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A. WORK COMPLETED

1. DESIGN OF A WIENER-LEE VARIABLE FILTER

This study has been completed by H. Hemami. In January 1962 he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

A. G. Bose

2. MEASUREMENT OF A SECOND-DEGREE WIENER KERNEL IN A NONLINEAR

SYSTEM BY CROSSCORRELATION

The present study has been completed by W. S. Widnall. It was submitted as a thesis

in partial fulfillment of the requirements for the degree of Master of Science, Depart-

ment of Electrical Engineering, M. I. T., January 1962.
Y. W. Lee

B. A PROPERTY OF OPTIMUM SYSTEMS

In this report, we consider an important property of systems for the separation of

signals. In Fig. XIII- 1, fr(t) is the sum of two signals, f (t) and f 2 (t), so that

fr(t) = fl(t) + f 2 (t). (1)

The signals are not restricted to any particular type of functions. They can be periodic,

aperiodic or random; they could be dependent or independent of each other. In Fig. XII- 1

system A has been designed on the basis of some error criterion for the desired output

fl(t). Similarly, system B has been designed on the basis of the same error criterion

for the desired output f 2 (t). The error criterion can be any function of the magnitude

of the error.

We shall show that, if the network A is the optimum Nth-order nonlinear net-

work for which some function of the magnitude of the error, El(t), between the

*This work was supported in part by the National Institutes of Health (Grant
MH-04737-02).
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fr (t)

-A fa(t)= fl (t) + E 1 (t)

B fb (t) f 2 (t) + E2 (t)

Fig. XIII- 1. Optimum systems A and B.

actual output, fa(t), and the desired output, fl(t), is a minimum, then, for the same

error criterion, the optimum N th-order nonlinear system B has the output

(2)fb(t) = fr(t) - fa(t)

and thus can be synthesized as shown in Fig. XIII-2.

To show this relationship, we note, first, that if the system A is an Nth-order non-

linear system, then the system depicted in Fig. XIII-2 is also an Nth-order nonlinear

system. We note, then, that by substituting Eq. 1 and the relation

fa(t) = fl(t) + El(t)

in Eq. 2, we obtain

fb(t) = f 2 (t) - El(t).

That is, the error between the actual output of the system of Fig. XIII-2 and the desired

output, f2 (t), is the negative of El(t), the error of system A. This result implies that

B
F- ------------- -1

I I
fr(t) I )

Fig. XIII-2. Form of optimum system B.
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F [E1 (t)]

0 El(t )

(a)

F2 [

0 E2 (t)
(b)

Fig. XIII-3. (a) Example of a function of the error for system A.
(b) Corresponding function of the error for system B
illustrated by Fig. XIII-Z.
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the system of Fig. XIII-2 is the optimum Nth-order nonlinear system for the desired
output, f2 (t). For, assume that it is not; then there is another system C, with the out-
put f (t) for which the function of the magnitude of the error, E 3 (t) = fc (t) - f2 (t)
is smaller than that of the system of Fig. XIII-2. We could then construct the
Nth-order nonlinear system D with the output fr(t) - fc(t) = fl(t) - E 3 (t). For the desired
output fl(t), the function of the magnitude of the error for system D would then be
smaller than that of the system A. This is a contradiction, since we have assumed
that system A is the optimum Nth-order nonlinear system for the desired output f (t).
Thus we conclude that the system shown in Fig. XIII-2 is the optimum Nth-order sys-
tem for the desired output f 2 (t).

Note that this result does not depend in any manner upon the statistical dependence
between fl(t) and f2 (t) or upon the form of the system A. Also, the result does not
depend in any manner upon the criterion of the magnitude of the error. In whatever
sense system A is optimum for the desired output fl(t), system B, shown in Fig. XIII-2,
is also optimum for the desired output f 2 (t). Furthermore, since the magnitude of the
error for system A is equal to that of system B, any function of the magnitude of the
error will be the same for both systems.

