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Abstract— In conventional task-space control problem of
robots, a single task-space information is used for the entire
task. When the task-space control problem is formulated in im-
age space, this implies that visual feedback is used throughout
the movement. While visual feedback is important to improve
the endpoint accuracy in presence of uncertainty, the initial
movement is primarily ballistic and hence visual feedback is
not necessary. The relatively large delay in visual information
would also make the visual feedback ineffective for fast initial
movements. Due to limited field of view of the camera, it is
also difficult to easure that visual feedback can be used for the
entire task. Therefore, the task may fail if any of the features is
out of view. In this paper, we present a new task-space control
strategy that allows the use of dual task-space information in
a single controller. We shall show that the proposed task-space
controller can transit smoothly from Cartesian-space feedback
at the initial stage to vision-space feedback at the end stage
when the target is near.

I. INTRODUCTION

Typical applications of robots are specified in task space

such as Cartesian space or visual space. In task space control

method [1], [2], [3], [4], [5], a task oriented information is

used directly in the feedback control law to eliminate the

need of solving inverse kinematics. However, most task-

space controllers [1], [2], [3], [4], [5] have assumed that

the exact kinematics and Jacobian matrix of the manipulator

from joint space to task space are known. To overcome

the problem of uncertain kinematics, several approximate

Jacobian setpoint controllers have been proposed [6], [7], [8].

The controllers do not require the exact knowledge of robot

kinematics. Recently, a region reaching control scheme is

proposed in [9]. In this control concept, the desired objective

can be specified as a region instead of a point. Since the

desired region can be specified arbitrarily small, the region

control concept is also a generalization of setpoint control

problem.

If cameras are used to monitor the position of the end-

effector, the task coordinates are defined as image coordi-

nates. It is well known that the task-space controllers [1],

[2], [3], [4], [5] can be directly extended to vision-space

controllers if the exact image Jacobian matrix of the mapping

from Cartesian space to image space is known. However,

in presence of modeling and calibration errors, the image

Jacobian matrix is uncertain. Though much progress has

also been obtained in the literature of visual servoing [10],

[11], [12], [13], there are only a few theoretical results

been obtained for the stability analysis in presence of the

uncertain camera parameters [11], [12], [13]. In these results,

the effects of nonlinearity and uncertainties of the robot

kinematics and dynamics are not taken into consideration.

The approximate Jacobian controller [6], [7], [8] can be used

in visual servoing with uncertain camera parameters, taking

the nonlinearity and uncertainties of the robot kinematics and

dynamics into consideration. To deal with depth uncertainty,

several image based controllers have been proposed in [15],

[14].

In these task-space controllers, a single task-space infor-

mation in either Cartesian space [1], [2], [3], [4], [5][9] or

vision space [6], [7], [8][15], [14] is used for the entire

task. While visual feedback is important to improve the

endpoint accuracy in presence of uncertainty, the initial

movement is mainly ballistic and hence visual feedback is

not necessary. The relatively large sampling time from vision

makes implementation of the image based controllers a

difficult problem. In addition, it is difficult to choose cameras

that cover the entire workspace of a robot since an increase

in field of view results in a reduction in visual acuity and

vice versa. In this paper, we present a new task-space control

strategy that allows the use of dual task-space information

for a single controller. The proposed task-space controller

only requires vision feedback when the end effector is near

the desired position. The proposed controller consists of a

Cartesian-space region reaching controller that is activated

at the initial stages and a vision based controller that is

only activated when the end effector is in the vicinity of

the desired position. We shall show that the proposed task-

space controller can transit smoothly from Cartesian-space

feedback to vision-space feedback. The controller is inspired

from human visual guided reaching tasks where we do not

track our hand using vision for the entire task but only when

it is near the target. The main contributions of this paper

are the development of a new task-space control strategy

with dual task-space information and the establishment of a

theoretical analysis on the stability of the system. The effects

of the robot dynamics are taken into consideration in the

stability analysis. The proposed controller is implemented
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on an industrial robot and experiment results using shadow

feedback are presented.

