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Abstract

We consider the problem of optimizing a polling system, i.e., of optimally sequencing a

server in a multi-class queueing system with switch-over times in order to minimize a lin-

ear objective function of the waiting times. The problem has important applications in

computer, communication, production and transportation networks. We propose nonlinear

programming relaxations that provide strong lower bounds to the optimal cost for all static

policies. We also obtain lower bounds for dynamic policies as well, which are primarily

useful under light traffic conditions and/or small switch-over times. We conjecture that

the lower bounds developed in this paper for the class of static policies are also valid for

dynamic policies under heavy traffic conditions. We use the information from the lower

bound and integer programming techniques to construct static policies that are very close

(0-3%) to the lower bounds. We compare numerically our proposed policies with static

policies proposed in the literature as well as with dynamic policies and find that the policies

we propose outperform all static policies proposed in the literature and at least in heavier

traffic outperform dynamic policies as well.





1 Introduction

Polling systems, in which a single server in a multi-class queueing system serves several

classes of customers incurring switch-over times when he serves different classes, have im-

portant applications in computer, communication, production and transportation networks.

In these application areas several users compete for access to a common resource (a central

computer in a time sharing computer system, a transmission channel in a communication

system, a machine in a manufacturing context or a vehicle in transportation applications).

As a result, the problem has attracted the attention of researchers across very different

disciplines. The name polling systems comes primarily from the communication literature.

Motivated by its important applications, polling systems have a rather large literature,

which almost exclusively addresses the performance of specific policies rather than the op-

timal design of the polling system. For an extensive discussion of the research work on

polling systems, we refer to the survey papers by Levy and Sidi [11] and Takagi [15], [16].

Model description

Consider a system consisting of N infinite capacity stations (queues), and a single server

which serves them one at a time. The arrival process to station i (i = 1, 2,..., N) is assumed

to be a Poisson process with rate Ai. The overall arrival rate to the system is A = N =1 A.

Customers arriving to station i will be referred to as class-i customers and have a random

service requirement Xi with finite mean xi and second moment z!2) respectively. The actual

service requirement of a specific customer is assumed to be independent of other system

variables. The cost of waiting for class-i customers is ci per unit time. There are switch-over

time dij whenever the server changes from serving class-i customers to class-j customers.

The offered traffic load at station i is equal to pi = Aizi, and the total traffic load is equal

to p = ¥]Nl pi. It is well known (see for example Takagi [15]) that the system is stable if

and only if p < 1. Note that this condition does not depend on the switch-over times.

The natural performance measure in polling systems is the mean delay time between

the request for service from a customer and the delivery of the service by the server to

that customer. The scheduling problem in polling systems is to decide which customer

should be in service at any given time in order to minimize the weighted expected delay of

all the classes. Let U be the class of non-preemptive, non-anticipative and stable policies.

Within U we further distinguish between static (Utatic) and dynamic (Ud,amic) policies.
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Static policies at each decision epoch do not take into account information about the state

of stations in the system other than the one occupied by the server and are determined a

priori or randomly. For example the policy under which the server visits the stations in a

predetermined order according to a routing table is a static policy. Dynamic policies take

into account information about the current state of the network. For example, a threshold

policy or a policy that visits the most loaded station, is a dynamic policy, because the

decision on which customer to serve next by the server depends on the current queue

lengths at various stations in the system. In certain applications it might be impractical

or even impossible to use a dynamic policy. For example in a transportation network, the

vehicle might not know the overall state of the network. As a result, although static policies

are not optimal, they can often be the only realistic policy. Moreover, when there are no

switch-over times, the policy that minimizes the mean weighted delay is a strict priority

rule (the c rule), a static policy.

In a transportation system the problem can be seen as a vehicle routing problem oper-

ating in a dynamic and stochastic environment. Customers arrive at nodes in a network

according to Poisson processes of rate Ai. A vehicle servicing these requests travels between

the nodes in the network. These travel distances are modeled here as switch-over times.

The goal is to find a sequencing policy that minimizes the weighted expected delay (see for

example Psaraftis [13]). In this context, our work in this paper extends (although using

drastically different techniques) the work of Bertsimas and van Ryzin [2], [3] for the dynamic

vehicle routing problem in the Euclidean plane.

Despite extensive research efforts on the analysis of polling systems, results on the

optimization of polling systems are scarce. Perkins and Kumar [12] develop a lower bound on

the optimal objective value for polling systems in which there is no underlying randomness.

Browne and Yechiali [7], using Markov decision processes, determine a semi-dynamic policy

in which the server, at the beginning of a cycle, chooses a visiting order of the stations for

this cycle that minimizes the mean duration of the cycle. Boxma, Levy and Weststrate

[6] develop a heuristic approach to obtain a static policy under which the server visits the

stations in a predetermined order (routing table). Hofri and Ross [8] find the structure

of the optimal dynamic policy (which is of the threshold type) for a two station polling

system but do not propose an analytic method to compute the parameters of the optimal

policy. Reiman and Wein [14] approximate polling systems in heavy traffic using Brownian
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motion and construct dynamic policies. To the best of our knowledge, there are no results

in the literature that propose a policy and a guarantee for the performance of this policy

for polling systems.

Our approach to the problem is to use mathematical programming methodology to

obtain lower bounds for the performance of an optimal policy and then construct policies

that are provably close to the lower bounds. In particular, our contribution in this paper is

as follows.

1. We propose a nonlinear (but convez) optimization problem, whose solution provides a

lower bound on an arbitrary static policy. In certain cases we provide a lower bound

in closed form as well. In this way we are able to assess the suboptimality of proposed

static policies. We further conjecture that the bound we obtain is also valid for all

dynamic policies, when the system is in heavy traffic. We provide numerical results

that support this conjecture.

2. We propose a simple lower bound for all (dynamic and static) policies. The bound is

particularly useful under light traffic and/or small switch-over times.

3. Using information from the lower bounds, we construct, using integer programming,

static policies (routing table policies) that are very close (within 0-3%) to the lower

bound. We also show that in special cases our bounds are tight.

