
XVII. LINGUISTICS*

Prof. R. Jakobson Dr. Paula Menyuk S. J. Keyser

Prof. A. N. Chomsky T. G. Bever D. T. Langendoen

Prof. M. Halle J. A. Fodor T. M. Lightner
Prof. L. M. Kampf C. Fraser P. M. Postal
Prof. A. L. Lipson Barbara C. Hall J. Reitzes
Prof. H. Putnam J. J. Katz J. J. Viertel
Dr. G. H. Matthews D. E. Walker

A. CONTEXT-FREE GRAMMARS AND PUSHDOWN STORAGE

A context-free (CF) grammar is given by a finite vocabulary V = VN U VT (V N , VT

disjoint), a designated symbol S E VN , and a finite set of rules A -0, where A E VN and

8 is a string in V. O follows from n if and only if Tr = A I, 0 = 4 e a, and A - cis a

rule of G. A Tr-derivation of 0 is a sequence of strings l, ' n such that Tr = - l ,

6 = n , and ai+1 follows from O., for each i < n. The language L(G) generated by G is

the set of strings x in VT which is such that there is an S-derivation of x. We say that

L(G) is, in this case, a context-free (CF) language. CF grammars have been studied
1, 2 3-6

rather widely, both with respect to empirical adequacy and abstractly. There is

no doubt that they are not adequate for natural language, although certain important fea-

tures of natural languages can be represented by systems of this kind. Ginsburg and

Rice point out that certain programming languages, in particular, ALGOL, have CF

grammars, as do familiar artificial languages.

Consider an automaton M with two infinite tapes blocked off into squares each of

which can contain a symbol, one an input tape, the other a storage tape. The control unit

consists of a finite set of states; it can read the symbols of an input alphabet A I from

the input tape and the symbols of an output alphabet A 0 D A I from the storage tape. It

can write the symbols of A 0 on the storage tape. If M is in state S i scanning a on the

input tape and b on the storage tape, we say that it is in the situation (a, S i , b). The iden-

tity element a 0 cannot appear in a square of the input tape, and cannot be written on a

square of the output tape. In the initial tape-machine configuration, M is in a designated

initial state SO0 the storage tape contains a 0 in every square, and the input tape contains

the symbols b l ' bn of A I in successive squares, with b 1 being the scanned symbol

and # /A 0 in every other square. M computes in the manner indicated below until its

first return to S O . If, at this point, it is in the situation (#, S O , a 0), we say that it accepts

the input string b 1 . . . b n . The set of strings that can be accepted by the device we call

the language that it accepts.

The computation of M is controlled by a set of instructions of the form

(1) (a, Si' b) - (Sj, x, k),

* This work was supported in part by the National Science Foundation (Grant G-7364

and Grant G-13903); and in part by the National Institutes of Health (Grant MH-04737-02).

187

(XVII. LINGUISTICS)

where a Ai; b A 0 ; x is a string in A ; S i and Sj are states of the control unit; if

x = a 0 , then k = 0 or -1; if x * a 0 , then k = length of x (i. e., x = c 1 ... c k , where

cm E AO , cm e aO). We can assume, with no loss of generality, that b = a 0 only if i = 0

and k > 0. The instruction (1) applies when M is in the situation (a, S i , b) and has the

following effect: the control unit switches to state S ; the input tape is moved one square

to the left and the storage tape k squares to the left; if k > 0, the symbols of x are

printed successively on the newly exposed squares of the storage tape as this tape moves

to the left. Thus after the instruction has been carried out, M will be in the situation

(c, Sj, d), where c is the symbol to the right of the previously scanned symbol a on the
input tape, and d is the right-most symbol of x. A shift of -1 square to the left is to be

interpreted as a shift of 1 square to the right. If a = a 0 , we can interpret (1) as the

instruction to operate as above, independently of what appears on the input tape, and

without moving this tape.

