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Constructive Duality in Integer Programming

by

Marshall L. Fisher and Jeremy F. Shapiro

1. Introduction

There are several interrelated ideas upon which this paper is based.

The conceptual starting point is the cutting plane method for IP of Gomory

which has long been called a "dual method" (e.g., Balinski [3; p. 254])

without specific mathematical justification. Recent research (Shapiro [27])

has led to a procedure for generating strong cuts using group theory and

generalized Lagrange multipliers. We show in section 2 that this procedure

is equivalent to solving a concave programming problem that is dual to a

given IP problem. The strongest cuts are those written with respect to

optimal dual variables.

With this perspective, several other structural and algorithmic ideas

come into clearer focus. Many of these ideas are derived from mathematical

programming duality theory which is applicable to any optimization problem

defined over a finite dimensional vector space: that is, to any problem

v(b) = inf f(x)

s.t. gi(x) < bi i= l,...,m (1.i)

x X C Rn,

where the functions f and gi and the set X are arbitrary. This duality

theory has been studied by Geoffrion [11], Gould [20], Lasdon [23], Rocka-

fellar [25], and others, for nonlinear programming which means problems where

f and gi are continuous (or at least lower semi-continuous) functions

Graduate School of Business, University of Chicago.
**

Sloan School of Management, M.I.T.
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defined on a closed convex set X, and usually f and gi are assumed to be

convex. One of our purposes here is to demonstrate that this duality theory

can also be used in the solution of IP problems.

It is also important, however, to recognize the differences between

duality theory for convex nonlinear programming and that for integer pro-

gramming. We need some constructs to discuss these differences. The first

is the Lagrangian function

m m
L(u) = - z u.b. + inf{f(x) + z uigi(x)} (1.2)

i=l xceX i=l

defined for any u > . It is well known and easily shown that L(u) < v(b)

for any u > O, and this naturally leads to the dual problem

w(b) = sup L(u). (1.3)
u>O

Moreover, L(u) is concave and thus (1.3) is a concave programming problem.

Clearly, w(b) < v(b) and much of the theory of convex nonlinear pro-

gramming is focused on sufficient conditions that w(b) = v(b); i.e., suffi-

cient conditions that there be no duality gap. If this is so, then any

optimal solution u* of the dual (1.3) can be used to find an optimal solu-

tion to the primal (1.1) by considering all the solutions x c X which satisfy
m m

L(u*) = - Z ub + f(x) + Z utg(x). An optimal solution x* to the
i=l 7 1 i=l 1

primal also satisfies gi(x*) < b, i = l,...,m, and z u* g(x*) = 0 (see
i=l

Geoffrion, [11; p. 9]).

In IP, duality gaps generally exist and can only be eliminated by

computational effort beyond the construction and solution of a single dual

problem. One means of filling in a duality gap in IP is the cutting plane
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method, which as we mentioned above, must use duality theory to find strong

cuts. A more general algorithmic strategy, however, is branch and bound

which uses cutting planes as only one tactic.

Another important duality construct which varies between different mathe-

matical programming problems is the Lagrangean subgradient. Subgradients

of the Lagrangean at a point u indicate directions of increase of the dual

objective function, and they are used in ascent algorithms. In differentiable

nonlinear programming, the subgradient is unique and equals the gradient of

the Lagrangian. In IP, subgradients are derived from the solution of a

group shortest route problem and in general there is more than one sub-

gradient. Although they do not explicitly mention it, Held and Karp [21],

[22] use an entirely analogous approach to the one here in constructing an

algorithm for the traveling salesman problem. The Lagrangean subgradients

for the traveling salesman dual problem are derived from the solution of

minimum spanning tree problems. Fisher [6], [7] has applied this approach

in an algorithm for resource-constrained network scheduling problems. The

Lagrangean subgradients are derived from the solution of dynamic programming

subproblems defined for each job to be scheduled.

The plan of this paper is the following. In section 2 we construct

IP dual problems and discuss their properties. Section 3 contains a develop-

ment of ascent methods for solving IP dual problems. Ascent methods for

these problems are preferred for branch and bound because they produce mono-

tonically increasing lower bounds. One of the main results of this paper

is an adaption of the primal-dual simplex algorithm for use with ascent

methods. In addition to enabling jamming to be overcome, the use of the

primal-dual algorithm gives new insights into dual methods and the use of
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Lagrangean subgradients. The use of IP dual problems in branch and bound

is discussed briefly in section 4. It is important to emphasize that the

algorithmic methods being developed here should greatly improve the group

theoretic IP code discussed in [16], [17], [18]. Section 5 contains a few

concluding remarks.

2. Construction of Dual Problems and Their Properties

The IP problem is written in initial form as

min cw

s.t. Aw > (2.1)

w > 0 and integer

where c is a (lxn) vector of integers, A is an m x n matrix of integers, 6

is an (mxl) vector of integers. We assume that the minimal objective func-

tion value in (2.1) is finite.

Let by any non-singular m x m matrix made up of m columns of (A,-I);

assume (A,-I) is partitioned as (N,B). Partition as (cN,cB) and w as

(x,y). An equivalent formulation of (2.1) is (e.g., see Shapiro [27]):

v(b) = ZB + min cx

s.t. Nx - b < 0 (2.2)

n
Z a. X - (mod q)

x non-negative integer,

where zB B16, N - BB , N B= -1, b = §-16. The vector
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q = (ql....,qr) where the elements qi, i = 1,...,r are integers, qi > 2,
r

qIqi+l, I qi = Idet B = D, each a (aj rj)" a' integer,
i=l1 rj j 'i i

0 < aij < qi - 1, and = (1'.'Sr), Bi integer, 0 < i < qi - 1. It is

neasy to see that the sums z a.x. for all possible integer values of the
j=l J 

xj can generate at most D distinct r-tuples of the formxk = (lk...Xrk)

_Xik~~ }tgr x 9 D-lXik integer, 0 < ik < - 1. Let G = { k}kO be this collection of

r-tuples with 0 = (0,...,0). The set G forms a finite abelian group under

addition modulo q. For more discussion about G and its derivation, see

Wolsey [31]. For future reference, we write out the linear programming (LP)

relaxation of (2.1) relative to the basis B.