4. We investigate numerically the effectiveness of our lower bounds and policies as a

function of the switch-over times and the traffic intensity and find that the routing

table policies constructed are adequate for practical problems if we optimize over

static policies. For dynamic policies, we find that in light traffic the lower bound we

obtained is informative, while in heavy traffic the numerical results suggest that the

static lower bounds are still valid and therefore, we do not gain a lot in heavy traffic

by optimizing over dynamic policies.

The paper is structured as follows: In Section 2, we develop the techniques used to

obtain lower bounds on static policies as well as dynamic policies. We also obtain closed

form expressions for the lower bounds by relaxing some constraints in the lower bound

formulations and make some remarks on the tightness of the bounds. In section 3, we

develop near optimal static policies based on integer programming. In Section 4, we compare
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numerically the upper and lower bounds with static and dynamic policies. Finally, in Section

5 we summarize our conclusions.

2 Lower bounds on achievable performance

We develop in this section lower bounds on the weighted mean waiting time for polling

systems for non-preemptive, non-anticipative and stable policies. We call these policies

admissible policies. We first focus on the class of static policies Uatatic, in which the server's

behavior when in station i is independent of the state of the other stations in the system

(i.e., the queue lengths and the interarrival times of the customers). Examples of static

policies include randomized policies, in which the next station to be visited by the server

is determined by an a priori probability distribution, and routing table policies, in which

the next station to be visited is predetermined by a routing table. A special case of the

routing table policies is the cyclic policy, where the stations are visited by the server in a

cyclic order.

Let E[Wi] be the average waiting time of class-i customers. The goal is to find an

admissible static policy u E Ust,tic to minimize the weighted mean delay E[W] for the

polling system:
N

min E[W] = E iAiE[Wi]. (1)
uEUstatic ( A)

Throughout the paper we use the following notation:

dij = switch-over time when the server changes from serving class-i customers to class-j

customers (i,j = 1,2,...,N). In general we assume that the N x N matrix D = [dij]

(i $ j) of the switch-over times is asymmetric.

Ti = the time between the kth and the (k + 1)th arrival of the server at station i.

Ti = limk-,o Tik and E[Ti] and E[Ti2] are the first two moments of the time between two

visits to station i by the server.

Vik = the time between the kth departure of the server from station i and the next return of

the server to station i. Under a static policy, Vik is independent of the interarrival times of

class-i customers, and, therefore, station i can be viewed as an M/G/1 system with server

vacations. Vik is the kth server vacation observed at station i. Notice, however, that under

an arbitrary static policy, successive vacations are not necessarily identically distributed

and are not independent.

4



vi = lin.. n E k=l Vik , the mean server vacation time at station i.

v(2) = lirmn ,c 1 =l(V/k)2, the second moment of the server vacation time at station i.

Yij(t) = the total number of visits by the server from station i to station j in the interval

[o0, t).
mij = limt,o i(t), the average number of visits per unit time by the server from stationt

i to station j in steady state.

Qi = the number of customers waiting in station i and Q = E= 1 Qi.

Ci(t) = the number of class-i customers serviced at station i by time t.

Fi(t) = the number of finished server vacations at station i by time t.

Ai(t) = the number of arrivals of class-i customers in [0, t). Clearly, E[Ai(t)] = Ait.

Bi(t) = the proportion of time that the server is busy serving class-i customers in [0, t). For

stability reasons, limt,,. B-(t) = Pi.

2.1 A lower bound for static policies

We consider the class of all static and admissible policies. Within a particular class, we

assume that the server uses a First-In-First-Out (FIFO) discipline.

Proposition 1 Under any static and admissible policy the epected waiting time of class-i

customers decomposes as follows:

A-z(2) (2)
E[Wi]= 2( ) + i = 1,2,...,N. (2)

2(l- p) 2v 

Proof

Let Wil be the waiting time of the Ith class-i customer in station i. We shall refer to this

customer as the "tagged" customer. Upon the arrival of this tagged customer, we denote

with Ri the remaining time until the service of the class-i customer in service is complete (if

the server is busy with class-i customers) or the next return of the server to station i (if the

server is on vacation). In the later case, the residual time until the next return of the server

to station i can be calculated from Vik under the class of static policies Utatic, because of

the independence between the arrival time of this tagged customer and the next return of

the server to station i. Let Xk be the service requirement of the kth class-i customer, and

Q be the number of class-i customers found waiting in station i by this tagged customer

upon his arrival. Since the class of policies is non-preemptive and within class i the service

5
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Figure 1: Residual service time for an M/G/1 system with vacations

discipline is FIFO, we obtain:
1-1

W =R + E Xk
k=l-Q!

By taking the expectations we obtain

E[Wil] = E[Ri] + ziE[Q~].

Since the class of policies is stable, the limit lim .oo E[Wi ] exists. Because of PASTA, we

obtain

E[Wi] = E[Ri] + ziE[Qi].

By Little's Law,

E[Qi] = AiE[Wi],

and by substitution, we obtain

E[W] = E[R](3)
1 - pi

We next calculate the expected residual time E[Ri] using ideas from Bertsekas and

Gallager [1]. In Figure 1 the residual service time r(t), (i.e., the remaining time for the

completion of the class-i customer in service or the remaining time for the server to return to

station i to serve class-i customers at time t) is plotted as a function of t. Note that when a

new service of duration Xk begins, ri(t) starts at Xi and decays linearly for Xk time units.
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Similarly when a new vacation V/k begins, ri(t) starts at V k and decays linearly for Vik time

units. We use the assumption here that we only consider static and non-preemptive policies.

Note that under a dynamic policy, the server's next return to station i may depend on the

arrival time of this tagged customer and therefore the residual time can not be determined

from the random variable V/k.

Consider a time r for which ri(r) = O. Then

Cj1r) 1 1 1F(r)
I jr(t)dt = - E(k)2 +- 1 2 , 1V, (4)

for k=1 2 2 k=1

where Ci(r) is the number of service completions of class-i customers within [0,r], and Fi(r)

is the number of completed vacations by the server at station i within [0, r].

