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Technical Notes and Correspondence

Traveling Salesperson Problems for a Double Integrator

Ketan Savla, Student Member, IEEE,
Francesco Bullo, Senior Member, IEEE, and
Emilio Frazzoli, Senior Member, IEEE

Abstract—This technical note studies the following version of the Trav-
eling Salesperson Problem (TSP) for a double integrator with bounded ve-
locity and bounded control inputs: given a set of points in R%, find the fastest
tour over the point set. We first give asymptotic bounds on the time taken
to complete such a tour in the worst case. Then, we study a stochastic ver-
sion of the TSP for a double integrator in R*> and R®, where we propose
novel algorithms that asymptotically perform within a constant factor of
the optimal strategy with probability one. Lastly, we study a dynamic TSP
in R? and R®, where we propose novel stabilizing algorithms whose perfor-
mances are within a constant factor from the optimum.

Index Terms—Dynamic traveling repairperson problem (DTRP), trav-
eling salesperson problem (TSP).

I. INTRODUCTION

HE Traveling Salesperson Problem (TSP) with its variations is
one of the most widely known combinatorial optimization prob-
lems. While extensively studied in the literature, these problems con-
tinue to attract great interest from a wide range of fields, including Op-
erations Research, Mathematics and Computer Science. The Euclidean
TSP (ETSP) [1]-[3] is formulated as follows: given a finite point set
P in R* for d € N, find the minimum-length closed path through
all the points in P. It is quite natural to formulate this problem in the
context of other dynamical vehicles, e.g., UAVs. For motion planning
purposes, the nominal behavior of UAVs with hover capabilities (e.g.,
helicopters) is usually captured by a simple double integrator model
with bounded velocity and acceleration, e.g., see [4]. The focus of this
technical note is the analysis of the TSP for a vehicle with such double
integrator dynamics or simply a double integrator; we shall refer to it
as DITSP. Specifically, DITSP will involve finding the fastest tour for
a double integrator through a set of n points in a compact domain.
Exact algorithms, heuristics and polynomial-time constant factor ap-
proximation algorithms are available for the Euclidean TSP, see [5],
[6]. However, unlike other variations of the TSP, there are no known
reductions of the DITSP to a problem on a finite-dimensional graph,
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thus making it difficult to use the well-established tools in combinato-
rial optimization.

The motivation to study the DITSP arises in robotics and uninhabited
aerial vehicles (UAVs) applications. UAV applications also motivate
us to study the Dynamic Traveling Repairperson Problem (DTRP), in
which the aerial vehicle is required to visit a dynamically generated set
of targets. This problem was introduced by Bertsimas and van Ryzin
in [7] and then decentralized policies achieving the same performances
were proposed in [8]. Variants of these problems have attracted much
attention recently [8], [9]. There also exists an extensive literature on
motion planning for robots under various motion constraints, e.g., see
[10], [11]. However, the study of the TSP and the DTRP in conjunction
with double integrator vehicle dynamics has eluded attention from the
research community.

The contributions of this technical note are threefold. First, we intro-
duce a natural STOP-GO-STOP strategy for the DITSP to show that the
minimum time to traverse the tour is asymptotically upper bounded by
a constant times n' ~('/2?) ie_ it belongs! to O(n' ~"/2") We also
show that, in the worst case, this minimum time is asymptotically lower
bounded by a constant times '~/ e it belongs to Q(nlf(l/d)).
Second, we study the stochastic DITSP, i.e., the problem of finding
the fastest tour through a set of target points that are uniformly ran-
domly generated. We show that the minimum time to traverse the tour
for the stochastic DITSP belongs to (n?/?) in R? and Q(n*/%) in
R®. We adapt the RECURSIVE BEAD-TILING ALGORITHM from our ear-
lier work [12] for the stochastic DITSP in R? and we propose a novel
algorithm, the RECURSIVE CYLINDER-COVERING ALGORITHM, for the
stochastic DITSP in R®. We prove that, with probability one, the tours
generated by these algorithms are traversed in time O/ n?/ 3)in R? and
O(n“ ®) in R?, i.e., these algorithms asymptotically provide a con-
stant-factor approximation to the optimal DITSP solution with prob-
ability one. Third, for the DTRP problem we propose novel policies
based on the fixed-resolution versions of the corresponding algorithms
for the stochastic DITSP. We show that the performance guarantees for
the stochastic DITSP translate into stability guarantees for the average
performance of the double integrator DTRP problem. For a uniform
target-generation process with intensity A, the DTRP algorithm perfor-
mance is within a constant factor of the optimal policy in the heavy
load case, i.e., for A\ — +oo. As a final minor contribution, we also
show that the results obtained for stochastic DITSP carry over to the
stochastic TSP for the Dubins vehicle, i.e., for a nonholonomic vehicle
moving along paths with bounded curvature, without reversing direc-
tion. In the interest of space, this document contains only sketches of
the proofs; all formal proofs are available in [13].

