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RESEARCH OBJECTIVES

The aim of this group continues to be the study of the fundamental properties of
plasmas with more and more emphasis on high-density plasmas and plasmas in magnetic
fields. To carry out this general objective, we have spent a great deal of effort on the
production of plasmas of high-percentage ionization at low pressures under steady-state
conditions, the achievement of which will allow us to carry on the fundamental studies
in which we are most interested. At the present time, we have begun to achieve plas -
mas with high-percentage ionization by means of cesium plasmas, and we have several
other schemes under way for producing them.

We are also studying ways of determining the characteristics of plasmas by means
of microwaves and infrared interferometric methods. Along with these production and
diagnostic studies, we are continuing measurements on the fundamental physics studies
of loss and gain mechanisms of electrons in plasmas in magnetic fields. Considerable
emphasis is being placed on studying the microwave radiation from plasmas, with and
without magnetic fields, both as a tool for measuring the plasma temperature and
thermal properties and as a means of understanding more about the motion of electrons
and ions in magnetic fields.

Theoretical work has been concentrated on the study of waves in plasmas and of sta-
tistical theories of the nature of a plasma.

S. C. Brown

1. PLASMA TURBULENCE

Considerable theoretical effort on turbulence in plasmas has led to a program of

experimental investigation. We think that if one were to break down a turbulent gas the

*This work was supported in part by the Atomic Energy Commission under Con-

tract AT(30-1)-1842; in part by Air Force Cambridge Research Center under Con-
tract AF19(604)-5992; and in part by National Science Foundation under Grant G-9330.
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ions would follow the random component of the gas velocity. Since in turbulence local

changes in the gas particle density take place, we would expect to find such an effect in

the ions. If the electrons were to remain uniformly distributed throughout the discharge,

large space-charge fields would build up. The electrons would then be accelerated

toward regions of excess ions and away from regions of reduced ion density. In effect,

the electrons will be forced to follow the turbulence through the effect of the ions.

Inlet and exhaust nozzles were built to produce a supersonic gas flow in a test sec-

tion at static gas pressures in the 1-10 mm Hg region. The test section had a rectangu-

lar cross section of approximately 6 square inches. On the upstream side of the test

section, provision was made for accepting various rectangular wire meshes. Downstream

of the mesh a dc discharge was produced between two parallel water-cooled, square,

stainless-steel plates of dimension 1. 5 inches on a side. Measurements were taken of

the current to Langmuir probes that consisted of platinum balls, approximately 22 mils

in diameter, at the end of 2-mil tungsten wire approximately 4 mm in length. Three

types of measurement were made:

(a) Static probe curves were taken of the average probe current versus the dc

probe voltage. (The voltage was measured with respect to the positive discharge

plate.)

(b) The integrated power spectrum of the time-variant component of the probe cur-

rent was measured. That is, the power in current fluctuations was measured for a
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Fig. II-1. Static probe curves with Mach number as the parameter.



(II. PLASMA DYNAMICS)

10 100 1000

UPPER CUTOFF FREQUENCY (CPS)

10000

Fig. 11-2. Integrated power spectrum.

fixed lower cutoff frequency of a continuously variable filter versus the filter's upper

cutoff frequency.

(c) Correlation studies of the fluctuating

Fig. 11-3. Oscilloscope correlation pat-
terns. The spacing between
probes increases from top to
bottom of the figure.

currents in the two probes as a function of

their spatial separation were made.

For all measurements, the discharge

static pressure was in the neighborhood

of 4 mm Hg, and the velocity was varied

from no-flow up to Mach 1. 71. During

these preliminary measurements use

was made of a sheet of steel with perfora-

tions 0. 25 inch in diameter instead of the

wire meshes, since we hoped that this

would produce a strong turbulence-

producing discontinuity. Figure II-1 gives

the static probe curves with Mach number

as the parameter. Figure 11-2 is a typi-

cal measurement of the integrated power

spectrum. The effect of Mach number

here was to increase the power in the

fluctuations but not to vary the general

shape of the spectrum significantly.

During these first measurements, the

correlations were indicated by the shape

of a pattern produced on the screen of an

oscilloscope whose x-axis deflection was

produced by one of the probe pair and the

y-axis deflection by the other. A 45 line

indicates perfectly correlated probe cur-

rents, and a large white dot indicates
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total lack of correlation. Photographs were taken of the oscilloscope pattern for each

probe separation. Figure II-3 illustrates these measurements.

Fluctuations in the probe current were observed when there was no mesh in place

and the gas was flowing. These fluctuations produced good correlation for all possible

probe separations. For this reason, we think that wall turbulence caused fluctuations

in the sheath at the positive discharge electrode that was used as a reference. This wall

turbulence is thought to exist even with the turbulence -producing steel sheet in position

and would account for greater correlation in the probe -current fluctuations than would

be expected from the mesh turbulence.

Modifications of the experiment are in progress and will soon be tried. We hope that

some of the difficulties encountered in this first attempt will be eliminated.

S. Gruber, G. Bekefi

2. CYCLOTRON EMISSION FROM PLASMAS WITH NON-MAXWELLIAN DISTRIBUTIONS

In Quarterly Progress Report No. 59 (page 3) we outlined a method of computing the

emission from a plasma with a non-Maxwellian distribution of electron energies, f(E).

Here we apply the method to the case in which the emission takes place as a result of

the orbital motion of energetic electrons in a uniform external magnetic field.

A single electron of total energy (rest plus kinetic) E radiates in an infinite set of

harmonics, n, of its orbital frequency. The rate of emission j(1,2) is given by

2j( ) 2) r2 w 2 c A (1, 2) 5 nwbmc2 e - (1)
o 1

Here the numerals 1, 2 refer to the polarization of the electric vector parallel and per-

pendicular to the applied magnetic field B, respectively; A is a dimensionless param-

eter that represents the strength of the radiation, and wb = eB/m, where m is the "rest

mass" of the electron.

We consider a uniform slab of plasma of thickness L, immersed in a magnetic field

that is applied parallel to the faces of the slab. The emission occurs mainly in a narrow

cone oriented at 90 ° to the magnetic field; the higher the harmonic number, the narrower

the cone. The radiation intensity I , in the radian frequency interval dw, which escapes

normally from the surface of the slab (we neglect all other angles of emission) is given

by

1(1, 2) = B(1, 2)(c, T ) 1-exp (a(1,2)L (2)

where B(w, T r ) is the equilibrium, black-body intensity (1),
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2 (1, E) f(E) E[E2-(mc] 2 1/2 dE

B(1,
2 (T) _ W - (3)

r c (1,) ( 2 (E)[af/E] E[ 2-(mc2)2 1/2 dE

The bracketed term of Eq. 3 defines the radiation temperature (Tr), which for a

Maxwellian distribution becomes the electron temperature (T). The parameter a(1,2)

of Eq. 2 is the absorption coefficient of the plasma given by

a ( 1 , 2) 32r4 N (1, 2 )[af/aE] E[E 2 (m2 2] 1 / 2 d (4)
o c

Here, N is the electron concentration, and f(E) is assumed, in these calculations, to be

spherically symmetrical in velocity space and normalized, so that

c

Equations 1-5 allow us to evaluate the radiation intensity I per unit surface area of

the plasma slab. Difficulties arise unless the strength function An of Eq. I is simplified

by suitable approximations (2). For electron energies less than approximately 100 key

the following approximations were used: At low harmonic numbers (n = /wb < 3), the

radiation from successive harmonics overlaps to a negligible degree, and the summation

in Eq. 1 need not be performed. Also, contributions to j from waves polarized along

the magnetic field can be neglected with the result that

A ( 1 ) - 0P) 0
n

(6)

A(2) n 2 n 1 mc 2.2
W (2n+ 1)! n

At harmonic numbers greater than approximately 3, overlapping of harmonics can be

very pronounced, and in this frequency range a good approximation for A is

A ( 1 ) = 0
n

(7)

A(2) m 21/2 exp[2nmc2/E] E- mc 2 n

n E(n 3 1/2 E + mc 2

The magnitude and spectrum of the cyclotron emission fall into two distinct classes,

according to the energy dependence of the distribution function f(E). If f(E) decreases

everywhere monotonically with increasing E (that is, af(E)/8 <0), then the general
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characteristics of I do not differ greatly from those when f(E) is a Maxwellian distribu-

tion. However, when f(E) has at least one maximum displaced from E = 0, (that is,

af(E)/aE > 0 somewhere in the energy range), then aw and B(w, Tr) become negative at

certain frequencies. Instead of being attenuated in its passage through the plasma, the

radiation grows, with the result that I can exceed black-body emission by many orders

of magnitude. If the growth is too excessive, nonlinear effects can set in and cause the

plasma to become unstable. This amplification process is not confined to cyclotron

emission alone; it can also occur for other emission processes. In the case of cyclotron

emission, it is a relativistic effect and will not take place if computations are made in

the limit, when terms of order (v/c)2 are neglected.

a. Emission for Distribution Functions af/3E < 0

We assume distribution functions of the form

f(3) = exp(-b f) (8)

where p = v/c and f and b are positive constants; 2 = 2 represents a Maxwellian distri-

bution of a given mean energy u, whose magnitude determines the value of b; f < 2

implies that there is an excess of energetic electrons in the tail of the distribution, as

compared with a Maxwellian distribution of the same mean energy, u. The opposite is

true when 2 > 2.

The frequency spectrum of cyclotron emission has the following characteristics: for

frequencies w smaller than some characteristic frequency w , self-absorption of the

radiation is large (a L of Eq. 2 is greater than 1) and the intensity I approaches the

equilibrium intensity B(w, T ); the harmonics are, so to speak, trapped in the black-

body continuum. For frequencies w >> w self-absorption can be neglected, and the
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Fig. II-4. The radiation temperature Tr as a function of frequency for

various distribution functions f a exp(-bp).
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Fig. II-5. The number of harmonics w trapped in the black-body continuum
and the total cyclotron emission (normalized to the emission from
a Maxwellian plasma) as a function of the distribution of electron
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Fig. 11-6. The transition from a positive to a negative absorption coefficient,
with varying frequency, for the first two harmonics. The plot

is for a distribution function f C( p exp(-bp 2), with p = 0. 2.
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radiation in these harmonics leaves the plasma unhindered. The dividing line between

the two regimes of emission is generally defined by

a(w= *) L = 1 (9)

In computing the total cyclotron emission over all frequencies, not too great an error is

committed by neglecting radiation at frequencies w > w . We make this approximation in

the present calculations.

To find the total emission, we must first calculate the spectral distribution of

B(o, Tr) from Eq. 3. Figure II-4 shows the variation of the radiation temperature (T r )

(defined by the bracketed term of Eq. 3), for different values of 2 of the distribution

function, Eq. 8.

Calculations of the absorption coefficient a from Eq. 4 and use of Eq. 9 yields the

critical frequency W . We assume that the plasma has the following properties: r-

mc 2/-i equal to 20/3, which implies an equivalent electron temperature (T- (2/3)i) of

50 kev. The dimensionless parameter A =2 L wbc], which specifies the electron den-

sity, the size of the plasma, and the magnetic field strength, was chosen to be 10 . This

means that when L = 1 meter and B = 104 gauss, the electron density is approximately

1014 cm - 3 , and the outward kinetic pressure of the charged particles is nearly balanced

by the inward magnetic pressure; that is, 2NkT = B2/2o.
Figure 11-5 shows the number of harmonics trapped in the black-body continuum with

change in the distribution function. The frequency w changes little for small departures

of the distribution function from a Maxwellian distribution. Only when 2 becomes much

smaller than 2, does w increase very drastically. The total emission is obtained by

integrating Eq. 2 over all frequencies between w = 0 and w = w . This emission, nor-

malized to the emission from a Maxwellian plasma, is also shown in Fig. 11-5. From

these results we conclude that when 8f/8E < 0, small departures of the distribution func-

tion from a Maxwell distribution do not seriously affect the net cyclotron emission.

b. Emission for Distribution Functions af/8E > 0

Here we assume distribution functions of the form

f(P) = PP exp(-bp2 )  p > 0 (10)

When p = 0, the distribution is Maxwellian; when p * 0, the distribution function is

peaked at some energy E * 0. If the mean energy U is kept fixed, the spike in the distri-

bution function becomes narrower and narrower, the larger the value of p.

The spiked distribution functions cause the absorption coefficient a to take on neg-

ative values (that is, the wave amplifies) in narrow frequency ranges near the maxima

of the harmonics of the cyclotron frequency. Outside these frequency ranges the wave

attenuates in the normal way. Figure II-6 illustrates this effect for the first two
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harmonics. In these calculations we take p = 0.2. Despite this relatively small pertur-

bation of the Maxwellian distribution, the amplification of the radiation a L is appreci-

able, and the actual intensity I greatly exceeds the black-body emission of a Maxwellian

plasma.

Figure II-7 illustrates the intensity of emission I as a function of frequency for the

first two harmonics, with p = 0.2. The intensity is normalized to the black-body inten-

sity that would exist for a Maxwellian distribution of the same mean energy (I = 20/3).

The peak intensity increases with increasing electron density, and hence with increasing

A. However, we have purposely chosen a small value of A = 102 (when L = 1 meter and

B = 104 gauss, N - 1012 electrons per cc) to ensure that for the frequencies that are of

interest, w = wb , 
2

b ..... the plasma frequency wp << w. The reason is that the

theory presented here (Eqs. 2, 3, 4) is strictly valid only for tenuous plasmas with

Wp/W < i.

Figure II-8 illustrates the over-all frequency spectrum. We note the large peaks

superimposed on the black-body continuum and the frequency w at which the radiation

ceases to be black. Despite the narrowness of the emission spikes (the half power width

Vw of the first harmonic is 10-3 Wb), the total emission under the first spike alone (n= 1)

is greater than the integrated black-body emission between frequencies w = 0 and w = w

This radiation, therefore, plays an important part in estimating the total radiation loss

from thermonuclear devices.