Notice that a symbol is written on a square of the storage tape when and only when

that tape moves to the left. We can, if we like, think of all symbols to the right of the

scanned symbol of the storage tape as being automatically erased (replaced by a 0) as
the tape shifts to the right. Then only the right-most symbol of the storage tape is avail-

able at each stage of the computation. The symbol most recently written in storage is
the earliest to be read out of storage. In any case, we define the contents of the storage

tape as the string to the left of and including the scanned symbol, and we say that the

storage tape contains this string. More precisely, if a0 , bl, ... , bn appear in succes-

sive squares of the storage tape and bn is the scanned symbol, then b 1 ... b is the

contents of the storage tape. Notice that M accepts the input x only if it terminates its
computation (starting in its initial configuration with # x # on the input tape) with a 0 as
the contents of the storage tape, i. e., with the storage tape blank.

The device M that behaves in the way described above will be called a pushdown
storage (PDS) automaton, following Newell, Shaw and Simon. It is a special case of
a linear bounded automaton in the sense of Myhill. 7 The utility of such devices for anal-
ysis of syntactic structure by computer has been noted by many authors. The theory of
PDS automata with possibly nondeterministic control units (as above) is the theory of
"predictive analysis" in the sense of Rhodes, Oettinger, and others (cf., e.g.,
Oettinger 8). We shall show that it has essentially the same limitations as the theory
of context-free grammar.

THEOREM 1: A language L is accepted by some PDS automaton if and only if it is
a CF language.

Thus we have a simple characterization of CF languages in terms of restricted infi-
nite automata. We shall also extend Theorem 1 to a simple algebraic characterization
of CF languages, and to a proof that PDS automata can, without loss of generality, be

188

(XVII. LINGUISTICS)

restricted to partial control from the storage tape, in a manner indicated precisely

below.

In general, the next step of a PDS automaton M depends on its entire situation

(a, S i , b). Suppose, however, that M never shifts the storage tape to the right, i. e.,

in each instruction of the form (1), k is non-negative. It is easy to see that in this case,

control from the storage tape is playing no essential role in the operation of the device.

In fact, let us construct a new device T with states [S i , a], where S i is a state of M and

a E A 0 , and with the initial state [S O , a 0]. If M has the rule (1), T will have the rule

(a, [Si , b], b) - ([S , c], x, k), where c * a 0 and x = yc, or x = a 0 and b = c. Clearly the

behavior of T is in no way different from that of M, but for T, the next step of a com-

putation depends only on the input symbol and the present state. Eliminating redundant

specifications, we can give each rule of T in the form (a, Zi) - (2j, x), which indicates

that when in state Zi reading the symbol a on the input tape, T switches to state j,

writes x to the right of the present contents of the storage tape, and moves the tapes

the appropriate distance to the left. T is thus a finite transducer of a very general sort.

Both T and M map input strings into output strings, and languages into languages. T

and M perform the same mapping. Given M (or T), we can construct immediately

the inverse transducer T' that maps the string x into the string y if and only if M maps

y into x, and that maps the language L into the set of all strings x such that M(x) E L.

In general, where T is a transducer and L a language, we shall designate by T(L)

the set of strings y such that for some x E L, T maps x into y.

PROOF OF THEOREM 1: Suppose that M is a PDS automaton with input alphabet

A and output alphabet A 0 = {ao, , a q}. We construct a new device M* with the input

alphabet A1 and the output alphabet A' with Zq+1 symbols, where AO = A 0 U (a'1 ... , a}.

We shall treat each element at as, essentially, the "right inverse" of ai. More formally,
1 '1

let us say that the string x reduces to y if and only if there is a sequence of strings

z 1 ... z m (m >1) such that z 1 = x, zm = y, and, for each i < m, there are strings w i ,

w i , and a E A 0 such that z. w.a a' w and zi+ wW. In other words, x reduces
i P1 11

to y if x = y or if y can be formed from x by successive deletions of substrings aja!.

We shall say that the string x is blocked if x = ya zajw, where i * j and z reduces

to a 0. If x is blocked, then, for all y, xy is blocked and does not reduce to a 0 . We

shall say that the storage tape is blocked if the string that it contains is blocked.

