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A. BEAM-PLASMA DISCHARGES

1. SYSTEM A

In this report we give a more detailed interpretation of the magnetic probe obser-

vations,1 and some experimental observations of VHF oscillations in the beam-plasma

discharge which are believed to be ion-plasma oscillations.
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REGION I Defined by the luminous beam-plasma discharge;

b is typically 1/2 inch

REGION II The magnetic probe is located here (r = rm); it

extends from the edge of the luminous discharge

to the metallic cavity wall (r = a = 2 inches)

Fig. X-1. Theoretical model for magnetic probe calculation.

First, we shall use the following model to interpret the magnetic-probe observations

(Fig. X-l).
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(X. PLASMA ELECTRONICS)

a. Model

(i) We idealize our interaction region into a metallic cavity of radius a short-

circuited at the two ends, at which z = ±L/2.

(ii) We assume that a uniform induction B is established throughout by the

Helmholtz coils located at z = ±L/Z.

COLLECTOR CURRENT

I,

Fig. X-Z. Time relationship of surface azimuthal current and collector current.

(iii) We postulate that a surface azimuthal current exists at r = b which accounts

for the diamagnetic effect. The current is specified by the time and space behavior

shown in Fig. X-2, and given by

1 00

= - cos- -- 8(r-b) [U_ (t-nT)-u_l (t-Tb-nT)]
n 2L L0
n=0

The z cosine is convenient for cavity solutions.

(iv) We neglect the inertia force in the equation of motion, and for the pressure P

we obtain

VP = J X B. (2)

(v) We assume that 8/a8 = 0 and J = J = 0; then
r z

P P= J B ,

so that

I r n eT
0 0

ZL B
0

b. Calculations

An exact solution of the problem still has not been carried out. The simplest model

that seems to be logical is one in which the current J6 is confined to the surface r = b
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and it is assumed that E = Eo in both regions I and II. (A more realistic model is being

studied.)

The beam-plasma discharge has been replaced, in this calculation, by a surface

current at r = b. The low frequencies of interest allow us to use "magneto quasi statics"

to calculate the spatial dependence of H from Laplace's equation. In particular, we are

interested in the least radial variation of the circularly symmetric field. The magnetic

fields of interest are

- lT r z z r ( /rr ZTZH = CI cos 1 C sin-iI Ll oL Lz L 1 I L L r

- = - cosz I C(wrL+ K )w r

II L L oL 3 o\ L z

Ssin L C2 I1  -C 3 K 1  r

The three boundary conditions that permit us to determine the three constants C 1 , C z ,

C3 are:

(i) continuity of the radial magnetic field at r = b;

(ii) the vanishing of the radial magnetic field at r = a; and

(iii) the difference of the z component of the magnetic field at r = b is equal to the

surface current.

Using the small-argument expansion for the Bessel functions, we obtain for the z

component of the magnetic field

2
a

1
TrI 2oB b rrz

I = o 2L 2 cos L
a 1 (rra\ 2 L

2 2+ - log rb

I + It log
I 2 ) r

BII  o m r z at r .II= o ZL 2 oraZ L L m
a _w _ 2 Lb2 +ZL log T

In the experiments we measure BII. In Quarterly Progress Report No. 70 (pages 107-

111), we inferred an electron temperature from

B B
T B II 11 ev. (4)

o o noe

Now it is shown that at z = 0

QPR No. 71 113



140 mc
kmc

TIME -

Fig. X-3. Oscillogram of groups of
kmc oscillations (horn)
and groups of VHF oscil-
lations (140 mc).

P = 0.7 4 Hg

Vb = 5 kvTime, 20 bsec/cm
Time, 20 1 sec/cm

B = 660 gauss

Icoll = 0.26 amp

Hydrogen

30 cm H

140 mc
kmc

TIME -

Fig. X-5. Oscillogram of groups
of oscillations at lower
magnetic fields.

P = 0.7 R Hg

Vb = 5 kv

Time, 20 4sec/cm

B = 440 gauss

Icoll = 0.26 amp

Hydrogen

20 cm K

160 mc
kmc

TIME ----

Fig. X-4. Oscillogram of spikes of
kmc oscillations (horn)
and spikes of VHF oscil-
lations (160 mc).