The amplification mechanism discussed does not occur when the radiation from indi-

vidual harmonics overlaps strongly and thus causes the emission to be a continuous

smooth function of w. Overlapping is prevalent at higher harmonic numbers and is par-

ticularly pronounced in the emission from highly relativistic electrons; that is, unless

the distribution function f(E) has a very sharp spike in energy. When this is so, the

radiation from each harmonic can be considered as a separate entity, and amplification

of the radiation can take place. For overlapping to be small, the half-power width AE

in the energy distribution of electrons must be small compared with the separation

between harmonics; that is,

AE << E(wb/w) (11)

For emission from highly relativistic electrons (E>>mc ), the harmonics are most

intense in the vicinity of n = (E/mc2 ) 3 . It is this frequency range that is of greatest

interest when attempting to interpret the nonthermal emission from radio sources in

terms of cyclotron emission. For amplification of the radiation to occur at these fre-

quencies (as has been suggested), would require the existence of spikes in the energy

distribution of half widths

S(m2/ 3
AE E(mc /E)
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With electron energies of 500 mev, (VE/E) 10 - 9 . The existence of such almost

monoenergetic electron "beams" in interstellar space is probably unlikely, and ampli-

fication of cyclotron radiation will not occur.

G. Bekefi, J. L. Hirshfield
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3. SYNCHROTRON RADIATION AND NEGATIVE ABSORPTION BY NONTHERMAL

ELECTRONS IN A MAGNETIC FIELD

It has been pointed out by Twiss (1), and independently by Bekefi and Hirshfield (2),

that under certain conditions electromagnetic radiation propagating through a nonthermal

electron gas in the presence of a magnetic field may experience amplification. In par-

ticular, negative absorption may occur at

frequencies near the peaks of the synchro-
OB

DRIFT tron emission spectrum if the electronELECTRON INJECTION ELECTRODES
GUN', ELECTRODES COLLECTOR energy distribution function has a maxi-

I 2 456 -

1mum for some nonzero value of energy.
MAGNETIC

FIELD An experiment is in progress to detect

ELECTRIC FIELD this effect in an approximately monoener-
I ELECTRON SPEED

getic electron beam. Since the synchro-
DISTANCE tron radiation is a relativistic effect, it

Fig. 11-9. Injection of the electron beam is more easily detected as the electron

into the magnetic field. energy is increased. Electrons with an

energy of 1-2 kev transverse to a magnetic

field of 1000 gauss, and with a density greater than 10 electrons per cubic centimeter,

yield a third harmonic that is detectable by existing radiometric techniques.

Figure II-9 illustrates the manner in which the electrons are given the necessary

transverse energy. The electron gun supplies a beam of electrons at the desired

energy. The beam enters between injection electrodes, numbered 1 in Fig. 11-9,

located in a region of very low magnetic field strength. The electric field at the ith
th

electrode is approximately E i = vB i , where B i is the magnetic field at the i electrode

and v is the electron velocity. In this manner, the magnetic force is canceled by the



(II. PLASMA DYNAMICS)

electric force as the electrons move into the region of high magnetic field strength. The

electrons emerging from the final pair of injection electrodes enter the region of the

drift electrodes where the electric field is greatly reduced, but the magnetic field is

maximum. The electric force is much smaller than the magnetic force and the electrons

attain a cyclotron motion. The small electric field is necessary to cause the electrons

to drift past the region marked A in Fig. II-9 where microwave transmitting and

receiving antennas can be located.

This scheme has been successful for injecting electrons of energies in the vicinity

of 2 key into magnetic fields of 900 gauss strength. An attempt will soon be made to

detect and study the third harmonic of the synchrotron radiation, with the use of an

X-band radiometer that is in the final stage of construction. Also, improvement of the

shielding of the electron gun from the fringing magnetic field has been undertaken in

order to inject electrons into stronger magnetic fields. This will make possible detec-

tion of the fundamental and second harmonics with the use of the X-band radiometer.

In a previous report (3) the contribution of magnetic-field gradients to the produc-

tion of cyclotron frequency harmonics was examined. That analysis showed that in the

present experiment the contribution of these effects will be negligible.

The negative absorption near the cyclotron frequency of the "transit -time " broadened

emission spectrum of a mildly relativistic monoenergetic electron gas has been calcu-

lated. The absorption coefficient a for a plane polarized wave with its electric vector

and direction of propagation both perpendicular to the steady magnetic field is

Re(- T )a (1)
0

where, according to Allis and Buchsbaum (4),

Re(a ) 3 Re - dv (2)
m 3 (v+j 1 )2 + W2b

and fo is the undisturbed isotropic distribution function.
o

If it is assumed that w w b and v/w << 1, then

2 m 3 8fo
Re(T ne 4 vv o (3)

T m 3 2 2 8v
0 b)

or, upon integrating by parts,

ne 4rr fo vv dv (4)
Re( m) n f o dv (4)T m 3 o 2 v
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The condition for negative absorption is that

fo a vvf K+ < 0 (5)
o av 2 2

over a proper range of v to make the integral in Eq. 4 negative. For a very narrow

distribution function, f , the condition is simply

V <0 (6)v 2 2

- V=V
o

The distribution function fo can be written cC 6(v-v ) merely to indicate that the width
0 vv

of the distribution function is so small that the term v v2 + is essentially

constant over this range of v. This is mathematically convenient in evaluating Eq. 4,

- - MAX

I / MA 02 Fig. I-10. The function ,(w).

/2 bv2

Wbb

but fo cannot be rigorously set equal to 6(v-v ) if the contribution to the Boltzmann equa-
0 0

tion of the higher spherical harmonic components of the distribution function are to be

ignored.

For constant v, inequality 6 becomes

W -Wb >3 c 2
> (7)2 2 2 2(wcob) + cb v

0

1 v\ ewhere w = b \ 2 I =b B, and m is the electron rest mass.
o o

Denote the left-hand side of inequality 7 t, then has the qualitative behavior
1

shown in Fig. II-10 for wo< wb, S < 0; and for w>> b, 0.

The range of frequencies for which inequality 7 holds is given by replacing the

inequality sign with an equal sign and finding the roots (w-wb)l, 2:
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2 22
Wb v bV

(W-W b)1, 2  
2  

2
3c 3c

The condition for real roots is that

-1/2

2
V

Cb V
o

v <
2

3c
(9)

In the present experiment, v is taken as a constant because the gas pressure is main-

tained so low (p < 10-8 mm Hg 2 ) that only the "transit time" of the electrons past the

microwave antenna contributes to the broadening of the emission spectrum. The transit

time in the drift region is determined by the drift velocity vd = E/B and is independent

of the speed of the electrons, v. Some typical conditions are vd = 104 meter/sec,

(v/c)2 = 0.004, Wb = 1. 76 X 1010 rad/sec, antenna width L = 0.01 meter. Then

b v 2) = 2.4 X 10 sec >7 X 10 sec = v, and (1/2rr)(w-o b 1,2= (0.0255,7.45) mc.

Also, v/w = 4 X 10 - 5 << 1, (1/2r)b -
= 40 mc, and w - b << c are compatible with

\ o
the assumptions used to obtain Eq. 3.

From Eq. 8 we see that amplification occurs over a very narrow range of frequen-

cies between the wider range from o b to Wb
If we3 0

If we set f 0 = (v-v 1 ), Eq. 4 becomes
4v 1

2
ReG, =ne v

Re(T) m 2 2+
(w-wb) + v

2
2 V1  (-wb)
31 c 2 b 2 2j

c o (w-wb)

The minimum value of Re(arT) occurs when is a maximum; and it occurs when

w - b = v. Thus

2 1 2 W b
Rene 1 1  1 2 vT min m 2v 1 2 v

(11)

Setting n = 10 14 electrons per cubic meter and utilizing the values of the parameters

in the example given above yields ami n = 500. This is obviously incompatible with

the assumption of small-signal theory involved in Eq. 1, and indicates the existence

of an instability.

The analysis is strictly correct only for an electron gas with an isotropic velocity

distribution. For an electron beam containing electrons in cyclotron motion, the dis-

tribution is certainly anisotropic in velocity space. However, the negative absorption

(10)
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effect is probably more closely tied to the energy distribution than to the isotropy of

this distribution, so that this analysis should yield the qualitative details; that is, for

sharply peaked energy distribution of the electrons, negative absorption takes place over

a narrow range of frequencies below and close to wb ; this range decreases as v
0

increases; and it increases with wb and v/c. The amplitude increases with decreasing
o

v. The effect is relativistic in origin.
J. D. Coccoli
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4. LOCAL INSTABILITIES CAUSED BY PRESSURE ANISOTROPY IN A

COLLISIONLESS PLASMA

a. Introduction

In an important class of plasma physics problems, notably those dealing with high-

temperature, low-density plasmas, the binary collisions between the particles are

unimportant, and the particles interact only through macroscopic electric and magnetic

fields. A property of a plasma of this type is that the pressure tensor will generally be

anisotropic. This will lead to certain types of instability that do not occur in an iso-

tropic, collision -dominated plasma.

In dealing with the problem of magnetohydrodynamic, collision-free shock waves

moving across a magnetic field, it is very natural to assume a purely two-dimensional

dissipation mechanism in the structure region of the wave; that is, a dissipation mech-

anism in which the energy is dissipated only in the particle's two degrees of freedom

perpendicular to the magnetic field. A dissipation mechanism of this type will lead to

an anisotropic pressure behind the structure region. It follows from the general con-

servation equations for mass, momentum, and energy, that this anisotropy will grow

without limits with increasing strength of the shock wave. It has therefore been sug-

gested that certain types of instability associated with this anisotropy may play a part

in the dissipation mechanism (1). In particular, this can be expected for strong shock

waves, in which a strong anisotropy would be generated by a purely two-dimensional
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dissipation mechanism. It is the purpose of this paper to investigate the conditions under

which instabilities associated with the anisotropy in the pressure occur.

b. Collision-Free Magnetohydrodynamics: Energy Principle for Stability

We shall confine ourselves to magnetohydrodynamic instabilities of a certain type

and investigate them through an energy principle (2). This energy principle is based

upon a magnetohydrodynamic description of a collision-free plasma in the presence of

a magnetic field. The description has been developed by several authors (2, 3). The

governing equations will now be presented. The continuity equation is

dp
dt = -pV v

where d/dt is the substantial derivative, p is the density, and v is the velocity. The

momentum equation is

dv
p dt= -- V . P + j X Bdt = -

where P is the pressure tensor, j is the current density, and B is the magnetic field.

The pressure tensor is of the form

P= Plee + p (I-e e)

where e = B/B is a unit vector along B, and I is a unit tensor. Two adiabatic equations

for the pressure are:

dpl
dt - -P IV v - 2p e • (e.Vv)

dpt

d = -2pV 7 . v + pie (e-Vv)

The second of these equations expresses the conservation of magnetic moment of the

particles, and the sum of the equations expresses adiabaticity. Ohm's law may be

stated: E + v X B = 0. Maxwell's equations are used in their usual magnetohydrodynamic

approximation: V XE= -aB/at, VX B = j, V - B= 0.

The conditions under which this description is valid are not completely known, but

it is assumed that they are essentially the same as those for which the ordinary

collision-dominated magnetohydrodynamics is valid, with the important change that the

Larmor radius of the particles must now be assumed to be very much smaller than all

other characteristic lengths in the plasma; in particular, smaller than the mean-free

path of the particles.

As we have mentioned, an energy principle for the investigation of the stability of
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static equilibrium states can be obtained from this description. This principle says that

a given, static-equilibrium state is stable, if and only if the potential energy is a mini-

mum. We shall not give the complete mathematical expression for this principle in the

general case, but confine ourselves to the class of situations whose stability we wish to

investigate. We shall confine our interest to instabilities that are excited by perturba-

tions of the equilibrium state that lie wholly "within the plasma"; that is, the initial per-

turbation vanishes on the plasma's boundaries. More specifically, we assume that the

initial perturbations are such that they vanish outside a finite region whose boundaries

lie wholly within the plasma. It is clear that in an unbounded medium all instabilities

will be of this type. Hereafter, it is to be understood that "instability" means an insta-

bility of this type.

For instabilities of the type described, the energy principle can be expressed as

follows. A static-equilibrium state is unstable if and only if there exist a perturbation

g(r) and a volume V, wholly within the plasma, which are such that:

(a) a(r) = 0 outside and on the boundary of V and (b) the change in potential energy,

6W, of the system caused by this perturbation is negative.

The change in potential energy is given (2) by

6W _- I d -q2_(QX×)+ 5 P -(0-2+(Ft)(M'Vp )+ 1 p,(V'-3q )2+qV'( pI -p))

+(p -p i) [(e-V_)- (V -e)-( -Ve). (V . e)-4q2+ (e _2-( -Ve) -(e.V )] (1)

where

Q V x ( xB) (2)

and

q = e (e.V7) (3)

In Eqs. 1-3 all quantities take their unperturbed values (except , of course).

c. Instabilities in a Uniform Plasma

We shall now consider the equilibrium state in which all quantities are constant in

space. Introduce a Cartesian coordinate system with x-axis along B. Introducing the

symbols a p /B2 and p p /B2, and using Eq. 1, we obtain

12 2 2 (2 2

W d - B2 (+a-P) ( +Z (1+3) 2 + (1+2a)(V*) 2

2 (a ax 4

(_a 8x + (a-P) a ( ax/



(II. PLASMA DYNAMICS)

We can now perform the transformations:

[q x a_ ax(a-- -x .) a- [(a-j)(-V )] -7• (a-P)

F / 2  (1+a)2 2x
(1+2a)()2 2()(V) - (1+a)x 1+ a x

ax - 1+ 2a axK 1+ 2a x

Substitute these transformations in Eq. 4. Then we get

22 a7 z!2 ( 2

6W 2 d B (1+a-) x + 2 + (1+2a)(V') - (1+a) --

+ (3- 2 2 (x + [(a-P)(-0Vx)] - V -p) a x (5)

From the boundary conditions for on the boundary of V, it follows that the last two

terms in the integrand will give no contribution to the integral.

It is now easy to find a sufficient condition for stability. We have

6W >B d

Introduce A - 1 + a

if A > 0 and C > 0.

T (1+a- ) + a
Ia ) 2

i3 a1+ ( ax

- P and C - 3P - (a2/1+2a). It is clear that for all and V, 6W > 0,

The curves A = 0 and C = 0 are drawn in Fig. II-11. We see that

Fig. II-11. Regions of stability (unshaded) and
instability (shaded).

A = 0 implies C > 0, and that C = 0 implies A > 0. Hence, we can say that A > 0 and

C > 0 is a sufficient condition for stability.

We shall now show that this condition is also necessary for stability. This is equiv-

alent to showing that A < 0 or C < 0 is sufficient for instability. Define a function as

(x, y, z) = (1 - cos mx)(1 - cos ny) f(z)
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where m and n are integers, f(z) = 0 for z = 0 and z = Zrr, and is arbitrary otherwise.

