
XVI. ARTIFICIAL INTELLIGENCE

Prof. J. McCarthy P. W. Abrahams D. C. Luckham
Prof. M. L. Minsky D. G. Bobrow D. M. R. Park
Prof. C. E. Shannon R. K. Brayton S. R. Russell
Dr. Phyllis Fox D. J. Edwards J. R. Slagle

L. Hodes

RESEARCH OBJECTIVES

The purpose of our work is to investigate ways of making machines solve problems
that are usually considered to require intelligence. Our procedure is to attack the
problems by programming a computer to deal directly with the necessary abstractions,
rather than by simulating hypothetical physiological structures. When a method for
solving a problem is not known, searches over spaces of potential solutions of the prob-
lem, or of parts of the problem, are necessary. The space of potential solutions of
interesting problems is ordinarily so enormous that it is necessary to devise heuristic
methods (1) to replace the searching of this space by a hierarchy of searches over sim-
pler spaces. The major difficulty, at present, is the excessive length of time required
for building machinery or even for writing programs to test heuristic procedures. For
this reason, the major part of our effort is going into the development of ways of com-
municating with a computer more effectively than we can now communicate. This work
has two aspects: development of a system for instructing the computer in declarative,
as well as imperative, sentences, called the advice taker (2), and development of a
programming language called LISP (3) for manipulating symbolic expressions that will
be used for programming the advice-taker system and will also be of more general use.

J. McCarthy, M. L. Minsky

References

1. M. L. Minsky, Some methods of artificial intelligence and heuristic programming,
Proc. Symposium on the Mechanisation of Thought Processes, National Physical Labo-
ratory, Teddington, England, Nov. 24-27, 1958 (H. M. Stationery Off. , London, 1959).

2. J. McCarthy, Programs with common sense, Proc. Symposium on the Mechani-
sation of Thought Processes, National Physical Laboratory, Teddington, England,
Nov. 24-27, 1958 (H. M. Stationery Off., London, 1959).

3. J. McCarthy, Recursive functions of symbolic expressions, Quarterly Progress
Report No. 53, Research Laboratory of Electronics, M. I. T., April 15, 1959, pp. 124-
152, and Communs. ACM 3, No. 4 (April 1960).

A. INTEGRATION

J. R. Slagle's integration in LISP has been completed. This computes indefinite

integrals symbolically in the manner of a freshman calculus student. The program has

integrated approximately 70 forms, including 38 forms taken from MIT freshman cal-

culus final examinations. Two examples of integrated forms are:

x 2
xe sec txe dx and sec t dt

(1+x) sec t - 3 tan t + 1

This work is supported in part by the Computation Center, M. I. T.

163



(XVI. ARTIFICIAL INTELLIGENCE)

The solutions of each of these examples took approximately 13 minutes on the IBM 7090

computer. The central problem dealt with in this program is the same as that faced by

the freshmen - namely, the choice of which standard transformations of calculus are to

be applied to the integral that is being evaluated. The result of such a transformation

may be either a solution of the problem, a substitution of another integral to be evalu-

ated, or a split into two or more new integration problems. After a tree of subproblems

has been accumulated, the program has to decide which subproblem in this tree to work

on. For the choice of method, a variety of pattern recognition heuristics is used: esti-

mates of difficulty and estimates of the progress made thus far on the problem are used

to decide which branch to take. The program will be described in a forthcoming publi-

cation.

This program as written in the LISP system taxed the 32, 768 word memories of the

IBM 709 and IBM 7090 computers to the utmost. A good part of the last year's effort

was devoted simply to squeezing the program into the available memory. Even so, lack

of space prevented use of the LISP compiler, so that the much slower LISP interpreter

had to be used. Furthermore, a number of heuristic devices that might have sped up

the operation of the program could not be included because of lack of space.

The conclusion can be drawn that heuristic programming for projects more complex

than formal integration will require substantially larger magnetic core memories if the

research on heuristic methods is not to be diluted excessively by coding difficulties.

J. R. Slagle

B. LISP

The LISP Programming Language has been extended by the addition of facilities for

the manipulation of integer-indexed arrays, by a new READ program that accepts a

more flexible input language, and by various improvements in the LISP compiler. The

LISP Programmers Manual is now available (1).

Work is being started on the LISP 2 System, which will be completely recoded in

the Linking Loader System for easier maintenance. The main advance of LISP 2 over

the present LISP will be the incorporation of facilities that permit the programmer to

define new kinds of quantity and the operations on them in terms of the basic quantities

or in terms of quantities previously defined by him. LISP 2 will include facilities for

both numerical and symbolic computation, including all the facilities of ALGOL. No

completion date for LISP 2 has been set.