II. ROBOT KINEMATICS AND DYNAMICS

We consider a robot system with camera(s) fixed in the

work space. Let r ∈ ℜp denote a position of the end effector

in Cartesian space as [3], [16],

r = h(q) (1)

where h(·) ∈ ℜn → ℜp is generally a non-linear transfor-

mation describing the relation between joint space and task

space, q = [q1, · · · , qn]T ∈ ℜn is a vector of joint angles of

the manipulator. The velocity of the end-effector ṙ is related

to joint-space velocity q̇ as:

ṙ = Jm(q)q̇ (2)

where Jm(q) ∈ ℜp×n is the Jacobian matrix from joint space

to task space.

For a visually-servoed system, cameras are used to observe

the position of the end-effector in image space. The mapping

from Cartesian space to image space requires a camera-lens

model in order to represent the projection of task objects

onto the CCD image plane. We use the standard pinhole

camera model, which has been proven adequate for most

visual servoing tasks [10]. Let x = [x1, x2, · · · xm]T ∈ ℜm

denote a vector of image feature parameters and ẋ the

corresponding vector of image feature parameter rates of

change. The relationship between Cartesian space and image

space is represented by [10], [14],

ẋ = JI(r)ṙ, (3)

where JI(r) = Z−1(q)L(r) ∈ ℜm×p is the image Jacobian

matrix, Z(q) is a diagonal matrix that contain the depth

information of the feature points with respect to the camera

image frame, L(r) is the remaining Jacobian matrix. The

image Jacobian was first introduced by Weiss et al. [17],

who referred to it as the feature sensitivity matrix. It is also

referred to as the interaction matrix [18].

From equations (2) and (3), we have,

ẋ = JI(r)Jm(q)q̇ = J(q)q̇, (4)

where J(q) ∈ ℜm×n is the Jacobian matrix mapping from

joint space to image space.

The equations of motion of the robot in is given in joint

space as [3], [16]:

M(q)q̈ + (
1

2
Ṁ(q) + S(q, q̇))q̇ + g(q) = τ, (5)

where M(q) ∈ Rn×n is an inertia matrix, g(q) ∈ Rn denotes

a gravitational force vector, τ ∈ Rn denotes the control

inputs, and,

S(q, q̇)q̇ =
1

2
Ṁ(q)q̇ −

1

2
{

∂

∂q
q̇T M(q)q̇}T .

Two important properties of the robot dynamics described

by equation (5) are given as follows [3], [16]:

Property 1: The inertia matrix M(q) is symmetric

and positive definite for all q ∈ Rn.

Property 2: The matrix S(q, q̇) is skew-symmetric such

that:

yT S(q, q̇)y = 0, (6)

for any y ∈ Rn.

III. TASK-SPACE SETPOINT CONTROL WITH DUAL

TASK-SPACE INFORMATION

In this section, we present a novel robot controller that

do not use vision for the entire task but only when the end

effector is near a desired position. The main idea is to use

a Cartesian-space region reaching controller [9] at the initial

stages (i.e. without using vision) and then introduce a vision

based controller that is only activated when the end effector

is in the vicinity of the desired position.

Let xd = [x1d, x2d, · · · xmd]
T ∈ Rm be a desired

position of the end effector in image space. We define a

region in the vicinity of the desired position as follows:

fx(∆x) = (x1−x1d)
2+(x2−x2d)

2+ · · · +(xm−xmd)
2−rx ≤ 0,

(7)

where ∆x = x − xd, fx(∆x) ∈ R is a scalar functions and

rx is a positive constant.