But, in steady state,

E[Ri] = lim - rri(t)dt.

Then,

Cii() Ek=1 2 + F() -.,k=12E[Ri] = lim C ) ( + lim lim k1 (V)
-oo T Ci(r)-00 Ci(T) Too 7 F()--o Fi()

In steady state,

lim i() = Ai,

and

im Ek=l 2 i = _
Ci(r)-+oo Ci(7) 2

Moreover, in the interval [0, T] the server will spend some time B(7r) serving class-i cus-

tomers and time EkF') Vik in vacations, where Vk is the duration of the kth vacation.

Therefore,
Fi(r)

B i (r) Vi = .
k=1

Taking limits, and using the fact that in steady state lim-.mo B(i-) = pi, we obtain

lim Fi() 1 - (5)
r7co T7 Vi
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Finally,
Ur Fi(n ) k2 (2)__

lim -k=l i) _ t
Fi(r)- oo Fi(r) 2

Substituting to (3), we obtain (2). [

Our goal is to obtain a lower bound on the optimal performance E[W] in equation (1).

Our main result is as follows:

Theorem 1 The optimal weighted mean delay in a polling system under any static and

admissible policy is bounded from below by:

E[W] - max{i [N A2 ] [Nk (1 - ai_l)(- i) ' Ztatic} (6)

where ai = pj=1 Pj and Ztatic is the solution of the following convex programming problem:

1 N cA( 2 ) (7)Zstatic = min - 1 + 2 E(Z ( ) (7)

subject to
N N

Z mij- ZEmk = , i= 1,2,...,N
j=1 k=l

N

E1,3 jmj < 1 - p
i,j=l

mij > V i, j,

mii = V i,

where mij (i,j = 1, 2,..., N) have the interpretation of the average number of visits per

unit time by the server from station i to station j.

Proof

Let E[W*(D)] be the optimal weighted mean delay under the optimal static policy u* E

Utatic for a polling system with switch-over matrix D. The optimal weighted mean delay

is clearly a monotonically increasing function of D, i.e.,

E[W*(D)] > E[W*(O)], V D > . (8)
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But for D = 0, the polling system becomes a traditional M/G/1 priority queueing system,

in which the optimal policy that minimizes the weighted mean delay is the head-of-the-line

(HOL) priority policy which gives the highest non-preemptive priority to the station with

the largest c/zxi. Without loss of generality, we assume that queues are ordered such that

cl/zl > c2 /x 2 > ... > CN/ZN. Under this priority scheme, the weighted mean delay for

class-i customers is equal to (Kleinrock [9])

E[W] -- i Ai 2 ), i = 1, 2,..., N, (9)

where oi = j= pj and EN (Aiz(2)/2) is the residual service time observed by a random

arriving customer to the system. Therefore from equation (1) and (9) above, we obtain

E[W*(0)] = I ] [ (1- - ) (10)
A =1 2 =1 (1- _1)(1-) '

Combining equations (8) and (10) we obtain the first part of the lower bound in (6). This

part of the lower bound ignores the effects of switch-over times, but it is necessary in the

case where all dij's are very small; in this case and the polling system can be approximated

well by a multi-class M/G/1 queue.

We now turn our attention to the second part of the lower bound. From Proposition 1

the expected waiting time under a static admissible policy for a class-i customer decomposes

Ax(2) v(2)

E[Wi]= 2(- i ) + v2 i = 1,2,...,N,
2(1 - pi) 2v '

where v, v(2) are the first and second moments of the vacation times observed at station i

respectively. Since v(2) > v2, we obtain from (1) and (2):

E[W] > CiAi [2(1 i + 2 (11)

/From (5)

lim Fi(t) = 1- Pi
t-- oo t Vi
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But since Fi(t)= jN 1 Sji(t), we obtain that

F(t) N 

Mj1

and hence

=Vi - (12)

,From (11) and (12) we obtain the objective function in equation (7). Since mij is the

expected number of visits per unit time by the server from station i to j, flow conservation

at station i requires that

N

- E mki = 0,
k=1

i = 1,2,...,N.

If d/ is the average switch-over

stability condition requires that

time spend by the server per class-i customer, then the

N

E Ai( + ) < 1.
i=1

But

di- m E jN = djiSji(t) = E j =lI djiSji(t) Ai(t) 

t-=00 Ai(t) t-.oo t t-ao t = dim
j=1

Substituting to the stability condition we obtain

N N

E(pi + E djimji) < 1,
i=1 j=1

or
N

E dijmij

Since mij can not be negative, we obtain the

combining equations (11), (12), (13) and (14).

Remark:

The key assumption we used in the derivation

(14)

convex programming formulation in (7) by

of the lower bounds for static policies is the

of the lower bounds for static policies is the

10
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independence between the interarrival time of a tagged customer and the server's behavior.

Under a dynamic policy, the remaining time until the server returns to station i in general

can not be calculated from Vk, but the stability condition must still be satisfied

N

E djmij < 1 - p.

In heavy traffic, p -- 1 and thus (assuming dij > 0 V i, j), we see that mij -+ 0, V i, j,

which implies that the average time duration between two consecutive visits to any station

in the polling system should be very large in order for the system to be stable. This implies

that for the system to be stable in heavy traffic the server's behavior should not depend

significantly on the interarrival time of the tagged customer. In other words, we conjecture

that the static lower bounds developed in the previous subsections hold even for dynamic

policies under heavy traffic conditions.

2.2 Lower bounds for homogeneous polling systems under exhaustive

static policies

We call a polling system homogeneous if the costs and service requirements are the same

among all different classes of customers (i.e., ci = c = 1, zi = , for all i = 1, 2,..., N). Our

goal in this subsection is to improve the lower bound for the special case of homogeneous

polling systems under ezhaustive and static admissible policies, in which the server leaving

station i does not leave any class-i customers waiting.