J. McCarthy

References

1. The LISP Programmers Manual is available at the Technology Book Store,
40 Massachusetts Ave., Cambridge 39, Mass.

164



(XVI. ARTIFICIAL INTELLIGENCE)

C. CHESS

The Chess Project, initially undertaken by J. McCarthy, was turned over to a "soph-

omore syndicate" in the fall of 1959. The project for that year was a computer program

for chess problems in which a checkmate in three moves was demanded. Previous work

had given us the mechanism for making and retrieving legal moves. We needed a

scheme for choosing good moves because an exhaustive method would be too time-

consuming and not particularly subtle.

We focussed our attention on the critical area - the square occupied by the enemy

king and the eight squares immediately surrounding it. It is apparent that a checkmate

is possible if and only if the king is attacked and none of the surrounding eight squares

are accessible to him.

Research into 150 three-move checkmates taken from actual games showed that in

all but six of them, the winning first move was a check. Thus we decided to weight

checks heavily. Further statistical study showed that critical area conditions should

be examined and weighted in the following order:

(i) checks;

(ii) attacks - moves that further limit the enemy king's mobility;

(iii) mask attacks - moves that would attack, except for the presence of one inter-

posing friendly piece;

(iv) elimination of enemy pieces defending the critical area.

Since it is possible to examine all legal moves for checks rapidly, (i) is treated as

a special case and investigated first. We then assign values to all other moves, using

the criterion stated above with appropriate weighting factors, and choose the best move

as our opening move.

If the opponent has a large number of legal replies (e. g. , our first move is not a

check), we order his moves by the reverse order of the criterion and enter the best

move as his reply. This procedure is then repeated for our second move and his second

reply; for our last move, we merely examine all checks.

The three-move checkmate program was operable in May 1960. On the average it

takes approximately 1.1 minutes of computer time to solve a problem. The longest

running time for a problem with a solution was 3.6 minutes. This program was coded

for the IBM 704 computer in the Computation Center, M. I. T. , and was written mainly

in the Fortran source language, with short sections coded in the SAP language.

In the fall of 1960, we began work on the general chess machine. Our first task

was research in previous efforts in the field (1, 2). A description of the programs of

Shannon, Turing, the Los Alamos Group, Bernstein at IBM, and Newell, Shaw, and

Simon was examined (3). We felt that these programs seemed to have one disadvantage

in common - aimlessness. This, we felt, could best be overcome by dominating our

165



(XVI. ARTIFICIAL INTELLIGENCE)

choice of moves with the broad goal that a chess player calls "a strategy. " Much of

the previous work has proved to be invaluable and will be incorporated into our system.

Because the earlier work did not consider the precise formulation of strategy, we have

had to perform our own basic research by investigating how a human being forms and

employs strategy.

Our proposed system for the machine playing of chess is the following. Assuming

that the opponent has made a move, we combine the effects of this move with our pre-

vious strategy and evaluate the new board position with respect to material, mobility,

and time to form a new strategy. This strategy determines the relative importance of

each of a set of move generators. Each generator is capable of proposing a specific

type of move. The generators are then activated in order of importance, and the pro-

posed move is made on a pseudo board. The opponent's replies are then generated by

the same method. Continuing this process, we construct a tree of possible sequences

of moves. Branches are terminated when a stable position is reached, and a numerical

value is then assigned to the position. When all branches are terminated, we evaluate

the tree according to the minimax process (4) and assign values to each of our first

moves. The move of highest value is then chosen.

For various reasons, not all of which are discussed here, we feel that proper im-

plementation of our general scheme with more efficient control and information flows

will result in a machine capable of playing masterly chess. In our opinion, we would

be incorporating all of the classical components of a chess game, with the possible

exception of psychological influences.

A. Kotok, M. P Lieberman, C. W. Niessen, B. F. Wells III

Members of the Class of 1962, M. I. T.

References

1. A. Bernstein, et al., A chess playing program for the IBM 704, Proc. Western
Joint Computer Conference, May 1958 (AIEE, New York, 1958), pp. 157-159.

2. C. E. Shannon, Programming a computer for playing chess, Phil. Mag. 41,
pp. 256-275 (1950).

3. A. Newell, J. C. Shaw, and H. A. Simon, Chess playing and the problem of
complexity, IBM J. Research Develop. 4, 320-335 (1958).

4. Ibid, p. 322.

D. PATTERN RECOGNITION WITH LISP

An investigation into mechanical description and recognition of line drawings with

LISP has been undertaken. We assume that a drawing is given as a picture on a

100 x 100 square array. The first part of our process converts the picture into a

166



(XVI. ARTIFICIAL INTELLIGENCE)

description so that the second part can work with descriptions.

For the purposes of this report, we ignore the methods of that part which converts

line patterns to descriptions. We need say only that the vertices are found and some

characteristics of the line segments between vertices are computed. The characteris-

tics chosen were: beginning angle, end angle, length, segment curvature (beginning

angle minus end angle), and total curvature (sum of the absolute values of the segment

curvatures of portions of the line between inflection points).