Using the above scalar function, a potential energy func-

tion is specified in image space as:

Px(x) =
kpx

2
(r2

x − [min(0, fx(∆x))]2). (8)

where kpx is a positive constant. That is,

Px(x) =

{

kpx

2 r2
x, fx(∆x) ≥ 0,

kpx

2 (r2
x − f2

x(∆x)), fx(∆x) < 0,
(9)

The above energy function is lower bounded by zero. When

fx(∆x) < 0,

Px(x) =
kpx

2 (r2
x − f2

x(∆x)),

=
kpx

2 (r2
x − {(x1 − x1d)

2 + (x2 − x2d)
2 + · · ·

+(xm − xmd)
2 − rx}

2 (10)

Note that Px(x) = 0 if ∆x = 0 and Px(x) →
kpx

2 r2
x as

(x1 − x1d)
2 + (x2 − x2d)

2 + · · · + (xm − xmd)
2 → rx

(or fx(∆x) → 0). An illustration of the energy function is

shown in figure 1.

Partial differentiating the potential energy function (9)

with respect to x, we have,

(
∂Px(x)

∂x
)T =

{

0, f(∆x) ≥ 0,

−kpxfx(∆x)(∂fx(∆x)
∂x

)T , fx(∆x) < 0,
(11)

which can be written as,

(
∂Px(x)

∂x
)T = −kpxmin(0, fx(∆x))(

∂fx(∆x)

∂x
)T . (12)

where (∂fx(∆x)
∂x

)T = 2∆x. Note that −kpxmin(0, fx(∆x))
is positive when fx(∆x) < 0.
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Fig. 1. Illustration of the potential energy function (image space)

For clarity of presentation, we first introduce the vision

based controller that is activated when the end effector is

within the visual region (7), and then combine it with the

Cartesian-space region controller that drive the end effector

to the region. Based on equation (12), a vision-space con-

troller is proposed as:

τ = −Kv q̇+JT (q)kpxmin(0, fx(∆x))(
∂fx(∆x)

∂x
)T +g(q),

(13)

where Kv ∈ Rn×n is a positive definite velocity feedback

gain matrix, JT (q) is the transpose of the Jacobian matrix.

As seen from (12) and figure 1, there is no change in

potential energy with respect to position when x is on

or outside the region. Hence, the position control term

−kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T is zero when x is outside

the region (i.e. fx(∆x) > 0). If the end effector enters the

region, it is then attracted to a minium point where ∆x = 0

and Px(x) = 0. It is clear that when fx(∆x) < 0, the control

term −kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T = −2kpxfx(∆x)∆x

is non zero unless (∂fx(∆x)
∂x

)T = 2∆x = 0.

Substituting the control law (13) into the robot dynamics

(5), the closed-loop equation is obtained as:

M(q)q̈ + (1
2Ṁ(q) + S(q, q̇))q̇ + Kv q̇

−JT (q)[kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T ] = 0. (14)

A Lyapunov-like function is proposed as:

V =
1

2
q̇T M(q)q̇ + Px(x), (15)

where Px(x) is defined in equation (8). Since fx(x) is

continuous in x, V is also a continuous scalar function with

continuous first partial derivatives. Differentiating equation

(15) with respect to time, yields:

V̇ = q̇T M(q)q̈ +
1

2
q̇T Ṁ(q)q̇ + ẋT (

∂Px(x)

∂x
)T . (16)

Substituting equations (11) and (14) into equation (16), we

have,

V̇ = −q̇T S(q, q̇)q̇ − q̇T Kv q̇

+kpxmin(0, fx(∆x))q̇T JT (q)(∂fx(∆x)
∂x

)T

−kpxmin(0, fx(∆x))ẋT (∂fx(∆x)
∂x

)T . (17)

Since ẋ = J(q)q̇, simplifying equation (17) and applying

Property 2, V̇ reduces to:

V̇ = −q̇T Kv q̇ ≤ 0. (18)

Since V̇ = 0 implies q̇ = 0 as t → ∞, the following

maximum invariant set [19] is satisfied

2J(q)T kpxmin(0, fx(∆x))∆x = 0.

Hence min(0, fx(∆x))∆x = 0 and q̇ = 0 as t → ∞ if J(q)
is of full rank. Note that only if x(0) = h(q(0)) is inside

the region fx(∆x) < 0 such that Px(x(0)) <
kpx

2 r2
x, then it

follows from (18) that ∆x = 0.