Theorem 2 If ci = c = 1 and zi = z for all i = 1, 2,..., N, the optimal mean delay E[W]

in a homogeneous polling system under ezhaustive, static admissible policies is bounded from

below by the optimal solution of the following convez program:

E[W] > tatic = min 2(1 - p) + (15)

subject to
N N

Emij - Emki = 0, i = ,2,...,N
j=l k=1

N

E dijmij < 1 - p
ij= l

11



mij > 0, mii = V i,j,

where mij (i, j = 1, 2,..., N) have the interpretation of the average number of visits per

unit time by the server from station i to station j.

Proof

For the homogeneous polling system where the system costs and service requirements are

equal for all customer classes, (i.e., ci = c = 1; xi = ; V i = 1, 2,..., N), the mean delay

of a random customer in steady state can be written as

E[W] = E[R] + xE[Q] + E[S], (16)

where E[R] is the mean residual service time of the customer in service upon this random

customer's arrival, E[Q] is the average number of customers waiting in the system, and

E[S] is the total switch-over times spend by the server during which this random customer

must wait before being served.

The residual service time is E[R] = Az( 2 )/2 and by Little's Law, xE[Q] = pE[W]. We

then obtain that
A( 2 ) E[S]

E[W] = 2 (1 + -. (17)

Conditioning on the event Ui that the incoming customer is class-i, we obtain

N A
E[S] = E E[SUi]. (18)

Conditioning further on the event Oi that the server is at station i, we obtain:

E[SIUi] = piE[SIUi, O] + (1 - p)E[SIU, O?],

where U is the event that the server is not in station i. Under an exhaustive policy,

E[SIUi, Oi] = 0, and thus

E[SIUi] = (1- pi)E[SU, Ofl?].

Equation (18) can then be written as

N

E[S] = I (1- pi)E[SIUi, O. (19)
i=l

12



Since the server is busy p proportion of the time, the server spends (1 - p) proportion of

the time on switch-overs. Note that Ti was defined to be the time between two consecutive

arrivals of the server at station i. Under a static admissible policy, given that the server is

not at station i, the expected time spent in switch-overs by the server until this incoming

class-i customer is served is

E[T2 ] E[T,]
E[SIUi, O = (1- p) E[T*] = (1- p) > (1 - p) 2 (20)2E[Ti] 2

where Tt is the forward recurrence time of Ti. From equations (17), (19) and (20) we obtain:

A( 2) N A(1- p2)E[T]E[W] > (21)
2(1 ) i= 2

Notice that YE (t) Tik - t = o(t), for all stable policies. Taking limits we obtain, that

1
E[T] = N

~j=l mji

which combined with equation (21) leads to

W]> (2) N A(1 - pi) (22)
2( 1 -p) + 5 j=lmi

Equation (22), together with (13) and (14) gives the lower bound in (15). 

Remark: Notice that the bound of Theorem 2 is stronger than the one in Theorem 1.

2.3 Closed form bounds on static policies

In order to acquire further insight on the bounds of Theorems 1 and 2, the flow conservation

constraints (13) are relaxed to obtain a closed form formula for the lower bounds.

Theorem 3

a) For a polling system, the weighted mean delay for all static and admissible policies is

bounded from below by:

E[W] > Zclosed = max 2] [ (1)
i(1 O'--1f)(1 - -'
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1 ciAi 2i 2 ) (= 1 ciAi(l - pi)d ) (23)
2A - 1i-pi 2A( - p) 

where oai = j=l pj and di = dj(i),i = minj{dji}. b) For a homogeneous polling system,

under exhaustive, static and admissible policies, the weighted mean delay is bounded from

below by:

ho,~ Xz2 A (E/N-- 41-p)d)2
E[W] > Zclod = A2 + p- -- ) (24)

YU -ed -2(1 P 2A(1- p)

Proof

We relax the flow conservation constraints (13) in the nonlinear formulation (7). Note that

the first term in the objective function is a constant. Therefore we need only to solve the

following convex program:

1 N ciAi(1 - i)
min /ciAdi(1p) (25)

i=1 \tk=1 Mki)

subject to
N

dijmij < 1i-p
i,j=l

mij > 0 V i,j.

Since the above program is a convex programming program, the Kuhn-Tucker conditions

are necessary and sufficient. The Kuhn-Tucker conditions are:

-ciA(1 - pi)/(2A(L mk) 2 ) + Cdj, - j = 0, V j, i

a>O

a[E,j=l dijmij - (1 - p)] = 0

Yfj=l dimij < 1 - p (26)

Pij>o V i, j

-3ijmij = 0 V i, j

mij > 0 V i, j,

14



where a and Oij are dual variables. Let d* = dj(i),i = minj{dji}. The solution of (26) is

a = (k= CkAk(l - pk)dk) 2/(2A(1 - p)2 )

p,3 j = a(dji - di*), Vj,i (27)

mji = 0, V j,i; j j(i)

mj(i),i =(1- p)/ciA(1- )/d*/( = J (1-k)

Substituting mij given in equation (27) into the objective function in equation (7) we obtain

(23) and into the objective function in equation (15) we obtain (24). 

The bounds of Theorem 3 are not as sharp as the bounds of Theorems 1 and 2, since

we have relaxed the flow conservation constraints.

If the switch-over times are identical, i.e., we consider the case with dij = d, V i, j. Then

equation (23) becomes,

N 2(2)E[W] Ž Z j d = max { [N Ai 2 ] [N (1- i.l - )

1 N CiAi2( ' ) +( pNA(1 - pi))d (28)

2A = 1 -p +i 2A(1- p) j

while, for the homogeneous polling system, equation (24) becomes

E[W] > omd = A + (E= 1 VA(1 - i))d. (29)
cloed 2(1 - p) 2(1 - p)

The lower bounds Z,tatic in equations (28) and (29) are plotted as a function of switch-

over time d in Figure 2a and Figure 2b respectively.