Q(b) = ZB + min cx

s.t. Nx - b < 0 (2.3)

x>O .

We assume (b) is finite.

Before we continue our main development, there are two tangential points

to be mentioned. First, the perturbation function v(b) is somewhat differ-

ent mathematically from the usual nonlinear programming perturbation function

(e.g. Geoffrion [11; p. 6]) because of the different structure of the IP

problem in the forms (2.1) and (2.2). These differences are discussed and

briefly analyzed in Appendix A. The second point about the IP problem (2.1)

is the absence of explicit upper bounds on the variables. We have stated

the IP problem in this way for expositional convenience and the results here

can be readily generalized to exploit upper bounds.



6

Define the set

n
X = {x z a.x. (mod q), x non-negative integer}.

j= J 

We assume X is not empty; otherwise (2.1) is infeasible. For u > O, define

L(u, x) = - ub + (c+uN)x,

and (2.4)

L(u) = - ub + inf (c+uN)x = inf L(u, x).
xX XcX

Problem (2.4) is a shortest route problem in the group network which has

(a) nodes xk, k = 0,1,...,D-1; (b) arcs (k-cj, xk) with arc costs c + uaj,

j = l,...,n, k = 0,1,...,D-1 (see Gorry and Shapiro [16]). Let G(xk; u)

denote the cost of a shortest route from 0 to k; then L(u) = - ub + G(; u).

The cyclic nature of the group network implies that L(u) = -a if any

cj + uaj < O, whereas L(u) is attained if c + uN > 0. In the latter case,

the search for x optimal in (2.4) can be limited without loss of optimality

t T n t
to the finite set {x t}=l C X satisfying ii (xt+l) < D (see reference [15])

j=l ' 

in computing L(u); namely

L(u) = - ub + min (c+uN)xt. (2.5)
t=l,...,T

These solutions xt are called irreducible.

As mentioned in the introduction, L(u) is a concave function, and it

is piecewise linear and continuous on the set c + uN > O. Moreover, for

u > O, B + L(u) < v(b). Thus, the IP dual problem relative to (2.2) is to

find the best lower bound, or find



7

WB(b) = zB + max L(u) (2.6)

s.t. c + uN > 0

u > 0.

Note that (2.6) has a feasible solution because LP (2.3) has an optimal

solution. The definition (2.5)-of L(u) for u in the set c + uN > O, u > 0

allows us to immediately write the fo4lowing LP formulation of the dual

WB(b) = ZB + max w

s.t. w < ub + (c+uN)xt, t = 1,...,T (2.7)

c + uN > O

u > 0.

But (2.7) is precisely the dual of the master LP(8) on page 72 of [27]

with columns corresponding to all the xt included. The procedure in [27]

is focused on the generation of a strong Gomory cut from (2.3), and thus

that procedure is equivalent to solving the dual problem (2.6). Appendix B

contains a necessary and sufficient condition that WB(b) < +-

For u > 0 satisfying c + u N > 0 (e.g. u0 optimal in (2.6) or (2.7)),

a valid cut is

(c+u0N)x > L(u0) + ub (2.8)

The inequality (2.8) is a valid cut because it holds for all x X by the
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definition of L(u0), and X contains all feasible solutions to the given IP

problem in the form (2.2).

It is possible, moreover, to strengthen the cut (2.8). In particular,

n n
a cut z tjxj > t dominates the cut 7 t'xj > t if tj < t . This is be-

j=l 0 - jl j - 0 i 

cause any non-negative x satisfying the former cut will satisfy the latter

cut and thus the solution set admitted by the former cut is smaller than

the solution set admitted by the latter cut.

Lemma 2.1. The cut (2.8) can be strengthened to the cut

n 
gjx. > L(u) + ub, (2.9)

j=l 

where
0 0

gj G(aj; u ).

Proof: The new cut is stronger because for any a, G(aj; u )< cj + uOa.

To see that the new cut is valid, i.e., that it

does not cut off any feasible x , suppose we solve a shortest route

problem from 0 to in the group network with arc costs G(aj; u ) on the

arcs (k-ajs k). This problem will clearly yield the same value G(xk; u0)

as the cost of the shortest paths to each Xk. Thus gx. > G(; u) =
j=l gJ

L(u0) + uOb is a valid inequality for all x e X, and the lerrma is proven.

Consider now the augmented LP derived from (2.3) by adding the cut
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kl(b) = ZB + min cx

s.t. Nx < b (2.10)

n 0 0 0
l gx > L(u0) + u Ob

x >O

Lemma 2.2. The minimal objective function value in (2.10) satisfies

v(b) > l(b) > ZB + L(uO )

Proof: The dual of problem (2.10) is

dl(b) = ZB + max - vb + vm+l(L(u)+uOb)

s.t. c + vaj - vm+lg > 0

v vm+lO 

The solution v = uO, vml = l is feasible in this problem. Thus,

dl(b) > ZB + L(uO), and by duality theory of LP, l(b) > d(b) which esta-

blishes the right hand inequality. The left hand inequality follows directly

from the property of a cut that it admits all feasible integer solutions.

It is also important to compare the lower bounds provided by the IP

dual problem (2.6) for any basis B with the lower bound provided by the LP

(2.3).

Lemma 2.3. Assume wB(b) < +. The optimal value wB(b) of the IP dual

problem (2.6) satisfies
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t(b) < wB(b) < (b) + min (c+u*N)xt
t=l,... ,T

where (b) is the minimal cost of the LP (2.3) and u* is any vector of

optimal multipliers in (2.6).

Proof: Recall that we assume (b) to be finite. To prove (b) <wB(b),

note that by LP duality theory, we have

k(b) = ZB + max w

s.t. w < -ub

c + uN > 0

u > 0.