This work completes the generalization of the known combinatorial
results on the ETSP and DTRP (applicable to systems with single inte-
grator dynamics) to double integrators and Dubins vehicle models. At
this point, we clarify the contribution and the relation of this technical
note with respect to our companion paper [12], where we considered
TSPs for a Dubins vehicle in R®. In this technical note, we adapt the
tools and algorithms for the stochastic TSP for the Dubins vehicle from
[12] for the double integrator case in R? and R®. However, an inter-
esting fact that arises out this technical note, independently of [12], is

IFor f,g : N — R, we say that f € O(g) (resp., f € §2(g)) if there exist
No € Nand k € Ry such that |f(N)| < k|g(N)]| for all N > Ny (resp.,
F(N)| > klg(N)| forall N > Ny).If f € O(g) and f € Q(g), then we use
the notation f € ©(g).

0018-9286/$25.00 © 2008 IEEE
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(worst — case)

Single Double Dubins
integrator integrator vehicle
Min. time for S} (nl_%) Q (nl_ %) , O(n)
TSP tour O (nlfﬁ) (d=2.3)

Exp. min. time

C] (7&17ﬁ)

for TSP tour a.s. a.s.
(stochastic) (d=2,3) (d=2.3)

System time oMt © /\Q(dfl)) o ()\z(dfl)
for DTRP (d=2) (d=2,3) (d=2.3)

that the path length for the stochastic TSP for a double integrator fol-
lows similar theoretical lower bounds as for the Dubins vehicle. More-
over, the results and the algorithms for the worst-case DITSP are novel.
It is interesting to compare our results with the setting where the ve-
hicle is modeled by a single integrator; this setting corresponds to the
so-called Euclidean case in combinatorial optimization. In the table at
the top of the page, the single integrator results in the first column are
taken from [3], [7]; the double integrator results in the second column
are novel; and the Dubins vehicle results in the third column are taken
from [12] for d = 2 and are novel for d = 3. Remarkably, the dif-
ferences between the TSP bounds play a crucial role in the DTRP
problem; e.g., stable policies exist only when the minimum TSP time
grows strictly sub-linearly with n.

II. SETUP AND WORST-CASE DITSP

For d € N, consider a vehicle with double integrator dynamics

) =u(®), |u®l <rew, PO < rver (1

where p,u € R? are the position and control input of the vehicle,
respectively, rvel, 7ctr € R4 are the bounds on the attainable speed
and control inputs respectively. Let Q@ C R? be a unit hypercube. Let
P ={qi,...,q.} beasetof n pointsin Q and let P,, be the collection
of all point sets > C Q with cardinality n. Let ETSP () denote the
cost of the Euclidean TSP over P and let DITSP(P) denote the cost
of the TSP for double integrator over P, i.e., the time taken to traverse
the fastest closed path for a double integrator through all the points in
P.

