak.

2. Electromagnetic waves in an imperfect invisibility cloak

Firstly, by introducing perturbations to constitutive parameters, we show that under

certain lossy conditions, the spherical cloak is still perfect for a back-scattering detector,

while a cylindrical cloak with the same lossy conditions will still be visible. The scattering

model we developed is useful for evaluating the effectiveness of an invisibility cloak.

Secondly, the dispersion effect is analyzed in details. A multi-layer algorithm able

to describe the performance of a dispersive and lossy spherical cloak is developed. By

applying the dispersions of Drude and Lorentz types to the constitutive parameters, it is
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shown that electromagnetic waves with different frequencies have different depths of pen-

etration in the cloak and thus form a rainbow like field distribution inside the cloak. A

quasi-monochromatic wave will experience a blue-shift in the forward propagating direc-

tion. Based on the dispersion model, group velocity, energy transport velocity and signal

time-delay are discussed. It is shown that group velocity and energy transport velocity

are not well-defined when the wave is approaching the inner boundary because the wave

is seriously distorted. However, when the frequency band is narrow enough, we are still

able to define the time-delay of the signal arriving at a target plane behind the cloak. A

volcano-shaped time-delay spatial distribution is demonstrated as a concrete example in

our physical model.

3. Radiation caused by a fast-moving charged particle through an invisibility cloak

While photons can be guided by the cloak along curved trajectories, however, a moving

charged particle will still follow a straight trajectory due to its inertia. This charged par-

ticle that is moving in the heterogenous and anisotropic cloak will induce electromagnetic

radiation. The reason of radiation is also ascribed to the nonuniform motion in the virtual

electromagnetic space.

We extend Frank and Tamm's theory of Cerenkov radiation due to a uniformly moving

charged particle in homogenous and isotropic medium to the case of a uniformly moving

charged particle through a perfect spherical invisibility cloak that is both inhomogeneous

and anisotropic. The dyadic Green function of an electric dipole inside the cloak is derived.

Based on that, the instantaneous field distribution is evaluated during the whole process of

the charged particle passing through the cloak.

Our results show that the transition radiations that occur at the incident point and emit-

ting point when the particle enters and leaves the cloak in the physical space correspond to

the abrupt velocity changes at the corresponding points in the virtual space. The transition

radiation during the piercing process corresponds to the deceleration and acceleration ra-

diations (Bremsstrahlung and synchrotron radiation) in virtual space. Cerenkov radiation

will also occur in certain regions close to the outer boundary when the particle's velocity is

sufficiently large.
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A concrete example of a spherical cloak with outer radius of 2pzm and inner radius of

1 pm with a Gaussian charge distribution of 1000 electrons going through is demonstrated.

It is shown that the bandwidth of the radiation is generally broad-band and can be controlled

by the parameter of Gaussian distribution. The radiated energy distribution in frequency

domain increases in the beginning, which is similar to the radiation caused by a single

electron going through a typical medium, while the radiated energy distribution goes down

when the frequency is high, which is because the Gaussian shape of the charge profile has

determined the concentration of most frequency components over the low frequency part.

It is estimated that a charge package of 1000 electrons will generate about 78 photons over

the frequency range 500 THz to 501 THz, that will distribute roughly according to the

radiation pattern at 500 THz.

6.2 Conclusion of practical analysis

In this thesis, the practical studies are divided into two parts.

First, the simplified cloaks which are often used in experiments are studied. The ana-

lytic scattering calculation based on the state-variable method is carried out for both normal

incidence and oblique incidence, being more efficient and accurate than the semi-analytic

method often used in published literatures. It is found that the simplified cylindrical cloaks

may produce a larger scattering at oblique incidence than that from an object without any

cloak, making this object even more "visible". At normal incidence, the high-order trans-

formation with impedance matched at the outer boundary, which was supposed to reduce

the scattering in previous studies, can produce stronger scattering than the linear simplified

one without matched impedance. This is due to the inefficiency of guiding waves close

to the inner boundary. Therefore, a square root transformation can improve scattering by

guiding waves away from the inner boundary.

Second, a multi-layered cloak using anisotropic and homogenous layers is proposed

based on the genetic optimization for normal incidence and oblique incidence respectively.

In order to get the exact behavior of a multi-layered cloak at normal incidence which is

commonly used in practice, the analytical model of a cylindrical cloak created with multi-

146



layered anisotropic materials is firstly established based on the full-wave scattering theory.

