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A. WORK COMPLETED

1. NONLINEAR LEAST-SQUARE FILTERING AND FREQUENCY MODULATION

The present study has been completed by A. D. Hause. In September 1960, he sub-

mitted the results to the Department of Electrical Engineering, M. I. T., as a thesis in

partial fulfillment of the requirements for the degree of Doctor of Science. The study

will also be published as Technical Report 371.

Y. W. Lee

2. DISCRETE REPRESENTATION OF RANDOM SIGNALS

This study was completed and presented by K. L. Jordan, Jr. as a thesis in partial

fulfillment of the requirements for the degree of Doctor of Science, Department of Elec-

trical Engineering, M. I. T., September 1960. The study will also be published as

Technical Report 378.

Y. W. Lee

3. NONLINEAR OPERATORS FOR SYSTEM ANALYSIS

This study has been completed by G. D. Zames. It was submitted as a thesis in

partial fulfillment of the requirements for the degree of Doctor of Science, Department

of Electrical Engineering, M. I. T., September 1960, and will also be published as

iechnical Report 370.

Y. W. Lee

B. A COMPARISON OF THE LAGUERRE SET WITH AN OPTIMUM SET FOR

THE EXPANSION OF THE PAST OF A CERTAIN RANDOM PROCESS

As has been stated previously (1, 2), the optimum expansion of the past of a random

process x(t) with respect to a weighted mean-square error involves the solution of the

integral equation

0
G(s) R(s, t) G(t) n(t) dt = knn(S) -00 < s 0 (1)
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where G(t) is the weighting function over the past of the random process x(t),

and R(s,t) is the correlation function. We also note that the set {4n(t)} is the

set that minimizes the mean square error of a finite-term expansion of the

process

G(t) x(t) t < 0

We have developed a computer program for the solution of equations of the form

of Eq. 1 on the IBM 704 computer at the Computation Center, M. I. T. This program

was used on a particular example, and the resulting set of functions was used to

make finite-term expansions of a sample function of the process obtained in the

laboratory.

For our example we chose a stationary process with the correlation function

R(T) = exp[-ITi] cos 3T

and a weighting function G(t) = exp[t/4]. The correlation function and power density

spectrum of the process are shown in Figs. XI-1 and XI-2. The process was

obtained in the laboratory by passing white noise through a linear filter with the

proper transfer function.

The integral equation

o exp[- s-t- s-t ] cos 3(s-t) (t) dt = 0Xn(s) 0 < s < oo (2)

in which we have reversed the sign of the argument for convenience, was solved

by means of the program. The first 10 solutions are shown in Fig. XI-3.

The approximations of a sample function of the process over a period of time

of 7. 5 sec, made with the use of the solutions or eigenfunctions of the integral

equation and Laguerre functions for n = 1, ..... , 10, 15, and 20 terms, are shown

in Fig. XI-4. It is seen that the eigenfunctions do much better, especially in

approximating the higher frequency portions, than the Laguerre functions. This

is because the Laguerre functions have Fourier transforms of the form

1 ( 12
n! 1 n = 0, 1, 2,...

so that most of their energy is near the origin. It is seen from Fig. XI-2,
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however, that most of the energy in the random process is not near the origin

so that the performance of the Laguerre functions is not expected to be near

optimum.

K. L. Jordan, Jr.
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C. NOISE ANALYSIS IN MAGNETIC TAPE RECORDING

In order to examine the possibility of increasing the dynamic range in magnetic tape

recording an analysis of the noise was made on an Ampex Model 351 recorder. Auto-

correlation analysis was used to conveniently distinguish the various components of the

recorder output noise. By analyzing the recorder output with the tape not running and

with it running under different erasure conditions, the contribution to the total output

noise from the tape noise, the 60-cycle noise, the remnant signal after erasure by bulk

and machine-head methods, and the noise in the electronic amplifiers was determined.

The results of this analysis can be found in the writer's S. M. thesis, "Noise Analysis

in Magnetic Tape Recording," Department of Electrical Engineering, M. I. T., June 1960.

This analysis has shown that, consistent with good engineering design, the noise

power at the machine output caused by the recording and reproducing amplifiers is

nearly equal (within 2 db) to the noise power resulting from the tape itself. Thus, in

order to extend the recorder's dynamic range, it is necessary to improve the amplifiers

and also to increase the dynamic range of the signal on the tape. The former can be

achieved by better circuit design and construction. Use of nonlinear pre-emphasis to

achieve the latter will be investigated by other members of the group.

P. Piqu6

D. AN ITERATIVE PROCEDURE FOR SYSTEM OPTIMIZATION

1. Introduction

We are interested in the following general problem. We are given a system, with

k variable parameters x l , x 2 , ... x k , which operates on an input v(t) and produces an

output q(t). Corresponding to the input there is a desired output d(t), and we wish to

minimize the performance criterion
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M(x) = E{W[d(t)-q(t)]lx}

where W(e) is some non-negative function of the error, d - q.

One approach to the problem would be to use an iterative method; that is, we start

with an initial parameter setting and attempt to make a sequence of adjustments which

ultimately results in the optimum parameter setting. Such a procedure is useless, how-

ever, unless it can be shown that the iterative method used converges in some meaning-

ful sense. Here stochastic approximation methods are used to show convergence. These

methods are essentially gradient methods; that is, at each step we attempt to measure

the direction in which M(x) decreases fastest and then change the parameter setting some

amount a in that direction. Such methods are useful only in situations in which M(x) has
n

a unique minimum. This will be the principal restriction on the classes of systems and

weighting functions of the error to which the method is applicable.

Here we consider, in particular, the design of nonlinear (or linear) filters and

predictors. Throughout we denote the k-tuple of parameters x 1 , x 2, ... xk by a

k-dimensional vector x. The usual inner product,

k

xiY i
i= 1

is denoted [x, y], and the k-dimensional Euclidean norm, 1x l. A unit setting of the

parameter x i and zero setting of the other k - 1 parameters will be represented by the

-1unit vector e , i = 1, 2, .. . k.

The discussion will be carried out in terms of sampled or discrete time parameter

signals and systems. A remark at the end of this report will indicate the extension of

the analysis to the continuous case.

2. Physical Design Procedure

We consider the design of filters and predictors of the form shown in Fig. XI-5. The

form is general in that any compact operator can be approximated arbitrarily closely by

the given form if a sufficiently large number of terms is used (1, 2). It is assumed that

v(m) and d(m) are the outputs of stationary ergodic sources.