In the spirit of its companion paper [12], the key objective of this
technical note is the design of an algorithm that provides a provably
good approximation to the optimal solution of the DITSP. To establish
what a “good approximation” might be, let us recall what is known
about the ETSP and the DTSP. For a compact set Q, it is known that the
cost of the ETSP grows as n'/? for the worst-case point sets [3] as well
as in the stochastic case [2] (as both lower and upper bounds). Similarly,
it was shown in [12] that the cost of the DTSP grows with n for the
worst-case point sets and with n2/3 in the stochastic case. These upper
bounds are constructive in the sense that there exist algorithms that
generate closed paths through the points which give the corresponding
performances.

Motivated by these results, this technical note studies the asymp-
totic dependence of the cost of the DITSP on n and uses those results
to design stabilizing policies for the DTRP for the double integrator.
In other words, we assume 7.1 and 7., to be constant and study the
dependence of DITSP : P, — R4 onn.

Lemma 2.1: (Worst-case Lower Bound on the TSP for Double Inte-
grator): For ryer > 0,7, > 0 and d € N, there exists a sequence
of point sets n — P, in Q € R? such that DITSP(P,) belongs to
Q(n'=(/D),

Proof Sketch: As shown in [3], there exists a sequence of
point sets n — P, whose minimum inter-point distance belongs to
Q(n~(/D) Therefore, DITSP (P, ) belongs to n x Q(n~ (/D) je.,
Qn'~0/D)y, |

‘We now propose a simple strategy for the DITSP and analyze its per-
formance. The STOP-GO-STOP strategy can be described as follows:
The vehicle visits the points in the same order as in the optimal ETSP
tour over the same set of points. Between any pair of points, the ve-
hicle starts at the initial point at rest and follows the shortest-time path
to reach the final point with zero velocity. Analyzing this STOP-GO-
STOP strategy, one can show the following upper bound.

Theorem 2.2: (Upper Bound on the TSP for Double Integrator): For
any pointset P € P, in @ C R, rer > 0,7ver > Oand d € N,
DITSP(P) belongs to O(n'~(1/24)

III. StocHASTIC DITSP

The results in the previous section showed that based on a simple
strategy, the STOP-GO-STOP strategy, we are already guaranteed to
have sub-linear cost for the DITSP when the point sets are considered
on an individual basis. However, it is reasonable to argue that there
might be better algorithms when one is concerned with average per-
formance. In particular, one can expect that when n target points are
stochastically generated in Q according to a uniform probability dis-
tribution function, the cost of DITSP should be lower than the one
given by the STOP-GO-STOP strategy. We shall refer to the problem
of studying the average performance of DITSP over this class of point
sets as stochastic DITSP. In this section, we present novel algorithms
for stochastic DITSP in R? and R® and then establish bounds on their
performances.

We make the following assumptions: in R?, Q is a rectangle of width
W and height H with W > H;in R*, Q is a rectangular box of width
W, height H and depth D with W > H > D. Different choices
for the shape of Q affect our conclusions only by a constant (consider,
for example, the smallest rectangle or the smallest rectangular box en-
closing Q). Specifically, different choices for the shape of @ would
only affect the constants associated with the various bounds in Theo-
rems 3.1, 3.3 and 3.8 and do not affect the asymptotic dependence on
n. The axes of the reference frame are parallel to the sides of Q. The
points P = (¢1,...,¢n) are randomly generated according to a uni-
form distribution with support Q.
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A. Lower Bounds

First, we provide lower bounds on the expected length of the sto-
chastic DITSP for d = 2,3.

Theorem 3.1: (Lower Bounds on Stochastic DITSP): For all rye >
0, retr > 0, the expected minimum time in a stochastic DITSP to visit
a set of n uniformly-randomly-generated points satisfies the following
inequalities:
E [DITSP(P C Q CR*)] _3 [ 6WH \/*

373 >— ( > and

=1
E [DITSP(P C Q CR*)] _5 (20WHD)”5
nd/5 6 :

lim inf
n—4oo

TvelTctr

lim inf
n——+too

v

2

TTvelT ey

Proof Sketch: In R?, the area of the set reachable in time #
from a random initial state belongs to O(#*). Therefore, the expected
value of the time between two successive points in the tour belongs to
Q(nfl/ 3). Hence, the minimum time to traverse the total tour belongs
ton x Qn"?), ie., Q(n??). The proof for R* follows on similar
lines. ]

