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1. Introduction

An important problem confonting the designer of a sensory aid concerns the com-

parison of one sensory aid with another. One reasonable procedure is to separate the

problem of extracting information from the real world from that of transmitting this

information to the handicapped person. In this report we shall focus our attention on

the second problem. In our analysis we shall consider a system that is capable of pre-

senting L distinct stimuli, xi , to which there correspond uniquely L distinct responses,

y.. Such a system, consisting of a stimulator and human receiver, will be termed a

discrete human communication system. It is assumed that we know the first-order stim-

ulus probabilities, p(xi), and that successive stimuli are statistically independent. To

proceed we must know something about the relation of the response ensemble to the stim-

ulus ensemble. One way of obtaining this information is to conduct an experiment in

which successive stimuli are drawn from a known probability distribution and the

responses that are elicited from the human receiver are tabulated in a confusion matrix.

The rows of this matrix correspond to the stimuli presented, and the columns, to the

responses that are evoked. A response of yj to a stimulus of x. is recorded by indexing

the ij term of the confusion matrix up by one. Then at the conclusion of our experiment,

the ij term of the confusion matrix divided by the total number of stimuli presented is

an estimate of the joint probability p(yj, x.). Thus we can construct an estimated con-

ditional probability matrix (p(yj Ixi) ) from the confusion matrix. We shall take this

conditional probability matrix to be a description of the channel consisting of the stimu-

lator system and the human receiver. It is important to note that this channel matrix

is not necessarily independent of the input stimulus probability distribution. However,

for the present, let us fix the input distribution and consider the resultant channel matrix.

The channels with which we are concerned differ from those ordinarily treated by

the methods of information theory in that they contain human receivers. Obvious com-

plications spring to mind - humans have memory, have time-variant characteristics,

and so forth. But all is not lost. Some significant simplifications are made possible
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by the inclusion of humans in the system. Perhaps the most important simplification is

that a workable system must be characterized by a fairly low over-all probability of

error (say, less than 20 per cent). Humans characteristically tend to arrange things,

in this case stimuli, in some natural grouping. Thus if there are L-1 possible errors

that can be made when a particular stimulus is presented, a human is not very likely

to make a large number of different erroneous choices. Instead, he is more likely to

cluster his responses within a group that corresponds to stimuli that are somewhat simi-

lar to the presented stimulus.

The channel matrix and associated input distribution represents a description of the

performance of the communication system. However, it is a rather unwieldy descrip-

tion if one is interested in evaluating performance under variations of stimulator param-

eters or for different human receivers. A much more manageable situation results if

one reduces the channel description to a single number. There are many ways to accom-

plish this data reduction, but here we choose to calculate the average mutual information

shared between the stimulus and response ensembles.l Unfortunately, it is very diffi-

cult to evaluate mutual information for large channel sizes (for example, L = 64) that

are common in discrete human communication systems. A straightforward way of

getting around the computational difficulties is to use modern computers. However, it

is both inconvenient and expensive to run computer programs for day-to-day plotting of

learning curves. Also, the large number of significant figures resulting from computer

calculations tends to be somewhat misleading. One of the dangers of using a number is

the propensity to put too much faith in its accuracy. It should be remembered at this

point that the channel matrix, on which the information calculation is based, is but an

estimate of the "true" channel matrix. Accordingly, it makes little sense to grind out

the mutual information to 10 decimal places, or (in most cases) even to 3. With this

in mind, it is then reasonable to try to develop a simplified computational procedure

that will enable one to arrive at an approximate information transfer (mutual information)

with an error in the neighborhood of that inherent in the test data. We have derived the

following upper and lower bounds which use the simplifications afforded by the inclusion

of humans in the system. Following this discussion of the bounds is a proposed model

channel that is used to estimate the information transfer of a discrete human communi-

cation system.

2. Derivation of a Lower Bound

We can express the information transfer as

I(X;Y) = H(X) - H(XJY). (1)

We wish to consider the probability of error in the bounds, thus it is necessary to define

a decoding scheme. We shall only consider maximum mutual-information decoding that
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is equivalent to maximum likelihood decoding:

P(y x)
I(x;y) - log -

P(y)

We can now define a probability of error

P(e) = P(xk) j P(yj xk) =  P(yj) P(e ly),

k j#k j

where

P(e lyj) 1 - P(xj Iy) = I P(xk Yj).
k#j

It is convenient to define the entropy

H(e) = -P(e) log P(e) - [l-P(e)] log [l-P(e)]

for the binary-choice error and no error, and the corresponding conditional entropy

H(e IY) = P(yj)
J

H(e Iyj),

with

H(e y j ) = -P(e ly) log P(ely j ) - [I-P(elyj)] log [1-P(elyj)].

(4)

(5)

(6)

(7)

We shall also define C. as the number of nonzero off-diagonal conditional probabilities,

P(yj Ixj), in column j and Cmax as the maximum of C.j for any column.

THEOREM 1: The mutual information satisfies the inequality

I(X; Y) > H(X) - H(e IY) - P(e) log Cmax > H(X) - H(e) - P(e) log Cma x (8)

PROOF 1: H(X Y) is, by definition,

H(X -Y) - P(yj) H(Xl yj),

with

H(XIyj) = P(xk Yj) log P(xky j )

the equivocation when the point of the space Y is given.