Suppose that K and K* are tape-machine configurations of M and M*, respectively,

meeting the following condition. When M is in K and M* is in K*, then M and M* are

scanning the same square of identical input tapes and are in the same internal state, and

the string w contained on the storage tape of M* reduces to the string y contained on

the storage tape of M. Furthermore, if y * a 0 , then w = zak , for some k. In this case

we say that K and K* match. Notice that when K and K* match, either the storage tape

of M is blank, in which case the contents of the storage tape of M* is zak, or M and M*

189

(XVII. LINGUISTICS)

are in the same situation.

With these notions defined, we return to the construction of M*, given M. M* will
be a device that never switches the storage tape to the right. It will be constructed in
such a way that if M does not accept x, then, with x as input, M* will terminate its
computation before reading through x, or with the storage tape blocked; and if M does
accept x, then M* will be able to compute in such a way that when it has read through
all of x, the storage tape will not be blocked - that is, its contents will reduce to a 0 .

The states of M* will be designated by the same symbols as those of M, and S0 will
again be the initial state. The instructions of M* are determined by those of M by the
following rule. Let (1) be an instruction of M. If k > 0, M* will have the instruction (1).
Suppose that k = -1. Thus b = a m , for some m > 0. Then M* will have the instruction

(2i), and (2ii), for each n.

(2) (i) (a, S. , am) - (S, a' , 1)1m m

(ii) (a, Si., a)- (Sj, a' a ana 3)
1 m j mnn

We can now easily prove the following fact (for details, see Chomsky 9). Suppose
that K 1 and K 1 are matching configurations of M and M ., respectively, and that instruc-
tion I 1 carries from K 1 to K2 . Then M has an instruction I that carries it from to

a configuration K that matches K Furthermore, if I is an instruction of M that
carries it from K to K then either the storage tape is blocked in K 3 or there is
an instruction 12 of M that carries it to a configuration K3 that matches K3 . But M
and M* have the same initial configuration, with identical input tapes. Thus if M accepts

x, M will be able to compute with input x until it terminates in the situation (#, SO, a 0)
or (#, So , am), for some m, with a string y that reduces to a 0 contained on the storage
tape. And if M does not accept x, then every computation of M* with x as input will
either block before termination in the situation (#, SO, a) (for some a E A 0), or it will
terminate in this situation with the storage tape blocked. Notice that once the storage
tape of M* is blocked, it will remain blocked for the remainder of the computation.

The principle of computation of M is, briefly, this. Suppose that M and M* are,
* M*

respectively, in the matching configurations K1 and K. M makes the guess that, after
erasing the symbol a m which is being scanned on the storage tape and entering the con-
figuration K2 , M will either: (I) terminate with a blank storage tape, or (II) be scanning
a on the storage tape. In case I, M* writes a' on its storage tape and terminates. Inn m
case II, it writes a' a' a on its storage tape, so that it, too, is now scanning an , having
"erased" both am (by a) and an (by an). In either case, if the guess was right, the

new configuration of M* matches K 2 . If it was wrong, M* is blocked or its tape is
blocked, and the computation cannot terminate with the storage tape containing a string
that reduces to a 0 .

190

(XVII. LINGUISTICS)

But M* is a PDS device that never moves the storage tape to the right. Hence, as

noted above, we can construct a finite transducer T* that maps x into y if and only if

M will compute with x as input (in its initial configuration) until termination with y as

output. Suppose that T* is constructed from M* in the manner indicated above. Let us

now construct T from T* by selecting two new symbols -, u' A 0 and replacing each

instruction of T* of the form (a, F0) - (j, x) by (a, T0) = (zj, ux); and each instruction

of T* of the form (b, li) - (0 , y) by (b, Zi) - (Z 0 , yo'), where O is the initial state of

T ; and otherwise, taking all instructions of T , and only these, as instructions for T,

with 0 as initial state of T. Let us now extend the definition of reduction given above

by adding that (cr' reduces to a 0 . The transducer T, so constructed, maps a string x

into a string y that reduces to a 0, if and only if M accepts x. We thus have the fol-

lowing result.