The iterative adjustment is made as follows: Suppose we are at the n t h iteration and

the parameters are at the setting x n. Let Y (m) = W[dn(m)-qn (m)]. We then make the
1 2 2k

2k measurements, Y , Y , ... Y , where
n n n

Y is an observation with parameter setting x = x - c e
n -n n-i

Y is an observation with parameter setting x = x - c en -n n-i

k-is an observation with parameter setting x = x + c en - -n n-k

Yk is an observation with parameter setting x = x - c e kn -n n-k
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We then form the vector

S[(-Y2) ( ..... Y -Y (1)
-n n n n n

and determine the next parameter setting in the iterative procedure by

a
x 1= xn - Y (2)-n+1 -n c -nn

where {an} and {Cn} are sequences of positive numbers whose properties will be described

later. This completes the n t h iteration of the procedure.

S1 (m) Si)fl (S, ,S2,
• •

Sj )

Sa (m) f (S,, S *, * * • Sj )

" NO-MEMORY f(S 2 S X2

V (m) NONLINEAR e(m)

OPERATOR d(m
)

Sj (m) fk(SI,S2, * S i )

Fig. XI-5. Form of filter to be designed.

If the design is being carried out on a computer, each of the 2k measurements for the
thn iteration may be carried out by using the data v(m), v(m-1) ... , where m is the time

at which the nt h iteration is initiated. If the design is being carried out on an operational

system or analog thereof, the measurements must then be made by using v(m),
1 2k iv(m-1), ... for Y n.... and v(m+2k), v(m+2k-1), ... for Y The observation Y need

not be made with just one sample of the output data but can be taken with the parameters

fixed over several samples, and the average used for Yi (i= , 2, . . 2k). Our theory willn
include all such variations.

We must place a restriction on the time interval between successive iterations, how-

ever. Thus, if for the n t h iteration the data v(m), v(m-1), ... are used and the data-

v(m+s), v(m+s-1), ... are used for the n + It h iteration, convergence of the iterative

procedure is guaranteed only for s sufficiently large. We also assume that at the start

of the iterative procedure the linear memory units h 1 , h 2 , ... hj have been operating on

the data long enough to come to equilibrium.

We shall now state some useful mathematical results and then show for what restric-

tions on the physical situation the mathematical results are applicable.
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3. A Stochastic Approximation Theorem

We now state extensions of the work of Dupac (3) to the multidimensional case in

which independence between samples is no longer assumed. At the outset, the proofs

follow the lines of Dupa 's proofs and, after a point, follow Dupac's almost exactly.

Consider the multidimensional regression function

M(x) = Y dH(Yx)

We assume that M(x) has a unique minimum at x = 0. Let Yx +c e denote an observa-
-n n-i

tion of Y with x = x + c e. and let
- -n n-i

M (x ) = [... M(x +c e.)-M(x -c ei) .]
-c -n c -n n-i -n n-i

n n

We now define our iterative procedure by the following recursion relation:

ax =x + Y
X-n+1 -n c -n

n

In order to make some statements concerning the sequence {xn} thus generated, we make

the following assumptions:

(i) E Yn11 2 Xn, xl< 1 E{YnIXn, X11 2 + S S < 00

(ii) (a) K x-0 2 < [(grad M)(x), -(x-E)]

(b) 11(grad M)(x) 1 Kl x-, J K 1 >K > 0

(iii) (a) E{ E{Y x, x 1 }-CnMnX) IX }= E{ 1E{Y x, X-X}

a
-c Mc (xn) x } < S n

n

n-1i ja.
where S < oo, and x - x = Y.

S-n -1 1 c --n

(b) EE{Yx}nlIX ntZ cZIMcn(X n)IZxl} < SZ, S2 < 00

(iv) {an} and {cn} are sequences of positive numbers satisfying

2Z a =o0, a 2 <00, a < oo,and n <00
an Y n Z n n y 2 <n=1 n=1 n=1 n=1 c n
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(v) x is constrained to a bounded, closed, convex set X, but is free to be varied

inside X. (A set X is convex if x E X, x 2 E X implies ax 1 + (1-a) X 2 E X for 0 -- a 1.)

Assumptions (i), (ii), and (iii) need hold only for x E X. It is assumed that X is chosen

sufficiently large that 0 E X.

We now make the following statements:

STATEMENT 1: Assumptions (i)-(v) imply the convergence of lixn-_il to zero in

the mean-square sense. That is,

lim E{i xn-el l2x 1 }= 0
n--oo

We now set a = a/na, c = c/nY, and in order to satisfy assumption (iv) we require
n n

3/4 < a < 1, 1 - a <y < a - 1/2. We also require a > 1/k if a = 1.

STATEMENT 2: Assumptions (i)-(v) and the choice a = 1, y = 1/4 imply

E{IIx - 9  
1  = 0(1/n 1/2

The sequence f(n) = 0(g(n)) implies that

lim (I f(n) / g(n) i) < +oo
n-oo

Furthermore, this choice is optimum in the sense that no other choice guarantees faster

convergence for all Y(x) that satisfy assumptions (i)-(v); that is, for a # 1, y # 1/4,

there exists a Y(x) that satisfies assumptions (i)-(v) for which

E{iX n--2 x = 0 - for some E > 0

STATEMENT 3: With the additional assumption,

a 3 M(x)
3 <Q<oo i= 1,2,...,kandxE X

ax

the choice a = 1, y = 1/6 implies

E 1Lxn 211} = 0( n/3)

and this choice is, again, optimum in the sense of statement 2.

4. Convergence of the Design Procedure

We now turn to the physical design situation that was described in section 2 and

proceed to show sufficient conditions for
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Y = W[d(m)-qx(m)]

to satisfy the assumptions of section 3. If this is done, then the implications of the state-

ments of section 3 to our design procedure are obvious.

First, we consider conditions that will insure the satisfaction of assumptions (i) and

(ii); then, we consider assumption (iii). To guarantee that assumptions (i) and (ii) are

satisfied, we make the following restrictions on the physical situation:

(a) v(m) and d(m) are the outputs of stationary ergodic sources and are uniformly

bounded in absolute magnitude for all m with probability one.
oo

(b) m~ Ihi(m)I < co; i = , 2, ... k. The fi(m) = fi[S(m), S (m), ... S (m)] are con-
m= 0

tinuous in S l,  S 2, ... Sj for i= 1, 2,... k.

(c) P (x -0i) fi(m) > D x- > E for x E X and D, E > 0. Or, in terms of
1 1 1

one sample function, there exists an N with the property that for N > N ,  n > 0,o o ZN + 1
where n is the number of occurrences, -N < m -< N, of

k
(x i-0) fi(m) > DI x-ell x E X

(d) W(e) has continuous first and second derivatives.

