# **Loading + Failure**



Wind load hitting Skyscraper

# **Lateral Load Systems**

1. Frame  $\rightarrow$  rigid joints

2. Bracing  $\rightarrow$  diagonal elements

3. Shear wall  $\rightarrow$  diaphragm







# **Good Practice in Wind Design**

• Provide greater resistance along shorter dimension

#### Careful attention to detail

- Continuity of structure
- Provide ties for each element
- Greater weight can provide greater wind resistance
- Protect inhabitants from flying projectiles



 Wind loading of 30 pounds per square foot applied on each side



(25 ft)(12 ft)(30 psf) = 9,000 lbs Applied at top of wall, 4,500 lbs/frame (4.5 k)

(15 ft)(12 ft)(30 psf) = 5,400 lbs Applied at top of wall, 2,700 lbs/frame (2.7 k)

![](_page_5_Figure_1.jpeg)

If the cable carries 100% of wind load, then the horizontal component of force in the cable must be 4.5 k

 $F_v/(4.5 \text{ k}) = (12 \text{ ft})/(15 \text{ ft})$ 

 $F_v = 3.6 k$ 

![](_page_6_Figure_1.jpeg)

#### **Internal force in the cable is found from Pythagorean Theorem**

$$F_{\text{cable}} = \sqrt{(4.5 \text{ k})^2 + (3.6 \text{ k})^2} = 5.8 \text{ k}$$

### **Required Area of Steel Cable**

![](_page_7_Figure_1.jpeg)

Maximum allowable stress in cable is 15 ksi (given)

**Stress = Force/Area** 

 $A_{reg'd} = Force/Stress = 5.8 \text{ k/15 ksi} = 0.38 \text{ in}^2$ 

Cable diameter, d = 0.7 inches (A= $\pi(0.7)^2/4 = 0.38 \text{ in}^2$ )

Specify  $\frac{3}{4}$ " steel cable (A = 0.44 in<sup>2</sup>)

![](_page_8_Figure_1.jpeg)

#### What about bracing in other direction?

![](_page_9_Figure_1.jpeg)

Assume bracing carries 100% of wind load, then the horizontal component of force in the cable must be 2.7 k

 $F_v/(2.7 \text{ k}) = (12 \text{ ft})/(12.5 \text{ ft})$ 

$$F_v = 2.6 k$$

![](_page_10_Figure_1.jpeg)

#### **Internal force in the cable is found from Pythagorean Theorem**

$$F_{cable} = \sqrt{(2.7 \text{ k})^2 + (2.6 \text{ k})^2} = 3.7 \text{ k}$$

### **Required Area of Steel Cable**

![](_page_11_Figure_1.jpeg)

Maximum allowable stress in cable is 15 ksi (given)

**Stress = Force/Area** 

 $A_{reg'd} = Force/Stress = 3.7 \text{ k/15 ksi} = 0.25 \text{ in}^2$ 

Cable diameter, d = 0.56 inches  $(A = \pi (0.56)^2/4 = 0.25 \text{ in}^2)$ 

Specify 5/8" steel cable ( $A = 0.31 \text{ in}^2$ )

![](_page_12_Figure_1.jpeg)

### Design of wind bracing for cables

### **Compression Element as Wind Bracing**

![](_page_13_Figure_1.jpeg)

Now one element must carry 5.8 k in both tension and compression

For tension, must have an area of 0.38 in<sup>2</sup> (3/4 in diameter bar)

So cross-sectional area must be greater than 0.38 in<sup>2</sup>

### **Compression Element as Wind Bracing**

![](_page_14_Figure_1.jpeg)

**Compression element requires about 6 times the material** (to resist buckling)

# **Design Considerations**

• Tension braces use less material than compression braces for lateral loads

• Compression members must resist buckling which requires extra material

• Must consider buckling about either axis, and should brace the weak axis

# **Design Considerations**

- Want to have ductility in our structures so that sudden collapse does not occur
- Failure by buckling may be sudden and unexpected → not a ductile failure
- Statically determinate structures are easier to design because you can know the internal forces exactly

# **Balsa Dancing**

![](_page_17_Picture_1.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_20_Picture_0.jpeg)

#### 

![](_page_22_Picture_0.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_26_Picture_0.jpeg)

#### 

![](_page_28_Picture_0.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_46_Picture_0.jpeg)

![](_page_47_Figure_0.jpeg)

### Load-Displacement Curve

![](_page_48_Figure_1.jpeg)

# **Strength to Weight Ratio**

![](_page_49_Figure_1.jpeg)

# Stiffness (slope of load-displ curve)

![](_page_50_Figure_1.jpeg)

# **Lessons: Concept**

- Systems with many unknowns are difficult to predict
- Structures which are simple and clear in their load paths are easier to design

![](_page_51_Picture_3.jpeg)

# **Lessons: Construction**

- Details are critical
- Repetition helps
- Small differences add up to big differences
- 3D joints are not easy!

![](_page_52_Picture_5.jpeg)

![](_page_52_Picture_6.jpeg)

# **Lessons: Buckling**

- Failure occurred significantly below calculated values:
  - Sensitive to imperfections
  - Support conditions
  - Insufficient bracing
  - Lower load in postbuckled state (not a ductile failure)
  - Effective buckling length was typically much *longer* than assumed

![](_page_53_Picture_7.jpeg)