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A. PICTURE PROCESSING

1. LABORATORY EQUIPMENT

An important determinant of quality in digital image-transmission systems such as

our laboratory picture-processing equipment is the optical impulse response of the

pickup and display device.

In commerical television practice, quality usually improves monotonically with both

electrical and optical focusing. This is so because optimum focus generally means a

limiting resolution of not much more than the 525 lines of the standard television picture.

Mertz and Grey recognized, in 1934, that for certain sharp pictures and with coarse

scanning standards, spurious patterns may develop. At present, with the development

of very high resolution scanners on the one hand, and with the renewed interest in lower-

resolution TV systems for space applications on the other, this effect is no longer a

mere curiosity.

When a continuous image is represented by its values at a discrete set of points in a

regular array, the exactness with which the image can be reconstructed from the samples

is determined by the relationship between the two-dimensional spatial frequency spectra

of the image and the sampling pattern. The spectrum of the sampled image is the con-

volution of these two spectra. If overlapping of the subspectra occurs (a result of making

the sample spacing greater than one-half the shortest wavelength of the spectral com-

ponents of the image) moird, or other spurious effects, will appear. To avoid such

effects, the image must be bandlimited before sampling, or, that which amounts to the

same thing, it must be sampled with something other than an impulse. For example,

*This research was supported in part by Purchase Order DDL B-00337 with Lincoln
Laboratory, a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U. S. Army, Navy, and Air Force under Air Force Contract
AF19(604)-7400; and in part by the National Institutes of Health (Grant MH-04737-0Z).
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sin 7rx/a sin 7ry/b
the function • , when used for sampling, produces results identical to

rx/a ry/b 1 1those obtained by first bandlimiting the image to F and 2b cycles/unit length in the x-
and y-directions, and then sampling with impulses.

(a) (b)
Fig. XIV- 1. Experiments in Sampling and Filtering. In an effort to obtain a

more isotropic reproduction, a hexagonal sampling pattern of
95 X 80 picture elements was used. The interpolation function
in both pictures was a hexagonal spot, obtained by optical fil-
tering. The sampling function was a very small spot in (a),
and a small square spot in (b). The latter adheres to the
requirements of the sampling theorem better and seems to give
a little higher quality, especially near the eyes.

In the dispaly, a similar problem occurs. Here one must find an interpolation func-
tion with which to fill in the space between the samples. Signal theory tells us that
simple lowpass filtering will produce an image that is free of sampling frequencies and
nearly identical to the original (bandlimited) image. Complications arise, however,
because of the nature of the observer. Sharp bandlimiting produces ringing that is highly
visible and objectionable. Gradual bandlimiting loses much of the subjective sharpness
before the sampling signal is completely suppressed.

We have been doing some preliminary experiments in the search for optimum
sampling and interpolation functions. Some of the results are shown in the accompanying
photographs.

J. E. Cunningham, U. F. Gronemann, T. S. Huang,

J. W. Pan, O. J. Tretiak, W. F. Schreiber
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2. PROGRAMMING

Programs to process pictures on the IBM 7090 computer have been written in the

form of pairs of subroutines called for by a simple main program. The pairs are:

(a) input and output routines that read and write magnetic tape to and from memory loca-

tions specified by the main program (also, provision has been made to read picture data

from cards and to print pictures on the off-line printer); (b) two-dimensional filtering

and sampling routines that store the samples in memory and produce from these samples

a smeared picture; (c) edge detection and synthesis routines that detect edges according

to given parameters and synthesize the original edge from the stored information; and

(d) some routines for housekeeping purposes, such as clearing the memory to accept

a synthetic picture, storing a uniform gray in the memory to eliminate negative bright-

ness, counting routines to record the total number of edges detected, initializing the

indices to process a new picture, and various other simple operations.

J. W. Pan

B. DELAY IN SEQUENTIAL MACHINES

1. Introduction

I shall be concerned in this report with the problem of constructing a sequential

machine from a set of synchronous elements that have delay inherent in their character-

istics in addition to the Boolian function associated with each element. The basic prob-

lem will be presented in the form of a conjecture: If one is given a set of elements that

operate synchronously and can accept information at the rate of R bits per second per

input wire, then one can construct a sequential machine from these elements which will

produce the desired output sequence at a rate of R bits per second per output wire.

A very complete discussion of this problem has been presented by D. N. Arden.

Much of the background information for my research is contained in Arden's report.

In addition to Arden, Arthurs 2 and Lewis 3 have demonstrated the truth of the con-

jecture stated above. Arden uses the technique of Regular Algebra, I while both Profes-

sor Arthurs and Dr. Lewis use the Boolian Algebra of Sequences. In this report, I shall

use the latter technique for my presentation.