2.4 Lower bounds for homogeneous polling systems for all policies

For a homogeneous polling system, we can divide the total delay of a tagged customer k,

Wk, into two parts: the waiting time due to server's switch-over time prior to serving the

tagged customer, denoted by Wk(d); and the waiting time due to the on-site service times

of customers served prior to the tagged customer, denoted by Wk(s). Thus

E[Wk] = E[Wk(d)] + E[Wk(s)].

15
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a. General polling system b. Homogeneous polling system

Figure 2: Lower bounds as a function of switch-over time d

Taking expectations and letting k -E oo gives

E[W] = E[W(d)] + E[W(s)],

where E[W(d)] = lin,,oO E[Wk(d)] and E[W(s)] = limk,, E[Wk(s)]. To bound E[W(d)],

note that it is at least as large as the switch-over time between the server's location at the

time of the tagged customer's arrival and the tagged customer's location. Since the policies

are non-anticipative, the server is located at different stations according to some (generally

unknown) distribution that depends on the server's policy. Suppose that we have the option

of locating the server in the best a priori location that minimize the expected distance to a

random arrival. This certainly yields a lower bound on the expected distance between the

server and a random arrival. So,

N

E[W(d)] > min{ Adji}. (30)
jEN = A

To bound E[W(s)], let Q denote the expected number of customers served during a waiting

time, since service times are independent, we then have

E[W(s)] > zE[Q] + 2 '
2z 
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where the second term is the expected residual service time of the customer being served

upon the tagged customer's arrival times the probability that the server is busy. Then,

Axz(2) AZ(2)
E[W(s)] xAE[W] + = pE[W] +

2 2

Since E[W] = E[W(d)] + E[W(s)] we obtain

P (2)
E[W(s)] > _ pE[W(d) + (31)1 - P 2(1 - p)'

iFrom equations (30) and (31) and noticing that the bound is valid for all policies we obtain

the following theorem:

Theorem 4 The mean delay in a homogeneous polling system under any admissible policy

is bounded from below by

1 ~N (2)
E[W] > Zdynamic 1 N dji} + 2 ( 1 -) (32)

1 - jN i=1 A 2(1- p)

The bound Zd,mic is primarily useful under light traffic and/or small switch-over times.

As already mentioned we conjecture that in heavy traffic the bounds of Theorem 1 remain

valid for all policies.

3 Design of effective static policies

In the previous section we determined lower bounds for the optimal static policies. In this

section our goal is to use the information contained in the lower bounds of Theorems 1, 2

and 3 to construct near optimal static policies.

In the derivation of the lower bound (7) and (15) we have calculated values of mij that

are interpreted as the steady state average number of visits from station i to station j per

unit time. Let eij = mij/ Fk,l mki be the ratio of switch-overs from station i to station j

over all switch-overs in the system. E = [eij] is the corresponding switch-over ratio matrix.

Intuitively, in order for the performance of a policy u to be close to the lower bound, it is

desirable that the proportion of switch-overs from station i to station j under the policy u

is close to eij. We refer to this requirement as the closeness condition. We consider two

classes of policies that satisfy the closeness condition approximately.
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Randomized policies:

Under this class of policies the server after serving exhaustively all customers at station

i moves to station j with probability pij. Kleinrock and Levy [10] consider randomized

policies, in which the next station visited will be station j with probability pj, independent

of the present station. Boxma and Weststrate [5] derive a pseudoconservation law for this

class of policies.

Given the values of mij from the lower bound calculation, we would like to choose the

probabilities pij so that the closeness condition is satisfied. An obvious choice is to pick

Pij = eij/ N= ek. P = [pij] is the corresponding switch-over probability matrix. We

note, however, that this choice of pij does not necessarily represent the optimal randomized

policy.

Routing table policies

Under this class of policies the server visits stations in an a priori periodic sequence. For

example the server visits a three station system using the cyclic sequence (1,2,3,1,2,3,...)

or the sequence (1,2,1,2,3,1,2,1,2,3,...), i.e., stations 1 and 2 are visited twice as often as

station 3. Boxma et. al. [6] use heuristic rules to construct routing table policies.

We use integer programming methods to construct routing tables that satisfy the close-

ness condition. Let hij be the number of switch-overs from station i to station j in an

optimal routing table. H = [hij] is the switch-over matrix. Note that unlike mij, hij should

be integers. Notice that Ei,j hij is the length of the routing table, i.e., the total number

of switch-overs in the periodic sequence. Moreover, eij Zk,l hkl is the desired number of

switch-overs from station i to station j in the routing table under the closeness condition.

In order to satisfy the closeness condition, a possible objective in selecting a routing table is

to minimize the maximum difference between the number of switch-overs hij from station i

to station j in the optimal routing table and the desired number of switch-overs determined

by eij Sk,l hkl. i.e.,

minmax{ I hij - eij E hkll}}. (33)
h top7 k,l

In addition, the flow conservation at each station requires that

N N

E hij- hki = , i = 1,2,..., N (34)
j=1 k=l
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i.e., the number of visits by the server to station i should equal to the number of visits by

the server from station i to other stations. The hij's should also form an Eulerian tour.

Let I be the set of all stations and G be the subset of stations in the network. Since the

Eulerian tour should be connected, we require that for all subsets G of the stations

E hij > 1, VGCI, G . (35)
iEG, jEO

In summary, the problem becomes

(PEuleian) minh{maxi,j{lhij - ej Ek,l hkll}}

subject to: =1 hij - hki = , i = 1, 2,..., N
(36)

EiEG, jO hij > 1, V G c I, G 4q

hij > 0, integer, i,j = 1,2,...,N

Equation (36) can be easily converted to a pure integer programming problem. Since our

goal is only to obtain an approximate solution, we approximate the problem by relaxing the

connectivity constraints in equation (35). But if equation (35) is relaxed, hij = 0, V i, j will

be a feasible solution and will minimize the objective function in (36). In order to exclude

this infeasible solution to (36), we impose a lower limit on the length of the routing table.

