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Abstract: Several problems in the theory of combinatorial

geometries (or matroids) are solved by means of algorithms

which involve the notion of "abstract pivots". The main

example is the Edmonds-Fulkerson partition theorem, which is

applied to prove a number of generalized exchange properties

for bases.



1. Introduction

The theory of combinatorial geometries (or matroids, as they

were first called [18]) concerns properties of a matrix which

depend only on a knowledge of which sets of columns are indepen-

dent. This paper concerns a number of problems and related

algorithms in combinatorial geometry which derive from the abstract

analog of "pivoting" in matrices. In matrix theory, a pivot is a

single application of the Gauss-Jordan elimination process, which

eliminates one variable from a set of equations. In abstract

combinatorial geometries, the existence of pivots is assumed as

an axiom, in the form of a replacement property for bases:

if S and T are maximal independent sets (bases) and

x S, there exists an element y T such that (S-x) v y is

a basis.

If we think of S and T as sets of columns in a matrix M,

with S an identity submatrix, then replacing x by y cor-

responds to a "pivot about position x in column y."

This replacement property allows one to recover some of

the algebraic structure of matrices in combinatorial form. As

one example of this, Rota has observed [15] that many determinant

identities have "analogs" which are valid in any combinatorial

geometry. Such results are obtained by ignoring the values of

determinants and considering only whether or not they are zero

(i.e. whether the underlying sets of vectors constitute a bases).

For example, one can use determinants to prove the following
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exchange property* for bases (which is stronger than the replacement

axiom but follows from it):

if S and T are bases, and x S, there exists an element

y T such that both (S-x) y and (T-y) x are bases.

The argument for matrices is as follows: If S is represented

by an identity matrix, and T is an arbitrary nonsingular square

matrix, then

det T = I + det((S-x)~ y) . det((T-y) x)
yeT

as can be seen by expanding det T by cofactors along "row x". Since

det T O0, some term on the right must be nonzero and the result

follows.

It is not hard to give a "determinant-free" proof of the ex-

change property (see [21,13]) and this proof shows that the property

holds in any combinatorial geometry.

In [8] one of the authors obtained a "multiple exchange pro-

perty" for bases, which corresponds to the Laplace expansion theorem

for determinants in the same way that the ordinary exchange property

corresponds to expansion by cofactors: if S and T are bases, and

X C S, then there exists a subset Y C T such that (S-X) Y and

(T-Y) J X) are both bases.

The proof by determinants is virtually identical to the one just

described when X is a singleton. However a proof valid in any geo-

The distinction drawn here between "replacement" and "exchange" does
not correspond to standard terminology.
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metry is much more difficult. In this paper we give a new construc-

tive proof, by describing an elementary pivot algorithm for carrying

out the exchange.

We will also show how a number of results related to the mul-

tiple exchange property can be expressed as "abstract pivot theorems",

and describe the pivot algorithms associated with them. Among other

things, we will show how Greene's exchange theorem follows immediate-

ly from the powerful "matroid partition theorem" of Edmonds and Ful-

kerson [7]. We describe this theorem in section 2, including an al-

gorithm which, although not essentially new, takes on a particularly

simple form in the present context. In section 3, we describe a num-

ber of "multiple exchange theorems", all of which can be reduced to

the Edmonds-Fulkerson theorem, and hence can be proved by elementary

pivot techniques. In section 4, we raise a new question: can a

multiple exchange of k vectors be carried out by a sequence of k

single exchanges? We conjecture that some permutation of the vec-

tors can be exchanged sequentially, and. prove that this is the case

for k=2.