LEMMA 1: Given a PDS automaton M, we can construct a transducer T with the fol-

lowing property: T maps x into a string y that reduces to a 0 , if and only if M accepts x.

Suppose now that L(M) is the language accepted by the PDS automaton M; that T is

the corresponding transducer guaranteed by Lemma 1; that K is the set of strings in

the output alphabet of T which reduce to a0; that U I is the set of all strings in the input

alphabet of T; and that T' is the "inverse" transducer to T. Then L(M) = T'(K flT(UI)).

But T(UI) is a regular event and K is a CF language. Furthermore, it is known that
4

the intersection of a CF language and a regular event is a CF language and, by a slight

extension of this proof, that a finite transducer maps a CF language into another CF lan-

guage (cf. also Schtitzenberger, 1 0 and Ginsburg and Rosell). Consequently, L(M) is a

CF language. We thus have the following result.

LEMMA 2: If M is a PDS automaton, the language that it accepts is a CF language.

Suppose now that G is a CF grammar generating the language L(G). It is known

that we can construct a normal CF grammar G' generating L(G) and containing only rules

of the form A - BC, A - a, where A, B, C E VN and a E VT. 3 By a slight extension of

this argument, we can show easily that there is a normal CF grammar G* generating

L(G) and containing, furthermore, no pair of rules A - BC, D - CE. In this case we

can tell unambiguously, for each nonterminal, whether it appears on a left branch or a

right branch of a derivation.

Let us now construct a transducer T with states Z, input alphabet Al, and output

alphabet A 0 , as follows. Z contains two states A, and A r corresponding to each non-

terminal A of G*, and, in addition, an initial state a. A I contains the terminal vocab-

ulary of G and the identity element a 0 . A 0 contains symbols a-, o' and, for each a in

the vocabulary (terminal and nonterminal) V of G , the symbols a, a'. Where A - a

(a E VT) is a rule of G*, T will have the instruction

(3) (a, A,) - (A r , Aaa'A').

191

(XVII. LINGUISTICS)

If A - BC (B,C E VN) is a rule of G , T will contain the instructions:

(4) (a 0 , A) - (B , A)

(a 0 , Br) - (Cf, a 0)

(a 0 , Cr) - (A r , A')

Also, we add the instructions (aO, -) - (Sp, a) and (a 0 , Sr) - (a-, a-'), where S is the initial

symbol of G*.

T, so constructed, is a finite transducer, and it is immediately obvious that if and

only if G generates x, T will map x into a string y that reduces to a0 by successive

cancellation of substrings aa', as above. In fact, the output of T with x as input is

simply the bracketed "structural description" of x given by the grammar G as x is

derived, where A is regarded as a left bracket labelled A, and A' as the corresponding

right bracket. The output of T is given by systematically tracing through the tree dia-

gram representing the derivation of x by G .

But we can now construct a PDS automaton M that will accept x if and only if T

maps x into a string y that reduces to a 0 . Wherever T writes a symbol a', M will

erase the scanned symbol a from the storage tape. Wherever T writes a symbol a,

M will also write a. More precisely, we associate with G* the PDS automaton M with

the set of instructions

(5) (a, A,, a) - (A r , a 0 , 0),

for each a of the output alphabet, corresponding to each rule A - a (a E VT) of G*; and

with the instructions

(6) (a 0 , Ap, a) - (B 2 , A, 1)

(a 0 , B r , a) - (C f , ao, 0)

(a 0 , C r , A) - (A r , a 0 , -1),

for each a of the output alphabet, corresponding to each rule A - BC (B, C E VN) of G*,

as well as the rules (a 0 , -, a) - (S, a 0 , 0) and (aO, S r , a) - (a, a 0 , 0), for each a of the out-

put alphabet. Clearly M accepts just those strings generated by G . Thus, in conjunc-

tion with Lemma 2, we have Theorem 1.