Since each of the stations should be visited at least once in any feasible routing table, the

length of any routing table should be at least N. Moreover, we place an upper bound Lma,,,

on the length of the routing table to make the integer programming solvable:

(Papp,.o) minh{maxi,j{ihij - eij Ek,l hkl }}

subject to E l1 hij - EN hk = 0, 2,...,N

N < Eij hij < Lmaz

hij > 0, integer, i,j = 1,2,..., N

The previous formulation can be reformulated as a pure integer programming problem as
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min y

y - hij + eij Ek,l hkl > 0,

z + hij - eij k,l hkl > O,

EjN= hij - E=l hki = 0,

N < i,j hij < Lma

hij > 0, integer,

i,j= 1,2,...,N

i,j= 1,2,...,N

i= 1,2,...,N

i,j = 1,2,...,N

Note that there are many feasible routing tables that will be consistent with the hij's

obtained from the solution of (Ppp,,,o). We will select a Eulerian tour that spaces the visits

to the stations as equally as possible. Although it is possible to formulate this requirement

precisely as another integer programming problem, we found numerically that the added

effort is not justified from the results it produces.

4 On the performance of static and dynamic policies

Using the lower bounds developed in Section 2, we are able to assess the performance of

the policies constructed in Section 3. The main questions we address are:

1. Are the lower bounds we obtain tight or are they further improvable?

2. What is the degree of suboptimality of randomized policies ?

3. What is the degree of suboptimality of routing table policies ?

4. How the routing table policies proposed in Section 3 compare with those proposed in

Boxma et. al. [6] ?

5. How much is the performance improvement if dynamic policies are used ?

In order to obtain some preliminary insights about the tightness of our lower bounds we

consider first the case of a completely symmetric polling system.

4.1 Tightness of the lower bounds in symmetric and homogeneous polling

systems

We consider a completely symmetric and homogeneous polling system, i.e., Ai = A/N, ci =

c = 1 and xi = z for all i = 1,..., N; dij = d for all i, j = 1,..., N. The service discipline

20
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(Papproz)

subject to
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at all queues are exhaustive.

Cyclic policies

The simplest and the most commonly studied static policy is the cyclic polling policy. In

such cyclic polling policies the server visits the stations in a cyclic order (namely, 1, 2, ... , N,

1, 2,..., N,...). Using the lower bounds developed in Section 2, we are able to show that

the cyclic policy is in fact optimal among all static policies for a completely symmetric and

homogeneous polling system.

Theorem 5 The ezhaustive cyclic policy is optimal among all static admissible policies for

a completely symmetric and homogeneous polling system.

Proof

Under the exhaustive cyclic policy, the average waiting time of the system is given in [1],

Ax(2 ) (N - p)d
~E[Wclc]~ = 2(1 - p) + 2(1 - p)'

which equals exactly the lower bound zhoatic given in equation (29). Therefore,

E[Wcyclic] = 1.
zhom
static

Although the previous result is intuitively obvious it shows that the lower bound given in

(29) is indeed tight in this special case.

Randomized policies

We next show that the performance of a randomized policy in the symmetric and ho-

mogeneous polling system is not very attractive.

Theorem 6 For a completely symmetric and homogeneous polling system, the average wait-

ing time under a randomized polling policy with routing probabilities Pi = 1/N is within a

factor of 2 from the optimal static solution.

Proof

Using the results from the pseudoconservation law of Boxma and Weststrate [5], we obtain

that the average waiting time with routing probabilities pi = 1/N is

N AXiZ( 2) (N-p)d _ d = 2) l)
E[Wrandom] = + )d A (N - 1)d

2(1- p) (1- ) 2(1- ) (1 - p)
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and from equation (29), the optimal mean waiting time is bounded from below by

ham AZ( 2) (N - p)d
2(1 - p) 2(1 - p)

which immediately shows the theorem. Note we have shown that the lower bound can

be achieved by a cyclic policy for this special case and that as N or d increase the ratio

E[Wado,,,]/Zhtic can become arbitrarily close to 2. l

4.2 Suboptimality of routing table and randomized policies

In this subsection we perform several simulation experiments in order to assess the per-

formance of the routing table and randomized policies. Although pseudoconservation laws

have been developed for these two classes of policies [4], [5], there are no simple expressions

available for the mean waiting times. For this reason we used simulation to assess the per-

formance of proposed policies. All simulation results reported are based on 10 replication

runs and the simulation time is set to 1 million units to allow for steady state to be reached.

The initial 50,000 units of time are discarded as transient period and the following 950,000

units of time are used to collect statistics for various policies. We use the exhaustive service

discipline exclusively.

A three station example

Boxma et. al. [6] developed a heuristic approach to determine an optimal routing table

for polling systems. The network used in their study is used here to facilitate comparisons.

The polling system is shown in Figure 3. It consists of three stations. All arrival processes

are Poisson with arrival rates Al = 0.54, 2 = 0.24 and A3 = 0.06; all service time dis-

tributions are exponential with service rates equal to 1 unit at all three stations, i.e., the

traffic intensity is p = 0.84. The switch-over times are equal to 1 among all stations. We

set dii = 5000 for all stations to reflect the fact that self-transitions are not allowed. The

best routing table obtained in their study is tablel=121213.

As an example of how our methodology proceeds we give some details of our calculation

for both the lower and upper bounds. The lower bound obtained numerically from (15)
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d13

Figure 3: A 3 queue polling system

with the flow conservation constraint is 10.282. The matrix for the optimal mij's is

0.0

M = 0.036

0.033

0.059

0.0

0.0

0.010

0.023

0.0 i
Using eij = mij/ ifj mij, the normalized ratio matrix is

0.0

E = 0.224

0.204

0.367

0.0

0.0

0.061

0.143

0.0 I
We set the initial limit on

equation (37) we find that

the size of the routing

the optimal hij's are

0

11

10

table L,ma to 1000. Solving (Papp,.o,) in

18 3

0 7

0 0 
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with a table length of 42 and the maximum discrepancy of 0.0069.

The table size of 42 might be too large for a small network of three stations. Therefore,

we would like to explore other routing tables with comparable values of discrepancy but

smaller table sizes. This can be done easily by setting L,,, to the previous value of the

optimal table size minus 1. In this example, we change Lma, to 41, and solved (37) again.

