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We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case

where the Higgs bosons decay to tau lepton pairs, using 1:8 fb�1 of integrated luminosity of p �p collisions

recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events

where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The

result is used to infer exclusion limits in the two-dimensional space of tan� versus mA (the ratio of the

vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson,

respectively).

DOI: 10.1103/PhysRevLett.103.201801 PACS numbers: 14.80.Cp, 12.60.Fr, 12.60.Jv, 13.85.Rm

Understanding the origin of electroweak symmetry
breaking is one of the central goals of particle physics.
The Higgs mechanism [1] in the standard model (SM)
provides a possible explanation, but the calculated mass
of the Higgs boson suffers from large radiative corrections.
Remedies for this problem such as supersymmetry [2]
require at least two Higgs doublets [3] and result in a
more complicated Higgs boson sector than that of the
SM. The minimal supersymmetric standard model
(MSSM) [4] predicts the existence of three neutral Higgs
bosons. The MSSM is an example of a Type II two-Higgs-
doublet model (Type II 2HDM) in which there is a light
scalar h, a heavy scalar H, and a pseudoscalar A. The
masses of these states are governed mainly by two parame-
ters in the theory, usually taken to be tan�, the ratio of the
vacuum expectation values of the two Higgs doublets, and
mA, the mass of the pseudoscalar.

In p �p collisions at 1.96 TeV center of mass energy at the
Fermilab Tevatron, Type II 2HDM Higgs bosons would be
predominantly produced by gluon-gluon fusion through a
b quark loop [5] or by b �b fusion [6]. The couplings and
masses of the Higgs bosons are such that if tan� is greater
than about 20 and mA is smaller (greater) than about
125 GeV=c2, one finds that the h (H) and A are degenerate
in mass to within a few GeV=c2, and are produced with a
cross section proportional to tan2�, while the production of
H (h) is suppressed.

These tan2�-enhanced production cross sections can be
in the range 0.1–10 pb depending on the Higgs boson
masses, and are orders of magnitude greater than the
corresponding ones for a SM Higgs boson and also the
more familiar associated production modes of a SM Higgs
boson with a vector boson. The Higgs bosons decay to
fermion pairs with a partial width proportional to the
fermion mass squared; thus the decays � ! b �b and � !
�þ�� (with� ¼ h, A,H) predominate, with the branching
ratio to b �b approximately 90% and the branching ratio to
�þ�� about 9% for mA > 100 GeV=c2.

This Letter presents the results of a search for the
production of Higgs bosons in Type II 2HDM such as the
MSSM, using data collected with the CDF II detector at the
Fermilab Tevatron p �p collider corresponding to 1:8 fb�1

of integrated luminosity. Full details of the analysis are
available elsewhere [7]; this result supersedes our previ-

ously published result [8], and is similar to the search
performed by the D0 Collaboration [9]. The analysis is
sensitive to a region of MSSM parameter space which is
complementary to that explored by the LEP 2 experiments
[10].
The analysis presented here uses the tau pair decay

modes, since it is possible to efficiently trigger on and
reconstruct the leptons in decays of the tau lepton to e� ��
or �� ��. Indeed, despite the 10� larger branching ratio to
b �b, the search in the tau mode is more sensitive because the
SM background is much smaller.
CDF II [11] is a general-purpose detector with an overall

cylindrical geometry surrounding the p �p interaction re-
gion. The three-dimensional trajectories of charged parti-
cles produced in p �p collisions are measured at small radii
(<30 cm) using multiple layers of silicon microstrip de-
tectors, and at outer radii (>30 cm) with a multiwire drift
chamber. The tracking system is inside a solenoidal magnet
with uniform 1.4 T magnetic field oriented along the beam
direction. Outside the solenoid are the electromagnetic and
hadronic calorimeters, which are segmented in pseudora-
pidity (�) and azimuth in a projective ‘‘tower’’ geometry
[12]. A set of strip and wire chambers located at a depth of
six radiation lengths aids in identifying photons and elec-
trons from the electromagnetic shower shape. Muons are
identified by a system of drift chambers and scintillators
placed outside the calorimeter steel, which acts as an
absorber for hadrons. The integrated luminosity of the
p �p collisions is measured using Čerenkov luminosity
counters [13].
We seek events with tau pairs where one or both taus

decay leptonically (excluding eþe� and �þ�� which
suffer from excessive background from Z=�� production).
These final states are denoted eþ �, �þ �, and eþ�
(where ‘‘�’’ here means the reconstructed hadronic part of
a tau decay). Events with a high-pT (8 GeV=c or more) e
or � candidate plus a high-pT charged track (5 GeV=c or
more) or a second e or � (4 GeV=c or more) are identi-
fied using high-speed trigger electronics and are recorded
for later analysis. The performance of the trigger and
lepton identification algorithms is described in detail else-
where [14,15].
The reconstruction of hadronic decays of tau leptons