(e) W(e) is strictly convex; that is, there exists an E > 0 with the property that

W[aa+(l-a)b] < aW(a) + (1-a) W(b) - Ea a-bI for 0 < a < 1/2

Restrictions (a)-(c) provide no serious limitation on our physical situation. Restric-

tion (a) will surely be satisfied, since the output of any physical source is always uni-

formly bounded. Restriction (b) requires only that the memory elements h, h, . . . h

be stable and that the fi be continuous, as all physical transducers are. Restriction (c)

only requires that all the h and all the f differ from one another in the prescribed sense.

Restriction (c) is satisfied, for instance, if the probability of the sequence of k plus and

minus signs S gn(fin (fz(Sgn(f(m)), ... , Sgn(fk(m)) taking on a certain sequence of k plus

and minus signs is nonzero for each of the Zk possible outcomes. (This is a sufficient,

but by no means necessary, condition for restriction (c) to be satisfied.) Restriction (d)

is no practical limitation; restriction (e) is the only serious limitation on our method.

To show that assumptions (i) and (ii) follow from restrictions (a)-(e), we use the

ergodicity of the sources to write

M(x) = E{W[d(m)-q(m)]jx}

= lim W d(m) fi(m (3)
N-0o m=-N 1= 1
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Assumption (i) now follows immediately from restriction (a) on the uniform boundedness
of the sources and restriction (b) on the form of the filter.

To show that the upper inequality in assumption (ii) is satisfied, we use a Taylor's

expansion about x = 0 to write

aM(x) k a 2M(x)
ax. = 0 + (x- ) x.x. = 0 + XiT.e. (4)
j i=1 1 J

where 0 < Ti < 1 for an arbitrary j, with j = 1, 2, ... k. Thus, the upper inequality in

assumption (ii) follows with

a 2M(x)
k = k sup ax.ax.

1 i,j= 1,2, . .k i
xEX

a M(x)
if all the ax.x. i, j = 1, 2, ... k are bounded for all x E X. To show this, we consider

N k
1

SN(X)- 2N + 1 W Fd(m)- xi i(m
m=-N i= 1

and

N k
S N+ 1 m W" d(m) - xifi(m fi(m) f.(m)m=-N i= 1

The continuity of W" and the uniform boundedness of the fi(m), i = 1, 2, ... k, and d(m)
imply the equicontinuity of S N(x) for x E X. The Arzela-Ascoli theorem then guarantees
the existence of a uniformly convergent subsequence Nt, and for this subsequence

a2  i 2

x.x.lim SNt () = lim x.x. SN (X)1 xi t-oo t t-oo i t

t-oo t

for all x E X. However, by our assumption of ergodic sources, lim S 1 (x) is unique with

probability one, and hence N-oo

a2  N k7
ax. ax. M(x) = lim 2N + I W" d(m) - i xf i(m f (m) f. (m) (6)

1 3 N-P oo m= -N i= I

with probability one for all x E X. But the right-hand side of Eq. 6 is bounded by restric-
tions (a) and (d), and we have established the upper inequality in assumption (ii).
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We now turn to the lower inequality in assumption (ii). Using Eq. 3, restrictions (c),

(e), and the convexity of X, we have

M[(l-a)x+a] < (1-a) M(x) + aM(_) - EDEa 11x-_) for 0 < a < 1/2 (7)

or

M[x+a(0-x)] - M(x)
a >M(x) - M(o) + EDEix-o_

> EDE Ix-_II for 0 < a < 1/2 (8)

The right-hand side of Eq. 8 is independent of a; hence, taking the limit of the left-hand

side as a approaches zero, we have

(grad M)(x), - EDE x-_ (9)

as desired.

If we desire to use the results of statement 3, we need only require in addition that

W"'(e) be continuous for all values of the argument which occur under restrictions (a)

and (b) and the assumption that x E X. The boundedness of

8 3 M(x)

i= 1,2,...k
ax

i

under this added restriction is shown in the same manner as was the boundedness of

82 M(x)

ax.ax.
1 j

Assumption (iii) is a restriction that the process Yn depends only remotely on the

distant past and is not in itself unreasonable. It is this assumption that requires that

some time interval S be left between iterations. In a future report sufficient conditions

on the process v(t), d(t) which guarantee the satisfaction of assumption (iii) will be

developed, and a comment will be added to extend the analysis to the continuous time

parameter case.

Grateful acknowledgment is made for many helpful discussions with

Dr. A. V. Balakrishnan and for the helpful cooperation of Space Technology

Laboratories, Inc., Los Angeles, California.

D. J. Sakrison

(References on following page)
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E. OPTIMUM SYNTHESIS OF A GAUSSIAN PROCESS FROM A

NON-GAUSSIAN PROCESS

The transformation of non-Gaussian random processes into Gaussian processes was
discussed in Quarterly Progress Report No. 58 (pages 165-170). In that report the
question arose as to the extent of the class of random processes that could be so trans-
formed with zero error. In this report we shall show that a sufficient condition for a
random process to be a member of this class is that it be a stationary ergodic process
and that it have a finite mean-square value, and that samples taken T seconds apart
become statistically independent as the separation, T, becomes infinite. We shall refer
to this class of functions as class G.

Wiener has shown (1) that any function, F, of our class G can be expanded uniquely
in terms of his fundamental orthogonal functionals as

N
F(a) = 1. i. m. , AvGv[Kv,a] (1)

N-oo v=0

in which a distinguishes one member of the Gaussian ergodic ensemble from another.
In terms of Wiener's nonlinear network (2), which is schematically represented in
Fig. XI-6, we can write Eq. 1 as

N
F(a) = 1. i. m. AVyV(a) (2)

N- oo v=O

in which y (a) is the output of the nonlinear network represented by G [K ] as a result
thof the input g(a) which is the a member of the Gaussian ensemble.

We shall first show that if F(a) is only a single term of Eq. 1,

F(a) = ym(a) (3)

then there is a nonlinear network N, of the type described by Wiener (2), whose output
is Gaussian when the input is F. To show this, we first note that Eq. 3 represents a
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many-to-one mapping because many members of the a ensemble will produce the

same output. Thus an inverse mapping from the F ensemble back to the whole

a ensemble does not exist. However, we shall show that a mapping to a Gaussian

ensemble which is a subset of the a ensemble does exist. To do this, denote the

various outputs by F . Then we may order the a ensemble in a set of subsets such

that the S subset of a is

S = {a:G n[Kn , a]=y (a) for n*m, Gm[Km, a]= F} (4)

That is, we gather together all of the members of the a ensemble that produce the same

output F and call it the set S . We now form a new set, T , by picking for each value

of P, one member from S . This can be done in many ways. Thus, to each value of y

there corresponds a set, T , each of whose members results in a different output, F .