(10)

This equivocation can
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be rewritten as

H(X yj ) = -P(xj yj) log P(xI y j ) - P(XklY j ) log P(xk Yj)
kfj

- [1-P(xj yj)] log [1-P(xj fyj)] - [1-P(x. jyj)] log 1
[l-P(xj lyj ]

Applying Eqs. 4 and 7, we have

H(X Iy j ) = H(e y j ) - log P(x k I j ) -kP(xk IYj)
k-j

=H(ely j) - [1-P(x. jyj)] I
kfj

P(xk Iy j )
- log

1 - P(xj yj)

k~j

P(xk Yj) log
1I[-P(x

[,-P(X i Iyj)]

P(Xk Yj)

1 - P(x yj)

P(xk Yj )
H(e yj) + P(e yj) P

k j P(e yj)

p(xk y j)

log
P(e yj)

The summation on the right-hand side of Eq. 12 is recognized as the entropy of an

ensemble consisting of C. points, and thus, its value cannot exceed log C.. It follows

that

H(X y j ) < H(e yj) + P(e yj)

Since

(13)log C..
J

log Cma x > log Cj,

we have

H(X Iyj) 4 H(e ly j ) + P(e ly j ) log Cma x .

Averaging over the ensemble Y, we have

H(X IY) < H(e IY) + P(e) log Cmax

Substitution of inequality (16) in Eq. 1 and use of the fact that

H(e IY) < H(e)

yields the inequality (7), which was to be proved.

(14)

(15)

(16)

(17)

Q.E.D.

In particular, if the probability distribution of the L inputs is uniform, we have an

easy bound to calculate
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I(X;Y) > log L - H(e) - P(e) log Cmax

The equality sign in (13) holds only when

1 - P(xjy I)

P(xk Yj) C. or zero for all k # j. (19)

For the equality sign to hold in (15) and (16) we must have C. = C for all j, in addi-
t max

tion to (19).

EXAMPLE

Let C. = C
3

1: Take P(xk) =Lfor all k and P(yjIxk) =

max for all j, and let P(y Ixk )
max 9

Now

L

H(X) - - log L := log L

j=1

and

1 1-p
P(yj) = +Cax(Cm a

thus H(Y) = log L. Also,

p for j = k.

1-p
-C when it is nonzero.
max
max

1
L

L p I-p i-p
H(XY) = - log - - Cmax LC log LC

j= 1 max max

= -p log p - (l-p) log (1-p) + log L + (1-p) log Cmax

Since P(e) = 1 - p, we have

H(XY) = H(e) + log L + P(e) log Cmax

Thus

I(X;Y) = H(X) + H(Y) - H(XY) = log L - H(e) - P(e) log Cma x '

which is the lower bound. A sample channel matrix of order L = 4 is shown below. Note

that this is a special case of a doubly uniform channel.

YI I

Uniform
input
distribution

.9 0 .05 .05

.05 .9 .05 0

0 .05 .9 .05

.05 .05 0 .9

I(X;Y) = log 4 - H(.1) - .1 log 2
= 1.431 bits.
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EXAMPLE 2: Consider the following channel.

IY

Uniform
input
distribution

Here, C. = C = 2.] max

.9 0 .05 .05

.05 .85 .05 .05
X

0 .1 .9 0

.05 .05 0 .9

Also, P(e) 1 - [3(.9)+.85] = 0.1125, so that

I > log 4 - H(.1125) - .1125 log 2

I > 1.380 bits.

Calculation of the actual mutual information yields I = 1. 386 bits.

3. Derivation of an Upper Bound

THEOREM 2: The mutual information satisfies the inequality

I(X;Y) - log L - IP(xi) H(pii),

i

where L is the order of the channel and

H(pii) -P(Yi xi) log P(yi Ixi) - [1-P(yijxi)] log [l-P(yi xi)].

PROOF 2: We can express the information transfer as

I(X;Y) = H(Y) - H(Y IX).

We always have, of course, the fact that

H(Y) < log L.

Now,

H(Y IX) = P(xi ) H(Y Ixi)

and

H(Y Ix) = - P(yj Ixi) log P(yj x i )

> -P(yi Ixi) log P(yi xi) - [1-P(yi xi)] log [1-P(yi Ixi)] = H(pii).
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Thus we have

H(Y IX) > P(x i) H(pii). (24)

i

Substitution of (22) and (24) in (1) yields the inequality (20), which was to be proved.

Q.E.D.

The equality signs in (23) and (24) hold only when there is only 1 off-diagonal non-

zero conditional probability in each row. Obviously, the equality sign in (4) holds only

when the output distribution P(yj) is uniform.

EXAMPLE 3: Consider the channel treated in Example 1. The upper bound is

L

I <log L - - H(p)

i=l

or

I < log L - H(p) = log L - H(e).

The difference between this upper bound and the actual mutual information is simply

the term

P(e) log C = .1 bit

for the sample 4 X 4 channel so that

I < log 4 - H(.1)

I< 1.531 bits.