In more precise language, the basis for my work is the following existence theorem

advanced by Arden, Arthurs, and Lewis:

THEOREM 1: Given: A complete set of logic elements that operate synchronously,

can accept information at rate R bits per second per wire, and may have inherent delay;

and a description of a sequential machine, M, then: it is possible to construct from a

set of copies of the complete set of elements a machine that produces the desired output

sequence at rate R bits per second per wire. This output sequence, however, may be
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delayed by some finite amount.

The question that I am investigating is "How do we best apply Theorem 1 to the prob-
lem of sequential machine design in order to produce circuits that are good in the sense
of minimum delay or minimum complexity ?"

In the next section, I shall discuss some of the results of my research into this ques-
tion, and some answers to questions suggested by this primary problem. In the interest
of brevity, I shall not present the proofs of these results.

2. Results of Research

The results presented here deal with two types of sequential machines, the first type
being the machine whose current operation depends only on a finite portion of the past
of each of the input sequences, and the other type being the machine whose current oper-
ation depends on the entire past of the input sequences. I shall refer to the first as
feedback-free machines, since any machine of this type can be produced by a network
of logic elements with no feedback paths or circles. The second type, I shall refer to
as machines with feedback.

The functional notation that I shall use has the following specific properties:
1. A sequence that is written as a function of other sequences shall not have any

dependence on time other than that implied by the sequences that are arguments of the
function.

2. The value of a sequence at time t, written in functional notation, shall depend
only on the values of the sequences at time t which appear as arguments of the function.

A further notation 4 that is of considerable use in this study is the delay operator,
D . If x(t) represents a sequence, then D is defined by the following equation:

D T x(t) = x(t-T). (1)

In this report, the dependence on time of a sequence will be understood and thus
a sequence x(t) will normally be written as x alone.

Let us now consider some properties of networks that are in the class of feedback-
free machines. Here we are concerned with the delay involved in the realization of any
function of the type shown in Eq. 2 with logic elements that have inherent delay.

y = f(X, DX, . ., D X), (2)

where X is an n-bit vector of binary sequences, y is a binary sequence, and T is a
finite integer.

It was stated earlier that any function that depends on a finite portion of each of the
input sequences can be produced by a machine without feedback. However, it is true
that such a sequence can always be produced by machines with feedback. It is there-
fore of interest to know how the delay of a machine to produce such a sequence with
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feedback compares with the delay of a machine to produce the same sequence without

feedback.

LEMMA 1: Given: a complete set of elements, each of which has unit delay and

produces a function that depends at time t only on the values of its input sequences at

t - 1, and a machine constructed from this set of elements that produces the sequence

u' = f(DaX, D a - i X, . . , D X) for time greater than some integer, i, and that this machine

contains feedback, then: there exists a machine constructed from the complete set which

produces u', for time greater than j, which contains no circles external to the elements.

Here we have the result that if one desires to build a machine and it is possible to

build it without feedback, then the machine that has the minimum delay will also have

no feedback.

This leads us to consider the delay through networks without feedback. Let us define

L(M) as the maximum over all functions, of the minimum over all realizations of the

delay in the network constructed to produce a function of M sequences.

The following theorems place bounds on the value of L(M) for certain complete sets

of elements:

THEOREM 2: Given: The complete set of elements, including a k-input "and" ele-

ment with unit delay, a k-input "or" element with unit delay, and the availability of all

the input variables and their complements, then:

L(M) < f(M-1)logk(2 + logk(M)I = a(M) (3)

where IA-I is the smallest integer greater than or equal to A.

THEOREM 3: Given: The availability of any complete set of elements, all with

unit delay and with k or fewer inputs, and the availability of all the input sequences and

their complements, then:

L(M) > (M) log k (2) - log k (log2 (2MQ)) = j(M), (4)

k
where Q = 2

Theorems 2 and 3 of course imply that:

lim L(M) = log k (2). (5)
M-o M

L(M) gives us a measure of the delay of the network to produce that function of M

sequences which is, in the sense of delay required, the worst function. Theorem 4 gives

some idea of the number of functions that obey the bounds on L(M).

THEOREM 4: Given: The availability of any complete set of elements, all with

unit delay and with k or fewer inputs, and the availability of all the input sequences and

their complements.

149



(XIV. PROCESSING AND TRANSMISSION OF INFORMATION)

Let p(M) be the fraction of all functions of M sequences for which the least-delay

realization of the ith function of this set yields delay ii such that:

li < P(M)- 2, for all i.

Then

lim p(M) = 0. (6)
M-oo

This theorem means that as M gets very large, nearly all functions have delay that

behaves as badly as L(M).

Let us now consider the class of sequential machines that must contain feedback in

order to realize the desired function. Such a machine will produce an output sequence

that, in general, must depend on the complete past of all input sequences. Such a
machine can be specified by a set of equations of the following form:

Y = F(X, DY) (7)

Z = G(Y) (8)

where X is the m-bit input vector, Y is the n-bit state-variable vector, and Z is the
p-bit output vector.

We shall call Eq. 7 the one-step recursive equation of the machine.