2. Pivot Operations and the Edmonds-Fulkerson Theorem

Recall that a combinatorial geometry G(X) consists of a finite

set X together with a collection of subsets of X called bases, such

that (i) all bases have the same size and (ii) if S and T are bases,

and x S, then there exists an element y T such that (S-x)v y

is a basis. A set A is called independent if it is contained in

some basis.
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If it is possible to associate the elements of X with columns of

a matrix M in such a way that bases correspond to maximal independent

sets of columns, we say that G(X) is coordinatized by M. Examples

show that not every geometry can be coordinatized by a matrix; never-

theless most arguments involving the elementary tools of linear al-

gebra - independence, dependence, linear closure, dimension, etc. -

carry over to combinatorial geometries with no difficulty. The read-

er can safely assume that any such argument appearing in this paper

can be derived solely from the axioms for bases.

We mention two important properties: first the rank of a subset

A, denoted r(A), is defined as the maximum size of an independent

subset of A and obeys the submodular law:

r(A V B) + r(A rf B) < r(A) + r(B).

Second, if S is a basis, and y S, we say that y depends on the set

C(y,S) of elements x S such that (S-x)u y is a basis. More gener-

ally, we say that y depends on a set A if there exists a basis S such

that C(y,8) C A. The set y C(y,S) is called the circuit deter-

mined by y and S, and is a minimal (in the sense of set-inclusion)

dependent set. Most important for our purposes is the fact that "de-

pendence" is transitive: if y depends on A, and every element of A

depends on B, then y depends on . We will make free use of these

ideas without attempting to justify our reasoning - the reader can

refer to [14] or [18] for a detailed development.

Suppose that G(X) is coordinatized by matrix M, and S is a basis

whose columns in M are coordinate vectors. (This means that M is in

reduced echelon form with respect to the columns corresponding to S.)
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For any y S, the elements of C(y,S) can be identified immediately

by looking at the nonzero entries in column y. Each element

x C(y,S) can be replaced by y to form a new basis T = (S-x) y.

We call the operation of transforming S into T a pivot about x in y

(with respect to S). Whenever such a pivot is possible, that is,

whenever x C (y,S), we write

y ---4 X.
S

These symbols define a directed graph with vertex set X and a

multi-labelled set of directed edges, with one label type for each

basis S.' In concrete terms, each pivot represents a single applica-

tion of the Gauss-Jordan elimination process (applied to the column y).

Much of this paper concerns the interpretation of these symbols in

special situations.

It will be convenient to know when a chain of pivots

x e y- -- z.. --- w
S T U

can be carried out simultaneously. That is, if a basis appears

several times in the chain, we need conditions which guarantee that

all of the replacements involving it can be made at once.

The following lemma provides a very useful condition of this

type, which applied even when the bases S, T, ... , U come

fvom different geometries.

tA related structure, called a basis graph has been studied by several
authors (Bondy [1], Holzmann and Harary O]J, Maurer [12],[13]). The
structures are formally distinct, however, since the vertices in a
basis graph are bases, with edges defined by pivots. Here, the ver-
tices are elements of X and each basis determines a class of edges.



Lemma 2.1 Suppose that Y -' Yk are elements of X and

B, B ,..,B are bases of geometries G 1(X), G(X),...,G(X)

respectively. (Neither the Bi's nor the Gi's are required

to be distinct.) Suppose that

YO--0 Y---- ''' Jk-l Yk
B1 B2 Bk

is a chain of pivots. Assume further that this chain is

minimal, in the sense that no shorter path from y to yk

exists using the labels B1, B2LJ , Bk. Then each of the

sets

B = (Bi-Ya-yb- ... Yc) -Yb-1 ' ' % Y-1

(where Bi = =Ba B ... 
= Bc) is a basis in Gi(X),

i = 1,2,...,k.

Proof: We observe that, for each B i, the pivots on elements

of Bi can be carried out sequentially, provided that the last ones

are made first. If B i appears only once in the list, then B!

is trivially a basis (by definition of Yi-1 - Yi) If B i

appears more than once, then Yi B y can still be

performed unless some member of the circuit C(yi 1 Bi

say yj, has been removed from B i in an earlier pivot. But

then there exists an arc Yil1 --- Yj with j > i, which

violates the assumption of minimal length.
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Next we describe the matroid partition theorem of Edmonds

and Fulkerson. The question is this: suppose that

G 1(X), G2 (X),...,Gk(X) are geometries defined on the same set .