Also, different values of y correspond to sets that differ from each other in at least one

member. Now, each output, F , occurs with probability zero. Thus each set, S , has

a measure zero relative to a; thus we can show that for each E > 0, there is an ordering

y, (a)

g (a) F(a)

GN [KN Y (a) N

Fig. XI-6. Nonlinear network.

of the a ensemble so that for any set, T , at least one member of the set is contained

in every E-neighborhood of the ordered set of a's. This effectively means that each

set T is dense in a. Now, since the a ensemble is ergodic, almost all dense subsets

of a are also Gaussian ergodic ensembles. Thus, at least one set for some value of y

is a Gaussian ergodic ensemble. Denote each member of this ensemble 6. Then, from

Eq. 3, we have

F(6) = ym(6) (5)
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This equation now represents a one-to-one mapping and thus a right inverse exists. That

is, there exists a network N for which

N[F(6)] = g(6) (6)

To prove our statement for the general case, in which

N
F(a) = Am Ym.(a) (7)

i= 1i

we choose the set S to be

S = a:G [K, a]= y n(a) for n # m i , A Gm [Km a =] F (8)
i= 1 i 1m

The proof is the same as before.

We have thus shown that any function of our class G may be transformed into

a Gaussian process with zero error. We now note that the required network, N, is

stable because its output has a finite mean-square value for an input that also has

a finite mean-square value. Also, F(6, t) and F(6, t+T) become statistically independent

as T - oo. The same is true for g(6, t) and g(6, t+T). Thus the output of N is asymptot-

ically independent of the remote past input. Wiener has shown that all such net-

works can be expanded uniquely in terms of his fundamental orthogonal functionals.

This is the form of the network shown in Fig. XI-6 and the form of the network that

we used in the transformation of non-Gaussian processes into Gaussian processes (3).

Thus, for any function of the class G, the procedure discussed previously searches

out a set, 6, which we now know exists. Consequently, the transformation can be

done with zero error.

It is interesting to note that although a Wiener network does not always possess

an inverse in the sense that the output converges in the mean to a desired output,

it always possesses an inverse in the sense that the output converges in probability

to a desired output.
M. Schetzen
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F. AN OPTIMUM METHOD FOR SIGNAL TRANSMISSION

1. Transmission with Irreducible Minimum Mean-Square Error

A problem in the statistical theory of communication is the design of optimum sys-

tems for the transmission and reception of messages through noisy channels. In this

report, we shall describe a design of optimum systems for a class of messages for

which the mean-square error is an irreducible minimum when the noise in the channel

is Gaussian. The class of messages, which was discussed in Section XI-E, is the class

that can be transformed into Gaussian random waves. We shall refer to this class as

class G.

The general problem may be described by means of Fig. XI-7. The message, fm(t),

is to be transmitted through a channel in which noise, f (t), is added. The network N 2

is the optimum filter for the received signal fr(t), so that the output f (t) approximates

the message with minimum mean-square error, e 2 (t) = [f (t)-f (t)] 2 . In order that this

error be an irreducible minimum, the message is optimally distorted by network N l to

yield the signal, fs(t), for transmission through the channel. The problem is to deter-

mine the optimum combination of networks N 1 and N 2 for which the mean-square error,

e 2 (t), is an irreducible minimum.

We first note that, for any given network N 1 , we can determine the optimum non-

linear filter, N Z , of the class described by Wiener (1) and shown in Fig. XI-8. It is

determined by sequentially adjusting the amplifier gains, A i , until the measured mean-

square error is a minimum. We are assured that this procedure will always converge

CHANNEL -

fm (t) f ) f t(t) f (te)

Fig. XI-7. An optimum transmitting-receiving system.

Fig. XI-8. Nonlinear network.
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fn (t)

Fig. XI-9. Pertaining to the determination of the optimum system of Fig. XI-7.

since it has been shown that, for each order of nonlinearity, the set of possible outputs

for various amplifier gains is a convex set (2). Thus the mean-square error is a mini-

mum for a unique setting of the amplifier gains. However, in order to obtain the irre-

ducible minimum mean-square error, the optimum distortion network, N 1 , must also

be determined. We shall now describe a procedure for determining the optimum net-

work, N 1 , if the noise in the channel is a Gaussian random variable and the message

is a member of class G.

Consider the system depicted in Fig. XI-9. If the input, fm(t), is a member of

class G, we can determine a nonlinear network, N3 , of the form depicted in Fig. XI-8,

whose output, fa(t), is a Gaussian random variable (2). Furthermore, a right inverse

exists. Thus, except for a possible delay, there exists a network N4 , also of the form

depicted in Fig. XI-8, with the property that the network N3 followed by N4 is equivalent

to a direct connection. We shall find that we do not need to determine the network N4 .
We merely need to be assured of its existence to guarantee that our procedure is opti-

mum. Let us assume for the moment that networks N 3 and N4 have been determined

and are placed as shown in Fig. XI-9. The problem is then to determine the optimum

distorting network for fa(t) and receiving network for fb(t) for which the mean-square

error, e(t ) = [fb(t)-ft)]2 , is an irreducible minimum. However, since f (t) and fb t)

are Gaussian random variables, it can be shown that the optimum system is linear and

no nonlinear network will yield a lower mean-square error.

We thus have reduced the problem to the determination of two linear networks, h(t)

and g(t). The optimum network, h(t), is given by the solution of the Wiener-Hopf equa-

tion. For such a network, the irremovable error (3) is given by

err2 (t) rr aa ra d )2
e = de (1)

oo00 rr

in which 4ij(w) is the Fourier transform of the correlation function, ij(T).