Choose a perturbation which is such that

x ay

8y ax

tz 0

inside K = 0 outside K

where y = a/(1+2a), and K is a cube with corners in the points: (2wr, 0, 0), (0, 2w, 0),

(0, 0, 2w), (2w, 2w, 0), (2w, 0, 2w), (0, 2wT, 2w), (2w, 2w, 2w), (0, 0, 0). We see that _ is con-

tinuous and vanishes on the boundary of K, and that is so chosen that

(1+2a) V - (1+a) = 0
For W we getx

For 5W we get

SW = B
2

K

2

dTr Aa x2

2

Y2+ xy

which yields

B 2  2r
5W =--

2 0
f(z) 2 dz (Ay 23w 2 2 +C2 n 2 ) m 2

We see that if either condition, A < 0 or C < 0, is fulfilled, then SW can always be made

negative by a suitable choice of m and n.

The net result is, therefore, that the plasma is stable if and only if both A and C

are greater than or equal to zero. The regions for stability and instability are shown

in Fig. II-11.

d. Comparison with Previous Results

Hydromagnetic instabilities of the type considered in this paper have been mentioned

by W. B. Thomson (4). He states that instabilities will occur if P >> a and P > 1/4. It

appears that the second of these conditions is not in conformity with our results. Agree-

ment is reached if the condition p > 1/4 is replaced by p > 1. The result given in

Thomson's paper is based upon the same energy principle as the one that we have

employed. Since the calculations leading to this result are not published, we cannot

find the reason for this (slight) lack of agreement.

Rosenbluth (1) has investigated the stability of hydromagnetic waves in a uniform
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2 3 4

Fig. II-12. Regions of stability (unshaded) and instability (shaded) according
to M. N. Rosenbluth.

plasma of the type considered in this report. According to him, a sufficient condition

for instability is given by

2
A= 1+ a- <0 or D= 2 <02p

The curves for A = 0 and D = 0 are drawn in Fig. 1I-12. The condition A < 0 is identical

with our own. The condition D < 0, however, is essentially different from our C < 0.

We note that Rosenbluth's result implies instability - even in the isotropic case. This

is surprising. It follows directly from the basic energy variation integral in Eq. 1 that

5W is positive for all _ if we set p =

e. Two-Dimensional Generalization

We shall now treat a more general equilibrium state than the uniform one. The mag-

netic field is assumed to be everywhere parallel to the x-axis, and all equilibrium quan-

tities are assumed to be constant along this axis. The variations perpendicular to the

x-axis are arbitrary and subject only to the equilibrium conditions.

The equilibrium condition is

-VP + j X B = 0

This can be rewritten

if we remember that - (p + is assumed to be equal to zero. For SW we obtain,

from Eq. 1:
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1W 2 i k2 5 p3( )2 at 2

6W = d -j.(Qx)+(7)( .Vp I ) +-p 3

a (21 ) (V( )+ x II L) (7)
+(P-PI) \ax/ + \ \ [( p (7)

Now it can be seen that

(aa ) F aa7 1
(p-L (V - [t(p -p1i1)] = [(p -p,)(.Vx)] - V (8)

ax ax a (8)

For the term Q2, we obtain

2 at 2 2 2 2 (a ( _x .2  )Q = B I-x + B2 ( (70 +t (-VB (  ) 2B (9)
a x x 8x -

The term -j . (QXt) gives

-j. (Q xg) = (.V ) - V (V - - (-VB) 2 
-)( (2 (10)

Substituting Eqs. 8, 9, and 10 in Eq. 7, we get

6W I dT B 2 + B 2 (V.) 2 - 2B2 x(V't) +5 P (v ' )2 + V - 3 -
,ax) 2_x-+3 1  ax

K 2 >2{'j

I (pii ax a d'7 (+ -2 a( t v pl-

[ P(PPII) a •j (11)

From the equilibrium condition and the assumption that t is equal to zero on the bound-

ary of V, it follows that the last integral in Eq. 11 is equal to zero. It is easy to see

that the other integral is identical with the integral in Eq. 5. Hence, by employing the

same technique as that used in the uniform case, essentially the same stability conditions

will be obtained. However, there is a difference in the two cases, due to the fact that

a, P, and B 2 no longer will be constants. It will be realized from the treatment of the

uniform case that the size of the volume V is unimportant and can be chosen arbitrarily.

Hence we can choose it to be so small that the variations of a, p, and B 2 become unimpor-

tant in the integral.

The stability condition can be formulated: The equilibrium state is stable in a cer-

tain region if and only if A > 0 and C > 0 in all points in the region.

K-F. Voyenli
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5. PLASMAS IN TRANSVERSE MAGNETIC FIELDS

This report is a continuation of a previous report (1) on an investigation of steady-

state configurations of plasmas in a plane transverse to the magnetic field in which they

Z

Fig. 11-13. Summarizing the geometry of the problem.

SX 2  
X

are immersed. The plasma is assumed to be collisionless and uniform in the y- and

z-directions (see Fig. 11-13). The electric and magnetic fields are static, unidirectional,

and mutually perpendicular, and are allowed to vary in the x-direction only.

d
E = ixE(x) = -ix dx (1)

dA
B =i B(x) = -i (2)y y dx

The electric and magnetic potentials defined in these equations are subject to the

requirements:

d2 q

2 E [nix)-ne(x)] (3)

dA2 - o iq [ r( x ) - F e x )]  (4)
dx

where n is the particle density, and r is the magnitude of the flux-density vector izr.
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A slight modification is introduced here, in that n and 1 are expressed in terms of

the perigee distribution in phase space f (x 1 ,V 1 ). The quantity f dx 1 dv1 represents the

number of particles per unit depth (y) per unit length (z) that have perigees in the range

(xl', dx 1 ) and perigee velocities in the range (v l , dvl).

In order to formulate n and F, we need expressions for the velocity components of

each particle. These are obtained from the equation of conservation of energy,

q (x) + 1 mv x +mv z = q(x ) + mvy = u (5)

and from the conservation of the z component of the canonical momentum,

qA(x) + mv z = qA(x 1 ) + mvl = p (6)

Time has been eliminated by setting

dx
dt = (7)

v x

in accordance with the assumptions stated above. The velocity components of a particle

are then available in terms of its instantaneous position x, its perigee position x 1 , and

its perigee velocity v 1 . These expressions are used to define the gyration period,

T(x1, 1 dx (8)

x x(x, xl v1 )

the guiding-center position,

x (x 2 g 2  x dx (9)
xg(X1 ,v 1)  Vx(X ' x 1 VlI

and the guiding-center velocity,

2 g2 vz(x,xl,v 1)vg(x , v 1 ) 9 x, xVLdx (10)

where g 2(X 1 ,V 1) is the apogee of a particle whose perigee is at x 1 and whose per-

igee velocity is v 1.
dx

2dx
Finally, recognizing that each particle will spend a fraction- of its time in the

range (x, dx), we can formulate n and I as T vx

n(x) = 2 dv fl(X )  1 dx 1  (11)
T(X I , V) IVx(x,xl, V1 )1

S gl 1 x 1
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cox
Sfl(x 1 'v 1) Vz(X' x l ' v 1 )

F(x) = 2 dv1  dx 1  (12)
;c T( 1 , V 1) Vx(x, X, v1)I

where gl(x, v 1 ) is the perigee of the particle whose apogee is at x and whose perigee

velocity is v 1 . The limits on the xl integration in the last two equations represent the

range of perigees of the particles that can reach x.

If v 1 can be related to x I , we eliminate it from these equations and replace fl(x1 ,v 1 )

by the perigee density distribution nl(x1 ).

a. The Perigee Distribution in Phase Space (PPD) and the Boltzmann Distribution

Function

The PPD was introduced in order to permit the formulation of the problem in terms

of the results of an exact trajectory analysis. We need to relate it to the Boltzmann

distribution function, f(x,vx ,vz). To accomplish this, we construct the function

f'(x, vx, vz xlV 1 ), which tells us how many particles in the phase -volume element

[(x, dx), (vx, dvx), (vz , dvz)] have perigees within [(x I , dx 1), (v 1 , dv 1 )]. The five variables

involved in f' are ostensibly independent. However, f' must vanish unless these vari-

ables satisfy the equations of motion, Eqs. 5 and 6. We therefore construct f' from the

integrand of Eq. 11 combined with Eqs. 5 and 6:

f' = X1' 1 /2 1 v1)-q(x)- 2mv uo vx- [p(x 1 , v 1 )-qA(x)]
T(x, V 1) Vx

(13)

where uo is the impulse (or Dirac delta) function. Omitting the details of the integra-

tion, we obtain the Boltzmann distribution function

fl (a, P)  1
f(x,vx,v z ) = 2 (14)

T(a, p) (q/m)[E(a)-PB(a)]

where a and p are the perigee position and velocity of the particle that has the velocity

components vx and v at x, and satisfy the equations

1 2 1 21 2
q(a)+ 2 m = q(x)+ mv x  mv = u (15)

qA(a) + mp = qA(x) + mv z = p (16)

Note that f' is indeed expressible in terms of the constants of the motion, u and p.

Note also that (q/m)[E(a)-PB(a)] is the perigee acceleration of the particle.



(II. PLASMA DYNAMICS)

b. Transport Equations

Having established the connection between the PPD and the Boltzmann distribution

function, we are assured that the transport equations can be constructed from it. The

conservation of mass is trivially satisfied. The conservation of momentum can be

obtained by defining the pressure -tensor component

-2 0 : x f I V
P = -nm = 2m dv x Iv dx (17)

and differentiating it with respect to x. Since v vanishes at both limits, we need only
f 8v X

evaluate the integral of - a The derivative av /ax is evaluated from Eqs. 5 and 6
T 8x x

and substituted in the integral. Comparison of the form of the resultant integral with

Eqs. 11 and 12 leads to the familiar equation

dP
0 dx + qn(x) E(x) - qF(x) B(x) (18)

c. Guiding-Center Velocity and Flow Velocity

The derivation of Eq. 18 is not surprising (the macroscopic variables "do not know"

the distribution function from which they were obtained). It does, however, emphasize

the fact that the results of orbit theory and transport theory must agree, despite the fact

that the guiding-center velocity, v , generally differs from the flow velocity, vf = r/n.

We might mention the case of the uniform plasma immersed in a transversely varying

magnetic field; here, the difference is acute vg a Xgrad B2 vf = 0), but it has been

reconciled by Spitzer (2) and Tonks (3) in the limit of small orbits. To this we might

add the case presented in our previous report (1), in which a uniform electron plasma

is immersed in a uniform magnetic field and supports a linearly varying electric field.
2

In this case, V = E X B/B , whereas Eq. 12 predicts no flow.
g

To establish the connection between the two velocities, consider a filament of parti-

cles with perigees in the range (x 1 ,dxl) and perigee velocities in the range (v 1 ,dv 1 ). The

contribution of these particles to the total flux across any plane, z = constant, can be

computed in two ways. On the one hand, we can assign each particle a guiding-center

velocity v g, and express this contribution as

61 = dx 1 dvlf 1 (x1'v) Vg(x 1 ,V) (19)

On the other hand, we can consider the contribution of these particles to the flux density

given by Eq. 12:
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f V
6F(x) = 2dx dv1 z (20)

This expression is valid only in the range g 2 (x 1 ,v 1) > x > xl; the flux density vanishes

outside this range. The total flux of these particles is, then,

xg 2  2 g 2 z dx (21)
61 = 6F(x) dx = dx 1dv 1 f (x1' , 1V dx (21)

x x IvxI

The expressions given in Eqs. 19 and 20 are identical, by virtue of Eq. 10. We can

generalize this result to any finite slab of plasma, concluding that the total flow in such

a slab is given correctly by either method of accounting.

In order to apply these results to the specific cases mentioned above, consider

the semi-infinite slab of plasma shown in

z Fig. 11-14. In order to terminate the slab,

PLASMA LOUNDARY we ask that fl shall vanish for x>bl. There

F=0 will be a boundary layer b 2 > x > b l , which

is established by particles whose perigees

o B lie within two Larmor radii at the left of

b . In both cases, Eqs. 12 and 18 would
VB or E

S2rb b b predict no net flux density for x < b 1 , while
Y b-2r b  b X

the equations of motion indicate that each

Fig. 11-14. Boundary layer at the edge particle has a finite guiding-center velocity
of a pasma slab. v . However, the apparent guiding-center

g
flux calculated from vg really resides in

the boundary layer, and is computed correctly by applying Eq. 12 to that layer. Note that

this renders the analysis previously reported (1) exact, since the assumption of a uniform

magnetic field in the body of the plasma is consistent with the absence of flux in that

region.
S. Frankenthal
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RESEARCH OBJECTIVES

1. Plasmas for Electrical Energy Conversion

During the coming year the work of this group will be concerned with the following
problems:

Interaction between an Electron Beam and a Plasma. Theoretical and experimental
studies are being made of the levels of oscillation that can be induced in a plasma by a
high-speed electron beam. Present experiments are based on the hollow-cathode arc
and a 10-kev, 1-amp electron beam. Other experiments, with the use of two beams, or
of a reflected electron beam, are now being planned.

Hollow-Cathode Arc. The hollow-cathode arc has turned out to be an extremely
interesting device. We plan to make detailed parametric studies of its characteristics.
The effects of arc length, magnetic-field strength, and thermal properties of the cathode
on electron density, temperature, and diffusion will be studied.

Reflex (Penning Ionization Gauge) Discharges. Noise and diffusion properties of
reflex discharges are being studied. Our principle interest is in determining what fac-
tors govern the limiting charge density in such discharges.

High-Power Microwave Discharges. Studies have been made of the maximum elec-
tron density attainable in a high-power, microwave discharge, with no dc magnetic field.

13 14
With pressures of approximately 1 mm Hg, electron densities of 10 -10 /cc can be
achieved. In the coming period, the use of a superimposed dc magnetic field will be
studied. This will allow much more power to be coupled into the plasma if w = wc , and
thus a larger percentage of ionization will be attainable.

Millimeter-Wave Diagnostic Tools for Plasmas. A 2-mm (150 kmc) system for
studying plasmas is being designed. Lenses and horns for producing collimated and
focused beams are being designed.