By the optimization with genetic algorithm, we show that, although only a few layers of

anisotropic materials are used, an optimized multi-layered cloak with nearly zero scattering

can still be achieved. The parameters obtained are relatively small and easier to be realized

by metamaterials. The impedances between the adjoined layers do not necessarily match

each other but can still produce extremely low scattering. For the oblique incidence, the

results from the state-variable approach is chosen as the input of the optimization. It is

demonstrated that using only a few layers, the optimized cloak can work over a large range

of incident angles.

6.3 Suggested future work

In this section, I suggest some of the potential problems for future work.

1. Special relativity consistent cloaking of a moving object

We have analyzed a number of limitations that an invisibility cloak has, such as the loss,

frequency dispersion, extreme values of constitutive parameters and continuously varying

anisotropy. There is at least one more limitation which is important but has not been stud-

ied. All current studies on invisibility cloaking are limited to stationary state where the

cloak as well as the concealed object cannot move. If we want to cloak an object which

is moving fast, we must consider the relativistic effect of electromagnetic waves. We can

divide this problem into two parts. One is the Doppler shift effect of the frequency of

electromagnetic waves when the object is moving. Since the metamaterial constructing

the cloak is dispersive, this Doppler shift will deteriorate the invisibility performance. The

other part is the change of the background. In relativistic motion, Lorentz transformation

is applied and the background becomes bianisotropic medium with respect to the object in

motion. It is difficult to get the analytic scattering solution in this case, but we are able

to use numerical simulation methods to get the scattering in the moving frame and then

transform it back to the stationary frame.

2. Momentum of electromagnetic waves inside the cloak
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The coordinate transformation theory shows how to transform electromagnetic space.

However, the electromagnetic waves have both wave properties and particle properties-

electromagnetic momemtum. Since the cloak does not produce any scattering, the net

momentum transfer of electromagnetic waves to the cloak is zero. However, how do the

momenta go through the cloak is not know yet. We have studied the Lorentz force distri-

bution inside the cloak and shown that the recoil force might be the reason of turning the

momenta around. In electromagnetics, the Lorentz force law is another basic law besides

Maxwell's equations. The effect of coordinate transformation on Lorentz force law need

to be considered. Based on the momentum conservation law as well as the Lorentz force

analysis, the momentum of electromagnetic waves inside a transformation-based cloak can

be studied. Because the cloak is anisotropic and inhomogeneous, the form of momentum

in this case is expected to be complicated.

4. Non-reciprocal cloaks

A shortcoming of the perfect invisibility cloaks is that the wearer of these cloaks cannot

perceive the external information when the outside observer cannot see the wearer at the

same time. It will be very interesting to study how to cloak an object while still keeping it

be able to receive the external signals. This is possible by using non-reciprocal materials.

Recently, many structures of non-reciprocal metamaterials have been proposed and studied,

which further increases the possibility of non-reciprocal cloaks. The problem is that in

order to let the signal get into the concealed object, electromagnetic waves must penetrate

into the concealed region. Therefore, the concealed object cannot be very lossy, otherwise

the energy dissipation will make the object visible. Another possibility is to utilize active

sources to compensate the energy dissipation
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Appendix A

Wave Functions inside a Spherical Cloak

Generated by Arbitrary Coordinate

Transformations

A general derivation of the wave functions inside a spherical cloak generated by an arbitrary

coordinate transformation is published in Ref. [77]. We list the main conclusions here.

Consider a general coordinate transformation between two spherical coordinate systems

(r', 0', #') and (r, 0, 4) that is described by

r' = f(r, , ), 0' = g(r, , ), 0' = h(r, , ) (A.1)

where r', 0' and 0' represent the coordinates in the original coordinate system and f (.), g(.)

and h(.) can be arbitrary monotonic differentiable functions. Following the transformation

theory based on the form-invariance of Maxwell's equations under space-time transforma-

tion, the constitutive parameters can be obtained as follows,

=-1 =-1
S= oT , C= poT (A.2)

where Eo and po represents the scalar permittivity and permeability of free space in the

original space before transformation. The matrix T is defined by T = J J/det(J), where
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J = O(f, g, h)/O(r, 0, 0) is the Jacobian matrix. According to the fields into TE and TM

modes by introducing the vector potentials ATE and ATM in the new space and express the

fields as

BTM = V X ATM
--- 1

DTM = {V X [ V XATM] (A.3)
(A.3)