*ij(T) = fi(t) fj(t+T) (2)

However, for our system,
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f (t) = fn (t) + 00 g(x) fa (t-x) dxa

For simplicity, we shall assume fa(t) and f (t) to be uncorrelated.

c 2 rr(W) = nn(w)+ IG(w)2 aa(w)

ra (w)l 2 = JG(w)j 2 
maa(w)

and Eq. 1 becomes

00

e2
irr 00

nn( aa

nn (w) + IG(w)2 Z aa(w)

We now impose the constraint that the mean-square value of the transmitted wave, fs (t),

be P. Then

SG(w)JZ D
-0o

(w) dw = P

The transfer function G(w) that minimizes Eq. 5, subject to this constraint, is

nn() 71/2
1 nnfZ

Gopt(W) l
0

Snn(w)
nna

aa

[nn(W)aa)1/2 dw -nn aaP = Wp
E W

aa(w) 2

nn

aa(w)aa 2

nn

(nn() dwnn

in which the integration is carried out over the set W which is the set of frequencies

for which aa(W) 2 The minimum irremovable error is then
nn()nfl

2 [2in e r(
E =min e. (t)irr J

wE W
[(nn(W)a (w)]1/2 dw +nn aa

in which the second integral is carried out over those frequencies that are not members

of W. We note that the optimum solution may require Gopt() to be zero over a range

of frequencies. This is not physically realizable. For such cases, the optimum transfer
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function is that which is equal to IGopt(w)I at those frequencies for which IGopt(w)l # 0

and is as small as possible at those frequencies for which IGopt(W)l = 0.
2 -3

For example, let aa(W) = 1/(+w ), n () = 1 and choose 3 = 10 - 3 . Then the set of

frequencies transmitted, W, is the set for which

2 -6 aa() 1

nn 1 + w

C < 10 3 (10)

Then, from Eq. 8, the mean-square value of the transmitted wave is

=13 10 3 1 d 103

P= 101 d- dw
103 (+2 1/2 -103

(1+w )

= 2 X 103 [sinh- 1 103 - 1]

= 13.2 X 10 3 (11)

I Gopt() 2 is given by

Gopt(W)12  i 3[+w2l2 / 2 - [l+ w 2 ]

0

Figure XI-10 is a graph of IGopt(w). The

from Eq. 9:

2 -3E =2X103 1
do + 2

(1+2 )1/2

w < 10 3

3>'10
w >10

(12)

2
minimum irremovable error, E , is obtained

1
10 2 d1

103 1 + w

= 2 X 10-3[1 + sinh- 1 10 3 ]

(13)= 17. 2 X 10-3

If we had used an amplifier of gain, IG(w)I = A, then for the same mean-square value
2P

of the transmitted wave, we would make A -. From Eq. 5, the irremovable error,
2

eirr (t), for this case is

112
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00

2
irr(t) 00

1
2

P 1
+--v 2

1+w

( + P 1/2

=48.4 X 10-3 (14)

if we use the value of P from Eq. II. Thus, we have reduced the irremovable mean-

square error by a factor of 2. 71 by the use of I Gopt(w)I instead of an amplifier with con-

stant gain. It should be noted that, for our solution, the phase of Gopt() is arbitrary.

Even so, in practice, Gopt(w) should be chosen as a minimum-phase network in order

to reduce the time delay in filtering the received signal, fr(t)

520 -

480 -
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400

360 -

320

.: Fig. XI-10. Graph of Gopt() Iversus w
80
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The optimum transmitting-receiving system is thus designed by first determining

network N 3 by the method previously described (2); I Gopt(w)I is given by Eq. 7. The

tandem connection of N 3 and g(t) is then the optimum distorting network, N 1 , of Fig. XI-7.

We now observe that it is not necessary to determine h(t) and N 4 in order to obtain the

optimum receiving system. Rather, we may determine the optimum network, N 2 , of

Fig. XI-7 directly by the method discussed in this report. However, since fr(t) is a
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Gaussian random variable, the amplifier gains Ai will not interact and only one adjust-
ment of each amplifier gain will be necessary.

2. Transmission with Irreducible Minimum Probability of Error

We now shall show that by slightly modifying the optimum system described in
section 1, we can transmit signals through Gaussian channels with an irreducible mini-
mum probability of error. We shall limit our discussion to binary signals.

The method is based upon the fact that the output of a filter, which is within the min-
imum mean-square error of some desired output, is the conditional mean. Thus, from
Fig. XI-7, if we let x be the amplitude of the message, then the output of the optimum
filter, N2 , at time t 1 is

fo (t) = xP[x/fr (t);t<t] dx (15)

in which P[x/fr(t);t-<tl] is the probability that the message's amplitude was x, given the
complete past of the received signal, fr(t). If the message is a binary signal that
assumes the values +1 and -1, then

fo(t ) = P[l/fr (t);t-t 1 ] - P[-1/fr(t);t-<t 1] (16)

We note that f (tl) > 0 only if P[1/fr(t);t tl] > P[-1/fr(t);t<t 1 ] and vice versa. Thus we
can form a signal which, at each instant of time, is the message with a minimum proba-
bility of error by having the optimum network N2 of Fig. XI-7 followed by a saturating
amplifier whose output, fc(t), is +1 if f (t) > 0, and -1 if fo(t) < 0. We now note that
since

1 = P[1/fr(t);t-tl] + P[-l/fr(t);t <t l ] (17)

we may write Eq. 16 as

fot) = ZP[1/fr(t);t-tl] - 1 (18)

Now, the mean-square error has been made an irreducible minimum by optimally dis-
torting the message with network N 1. In terms of Eq. 18, this means that if the ampli-
tude of the message is +1, then P[1/fr(t);t<tl] is as close to +1 as is theoretically
possible. Also, if the amplitude of the message is -1, then P[1/fr (t);t<tl] is as close
to zero as is theoretically possible. This implies that, at each instant of time, fe(t) is
the message with an irreducible minimum probability of error. An example of a mes-
sage for which this type of transmission would be desirable is infinitely clipped speech.
If, however, the message is a sequence of binary digits that are positive or negative
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fmm ts r <<t) o (td (t)

N" "N2 N Fig. XI- 11. An optimum system for
binary digits.

fn (t)

pulses of duration T, the system that we have just described would not be the desired

optimum. For such a signal, we desire the output also to be pulses of duration T that

are +1 or -1 with an irreducible minimum probability of error. To accomplish this,

we note that

t T P[x/fr(t);t dt 1i- T1

is the probability that the message pulse, which is known to exist in the interval

(tl-T, t ), had the amplitude x, given the complete past of the received signal. From

Eq. 16, we have

t -Tt t t

1 1

We thus note that II > 0 only if the probability that the binary digit was positive is

greater than the probability that it was negative, given the complete past of the received

signal. Thus we can transmit binary digits with an irreducible minimum probability of

error with the system of Fig. XI-11. The networks N 1 and N2 are the optimum networks

described in section 1 of this report. The network N 5 has an output, fd(t), which is a

sequence of binary digits. Each digit has an amplitude that is +1 or -1; the sign depends

on whether

I = tn fo(t) dtn t -T
n

is greater than or less than zero. The times [tn-T] are the known starting times of the

binary digits.
M. Schetzen
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G. OPTIMUM COMPENSATION FOR NONLINEAR CONTROL SYSTEMS

1. Nonlinear Compensation Problem

In feedback control systems the output is provided by a physical device capable of

meeting the power requirements of the control system. To optimize the performance

of the system, the input to these fixed elements must be altered in some manner. The

presence of these fixed elements in the system provides the fundamental distinction

between compensation problems and filter problems. For linear systems with random

inputs, the relation between the two problems is well known.