By application of the delay operator to Eq. 7 and substitution of the resulting expres-

sion in Eq. 7, the following two-step recursive equation results:

Y = F(X, F(DX, D 2 )). (9)

Similarly, the T-step recursive equation may be obtained:

Y = F(X,F(DX,..., F(DT-1X, D )...)). (10)

This T-step recursive equation defines a set of mappings from the set of all possible
values of the state-variable vector at time t - T to the set of all possible values of the
state-variable vector at time t. Let us call this set of "T-step mappings," t .

There is a certain class of sequential machines which appears to have very inter-

esting properties, properties that permit us to say a little more about their construction

than we can for the general sequential machine with feedback.

DEFINITION: A sequential machine will be called "input reducible" if and only if
there exists a function, H(X, DX), such that the two-step recursive equation for the
machine can be written in the following form:

= F(H(X, DX), D2-Y=F(H(X, DX), D Y). (ii)
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The following theorem implies a test for the input reducibility of a function and

relates this property to the set of mappings on the set of all possible state-variable vec-

tors:

THEOREM 5: A sequential machine is input reducible if and only if I C 1"
COROLLARY: A sequential machine is input reducible if and only if, for each ~

j E ~, there exists a mapping 4 h E Ti such that i j = h
A sequential machine that is input reducible has some interesting properties. Since

there is no increase in the number of mappings required as we go from the T-step recur-

sive equation to the (T+1)-step recursive equation, the complexity of the feedback portion

of the network can be fixed. Therefore any characteristics of the original one-step flow

table which imply a good choice for the state variables for the machine designed in the

ordinary way,5 also apply to the T-step flow table. Therefore the problem of selection

of state variables must be solved only for the one-step flow table, not each time a

higher-order flow table is considered. This fact suggests a construction procedure that

may yield a fairly simple machine, with good delay. This procedure and further prop-

erties of the input reducible machine will be investigated during the next quarter.

3. Conclusions

Although some interesting results concerning the design of sequential machines using

elements with inherent delay have been obtained, there is still much work to be done.

The research reported on here has suggested the following questions:

(i) Are there any quantitative results available for machines with feedback which

are analogous to the results for feedback-free networks which were presented in

Theorems 2, 3, and 4?

(ii) What is a good synthesis procedure for machines that are input reducible ?

(iii) Are there any other good design techniques that could perhaps be applied to more

general classes of machines with feedback?

H. H. Loomis, Jr.
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C. THRESHOLD DECODING OF GROUP CODES

1. General Background

Consider a group code consisting of n-tuples

a = (a 1 ,a 2 . an)
a (al. a.,'' a n) (1)

where each a i E GF(q) (i. e. each digit is an element in the finite field of q elements)

and the symbols ai, i = 1, 2, . .. k, are taken as the information symbols and may be

assigned arbitrarily. The remaining ai, i = k+l, k+2, ... n, are determined from the

information symbols by linear equations

k

a i =
j=l

i
c.a.
J J

i = k+l, k+2,...n

iand the c. E GF(q) are determined by the choice of the code. We assume that

received n-tuple,

r = (r , r 2 , . . . rn),

differs from the transmitted code word, a, by an additive noise sequence

e = (el, e 2 ' . . ., en),

that is, we assume that

the

(3)

(4)

r.= a. + e. i= 1, 2, . . .,n

where the e i have a probability distribution that depends only on the channel.

Each of the n - k equations in (2) defines a parity set for the code. We may rewrite

these equations as

k

c.a. - a. 0

j=1

i = k+l, k+2,..., n.

We define the "parity check," S i , to be the same sum formed at the receiver,
that is,

k

S.= cr. r

j=1

i = k+1, k+2, ... , n.

After substitution of Eqs. 5 and 6 in Eq. 7, we obtain
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k

S i = 7 cie. - e. i = k+1, k+2, ... n. (8)

The {Si) thus constitutes a set of n - k linear equations in the n unknowns ei.

i = 1, 2, ... n. The general solution can be written immediately from Eq. 8 as

k

e . = ce. - S. i = k+l, k+2, ... n. (9)

j=1

The general solution has k arbitrary constants, namely, the values of the ei for
k

i = 1, 2, ... , k, each of which may have any of q values. Thus there are q solutions

of Eq. 9. The decoding problem is to find the solution that is most probable from con-

sideration of the channel. For example, with q = 2 and a binary symmetric channel,

the most probable solution is the one with the fewest nonzero e.. In practice, it is a
1

very difficult task to find the most probable solution for large k because of the enormous

number of solutions to be considered. We now give a simple, but not necessarily opti-

mum, method for finding a probable solution of Eq. 9.

2. Orthogonal Parity Checks

We define a "composite parity check," E i , to be a linear combination of the parity

checks, Sj, that is,

n

E = a S. (10)

j=k+l

where the a. E GF(q). Substitution of Eq. 8 in Eq. 10 gives an expression for E. of the

form

n

Ei ii
j=0

i
where, again, the p3 E GF(q).