Magnetohydrodynamic Power Generation. A theoretical study will be made of the
possibility of generating power through the interaction of traveling waves with fast
streams of conducting gases. Such schemes provide certain advantages over dc mag-
netohydrodynamic generators, such as the absence of current flow from gas to wall, and
direct generation of ac power.

Thermal Noise in Plasmas. The theoretical work already reported on thermal noise
in uniform dissipative media will be extended to nonuniform media. Application to the
study of noise in plasma sheets will be sought.

Plasma Waveguides. Theoretical work on uniform plasma waveguides will
continue.

L. D. Smullin, H. A. Haus, A. Bers

This work was supported in part by National Science Foundation under Grant G-9330.
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2. Plasmas for Nuclear Energy Conversion

This group is concerned with the eventual conversion of nuclear energy to useful pur-
poses with the use of plasmas. Our principal activity is research in plasma physics and
related fields that are basic to any future development of controlled fusion. This work
is divided into studies of plasma kinetic theory, related particularly to plasma ther-
malization, energy transfer, and stability; experimental study of small highly ionized
plasmas; plasma acceleration, both for plasma injection in possible fusion devices and
for space propulsion; and the engineering developments necessary for large plasma
devices such as superconducting magnet systems. Another activity is related to the
application of cesium plasma diodes to direct conversion of heat from hot fission reac-
tors to electricity.

D. J. Rose

1. THERMAL NOISE FROM PLASMAS

In order to account for the noise properties of lossy networks in thermodynamic equi-

librium, it is customary to introduce noise sources that are associated with the resis-

tors of the network. This amounts to writing Kirchhoff's equations with random driving

terms. The properties of these sources are then derived from Nyquist's noise theorem.

A similar procedure is used in this study to account for the noise generated by linear

lossy electromagnetic media (1). A random current-density driving term is added to

Maxwell's equations. An extension of Nyquist's reasoning allows us to determine the

statistical properties of these noise currents. The only restriction imposed upon the

type of medium that can be handled in this way is that is must be linear and time -

invariant. This means that the current .,ensity in the medium will be given by a relation

of the form (column matrices represent vectors):

J(r, t) = da dT g(F Is, t-a) E(9, a)

or in the sinusoidal steady state at frequency f:

J(F, f) = dT G(f IY,f) E(s,f)

Here, g and G are dyadic Green's operators and are the Fourier transforms of each

other, and C is the volume covered by the lossy material.

The relation that is obtained from Nyquist's argument is that the crosscorrelation

matrix of the random driving-current sources J(F, t) is given by

T
( , 7) T= lim dt J( , t+T) J(g, t)

T-oo 2 T

= kT [g(r s, T)+g(s Ir, -T)]
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The cross -power density matrix is likewise given by

#(r Ig, f) = kT[G(r ], f)+G + ( r, f)]

These results state, then, that at thermodynamic equilibrium, the noise-current corre-

lation matrix is proportional to the loss matrix of the medium, the proportionality con-

stant being given by kT (k is Boltzmann's constant, T is the absolute temperature). Since

(FIs, f) is a positive semidefinite operator, in the sense that

S r dTrds u
+( ) ( I, f) u(s) > 0

we find that the noise generated in a medium can only be accounted for by a source

term in Maxwell's equations if the loss of the medium is also positive semidefinite. This

is obviously the case for passive media.

Onsager's reciprocity relations can be formulated in a very general way: (f J, T)

must be even in T or c(l -, f) must be pure real. This is known as the condition for

microscopic reversibility.

The formalism was applied to a one-dimensional, collision-free plasma (Landau

assumptions) under small-signal conditions. This is a medium in which current

and electric field are related by a set of linear integrodifferential equations. The

inhomogeneous case was treated by finding g(f [, T) by the method of characteris -

tics. Expressions were found for #(i , T) and 4(Fjg, f) in terms of integrals per-

taining to the unperturbed electron motions. We found that the conditions for

microscopic reversibility and for positive semidefiniteness of the Landau loss were

met.

Three simpler cases that yield a better insight into the physical aspects of the prob-

lem have been treated: (a) an unbounded homogeneous plasma; (b) a homogeneous plasma

of infinite extent but bounded by an impenetrable wall; and (c) a homogeneous plasma

bounded by two parallel impenetrable walls. In case (c) the losses are due solely to

electrons that travel back and forth between the walls in a time that is equal to an exact

multiple of the rf period.

These three cases have also been treated by direct integration of the Boltzmann equa-

tion. The results are identical with those of the previous method, but only if, in some

improper integrals, the frequency variable p approaches the jo-axis from the right.

This reflects the fact that in all physical situations, we start with an unexcited plasma;

p is thus used as a Laplace transform variable. It is only under this condition that the

computed loss (with no collision term in the basic equations) will represent the limit

toward which the losses of an actual plasma will tend if collisions become very infre -

quent. The Green's -function approach does not involve these fine points about limits
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of improper integrals, because the fact that we start with an unexcited plasma is

built into the causality condition g(F J, T) = 0 for all T < 0.

M. C. Vanwormhoudt
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2. MICROWAVE DIAGNOSTICS OF THE HOLLOW -CATHODE-DISCHARGE PLASMA

The object of our preliminary microwave diagnostic experiment was to determine

the approximate electron density in the center of the plasma column of the hollow-cathode

discharge. In our most recent experiments, we used essentially the same microwave

reflection method described in Quarterly Progress Report No. 58, pages 35-41, except

that the microwave oscillator frequency

was fixed at 36 kmc and the variation of
MAGNETIC INDUCTION = 300 GAUSS

50 PRESSURE = 9x104 MM Hg power reflected from the plasma was
FLOW RATE= 100 cc -atm/min observed as a function of discharge cur-

40 -

rent instead of oscillator frequency. The
3 30

Sreflected power was determined by meas-
L 20 -

oJ uring the dc component of current through
1 10

Sa crystal mounted on the directional
o 10 20 30 40 50 60 70 80

coupler (1). An example of our measure-
DISCHARGE CURRENT (AMPERES)

ments is shown in Fig. II-15 for the given
Fig. 11-15. Experimental curve of crys- In the arc current

discharge parameters. In the arc currenttal current proportional to
reflected power as a func- range (20-40 amp) the plasma changes
tion of discharge current. from a transparent to an opaque medium;

this indicates that the effective electron

density for this particular curve is of the order of 1013 electrons/cc. A density meas-

urement made with a Langmuir probe placed near the edge of the visible discharge

column yields the same order of magnitude with the discharge current set at 20 amp.

We conclude, therefore, that for the given operating conditions, the plasma has an aver-

age density in the range 1013-1014 electrons/cc.

We have found that curves similar to the curve of Fig. II-15 could be obtained over

a narrow range of pressure and gas-flow rate with the oscillator frequency fixed at

36 kmc. The effect of higher magnetic induction is to shift the transition from trans-

parency to opacity toward lower discharge currents.

Further information about the plasma can be obtained from a simple analysis of this
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Fig. 11-16. Fraction of incident power reflected from a semi-infinite plasma
for various values of vm/.

experiment. The general shape of the reflected power curve suggests that the semi-

infinite, uniform plasma is a reasonable model of the plasma produced by the discharge.

Since the cyclotron frequency is negligible in comparison with the plasma resonant fre-

quency, the relative dielectric constant of the plasma is

2 1
K=l-a

1 - j(Vmi )

where a = o /w and vm is the electron collision frequency. The ratio of reflected to

incident power for an incident TEM wave is

2
1- K

R=
1 + /K-

This equation is plotted in Fig. II-16 for various values of vm/, the ratio of the colli-

sion frequency for momentum transfer to the frequency of the externally applied field.

If we assume that the electron density is proportional to the discharge current, the coor-

dinates of our experimental curve differ from the coordinates of Fig. II-16 by constant

factors. Using these two constants to normalize the coordinates of our experimental

curve, we obtain an approximate fit to the theoretical curve for v / = 0. 1 in Fig. II-16,
10 -1

and as a result we obtain v = 2.3 X 10 sec If we assume an electron temperature

of 3 ev, which is a reasonable assumption based on the results of our work with Langmuir

probes, and use a collision probability, taken from Brown (2), for electrons in argon of

25 collisions/cm, we find that the pressure required for the suggested vm is approxi-
-3

mately 7 mm Hg, compared with 10 mm Hg at the gauge. The existence of this pres-

sure difference is unlikely in the arc vacuum system, even if we consider the effect of

the jet of gas emerging from the hollow cathode. The frequency of collisions between

electrons and ions has also been calculated by using the formula given by Spitzer (3).

Assuming that the charged-particle density is 2 X 1013 particles/cm 3 , we find that the
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8-l
electron-ion collision frequency is 2 X 108 sec - 1 , or v /w = 0. 001. Electron collisions,

m
therefore, are not solely responsible for the rounding of our experimental curve. In

order to obtain more detailed information about the discharge plasma from this experi-

ment, it will be necessary to investigate the effects of electron-density gradients and the

radiation pattern of the waveguide on the reflection coefficient. In addition, we must

determine whether or not the assumption that discharge current is proportional to elec-

tron density is valid.
W. D. Getty
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3. MEASUREMENT OF A DENSE PLASMA IN A RESONANT CAVITY

The usual method of determining the electron density and collision frequency of a

plasma in a resonant cavity is through the measurement of the perturbing effects of the

plasma on an empty-cavity mode. This method is limited to the measurement of elec-

tron densities less than, or at most, slightly greater than that which produces plasma

resonance (w = w ). In this report a perturbation technique is developed that utilizes the

perturbation of a cavity mode which would exist if the plasma were replaced by a perfect

conductor. This method is valid only when the plasma frequency is much greater than

the applied frequency and, therefore, is useful for measuring a dense plasma that par-

tially fills a resonant cavity.

Everhart (1) has shown that the ac conductivity of a plasma is given by

2

= wE (1)
j + (v /co)

where w is the plasma frequency; v is the electron collision frequency for momentum

transfer; and w is the applied frequency. This equation assumes vc to be independent

of electron energy. The permittivity and permeability are those of free space (Eo and

fo).

The intrinsic impedance and propagation constants of a uniform plasma medium

can be found from Maxwell's equations and from Eq. 1:
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Zp= 1/2 1/2 1/2(2)

and

S= [ju* (+jEo)] 1/2 --P 1 (3)

S
[1-j(v/W)] 

1/2

where c is the velocity of light. The approximations in Eqs. 2 and 3 are valid when w
p

is much greater than w. The electrical skin depth 6 is obtained from Eq. 3.

21/21 c [I+ (Vc/W)2]
8 - - (4)

Re Re[1+j(vc/w)] 1/2

Notice that both Z and 6 approach zero as wp becomes infinite and the plasma appears

as a perfect conductor. This suggests treating the effects of a dense plasma on the prop-

erties of a resonant cavity in the same manner as the effects of good, but not perfect,

wall conductors are treated.

The shift of the resonant frequency of the cavity and the change in Q caused by a

perturbation are obtained from Slater's (2) perturbation formula for cavities. The per-

tinent relations are

-Im E X H da
' o - p 0(5)

2W 2 .H . H dT

and

Re E X H da
1 1 P o

(6)
0 o - -*LH dT& Q i~H d7

The zero subscripts refer to unperturbed quantities. The surface integrals in the

numerators of Eqs. 5 and 6 are to be evaluated over the surface of the perturbation,

while the integrals in the denominators are to be evaluated over the cavity volume.

These equations can be applied to a dense plasma in a resonant cavity in the following

manner. The cavity is assumed to be unperturbed when the volume occupied by the

plasma is replaced by a perfect conductor, in which case the quantities H , w' and Qo

are assumed to be known. The perturbed fields E and H can be expressed approximately
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FREE DENSE
SPACE in PLASMA
Z=Zo , Z=Zp

H

Fig. 11-17. Model showing the orientation of a uniform plane wave normally incident
on a semi-infinite plasma.

in terms of the unperturbed fields by considering plane wave reflection from a semi-

infinite uniform plasma (see Fig. 11-17). The fields that exist at the surface of the

plasma are found by matching boundary conditions at this surface. We obtain

-Z i X H
pn o

E = (7)
1+ (Zp/Z o)

H
H = (8)

1 + (Z p/Z )

where H is the magnetic field that would exist at the surface if the plasma were replaced

by a perfect conductor, and Z = (o /E) 1/2 is the intrinsic impedance of the medium to

the left. If Wc is much greater than o, these equations can be simplified to

E =-Z i XH (9)
pn o

H = H (10)

Equations 9 and 10 can be used for calculating the perturbation caused by a finite

dense plasma in a cavity if the electrical skin depth 6 of the plasma is much less

than any plasma dimension. The substitution of Eqs. 9, 10, and 2 in Eqs. 5 and 6

yields

1/2

2w Re1 - j Kg (11)

p

and

1 1 _ Im (I- j Kg (12)

where Kg is a geometrical constant given by



(II. PLASMA DYNAMICS)

H 12 da
Kg = 2 da (13)

: I-o2 dT

Thus a measurement of the cavity frequency shift and the change in cavity Q caused

by the dense plasma will determine both cp and vec
T. J. Fessenden
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4. POWER, ENERGY, GROUP VELOCITY, AND PHASE VELOCITY IN

BIDIRECTIONAL WAVEGUIDES

a. Introduction

Some general properties of a broad class of lossless, passive, uniform wave-

guides are being investigated. This class we refer to as "bidirectional." We define

a waveguide mode, which propagates as exp(-TFz), as bidirectional if it is possible

to excite another wave of basically the same field structure that propagates as

exp(+lUz). The z-direction is along the waveguide axis, and I is the complex prop-

agation constant.

Waveguides that come under this classification are: (a) those containing isotropic

materials; and (b) those containing gyrotropic anisotropic materials with the gyrotropic

axis along the waveguide axis. The materials may be inhomogeneous with respect to the

waveguide cross section; however, for a given transverse coordinate the materials are

axially invariant. A general feature of the materials under consideration is that we

allow them to be dispersive; that is, their permittivities and permeabilities may be

frequency-dependent. Ferrites and plasmas are prominent examples of dispersive

media.