For nonlinear systems, the relation between the two problems is still not clear.

Physical systems are most easily described by differential equations. Classical non-

linear theory has been essentially a study of the solutions and properties of nonlinear

differential equations. However, a general statistical optimization technique that makes

use only of differential equations appears difficult to develop. The modern functional

expansion techniques for treating statistical problems outlined by Wiener (1) provide a

basis for solving the nonlinear optimization problem.

In this report a method of solving the nonlinear compensation problem by effectively

combining the use of nonlinear differential equations and functional expansion techniques

is outlined.

The general configuration of a feedback control system is shown in Fig. XI-12. Here,

r(t) is a sample function from a stationary random process. The desired output of the

over-all system is a function yd(t) which is related to either r(t) or the signal part of

r(t) in some known manner. If there were no fixed elements, we would have the non-

linear filter problem illustrated in Fig. XI-13.

One method of solving this filter problem would be to specify the input-output rela-

tion of the filter to be of the form

Yb(t) =OK(t-T 1 I) r(T) dTl + K(t-T' t-T 2 ) r( 1 ) r(T 2 ) dTdTr2 + ... (1)

and then find a series of kernels K 1, K 2 , K3, ... so that the expected value of [y(t)-yb(t)] 2

is minimized.

Now, if we could find a realizable system Ca or Cb with the property that ya(t) =yb(t),
then the original compensation problem would be solved.

The class of compensation problems to be considered may now be more clearly

defined. It is assumed that the fixed elements may be described by a nonlinear differen-

tial equation of the form

P1 (x, x', x", . .x(r) = p2 '(y '7, y" . (s)) (2)
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+ , - ELEMENTS J r,(t) Y 8(t)ELEMENTS rs (DESIRED OPERATION

r(t) I Y (t)

r(t) NONLINEAR FILTER

Fig. XI-12. General control system Fig. XI-13. Optimum filter.
configuration.

where x is the input to the fixed elements, y is the output of the fixed elements, and P

represents a function which is a polynomial. Typical examples of the occurrence of equa-

tions of this type are

ay" + by' + cy + dy = x (3)

which represents motion with nonlinear restoring force;

ay" + b(y') 2 + cy = x (4)

which represents motion with nonlinear damping; and

ay" + by' + cy = P(x) (5)

which represents the general category of systems that are a cascade of a nonlinear no-

memory polynomial device and a linear memory device.

More general polynomials such as

ay"y + b(y') 3 + cy 2 = dx + ex"x' + fx 3  (6)

are included in this category.

Before outlining the method of solution of the stated compensation problem, related

work should be reviewed. Recent work in the theory of optimum nonlinear systems uses

the functional power-series representation conceived by Wiener (1). This is a generali-

zation of the convolution integral. In this method, the output y is expressed as:

oo 00 00

y(t) = Kl(t-T) x(T) dT + K2 (t- 1 , t-- 2 ) X(TI) X(T 2 ) dTldT2
oo o -oo

00

+ ff K 3(t-Tl t-T 2 t-T 3) x(TI ) X(T 2 ) x(T 3 ) dTldTrdT3 + .. (7)

--00

Brilliant (2) developed a theory of analysis for nonlinear systems of this form.

He developed methods for cascading, adding, and multiplying systems of this type.

George (3) also used the functional representation. Working primarily with nonlinear

systems that are composed of nonlinear no-memory devices and linear memory devices,
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he developed an algebra for combining systems. He extended Brilliant's use of multi-

dimensional transforms and developed many properties that we shall find useful.

Although some results on Gaussian white-noise inputs were included, George worked

principally with deterministic inputs. In control systems, the division of a nonlinear

physical device into a linear memory part and a nonlinear no-memory part is often

unwieldy and almost always artificial. By working directly with the differential equation

of the physical system, there is a greater possibility of attaching the correct physical

significance to one's final answer. Zames (4, 5) has dealt with the problem of inversion

of functionals and feedback around functionals. He has developed an algorithm for deter-

mining the resultant kernels. The part of his work pertaining to control systems was

deterministic.

As in linear systems, it seems that application of Wiener's concepts to filter prob-

lems has proceeded more rapidly than the application to control system problems. By

combining the advantages of two different analytical techniques, it is hoped that a rea-

sonably practical, general method of solution to a large class of nonlinear control prob-

lems may be found.

2. Method of Approach and Preliminary Results

The general configuration of a feedback control system is shown in Fig. XI-12. Let

us consider two important special cases of this general configuration. For Cb = 1, we

have the "series" compensation problem (Fig. XI-14a). For Ca = 1, we have the

r(t) X(t) FIXED y(t)

+ ELEMENTS

Fig. XI-14. (a) Series compensation. (b) Feed-
back compensation.

r(t) x(t) FIXED y (t)

ELEMENTS

(b)

"feedback" compensation problem (Fig. XI-14b). In many cases the proper choice

of configuration will be obvious. Presumably, there are cases in which a convergent
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solution could be obtained by using both Ca and Cb when neither one alone would be satis-

factory. These problems are subjects for future research.

Recall that the basic problem was, first, to find a set of kernels K 1, K2, K3 , ... K n

that specify the optimum nonlinear filter. For nonlinear operations on Gaussian inputs,

an analytic solution for these kernels may be obtained by using Chesler's (6) techniques.

For an arbitrary input, it appears that numerical methods will be required.

The basic equations describing the system in Fig. XI-14 are:

Pl(x, x', x". ... x(r)) = PZ(y, y, y, .. y(S)) (8)

x(t) = C 1 (t-T) e(T) d + 0 0 (t-T 1, t-T 2 ) e(T 1 ) e(T2 ) dT 1 dT 2 + ... (9)

e(t) = r(t) - y(t) (10)

y(t) = K l(t-T) r(T) dT + KZ(t-T 1,t--T2 ) r(T 1 ) r(T2 ) dT 1 dT Z + ... (11)

For definiteness, consider fixed elements described by

y" + ay' + by = x + dx 3  (12)

or

L[y] = x + dx 3  (13)

A straightforward approach would be to substitute Eqs. 9, 10, and 11 in Eq. 8. This

gives an equation of the form

LL t KI(t-T) r(T) dT + 0 K 2 (t-T t-T 2 ) r(T1 ) r(Tr2 ) dTldr 2 +

= cI(t-T) r(T) - Kl(T-E) r() dE - K 2 (T-E 1 T-E 2 ) r(E ) r(E 2 ) dE d 2 + ...

+ dr ld 2 C 2 (t-K 1 , t-T 2 ) r )T - K 1 (TI-E) r(E) d r( ) - K ) r(E) dE +..