We define a set of N composite parity checks, Ei, i = 1, 2, ... N, to be orthogonal

on e if
m

S  1 i= 1,2,...,N (12)
m

and

P # 0 for, at most, one j * m (i fixed). (13)
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3. Majority Decoding

NTHEOREM 1: Provided that no more than 2 of the e., j = 1, 2, ... n, which appear

with nonzero coefficients in a set (Ei) of N equations orthogonal on em, are nonzero,

then em is given correctly by that value of GF(q) which is assumed by the greatest frac-

tion of the set (Ei). (Assume that em = 0 if there is no such value as stated in the theo-

rem and zero is one of the values with most occurrences in the set (Ei).)

PROOF 1: Let em = V and suppose that all other e. appearing with nonzero coef-

ficients in the equations for the (Ei) are zero. Then from Eqs. 11 and 12, it follows

that all members of the (Ei) have value V. If V 0, then under the conditions of
1

Theorem 1, fewer than 2 N of the ej (j*m) are nonzero and hence, by Eq. 13, more than2 1
one-half of the members of (Ei) still have value V. If V = 0, at most -N of the ej (jim)

are nonzero and hence at least one-half of the members of (Ei) have the value V = 0.

This proves the assertion in Theorem 1.

We refer to the decoding rule of Theorem 1 as 'majority decoding" of orthogonal

parity checks.

4. A Posteriori Probability Decoding

Majority decoding is inefficient in the sense that it makes no use of the channel sta-

tistics, that is, of the probability distribution of the e.. We now give a decoding algor-
J

ithm that makes the best possible use of the information contained in the set (Ei) of N

equations that are orthogonal on em. We assume that the noise is independent from

digit to digit, but not necessarily stationary. Using average error probability as the

criterion of goodness, we seek that value of em, call it V m , for which

Pr (em=Vm I(Ei) > Pr (em=V I(Ei.), (14)

for all V E GF(q). Using Baye's rule, we may rewrite Eq. 14 to obtain

Pr ((Ei.lem=Vm) Pr (em=V ) > Pr ((Ei)lem=V) Pr (em=V). (15)

Because of the orthogonality on em of the (Ei) and the digit-to-digit independence of the

noise sequence, it follows that

N
Pr ((Ei) em=V) = Pr (Eilem=V). (16)

i=l 1

To simplify the notation, let

Pr (Ei em=V) = PV(Ei), i = 1, 2, . . . N, (17)

and, for the sake of convenience, let
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Pr (e m=V) = PV(Eo). (18)

Then substituting Eq. 16 in Eq. 15, taking logarithms, and using the reduced notation

of Eqs. 17 and 18, we can reword the decoding rule of Eq. 14 as: Choose em to be that

value V E GF(q) for which

N

log Pv(Ei) (19)

i=0

is a maximum. We call this decoding algorithm the "a posteriori probability" decoding

rule for orthogonal parity checks.

5. Threshold Decoding

For q = 2 and the binary symmetric channel, the majority and a posteriori probabil-

ity decoding rules specialize to a very simple form. Let po = 1 - qo be the channel tran-

sition probability. Let pi = 1 - qi be the probability that an odd number of the ej, (jm)
that have nonzero coefficients in the expression for Ei, have value one. If there are

n. such variables in E i , then
1 1

Pi = 1 -(-2Po) . (20)

The a posteriori probability decoding rule then reduces to: Choose em = 1 if, and only

if, the sum of the members of the {Ei) (as real numbers) with each number weighted
N

qi C qi
by a constant factor, 2 log -, exceeds the threshold value log !. Similarly, the

pi I Pii=0
majority decoding rule becomes: Choose em = 1 if, and only if, the sum of the members

of the (Ei)(as real numbers) exceeds the threshold value N.

Because of the similarity between these decoding rules, we use the generic term

"threshold decoding" to describe either majority or a posteriori probability decoding

of orthogonal parity checks. (We shall use this term regardless of the choice of q and

the channel.)

6. Implementation of Threshold Decoding

THEOREM 2: The parity checks, S., are formed at the receiver by subtracting

the received sequence (r l , r 2 , . .. r n ) from the code word produced by encoding

ri r2, ..' rk as information symbols. The digits in positions k + 1 through n are,

respectively, Sk+l through Sn .

PROOF 2: According to Eq. 2, the encoding process will assign the value
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k

c r.

i=l

to position j for j = k+1, k+2, ... n. After subtraction of the received sequence, the
value

k

Scir. - r.
11 j

i=l

is assigned to position j for j = k+l, k+2, ... n. But from Eq. 7, this sum is, by def-
inition, S..