B. Relation With the Dubins Vehicle

In [12], we studied stochastic versions of TSP for a Dubins vehicle.
Though conventionally a Dubins vehicle is restricted to be a planar
vehicle, one can easily generalize the model even for the three (and
higher) dimensional case. Accordingly, a Dubins vehicle can be defined
as a vehicle that is constrained to move with a constant speed along
paths of bounded curvature, without reversing direction. Correspond-
ingly, a feasible curve for a Dubins vehicle or a Dubins path is defined
as a curve that is twice differentiable almost everywhere, and such that
the magnitude of its curvature is bounded above by 1/p, where p > 0
is the minimum turn radius. Based on this, one can immediately come
up with the following analogy between feasible curves for a Dubins
vehicle and a double integrator.

Lemma 3.2: (Trajectories of Dubins Vehicles and Double Integra-
tors): For any p > 0, a feasible curve for a Dubins vehicle with min-
imum turn radius p is a feasible curve for a double integrator (mod-
eled in (1)) moving with an appropriate constant speed s < 7. Con-
versely, a feasible curve for a double integrator moving with a constant
speed s < ryel is a feasible curve for Dubins vehicle with any min-
imum turn radius p that is greater than or equal to 57 /7.

In [12], we proposed a novel algorithm, the RECURSIVE
BEAD-TILING ALGORITHM (RECBTA) for the stochastic version
of the Dubins TSP (DTSP) in R?; we showed that this algorithm
asymptotically performed within a constant factor of the optimal with
probability one. In this technical note, taking inspiration from those
ideas, we propose an algorithm to compute feasible curves for a double
integrator moving with a constant speed s < ry. and then optimize
over s. Note that moving at a constant speed is not necessarily the
best strategy. Nonetheless, this strategy leads to efficient algorithms.
We adopt the RECBTA for the stochastic DITSP in R? and based on
the same ideas, we propose the RECURSIVE CYLINDER-COVERING
ALGORITHM (RECCCA) for stochastic DITSP in R*. We prove that
these algorithms asymptotically perform within a constant factor of
the optimal with probability one.

C. The Basic Geometric Construction

Here we define useful geometric objects and study their properties.
Given the constant speed s for the double integrator let p = 5% /7cir;
from Lemma 3.2 this constant corresponds to the minimum turning
radius of the analogous Dubins vehicle. Consider two points p_ and
p+ on the plane, with { = ||p+ — p—||2 < 4p, and construct the bead
B,(£) as detailed in Fig. 1.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 4, APRIL 2009

Fig. 1. Construction of the “bead” BB, ({). The figure shows how the upper half
of the boundary is constructed, the bottom half is symmetric. The figure shows
the rectangle efgh which is used to construct the “cylinder” C,(().

Associated with the bead is also the rectangle e fgh. Rotating this
rectangle about the line passing through p_ and p4 gives rise to a
cylinder C,(¢). C,(£) enjoys the following asymptotic properties as
(1/p) — O (properties of the bead, B,(() are listed in [12]):

(P1) The length of C,(€) is £/2 and its radius of cross-section is
w(l)/4, where w(£) is the maximum thickness of the bead B, ()
and it is equal to

: £2 2 &
w(f):élp(l— 1—W>:§+p.o<p_3).

(P2) The volume of C,({) is equal to
[
P 6 .

i : w(O)\* ¢ al’

Volume [C,(£)] =« < 1 > 7= 5048,7
(P3) Forany p € C,, there is at least one feasible curve ~, through
the points {p—, p, p+ }, entirely contained within the region ob-
tained by rotating 13,(¢) about the line passing through p_ and
p+. The length of any such path is at most

{ o
Length(v,) < 4p arcsin <—> ={+p-o0 <—) .
’ 4p I

The geometric shapes introduced above can be used to cover R? and
R? in an organized way. The plane can be periodically tiled? by iden-
tical copies of B, ({), for any ¢ € ]0,4p]. The cylinder, however does
not enjoy any such special property. For our purpose, we consider a
particular covering of R® by cylinders described as follows.