The above analysis shows that if x is within the region

fx(∆x) < 0 in vision space, then it converges to the desired

position xd as t → ∞. However it is not activated when

x is outside the region. In the following development, we

introduce a position control term in Cartesian space to attract

the end effector toward fx(∆x) < 0. The control term is

defined in Cartesian space to eliminate the need of vision at

the initial stage where the end effector is far away from xd.

This control term has a reverse role in the sense that it will

be inactive when the end effector is near the desired position.

We define a desired region in Cartesian space as follows:

fr(r) ≤ 0, (19)

where fr(r) ∈ R is a scalar functions with continuous first

partial derivatives. For example, a desired region can be

specified as a sphere as:

fr(r) = (r1−r1c)
2+(r2−r2c)

2+(r3−r3c)
2−a2 ≤ 0, (20)

where a is the radius of the sphere, (r1, r2, r3)
T is the

position of end effector, (r1c, r2c, r3c)
T is the center of the

sphere.

A potential energy function is specified in Cartesian space

as:

Pr(r) =
kpr

2
[max(0, fr(r))]

2. (21)

where kpr is a positive constant. That is,

Pr(r) =

{

kpr

2 f2
r (r), fr(r) > 0,

0, fr(r) ≤ 0,
(22)

Note that the above energy function is lower bounded by

zero. An illustration of the energy function is shown in figure

2.

Partial differentiating the potential energy function (22)

with respect to r, we have,

(
∂Pr(r)

∂r
)T =

{

kprfr(r)(
∂fr(r)

∂r
)T , fr(r) > 0,

0, fr(r) ≤ 0,
(23)
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Fig. 2. Illustration of the potential energy function (Cartesian space)

which can be written as,

(
∂Pr(r)

∂r
)T = kprmax(0, fr(r))(

∂fr(r)

∂r
)T . (24)

Note that fr(r) should be specified so that
∂fr(r)

∂r
is not

equal to zero outside the desired region. For example, if the

region specified by (20), then
∂fr(r)

∂r
= [2(r1 − r1c), 2(r2 −

r2c), 2(r3−r3c)]
T which is inside the region. In cases where

∂fr(r)
∂r

vanishes outside the desired region, then other local

minimum exists. However, there always exist a subspace

around the desired region such that the desired region is the

isolated minimum region.

The above Cartesian-space position control term can be

used to attract the end effector toward the vision-space region

in the vicinity of xd. The vision-space control term will then

be activated to attract the end effector toward the desired

position. The regions should be specified so that both control

terms do not vanish at the same time during the transition

from Cartesian space control to vision space control. This

can be easily guranteed by specifying the Cartesian space

region to be slightly within the visual region. The overall

potential energy function is a combination of (8) and (21),

and is illustrated in figure 3.

The overall vision based controller with dual task-space

information is thus proposed as follows:

τ = −Kv q̇ − JT
m(q)kprmax(0, fr(r))(

∂fr(r)
∂r

)T

+JT
m(q)JT

I (x)kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T + g(q),(25)

The closed-loop equation of the system is obtained by

substituting equation (25) into equation (5) to yield

M(q)q̈ + C(q, q̇)q̇ + Kv q̇

+JT
m(q)kprmax(0, fr(r))(

∂fr(r)
∂r

)T

−JT
m(q)JT

I (x)kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T = 0 (26)

The Lyapunov-like function is proposed as:

V = 1
2 q̇T M(q)q̇ + Pr(r) + Px(x). (27)

Differentiating equation (27) with respect to time and sub-

stituting equation (26) into it, we have,

V̇ = −q̇T S(q, q̇)q̇ − q̇T Kv q̇

−kprmax(0, fr(r))q̇
T JT

m(q)(∂fr(r)
∂r

)T

+kprmax(0, fr(r))ṙ
T (∂fr(r)

∂r
)T

+kpxmin(0, fx(∆x))q̇T JT (q)(∂fx(∆x)
∂x

)T

−kpxmin(0, fx(∆x))ẋT (∂fx(∆x)
∂x

)T

= −q̇T Kv q̇ ≤ 0 (28)

We consider a compact set γ in the state space:

Ω = {(q, q̇) : V ≤ γ} (29)

where the combination of Px(∆x) and Pr(r) has an isolated

minimum at the desired position with a positive γ.