We can now describe the general implementation of threshold decoding. First, the
parity checks, Sj, are produced in the manner indicated by Theorem 2. Next, that value
of m, m = 1, 2, ... k, is selected for which the largest number of parity checks that
are orthogonal on em can be formed by proper choice of the a. in Eq. 10. The value of

em is then computed by one of the threshold decoding algorithms. em can then be elim-
inated from all the parity checks, S., in which it appears. The same process is then
repeated m - 1 times until all of the ej j = 1, 2, ... , k have been determined. Finally,

the information symbols aj, j 1 1, 2, .... k are computed from Eq. 5.
We have already indicated how threshold decoding can be easily instrumented for

convolutional codes. We are, at present, studying its application to block codes and
attempting to find bounds on the ultimate capability of the method.

J. L. Massey
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D. INFORMATION FLOW IN LARGE COMMUNICATION NETS

In continuing our researchl on the problems of information flow in large communi-
cation nets results have been obtained (for a single node) for two classes of queue disci-
plines: priority queueing, and time-shared servicing. A law of conservation has been
proved which constrains the allowed variation in the average waiting times over the set
of priority classes.

1. Priority Queueing

For priority queueing, the input traffic is broken up into P priority classes. Units
from priority class p (p= 1, 2, . . ., P) arrive in a Poisson stream, with an average rate
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X units per second; each unit from this priority class has a total required processing

time selected independently from an exponential distribution, with mean 1/ ip. We define

p = p/p,

P

p= Pp
p=l

and

P

Wo Pp/p
p=l

The priority structure is such that a unit from the pth priority class entering the queue

at time T is assigned a number b p, where 0 < bl < b 2 - ... bp. The priority q p(t),

at time t, associated with such a unit is

qp(t) = (t-T) bp

The effect of this priority assignment is to increase a unit's priority in proportion to

the time that elapsed since that unit's arrival at the system (referred to as a delay-

dependent priority system).

Let us define W to be the expected value of the time spent in the queue for a unit
th P

from the p priority class. We then state the following theorem.

THEOREM 1: For the delay-dependent priority system described above, and for

0 P < 1,

W p-1 bpWo (W 1
I - p /PiWi i

i=l
p P b

1 - P 1-bP

i=p+

From a designer's point of view, the introduction of the P independent quantities b
p

is an asset. Consider the problem of a system designer who is faced with assigning

some priority structure to a queueing system. Let us assume that he is given the quan-

tities Xp, p4 and P, that is, he is given the desired input traffic and partitioning. From

these parameters, he can easily calculate p. With the free parameters bp, he can then

attain any value for W (for this value of p) within broad limits. Without these addi-

tional degrees of freedom, the set W would be fixed (as for a commonly used priority
2 pstructure for which q(t) = a and a is independent of time).

pp p
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2. A Conservation Law

As one might expect, there is a certain trade-off of waiting time among the various

priority classes. In particular, let us define a class of queueing disciplines as follows:
th

(a) Arrival statistics are Poisson with an average arrival rate X for the p priority
p

class.

(b) Service-time statistics are arbitrary with mean 1/ip for the pth priority class.

(c) All units remain in the system until completely served.

(d) The service facility is never idle if there are any units in the system.

(e) Pre-emption (the replacement of a low-priority unit in service by a higher pri-

ority unit) is allowed only if the service-time distributions are exponential, and if upon

re-entry into the service facility the low-priority unit continues from the point at which

its service was interrupted.

THEOREM 2: For any queue discipline and any fixed-arrival and service-time dis-

tributions that are subject to the restrictions stated above

P
V

pW = constant = p
pp

00

p<l

p l

where

P

V = L E(tp)
p=l

and

2
E(tp) = second moment of the service-time distribution for priority class p.p

This conservation law constrains the allowed variation in the average waiting time

for any queue discipline that falls into this wide class.

3. Time-Shared Servicing

For a time-shared servicing facility, we consider time to be quantized into intervals,

each of which is Q seconds in length. At the end of each time interval, a new unit

arrives in the system with probability XQ (result of a Bernoulli trial); thus the average

number of arrivals per second is X. The service time of a newly arriving unit is chosen

independently from a geometric distribution so that for o- < 1,

= (- n- n = 1, 2, 3, . .

where sn is the probability that a unit's service time is exactly n time intervals long.

158

P=l



(XIV. PROCESSING AND TRANSMISSION OF INFORMATION)

The procedure for servicing is as follows: A unit upon arrival joins the end of the queue,

and waits on line in a first come first served fashion until it finally arrives at the service

facility. The server picks the next unit in the queue and performs a unit of service upon

it. At the end of this time interval, the unit leaves the system if its service is finished;

if not, it joins the end of the queue with its service partially completed. Obviously, a

unit whose service time is n intervals long will be forced to join the queue a total of

n times before its service is completed. Another assumption must now be made

regarding the order in which events take place at the end of a time interval. We shall

assume that the unit leaving the service facility is allowed to join the tail of the queue

before the next unit arrives at the queue from outside the system (referred to as a late-

arrival system). The case with reversed order has also been solved, but will not be

reported on here, since the results are not essentially different.