A row of cylinders is formed by joining cylinders end to end along
their length. A layer of cylinders is formed by placing rows of cylinders
parallel and on top of each other as shown in Fig. 2. For covering R®,
these layers are arranged next to each other and with offsets as shown
in Fig. 3(a), where the cross section of this arrangement is shown. We
refer to this construction as the covering of R®.

D. The Algorithm

We adopt the RECURSIVE BEAD-TILING ALGORITHM (RECBTA)
from [12] for the stochastic DITSP in R2. Let TrecsTA be the time
taken by a double integrator to traverse a stochastic DITSP tour
according to the RECBTA. The RECBTA performance is analyzed as
follows.

Theorem 3.3: (Upper Bound on the Total Time in R?): Let P €
‘P be uniformly randomly generated in the rectangle of width W' and

2A tiling of the plane is a collection of sets whose intersection has measure
zero and whose union covers the plane.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:13 from IEEE Xplore. Restrictions apply.
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Fig. 3. (a): Cross section of the arrangement of the layers of cylinders used for
covering @ C R3, (b): The relative position of the bigger cylinder relative to
smaller ones of the prior phase during the phase transition.

height H. For any double integrator (1) moving with a constant speed
s < 7rvel, with probability one
n Trs?
3Wre )

. 1/3
<94 <WH) <1
STctr

Remark 3.4: The speed that minimizes the upper bound in Theorem
3.3 is min{\/3Wrey /357, rver }.

Taking inspiration from the RECBTA, we now propose the
RECURSIVE CYLINDER-COVERING ALGORITHM (RECCCA) for the
stochastic DITSP in R*. Consider a covering of Q@ € R® by cylinders
such that Volume[C,({)] = Volume[Q C R*]/(4n)= WHD/(4n)
(assuming that n is sufficiently large). Furthermore, the covering is
chosen in such a way that the layers of the cylinders are aligned with
the length of O C R®.

The proposed algorithm will consist of a sequence of phases; each
phase will consist of five sub-phases, all similar in nature. For the first
sub-phase of the first phase, a feasible curve is constructed with the
following properties:

i) it visits all non-empty cylinders once;

ii) it visits all rows of cylinders in a layer in sequence top-to-down in
a layer, alternating between left-to-right and right-to-left passes,
and visiting all non-empty cylinders in a row;

iii) it visits all layers in sequence from one end of the region to the

other;

iv) when visiting a non-empty cylinder, it services at least one target

in it.

In subsequent sub-phases, instead of considering single cylinders,
we will consider “meta-cylinders” composed of 2, 4, 8 and 16 beads
each for the remaining four sub-phases, as shown in Fig. 4, and pro-
ceed in a similar way as the first sub-phase, i.e., a feasible curve is
constructed with the following properties:

i) the curve visits all non-empty meta-cylinders once;

ii) it visits all (meta-cylinder) rows in sequence top-to-down in
a (meta-cylinder) layer, alternating between left-to-right and
right-to-left passes, and visiting all non-empty meta-cylinders
in a row;

iii) it visits all (meta-cylinder) layers in sequence from one end of

the region to the other;

TRecBTA
n2/3

lim sup
n—-+oo

791
T T T
T I ]
— ] i
=i = =N
— —
I 1 1
T 1 1
T T T
= 1 ]
== :
- i — | e
: T ==
I I 1 I

Fig. 4. From top left in the left-to-right, top-to bottom direction, sketch of pro-
jection of “meta-cylinders” on the corresponding side of @ C R? at second,
third, fourth and fifth sub-phases of a phase in the recursive cylinder covering
algorithm.

iv) when visiting a non-empty meta-cylinder, it services at least one

target in it.