Under what conditions is it possible to partition X into blocks

B.i such that, for each i, B i is independent in Gi? Moreover,

how can one find such a partition if it exists?

In terms of matrices, the problem can be described as

follows: suppose that M 1, M2,..., Mk are matrices, each

having IXI columns, which are stacked on top of each other to

form a large matrix M*. Under what conditions is it possible

to partition the columns of M* into sets B i so that for

each i, the submatrix of M i determined by B i has independent

columns. The answer is contained in the following:

Theorem 2.2 (Edmonds, Fulkerson) A partition of X into sets

Bi, independent in G i, exists if and only if for each A C X,

IAI < r(A) + r2 (A) + ... + rk(A), where ri(A) denotes the

rank of A in G..

Necessity of this condition is trivial, so it suffices

to prove that a partition exists whenever the conditions are

satisfied. We now give an algorithm, based on pivot operations,

which shows this:
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Suppose that B1, B2 ... Bk are subsets of X with the

property that B i is a basis of Gi, for each i. If U Bi = X,

we are done, since we can form a partition into independent

sets by removing duplicated elements. If U Bi # X, let

y X - U Bi We must show how to rearrange the elements of

B i into new sets B! with the same property, and add y to

one of them. If this is always possible, we can continue until

X is exhausted, and a partition is obtained.

The algorithm is based on a labelling procedure:

Step (0) Label the element y.

Step (1) For each labelled element y', label every unlabelled

element z such that y' . z for some B..

Step (2) If an element common to two bases, say B. and
1

Bj, has been labelled, stop. Otherwise go back to step 1.

When the labelling procedure stops, there is a chain

Y = Y ) Y 1 l (2 y 2 OF. y

where yj is common to two bases, say B(j ) and B k (It

is understood that bases can appear several times in the list.)

Now define, for each i = 1,...,k,

Bi if Bi does not appear in the list

3i =

(Bi Ya-Yb -Yc) Ya-l U Yb-l U ' Yc-1

if B. = B(a) = B(b) = = B (C)
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From the nature of the labelling algorithm, it is clear that

the chain from y to yi is minimal. Hence the previous

lemma applies, and it follows that each Bi is a basis in

G i. Clearly B = y u Bi, and we have added y as

desired.

It remains to show that the labelling process terminates

--- that is, some element common to two bases is

eventually labelled. Suppose to the contrary, that the

algorithm proceeds until Step (1) no longer labels anything new.

If we denote the set of labelled elements by L, then L

depends on L n B i in each geometry G i, and the sets

L Bi are disjoint. Hence

57 r (L) = 2IL Bil < IL - 1

since y L but y d Bi. This contradicts our hypothesis,

and the proof is complete.

In the concrete matrix version of the problem, it should

be noted that no matrix operations are necessary until the

end of each cycle (adding an element y). The labelling is

done entirely by scanning the nonzero elements of each column.

After the new bases Bi,B2,...,B' have been found, one performs

row operations on each M i to put it in canonical form with
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respect to B!, but it is not necessary to do this sooner.

For example, in the picture below, if B 1 = {x3,x 4,x 5} and

B2 = {x2 ,x3 }, and y = xl, the circles and arrows illustrate

the relations

1 B2 2 B1 B 3

)(1 X, XI h K-

WAA

C
Fig. 1

(In fact, this is all the labelling which takes place).

According to the algorithm, we construct new bases

i = (B1 - x4 ) % x2 = {x2,x 3,x 5 }

O 
0 0

O O

I O C

o o

0 O I

_I , - X - - - - --- � -

M%~

j·

--- -- _
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and B = (B2 - x 3 - x2) Q x4 u x 1 = {XlX 4}

which provide a complete partition of X.