-:- 1) 1- 1+Ir

t

+ dr dT2 dT3 C 3(t- 1, t-T, t- t 3 ) (T 1) K 1 T1 -) r(E) dE +

0

x r(T2  - K(T-E) r(E) dE + .j Lr(T3  - 3 K 1(T 3 -E) r(E) dE + + ...

+ d 0 Cl(t-T ) r(T) - Kl(T-E) dE + ... d + 3 dTCI(t-T) r(T) - K
1

(T-E) r(E) dE + ..

x 0 dTld-T2 ( 1, t- 2 ) (T1 - 1 K 1 (T 1 -E) r(E) dE -

x r(T2) - 2 K
1

T  

2 -E) r(E) d + +

(14)
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By equating terms of the same order in r(t), a set of equations can be obtained that

could be solved successively, not simultaneously, for the various Cm . The easiest

approach to solving these equations is through multidimensional transform theory (3).

Even with the use of transforms, a straightforward approach turns out to be too tedious

to be valuable as a general method. An algorithm has been developed that gives the

desired result in a much simpler fashion.

(a) Algorithm for Determining Series Compensator Kernels

The input-output relation of the fixed elements is described by a nonlinear differen-

tial equation. First, the terms are classified according to the order of their nonlinear-

ity. Thus x3, x'(x")2, xx' x" are all third-order input terms. There is a basic expansion

for all nth-order terms. The algorithm developed enables us to write an equation for

Cm in the transform domain by considering the expansion of the nth-order terms directly.

Consider the equation

ay2y ' + by3 +cy2 + d(y') z + L(y) = L(x) + ex3 + fx'(x")2 + g xx' x" (15)

In order to solve for the m th-order compensator kernel Cm , we can write an equa-

tion of the form

3 2 1 1 + 3 (16)
m +Qm + Q Pm m 16)

3 1
where Q represents the contribution of all third-order output terms, Pm representsm m
the contribution of all linear input terms, and the other terms have similar definitions.

1
The transform of the unknown kernel appears in P . All other quantities are known,m
so that the explicit answer follows immediately.

We shall see that the basic expansion for all n th-order terms is a combination of

different partitions. The difference between terms within a given order is taken into

account by use of a characteristic coefficient that modifies the basic expansion.

Thus the problem is to find an efficient method for constructing the terms, pnmn
and Qn

(i) Construction of pn; Contribution of an n -order nonlinearity of the input
thmto an m -order series compensator kernel

pn consists of a sum of m-n+l terms. Thus, we may writem

m

pn pn (i) (17)m mi=n

and determine each Pn (i). pn (i) is constructed in three steps. First, form all parti-mtions of m objects into n cells. For example, the partitions for m 7 and n 3 arem
tions of m objects into n cells. For example, the partitions for m = 7 and n = 3 are:
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(I) I I 11111

115

(III) I II I I

133

(II) I 11i li

P124

(IV) II lI il

These are the basic or major partitions. Physically, each object represents a different

frequency-domain variable. Second, consider all combinations of n compensator ker-

nels C , where E j = i. For i = 5 and n = 3, the possible combinations are C 1 , C2 , C 2
and C 1 , C 1, C 3 . Compare each set of kernels with each major partition in turn. Looking

at p 1 1 5 and C 1, C 2 , C2 first, we see that they could not occur together. C 2 represents

a kernel that is a function of at least two variables, C2 (S 1, SZ). But two of the partitions

in p 1 1 5 have only one variable in them. Thus, we cannot associate C 1, C 2, C2 and p 1 1 5 '
Examples of correct associations are:

(Ia) (IIa)

Third, look at the ways in which the optimum filter kernels KP can combine with the

compensator kernels C.. Here, the necessary restriction is that E P = m and that the

total number of kernels K = i. For partition Ia, we see that suitable combinations are:

These represent the transformed terms:

[C I (S I )(1-K (S I ))][C (SZ)(1-K (SZ))][C3(S3' S4, S5+S +S 7 )( 1- K (S3)) (1 -K (S 4 ) )K 3( S 5 , $, 7)]

and

[C 1 (S 1 )(1-K I (S 1 ))][C 1 (SZ)(1 -K I (S))][C3 (S 3 , S4 +S 5 6 +S 7 )(1-K 1 ( 3 ))K (S 4 , 5 )Kz(S 6 , S 7 )]

3
To complete P 7 (5), consider the remaining partitions and the kernels associated with

them. In tabular form, the complete process and results are:
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P3(5):7

- C 1 (S 1 ) C 1 (S 2 ) C 3 (S 3 , S4' S5+S6+S 7 )
4

x ]
i= 1

- C 1 (S 1 ) C 1 (S) C 3 (S 3, S4+S 5 ' S +S 7 )

3
x [1-K 1 (Si)] K2 (S 4 ' S5 ) K2 (S 6 ' S7)

i= 1

- C 1 (SI) C 1 (S +S3) C 3 (S 4 , S5 , S 6+S 7 )

x[1-K 1 (S 1 )]K 2 (S 2 , S3 )[1-K 1 (S4 )][1-K 1 (S 5 )] K2 (S 6, S7)

- C 1 (S 1 ) C 2 (S 2 , S3) C2 (S4 , S5+S6+S 7 )
4

x 1- [1-K 1 (S )] K3 (S 5 , S6 , S7)
i=l

- C 1 (S 1) C 2 (S Z, S3) C 2 (S4+S 5 , S6 +S 7 )
3

x 17 [1-K 1 (Si)] K 2 (S4 ,' S5) K2 (S6 , S7)
i= 1

LU I ll

C 1 C1 C 3

K 1 K 3 K1 K1 K1

C 1 C2  C 2

K 1 K 1 K2 K1 K2

- C 1 (S 1 ) C 1 (S 2 +S3+S 4 ) C 3 (S 5 , S 6 ,' S7)

7
x [1-KI(S1) ] K3(S 2 , S 3 , S4 )  [1-Kl(Si)]i= 5

- C1(S1) C2(S 2 , S3+S 4 ) C2(S 5 , S 6+S 7 )

[1-K 1 (Si)] K 2 (S 3 ' S4) K 2 (S 6 , S7)x , 2, 5
i=1, 2, 5
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C 1  C z  C 2

Kz K 1 K 1  K1 K 2  - C 1 (S 1+S 2 ) C 2 (S 3 , S4) C 2 (S 5 , S6+S 7 )

C C C x Kz(S 1, SZ) [1-KI(Si)] KZ(S 6 ', 7)
C2  C 2  C 1  i=3, 4, 5

K K 1 K 1 K 1  K 3  - CZ(S, S ) C 2 (S 3 , S 4 ) C 1 (S 5 +S 6 +S 7 )
4

C 1  1 C3 x ] I1-KI(Si)j K 3 (S 5 , S6' S 7)
i= 1

K2 K2 K 1 1 K K 1 - C 1 (S 1+S Z ) C 1 (S 3 +S 4 ) C 3 (S 5 ' S 6 ' S 7)

7
X K 2 (S1', S2 ) K2 (S 3 , S4) I1-K1(Si)

i= 5

There are three quantities that remain to be specified: the sign of each p, the numer-

ical coefficient of each p, and the characteristic coefficient associated with each p.