We are now ready to state the following Theorem:

Theorem: Consider the vision based controller described

by equations (25), the closed-loop system gives rise to the

convergence of x to xd and q̇ to 0 as t → ∞.

Proof: Since V̇ = 0 implies q̇ = 0 as t → ∞, the following

maximum invariant set [19] is satisfied

JT
m(q)kprmax(0, fr(r))(

∂fr(r)
∂r

)T

−JT
m(q)JT

I (x)kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T = 0

Hence min(0, fx(∆x))(∂fx(∆x)
∂x

)T = 0 and q̇ = 0
if Jm(q) and J(q) = JI(r)Jm(q) are of full rank.

As stated in (29), we consider a compact set where

the combined potential energy function of Px(∆) and

Pr(r) has an isolated minimum as the desired position

(see figure 3). This means that the gradient of the

potential energy, JT
m(q)kprmax(0, fr(r))(

∂fr(r)
∂r

)T −

JT
m(q)JT

I (x)kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T is zero only

if ∆x = 0. This implies that ∆x → 0 in Ω as t → ∞. △△△

Fig. 3. Illustration of the overall potential energy function

3709

Authorized licensed use limited to: MIT Libraries. Downloaded on April 05,2010 at 14:05:49 EDT from IEEE Xplore.  Restrictions apply. 



The results can be extended to vision based control without

camera calibrations by using an adaptive image Jacobian

matrix. In vision control problems, the image velocity is

inversely proportional to the depth information and hence the

depth information appears nonlinearly in the overall Jacobian

matrix thus cannot be adapted together with other unknown

kinematic parameters. Some results on image based control

with depth uncertainty have been proposed in [15], [14]

but vision is used in the entire movement. In the proposed

controller in this section, visual feedback is used only used

when the end effector is near to desired position.

From equation (3), the relationship between velocities of

the image features in image space and robot end effector in

Cartesian space is represented by

ẋ = Z−1(q)L(r)ṙ (30)

Note that both Z(q)ẋ and L(r)ṙ in equation (30) are linear

in sets of kinematic parameters θL = (θL1, · · · , θLq)
T and

θz = (θz1, · · · , θzj)
T , such as camera intrinsic and extrinsic

parameters. Hence, Z(q)ẋ and L(r)q̇ can be expressed as,

[14]

Z(q)ẋ = Yz(q, ẋ)θz, (31)

L(r)ṙ = YL(r, ṙ)θL, (32)

where Yz(q, ẋ) is called the depth regressor matrix and

YL(r, ṙ) is called the camera regressor matrix. Although

both Z(q) and L(r)ṙ are linear in kinematic parameters,

the overall Jacobian matrix Z−1(q)L(r) is not linearly

parameterizable because it is inversely proportional to the

depths and hence the kinematic parameters in the image

Jacobian cannot be extracted to form a lumped kinematic

parameter vector.

In the presence of uncertainty in the image Jacobian

matrix, the vision based controller is proposed as follows:

τ = −Kv q̇ − JT
m(q)kprmax(0, fr(r))(

∂fr(r)
∂r

)T

+JT
m(q)ĴT

I (x, θ̂L, θ̂z)kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T + g(q)

where ĴT
I (x, θ̂L, θ̂z) = L̂T (x, θ̂L)Ẑ−1(q, θ̂z) is an adaptive

image Jacobian matrix, θ̂L denote the estimated parameters

of the image Jacobian, θ̂z represent the estimated depth

parameters. The estimated parameters θ̂L and θ̂z are updated

using the following update laws:

˙̂
θL = −LLY T

L (r, ṙ)Ẑ−1(q, θ̂z)kpxmin(0, fx(∆x))(
∂fx(∆x)

∂x
)T

˙̂
θz = LzY

T
z (q, ẋ)Ẑ−1(q, θ̂z)kpxmin(0, fx(∆x))(

∂fx(∆x)

∂x
)T

where LL, Lz are symmetric positive definite matrices.