For dispersive media, care must be exercised in the interpretation of stored elec-

tromagnetic energy (1-4). It turns out that the so-called energy terms that appear in

the complex form of Poynting's theorem do not really represent the time-average energy

storage in dispersive media. To distinguish between the actual energy and the energylike

terms in Poynting's theorem, we shall refer to the latter as "pseudo energy." The

pseudo energy is the same as the actual energy in nondispersive media.
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b. Energy, Power, and Group Velocity

The group velocity of a propagating mode is found from an energy theorem (5) which,

for lossless, passive, uniform waveguides containing dispersive media, can be shown

to be

K T T + *a .H i da = -j E E E+H _.L -H da (1)

where the subscript T denotes a field component transverse to the z-direction. The

integral expressions, with the integrations carried out over an entire cross section of

waveguide, depend only upon the z-coordinate. The quantities E and -I are forms of

the permittivity and permeability that give the true energy from the fields, and they are

given by

E a -] (2)

a [L~f (3)

We note that for nondispersive media, E and VL reduce to E and ii, respectively.

We express the fields of a propagating wave by

A -jz B eA - A - j3z

E(x, y, z) = Ee = [ T+izEz] e (4)

A -jpz A A

H(x, y, z) = H e = lH T+iz H] p (5)

Harmonic time dependence e jt is understood. The circumflex over a field quantity

indicates that it has only transverse spatial dependence. When Eqs. 4 and 5 are sub-

stituted in Eq. 1, we obtain the reciprocal of the groip velocity:

ap W
8w P (6)

where

W=W +W (7)e m

1 ^* - ^

W = -E E da (8)e 4 - -W -

Wm1 i* - A
W = - I* - H da (9)m 4 -
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1 A A* -
P =-Re E  X H T  i da (10)

2 T T z

We interpret P as the time-average power flow in the wave and W as the total time-

average energy stored per unit length; W is composed of energy stored in the electric

field, in the magnetic field, in the polarization, in the magnetization, and in the kinetic

energy of the vibrations of the electric and magnetic dipoles.

Equation 6 applies to all lossless, passive, uniform waveguides, regardless of whether

or not they are bidirectional. We confine the following discussion to bidirectional wave-

guides because of the elegant relations that can be derived for them.

c. Pseudo Energy, Power and Phase Velocity in Bidirectional Waveguides

Waveguides containing materials whose permittivities and permeabilities are of the

general form

S -jE 2  0

E jE 2  E1 (11)

0 0

1 l 2 0

I= 2 1 0 (12)

0 0 3

can be shown to be bidirectional (6). Expressed mathematically, if a wave of the form

[A A -Iz

H+ T+iz z ] e- Z  (14)

can be excited, it is also possible to excite a wave traveling in the opposite direction of

the form

A A- + Fz
E = [-ET+izE e (15)

- A - A +z

H = +HT-i H z ] e (16)

The subscripts plus and minus denote, respectively, the forward-traveling and backward-

traveling waves. Now, if we place a shorting plane across the waveguide cross section

at z = 0, it is possible, because of the property of bidirectionality, to set up a standing
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wave of the form

- ET e - r z +rz
E = E T[e -e (17)

H T = H[e +e ] (18)

A -rz +r z
E = [e +e z] (19)-Z -Z

^ -rz +rz
H H [ - e ] (20)-- Z -Z

For lossless, passive, uniform waveguides, the integral form of the Poynting theo-

rem requires that

ap

=z -j2w[U -U ] (21)m e

where

1 - -* -
P - E XH i da (22)2 -T -T z

1 -* = -
U Hm H • H da (23)m 4

1 -* - -
U E = - E da (24)

The time-average complex power flow per waveguide cross section is given by P. The

time-average magnetic pseudo-energy storage per unit length of waveguide is given by

U m, and the time-average electric pseudo-energy storage per unit length is given by

Ue. In text books, W is commonly used to denote the stored energy terms in Poynting's

theorem. For dispersive media these energylike terms, or pseudo energy, no longer

represent the true energy storage. We use the symbol U to denote pseudo energy, and

we reserve the symbol W to denote true energy.

When we apply the special form of Poynting's theorem given by Eqs. 21-24 to the

fields of the standing wave, Eqs. 17-20, and if we let

F = a + jp (25)

we obtain the expression

[a cosh 2az + jp cos 2pz]P = jO[(Um-Ue) cosh 2az + (UT-Uz) cos 2pz] (26)

where, now,
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1 A * -
P - E XH i da (27)

2 -T -T z

1 A* A
U H - -H •H da (28)
m  4-

U Ee • . E da (29)

U T = UeT + UmT (30)

U = U +U (31)
z ez mz

1 A* A ^
U -E -E E da (32)eT T4 T -T " T

1 ^ A ^
UmT 4  H - -Hda (33)

Uez =4 ~ 3 z 2 da (34)

1 1 ̂Umz 3Tf iIz 12 da (35)

E 1  jE 2

ET =  (36)

jE 2  El

1142

1T =  (37)

jL 2  i

The quantity Um is the time-average magnetic pseudo-energy storage per unit length in

the incident wave; U is the similar electric quantity. The contribution of the transverse
e

fields to the time-average pseudo-energy storage per unit length in the incident wave is

given by U T , and the contribution of the longitudinal fields is given by U z .
Equation 26 gives us a great deal of novel information that is summarized in

Table II-1.
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Table II-1. Pseudo energy and power relations in bidirectional waveguide waves.

Propagating Waves = jP P = P P = (U Uz) Um U

Cutoff Waves F = a P = jQ Q =(Um-Ue) U =U

Complex Waves r = a + jp P = 0 U =U U U
-_ e T z

We see from Table II-1 that propagating waves carry pure real power, cutoff waves

carry pure reactive power, and complex waves carry no net power at all. Also, we see

that in propagating waves, we have an equipartition between electric and magnetic pseudo

energy, a result that is well known for nondispersive materials. In cutoff waves, we

have an equipartition between transverse and longitudinal pseudo energy. And, in com-

plex waves, we have an equipartition between electric and magnetic pseudo energy, as

well as an equipartition between transverse and longitudinal pseudo energy.

d. A Theorem Relating Group and Phase Velocity in Bidirectional Waveguides

The result

P = (U -Uz) (38)
p T z

is most interesting because it is the first time that phase velocity, w/P, has been related,

in general, to the fields of a mode. We may regard this expression as a definition of

phase velocity, just as we commonly regard Eq. 6 as a definition of group velocity.

By the elimination of P between Eqs. 6 and 38, we derive the theorem

W U(39)a8 UT - U z

which we shall refer to as the "Bidirectional Waveguide " theorem. We note the general

property that group velocity has the sign of the power, since W represents the true

energy storage and is hence always positive. Thus, in waves with positive dispersion

(ap/ac> 0), we have UT - Uz > 0; and in waves with negative dispersion (ap/a 1 < 0), we

have UT - U < 0.

Since in propagating waves, U U , we have two corollaries to this theorem:
m e

= W (40)
S(UeT -Umz

SW 
(41)

2(U mT-Umz )
mT mz



(II. PLASMA DYNAMICS)

e. Analogous Expressions for Cutoff Waves

We note in Table II-I that we have an expression for cutoff waves that is quite sim-

ilar to Eq. 38, namely

Q - (Um-U ) (42)
a m e

We may regard Eq. 42 as a definition of the analog of phase velocity in cutoff waves.

An analog of group velocity in cutoff waves can also be found. When the energy theo-

rem, Eq. 1, is applied to the standing wave, Eqs. 17-20, we find that for cutoff waves

aa (W mT-Wmz) - (WeT-Wez)
- Q(43)

Combining Eqs. 42 and 43, we have a theorem analogous to Eq. 39.

aa a (WmT-Wmz) - (WeT-W ez) (44)
00 - o0 U -Um e

Since U T  U in cutoff waves, we have the two corollaries:
T z

aa a (WmT-Wmz) - (WeT-Wez)a m(45)
2(U mT-Uez )

_a a (WmT-Wz) - (WeT-Wez) (46)

2(Umz-UeT)

f. Illustrative Examples

To illustrate some of the principles developed here, we treat a few illustrative

examples that involve inhomogeneous waveguides containing nondispersive, isotropic

materials. For such systems there is much simplification because the pseudo energy

and the true energy are the same. Thus Eq. 39 becomes

8p P U T + UZ
T z (47)

Kw W UT - U z

Now, UT > 0 and U z > 0; and Adler (7) has shown that ap/8 > 0 for such systems. Thus

we conclude that U T > U z , and

(48)

in lossless waveguides containing nondispersive, isotropic materials. Equation 47

not only proves that phase velocity is greater than or equal to group velocity in these
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waveguides but also that (w) is monotonically increasing.

As another illustration, we consider the special case in which the waveguide is com-

pletely filled by a homogeneous, nondispersive, isotropic material. For this case, in

general, we have TE and TM solutions, and for a multiconductor waveguide we have

TEM solutions. For the TE modes, a convenient form of Eq. 47 is

S eT 
(49)

_KW - W USUmT

and for the TM modes,

8ap UmT (50)
5w- W UeT

For the TEM modes, Eq. 47 simply becomes

aw = (51)

since Uz = 0. Thus we see from Eq. 51 that for TEM waves we have the well-known

result that the group and phase velocities are equal, and, furthermore, that p is linear

in o.

For the TE and TM modes, we have
A A

ZE - T H Xi (52)

Here, the characteristic impedance is

[L*A
for TE modes

Z = (53)
0

for TM modes
wE

Thus

U T ZU (54)
eT L o mT

for both TE and TM modes. The substitution of Eq. 54 in Eq. 49 for TE modes, and in

Eq. 50 for TM modes, yields the well-known result

E4 oa (55)

that is, the product of phase and group velocities is equal to the square of the velocity

of light in the medium (8).
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It is interesting to note that the solution to the differential equation, Eq. 55, is the

dispersion relation

P2 = 2 + constant (56)

g. Discussion

The novel principles presented here are being studied further, and they are being

applied to various sample problems. Special attention is being given to anisotropic sys -

tems, such as plasma-loaded waveguides and ferrite waveguides. By means of the

Bidirectional Waveguide Theorem, it is hoped that qualitative dispersion properties of

these systems can be predicted.

In conclusion, we summarize the new definitions and new physical concepts presented

here. First of all, we distinguished between true energy storage and that which we

defined as pseudo energy for dispersive media. The discrepancies between these were

first recognized by Brillouin (1) who explained that the difference was due to the kinetic

energy stored in the motion of the bound charges in dispersive, isotropic dielectrics.

A similar explanation holds, of course, for dispersive, anisotropic materials.

We confined our attention to a special class of lossless, passive, uniform waveguides

which we defined as bidirectional. For these waveguides - which, incidentally, are not

necessarily reciprocal - we derived the novel results presented in Table II-1. It is well

known that group velocity can be expressed in terms of the true energy storage and power

flow in a propagating wave as in Eq. 6 (1, 4). However, we pointed out that phase veloc -

ity can be expressed in terms of pseudo energy and power flow. Another new result for

propagating waves is that there is an equipartition of electric pseudo energy and mag-

netic pseudo energy. Novel, too, are the derived properties of cutoff waves and

complex waves. The bidirectional waveguide theorem for propagating waves and the

analogous theorem for cutoff waves are derived from the group velocity, expressed in

terms of power and energy, and from the phase velocity, expressed in terms of power

and pseudo energy.

Only a few of the results in Table II-1 have been previously shown for the special

case of nondispersive, isotropic media. Adler (7) has shown that Um = Ue in prop-

agating waves, that P is pure real for propagating waves, and that P is pure imaginary

in cutoff waves.

Adler has also shown that F is either pure real or pure imaginary and is never

complex for lossless nondispersive, isotropic media. However, this rule cannot be

extended to anisotropic media, and we admit the possibility that complex propaga-

tion constants exist when the material is anisotropic. Indeed, complex propagation

constants have been calculated by Tai (9) for transversely magnetized lossless fer-

rite waveguides.
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The novel results presented here were derivable because it is possible to set up

standing waves in bidirectional waveguides. It is interesting that an examination of a

standing wave yields new information about the individual traveling waves that comprise

the standing wave.
P. Chorney
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5. MAGNETOHYDRODYNAMIC AC GENERATOR

Alternating-current generation by converting the directed kinetic energy flow of a

hot plasma into electromagnetic power gives promise of two advantages over direct-

current generation: the ease of voltage transformation and the possibility of avoiding

conduction-current flow between the plasma and the walls of the flow tube.

A study has been started on possible mechanisms of power generation by using plas-

mas with a time-average velocity. The mechanisms bear close resemblance to power

generation and amplification in traveling-wave tubes and klystrons that use electron

beams. Simple theoretical models have been constructed, and a linearized analysis of

these models has been carried out. They show power gain and indicate the possible use

of these principles for ac power amplification and generation.

We study an infinite, parallel-plane, perfectly conducting plasma with a time-average

velocity u in the z-direction, a dc magnetic field B in the x-direction, and processes
o

with a z-directed ac velocity v, an x-directed B-field, and with z-dependence only. We

indicate all time-average quantities except u by the subscript o; all small alternating
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quantities are without subscripts.

Force equation:

Maxwell's equation:

Maxwell's equation:

Continuity equation:

Ohm's law:

Equation of state:

S0 v av) ap
at + u - - z BoJ

1 aB
_o - J

81 8t

az " at

+ Uz p - z

E = -uB - vB
o

p P

Po Po

Here p is the ac mass density, J is the alternating-current density (in the y-direction),

E is the ac electric field (in the y-direction). The solutions of these equations under

an assumed dependence exp[j(wt-pz)] lead to the propagation constants

uic

where

p B2 1/2

One wave is fast, with the phase

u = u - c, for u > c. For u < c,

ative phase velocity. The group

velocity u = u + c; the other is a slow forward wave,

the slow forward wave changes into a wave with neg-

velocity is given by

do
dp

for fast and slow waves, respectively. For u > c, a signal applied to the plasma at

z = 0 travels only in the +z-direction, as in conventional electron beams.

No energy conversion can be found because no coupling to a circuit was provided.

We shall construct a model of a circuit that is such that the equations preserve their

one-dimensional simplicity, as has been done for the traveling-wave tube (1).

A circuit may be represented by introducing into Eq. 2, in addition to the plasma

current density J, a circuit current density Jc caused by a one -dimensional "circuit."

1 aB
-L J + Jco z

(10)
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All other equations remain unchanged. In particular, it should be noted that in the force

equation (1), the magnetic force density -JBo remains unchanged, since this is the force

density on the plasma only. It is useful to look for a small-signal power theorem to use

as an aid in recognizing gain mechanisms. By combining Eqs. 10 and 3, we may obtain

the conventional small-signal Poynting theorem.