This time the optimal matrix for hij's becomes

H'= 3 0 2 (38)

3 0 0

with a table length of 14 and discrepancy 0.1415. A routing table consistent with this

matrix H' is

table2 = 1 - 2 - 1 - 2 -- 3 - 1 - 2 - 1 -- 2 -- 3 -- 1 -- 2 -- 1 - 3

We simulated both routing table table2 proposed above and the routing table table1 =

121213 proposed in [6]. For switch-over time of d = 1, the lower bound is Ztatic = 10.282,

while the simulation results E[Wtablel] = 10.642 and E[Wtablc2] = 10.505. Therefore, for

this example
Wtablel Wtable2
Wtabll - 1.035, = 1.022,
Zstatic Ztatic

which shows that routing table table2 is better and near optimal. We next examine the

closeness of the lower bounds more systematically.

Effect of switch-over times

In Table 1, we present simulation results for routing table policies tablel and table2 along

with dynamic, cyclic and randomized policies for the previous example polling system shown

in Figure 3 as d varies from 0.01 to 1000.

Under the cyclic policy, the server visits stations in a cyclic order; Under the randomized

policy, the routing probabilities are obtained from the H' matrix shown in equation (38),

i.e.,

0 6
P= 3 0 2

1 0 0
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Table 1: Performance as a function of the change-over time d

d Zstat * Wcbl bl Wf, o Wdylic Wddynmic '
Zttic Zstctic ZStatic Zstatic Zltotic dynamic Zdynamic

0.01 5.300 1.004 1.004 1.004 1.011 0.998 5.272 1.003
0.10 5.753 1.009 1.006 1.011 1.032 0.976 5.473 1.026
0.50 7.766 1.023 1.016 1.029 1.071 0.951 6.366 1.160
1.00 10.282 1.035 1.022 1.042 1.097 0.955 7.482 1.312
3.00 20.345 1.049 1.031 1.060 1.136 1.001 11.946 1.705
5.00 30.408 1.054 1.033 1.067 1.148 1.006 16.411 1.864

10.00 55.566 1.058 1.036 1.072 1.156 1.026 27.571 2.068
50.00 256.830 1.062 1.038 1.078 1.172 1.045 116.857 2.297

100.00 508.410 1.063 1.039 1.079 1.171 1.053 228.464 2.343
500.00 2521.048 1.064 1.037 1.078 1.157 1.061 1121.321 2.385

1000.00 5036.847 1.061 1.035 1.077 1.140 1.061 2237.393 2.388

Average 1.044 1.026 1.054 1.117 1.012

Under the dynamic policy, the server serves the stations exhaustively. When the current

station becomes empty, the server moves to the most loaded queue, while if the system is

empty, the server remains idle at the current station. Note that our static lower bounds do

not hold for dynamic policies as expected for small values of switch-over times.

Both the static lower bounds Ztatic and the dynamic lower bounds Zdamic are listed

in Table 1 for comparison. The simulation results on the performance of various policies

are listed as a ratio over the lower bound. The last line in Table 1 reports the average

suboptimality averaged over all values of d.

The following observations can be made:

1. The dynamic policy is within a few percentage of the lower bound on average, which is

an interesting result, as it shows that although the static lower bound does not hold for

dynamic policies in general, at least for a higher values of p (in the example p = 0.84),

the dynamic policies do not improve performance significantly. It is interesting to

observe that as d increases the policy we proposed based on the solution of (Papp,o)

performs better than all policies, including the dynamic policy.

2. Among static policies, the policy we propose based on the solution of (Papp,.o,) is

a clear winner especially as d increases.

3. The randomized policies are significantly worse than the routing table policies.
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4. The simulation results suggest a linear dependence on d for all policies consistent with

Figure 2.

5. At a lower switch-over time of d = 0.01, the light traffic lower bound is very tight,

which should not be surprising because when d -- 0, the polling becomes a M/G/1

queueing system and we know the bound is exact. Even as d increases the lower bound

Zdynamic is somewhat informative.

Effect of asymmetry in switch-over times

When the switch-over times are different, the lower bounds given in equations (23)

and (24) no longer provide the tightest possible bounds. We need to solve for the lower

bound with the flow conservation constraints in equation (13). Using the same network

shown in Figure 3 we keep all parameters unchanged except the switch-over times. The

new asymmetric switch-over time matrix is changed to

5000.0 1.4 1.3

D= 1.1 5000.0 1.0

1.2 1.0 5000.0

where dii are set to a large number (5000) to reflect the fact that self-transitions are not

allowed. For this new switch-over time matrix, d* = {1.1, 1.0, 1.0}. The closed form lower

bound from equation (24) is 10.494. The lower bound obtained numerically from equation

(15) with flow conservation constraints is 11.185, which improves the previous bound by

6.58%. For comparison Zd,,,mic = 8.33. Solving the lower bound formulation in equation

(15) for this problem we find that the optimal matrix for mij's is

0.0 0.021 0.032

M = 0.053 0.0 0.0

0.0 0.032 0.0

Using eij = mijl/ f=l mij, the normalized ratio matrix E is

0.0 0.152 0.232

E = 0.384 0.0 0.0

0.0 0.232 0.0
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Let the initial limit on the size of the routing table Lmaz be 1000 and solving problem

(P,,pp,.o,) in (37) we find that the optimal hij's are:

0 19 29

H= 48 0 0

0 29 0

with a table length of 125 and discrepancy 2 x 10 -16. We change Lmaz to 125 - 1 = 124,

and solve (37) again. This time the optimal matrix for hij becomes

0 2 3

H' = 5 0 0

0 3 0

with a table length of 13 and discrepancy 0.024. A possible routing table consistent with

this H' matrix is:

routing table = 1 - 3 - 2 - 1 - 2 - 1 - 3 - 2 -+ 1 - 2 - 1 - 3 - 2

Using this routing table, the simulation results show that the average waiting time is equal

to 11.372, which is within 2 % of the static lower bound, showing that in this case the static

policy we construct is close to optimal.