[16] relies on defining tau signal and isolation region cones
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centered around seed tracks having pT > 6 GeV=c; we
demand one or three charged tracks in the tau cone, and
include in addition any �0 candidates. The main way to
discriminate between hadronic tau lepton decays and had-
ronic jets from quantum chromodynamic processes is to
demand no additional charged tracks or�0 candidates in an
isolation annulus outside the tau signal cone but within 30�
of the tau seed track. The half-angle of the tau signal cone
decreases with increasing visible tau energy due to the
Lorentz boost of the tau lepton, further aiding the discrimi-
nation of taus from jets. Additional suppression of had-
ronic jets comes from imposing a mass requirement on the
tau candidate decay products. Electrons and muons are
removed using information from the calorimeters and
muon detectors.

To select the eþ � and �þ � events we require an
isolated e or � with pT > 10 GeV=c, and a � with visible
hadronic decay products with total pT > 15 GeV=c
(20 GeV=c for three-charged-pion decays). For the eþ
� channel we require one lepton to have pT > 10 GeV=c
and the other to have pT > 6 GeV=c.

The main SM contributions to the selected event sample
include Z=�� ! �þ��, and W þ jet events where W !
‘� (with ‘ ¼ e, �) and the hadronic jet is misidentified as
a hadronically decaying �. The W þ jet events are largely
removed by requiring that the missing transverse energy
~E6 T not point along the direction opposite the momentum of
the ‘þ � system. The remainingW þ jet background, and
all other background stemming from jets misreconstructed
as taus (‘‘fakes’’) is estimated from events recorded with a
jet trigger. There are small contributions from Z ! eþe�,
Z ! �þ��, diboson, and t�t production.

The acceptances for signal and the nonfake backgrounds
are estimated from samples of simulated events produced
by the PYTHIA event generator [17] with CTEQ5L [18]
parton distribution functions. The Higgs boson widths
and masses are those for an MSSM model with tan� ¼
50. Tau decays are simulated by the TAUOLA package [19].
A GEANT-based [20] model simulates the interactions of all
final-state particles in the detector.

Table I shows the mean expected contributions of SM
sources, and the number of observed events in the three
channels. The uncertainties listed include all systematic
effects discussed below, including correlations.
To discriminate a Higgs boson signal from the back-

grounds, we perform a binned likelihood fit of background
and signal to the observed distribution of the ‘‘visible
mass’’ mvis, derived from the sum of the observed lepton
four-momenta and the missing transverse energy. The ob-
served distribution of this quantity is dominated by the
effects of the missing neutrino energy in the tau decays and
experimental resolution. Figure 1 shows the observed and
fit distributions for the search channels, including the con-
tribution from a Higgs boson signal as described below.
Various uncertainties limit the sensitivity of our search.

The one with the largest effect is due to the imprecisely
known tau energy. The distribution of the observed trans-
verse momentum of the � inW ! �� events constrains the
ratio of the reconstructed tau energy in the observed events
to that in the simulation to less than 1%, but the residual
uncertainty allows for shifts in the backgroundmvis spectra
mimicking a Higgs boson signal, particularly for the lower
masses considered (mA < 140 GeV=c2). At larger Higgs
boson masses the search sensitivity is limited more by
other systematic effects considered, including the lepton
trigger and identification uncertainties (2.4% for elec-
trons, 2.7% for muons, and 4.2% for hadronically decaying
taus), the uncertainty in the integrated luminosity (6%),

TABLE I. Mean expected SM backgrounds and observed
numbers of selected events in the final sample. The uncertainties
include all systematic effects, some of which are correlated.

Background eþ� eþ � �þ �

Z=�� ! �þ�� 605� 51 1378� 117 1353� 116
Z=�� ! eþe� 1:5� 1:2 70� 10 negl.