EXAMPLE 4: Consider the channel treated in Example 2. The upper bound is

3 1
I < log 4 -4H(.1) 4 -H(.15)

or

I < 1.496 bits.

4. Proposed Model Channel

A first-order approximation to a channel describing a discrete human communica-

tion system is shown in Fig. XXII-1. Each of the major diagonal terms of this condi-

tional probability matrix is taken to be equal to p. The off-diagonal terms in each row

may be either zero or a constant. If ri is defined as the number of nonzero off-diagonal

terms in the ith row, then this constant is (1-p)/r i . The order of the matrix is L, so

that we have 1 < r. L - 1. No assumptions have been made about the probability of any
1
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Y Response

1-p
p 0 rl

l -p

r. p 0
1

Fig. XXII-1. Model channel.

particular off-diagonal term being zero. The zeros inserted in Fig. XXII-1 serve solely

as an example. The probability of error for this model channel is 1 - p when maximum

likelihood decoding is used.

A simple estimate for the information transfer with uniform input probability dis-

tribution will be based on the following upper bound.

THEOREM 3: The information transfer for the model channel shown in Fig. XXII-1,

with uniform input probability distribution, satisfies the following inequality.

P(e)
I(X;Y) < log L - H(e) - L log r i

i

PROOF 3: The mutual information can be expressed as

I(X;Y) = H(X) + H(Y) - H(XY).

The input distribution is uniform. We have

H(X) = log L

and, of course, we always have

H(Y) < log L.

H(XY) will now be evaluated as the negative sum over the whole matrix of

Pij Pij
log

L L

(25)

(26)

(27)
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Consider, first, the sum on row i.

Pij Pij p p 1 - p 1 -p
S. log-=- log-+ logS Lg L Lr. l logj 1 i

p p 1-p l-p l-p
log- log L L log ri.

No w

Sl1-p 1-p
-H(XY) Si = p log L + (1-p) log L L log r..i'

i i

As P(e) = 1 - p, we have

P(e)
H(XY) = log L + H(e) - L log r.. (28)

i

Substitution of (27), (22), and (28) in (26) yields the desired inequality (25), which was

to be proved. Q.E.D.

The inequality sign is necessary solely because of Eq. 22. If the total probability

of error is small (say less than 10-15 per cent), then one can reasonably expect that

p(y) will be fairly independent of y. H(Y) does not vary rapidly as p(y) departs from a

uniform distribution; thus one can reasonably expect that the bound (Eq. 25) is rather

tight.

On the basis of Theorem 3, the following formula is proposed as an estimate of the

information transfer for a channel describing a discrete human communication system

when the input stimulus distribution is uniform.

A P(e)
I(X;Y) = log L - H(e) - L log r . (29)

i

EXAMPLE 5: Consider the channel treated in Example 1 with r. = C . The esti-1 max

mate is

I(X;Y) = log L - H(e) - P(e) log Cmax

This is identical with the lower bound that is the actual information transferred. Thus
A

for the sample channel of order four, we have I = 1.43 bits per stimulus.

EXAMPLE 6: Consider the channel treated in Example 2. The estimate is

A .1125
I(X;Y) = log 4 - H(.1125) - (log2+log 3 + log 1 +log2) = 1.39 bits per stimulus.
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5. Experimental Results

As we have shown, the primary purpose of the bounds that have been derived and

the proposed estimate is to circumvent the laborious computations that are inherent in

the calculation of mutual information. The price to be paid for a simplified estimate

(Eq. 29) is uncertainty about its accuracy. One indication of accuracy is obtained by

calculating the upper and lower bounds. The worst possible percentage of error is given

by

estimate - lower bound
lower bound

or

F 1
P(e) og Cmax  log r

E = 100 i (31)
log L - H(e) - P(e) log C max

It follows that

P(e) log Cmax
Emax (32)

log L - H(e) - P(e) log Cmax

This represents an easily calculable upper bound to the error. When a nonuniform input

distribution is used, a reasonable estimate of the mutual information is obtained by

choosing the mid-point between the bounds.

Some feeling for the "tightness" of the bounds and the accuracy of the esti-

mate can be achieved by inspection of Figs. XXII-2 and XXII-3, in which the

bounds, estimates, and actual mutual information are compared for various error

probabilities. The stimuli for the smaller channel (L=5) are pulsed sine waves

of different frequencies in a background of white noise, while the stimuli for

the larger channel (1=16) consist of patterns of poke probes presented to the

right index finger.

Results for a channel of order L = 64, for which the stimuli consist of poke probes

to the right index finger, are:

measured probability of error = 0.095;

upper bound = 5.58 bits;

actual information = 5. 36 bits;

estimate = 5.36 bits; and

lower bound = 5.23 bits.

The percentage of error of the estimate with respect to the actual information is
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Fig. XXII-2.
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Uniform input distribution (L=5).
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Fig. XXII-3. Uniform input distribution (L= 16).
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-0.15 per cent. The confusion matrix for this channel is a composite one formed by

adding confusion matrices for 4 different human receivers.

D. E. Troxel
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