This result can be generalized. We note from Eq. 4 that the error for system B
illustrated by Fig. XIII-2 is the negative of the error for system A. By choosing the
error criterion for the design of system A to be any function of the magnitude of the
error, we obviated this difference, since the error criterion was then a symmetric
function of the error. If, however, the error criterion were not a symmetric function
of the error, then system B illustrated by Fig. XIII-2 would be optimum for an error
criterion that is the mirror image of that used for the design of system A. Thus if sys-
tem A were designed to minimize the probability that the error is positive, then sys-
tem B would minimize the probability that the error is negative. As another example,
if the error criterion for system A is the average of the function of the error shown in
Fig. XIII-3a, then system B is optimum for an error criterion that is the average of
the function of the error shown in Fig. XIII-3b.

M. Schetzen

C. MEASUREMENT OF A SECOND-DEGREE WIENER KERNEL IN A NONLINEAR
SYSTEM BY CROSSCORRELATION

Wiener has developed a functional representation for nonlinear systems.1 Lee and
Schetzen have shown theoretically that the kernels of the functional representation of
an unknown system may be measured by a crosscorrelation of the output of the nonlinear
system with a multidimensional product formed from the input to the system when the
input is broadband Gaussian noise. 2 The work reported here is the first experimental
example of the Lee-Schetzen method of measuring the kernels. 3
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SI k. I /- RESULTS
COMPUTER

DATA FROM TAPE 2 ND DEGREE KERNEL

Fig. XIII-4. Block diagram of the experiment.

A simple nonlinear system was chosen - a linear RLC circuit whose response is

squared by a memoryless squarer. The system was driven by an appropriate filtered

noise source. The input and output waveforms were sampled, converted to binary digital

numbers, and written on magnetic tape. A digital computer calculated the second-degree

crosscorrelation from the sampled data on tape. The results show clearly the second-

degree Wiener kernel of this nonlinear system, and establish the practicality of this

method of kernel measurement. The experiment is summarized in Fig. XIII-4.

1. Theory of Kernel Measurement

The output y(t) of a nonlinear system is functionally related to the system input x(t).

Wiener has shown that this functional relationship may be expanded in a functional infi-

nite series

00

y(t) = Gn[g n , x(t)].

n= 0
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The first four terms in this functional expansion are

Go[g , x(t)] = go

Gl[g, x(t)] = 0 g(T 1) x(t-T I1 ) dT1--00

G2 [g 2 , x(t)] = gZ(T 1 , T2 ) x(t-T i ) x(t-r 2 ) dT 1 dT 2 - P 0 gZ(T 1 , T1 ) dT1

G3 [g 3 , x(t)] = 5 g3 (T 1 , TZ, T3 ) x(t-T 1 ) x(t-TZ) x(t-T 3 ) dT 1dT2 dT3O -00 00

- 3P 5 g3 (T 1 ,' T2 , T) x(t-T 1 ) dTldTz.

Any nonlinear system that is not time-variant and whose present output cannot depend
on the infinite past has such a G-functional representation. The kernels gn(71, T' ... n)
are properties of the system alone and do not depend upon the nature of the input x(t).

Once one has determined the kernels of a system, then the system is completely charac-
terized; the output may be computed for any given input.

Lee and Schetzen have shown theoretically that the kernels of an unknown system

can be measured by crosscorrelation. In particular, the nth-degree system kernel is
proportional to the crosscorrelation of the system output with an N-dimensional product
formed from the input, provided that the input is broadband Gaussian noise.

1 time average
gn( -1 2' -2 ... " . n) =  y(t) x(t- l-1) x(t- 2) . . . x(t- n)

where all of the delays o-i must be distinct. The constant P is the power density of the
broadband noise at the frequency band that excites the system. P is measured in input
units squared per cycle per second.