But observe that the automaton M constructed to accept the language L(G) operates

independently of the scanned symbol of the storage tape, except when it is using an
"erase" instruction (i. e., moving the storage tape to the right). We call such a device

a PDS automaton with restricted control. We see, then, that:

192

(XVII. LINGUISTICS)

THEOREM 2: If M is a PDS automaton, there is a PDS automaton with restricted

control that accepts the language accepted by M.

Suppose that we define a PDS automaton without control as one that operates inde-

pendently of the scanned symbol of the storage tape, no matter what instruction it is

applying. In this case, it is using the storage tape simply as a counter, and it is clear

that not every CF language can be accepted - in particular, the set of all strings xx ,

where x is the reflection of x, cannot be accepted by any device of this type. Hence

we cannot extend Theorem 2 to the case for which erase instructions are also independ-

ent of the scanned symbol of the storage tape.12

Let us consider again the transducer T associated by the construction (3), (4) with

G". Let K be the set of strings in the output alphabet A 0 of T that reduce to a 0 by suc-

cessive cancellation of substrings ca' or a'a. We are thus, essentially, regarding a, a'

as strict inverses in the free group C7 with the generators a E A 0 . Notice, furthermore,

that the grammar G* from which T was constructed contains no rules A - BC, D - CE.

Consequently, the output of T can never contain a substring a'xa, where x reduces to

a 0. Hence even under this extended definition of "reduction," the transducer T will

still have the property that G4 generates x if and only if T maps x into a string y that

reduces to a 0.
Suppose that we now assume, as is natural, that the vocabulary V from which all CF

grammars are constructed is a fixed finite set of symbols, so that K is a fixed CF lan-

guage in the vocabulary V' containing V, 0, a-', and a', for each a E V. Let 4 be the

homomorphism (i. e., the one-state transducer) such that 4(a) = a for a E VT and (a) =

a 0 (the identity element of V') for each a E V' - VT. Let U be the set of all strings in

V'. Observe now that where G, G* and T are as above, we have, in particular, the

result that L(G) = 4(K n T(U)).

It is a straightforward matter to construct a PDS automaton that will accept K; con-

sequently, K is a CF language. It is well knownl 0 that for each transducer -, r(U) is

a regular event. We have just seen that corresponding to each CF grammar G gener-

ating L(G) we can construct a transducer T such that L(G) = j(K n T(U)). Furthermore,

as noted above, the intersection of a CF language and a regular event is a CF language,

and transduction carries CF languages into CF languages. Summarizing these facts,

then, we have the following general observation:

THEOREM 3: Given a regular event R, let 4(R) = 4(K n R). Then q(R) is a CF lan-

guage, for each regular event R, and each CF language L = (R), for some regular

event R.

Thus a CF language is completely determined by the choice of a certain regular

event, and each such choice gives a CF language, given K, 4, LJ, as above.

The construction given above that gave a PDS automaton with restricted control

193

(XVII. LINGUISTICS)

corresponding to each CF grammar is essentially a special case of the construc-

tion in Chomsky 3 that gives an optimal strictly finite "recognition routine" for a

normal CF grammar. The construction here is much simpler, because of the relaxa-

tion of the requirement of strict finiteness. What we have here, essentially, is a

mechanical procedure for associating with a normal CF grammar G a "recognition

routine" that assigns to input strings the structural descriptions that are provided

for them by G, using a potentially infinite (pushdown) memory for storage; whereas

in the other case, a mechanical procedure was presented for associating with G a

strictly finite "recognition routine" that does as well as can be done, with that mem-

ory restriction, in assigning to input strings the structural descriptions that are pro-

vided for them by G.

The results reported above are the result of work done jointly with M. P.

Schtitzenberger. See Schiitzenbergerl 3 for generalizations and related results.