Consider any u, w which is feasible in this last problem. Then u, w is

feasible in (2.7), the LP formulation of the IP dual problem (2.6), because

c + N > 0 and xt > 0 implying < -b + (c+6N)xt . Thus the maximal value

of w in (2.7) is at least as great as the maximal value of w in the LP dual

above, and the right hand inequality is established.

To prove WB(b) < (b) + min (c+u*N)xt, we use the fact that u*
t=l,...,T

optimal in (2.6) means wB(b) = ZB + u*b + min (c+u*N)xt. The solution
t=l,...,T

u*, w* = -u*b is feasible in the LP dual above and therefore -u*b < (b) - ZB

Adding zB + min (c+u*N)xt to both sides of this inequality gives the
t=l,...,T

desired result.
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Notice that for B an optimal LP basis, we have (b) = ZB and lemma 2.3
tbecomes 0 < wB(b) - zB = u*b + min (c+u*N)xt < min (c+u*N)xt

t=l,...,T t=l,...,T

WB(b)-.(b)
Computational experience [16] has indicated that when B is optimal, v(b)- (b)

is on the average a fairly high percentage. Thus, the duality theory we

are proposing here gives niformly better lower bounds than the duality

theory based solely on LP (see Balas [2] and Nemhauser and Ullman [24]).

On the other hand, numerical examples have shown that it is definitely

possible for wB(b) = (b), particularly when B is not optimal. Lemma 2.3

says that a sufficient condition for recognizing that this has occurred after

solving (2.6) and obtaining an optimal u* is min (c+u*N)xt = O.
t=l,...,T

Another construct used in IP is the surrogate constraint (e.g. Geoffrion

[8]) and we want to demonstrate that the duality theory of this paper can be

used to generate strong surrogate constraints. Let 2 be the cost of the

best known solution to the IP problem (2.3), and let u be an arbitrary non-

negative m-vector. If the feasible solution x to (2.2) satisfies ZB + cx < 

then it must also satisfy

zB + cx + u(Nx-b) - 2 < 0 (2.11)

since u > 0 and Nx < b. The inequality (2.11) is a surrogate constraint,

and on page 441 of reference [8], Geoffrion defines a strongest surrogate

constraint as one for which the minimum of the left side over x X is a

maximum. In other words, we seek a u* such that

- u*b + (c+u*N)x = max min - ub + (c+uN)x (2.12)
u>O xX

which is simply the requirement that u* be optimal in the IP dual problem.



In [8], Geoffrion uses LP duality theory to generate a strongest surrogate

constraint for the zero-one integer programming problem. Although we do

give the details here, it can easily be shown that the duality theory here

would provide a still stronger surrogate constraint for Geoffrion's problem,

although at a higher computational cost.

The next section is concerned with primal algorithmic methods for sol-

ving the IP dual problem (2.6). Before concluding this section, however,

it is important to discuss briefly the many possible problem manipulations

of the IP problem in the form (2.2) which give.valid dual problems; i.e.

problems which provide lower bounds. These manipulations can be classified

as dualization outer linearization/relaxation by the taxonomy of Geoffrion

[9 ; p. 656].

One manipulation of (2.2) is to omit some of the inequality constraints

from Nx - b before constricting the dual. A second relaxation manipulation

is to replace the system of congruences in (2.2) by a new system

n
z {i(aij)}xj i(8i)(mod qi), i=l,...,r.

j=l 

where each Ji is an endomorphism on Zq , the cyclic group of order qi.

This relaxation as well as the next two are designed to control the size of

the group G. The third type of relaxation of (2.2) results from an alter-

native reformulation of (2.1) given in section 4 of reference 18. This re-

formulation involves a change in the data and the number of inequality con-

straints and a subsequent change in the system of congruences. The reader

is referred to reference 18 for more details.

The final relaxation manipulation results if we allow some of the
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columns of B to be activities aj not included in the set (A, -I). In this

case, we require the rows in the system Nx - b corresponding to these acti-

vities to equal zero. The dual variables on these rows are then uncon-

strained in sign.

3. Solution of Dual IP Problems

We saw in the previous section that the dual IP problem (2.6) induced

from a given IP problem (2.1) is equivalent to the linear programming prob-

lem (2.7) with many rows. One method for solving (2.6) is the generalized

programming algorithm [27] applied to the LP dual of problem (2.7). This

algorithm has two drawbacks.

The first drawback is that the multiplier vectors u produced by suc-

cessive iterations of the generalized programming algorithm do not yield

monotonically increasing lower bounds ZB + L(u) to v(b). Monotonically in-

creasing lower bounds are definitely preferred for the branch and bound

algorithm outlined in the next section. A second drawback of the generalized

programming algorithm is its poor convergence characteristics (e.g. Held and

Karp [21; p. 1146]).

Thus, our object in devising algorithm for the IP dual problem (2.6) is

to construct primal algorithms for that problem, preferably ones that pro-

vide good approximate solutions quickly. Specifically, we propose an ascent

algorithm to be followed by, or combined with, a primal-dual simplex algorithm.

Our reasons for choosing the ascent algorithm as an opening strategy for

solving (2.6) are two fold. First, it is relatively easy and efficient to

use and it may produce rapid increases in the lower bounds ZB + L(u).
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Second, a similar ascent algorithm has been used with success in the computer

code of Fisher [7] for scheduling problems and Held and Karp [22] for the

traveling salesman problem. The discussion of the ascent and primal-dual

simplex algorithms will be focused on the unique features of these algorithms

as applied to (2.6), and the usual features will not be developed in detail.

We begin with same notation. Let

UB = {ulc+uN > 0, u > 0}. (3.1)

An m-vector u UB is said to be dual feasible. An ascent algorithm generates

a sequence of points uk c UB given by the usual rule

uk+ =uk + ekd (3.2)

where the m-vector dk is a direction of (possible) increase of L at uk,

and the non-negative scalar k is the step length to be moved in the di-

rection dk. For notational simplicity, we describe one iteration of the

algorithm starting at u and proceeding to the point u = u + ea. Although

L is not differentiable everywhere on UB, directions of increase are implied

by the subgradients of L.