A meta-cylinder at the end of the fifth sub-phase, and hence at the end
of the first phase will consist of 16 nearby cylinders. After this phase,
the transitioning to the next phase will involve enlarging the cylinder to
32 times its current size by increasing the radius of its cross section by
a factor of 4 and doubling its length as outlined in Fig. 3(b). It is easy to
see that this bigger cylinder will contain the union of 32 nearby smaller
cylinders. In other words, we are forming the object C,(2¢) using a
conglomeration of 32 C,({) objects. This whole process is repeated at
most log, n 4 2 times. After the last phase, the leftover targets will be
visited using, for example, a greedy strategy. We have the following
result for the leftover targets after the last phase which is similar to the
result for RECBTA [12].

Lemma 3.5 (Targets Remaining After Recursive Phases): With
probability one, the number of unvisited targets after the last recursive
phase of the RECURSIVE CYLINDER-COVERING ALGORITHM over P is
less than 24 log, n asymptotically.

We skip the calculations of the path lengths for the various sub
phases and give the following result for the path length of the first
phase. Details of the intermediate calculations can be found in [13].

Lemma 3.6 (Path Length for the First Phase): Consider a covering
of the space with cylinders C,((). For any p > 0 and for any set of
target points, the length L of a path visiting once and only once each
cylinder with a non-empty intersection with a rectangular box Q of
width W, height H and depth D satisfies

217 77 3
L < 3328p°WHD <1+ (”rp)_’_p.()(p )

Iz 3W o

Since we increase the length of cylinders by a factor of two while
doing the phase transition from one phase to the another, the length of
path for the subsequent i*® phase is given by

2157 - 3
L < 3328p°"WHD <1+ (7rp>+p.0<p_)‘

=6 3W B

We now state the following result which characterizes the total path
length for the RECCCA, which we denote as Lreccca,,(P).

Lemma 3.7: (Path Length for the RECURSIVE CYLINDER-COVERING
ALGORITHM): Let P € P, be uniformly randomly generated in the
rectangle of width W, height H and depth D. For any p > 0, with
high probability

Liecoon,p(r) < 3328 (1)4/5
nt/5 = 15 \16

257 1/5 Tmp
. HD 1 .
(p"W ) < + SW’>

lim sup

n—-+oo

Proof Sketch: There are at most log, n + 2 phases at the end
of which there are O(log, n) points by Lemma 3.5. By summing the
expression for the path length for the i*" phase, L;, over log, n + 2
phases and using any greedy strategy to visit the remaining O(log, n),
we get the desired result. ]
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In order to obtain an upper bound on the DITSP( P) in R?, we derive
the expression for time taken, 7reccca , by the RECCCA to execute the
path of length Lreccca ,(P).

Theorem 3.8: (Upper Bound on the Total Time in R*): Let P € P,
be uniformly randomly generated in the rectangular box of width W,
height H and depth D. For any double integrator (1) moving with a
constant speed s < ryel, With probability one

. A 1/5
RGZC‘SA S 61 <.[1 13D> <1
nt/s 2

ST

Tetr

lim sup
n—+oo

Trs?
+ SW’rctr) '
Proof Sketch: We substitute p = s°/7c, in the bound for
LReccca,,(P) given by Lemma 3.7 and evaluate the time required to
traverse the total path of length Lreccca,,(P) at speed s. ]

Remark 3.9: The speed that minimizes the upper bound in Theorem
3.8 is min{\/Wretr /217, rvel }-

Next, we state a result for the concentration of DITSP(P) around
its mean, which will let us compare the lower bounds in Theorem 3.1
with the upper bounds in Theorems 3.3 and 3.8.

Lemma 3.10 (Concentration Around the Mean): Let Q be a rec-
tangle or a rectangular box and I € P,, be uniformly, randomly and
independently generated in Q. For any p > 0, with probability one, the
concentration of DITSP(P) around its mean is of order O(y/n logn),
ie.,

|DITSP(P) — E[DITSP(P)]| € O(y/nlogn).