A. N. Chomsky

References

1. N. Chomsky, Syntactic Structures (Mouton and Company, 's-Gravenhage, 1957).

2. P. M. Postal, On the limitations of context-free phrase-structure descriptions,
Quarterly Progress Report No. 64, Research Laboratory of Electronics, M. I. T.,
January 15, 1962, pp. 231-238.

3. N. Chomsky, On certain informal properties of grammars, Information and
Control Z 137-167 (1959).

4. Y. Bar-Hillel, M. Perles, and E. Shamir, On Formal Properties of Simple
Phrase Structure Grammars, Technical Report No. 4, Office of Naval Research, Infor-
mation Systems Branch, Washington, D. C., 1960.

5. M. P. Schtitzenberger, Some remarks on Chomsky's context free languages,
Quarterly Progress Report No. 63, Research Laboratory of Electronics, M. I. T.,
October 15, 1961, pp. 155-170.

6. S. Ginsburg and H. G. Rice, Two Families of Languages Related to ALGOL,
Technical Memorandum, Systems Development Corporation, Santa Monica, California,
January 1961.

7. J. Myhill, Linear Bounded Automata, WADD Technical Note 60-165, 1960.

8. A. Oettinger, Automatic syntactic analysis and the pushdown store, Proc. Sym-
posia on Applied Mathematics, Vol. 12, pp. 104-129, 1961.

9. N. Chomsky, Formal properties of grammars (in preparation).

10. M. P. Schiitzenberger, A remark on finite transducers, Information and
Control 3, 185-196 (1961).

11. S. Ginsburg and G. Rose, Operations That Preserve Definability, Tech-
nical Memorandum, Systems Development Corporation, Santa Monica, California,
1961.

12. M. P. Schiitzenberger, Un problbme de la th6orie des automates (S6minaire
Dubreil-Pisot, 136me ann6e, no. 3, Paris, 1959-1960).

13. M. P. Schiitzenberger, On a family of formal power series (to be published in
Proc. Am. Math. Soc.).

194

(XVII. LINGUISTICS)

B. INSEPARABLE PREFIXES OF GERMAN VERBS

In investigating the structure of the German verb phrase the problem of the verb pre-

fixes presents interesting possibilities. The separable prefixes represent an extremely

complex and productive system, closely interrelated, in all probability, with the whole

system of verb-phrase modification, and, therefore, with modification in general. I

have begun, however, by looking at the inseparable prefixes, assuming that this was the

simpler problem, but the complexity that is revealed here is also of a very high order.

This type of affixation has traditionally been treated under the heading of 'word for-

mation', in a purely morphological manner. But word formation in general is based on

syntactic relationships. In German it is an extremely productive and important part of

the grammar.

The list of inseparable prefixes is a small one - seven in all. However, this device

is so active in the language that it multiplies the vocabulary of verbs several times.

The simplest class of derivations can be described in terms of phrase-structure

(i. e. , simple expansion) rules:

Structure: NP + Nom + V + Acc + NP
Er andert den Plan.

(i) (P-S rule) V - ER + v

(ii) V - VER + v

(b) Er erbaut ein Haus. ER + Ac
NP + Nom + + Acc + NP

Er verandert den PlanJ VE

The application of these expansion rules requires a class of verbs that can be

expanded by rule (i) and a class that can be expanded by rule (ii). A stem can fall into

several of these classes. Thus BAUEN is both in (i) and (ii):

(a) Er baut das Haus. He builds the house.

(b) Er erbaut das Haus. He builds (up) the house.

(c) Er verbaut das Haus. He builds the house arong.
(badly.

It would be possible then to set up classes of verbs on which both rules (i) and (ii),

or other rules of the same type, work.

But no one prefix ER-, VER-, MISS-, etc,, is confined to such phrase-structure

expansions. This leads us to the second type - transformational rules.

The phrase-structure rules simply add a morpheme without changing the structure

of the sentence in any other way. In the transformational rules, the adding of the pre-

fix morpheme is associated with changes in the syntactic structure, but the underlying

195

(XVII. LINGUISTICS)

relations, i. e., those of the underlying sentence, remain preserved in this new formal

guise:

Er baut ein Haus auf das Grundsttick.