Definition 3.1: Let u be a point satisfying c + N > O, u > O. The vector

y is a subgradient of the Lagrangian L at u if

L(u) < L(u) + (u-u).y for all u.

The following lemma is a well known result and it is presented here

for completeness.
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Lemma 3.1: For u C UB, let x X be a solution satisfying

L(u) = -ub + (c + N)x ;

then

y = Nx - b

is a subgradient of L at u.

Proof: For any u,

L(u) < -ub + (c + uN)x,

and substituting cx = L(u) + ub - uNx, there results

L(u) < -ub + L(u) + ub - uNx + uNx.

Rearranging this last inequality gives

L(u) < L(u) + (u-u){Nx - b},

which is what we wanted to show.

Clearly, if the solution to the shortest route problem (2.4) is not

unique, then the subgradient is not unique. Computational experience has

indicated that many subgradients at a point u are possible. As we shall

see, when there are multiple subgradients, the ascent algorithm may jam be-

cause it has selected the wrong subgradient as a possible direction of in-

crease. This difficulty is overcome by the primal-dual simplex algorithm.
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Lemma 3.2: Let y be any subgradient of L at the point u c UB. The half-

space {ul(u-u)- > } in Rm contains all points u such-that L(u) > L(u).

Proof: Since y is a subgradient, for any u

L(u) < L(u) + (u -u).Fr,

and if L(u) > L(u), we have the desired result.

Thus y points into the closed half containing all optimal solutions to

(2.6). Lemma 3.2 is precisely lemma 1 on p. 9 of [22] in which Held and

Karp describe an ascent algorithm for the traveling salesman problem. Other

results from their paper are appropriate here. For example, let u be any

point such that L(u) > L(u). If the step size e in the--direction y f 0 at

u satisfies 0 < < 2(L(u) - L(u)) , then IJu - ( + )ll < Ilu - ull, where
11I1 12

II || denotes Euclidean norm. In words, a sufficiently small step size

produces a point closer to a maximum point. Reference [22] also contains

an investigation of a relaxation method for solving the traveling salesman

dual problem.

A difference between the traveling salesman dual problem in [22] and

the IP dual problem (2.6) is the presence in (2.6) of the constraints

c + uN > O, u > 0 on the dual variables. The traveling salesman dual prob-

lem is an unconstrained optimization problem while the IP dual problem here

requires methods of feasible directions.

The constraints cj + uaj > 0 of the IP dual problem are less serious

than the constraints u > 0 because of the tight and meaningful upper

bounds available for many of the variables in the large majority of IP

problems. Thus, in the ascent algorithm below, a dual solution u > 0
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violating c + uN > 0 can yield a finite lower bound ZB + L(u) of v(b) by

making the appropriate upper bound substitutions.

The ascent algorithm for the IP dual problem chooses a direction of

ascent a from u e UB by solving the LP problem

max u · r

s.t. c + uaj > 0, j J' (3.3)

u > 0.

Suppose (3.3) has an optimal solution u'. It is easy to show that

WB(b) < ZB + L(u) + u' · , and moreover that u is optimal in the IP dual

problem if u' · y = u r. On the other hand, if u'r > uy, take the direction

of ascent a = u' - i. A third possibility is that (3.1) does not have an

optimal solution; that is, there exists u', u" such that u" > 0 and u' + TU"

is feasible in (3.1) for all T > O. In this case, take a = u' + u" -

for any > 0 such that (u' + ~U")j > u ·y.

To select the step length, we first compute

c. + ua
0 = min{---- : da < O}

max -aaj

2 u.ma = min{t : di < }
ma x -a 

and then

emax = min{e ax 0max > 0max max' max
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where J' is the index set of those activities such that c + uaj is small.

The constraints c + uaj > 0, j J' are excluded from (3.3) because they

are numerous and relatively non-binding in most applications. By construc-

tion, we have {ulu = u + ea, eo > O} UB = {ulu = u + ea, 0 < < emax}.

The actual value of in the range 0 < < emax is selected by solving

max L(-u+ea). (3.4)
0<e<emax
- - max

Problem (3.4) is the problem of finding the maximum of a piecewise linear

concave function of a single variable e (see figure 4.1). This can be ac-

complished by a simple search procedure whose details we omit here. We

simply mention that each step of the search begins with a point ek+l e [Oemax]

and two piecewise linear segments L(u, xk-l) + eayk-l and L(u, xk) + eark

satisfying L(u, xk-l) + k+layk-l = L(u, xk) + k+layk = Lk+l The point

Ok+l is tested for optimality by solving the shortest route problem (2.4) and
k+l

obtaining an x~l X satisfying L(U+Ok+la) = L(u, xk l ) + k+layk . If

L(U+k+la) = Lk+l, the point k+l is optimal in (3.4). If L(u+ek+la) < Lk+l

the search procedure continues with one of the piecewise linear segments used

in computing k+l replaced by L(u, xk+l) + oeak+l. A similar search pro-

cedure is given below when we discuss the primal-dual algorithm.

Because we are working with subgradients rather than gradients, it can

happen that e = 0 and the ascent algorithm has jammed at the point u. One

way to try to eliminate the difficulty is to choose another subgradient for

the objective function in the LP (3.3) but there is no guarantee that this

will work. Appendix C gives a complete characterization of the set of sub-

gradients at u. We use this characterization in the construction of a

primal-dual simplex algorithm for solving the IP dual problem which provides
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monotonically increasing lower bounds. This algorithm is similar to one

proposed by Gomory in [13] and very similar to the algorithm for resource

constrained network scheduling problems given by Fisher in [6], [7].

Suppose we are at the point u and the subgradients t = Nxt - b for

t T'(u) C T(u) have already been generated where

T(u) = {tjL(u) = -ub + (c+uN)xt}.

Similarly, let

J(u) = {jlcj + uaj 0},

and

I(u) = {iui 0}.

The algorithm solves the LP

a*= min a

s.t. u X t + Z pa = 0 i £ I(u)

tcT'(U) t 1 jdj(u) 1 -

t Xt + a < 1
toT'() t

x > t T'(U), >0, j e J(), a > 0.