Remark 3.11:
i) Lemma 3.10 implies that, with probability one

. <DITSP(P) _ E[DITSP(P)]

nr nr

. 1
):0, for » >§.

n——+oo

This statement together with Theorems 3.3, 3.8 and 3.1 im-
plies that, with probability one, the RECBTA is a 32/ ¢/6(1 +
(Tmr2. /3W e, ))-factor approximation (with respect to )
and that the RECCCA is a 50(1 + (77r7‘381/3ﬂf'7’ctr))-factor
approximation (with respect to n) to the optimal stochastic
DITSP in R? and R?, respectively. These results also show that,
with probability one, DITSP(P) and E[DITSP(P)] belong to
O(n*?) in R? and to ©(n*/*) in R®.

ii) The constant factor for the approximation in the 3-D case can
be optimized by designing efficient tiling of R tuned to the ve-
hicle dynamics. Moreover, we envision that, in practice, the al-
gorithms RECBTA and RECCCA coupled with greedy heuristics
(e.g., using shortcuts between successive points) are expected to
give much better performance than the ones obtained here.

IV. DTRP FOR DOUBLE INTEGRATOR

We now turn our attention to the Dynamic Traveling Repairperson
Problem (DTRP) for the double integrator modeled in (1). In the DTRP,
the double integrator is required to visit a dynamically growing set
of targets, generated by some stochastic process. We assume that the
double integrator has unlimited range and target-servicing capacity. We
let D(t) denote the set of n(¢) outstanding target positions representing
the demand at time ¢. Targets are generated and inserted into D ac-
cording to a time-invariant spatio-temporal Poisson process with time
intensity A > 0 and with uniform spatial density inside the region Q.
As before, Q is a rectangle in two dimensions and a rectangular box
in three dimensions. Servicing of a target and its removal from the set
D is achieved when the double integrator moves to the target position.
A control policy ® for the DTRP assigns a control input to the vehicle

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 4, APRIL 2009

as a function of its configuration and of the current outstanding targets.
The policy @ is a stable policy for the DTRP if, under its action

ne = limsup E [n(t)|p = @(p,D)] < +0
t——oo

i.e., if the double integrator is able to service targets at a rate that is,
on average, at least as large as the target generation rate A. Let T; be
the time elapsed from the time the j* target is generated to the time it
is serviced and let 7o := lim;_ 4. E[T}] be the steady-state system
time for the DTRP under the policy ®. (If the system is stable, then it
is known [14] that ng = A\T%s.)

In what follows, we design a control policy & whose system time
Ts is a constant-factor approximation of the optimal achievable per-
formance. Consistently with the theme of the paper, we consider the
case of heavy load, i.e., the problem as the time intensity A — +oc.
We first provide lower bounds for the system time, and then present
novel approximation algorithms providing upper bound on the perfor-
mance.

Theorem 4.1 (Lower Bound on the DTRP System Time): For a
double integrator (1), the system time TpTrp,2 and ITptrp,s for the
DTRP in two and three dimensions satisfy

. . . Iotrre _ 81 WH
lim inf —— — R
A—+oo A2 - 32 TvelTctr
.. Torres  T8I3WHD
lim inf

A—+4oo A - 972 7'VC17’?“ )

Proof Sketch: For a stable policy, the average time, t*(n”*),
needed to service a target must be no greater than the average time
interval in which a new target is generated, i.e., E[t*(n*)] < 1/},
where n™* is the average number of outstanding targets. This gives a
bound on n*. Using Little’s formula [14], one obtains the result. |

In[12], we proposed a simple strategy, the BEAD TILING ALGORITHM
(BTA) for the DTRP for Dubins vehicle in R*. We adapt the BTA for
the DTRP problem for a double integrator in R? and based on those
ideas, we propose the CYLINDER COVERING ALGORITHM (CCA) for
R?. As before, we make the double integrator to move at some constant
speed s < 7ol and let p = s% /7ctr- The BTA strategy consists of the
following steps:

i) Tile the plane with beads of length ¢ := min{Cgra/\, 4p},

where Cpra = 0.5245(1 4 (Tap/3W))~ L.

ii) Traverse all non-empty beads once, visiting one target per bead.

Repeat this step.