Z=�� ! �þ�� 17:9� 4:5 negl. 107� 13
dibosons 11:4� 3:7 4:2� 2:1 3:3� 1:8
t�t 9:1� 3:3 4:0� 2:1 3:3� 1:9
W þ jet, multijet 57:1� 13:5 467� 73 285� 46
Total 702� 55 1922� 141 1752� 129
Observed 726 1979 1666
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FIG. 1. Observed and predicted distributions of mvis for the
eþ � and �þ � channels (a) and eþ� channel (b). The
predicted signal distribution (for � ¼ h=A=H) corresponds to
that for the mA ¼ 140 GeV=c2 signal assuming a value of the
cross section excluded at 95% C.L. Note that in each plot the last
bin is an overflow bin. Here ‘‘Other EW’’ refers to all SM
backgrounds other than Z=�� ! �� and background arising
from jet ! � misidentification.
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Z ! �þ�� cross section (2.2%), and Higgs boson produc-
tion cross section (5.7%) [21].

We represent all the systematic uncertainties by
Gaussian-constrained nuisance parameters in the likeli-
hood, and eliminate these parameters by maximizing the
likelihood with respect to them. This procedure is numeri-
cally nearly identical to eliminating them by Bayesian
marginalization with a Gaussian prior density, which takes
much longer to compute.

The resulting likelihood is calculated as a function of the
Higgs boson signal cross section times branching ratio to
tau pairs 	B, and then converted to a posterior density in
	B assuming a uniform prior density. We exclude with
95% C.L. any 	B above which 5% of the posterior proba-
bility lies.

The likelihood as a function of 	B reveals no evidence
for the presence of a Higgs boson signal, and all nuisance
parameters remain consistent with their nominal values.
Figure 1 and other kinematic distributions not shown in this
Letter all reveal excellent agreement of the observed dis-
tributions with the predictions. We therefore proceed to use
the null result to infer upper limits on the Higgs boson
production cross section.

Table II lists the observed 95% C.L. upper limits on 	B,
and the median upper limits expected under the null hy-
pothesis. Figure 2 depicts the results, including �1	 and
�2	 ranges for the expected limits. We note that these
bounds would apply to any scalar with similar production
kinematics decaying to tau pairs. The Higgs boson signal
distribution shown in Fig. 1 corresponds to that excluded at
95% C.L. for mA ¼ 140 GeV=c2.

We can interpret the upper limits on 	B in the context of
the MSSM parameters tan� and mA. The resulting ex-
cluded regions are shown in Fig. 3 for various assumptions

about the sign of the Higgsino mass parameter � and two
extremes for the nature of scalar top mixing [22], denoted
mmax

h and ‘‘no mixing.’’ The excluded regions are the most

stringent published to date in the high tan� region, and are
remarkably insensitive to changes in theoretical assump-
tions due to cancellation of effects in the Higgs boson
production and decay [23].
In summary, we have used a sample of data from the

Tevatron collider recorded by the CDF II detector corre-
sponding to 1:8 fb�1 of integrated luminosity to search for
Higgs bosons predicted in two-Higgs-doublet models, via
the Higgs boson decays to tau lepton pairs. No evidence for
a Higgs boson signal is observed, and we use the null result
to infer cross sections excluded at the 95% C.L. as a
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FIG. 2. Observed 95% C.L. upper limits on the cross section
for � ¼ h=A=H production as a function of mA. The grey bands
show the median expected limit under the null hypothesis, and
indicate the �1- and �2-standard-deviation ranges.

FIG. 3. Regions in the MSSM plane of tan� versus mA ex-
cluded at 95% C.L. assuming heavy (�1 TeV=c2) sfermions.
The top panel shows excluded regions for Higgsino mass pa-
rameter �> 0, and the bottom panel shows excluded regions for
�< 0. Each panel shows the slightly different excluded regions
for two scalar top mixing scenarios. The solid and dashed curves
show the previously published bounds [8].

TABLE II. Observed 95% C.L. upper limits, and median ex-
pected limits under the null hypothesis on the Higgs boson
production cross section times branching ratio 	B versus mA.

mA Median expected limit Observed limit

GeV=c2 (pb) (pb)

90 28.115 28.978

100 19.884 23.465

110 9.382 11.063

120 5.447 5.288

130 3.374 2.770

140 2.340 1.812

150 1.751 1.392

160 1.400 1.198

170 1.124 1.051

180 0.933 0.880

190 0.782 0.808

200 0.707 0.709

230 0.470 0.505

250 0.379 0.451
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function of the Higgs mass, and 95%C.L. excluded regions
of the MSSM parameter space tan� versus mA.
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