For the cyclic policy, due to the asymmetric switch-over times, the best cyclic routing

is 1 - 3 -* 2. The average waiting time under this cyclic policy is 11.449.

Under the optimal randomized policy, the server switches from station i to station j with

probability Pij = hij / EN= hik. Thus in our example, randomization takes place only when

the server is in station 1. The server switches from station 1 to station 2 with probability

2/5 = 0.4 and to station 3 with probability 3/5 = 0.6, and it switches from station 2 to

station 1 and from station 3 to station 2 with probability 1 respectively. The switch-over

matrix is:

0 0.4 0.6

P= 1 0 0 ,

0 1 0

and the average waiting time under this randomized policy is 11.718.

27

�-_1_1�111 il___Ill1li ·1111� _11__1_111�1� _1_�__1_1_11_111____^i� -111_-11111_�111-11_�__lll__lllllllll�-L ���____1·__11_1� _ �-_I--



Table 2: Effects of asymmetry switch-over times on performance for a 3 queue network

Zdynamic Zclosed Zstatic |routing table Wcyclic Wrandomized
8.33 10.494 11.185 11.372 11.449 11.718

The simulation results are shown in Table 2.

Effects of system utilization

Different levels of system utilization will result in different optimal routing tables. In

order to simplify the implementation of the optimal routing table while testing the effect

of system utilization p on the lower and upper bounds developed in this paper, we use a

four station polling system shown in Figure 4, where all arrival process are Poisson and

the service requirements are exponential with mean 1 unit of time at all stations. The

switch-over times are 1 unit of time between all stations. We would like to keep A1 = A3

and A2 = A4 and force the best routing table be: routing table = 1 - 2 --+ 3 - 1 -, 4 - 3,

i.e., the frequency of visits to stations 1 and 3 is two times higher than that to stations 2

and 4. We want to select values for A1, A2 as a function of p. Since A1 = As and A2 = A4,

we obtain from equation (27) that

mj(l),l = ( = 2
mj(2),2 7\2(0-2) (39)

2(A1 + A2) = P

Solving for A1 and A2 we obtain

A1 = As = ~(5-4p)2 +12p(2-p)-(5-4p)
1\1 = A = 6 (40)

A2 = A4 = - A1

This example is constructed in such a way that the best possible performance of a

routing table policy from the solution of (Ppp,,o) can be demonstrated.

The simulation results for various values of system utilization p are shown in Table 3.

Under the cyclic policies server visits stations in a cyclic order; under the randomized policy,

the server will next go to station 1 and station 3 with probability 1/3 and to station 2 and

station 4 with probability of 1/6, independent of the current station; under the dynamic

policy, after serve exhaustively at one station, the server will serve next the most loaded
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X4

Figure 4: A 4 queue polling system
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Table 3: Performance as a function of the system utilization p

station. The server will stay idle if there is no customer in the system;

Based on these simulation results the following observations can be made:

1. The routing table policy is almost identical to the lower bound. This should not be

surprising as we constructed the arrival rates so that the policy will be optimal. The

routing table policy outperforms both the cyclic and the randomized policy signifi-

cantly. Moreover, as we have not optimized the parameters of the randomized policy,

the policy is rather weak.

2. For lower system utilizations the dynamic policy outperforms the static policy signifi-

cantly. Again, the light traffic lower bound works quite well for low system utilizations.

For example, when p = 0.05, the performance of the dynamic policy is within 12% of

the lower bound zdy,,mic.

3. As p increases, the optimal static policy becomes closer and closer to the dynamic

policy, and for very heavy traffic the static policy is actually better. This confirms

our conjecture that the lower bounds developed for static policies in this paper are

also valid for dynamic policies in heavy traffic.

5 Conclusions

We proposed methods for proving strong lower bounds on arbitrary static policies based

on nonlinear optimization. Moreover, we developed a lower bound for dynamic policies as

well. We then used our methods to propose effective routing table policies using integer

programming. The simulation experiments we conducted illustrate the following points:
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|| i ||3 Zdynamicp I A, A3 A2 , A4 Zstatic W231i3 W W ______ _ _ __tic Zatstic Zstatic Zzttic Zd am c
0.05 0.020 0.005 1.915 1.000 1.109 1.707 0.400 0.684 1.120
0.20 0.081 0.019 2.344 1.000 1.099 1.679 0.501 0.994 1.181
0.40 0.164 0.036 3.242 1.000 1.090 1.638 0.646 1.650 1.269
0.60 0.251 0.049 5.021 1.002 1.081 1.605 0.791 2.954 1.344
0.80 0.340 0.060 10.314 1.003 1.072 1.573 0.925 6.875 1.388
0.90 0.387 0.063 20.858 1.003 1.067 1.571 0.989 14.700 1.403
0.98 0.425 0.065 105.094 1.004 1.063 1.532 1.002 77.316 1.362
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1. The routing policies we construct outperform all other static routing policies and they

are at most within 3% from the lower bounds for the cases studied.

2. The performance of the routing table policy improves compared against other static

routing policies as the change-over times or the system utilization increases.

3. For lower change-over times and system utilizations dynamic policies outperform static

policies by a significant margin. But as the change-over times or system utilization

increase, static policies are equally or more effective. This is a rather interesting fact,

since at least in the cases that optimal dynamic policies are known (two stations),

they are rather complicated threshold class policies (Hofri and Ross [8]).

4. Based on our intuition from the proof of the static lower bound and the numerical

results, we conjecture that the static lower bounds developed in this paper are valid

for dynamic policies also under heavy traffic conditions.

Our results suggest that as far as static policies are concerned the routing table policies

constructed in the paper are adequate for practical problems. As far as dynamic policies

are concerned the dynamic lower bound does provide information in lighter traffic, while

we believe that in heavier traffic, the routing table policies we construct are adequate for

practical problems. We believe that dynamic policies would be very useful in light and

intermediate traffic. Having techniques to generate provably near optimal dynamic policies

is indeed an important open problem.
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