A variation on the Edmonds-Fulkerson theorem which can

be proved by similar methods is the matroid intersection theorem

(due to Edmonds): If G1(X) and G2(X) are two geometries defined

on the same set X, then there exists a subset S X

of size k which is independent in both G 1 and G 2 if

and only if k < r1(A) + r2 (X - A) for all A . X. The

connection between matroid intersection and matroid partition

is well known, and a labelling algorithm similar to the one

given above can be constructed. Such an algorithm has been

described by Lawler [1]. (See also Edmonds [5],[6])

3. Multiple xchange Theorems

The following theorem was proved by Greene [8] (and

independently by Brylawski [2]).

Theorem 3.1: Let S and T be bases of a combinatorial geometry

G(X), and let A c S. Then there exists a subset B c T

such that (S-A) B and (T-B) A are both bases.

If S is a singleton, it is not difficult (see [2], [3]) to show this. For

matrices it can be proved immediately by assuming that S is

a coordinate basis. The columns of T are represented by a

tonsingular matrix and the result is equivalent to the following:
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Theorem 3.2 Let M be a nonsingular matrix, whose rows have been

partitioned into two parts A and A'. Then it is always

possible to permute the columns of M in such a way that the

principal minors corresponding to A and A' are nonzero.

This follows easily from the Laplace expansion theorem for

determinants, but the question of how to carry out the exchange

is much less obvious. Greene's original proof provided an ef-

ficient but unattractive algorithm. However, it is much more

convenient to observe that the multiple exchange property is a

trivial consequence of the Edmmnds-Fulkerson theorem. Hence

an elementary algorithm is easily obtained.

To see this, consider the geometries G1(T) = G/A and

G 2(T) G/S-A defined on T y "factoring out" A and S-A.

That is, we define rank unctions

rl(U) = r(U . A) - r(A)

r 2(U) = r(U j (S-A)) - r(S-A).

It is easy to see that exchanging A for a subset of T is

equivalent to partitioning T into sets B 1 and B 2 which

are bases in G1 and G 2, respectively. According to the

theorem, this can be done provided that

IlI r l (U) + r 2 (U)

for every subset U c T. But

rl(U) + r2 (U) = r(U A) + r(U (S-A)) - S I
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= r(U A) + r(U (S-A)) - r(U A J(S-A))

> r((UvA) (U (S-A)))

by the submodular law. But

r((U A) (U ) (S-A))) = r(U) = lUI

and this completes the proof.

Remark: In order to apply the Edmonds-Bulkerson algorithm, it

is not necessary to compute the factor geometries G/A and G/S-A.

The algorithm can be applied directly, provided that we start

with bases B1 A and B 2 v (S-A), B 1 CT, B2 C.T, and mod-

ify step (1) by requiring that elements of S are never labelled.

The multi-part partition theorem in fact proves a stronger

fesult:

Theorem 3.3 Let S and T be bases of G(X) and let

nI = {SlS 2,... ,S be a partition of S. Then there exists

a partition H' = {T ,...,Tk} of T with the property

that, for each i = 1,2,...,k, the set (S-S.) ) T. is a

basis of G(X).

Proof: To extend the argument used to prove the multiple ex-

change theorem we need the following extended submodular in-

equality (easily proved by induction, using the ordinary submodular

law): if P1' --2''Pk are subsets of any geometry, then

I r(i) > r( Pi) + r(PlU 2 Pi) + r(P2% n Pi)

+ ... + r(Pkl U Pk) -
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To prove the theorem, let G i = T/S-Si, i = 1,...,k. If

A C T, then ri(A) = r(A (S-Si)) - IS-Sil, so that

k k
ri(A) = I r(A (S-Si)) - (k-l)ISI.

i=l i=l

Let Pi = A U (S-Si) in the above inequality. Then

r(Pi n i+l Pj) = ISI for each i = 1,...,k-l, and

r(tk Pi ) = JAI. Hence Zr i(A) > IAI + (k-l)ISI - (k-l)ISI = IAI,

for every subset A C T. By the Edmonds-Fulkerson theorem,

T can be partitioned into sets T i such that T i is indepen-

dent in G i for each i. It is easy to show that this implies

Ti V (S-Si) is a basis in G for each i.