2. Experimental Procedure

The particular electrical system chosen for measurement was a linear RLC network

x (t) LINEAR v (t) SQUARER y (t)
* RLC WITHOUT o

CIRCUIT MEMORY

Fig. XIII-5. The particular nonlinear system that was measured.
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followed by an electronic squarer, as shown in Fig. XIII-5. Mathematically, such a

system has a simple functional representation. The output v(t) of the linear network

is given by

v(t) = 00 h(T) x(t-T) dT,
00

where h(t) is the unit impulse response of the linear network. The output of the

squarer is

y(t) = K[v(t)]2

= K h(T) x(t-T) dT

= 00 Kh(T 1 ) h(T 2 ) xx(t-T 1 ) (t-T)) x 2) dTldTz-0 -00

This functional relationship can be expanded in terms of G-functionals. The resulting

expansion has only two terms - a zero-degree term and a second-degree term

y(t) = Go[g , x(t)] + Gz[g 2 , x(t)],

in which

G = P c Kh2 () dT 1
-00

G z =5 0 Kh(T1 ) h(T Z ) x(t- )) x(t-r 2 ) dTdT - P 5 Kh2 (T 1) dT 1 .
-00 -00 -00

The second-degree kernel is

gZ(Tl T Z ) = Kh(T 1 ) h(T 2 ).

The input and output of the linear part of the system are voltages; thus the unit impulse

response has the dimensions of inverse seconds. The actual response of the RLC net-

work to a pulse of unit area is shown in Fig. XIII-6. The input-output characteristic

of the squarer is shown in Fig. XIII-7.

The nonlinear system was driven by a broadband Gaussian noise source. The output

of a shot-noise generator was passed through an adjustable cutoff lowpass filter. The

bandwidth of the resulting noise was chosen to be broad compared with the band of fre-

quencies that excite the system, but not so broad as to cause a large variance of the

crosscorrelation calculations. The power density spectrum of the noise generator-filter

combination is shown in Fig. XIII-8.
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I MILLISECOND PER CENTIMETER

25
INVERSE SECONDS
PER CENTIMETER

Fig. XIII-6. Impulse response of the linear RLC network.

INPUT VOLTAGE
0.5 VOLT PER CENTIMETER

OUTPUT
VOLTAGE

0.5 VOLT
PER

CENTIMETER

Fig. XIII-7. Characteristic of the squarer.
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-I

z

It

-20



(XIII. STATISTICAL COMMUNICATION THEORY)

The data needed for the crosscorrelation were recorded automatically by a dual-

channel analog-to-digital conversion system. The system sampled simultaneously the

input and output voltages of the nonlinear system. Every 0. 269 msec a new sample pair

was measured. The voltages were converted to 11-bit binary numbers, and these were

recorded on magnetic tape.

A suitable second-degree crosscorrelation program was written for the IBM 7090

digital computer. The program calculates the second-degree Wiener kernel by using

the Lee-Schetzen theorem

1
g 2 ( 1 ,' z2) = y(t) x(t-rl) x(t-zf2).

2P

The kernel cannot be calculated for continuous values of input delay because the data

were sampled at discrete intervals. The kernel is calculated as a discrete array whose

elements are the values of the kernel at arguments equal to integral multiples of the

basic sampling interval.

Notice that the value of the kernel is unchanged if a-l and a2 are interchanged. This

property of kernel symmetry is used to save computer time. Only one-half of the ele-

ments in the kernel array need be directly calculated by crosscorrelation. The other

symmetric one-half are set to equal values at the end of the program.

3. Crosscorrelation Results

The computer results have been used to make a three-dimensional model of the

second-degree kernel. This is shown in Fig. XIII-9. A few cross sections of the ker-

nel with the numerical values given are shown in Fig. XIII- 10. In both the model and

the graphs, the kernel has been inverted so that the greatest peak is not shown down,

but up.