The variable a in (3.6) is an artificial variable which we try to drive to

zero. If we succeed, then as we show below, u is optimal in the IP dual

(2.6). Since u is probably not optimal, the usual case is that a* > 0 but

if this is so, the optimal solution to (3.6) provides a direction of ascent.
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The following lemma is a restatement in the context of this paper of

the sufficient condition for optimality of the primal-dual simplex algorithm.

The proof of sufficiency we give is a new one using the property of sub-

gradients and the structure of (3.6).

Lemma 3.3; If a* = 0 in (3.6), then u is optimal in the IP dual problem

(2.7).

Proof: Let x, t C T'(u), j*, j C J(u), be the optimal solution to (3.6)

yielding the value a* = 0. Then

* = t + z, ta.
tT'() t jcJ(u) J aj

is a subgradient of L at u (see Appendix C) and therefore

L(u) < L(u) + (u-u)y* for all u.

But

(u-u)y* = (u--ui)y¥ +
iI() 

because from (3.6), i* 0, i

i s I(u), we have uiYi

I (u),

< 0 for

7 (Ni ui 7t= Ui y
icI() 1 iI(u)

U = O, i I(u). Since y < 0,
all u > , or

all u > 0, or

L(u) < L(u) for all u > 0,

which establishes the desired

In order to describe the

(3.6), consider the following

result.

algorithm for the usual case when a* > 0 in

LP that is dual to (3.6)
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* = max um+l

s.t. -uyt + +l <0 t c T'(u)

-uaj < O j c J(u) (3.7)

Um+l 1

Um+l, ui unconstrained in sign, i I(u), ui > 0, i c I(u).

Let u*, u*1 = a* be an optimal solution to-(3.7). We have

u*Yt > O0 for t T'(u) (3.8)

and

u*aj > 0 for j J(u). (3.9)

We choose as our direction of ascent the half line u(e) = u + eu* for

> 0. Notice that condition (3.9) implies that for j J(u), cj + u(e)aj

eu*a > 0 for all e > 0. Similarly u > 0 for i I(u) implies ui(e) > 0

for e > O. Thus, the range of feasible e in the function u(e) is determined

by the min(el,e 2) = emax > 0 where

c.+ua.
01 =min{ J : j J(u) and u*a < 0} > 0-u*a.

u.
62 =min{u- : i I(u) and u* < 0} > 0.2 u1

The step length in the direction u(e), e > 0, is selected by discovering

the closest point of change of slope of L to the point u. Let B0 be the

subgradient satisfying
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u*B = min{u*yt :t T'(u)}

and note that u*B0 > * > 0. The amount we increase e is determined by the

constraints

w < -u(e)b + (c + u(e)N)xt, t T'(u)

of the IP dual (2.7) which we have been ignoring up to this point.

In particular, we search the line segment [0, emax] in an iterative

manner generating points closer and closer to u at which the slope of

L(u + eu*) changes. Let e1 = emax and at iteration k compute L(u + eku*)

by solving the shortest route problem (2.5). Let xk be an optimal solution

and = Nxk - b the corresponding subgradient of L. We have

L(u + ku*) = - (u + eku*)b + (c + (+ku*)N)xk

:= b +(c+uN)xk+ ku*(N - b)

- L(u, xk) + kU*k .

If L(u + ku*) = L(u) + ku* O, then we terminate the search procedure with

the point e* = ek. If

L(u + ku*) < L(u) + ku* 0, (3.10)

then compute

L L(u, xk ) - L(u)
k+l : * *

Note that L(u, xk) > L(u) and u*a0 > u*Bk because of (3.10). If ek+1 0,

then set e* = 0 and the search procedure is terminated. The procedure is

illustrated in figure 3.1.
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Since the number of piecewise linear segments of L in the interval

[0, emax] is finite, the search procedure terminates after a finite number

of iterations.

Thus, there are two modes of termination of the search procedure of

the line segment [0, emax ]. The first is when e* = 0 in which case we have

found a new solution xk to the shortest route problem (2.5) at the point u.

Since when this occurs, L(u + kU*, xk) < L(u) + ekU*O, we have u*Bk < u*SO,

or the subgradient k of L at is not one of the ones included in y ,

t T'(u). Moreover , u*sk - u* < 0 so that when a column corresponding

to k is added to problem (3.6) it can be optimized further.

On the other hand, suppose the search procedure terminates with e* > 0.

Then we create a new primal LP problem (3.6) to try to prove that the new

dual vector u = u + *u* is optimal in the IP dual problem. In constructing

this problem, it is important to note that all of the t and pj columns that

were basic remain valid columns for problem (3.6) constructed at the point

u + o*u*. To see this, consider a t column that is basic in the optimal

solution to (3.6) at u. We have u*yt = and therefore L(u + o*u*) =m+1
t TL(u) + o*u*yt; i.e. y T( + *u*). Similarly, if a j column is basic

in the optimal solution to (3.6) at u, then u*a = 0 which implies

c + (u + ou*aj) = ou*aj 0, and j J(u + eu*aj). Thus, the initial

solution to (3.6) at u + e*u* is found by retaining all the optimal basic

columns from (3.6) at u, add a xk column corresponding to Bk and resolve it.

Note that the new column corresponding to Sk again prices out negatively

relative to u*, u*1 ; that s, u*k < u* and the minimal value of a can

be reduced in (3.6) at u u + o*u* from what it was at u = u. Convergence

of the primal-dual algorithm is thereby assured by the usual simplex criterion

(see Simonnard [29; pp. 128-134]).
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We conclude this section by returning to the original IP problem (2.1)

(or equivalently, (2.2) and considering the relation of an optimal solution

to the IP dual problem to it. In particular, suppose a* = 0 in problem

(3.6) and therefore u is optimal in the IP dual problem. Let x* =

z x*xt + "*e. be the solution derived from the optimal weights
tT'() t jcJ(u) J j

in (3.6). Then it is not difficult to show that x* is optimal in (2.2) if

and only if x* e X. If x* X, we must proceed on the assumption that

v(b) > w(b) and continue the effort to find an optimal solution to (2.1) by

other means. For example, we could choose to solve the augmented LP (2.10)

where the added cut is written with respect to . The LP solution to this

problem provides a new starting point for all of our dual analysis. It is

important to mention, however, that the optimal solution to problem (3.6)

for u optimal in the IP dual problem provides most of the same structural

information for implementing a new dual analysis as an optimal solution to

(2.10). In other words, if the solution x* derived from (3.6) is not in X,

then we would like to be able to deduce new conditions from the optimal solu-

tion to (3.6) that would render u non-optimal, although still dual feasible.