(a) The sign of each p equals (-1)
r , where r is defined as the number of kernels K

with a subscript p other than one.

(b) The numerical coefficient is determined by two multiplicative factors. The first

factor is equal to the number of distinct arrangements that are possible by changing the

ordering within the various subpartitions. (A subpartition is the partition within a spe-

cific kernel.) The second factor comes from the rearrangement of the various kernels in

all possible distinct ways. This factor is simply equal to the number of permutations of

n objects. Kernels with the same subscript and same number of variables are considered

identical in this permutation.

(c) The characteristic coefficient is a function only of the argument of p and not of

the particular kernel it represents. For example, the characteristic coefficient of x" x' x

pertaining to p 1 15 is

0 o 1 2 i
s2 Si + S • S So + S SS3i=3 i= 3 13

which reduces to

S2 + Sz  Si  Si S 1i= 3 i= 3

This comes from the general rule of writing the variables as a product of a sum-

mation of S's. The number of S's in each sum is equal to the argument of the

p function. The exponent to which each sum is raised is equal to the order of the

respective derivative. The terms are then permuted. For a term containing no
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derivatives, the characteristic coefficient is simply 1.
3

As an example, consider a typical term of P 7 (5).

P124 = C1 C 2  C 2  C 1 (S 1 ) C 2 (S2' S 3 ) C 2 (S4' S5+S6+S7 )

4

K1 K1 1 K3 x 1 [1-KI(Si)] K3 (S5 , S6' S7)
i= 1

(a) r = 1, so the sign is (-1) = -1.

(b) The first factor of the numerical coefficient is 2. This comes from rearranging

the subpartition corresponding to C 2 (S 4 , S 5 +S6+S7 ). The second factor is 3.

(c) The characteristic coefficient is 1 because there are no derivatives. The com-

plete term is

4
-6 C 1 (S 1 ) C 2 (S 2 , S 3 ) CZ(S 4 , S 5 +S 6 +S 7 ) [1-Kl(Si)] K 3 (S 5 , S6, S7)

i= 1

As one would expect, the compensator term is rather complicated. However, when

we look at the examples and means of synthesis, we shall see that the kernels are built

up by combinations of smaller, less formidable systems.

(ii) Construction of Qnm'; Contribution of an n th-order nonlinearity of the
th

output to an m -order series compensator kernel

Nonlinear output terms are subject to similar, although simpler, expansion rules.

By looking at the original equations, we see that

y(t) n =  Kl(t- ) r(T) dT + K2 (t- t-2) r(1) r (T2) dTldT2 + n

Therefore, to find Qnm, we construct all possible partitions of m objects into n cells.

For example, let n = 3 and m = 5. Possible partitions are:

9113 q122

which represent K 1 (S 1 ) KI(S 2 ) K 3 (S 3 S4J S) and K 1 (S 1) K 2 (S 2 , S 3) K 2 (S 4, S)5 respectively.

The sign of each term is positive. The numerical coefficient is equal to the number

of different ways in which the partition can be ordered. The characteristic coefficient
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is determined in exactly the same manner as it was for an input term.

Note that in order to find the functional series representation of any device when the
n

input-output relation is a differential equation, we apply the Qm algorithm and get them
answer directly.

We now have all of the parts of the algorithm that are necessary for writing equations

for the series compensator kernels by inspection. In the concluding part of this report

(to be published in Quarterly Progress Report No. 60, January 15, 1961) examples dem-

onstrating this procedure and a similar procedure for feedback compensator kernels will

be given.
H. L. Van Trees, Jr.
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H. A PROBLEM IN RADIO ASTRONOMY *

A project has been initiated which will have as its goal the measurement of the galac-

tic deuterium to hydrogen abundance ratio. This figure is of importance to the astro-

physicist in the study of element synthesis in the universe. This measurement will be

based upon comparison of the intensity of the 21-cm spectral line of atomic hydrogen

with a similar line of atomic deuterium at 91.6 cm. The hydrogen line has been the sub-

ject of intensive observation since its detection, in 1951, by Ewen and Purcell. However,

the deuterium line will be approximately a thousand times weaker and its presence has

eluded four attempts at detection (1, 2, 3, 4). The conclusion drawn from these investi-

gations is that the galactic deuterium to hydrogen abundance ratio is less than 1/4000,

This research was supported in part by National Science Foundation under
Grant G-13904.
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which is just short of the probable terrestrial value of 1/6600. A further discussion of
the radio astronomical aspects of the problem is given in a paper by the present

writer (5).

The problem is essentially that of detecting a 0. 025 per cent, 3-kc wide, dip in the

noise power spectrum received by the antenna. An averaging time of approximately

4 weeks is needed to reduce statistical fluctuations to a sufficiently small value. Con-

ventional analog radiometers are limited by lack of stability over the long period of time

required for the measurement.

Our approach to this problem will be to use real-time digital autocorrelation of the

incoming signal and then computer Fourier transformation to obtain the spectral density.

The advantage of this method lies in the high degree of accuracy that can be obtained.

The radiometer and correlator are now undergoing development.

The digital correlator is unique in that only one-bit samples of the incoming time

function are used. That is, each sample is coded into a "1" if the polarity of the time

function is greater than zero, or into a "0" if it is less than zero. For Gaussian time

functions, the normalized one-bit autocorrelation function, p (T), can be corrected to

give the normalized true autocorrelation function, px(T), by a simple relation derived

by Van Vleck (6),

Px(T) = sin [ Py(T)

Our work (7) indicates that the rms fluctuation of the measured one-bit autocorrela-

tion function is approximately Tr/2 times the rms fluctuation of an autocorrelation func-

tion derived from many-bit samples. This loss in rms fluctuation is far outweighed by
the accuracy and speed with which the autocorrelation can be carried out. The one-bit

correlator that is under construction will be capable of correlating a required 4 weeks

of 30-kc information at 3-kc resolution in real time. The same operation with 36-bit

words on the IBM 704 computer would require 16 years of computer time.

S. Weinreb
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