SEB+ B+ EJ + EJ = 0 (11)az 2 at c

A power theorem is obtained, if we are able to write EJ as a divergence (spatial deriv-

ative) of the plasma quantities. Using Eq. 5 to express E and Eq. I to express J, we

obtain

2
v+ pp + W o EJ 0 (12)az o p t c

where

p
P = (Po v+up) vu + - (13)

v 1

The quantity P is a small-signal power density carried by the plasma, and W is a

small-signal energy density. From Eq. 11 we find that a time-average power transfer

to the circuit may be obtained only by a rate of decrease with distance of the time aver-

age of P . If we investigate the two waves in the undriven plasma, we find that

Pb= PoV2 c (I ±2 (15)

where the plus sign applies to the fast wave, and the minus sign applies to the slow

wave. The slow wave carries negative power. From our experience with coupling of

modes (2,3) we conclude that the coupling of a forward circuit wave with the synchronous

slow wave must result in a pair of growing and decaying waves. As we see from Eq. 7,

the forward-circuit wave can be synchronous with a forward slow wave only for u > c;

that is, when the dc velocity of the plasma beam is greater than the velocity of the

plasma waves. This condition coincides with the condition that an excitation in the

plasma at z = 0 propagates only in the +z-direction so that the growing wave can indeed

be excited by an excitation at the input end of the circuit.

To study these conclusions in detail, circuit equations have been devised that are

consistent with the assumption of one-dimensionality. They are
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dV V
dz -- jwLI + dz
dz

dz -jWCVdz

(16)

(17)

Here dV p/dz is the voltage rise per unit length caused by the plasma. The coupling

may be thought to be produced by current sheets of unit width in the x- and y-directions,

CONTOUR

Fig. 11-18. The circuit.

as shown in Fig. 11-18. The current I in Eqs. 16 and 17 is evaluated per

From this figure we gather that Jc of Eq. 10 is expressible in terms

dl
J -

c dz

The voltage dV is found from the fact that the complex power change
P

within dz must be

unit width.

of I as

(18)

on the circuit

(I*dV+VdI*) = 1 (jL 1I 2_jC IV 12) dz + 1 I*dV (19
1 2 *

But the power transferred to the circuit is also given by

1* 1 *1 I dV 1 I E - dg (20
2 p2 c

The integral fE ds may be evaluated over a closed contour and the integral converted

by Faraday's law. We then have

1* E - ds = -jw HI (21
2 2 0

c

Comparing Eqs. 21 and 20, we find that

dV
P

dz- JcwoH (22

)

)

)

)
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Introducing Eq. 22 into Eq. 16 and solving the set Eqs. 1-6 and Eqs. 15-18, with Eq. 2

replaced by Eq. 10, we obtain

B2  2

(_u2 _22 o o 2 23)

where po =  -C.
A solution of these equations for small coupling (small deviations of po and p from

c/u + c or w/u - c) gives at synchronism

2
2 2 o Poc

with

Po =uc and p = p + 6

where plus applies to the fast wave, and minus to the slow wave. The solution shows

that gain can indeed be achieved by coupling to the slow wave, provided that Po is greater

than zero; that is, for u > c. The coupling is accomplished through the dc magnetic

field. Growing waves and thus power amplification at u > c are obtained by coupling to

the slow wave (1, 2, 3).

H. A. Haus
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6. DYNAMICS OF IONIZED GASES

The theoretical study of plasma dynamics has a propensity for producing equations

of formidable complexity. Not the least of these is the hierarchy produced by the

multiple integration of the Liouville equation. This linked set has been subjected to a

great deal of scrutiny, and numerous methods have been proposed for its solution. The

method of interest here is not new (1). It is based on the fact that this linked set can be

terminated after the second equation by making an expansion in a small parameter that

turns out to be the reciprocal of the number of particles in a Debye sphere. The two

resulting equations can then be used to study the dynamics of ionized media. It is the



(II. PLASMA DYNAMICS)

objective of this study to

of these equations and to

We take as our basic

aat +- a e
V.1 a mi

1

p.e .eJ ij
m.

1

a a - a
+ vi. -- + v. -

1 a. j a.
1 J

formulate mathematical methods appropriate for the solution

examine some of their properties.

equations

E.+-v f.(X.)1 c 1 1 i

dX F..(X., X) (1
J 8 xx 1] 1 J

e i  i +  ..

m 1 c 1

e.

EV+.X F..
7 j c ] 1

i . Pkeiek

av. k 11 k

8f.z Pke ek

j k j

_ 1
dX ---- F.

- a 1 FdXk F I
8 t x 1

a 1 1 a 1 a
e.e. f.f.

1 i 1 3V
where

E. = k
Ik

S a 1
ekpk dXk i  i- k

1 I IkI

(2)

dX.
1Here, the summations are over all species; fi(Xi) V is the probability of finding a

particle of species i in the phase-space volume dX. = d_.d., with V, the total volume;
1 1 1

Pi = N./m, with N., the total number of particles of type i; and e. and m. are the charge
'l I 1 1

and mass of particles of type i.

The validity of these equations rests upon the assumption that the correlation func -

tion F.. is small compared with f.f.. These equations have been investigated by several
1] 1 J

authors (2, 3,4). The usual procedure is to solve Eq. 2 for F.. in terms of f. and f., and

then insert this expression in Eq. 1. The result is a kinetic equation for f..
1

a. Solution of the Correlation Equation

In solving Eq. 2, we introduce an N2-dimensional vector (N is the number of species)

whose components are the correlation functions Fij(X1, X2):

and

1 j 1 1
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F 1 1

F 12

F1N

F
2 1

F2N

NN

It is now possible to write the entire set, Eq. 2, as a single matrix equation:

Ft + {(A[a( )]+WI[Y(X)]+A2 [a(X 2 )]+W 2[X2)]} F = S(X 1 , X 2 )

where the matrix operators A 1 ,

follows:

A 2 , W 1, W 2 ,
and the source vector S are defined as

1

U= 21T=

T

T

T

0

N

YNNJ

p.jeie

vij 1 m.
afi(X

V
1

dX
1

a 1
ax 1 xll

and similarly fo

X 1 coordinate.

r y(X ). The integral operator yij (X) is intende

In other words, if h(X 1 , X2 ) is any function of X 1

I to operate only on the

and X 2 , then

Pjeiej afi(X 1 a
- d ' h(R ,  )

m aV 1 xl a

yU12

WI (y)

(2a)

Y. NUy U
11

Y21U

YN1U
yNi YNN U

Yij(Xl) h(X 1 ,X 2 ) =
1

x I
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The A matrices are given by

Al[a] =

a.U
1

a 2 U

a 3 U

aNU

aN

A2[a] =

where

ai(X 1 ) = V 1
a

avi

e.
1

m.
1

a

Finally, the source vector is defined by

811

S12

s1N

L NN

where

a
s.. = e.e. -

13 1 8- 1

1- I
1F1 _- 1

m a
Km. aj*

1
m.

8 2)

If we now define the operators

H 1 (X ) = A 1 [a(X 1 )] + Wl[Iy(l)]

H 2 (X 2) = A 2 [a(X 2)] + W2[Y(X2)]

H = H 1 + H 2

Sxii(- Xl))JEX1 1 X1
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Eq. 2a becomes simply

aFat + HF = S

The solution of Eq. 2b is given by

F = P(t) plI(T)-1

0
S(T) dT + P(t) F °

where P(t) is an operator that obeys the equation

aP
+ HP = 0at

It is not difficult to show that H 1 and H 2

the two equations

commute, so that Eq. 4 can be separated into

P aP

at + H1P1 = 0 and at + H 2 P 2 = 0

where

P(X 1 , X 2 , t) =P 1 (X 1 ' t) P 2 (X2' t)

Power series solutions to Eq. 5 can be developed, but they appear to be of limited

usefulness. For many plasmas of interest, a more tractable method is possible.

b. The Adiabatic Hypothesis

Let us assume that the two-particle functions F.. relax and come into equilibrium

with the one-particle function fi in a time so short that fi will not have changed very

much. Then we may neglect the time dependence of H and write the solution of Eq. 4

as

-Ht -H t -H t
P = PIP2 = e = e e (6

and therefore

F = -HT S(t-T) dT + exp(-Ht) Fo (7)

The operators PI and P 2 have a rather simple interpretation in the adiabatic hypoth-

esis. A study of Eqs. 5 shows that the application of Pl(t) to an arbitrary function h(X 1)

produces a time-dependent function that satisfies the linearized Vlasov equation and

whose intitial value is h(X2). An analogous statement holds for P2"

Now we can understand what Eq. 7 means. Formally, it corresponds to the solution

(2b)
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of a reservoir problem in which the reservoir, whose level is F(t), is fed by a source

S(t) and depleted by a leakage -HF(t).

In our problem the correlation "level" is fed by the Coulomb repulsion between par-

ticles which produces a flow, S(T) into (or out of) volume elements for which [3i-x I is

small. The "leakage" comes from the operators P1 and P2, which try to iron out the

resulting inhomogeneity by Landau damping action.

For those velocity distributions that lead to sufficiently rapid damping in the Vlasov

equation (analogous to large H), we would expect the correlation function F to depend

very little on past values of S(t), or therefore of fi(t). Also the initial value of F should

damp out rapidly and become unimportant. In such a case we are justified in using the

adiabatic hypothesis. The expression for F becomes simply

F = P 1(T P 2 (T) S(t) dT

Substitution of this expression in Eq. 1 produces the kinetic equation for fi, which turns

out to be a Fokker-Planck equation.

When f. is considered constant in time, the equations for P1 and PZ can be easily

solved by Fourier and Laplace transform methods. For example, in a homogeneous

plasma with B = 0, the transform of P h is

r 1

(h)k (h)k
(Plh)s = -W 1( I + dVW 1 l - d+

Ss - ik1 s - ik1 1

where

4pjeej 8fi(X 1 ) ik 1  1

ij m. 8v k s - ikl

For those velocity distributions that do not lead to rapid damping, the adiabatic

hypothesis is inapplicable, and the solution of the correlation equation becomes more

involved. Indeed, for those distributions that lead to instabilities in the Vlasov equation,

it appears that an entirely new regime develops in F. Not only does F not come into

equilibrium with fi; it grows exponentially as compared with f., until finally our pertur-

bation scheme breaks down altogether. It is impossible to tell with this method what

the ultimate effect of the instability on F is. However, preliminary calculations indi-

cate that F does grow in such a way that the collision term relaxes the velocity distri-

bution toward a more stable one.

The adiabatic hypothesis also seems unsuitable for treating plasmas with large mac-

roscopic inhomogenieties. The relaxation mechanism of the P operators is that of Landau
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damping and hence occurs in a time whose magnitude is of the order of the reciprocal

plasma frequency. But unfortunately this is the same time scale associated with mac-

roscopic behavior. Thus we cannot assume that correlation processes occur in a time

so short that f. does not change.
1 T. H. Dupree

References

1. N. Bogoliubov, Problems of Dynamical Theory in Statistical Physics (State Tech-
nical Press, Moscow, 1946).

2. B. B. Kadomtsev, Soviet Phys. - JETP 6, 117 (1958).

3. C. M. Tchen, Phys. Rev. 114, 394 (1959).

4. N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).

7. PRELIMINARY DESCRIPTION OF EXPERIMENTAL APPARATUS TO BE USED

IN PLASMA DIFFUSION STUDY

During the past quarter, the research effort was concentrated on the design and con-

struction of probes, and their associated fixtures, circuitry, and recording devices that

will soon be used to study diffusion across a magnetic field in the plasma produced by

the hollow-cathode discharge (1).

a. Probes

The probe design is shown in Fig. 11-19. The sphere on the end of the tungsten rod

is made by helium-arc welding and then polishing. If a plane probe is desired, the

original sphere can be ground to a hemisphere and coated with A1203 except for the plane

face. These probes have been tested at the center of the hollow-cathode discharge, and

the Al203 appears to withstand the high temperature. Glass-insulated probes are

unsuitable because the glass melts.

The probe has been operated for six-hour periods with no sign of increasing the

effective collection area because of deposits from the cathode. Visual examination of

the probe, after operation, showed a darkening of the white A1203 coating that may have

been caused by a tantalum deposit. However, the rough texture of the A1203 coating

seems to prevent the formation of a conducting path.

b. Flexible Vacuum Seals

The flexible vacuum seal, designed to be mounted onto the wall of the vacuum cham-

ber, for use with the probes just described is shown in Fig. II-20. This ball-and-socket

joint allows an in-and-out motion through the O-ring of 1/8-inch diameter (Fig. II-20a),

as well as an angular rotation of 900. The ball and socket is interchangeable so that
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GLASS TO TUNGSTEN
VACUUM SEAL

0.125" O.D. ,THICK WALL,
HIGH -TEMPERATURE,
GLASS TUBING

0.030" O.D. TUNGSTEN ROD
COATED, UP TO SPHERE ON
END, WITH 0.005 - 0.010" OF
AI1203

- 2-MM D SPHERE ON END OF
TUNGSTEN ROD MADE BY HELIUM
ARC WELDER AND THEN GROUND
AND POLISHED I

S1/4"

34

- 1/2"

Fig. 1I-19. Al 2 0 3 -coated tungsten probe.

1/8" IDx 1/16" WIDE

SLOT FOR

ID x 3/32" WIDE
O- RING \

NYLON OR Cu CAP
OTHER PARTS OF BRASS

Fig. 11-20. Flexible vacuum probe unit.

another ball, with a larger hole, can be substituted to admit a larger sized rod for other
purposes. The assembly has been vacuum-tested at 10- 5 mm Hg and will execute the
full range of rotary in-and-out motion with no detectable leaks. In fact, the screw caps
can be loosened completely, and the external pressure on the O-rings is sufficient to
maintain the vacuum seal. This assembly allows the probe to be positioned in almost
any part of the plasma region while the discharge is in operation. (For further details
and working drawings see RLE DWG. B-1947 A-E.)

c. Circuit

The circuit that will be used to take probe data is shown in Fig. 11-21. It is designed
for dc operation in conjunction with an X-Y recorder. The probe voltage is swept

a _ II - - - I - ~--- r
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Fig. II-21. Probe circuit.
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manually by varying the 10-K rheostat. The 65-volt battery maintains those probes

that are not in immediate use, at large negative potential so that ion bombardment

will keep their surfaces clean.

d. Preliminary Data

The preliminary data presented in Fig. II-22 were taken in the course of testing the

Al 203 -coated probes. This figure shows radial distributions of floating potential (Vf),

and ion and electron saturation current. A conducting wall is located at a radius of

approximately 5 cm. Note that the floating potential at the center of the plasma is more

negative than it is at the wall. This is partially due to the fact that the Larmor radius

for electrons is 0. 1 mm, while that for A+ ions is 4 cm. Also note that the ratio of

electron-to-ion saturation current varies from 20 to 70, instead of having the value

M(A ) 1/2
approximately 270, which is , as predicted by simple Langmuir probem

theory. If the plasma temperature is constant across the radius, then the saturation-

current curves are proportional to the density.
S. D. Rothleder

References

1. D. J. Rose, L. M. Lidsky, S. D. Rothleder, and S. Yoshikawa, Experimental
results on the hollow-cathode discharge, Quarterly Progress Report No. 58, Research
Laboratory of Electronics, M. I. T., July 15, 1960, pp. 41-44.