The primal-dual or ascent algorithm would then proceed as before searching

out still higher monotonically increasing lower bounds. Unfortunately, it

has not been possible to date to construct such a procedure.
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4. Use of Dual IP Problem in Branch and Bound

In this section, we discuss briefly how the dual IP methods developed

in this paper can be used in conjunction with branch and bound searches.

Specifically, we will illustrate the relevant ideas by showing how the

branch and bound algorithm of [16] can be improved.

The branch and bound algorithm of [16] implicitly considers all non-

negative integer x in (2.3). At an intermediate point of computation, the

minimal cost solution found thus far is called the incumbent and denoted by

x with incumbent cost i = z + cx. The algorithm explicitly generates IP

subproblems of the following form from explicitly enumerated non-negative

integer vectors x

v(b; ) = ZB + cx + min c.x.
j=l JJ

j(X)
s.t. 7 ajxj < b - Nx (4.1)

j=l 

j(x)
c a.x. $(x)

j=l 

x. non-negative integer, j=l,...,j(x)

where j(x) = min {jlxj > 0}, s(x) = - a.xj., and a is the jth
3 itxj=j(R) J

column of N. The summations in (4.1) are restricted to the range 1 to j(x)

in order that the search be non-redundant.

If we can find an optimal solution to (4.1), then we have implicitly

tested all non-negative integer x > x, x = xj, j=j(x)+l,...,n, and they

do not have to be explicitly enumerated. The same conclusion is true if

we can ascertain that v(b; x) > z without actually discovering the precise
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value of v(b; ). If either of these two cases obtain, then we say that x

has been fathomed. If x is not fathomed, then we abandon (4.1) and create

new subproblems of the same form as (4.1) from the solutions x + ej,

We attempt to fathom (4.1) by solution of the following IP dual problem

using the methods of section 3

w(b; x) = ZB + cx + max w

s.t. w < -u(b-Nx) + (c+uN)xt, t 

c + uaj > 0, jl,...,j(x)J 3

T
(4.2)

u > 0,

where T is the index set of ineducible xt E X(s(x)) such that x = 0,

j = j(x)+l,...,n. The use of (4.2) in analyzing a given IP subproblem (4.1)

is illustrated in figure 4.1 which we will now discuss step by step. The

number of algorithmic options available to us is enormous, but space does

not permit an extensive discussion of them.

STEP 1: An initial vector u > 0 satisfying cj + uaj > 0, j=l,...,j(x), is

required. Such a vector should be available from previous computation.

STEP 2: Compute

G(S(x); ) = min z
j=l (cj+uaj )x

s.t. Z aj.x. - (x)(mod q)
j=l 

xj non-negative integer, j=l,...,j(x).

(4.3)

A good feasible solution to (4.3) is probably available from previous compu-

tation.
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STEP 3: The enumerated solution is fathomed by bound if

ZB + cx - u(b-N() + G((x); u) > z (4.4)

because the left hand side of (4.4) is a lower bound on v(b; ).

STEPS 4 and 5: If x is not fathomed by found, then we may want to see if

the optimal solution xt to (4.3) satisfies Nxt < b - N. The determination

of xt requires extra computation (back tracking) which may not be deemed

worth the investment.

STEP 6: Notice that the implication of a no branch from step 3 is that

ZB + c(x+xt) + u(N(X+xt) - b) < z . (4.5)

The third term on the left is non-positive since u > 0 and x + xt is

feasible. Thus it may or may not be true that ZB + c(x+x t) < z, but if it

is, then x is replaced by x + xt.

STEP 7: If x + xt is feasible and the term u(N(x+x t) - b) = O, then we are

in the fortunate case of having discovered that xt is optimal in (4.1) and u

optimal in (4.2) and v(b; x) = w(b; x). In other words, there is no duality

gap for (4.1) and moreover, we have found an optimal solution xt to (4.1).

In this case, is fathomed and we exit. The chances for a yes branch from

step 7 are slight but the test becomes important if one is willing to relax

the test to: Is u(N(x+xt) - b) > - for suitable £ > O. This type of

heuristic is employed by some production mixed integer programming codes.

STEPS 8 and 9: If u is optimal, then (4.3) has failed to bring about a

fathoming of x and x is continued. An alternative to abandoning (4.1) and

continuing x is to add cuts to (4.1).

STEPS 10, 11, 12: These steps are concerned with the ascent and primal-dual

methods of section 3.
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5. Conclusions

In this paper we have developed a special application of mathematical

programming duality theory to IP. We have been able to derive some new re-

sults and new algorithm methods; specifically, we have constructed in sec-

tion 3 the ascent and primal-dual simplex algorithms for the IP dual prob-

lem (2.6). An area of future research is the extension of these dual me-

thods and algorithms to other combinatorial optimization problems. We also

mention that the primal-dual algorithm developed here is directly applicable

to the traveling salesman dual problem of [21], [22].

As we mentioned at the end of section 3, another area of future research

is a more direct interpretation and use of-the cutting plane method of IP

for filling in duality gaps. Conversely, the methods outlined here are de-

signed primarily to make IP problems easier to solve, and thus there is some

justification in waiting for computational experience with the IP duality

theory before developing extensions. Another related research area to

be investigated is the application of Gould's multiplier function theory to

try to fill in the IP duality gap. It is important to mention in this regard

that the use of functions rather than scalars in the shortest route problem

(2.4) can make that problem much more difficult to solve.