If is taken to be the trivial partition of S into

ISI parts, we obtain the following result of rualdi [3]:

Theorem 3.4 If S and T are bases of G(X), there exists a one-

to-one correspondence 0: S - T such that (S-x) (x)

is a basis for all x S.

There are elementary examples which show that the last

two results are replacement theorems rather than exchange

theorems. That is, for example, it is not always possible

to have (S-x) (x) and (T-4(x)) x simultaneously

bases for all x S. (See [31. Dilworth [41 obtained similar

results in a related but somewhat more special case.)

It is interesting to note that the dmonds-Fulkerson

partition theorem proves a result which is apparently stronger

The referee has pointed out that Theorem 3.3 can be derived
directly from Theorem 3.1 by an induction argument.
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than the multiple exchange theorem. This is most clearly

seen by examining the analog of Brualdi's theorem when one

of the sets is not required to be a basis. We ask: under

what conditions, if S is a basis and T is an arbitrary set of

size ISI, does there exist an injective map : S + T such that

XS-x) J a (x) is a basis for each x S. If T is represented

by an arbitrary square matrix, the Edmonds-Fulkerson theorem in this

case gives necessary and sufficient conditions for some term

in the determinant expansion of T to be nonzero. (These

conditions are equivalent to the well-known "matching

conditions" of P. Hiall [9], as can be easily verified,)

Brualdi's theorem, on the other hand, gives only a sufficient

condition: that the columns of T be independent. In an

analogous way, the 2-part case of the Edmonds-Fulkerson

theorem gives a result which is apparently stronger than'-

B;-reen's multiple exchange property.

We remark that, when applied to Brualdi's Theorem,

the algorithm which we describe in section 2 is essentially

equivalent to the so-called "Hungarian method" - or "alternating

chain" method - for finding a matching in a bipartite graph.

4. Sequential xchange Properties

In this section, we consider the question: can a

multiple exchange be carried out by a series of single

exchanges? Here we mean exchange rather than replacement:
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If x S and y T, a single exchange of x for y is

a pair of pivots x-- y, y--+ x. A replacement is a single
T S

pivot x -- y or y--4 x. There are five questions which
.T S

one might reasonably ask:

Question 1: If A C S can be exchanged for B C T, is it

always possible to do this with IAI single exchanges?

Question 2; If A = {al,...,ak} is it always possible to

exchange A for some B C T by exchanging al,a 2,...ak

in order?

Question 3: If A C S can be exchanged for B C T, is

there always some set of single exchanges which carries this out?

Question 4: If A = {al,...,ak}, is there always a permutation

a such that A can be exchanged for some B by exchanging

a ,_2_ .. ,a (k) in order?(1) (2 )" (k) -

Question 5: Is it le to exchange A for some by

some sequence of exchanges?

In this paper, we will partially answer these questions

as follows:

(i) The answer to questions 1 and 2 is no.

(ii) The answer to question 4 is yes if k = 2.
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Conjecture: Questions 3 and 4 (and hence 5) can be answered

affirmatively for all k.

First, the counterexamples: let M be the matrix

x 1 x 2 x 3 x4 x5 x6

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 1 .

Counterexample 1: If S = {x1,X 2,X 3} and T = {x4,x 5,x 6},

then {XlX2} can be exchanged for {x4,x 5} but it is not

possible to achieve this by two single exchanges.

Counterexample 2: Let S and T be as above. Then

{xl,x3} can be exchanged for {x4,X5} via x 3 4- x5,

x1 4- x4. However, it is not possible to exchange {xl,X3}

for anything by switching x1 first and then x3.

We now prove two lerunas in order to affirm question 4

when k = 2;
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Lemma 4.1: Suppose that S and T are bases of a combinatorial

geometry, and suppose that there exists a closed alternating

chain of pivots

X1 '* Y1 - X2 - Y2 .. Yn - xn+l = X1
S T S T

(Here we assume that the x's are in T and the y's are in S).