Comparison of the measured kernel with the kernel known to be present shows that

the results are quite accurate. The second-degree kernel of the system is known to be

g 2 (T1 , T 2 ) = Kh(T 1 ) h(T 2 ),

where, from Fig. XIII-7, K is -1. 1; and from Fig. XIII-6, h(t) is given.

The period of one cycle of h(t) is 2. 95 msec. The period of one cycle of a measured

section of the second-degree kernel is 11 sampling intervals, or 2. 96 msec.

The maximum height of the known kernel is

F 2
g 2 (T 1 , T2 ) I  = K h(t) max = -1. 1 . (52) = -2970.

max

This value agrees with the measured peak of -3000.

It is worth while to compare the very smooth results of Fig. XIII-10, as measured
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Fig. XIII-9. Three-dimensional model of the measured
second-degree kernel.
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Fig. XIII-10. Second-degree kernel of the nonlinear system as
measured by crosscorrelation. (Each point is an
average of 29, 800 sample products.)

140

N 7

I I 2K+,

1000

2000

-2000

-1000

0

1000

2000

I IYr



(NAt, MAT) VOLTS- 1 SECONDS - 2

AT = 0.269 MSEC

N=2

I I
2 4 6 8 10 12 14 16 18 20

-3000

-2000

-1000

0

1000

2000

-2000

-1000

0

1000

2000

Fig. XIII-11. Measured kernel showing poor convergence
with only 1490 sample products used.
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with 30, 000 independent sample products, with results obtained by using only 1500 inde-

pendent sample products. A plot of two sections of a 1500-sample product kernel

calculation is shown in Fig. XIII-11. In the results for N = 11, there is a noticeable

dispersion of the calculated values away from g 2 = 0. By accident, N = 11 corresponds

to a zero crossing of the known kernel, and therefore provides a convenient line along

which to check the statistical error of the kernel measurement. Examining the numeri-

cal computer results, we found that the rms value of the 20 points measured for N = 11

is 85 units. Expressed as a percentage of the maximum kernel value of 3000, this yields

a statistical error of 2. 8 per cent.

The same examination is performed on the results given in the kernel measurement

made by using 30, 000 sample pairs. The rms deviation is 19 units. This is a statistical

error of only 0. 6 per cent. In general, the statistical error may be made as small as

desired by performing longer crosscorrelations. An average made by using N times

as many independent samples as a second average will have a variance that is one Nth

of the variance of the second average.

4. Conclusions

This work shows that characterization of nonlinear systems by crosscorrelation is

experimentally practical. To calculate the second-degree kernel of a system for 20 X 20

points to an accuracy of 0. 6 per cent required 15 minutes of IBM 7090 computer time.

The same type of calculation to a lesser accuracy of 2. 8 per cent required only

45 seconds of computer time.

The question arises: How long will it take to calculate the third-degree, and

higher, kernels of an unknown system? A crude estimate can be made by con-

sidering the number of elements in each kernel. The second-degree kernel was

computed for 20 X 20 points. Because of the kernel symmetry, it was necessary

to calculate only one-half of the 400 points. The third-degree kernel would have

20 X 20 X 20 points. In this case, kernel symmetry causes the value of the kernel

to be unchanged under any of the 3! or 6 permutations of a given set of arguments.

Hence, it is necessary to calculate only one-sixth of the total 203 points. The num-

ber to be calculated is 20/3 or approximately 7 times the number required for the

second-degree kernel. Hence, the calculation of the third-degree kernel would require

approximately 7 times the computer time required for the second kernel. This means

5 minutes for 3 per cent accuracy.

Similarly, the calculation of the fourth-degree kernel would require time propor-
tional to 20 4/4! which is approximately 33 times greater than that required for the

second-degree kernel. This implies 25 minutes of IBM 7090 computer time for

3 per cent accuracy.
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Work will continue on the measurement of kernels of several degrees for this sys-

tem and for other nonlinear systems.
W. S. Widnall
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