Upon arrival, a unit finds some number of units, m, in the system. The expected

value, E(m), of the number m is known 3 to be

P
E(m)- 1-p

where

SXQ
P 1 -o""

We are now ready to state the following theorem.

THEOREM 3: The expected value, Tn, of the total time spent in the late-arrival

system for a unit whose service time is nQ seconds, is

T nQ kQ2 (1--a)( 1-a n-)

n  I- 1 -p-)

where

a = o + XQ.

Now, instead of the round-robin type of structure just described, we shall consider

a strict first come first served system in which each unit waits for service in order of

arrival, and, once it is in service, each unit remains until it is completely serviced.

Then for Tn defined as before, we state the following theorem.

THEOREM 4: The expected value, Tn, of the total time spent in the first come first

served system for a unit whose service time is nQ seconds, is

T 1 QE(m) + nQn 1 -

where E(m) is as defined above.
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Now if one wishes an approximate solution to the round-robin system, one might

argue as follows: Each time a unit (the tagged unit, say) returns to the queue, it finds

E(m) units in the system ahead of it (this is the approximation). Each of these units

will spend Q seconds in the service facility before the tagged unit arrives at the service

facility. Since the tagged unit must go through this process n times, the total time that

it spends in the queue is nQE(m). Also, it spends exactly nQ seconds in the service

facility itself. Thus, our approximate solution, Tn, turns out to be

T'= nQE(m) + nQ.n

Comparing this solution with the result for the first come first served case, we see that
1there is a critical value of n, say n crit, at the point n crit = . In fact, we observe

that the quantity is merely the mean value, 7, of the number of service intervals

required by a unit. Thus, the approximate solution shows us that units whose service

time is greater (or less) than the average time, 7iQ, spend more (or less) time in the

round-robin system than in a strict first come first served system, that is, units with

short service-time requirements are given preferential treatment over units with

longer requirements. The fact that the critical length is equal to the average length

is a surprisingly simple result. It has also been shown that the approximation is

excellent.

It is interesting to note that the round-robin and first come first served disciplines

offer an example of the validity of the conservation law. That is, if we define

W = Tn - nQ, which is the average waiting time in the queue, then it is a simple alge-

braic exercise to show that

0o Qp2

PnWn (first come first served) = PnWn (round-robin) (lp)(Lo_)

n=l n=1

where

n-1
S= psn = p(l-o) o

L. Kleinrock
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E. DETECTION OF SIGNALS WITH RANDOM PHASE AND AMPLITUDE

1. Introduction

The problem of detecting a known signal in additive white Gaussian noise, which has

been called by Siebert 1 the "Canonic Detection Problem," is well known: The optimum

reciever computes the likelihood ratio A and compares it with a threshold to decide

whether or not a signal was transmitted. The likelihood ratio is defined as

p(z(t)/S)

= p(z(t)/N) ' (1)

where p(z(t)/S) and p(z(t)/N) are the conditional probability densities of receiving a par-

ticular waveform z(t), when a signal is or is not actually transmitted. For white

Gaussian noise it is easy to show that

A= ex z(t) s(t) dt - s 2 (t) (2)

where s(t) denotes the transmitted signal (of duration T), and N o is the power density

spectrum of the noise.

Equation 2 yields the receiver structure

T signal
z(t) s(t) dt >( constant. (3)

0 no signal

For a more complete treatment of this problem see Helstrom. 2

The solution when the phase of the signal is completely random at the receiver, that

is, when the phase of the signal carrier can take all values between 0 and 2rr with equal

probability, is also well known. The receiver simply takes the envelope of the correla-

tion integral in (3) before comparing it with the threshold. A similar solution obtains

when the amplitude is a random variable independent of the phase.

In this report we deal with the situation in which the receiver has statistical know-

ledge about the phase and amplitude of the received signal and knows the shape of the

transmitted signal exactly. Thus two parameters, the phase c of the carrier and the

amplitude factor A, are random variables, but all other properties of the received sig-

nal are known, apart from additive noise.

2. Detection of Signals with Random Phase and Amplitude

The signals used in a practical communication situation often occupy only a narrow

band around the carrier frequency. Our assumption of random phase and amplitude,

for instance, can apply to communication through a slowly varying channel, for which
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the receiver has estimates of the channel conditions from previous transmissions.

a. Complex Representation of Real Waveforms

When dealing with bandpass functions it is convenient to represent the waveforms

as the real part of complex-valued functions. (See, for instance, Dugundji. 3 ) We write

the transmitted signal s(t) as

s(t) = Re (t) e o = sc (t ) cos 0 t - s (t) sin 0 t

where (t) is called the pre-envelope, and s c(t) = Re [g(t)] and ss(t) =
rature components, of the signal s(t).