Finally, it appears that the constructive IP duality theory can be

combined with the constructive duality theory inherent in the papers of

Falk [4], Falk and Soland [5], and Geoffrion [12].
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Appendix A

IP Primal and Dual Perturbation Functions

Our concern here is a brief study of the primal and dual perturbation

functions of the right hand side in (2.1). These perturbations functions

are somewhat different than the usual perturbation functions used in the

study of nonlinear programming problems (e.g., see Geoffrion [11; p. 6]).

Since the duality theory here is based on the presence of integer data

in (2.1), the perturbation functions are defined only for integer vectors

B. Second, the algebraic nature of the transformation of (2.1) into the

equivalent form (2.2) from which the duals are constructed necessitates

the study of a family of perturbation functions rather than a single one

for the primal and one for the dual.

We must take into account some algebraic structure of the group

G = {xkk}-lk induced by the basis (see section 2) in order to define con-

sistent perturbation functions. Our discussion of this structure will be

brief and the reader is referred to Shapiro [28], Wolsey [31] for more de-

tails. Let Zm denote the set of integer points in Rm, and let denote the

mapping of Zm onto G. In particular, is constructed from a diagonaliza-

tion procedure applied to B which yields (ei ) = i G, i=l,...,m, where

ei is the ith unit vector in Rm. The group identity of an arbitrary vector
m

a £ Zm is computed by 7 a.ii. The mapping naturally partitions Zm into
i=l

equivalence classes A by the equivalence relation 61, 62 e A if and only if

m 1 m 2
£ 6 - z - x It is easy to show that this equivalence relation

i=l 1 i=l 

is equivalent to 61, 62 A if and only if 61 = 62 + Bv, v integer. For

notational convenience, we let b A denote Bb C A.
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With this background, we can define perturbation functions for the IP

problem (2.1) as a function of its right hand side b. For arbitrary x G,

define

n
X(A) = {xI z a.x. x (mod q), x non-negative integer}

j=1 JJ

and let {xt }tT denote the finite set of irreducible points of X(x). For

each class A, we define the perturbation function v for elements b c as

vx(b) = cBb + min cx

s.t. Nx < b (A.1)

x X(X).

Recall that EB is the vector of cost coefficients of the basic variables in

(2.1). As before, x X(x) ensures that the basic variables y = b - Nx are

integer, and Nx < b ensures that they are non-negative. Problem (A.1) clearly

makes sense only if the requirement x X(x) is coupled with the requirement

b A.

The dual to problem (A.1) is

wA(b) = cBb + max w

s.t. w < -ub + (c+uN)xt, t T (A.2)

c + uN > O

u >0

The function v(b) has some asymptotic properties that are studied in

[28]. More generally, however, its behavior is erractic and hard to de-

scribe. On the other hand, the dual perturbation function w(b) has a more
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regular behavior. First of all, since w (b) is the optimal value of a

linear program, it is easy to show that it is a convex function of b. The

structure of the shortest route problem (2.5) gives us some structure indi-

cating how the D perturbation functions wX are related.

Lemma A.l: Suppose x / 0 and w (b) < +. Then

w (b) < c + wX (b-aj), j=l,...,n

where cj is the cost coefficient of activity aj in (2.1).

Proof: Let u* be optimal in (A.2); then

w (b) = cBb + G(X; u*),

wnere

G(x; u*) = min (c+u*N)x.
XEX(Ax)

Now, (2.5) is a shortest route problem and therefore (see [16])

G(x; u*) = min{cj + G(X-aj; u*); j=l,...,n}.

This gives us for any j

wX(b) < Bb + cj + G(x-aj; u*). (A.3)

The vector u* may not be optimal in (A.2) with b replaced by b - aj, and

therefore,

wa (b-aj) > EB(b-aj) + G(-j; u*). (A.4)

Combining (A.3) and (A.4) yields

wX(b) < c + a + w (b-aj),

and the desired result is obtained by noting that the LP reduced cost

Cj = Cj - cBaj .
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Appendix B

There is an additional geometric insight about IP dual problems that

merits discussion and analysis. The dual of the dual IP problem (2.7) can

be viewed as the linear programming problem

ZB + min cx

s.t. x [X] n {xINx < bI (B .1)

where [X]

[27] in a

denotes the convex hull of X. Problem (B.1) is problem (8) of

different form.

Lemma A.l. A necessary and sufficient condition that the dual objective

function w(b) < + is that

[X] n {xNx < b} f .

Proof: Suppose [X] n {xjNx < b} = ; we will establish necessity by showing

that wB(b) = +x. Consider the following LP problem for trying to

find an x c [X] n {xJNx < b}. The problem is

min a

T n

s.t. Xt (-Nxt ) + z pj(-aj) > -b
t=l t j=l 

T

t=l

(B .2)

=1
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xt > , t = 1,...,T

pj > O, j = ,...,n

a > 0.

Implicit in this formulation is the fact that the set {x}t=l contains all

the extreme points of [X] and ej, j = l,...,n, are the extreme rays of [X]

(see reference [15]). Let a* denote an optimal solution to problem (B.2),

and let u* denote an m-vector of optimal dual variables, with u*1 the

optimal dual variable on the convexity row. By LP duality theory, we:have

a* = -u*b + u* > 0,m+l

-u*Nxt + u+ < 0, t = 1,...,T,m+1,

and

u*N > 0,

u*> 0.

Combining (B.3) and (B.4) gives

(B.3)

(B.4)

(B.5)

(B.6)

u*(Nxt - b) > O, t = 1,...,T.

Let be any point satisfying c + N > O, > 0 (in section 2, we have

assumed such a point exists). For any e > 0, c + (+eu*)N > 0, + eu* > 0

by (B.5) and (B.6). Thus, L(u+ou*) is finite for all e > O. In particular,
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L(u+ou*) = min - (+eu*)b + (c+(u+ou*)N)xt

t=l,...,T

= min - b + (c+iN)xt + u*(Nxt-b)
t=l,...,T

> L() + e · min u*(Nxt-b)
t=l,... ,T

where the inequality follows from the fact that the minimum of a sum is

greater than or equal to the sum of the minimums. Since min u*(Nxt-b) > 0,
t=l,...,T

the term on the right goes to + as goes to implying wB(b) = +.