The description of a connected-line drawing takes the form:

(1, ((END VERTEX OF FIRST LINE STARTING AT VERTEX 1, BEGINNING

ANGLE OF THIS LINE, END ANGLE, LENGTH, SEGMENT CURVATURE,

TOTAL CURVATURE), (END VERTEX OF SECOND LINE STARTING AT VER-

TEX 1, BEGINNING ANGLE, .. ), (. . .. )... ), 2, ((END VERTEX OF FIRST LINE

STARTING AT VERTEX 2, BEGINNING ANGLE,... ),(...),...), 3, ((...) .. ),

4, ((...),...), ... )

In this description, line segments are represented twice: once as going from vertex i

to vertex j, and again as going from j to i. There is also a list of vertex coordinates,

((1, Xl, Y1), (2, X2, Y2) ... ).

The rest of this report illustrates the use of LISP for processing descriptions of

line drawings.

Format creates functions for the various parts of a line description:

format [LINE; (ENDVERTEX, BEGANGLE, ENDANGLE, LENGTH, CURVE,

TCURVE); (ENDVERTEX, BEGANGLE, ENDANGLE, LENGTH, CURVE, TCURVE)]

"Sumlines" is used to join two lines while "aplines" joins a list of lines:

sumlines = X[[a;b][null[b] - a; T - line[endvertex[b]; begangle[a]; endangle[b]; sum

[length[a]; length[b]]; sum[curve[a]; curve[b]]; sum[tcurve[a]; tcurve[b]]]]]

aplines = k[[a]; sumlines[car[a]; aplines[cdr[a]]]]

An arbitrary test for straightness of a segment was introduced:

straight = k[[a]; not[or[greater[curve[a]; 200]; greater[tcurve[a]; 400]]]]

Slightly more complex LISP expressions are used to get pairs of lines which con-

tinue through vertices, and another sequence of expressions finds triplets of vertices

which form triangles. Further work, which includes a program for finding triangles

in overlapping figures, is described in Memorandum 18 of the Artificial Intelligence

Group, Research Laboratory of Electronics, M. I. T.

L. Hodes

E. DIAGRAMMING SENTENCES

We are writing a program in LISP that will enable a computer to diagram sentences;

that is, it will enable us to put all sentences into one general form: subject, verb, direct

167



(XVI. ARTIFICIAL INTELLIGENCE)

object, and indirect object. Comparison of diagrammed questions with similarly dia-

grammed sentences of text will then enable a computer to answer these questions. Thus

far, we have written functions to find the complete subject, verb, direct object, and

indirect object of a simple sentence; that is, the subject, etc. , complete with modifiers,

are placed in a predetermined order. The step for diagramming compound sentences

is nearly complete. We then plan to consider complex sentences, and finally, the

question-answering routine.

The work is related to previously reported work (1).

S. Dunten, J. Martinson

Members of the Class of 1963, M. I. T.

References

1. A. V. Phillips, A Question-Answering Routine, M. S. Thesis, Department of
Mathematics, M. I. T. , 1960; and J. McCarthy, Memorandum 14, Artificial Intelligence
Group, Research Laboratory of Electronics, M. I. T. , Feb. 1960.

F. ADVICE TAKER

A major problem in heuristic programming is that of managing situations in which

two or more goals are to be achieved at the same time. It is often a simple matter to
discover strategies or plans for the goals which will be successful separately but which

are incompatible.

When this happens, it is necessary to modify one or more of the separate plans, or
to adjust the manner of their execution, or both. A number of heuristic problems for
plan modification and adjustment are being studied in a version of the Advice Taker,
whose problem domain is the writing of programs for the manipulation of algebraic

quantities in a model digital computer.

M. Minsky

G. REVIEW PAPER AND BIBLIOGRAPHY

An extensive discussion of the Artificial Intelligence problem will appear in the
Proceedings of the IRE, January 1961, entitled "Steps Toward Artificial Intelligence."

This paper is, in part, a review of work on heuristic programming and artificial

intelligence and, in part, a summary of the author's work during several years. A

subject index bibliography of this field, with some 600 entries and 100 descriptive cate-
gories, will appear in the IRE Transactions on Human Factors in Electronics, Vol. 2,
No. 1, 1961.

M. Minsky

168



(XVI. ARTIFICIAL INTELLIGENCE)

H. AUTOMATA AND RECURSIVE FUNCTION THEORY

The "problem of Tag," proposed by Post (1) has been laid to rest by a proof that

shows that this problem is recursively unsolvable and, in fact, that the "Tag" systems

are equivalent, in a rather complicated sense, to general Post canonical systems or

Universal Turing machines. The proof will appear in a paper in the Annals of Mathe-

matics. As a consequence, we have constructed a Universal Turing machine that has

only six symbols and seven states; this state-symbol product of 42 is now the smallest

known product of this kind.

M. Minsky

References

1. E. L. Post, Formal reductions of the general combinatorial decision problem,
Am. J. Math. 65, 197-215(1943).

169