8. ELECTRON-BEAM TRAPPING

A recent experiment at this laboratory has demonstrated the total trapping of a beam

of electrons injected axially into a time-invariant pair of magnetic mirrors. The novel

feature of the experiment was the creation of helically twisted magnetic -field lines in

the region between the mirrors in such a manner that the pitch of the field closely

matched the pitch of the electron trajectories at all points during the initial traverse of

the electrons between mirrors.

Theory suggests that practical application of this effect will be limited to situations

in which 0.2 < rc/ro < 0.6, where rc is the cyclotron radius of a particle of the injected

energy moving in a plane perpendicular to the axial B field, and r is the radius of the

structure producing the twisted field. Larger values of rc/ro may be useful in applica-

tions in which decreasing the magnetic moment of particles in a beam is desired, for

example, before bringing a beam out of a region of high magnetic field.

Thus far, for the sake of simplicity and convenience, magnetic-field shaping has

been done only with iron helices, and work has been restricted to axial fields of a few
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hundred gauss. For fields in the kilogauss range, iron would not be suitable, therefore

long pitch helical current carrying windings would be required.

a. Theory

The essential features of the synchronous trapping can be obtained from an approx-

imate solution of the equations of motion in cylindrical coordinates and in the presence

of a magnetic field.

r -rO 2  - (B rO'-B 0 z')

(1)
q

rO" + 2r'O' =-m (Bz'-Bzr')

Id q2 qz = (z) = -(B r'-B rO') (2)2 dz m (B 0 r'-BrO')

r,2 + r2,2 z,2 2r + r 2 2 + z' 2 = v (3)
o

Primes indicate derivatives with respect to time. The phenomena to be described is the

slow increase in the transverse energy component of a beam of particles with initial

velocity vo in the z direction. If the beam is initially along the z -axis, then the motion

of the particles at any time can be described approximately by a circular component

around, and a translation along, the z-axis. If the circular component is changing

slowly, then it is reasonable to neglect r' in Eqs. 2 and 3. Eliminating rO' yields the

relation

d 2 q 2 12)l/2
(z') = 2 - B r v-z' (4)

dz m ro

The B in this equation is that at the instantaneous particle position. A conventional
r

magnetic mirror causes (z') 2 to be decreased by creating a negative B r in the entire

mirror region. In this case, of course, magnetic moment happens to stay constant.

Another possibility is to establish the path that the beam will follow and to arrange that

Br be negative only along that path. This can be achieved by twisting of the B lines

with no over-all increase in the strength of the field. In this case magnetic moment

will increase. B must be related to either z or z' to permit solution of Eq. 4. From
r

geometric considerations one would expect that feasible values of B r would be smaller

for a short -pitch helix than for a long-pitch helix. Some insight into the nature of the

solution can be obtained by assuming that

B = B (z n (5)
o\ O/
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For any integer n the solution may be obtained explicitly, and z '/v will be a function

of the variable

B B B
q r w r r

S - - z o z (6)
m v v B B ro o z z c

where w and r are the cyclotron frequency and radius obtained from Eq. 1 for
c c

r" = z' = 0. In terms of this variable the series expansions of the solutions to Eqs. 4

and 5 start off as

2 1 - S2 + ... (7)

For a practical trapping system it is sufficient to make (z'/vo)2 = 1/2, since this

would permit reflection by a conventional mirror with mirror ratio of 2. Examination

of a number of solutions of Eq. 4 shows that a sufficient condition for a workable syn-

chronous mirror is that

B
rS L = 1 (8)

1/2 B rc

This gives the necessary length, L, of the synchronous region. It remains to determine

feasible values for B /B .

A twisted B-field may be obtained in several ways. Most configurations, including

the most practical ones, are not susceptible to analysis. As a result, two idealized cases

will be considered: one involving currents; and the other, magnetic material.

Consider an infinitely long conducting ribbon wound into a helix with uniform pitch p

and radius ro and carrying a current J. Let w/p be the fraction of cylinder surface

covered by the ribbon. Straightforward integration of the Biot-Savart law for the field

on the axis of the helix (mks units) gives

B oJ

z p

B J sin ( .
K r K +K

Be P cos (- - ( ce +

where z and 0 are the field coordinates with origin at a radius line passing through the

center of the conducting ribbon, and the K's are Hankel functions. If desired, this

expression is readily integrated with respect to ro to allow for a coil of finite thickness

as well as width. For the case considered here, it is apparent that
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B r r r

z c C

This relation is plotted in Fig. 11-23.

Only a very crude analysis of the case for magnetized material has thus far been

undertaken. Consider a ribbon of magnetized material of thickness t wound into a helix

CURRENT

(Eq. 8)

- IRON
(Eq. 0)

e SUCCESSFUL
EXPERIMENT
CONFIGURATION

SIRON
(Eq. 12)

CURRENT

(Eq. II)

100

10

1.0

S 0.2 0.4 0.6 0.8 10 1.2 14

re/r
o

Fig. 11-23. Design consideration for synchronous trapping.

with uniform pitch p and radius ro and having a uniform magnetization M parallel to

the axis of the helix. Let w/p be the fraction of cylinder surface covered by the ribbon.

The scalar magnetic potential for such a structure will be given by

and the expressions for the field on the axis of the helix (which are valid for tr 1)ds

and the expressions for the field on the axis of the helix (which are valid for t/ro << 1)

0.001

00001
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will be given by

B =0
z

(10)

B =  ( sin 2 Tz - 0) sin ( Ir K1 c (r0)

B0  (FOr) cosl P <r C K ;

When iron is used in the helix, M is not uniform and is a function of B z , t, and W.

For the experiments reported here, oM = 3000 gauss, t/r = 0. 25, W/t = 4, and Bz

500 gauss. Thus

B rr o K o (11)
B 2 r rz C C

This relation is also plotted in Fig. 11-24. Substitution of Eq. 9 or Eq. 11 in Eq. 8 gives:

For current,

2

+ 0 K 0 oK o (12)L r or rO r

and for iron,

r 0 r 0 r 0o K 1 (13)
L 2 r Ir

These equations are also plotted in Fig. 11-24. The large point plotted in the figure

represents the actual measured values for the final experimental trapping configuration.

The curves for iron can obviously be shifted vertically by changing the iron thickness.

The current curves could also be shifted if a power-wasting coil configuration were used.

By winding a second current ribbon in the space left by the first but with current flowing

in the opposite direction, one can increase Br while decreasing B z .

In a trapping experiment it will be desirable to have rc/ro < 1, and preferably

much smaller. On the other hand, it is apparent from the plots that no significant syn-

chronous effect can be achieved for rc/ro < 0. 1. This conclusion is so strongly indi-

cated by the idealized analysis that it is probably valid for more realistic cases and the

range of interest is most likely within a factor of 2 from the value rc/r = 0. 3.

b. Experiment

In the successful trapping experiment the twisted field was created by an iron helix

of variable pitch. The helix was constructed from a piece of mild steel bar stock,

1/8 inch thick by 30 inches long and tapered into a cosine, with a width of 0. 5 inch at the
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center and zero at each end. This bar was wound into a helix of 1-inch inside diameter

with a pitch length of 1 inch at the center and decreasing in an esthetically pleasing man-

ner to each end. The final structure was approximately 4 inches long.

This structure satisfies the solution of Eq. 4 for the case where n = 0 in Eq. 5. The

value n = 0 is not realistic, but this is the only value that results in a helix that can be
wound from a bar of finite length with zero width at the end. It is necessary that the bar
taper to zero; otherwise the asymmetry created by the end causes the electron beam

to be deflected from its initial axial position, an effect that might mask the synchronous

effect. The helix is constructed symmetrically about the center for the same reason,

the first half merely serves as an inlet structure to avoid spurious beam perturbations.

The length of the effective part of the structure was made approximately twice as

long as that required by Eq. 8. This provides a mechanism for phase stability of the

beam trajectory. As shown in Eq. 10, for a given 0 the value of B r seen by the par-

ticle will depend on its position z. The iron helix was shaped to require that 27Tz
p

7r/6. If z' is larger than it should be at any point, then z will increase faster than it

should; thus B r will increase (negatively) and deceleration will increase and the particle

will tend to return to the design trajectory. Similarly, if z' is too small, the particle

will be decelerated less and will tend to catch up.

Figure II-24 shows the axial B z of the experiment, as well as the locations of the
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ANODE 
FILAMENT

600 --

500 - TRAPPED
ELECTRON
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400

g 300-

200 -

100

O 2 4 6 8 10 12
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Fig. 11-24. Experimental configuration.
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electron gun and the iron helix. No care was taken in shaping the field. A large sole -

noid with a variable current supply was available and the perturbations in the field were

made with some pieces of iron pipe which happened to be handy. The various iron pieces

and the electron gun were carefully aligned and placed inside a glass pipe, 4 inches in

diameter, attached to a vacuum system and penetrating the solenoid.

The system pressure was maintained at approximately 1 1 to permit visual observa-

tion of the electron beam. The electron gun would deliver a few hundred microamperes

at 0 to 1000 volts, and the maximum Br/Bz ratio was measured to be 0. 13 nearly inde-

pendent of B z over the range of interest. The mirror for initial reflection had a ratio

less than 2 (approximately 1. 6).

Visual observation confirmed all predictions of theory. The beam from the electron

gun was of less than 1/8-inch diameter (1/16 inch at some B-fields) on axis, and had no

discernible angular component. For values of voltage and B z that gave a value of rc/ro
far removed from 0. 3 in any direction, the beam was only slightly perturbed on passing

through the system, and no trapping occurred. As the value rc/ro = 0.3 was approached,

the beam became a helix matching the pitch of the iron helix. In this condition the beam

took on a flat ribbonlike appearance that was probably caused by the phase -stabilizing

action of the field and a velocity dispersion of the beam. As optimum resonance condi-

tion was attained, the beam was totally reflected and organized trajectories within the

iron helix were obscured by the diffuse glow of ionization by the trapped electrons.

Close observation of the beam just before this condition was reached did not show any

part of the beam approaching any solid surface. Thus the stopping of the beam is not

due to deflection into a wall. If the solenoid current is reversed, then the helical paths

of the particles will have an opposite twist from that of the iron helix. Under these con-

ditions, a value r c/r = 0. 3 caused the beam to be slightly perturbed, but no trapping

occurred under any conditions.

This work arose out of attempts to control the electron-energy distribution in a

nonequilibrium plasma. The trapping technique might well have application in the

thermonuclear program, however. An example might be in the DCX machine in which

elimination of the large arc now used for ion trapping would solve several problems.

R. C. Wingerson

9. TRANSPORT COEFFICIENTS CALCULATED FROM THE LIOUVILLE EQUATION

The satisfactory treatment of collision effect in plasma is necessary for the under-

standing of diffusion, conductivity, and thermalization. Two approaches have previously

been made: by the Boltzmann integral method (1), and by the stochastic method (2).

Although both explain the observable phenomena amazingly well, the assumptions are

somewhat too axiomatic. A different approach has been proposed by Bogoliubov (3). It
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has been successfully applied to plasma physics, notably by Rostoker and Rosenbluth (4).

The approach in this report was made in slightly different fashion, in order to get phys -

ical quantities without introducing the assumption of a test particle.

The starting point is the 6N-dimensional Liouville equation,

Dtf t + [f, H] (1)

in which the bracket is the Poisson bracket. From the assumption that the potential

energy of each particle is small compared with the kinetic energy of each particle, we

can make an expansion of the smallness parameter that is essentially the ratio of poten-

tial energy to kinetic energy. To first order, we obtain two sets of equations. One is

the equation of a one-body distribution function, which we shall call simply "distribution

function." The second is a two-body distribution function, which we shall call "correla-

tion function." After introducing the natural units for this system, that is,

1/3 my
q = xn p = = t (2)

,2mkT P

we get, after Fourier analysis,

af
I E af + = - k -

+ E -5P 1 Xez) (-i) E dp 2  2akdk (3)
o o Ip 1  k

aak 1 K. I af2

at + i k( 1 -P 2 ) ak ik 2 3 f2 -

k 8 rr p p2

+ l dp 3 ak 2 akl3dP3  (4)
~pl a-23 1pz

E e eB

e n2/3 p e m 1

4wrrE

(5)

where ak is the Fourier component of the correlation function in space; fl, f 2 are distri-

bution functions of argument pl and p 2 ; E is the interatomic distance divided by the Debye

shielding length. These are for one species and are uniform in space. The second con-

dition is later relaxed to require spatial inhomogeneity to occur in lengths greater than

the Debye length.
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We replace a k by a k f1 2/f 10 20 , where the subscript zero denotes the stationary

state. Thus f10 is a Maxwellian distribution function. This assumption is the same

assumption as that the deviation of the function f from equilibrium is small. Then if

fl and f2 change slowly with time, we can express the right-hand side of Eq. 3 in the

form of a Fokker-Planck equation:

3 n nA A 8 2 2 8p 8 : 8

4r ip 1 2 1 ap 1 P 1

where

h = 2 dP 1 f 2 ) 1 (7)

- - 1 (8)g = dp 2 fP2 Ipp2 1  
(8)

The first expression corresponds to one given by Landau from the Boltzmann equa-

tion (5), and the second to one given by Rosenbluth (6). Solution of Eq. 6 was tried by

expanding f with Hermite polynomials that have been used by some authors for gas

kinetic theory (7). Actually, the expansion can be written

fap) 1 exp(-p (9)

where C n is the tensor of nt h rank; C 1 is proportional to velocity; C 2 is related to the

pressure tensor; and C 3 is related to the heat-flux tensor.