The Lyapunov-like function is proposed as:

V = 1
2 q̇T M(q)q̇ + Pr(r) + Px(x)

+ 1
2∆θT

LL−1
L ∆θL + 1

2∆θT
z L−1

z ∆θz. (33)

Differentiating equation (33) with respect to time and sub-

stituting the closed-loop equation into it, we can show that

V̇ = −q̇T Kv q̇ ≤ 0. Since V̇ = 0 implies q̇ = 0 as t → ∞,

the following maximum invariant set [19] is satisfied

JT
m(q)kprmax(0, fr(r))(

∂fr(r)
∂r

)T

−JT
m(q)ĴT

I (x, θ̂L, θ̂z)kpxmin(0, fx(∆x))(∂fx(∆x)
∂x

)T = 0

Hence min(0, fx(∆x))(∂fx(δ)
∂x

)T = 0 and q̇ = 0 if

Jm(q) and JT
m(q)ĴT

I (x, θ̂L, θ̂z) are of full rank. As seen

from equation (23), this implies that ∆x → 0 in Ω as t → ∞.

IV. EXPERIMENTS USING SHADOW FEEDBACK

Recent psychophysical evidence by Pavani and Castiello

[20] suggests that our brains respond to our shadows as

if they were another part of the body. This imply that

body shadows may form part of the approximate sensory-to-

motor transformation of the human motor control system. We

implemented the proposed controller using visual feedback

of the robot shadow. The joint motors of the robot are driven

by amplifiers. The amplifiers are connected to a servo I/O

card. The servo I/O card is an ISA-bus based general purpose

data acquisition card. Each joint position is measured by an

incremental encoder attached to the motor end. The counter

outputs are read by a computer serving as the controller in

which one Pentium III 450 MHz processor and 128 MB

DRAM are installed. The control signals are fed through the

digital-to-analogue converters of the servo I/O card to the

amplifiers. The experimental setup consists of a camera, a

light source and a SONY SCARA robot as shown in figure

4. An object was attached to second joint of the robot and

was parallel to the second link. A robot’s shadow was created

using the light source and projected onto a white screen. The

camera was located at a distance away from the screen and

the tip of the object’s shadow was monitored by the camera

(see figure 4).

Fig. 4. A SONY Robot with its Shadow

A desired position was defined in image space as xd =
[110, 107]T pixels and a vision space region was then defined
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as a circle with a radius of 33 pixels, around the desired

position. The vision feedback was only used when the robot’s

shadow enter this vision region. To move the end effector

toward the vision region without vision feedback, a circular

region in Cartesian space was defined with a centroid of

[−0.67,−0.73]T m and a radius of 0.05 m. A Cartesian-

space controller was used when the end effector was outside

the vision region and the lengths of the links were estimated

as l1 = 0.35m, l2 = 0.25m. The experimental result in

figure 5 shows the path of the end effector in Cartesian space.

Figure 6 shows the position of the robot’s shadow when the

end effector enters the vision region.
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Fig. 5. Path of the end effector using Cartesian space reaching control
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Fig. 6. Position of the end effector after entering visual region

V. CONCLUSION

In this paper, we have present a new task-space control

strategy that allows the use of dual task-space information

for a task. It is shown that the proposed task-space controller

can transit smoothly from Cartesian-space feedback at the

initial stage to vision-space feedback at the end stage. The

controller is inspired from human reaching tasks where we

do not track our hand using vision for the entire task but

only when it is near the target. The proposed controller is

implemented on an industrial robot and experiment results

are presented.
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