NP + Nom +

1

V + Ace + NP + (Prep= AUF+ Acc) + NP

2 3 4 5 6

He builds a house
on (to) the land.

(b) Er bebaut das Grundstiick (mit einem Haus).

1 + BE + 2 + 3 + 6 + ((Prep= MIT) + 4)

He covers the land by
building (a house).

(3) (a) Er baut ein Haus (mit seinem Geld.
(aus Holz.

NPl +Nom+ V + Acc+NP 2 + (Prep AUS + Dat + NP 3

1 2 3 4 5 6

(b) Er verbaut

1 + VER+2 +

Ssein Geld
das Holz

3±6

(an einem Haus).

(+ (Prep= AN+Dat) + 4

He builds a house
Swith his money.
of wood.

He uses up his money
He useswood

on a house.

There is a severe restriction on NP 3 (element 6). Thus if, instead of MIT SEINEN
GELD (in (2)(a)) we selected MIT EINEM FREUND, MIT EINER SAGE (He builds
the house with a friend, with a saw), then the transformation is not applicable. Thus for
NP 3 in such sentences, the transformation specifies a semantic category 'material'.

It will be noted that the prefix VER + the verb stem BAUEN occur both in the phrase-
structure rule (1) (ii) and the transformation (3). The result is, of course, two entirely
different sentences with two different meanings of the word VERBAUEN. Thus a formal
definition of this difference is given.

Furthermore, we have:

(4) (a) Er baut ein Haus iber den Weg.

NP +Nom + V + Acc+NP 2 + (Prep= UBER+Acc) + NP 3

2 3 4

(b) Er verbaut den Weg (mit einem Haus).

1 + ver + 2 + 3 + 6 (+ (Prep= MIT)+ 4)

He builds a house
across the way.

6

He obstructs the way by
building (a house).

Here is given the formal derivation for a third meaning of VERBAUEN. Note that again
there is a restriction on NP 3 which specifies the class of, say, "means of access."

Still another type of linguistic relation revealed by the system of inseparable verb
prefixes is one that can not be formalized by phrase-structure rules or by transforma-
tions as defined above, i. e., for which the underlying relation remains preserved. On

196

(2) (a)

(XVII. LINGUISTICS)

the contrary, in these more complicated and problematic derivations, a shift, a trans-

fer, takes place.

Thus:

SFisch. fish.
(5) (a) Er fangt einen Ball. He catches a ball.

den Lohn.reward, wage.
bn das Geschenk. present.

The derivation of (b) from (a) could be represented simply by a phrase-structure

rule

(iii) V - ENT + v

(and, of course, by the morphophonemic rule ENT - EMP in env. - + f) were it not for

the fact that the set from which the object NP in (5)(a) can be selected does not coincide

with that from which the object NP in (5)(b) can be selected.

A simple solution would be to list two different verbs FANGEN and EMPFANGEN,

and let it go at that. However, the fact remains that the two words are related in the

intuition of the speaker - and that, naively stated, the meaning of the one is somehow

derived from the other. A specification of the sets containing the elements with which

the verb forms enter into syntactic relationships, for instance, with their objects, as

shown above, seems to offer a possibility of defining such derivations, or, at least, of

approaching a definition.

An additional problem is to find the regularities that make possible statements of

the relations between the sets containing the elements in the underlying constructions,

and the sets containing the elements in the derived constructions. The relation between

two (or more) such sets would then define the "shift" in meaning. The large number of

cases in which there is such a shift in one definite direction, as, for instance, from

"concrete" to "abstract," encourages the belief that this extremely difficult, but inter-

esting, problem can yield, at least, a partial solution.

But for the whole problem of derivational morphology the questions still remain:

To what extent can such rules be generalized? How extensive are the classes that they

define, and, as a consequence, how large a number of such rules (or rules and subrules)

must be written? Can the restriction that they define be extended to yield inclusive and

revealing sets ?

J. J. Viertel

197