DTE = -V X ATE
-- 1

BTE = {V X [ V x ATM]}

Since the media described by E and f7 is no longer isotropic, the directions of ATE and ATM

are not necessary to be along the i direction. For mathematical convenience, we let

-O =
^  

+ + Of 
^

(A.4)

ATE= Or rO0 r ) TE

where I)TM and ')TE are scalar potentials for TE and TM cases, respectively. Substituting

Eq. (A.4) into Eq. (A.3), we obtain the partial differential equation for 4PTE and 4TM,

2+ 1 (sin g + f21 h2 + k 2D = 0 (A.5)
Sf2 2 sing Og g f2 sin2 g h2

The solution for this equation is

4 = B,,(kof)P 9,(cos g)eimh (A.6)

where B, (.) is the Riccati-Bessel function, P, is the associated Legendre polynomials of

the nth order with degree m. Using Eq. A.4 we can obtain the vector potentials ATE and

ATM as follows:

ATM am, r +r si+ B,,(ko f )P,(cosg)eim" (A.7)
SOra ra r sin 000 /"

ATE= am r r B , (ko f )P,(cos g)eim (A.8)
m,n
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Thus all the components of the total fields can be obtained by substituting Eq. (A.7) and

Eq. (A.8) into Eq. (A.3) and the results are as follows:

S [f (i 2f 2 )
Er = o + k

+0 singt or O 20

1 ( Oh 1

+ -- sin g
E so Or Og siE = poeor s Of 2 0

1 /Oh 0
+ Tsin g A

or sin 0 00 Og

Hr = (sinh1 g

i [
+- Iup/oeo :

(
2

51

Por sin O Ohg

i _ Of+ -
Pwoor d
1 O

P or sin 0 sing

Og 02
tOr OfOg

TE
ng Or Oh

Og 02

g 06 Oh

Og 02
OOfOg

Oh 02 ]
+ A TM

Or Of-Oh IT

O0OfOhT

(A.9)

(A.10)

Oh 02 ]0+ Of Oh .

1 Og a -
sing 0¢ partialh

Oh 0

+ k + fg

i g )TM
-9 mg r

92

f2

k2 g 02
k 0 + Of Og

Sa 2  
]PTE

Oh 02 1+ OOf-Oh (I TE

1 Og a0 ) TM
sing 0 partialh

TM (A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(TE (A.16)
i or f 02 2

+ + k o
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Appendix B

Wave Functions inside a Cylindrical

Cloak Generated by Arbitrary

Coordinate Transformations

Consider a general coordinate transformation between two cylindrical coordinate systems

(p', 0', z') and (p, q, z) that is described by

p' = f(p, , z), 0' = g(p, 1, z), z' = z (B.1)

where p', 0' and z' represent the coordinates in the original coordinate system and f(.),

g(.) can be arbitrary monotonic differentiable functions. Using Eq. (A.2) in Appendix A,

the constitutive parameters can be obtained similarly while the Jacobian matrix is J =

a(f, g, z')/a(p, ¢, z). Similar to Appendix A, we are able to introduce

ATM = Z'PTM (B.2)

ATE = ZiTE

where ()TM and (TE are scalar potentials for TE and TM cases, respectively. Substituting

Eq. (B.2) into Eq. (A.3), we obtain the partial differential equation for 4PTE and 4TM,

1 - + f + Oz 2 +k 2 =-0 (B.3)
f Of Of2 I 2 a2
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The solution for this equation is

4) = Br(kpf)eimyeikzz (B.4)

where k , = k- k and B,,(-) is the solution to Bessel equation. Using Eq. (A.4) we

can obtain the vector potentials ATE and ATM as follows:

ATM = a T MB,,(kpf)e imh ikzz

m n

ATE = aTE ,~B(kpf) imh eikzz
Sm ,n

m 7n

(B.5)

(B.6)

Thus all the components of the total fields can be obtained by substituting Eq. (B.5) and

Eq. (B.6) into Eq. (A.3) and the results are as follows:

Ep = ikz a )TM

ioco &P

ik 0k2

Ez = (W2

IOEOP

Hp=ikz TE/PoEo Op

ik
[to Eop 0T

2LO2 + f2(0 
0

9_[O af [ f2 g ITE

S[(2 + - 1 oTEOp € ao ap

[00
a

p -  
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+ f2(092]

E4 TM
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