In order to prove sufficiency, it is only necessary to recognize that
T n

(B.2) with the objective function ZB + min z xt(cxt) + z pj(c ) is the
t=l j=l 

dual to the IP dual problem (2.7) with maximal value B(O). Thus, if

[X] n {xJNx < b} f , phase I will product a feasible solution and this

solution provides a finite upper bound on wB(b). This completes the proof.

As a final point, we mention that it is possible for {xJNx < b} C[X]

in which case the dual IP problem is nothing but the LP relaxation (2.3) of

the given IP (2.1). This is the case which may be detected by the result

of lemma 2.3.
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Appendix C

Characterization of Lagrangian Subgradients

A characterization of Lagrangian subgradients for a class of dual prob-

lems similar to (2.6) is given by Grinold in [19]. This analysis would be

applicable here except for the fact that the set of solutions to the Lagrangian

problem (2.4) can be unbounded. Our development will follow [19] with modi-

fications for overcoming this difficulty.

We begin with same notation. It is assumed throughout this appendix

that we are considering u which satisfies c + uN > O, u > O. Let

aL(u) = {¥yL(u) < L(u) + (u-u)y for all u} (C.1)

denote the set of Lagrangian subgradients at the point u. Let

T(u) = {tlL(u) = -ub + (c+uN)xt} (C.2)

denote a subset of T, the index set of the irreducible points, and for

t T(u), define

ty = Nxt - b. (C.3)

Finally, let

J(u) = {ijcj + uaj = O}

denote the subset of {l,...,n} corresponding to those activities with zero

reduced cost at u. The characterization of L(u) we seek is given by the

following theorem.

Theorem C.l: The set of subgradients aL(u) = P(u) where
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P(u) = {PIP = Z t + Ia, X 1,
... tEtT(u) jcJ(u) toT(u)

Xt > , t T(u); pj > O, j s J(u)).

Proof: To show P(u) aL(u), we begin with the inequality for any t T(u)

L(u) < L(u) + (u-u)yt for all u (C.4)

established by lemma 3.1. We show that

L(u) < L(u) + (u-u)(yt + z pjaj) for all u (C.5)

where the weights pj are arbitrary non-negative numbers. Consider the

inner product

(u-u) 7 pj a j. = j.ua. - p =ua. : 7- j(c.+uaj)
jJ(u) jcJ() J jcJ(u) jcJ() J

where the last expression follows from the definition of J(u). Thus, for

u satisfying c + uaj> O, j s J( u) we have (u-u) _ pjaj > 0 and (C.5)
- jEJ(u) -

follows from (C.4). For u not satisfying c + ua > 0, j J(u), we have

L(u) = - and (C.5) holds trivially. The result P(u) C aL(u) follows by

weighting each inequality (C.5) by xt > 0, T( t = 1, and summing them.

In order to establish L(u) C P(u), we need some intermediate results.

These results give a characterization of the directional derivative of L

at the point u in the direction v, denoted by vL(u; v). When the limit

exists, this quantity is given by

vL(u; v) = v)- L(u) (C.6)
a4a
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The limit does not exist if va. < 0 for any j J(u) because then

cj + (+av)aj < 0 for any a > 0 which implies L(u+av) = -I for any a > O.

Lemma C.1: For any m-vector v satisfying vaj > 0, j J(u), we have

t
inf vp= min vy = min vp.
psP(u) tcT(u) pEP(u)

Proof: The proof is straightforward and is omitted.

Lemma C.2: For directions v satisfying vaj > 0, E J(u),

t
vL(u; v) = min vy

teT(u)

Proof: For any t £ T(u) and a > 0,

L(u+av) < - (+av)b + (c+(u+av)N)xt

which implies

L(u+av) - L(u) < vt.
a

Thus

lim sup L(u+av) - L(u) < min vyt (C.7)
ct4O a toT(u)

To prove the reverse inequality, consider a sequence {as} converging to

zero from above. Note that cj + (u+acsv)a > 0, j=l,...,n, for as sufficiently

small. For each as sufficiently small, there is an xt for some t {1,...,T},

say x , satisfying

L(u+asv) = - (u+asv)b + (c+(u+a v)N)xS . (C.8)
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Since the set of such points is finite, there is a distinguished one, say

xs , which occurs infinitely often. Without loss of generality, we can

assume as converging to zero from above such that x is optimal in (C.8).

By the continuity of L on the set satisfying c + uN > 0, u > O, we have

L(u) = - ub + (c+uN)x *,

and s* T(u).

Thus,

L(u+asV) - L(u) S* t
lim = vy > min vy . (C.9)
asO++ as - teT(u)

Comparing (C.8) and (C.9), we have

vL(u; v) = min vyt,
teT(u)

which is what we wanted to show.

We complete the proof of Theorem C.1 by proving

Lemma C.3: The set L(u)C P(u).

Proof: Suppose e aL(u) but ~ j P(u); we will show a contradiction.

Since P(u) is a closed convex set, there exists a hyperplane v* which

strictly separates from P(u). Hence for some c > 0,

v*Y + c < v*p for all p e P(u).

There are two possibilities for v* and we will show a contradiction

in each case. First, suppose v*aj < 0 for some j J(u). By hypothesis,

for any t T(u), we have v* < v*yt. But yt + pj a P(u) for any
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pj.> 0 and it is clear that v*y + pj v*aj < v*y for pj sufficiently

large. This gives us a contradiction in the first case.

Suppose on the other hand that v*a. > 0, j e J(u). Then

vL(u; v*) < v* < min v*p = vL(u; v*)
peP(u)

where the left inequality follows the fact that is a subgradient, the

strict inequality is the hypothesis on v*, and the right equality follows

from lemmas C.1 and C.2.
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