The first check was made to calculate the temperature relaxation of two different

species at different temperatures. The result can be expressed as

T - T 3 r 1 M + ') (10)
dt e t eq eg 2/i E 3 In A w (, )3 m /

p e

If allowance is made for differences in notation, Eq. 10 coincides with the result

obtained by Spitzer (8), who used an ordinary two-body encounter model. Temperature

relaxation of parallel and perpendicular components of one species inside the magnetic

field was calculated for the case in which cyclotron frequency is less than plasma fre-

quency. We introduce To as the reference temperature,
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d T1  2 2w n T T1  / 1/2
dt 2 Ak
dt ) 15wr? T011 KT1 T

I(x) =
J-1

15 2 2 1

2 3/2
(x+p (1-x))

(11)

(12)I(1) = 1

If fl is time-dependent with fixed frequency, it is possible to calculate the collision

term, provided that the deviation from equilibrium is small. More precisely, if the

applied field is expressed in natural units, we can write

EE <1 (13)

This turns out to be not a very stringent condition. The only effect of w is found inside

pP
the logarithmic term which requires that A be replaced by A-, whenever o > W . This

W p
condition is rarely observed in a laboratory system because the plasma frequency is

too high. But in the ionosphere, this effect can be observed because of low density.

Besides, with a different frequency it is possible to determine the coefficient of the

logarithmic term from the slope of the collision frequency. The coefficient is propor-

tional to (n/T3)1/2. Hence, it may be used to determine the temperature. The fact that

P
A is replaced by A- can be applied to the determination of the properties of the upper

atmosphere by measuring the attenuation of electromagnetic waves of different fre-

quencies, say, from an artificial satellite. Strictly speaking, we are not permitted to

make w equal to zero. But in case w - 0 the result is the same as the value derived by

--------------------- - - I

0 2 3 4 5 6 7 8 9 10 11

Fig. 1I-25. Curve of the absolute value of J = r-E. The dashed line represents
the off-diagonal element of the conductivity tensor; the straight

line, the diagonal element ( =W p; Vc 1 m 8 _0e p c 10 p f _ 0-0
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Spitzer (9), and more recently by Kelly (10) in the absence of magnetic field. For this

report the general features of the conductivity were calculated. The result is too com-

plicated to reproduce here, but one of the results is shown in Fig. 1I-25. Note that there

is no conductivity when w equals zero. The electric field is applied perpendicular to the

magnetic field. The plasma is assumed to be uniform. The asymptotic value is the

same as that calculated when we assume that the ions are immobile.

Wave propagation was calculated for plane and linearized cases. The physical

parameters, such as temperature, collision frequency, and the direction of the magnetic

field were taken into account. The matrix, which is a generalization of Oster's (11),

gives all of the waves that are known to exist in a magnetized plasma.

The derivation of a conventional magnetohydrodynamic relation was tried. The cal-

culation can be carried out by the expansion of Eq. 9. The first-order expansion results

in a conventional magnetohydrodynamic equation with collision terms. In conventional

notation, we have

a F+
M + V p+ - enE - e(+ XB) = -mvc(r+-F _ )  (14)

m + V p_ + enE + e(F_ XB) = +mvc(+ -F_) (15)
at c +

Note that the right-hand sides of these equations, which represent the collision terms,

have the same magnitude but opposite sign. The second-order approximation has an

effect through the pressure tensor and change in the scalar number of the collision fre-

quency. These results were applied to explain the Penning Ionization Gauge (PIG) dis-

charge. Our result showed that it is almost impossible with this kind of approach to

account for the large current drawn by electrodes. The theory of PIG discharge was

formulated in order to explain the large current as a result of the nonlinear effect of

diffusion caused by the fluctuation of the electric field (12).

S. Yoshikawa
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10. DISAPPEARANCE OF ELECTRIC CURRENT PERPENDICULAR TO THE

MAGNETIC FIELD IN PLASMA

There will be no electric current inside a magnetized plasma under the following

conditions:

(a) Plasma completely ionized;

(b) No anisotropy in space;

(c) Electric field perpendicular to the magnetic field;

(d) No time dependence; and

(e) No external force other than the electric field.

Spitzer's (1) equation, for a steady state, is Vp = j X B - pV. By assumptions (b)

and (e), 0 = j X B, hence the current perpendicular to the magnetic field must be zero.

This is rigorously true, but it does not appear to follow naturally from the derivations

of Cowling (2) and Chandrasekhar (3). In order to avoid any ambiguity, we present a

simple interpretation.

Consider, for instance, Cowling's formulation (4). His hydromagnetic equations,

which are applicable if neutral particles are present, are

dv
Sdt= pg grad p+ j XH (1)

d - 1
(l-F) p dt - (-F) pg - grad (pi+P + j X H + KeH- (Ke+Ki) F Hi (2)

In these equations, F is a fraction of neutral density, p is total density, g is gravita-

tional force and

V v.
en in

K - , K. =-
e W 1 W.e 1

where v is the electron neutral collision frequency, v. is the ion neutral collisionen in
frequency, and we and w. are the cyclotron frequencies of both species.

In case the 1neutral density approaches zero, the limit must be taken carefully.
In case the neutral density approaches zero, the limit must be taken carefully.
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Cowling let all numbers F, Ke , and Ki go to zero and kept the ratio finite. In Eq. 2, the

limiting process gives

d_ 
K +_

P = pg- grad (p +Pi) + j XH- lim e HjF i

Considering

Ji vi
- = ne - = nevn (neutral velocity)
F F n

we are led to the conclusion that neutral-particle velocity must stay finite even if neutral

density tends to zero. Hence Eq. 2 becomes Eq. 1. But if, as Cowling did, we make

(Ke+Ki) F nonzero, the subtraction of Eq. 1 from Eq. 2 yields

(K + K. K + K.

lim eF Hj = 0 lim e F ' 0

Hence ji becomes zero. Then Cowling's result follows.

S. Yoshikawa
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RESEARCH OBJECTIVES

1. Plasma Magnetohydrodynamicst

The general purpose of the magnetohydrodynamic research is to explore interaction
phenomena in those situations in which the fluid can be considered to be predominantly
a continuum. This includes a wide range of phenomena, from the flow of liquid metals
through magnetic fields to the propagation of hydromagnetic shock waves. At the present
time, we are exploring such problems as boundary-layer flow over a flat plate with
normal magnetic field, the flow over pitot tubes in the presence of a magnetic field, the
confinement of dense plasmas with dc and ac magnetic fields, the acceleration of plas-
mas by J X B forces, and the propagation of disturbances in a medium containing a mag-
netic field.

While some of the experimental work is concerned with liquid metals, a large pro-
portion makes use of shock tubes to produce high-velocity plasmas whose interactions
with magnetic fields can be studied. One of our research objectives is to extend these
techniques to include a greater range of physical parameters.

J. A. Fay

2. Energy Conversion

(a) Magnetohydrodynamic Energy Conversiont

The objectives in this area are twofold:

(i) To study problems of magnetohydrodynamic flow in order to obtain a better
understanding of the many phenomena involved, such as turbulence and wave motion.
This involves both theoretical and experimental work.

(ii) To study systems in which energy conversion can occur between flow energy
in a conducting liquid or gas and an electrical system. The systems of interest include
steady and nonsteady fluid flow, and dc and ac electrical systems. The work involves
theoretical and experimental evaluation of magnetohydrodynamic conversion schemes
that have already been proposed and suggestions for new conversion schemes.

H. H. Woodson, W. D. Jackson

*Commonwealth Fellow from England, 1960-61.

tThis work was supported in part by National Science Foundation under Grant G-9330,
and in part by Contract AF19(604)-4551 with Air Force Cambridge Research Center.

*This work was supported in part by National Science Foundation under Grant G-9330,
and in part by WADD Contract AF33(616)-7624 with Flight Accessories Laboratory,
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(b) Thermionic Energy Conversion

Present objectives lie in four distinct areas of direct thermionic energy conversion.
The first relates to the theoretical study of the Richardson equation by means of
irreversible thermodynamics; the second, to experimental verification of the Saha-
Langmuir equation in the region of partial coverage; the third, to the theoretical and
experimental analysis of plasmas and sheaths; and the fourth, to the correlation of the
effect of emitter work function on the efficiency and ion production rate of cesium con-
verters while operating in the neutralized space-charge region.

G. N. Hatsopoulos, E. N. Carabateas

(c) Fuel Cellst

Our objective is to learn more about the mechanism of the various chemical, phys-
ical, and electrochemical processes that occur simultaneously in a fuel cell. Studies
will be directed toward satisfying the criteria of high electrode current density and high
efficiency in low-temperature, low-pressure fuel cells that are capable of operating on
air and hydrogen and commonly available hydrocarbons.

H. P. Meissner

1. INDUCTION-DRIVEN MAGNETOHYDRODYNAMIC FLOW

This analysis concerns the laminar flow of a viscous, incompressible, electrically

conducting fluid (for example, Hg or NaK) in a nonconducting high-aspect-ratio channel,

as shown in Fig. 11-26. The fluid is driven mechanically by the difference in pressure

between reservoirs at the ends of the channel (the pressure gradient along the channel),

and is driven electrically by the traveling magnetic field produced by a two-phase

winding on the surfaces of the highly permeable pole pieces that enclose the channel.

For the purposes of analysis, the exciting current is represented by sinusoidal current

sheets, in the planes y = ±a, of the form

K(y=+a) = i K Re ei( t- k z )  (1)

K(y=-a) = i K Re ei( t - k z )  (2)

with the result that the traveling magnetic field has the phase velocity w/k. If the

positive sign is taken in Eq. 2, the excitation and the y component of the resulting

magnetic field have even symmetry with respect to y; if the negative sign is taken, they

have odd symmetry.

This work was supported in part by National Science Foundation under Grant G-9330,
and in part by WADD Contract AF33(616)-7624 with Flight Accessories Laboratory,
Wright-Patterson Air Force Base, Ohio.

tThis work was supported in part by WADD Contract AF33(616)-7624 with Flight
Accessories Laboratory, Wright-Patterson Air Force Base, Ohio.
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Fig. 11-26. An induction-driven magnetohydrodynamic channel flow.

In general, the fluid velocity u will have both y and z components, which vary

periodically with both z and t, and aperiodically with y. An important special case

occurs when the density and viscosity of the fluid are sufficiently high that the time

variations in the velocity field can be ignored. This case is discussed here. The

normalized velocity is assumed to be of the form
-- A

ui = i u(y) (3)

while the normalized magnetic field is given by

h = Re [iTh (y)+ i h ()] eia(TZ (4)
y y z-z (A

in which x, y, and z are the coordinates normalized with respect to the channel half-

width a, the normalized time is T = t/a, and the parameter a = ka measures the ratio

of the channel half-width to the excitation pole spacing. When Eqs. 3 and 4 are substi-

tuted in the magnetohydrodynamic field and force equations, the following pair of non-

linear, coupled, ordinarily differential equations re'sults:

d2h-Y 
R

S a + i zh = 0 (5)
dy

z 1 M2hyhy =-RP (6)

dy2 2 -y-y z o

In Eqs. 5 and 6, E = 1-u zis the velocity defect, R /a = (r/k2 is the magnetic

Reynolds number, M = . K a(r/o)1/ 2r is the Hartmann number, R = pwa/k is the

hydraulic Reynolds number, and P = is the time average of the pressure gradient

in the z-direction.
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Harris (1) obtained equations similar to Eqs. 5 and 6, and showed that under the

drastic simplification, la 2 (1+iR m/a) I << 1, h is a constant, and Eq. 6 is linear and
m -y

yields velocity profiles similar to those in Hartmann flow (2). The present study is

concerned with obtaining general solutions to the original nonlinear equations, Eqs. 5

and 6. The technique employed is that of making a perturbation expansion in the param-

eter Rm/a,

o R n
h = h myn (7)
-Y n=0 -yn a

E = E zn(M) (8)
n=0

This expansion is appealing from a physical viewpoint, because Rm/a is usually small.

The substitution of the series Eqs. 7 and 8 in Eqs. 5 and 6 yields simple linear differ-

ential equations for the zero-order magnetic field and velocity defect,

d2h
-yo 2

ah =0 (9)
dA2 -yo

d2Ezo 1 2 *zo M2h h = -RP (10)
A

2  2 -yo-yo zo ody

The solutions of Eq. 9, subject to the boundary conditions imposed by the excitation

surface currents and the highly permeable pole pieces, are h = -i cosh ay/sinh a for
-yo

even excitation, and h = -i sinh ay/cosh a for odd excitation. If these magnetic-field
-yo

solutions are substituted in Eq. 10, the equation for the zero-order velocity defect has

the form of an inhomogeneous modified Mathieu equation. Relatively little theoretical

work has been done on this type of Mathieu equation, and none has thus far been discov-

ered that is particularly helpful in this particular problem. For this reason, homoge-

neous and particular solutions to Eq. 10, for various values of the parameters M and

a, have been integrated numerically on the IBM 709 digital computer (3). A typ-

ical set of velocity profiles obtained from these calculations is shown in Fig. 11-27. The

excitation is even, a = 1. 0, M = 10. 0, and the pressure drive RP is varied so that the
o

center channel velocity varies from twice the traveling-wave speed to minus the

traveling-wave speed. When RP is positive, the device is a pump; when it is negative,

the amount of power loss determines whether it is a flow damper or a generator. The

important feature of these velocity profiles is that they do not all have the same shape

as the Hartmann profiles do, but clearly show the effect of the fact that the electromag-

netic force is stronger near the channel walls than at the center, while the pressure
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Fig. 1I-27. Typical velocity profiles in laminar, induction -driven
magnetohydrodynamic flow.

force is uniform. In fact, in some of the profiles the fluid is moving in one direc-

tion near the channel walls, but in the opposite direction at the center. Such profiles

are probably more inclined to instability than others, since they possess a point of

inflection.

The first-order velocity defect in the series Eq. 8 can be shown to be zero, with the

result that the error in the velocity profiles shown in Fig. II-27 is second-order in

Rm/a. At present, the first-order and second-order magnetic fields, and the second-

order velocity defect are being computed, and the general case in which the fluid

velocity has components that vary with time is being analyzed.

J. P. Penhune
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