We shall use correlation integrals involving complex waveforms,

that for narrow-band signals

Im [ (t)] the quad-

and it can be shown

Re [ (T * 1 (t) dtj

Im[ (T * (t) ) dt

*(t) n(t) dt 2

0

= (sc(t)nc(t)+ss(t)n (t)) dt - 2

= (sc(t)ns(t)-ss(t)nc(t)) dt Z 2

* envelope of s(t) n(t) dt

s(t) = Re [(t) e ot

n(t) = Re L(t) e o .

Here, an asterisk denotes complex conjugate, and the circumflex represents the Hilbert

transform (n(t) n(t - 2 ) for narrow-band functions).

It is possible to compute these integrals by the matched filters represented in

Fig. XIV-2.

b. Statement of the Problem

The transmitter sends a narrow-band signal s(t), which we represent by its pre-

envelope (t) according to (4). White Gaussian noise is added at the receiver and, in

addition, random channel fluctuation changes the phase and amplitude of the signal. The

received signal z(t) is then

z(t) = Re [(t) e o = Re [AeJ(t) e +T1(t) eO] (8)
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S (t) MATCHED
FILTER

h(t) En(T-t) t=T

cos 2r fot OR
M A T C HE D

LOWPASS FILTER

St LTER h(lt)= nc (T-t)

LTER  - h(t) ns(T-t)

sin 2r fot

T

MATCHEDFILTER I

h( 2 n h(t) n (T-t)

sin 2rfot

ToMA(tC RDD C.FILT ENVLE

yIT) =_nTt) t A=oTp

Fig. XIV-. Computation of correlation integrals by matched filters.

where (t) represents the noise, and the amplitude A and the phase angle are t) random

variables whose distribution is known to the receiver. We write p(A,) for the joint

x = A sin n t hn ty CoA cos

Without loss of generality, we can assume that has zero mean, since a value different

from zero is accounted for by changing the phase reference at the receiver. An arbi-

trary fixed gain or attenuation in the channel is immaterial, and we can assume
x = A in (9
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therefore that the variance in, say, the y-direction is equal to unity. With these

assumptions, if p(A, c4) is symmetric with respect to 4, we have

E[x] = 0 E[x2  C2

E[y] = ca ; E[(y-c) 2]  (10)

2
where c2 and c are constants.

We call the corresponding probability density function of the quadrature components

Po(x, y).

c. The Likelihood Ratio

To find the likelihood ratio, we first compute the conditional ratio, given that A

and p are known. Completely analogously with (1) and (2), we obtain

p(z(t)/S, A, 5) T (-e (t) 12 T
A, c- p(z(t)/N, A, ) = exp 2(t)(t) dt + (t) 2 d

(11)

According to (5) the energy in the transmitted waveform is

E = s 2 (t) dt = -- I(t) 2  dt. (12)

It is convenient to define two normalized correlation integrals

U = Im E s (t) (t) dt

V =Re C S i(t) a(t) dt
0

It is then possible to write the conditional likelihood ratio

A, = exp [2UA sin p+2VA cos p-A 2] (14)

To obtain A we average AA, over the possible values of A and 4.

A = AA, 4 P(A, P) dA de. (15)

Thus the variables U and V are sufficient statistics in the sense that they contain all

of the information about the received waveform needed for the decision. It is possible

to obtain U and V by a filter matched to s(t), as shown in Fig. XIV-2. The integral (15)
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represents the way in which U and V are combined to get the likelihood ratio. If we

define the weighting function

W(U, V) = In A = Iexp UA sin +2VA cos )-A 2 p(A, c) dA d

(16)

the receiver structure is

W(U, V) sinal constant.
no signal

We can make the following geometrical interpretation of this decision rule: Deter-

mine the point (U, V), and decide that the signal is present if this point falls outside the

contour determined by

W(U, V) = constant. (17)

Otherwise, decide that no signal is present (see Fig. XIV-4).

d. The Weighting Function W(U, V)

Using the probability density in rectangular coordinates (9), we can write the

weighting function

W(U, V) = In 5O exp N [2Ux+2Vy-x2-y2 Po(x, y) dx dy. (18)

The form of W(U, V) depends on Po(x, y). It is not possible, in general, to solve the inte-

gral in (17), but nevertheless it is possible to determine certain properties of W(U, V).

A proof has been given elsewhere 4 that W(U, V) has a minimum at some finite point in

the U, V plane, unless the whole probability mass of Po(x, y) is located in a half-plane.

It can also be shown that the function is monotonically increasing from the minimum

point in all directions. The contour line given by (17), in general, is closed, and it sur-

rounds a simple region. If Po(x, y) is symmetric around a line through the origin in the

x, y plane, W(U, V) is symmetric around the same line in the U, V plane. The particular

form of W(U, V) when the variables x and y have Gaussian distributions is derived

below.

e. The Sufficient Statistics U and V

The random variables U and V contain all of the information that the receiver needs

to make its decision. The receiver makes an error if the point (U, V) falls outside the

contour given by the weighting function when only noise was received, or if it falls inside

the contour when the signal is present.
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When only noise is received we have

UN = Im(
N = R(t) (t) dt. (19)

V N  
Re

We see that UN and V N are obtained by a linear operation on a Gaussian process, and

therefore are Gaussian variables. It is easy to show that

E[UN] = E[VN] = E[UNVN] = 0

N (20)

E [U N2 = E 2V N

When the signal is present we have

U S = Im T (21)

2 [AeJ (t)+rl(t)] ((t) dt (21)

V S = Re

which we can write as

U S =x + UN
(22)

V S =y + V N

In this case the decision variables are the sums of two random variables and, if the noise

is independent of the phase and amplitude, the distribution for US and VS is obtained by

convolving Po(x, y) and the Gaussian distribution for UN and VN.