The CCA strategy is akin to the BTA, where the region
is covered with cylinders constructed from beads of length
¢ := min{Ccca /A, 4p}, where Coca = 0.476s(1+ (77rp/3W'))71.
The policy is then to traverse all non-empty cylinders once, visiting
one target per cylinder. The following result characterizes the system
time for the closed loop system induced by these algorithms and is
based on the bounds derived to arrive at Lemmas 3.3 and 3.8.

Theorem 4.2 (Upper Bound on the DTRP System Time): For a
double integrator (1) moving with a constant speed s < 7. and
A > 0, the BTA and the CCA are stable policies for the DTRP and the
resulting system times Tgra and Tcca satisfy

. Torre 2 . Thra
lim sup ———= < lim sup —
A——+o0 A A——+oo
WH Trs? \°
<70.5 1
- ? STetr < + 31’1/,7'0141' ) ’
T Teo
lim sup % < lim sup S
A—+o0 A A—+o0
WHD 7rs? \°
<9748 — 1 - .
- sr2 ( + 3W 7‘m->
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Proof Sketch: For the given policies, we derive bounds on the
target generation rate and servicing rate for a bead/cylinder. The bead/
cylinder is then modeled as a standard M/ D /1 queue and we use the
known result [14] for the system time for such a queue. |

Remark 4.3: The speeds that minimize the upper bounds in Theorem
4.2 turn out to be the same as those for the corresponding DITSPs as
reported in Remarks 3.4 and 3.9. Also, note that the achievable perfor-
mances of the BTA and the CCA provide a constant-factor approxima-
tion to the lower bounds established in Theorem 4.1. The large constant
associated with the 3-D case is an outcome of the corresponding con-
stant associated with the upper bound on the path length for the first
phase of the RECBTA as given by Lemma 3.6.

V. EXTENSION TO THE TSPS FOR THE DUBINS VEHICLE

In our earlier work [12], we studied the Dubins Traveling Sales-
person Problem (DTSP) for the planar case. In that paper, we proposed
an algorithm that gave a constant factor approximation to the optimal
stochastic DTSP with probability one. This naturally led to a stable
policy for the DTRP problem for the Dubins vehicle in R? that also
performed within a constant factor of the optimal. The RECCCA de-
veloped in this technical note can naturally be extended to apply to the
stochastic DTSP in R®. It follows directly from Lemma 3.2 that in order
to use the RECCCA for a Dubins vehicle with minimum turning radius
p, one has to simply compute feasible curves for the double integrator
moving with an appropriate constant speed. Hence the results stated in
Theorem 3.8 and Theorem 4.2 also hold true for the Dubins vehicle.

This equivalence between trajectories makes the RECCCA the first
known strategy with a strictly sub-linear asymptotic minimum time for
the stochastic DTSP in R®. Also novel is that the RECCCA performs
within a constant factor of the optimal with probability one and gives
rise to a constant factor approximation and stabilizing policy, the CCA,
for DTRP for the Dubins vehicle in R®.

VI. CONCLUSION

In this technical note we have proposed novel algorithms for var-
ious TSP problems for vehicles with double integrator dynamics. We
showed that the DITSP(P) belongs to O(n' ="/ and in the worst
case also belongs to Sl(nrl_(l/ 4 ). We further proposed novel approxi-
mation algorithms and showed that the stochastic DITSP(P) belongs
to O(n%/*) in R? and to ©(n*/*) in R*, both with probability one. The
policy proposed in this technical note for the DTRP for a double inte-
grator helps in proving that the system time belongs to @(A\?) in R?
and to ©(\*) in R*. Comparing our results with those for the single
integrator [7], we argue that our analysis rigorously establishes the fol-
lowing intuitive fact: higher order dynamics make the system much
more sensitive to increases in the target generation rate.

It is interesting to note that the results presented in the paper hold
true even in the presence of small damping in the double integrator
dynamics: the lower bounds are the same because the damping only
slows down the vehicle; the upper bounds also remain the same as long
as the damping coefficient is relatively small as compared to 7ty .

Future directions of research include study of centralized and decen-
tralized versions of the DTRP and more general task assignment and
surveillance problems for vehicles with nonlinear dynamics.
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