If this cycle is minimal, in the sense that it contains no

chords x. -j- yj, i i or Yi * xj, i j-l, then
S T

{X...,x }. can be exchanged for {ylY2...,y }.

Proof: This is a special case of the lemma on sequential

pivots described in section 2.

Next, we have the following lemma, which should not be

confused with the (false) assertion in Question 1:

Lemma 4.2: Suppose that S and T are bases and A £ S,

B T, with AI = [BI = k. If A can be exchanged for B,

it is possible to carry out this exchange by means of 2k

replacements (or pivots).

Proof: Consider the directed graph whose vertices are the

elements of A B, and whose edges are given by the symbols

a -- b, b' - a'. First observe that every a A is connected
T S

to some b B by an edge a--4 b, since otherwise a depends
T

on T - B, which is impossible since A can be exchanged for

B. Similarly, eac b, B is connected to some a A. Hence
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there exist directed cycles, and we choose one which is minimal.

By the previous lemma, this permits us to exchange some subset

A0 c B for some subset B1 C- B, using 2k 0 replacements,

where k = A0 1 = B0 1. Now repeat the process for A - A0,

B - B0 , and so forth until the exchange is complete.

Remark: It is possible to use the previous two lemmas to construct

a labelling algorithm for multiple exchange directly. However,

it is entirely equivalent to the one previously described o

we omit the details.

If our conjecture is true, the 2k pivots described in

the previous lemma can be arranged so that each successive

pair x-+ y ,y- x is an exchange. Next we show that this

is always the case if k = 2.

Theorem 4.3: Let S and T be bases, and let {XlX 2 } C S.

Then, after relabelling xl and x if necessary, it is

possible to find a sequence of exchanges

X1 - Y 1 X1
T S

x2 - Y 2 2
T' $'

for some ,y T 1. (here S' = (S-x1 ) y1 ' T' = (T-y ) x )

Proof: Suppose that x1 has been exchanged for yl (as is

always possible). If x 2 can now be exchanged for some Y2

we are done, so assume that x2 can be exchanged only for xl.
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This implies that S" = (S-x2) Yl and T" (T-yl) x2

are both bases. On the other hand, we know that x1 ,x21

can be exchanged for something, say {Y2 'y3}. Hence, in S'

and T', {y1,x 2} can be exchanged for {y2,Y 3
} Similarly,

{y1 'X1} can be exchanged for {y2,y 3} in S' and T". By

the previous lemma, each of these exchanges can be carried

out by four pivots, which we represent by the following diagrams:

h ' S s'

'T' S" T'* S"

We can assume that the diagrams have this form, since any chords

would permit a sequential exchange immediately, and the pos-

sibility

j - , X a- _ i

for the second diagram is excluded by the fact that the arc

X1 a 19 Y3 must be present. (This follows from the existence of
T"

arcs xl- x2 and x2 Y 3, since T' is the result of
T" T'

replacing x 2 by x 1 in T".) From the fact that both chains

are chordless, we infer that neither Y 2 ---- y1 nor Y 2 '-" Y1
S' S"

occurs. Hence Y 2 depends on both S'-y 1 S-x2 and S"-y 1

- S-x1. But then Y 2 depends on S-xl-x 2, which contradicts the

fact that {Y2,Y 3} can be exchanged for {xl, 2}. This completes the

proof.
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Note:

After submitting this manuscript, the authors learned

that D. E. Knuth had independently discovered the same proof

of the Edmonds-Fulkerson partition theorem ("Matroid Parti-

tioning") Stanford Technical Report Stan CS-73-342, March 1973).

Knuth also employs an "arrow" notation which is similar to ours.
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Symbols appearing in text:

set-membership (epsilon)

set-non-membership

C set-inclusion

W set-union (small)

el set-intersection (small)

set-intersection (large)

U set-union (large)

arrow [Note: all arrows are intended to be
approximately the same length]