3. Examples

a. Completely Known Signals

When A and p are known, the normalized density po(x, y) is a unit impulse located

on the point (0, 1), and from (18) we have

E
W(U,V) = N-[2V-1]. (23)

o

The decision boundary in the U, V plane is a line parallel to the U-axis, and from (17)

it is easy to see that the resulting decision rule is the same as that given by (3). See

Fig. XIV-3.
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Fig. XIV-3. Completely known signal.

IGNAL

Fig. XIV-4. Completely random phase.
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b. Completely Random Phase

If the phase is independent of the amplitude and has a uniform distribution, we

have

W(U, V) = In exp - . ) p(A) F2
. 01s~

exp -- (U sin c+V cos ~) - dA0
(24)

The integration over the phase angle gives Bessel functions, and we obtain

W(U, V) = In exp - 2) p(A) Io - U 2 + V2) dA,

where Io() is the Bessel function of the first kind, zero-order, with imaginary argument.

The decision boundary, given by

/U 2 + V 2 = constant, (26)

is a circle centered around the origin. See Fig. XIV-4. We can write

/ 2 + V 2  1 2
4E I Y *(t) (t) dt

and, from Fig. XIV-2, see that an easy way to compute the right-hand side is by sam-

pling the envelope of the output from a matched filter. This is a well-known result from

statistical decision theory.

c. Modified Rician Distribution

Another case for which it is possible to solve the integral in (18) and obtain W(U, V)
in closed form exists when x and y are independent Gaussian variables. When both

have zero mean and equal variance, the amplitude A has a Rayleigh distribution. Rice,5
among others, has studied the case for which the mean is not zero but the variances still
are equal. We make the extension that the variances need not be equal, and have

PO(x, y) = exp 2 (28)• exp ( )
42 r

By completing the squares in the exponent in (18) and using (28), we get

2

Ca 1

W(U,V) = +  2 -- In [(dc +l)(d+ )],
a b N
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where

2Ed=
N

o

/Z 2(c d+ 1)

dc

\i/Z(d+ 1)
b=

d

The decision boundary is an ellipse centered around the point c /d.

is pictured in Fig. XIV-5, in which the joint probability distributions for

This situation

U and V under

both hypotheses are also drawn. The situation shown here corresponds to a Baye's sol-

ution for equal costs and signal probability 1/2.

WITH

x

Ca=5

C =2

d= 2

CHANNEL DISTRIBUTION

Fig. XIV-5. (a) Probability densities and decision boundary for the modified
Rician case. (b) Decision boundary and distributions for decision
variables. (Numbers on contour lines for densities represent the
probability mass inside the contour.)
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When c 1 (the Rician distribution for A) the decision boundary is a circle just as

for the case of completely unknown phase, but it is now centered around a point on the

negative V-axis.

4. Conclusions

For the case of a completely known signal, the optimum receiver samples the output

of a matched filter and compares it with a threshold to decide whether or not a signal is

present. Our results show that when the phase and amplitude is only known in a statisti-

cal sense, the receiver samples the matched filter twice, and determines whether the

point having these two coordinates (U, V) falls within or outside a boundary. The bound-

ary line is given in terms of the weighting function W(U, V), which is determined by the

probability distribution for the phase and amplitude. We have remarked upon some of

the general properties of W(U, V), and derived it in closed form in some special cases.

The form of W(U, V) seems to be relatively insensitive to the detailed form of the phase

and amplitude distribution; we conjecture that the function given in (29) should work well

even in cases for which it is not optimum.

The receiver makes an error when the point (U, V) falls on the wrong side of the

boundary. For the Rician case (c =l), the error probability has been computed by

Turin.

We have assumed that the additive noise was white. For non-white noise, the only

necessary modification is to match the filter to the signal given by an integral equation

involving the autocorrelation function of the noise. See Helstrom 2 for further details.

It is easy to extend the simple detection problem considered here to the case in

which one of a set of possible waveforms is transmitted. In this case the decision vari-

ables U and V are computed for each possible waveform and substituted in the weighting

function W(U, V). The receiver decides which waveform was transmitted by comparing

the different values of W(U, V). We have dealt with this situation for communication

over a random multipath channel. 4

I wish to thank Professor William M. Siebert for helpful criticism and discus-

sions.
G. Einarsson
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