P = 0.67 L Hg

Vb = 5 kv

Time, 2 1 sec/cm

B = 660 gauss

Icoll = 0.32 amp

Hydrogen

GUN, MAGNETIC SHIELD

Fig. X-6. Oscillograms showing oscillation am-
plitude dependence as a function of
axial position. The 140-mec oscillation
is picked up by a loop. The 8.3-kmc
oscillation is picked up by a fixed loop.
The movable loop was at the axial posi-
tions indicated for the three pictures.
The vertical calibrations are the same
in all oscillograms.

P = 0.35 R Hg

Vb = 5 kv

Time, 20 sec/cm

B0 = 330 gauss
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Hydrogen
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2a 1 rra 2 L

T = b

o1 ne 1 Twa2 L1 +-2-I log2 \L/ wrm

which for Eq. 4 yields

T = 14. 3(11) = 157 ev.

We observed some VHF oscillations that we believe to be plasma-ion oscillations.

All of the experiments reported on here were performed in hydrogen gas. The fol-

lowing observations were made.

(i) In any given set of conditions leading to a beam-plasma discharge, it is pos-

sible to detect VHF (few hundred megacycle) and kmc (4-15 kmc) oscillations that are

related by factors in the range 43-61 (the square root of the ion-electron mass ratios

of H+ and H+).

(ii) Using a broadband "video" detector for the kmc signals (x-band horn-crystal-

video amplifier) and a spectrum analyzer for the VHF oscillations (10-mc bandwidth)

(with appropriate filters, pads, and line stretcher tuners), we observed the following time

structure of the oscillations.

(a) At high magnetic fields (660 gauss) the VHF oscillations and kmc oscillations

appear as groups of spikes. These groups occur synchronously in time (Fig. X-3).

Within each group, it appears that the large-amplitude kmc and VHF spikes are anti-

coincident (Figs. X-3 and X-4).

(b) When the spikes do appear to occur synchronously, the amplitudes of both

are small.

(c) At lower magnetic fields (440 gauss), when groups of spikes occur, the VHF

groups occur alternately with groups of kmc oscillation (Fig. X-5).

(iii) The VHF oscillations during the beam-plasma discharge show a definite ampli-

tude dependence as a function of position (Fig. X-6). The initial large pulse appears

to be larger near the gun than it is near the collector. The oscillations that occur later

have the opposite variation (larger near the collector).
H. Y. Hsieh

References

1. H.Y. Hsieh, Beam-plasma discharges, System A: Magnetic probe, Quarterly Prog-
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2. SYSTEM C

We have had a little more operating experience with this new system. (See Quarterly

Progress Report No.70, pages 114-116, for a description.) The important new observation
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is that with gas pressures in the range 3-6 X 10- 5 mm Hg of hydrogen, the x-ray inten-

sity and energy are very great. The energy is great enough to be detectable through

0.125 inch of lead (or 1.125 inches of aluminum), and there is significant x radiation

as long as 5 X 10-3 sec after the pulse is over. These observations were made with

a field of approximately 2000 gauss and a 7-kv, 8-10 amp beam pulse.

L. D. Smullin

B. ROTATING PLASMA INSTABILITIES

1. Introduction

It is known that a plasma may be unstable against perturbations that tend to drive

it across its confining magnetic field. These instabilities have been studied to determine

the conditions under which they may exist and be controlled.

2. Equations and Assumptions

The conservation of momentum is written in the form of the electron and ion flow

equations in Cartesian coordinates, with the magnetic field in the +z direction. End walls

are placed at z = L/2.

r = D Vn± T n+ *- VV

(1)

rz = nV. , 8 - 0 8 - 0.
±Z nViT z z

In the tensors D and . the diagonal elements are the perpendicular terms, and the off-

diagonal elements are the Hall terms. Frequencies of interest lie far below the ion-

plasma frequency; inertia terms are omitted and wave-propagation phenomena are not

considered. The longitudinal equations are given the simple form because it is assumed

that a mean-free path is long compared with the container length. The longitudinal elec-

tron and ion currents are equalized by ion sheaths at the end walls, as is often the case

in practice.

To complete the set of equations, we need the continuity equations for electrons and

ions and Poisson's equation.

an
-+ V = 0 (2)at ±

V2V = --- (n -n_). (3)

We reduce this set of equations to a pair of coupled scalar differential equations by

making the neutrality assumption (n_=n, n+ =n+6, 16 <<n) and linearizing for small
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perturbations of density and potential about time-invariant values.

n (x, y, t) = no(x) + n'(x) ejw t + iky

(4)

V(x, y, t) = V (x) + V'(x) ejwt+iky

The resulting equations may be written

OAn' + OBV' = 0

(5)
OCn' + ODV' = 0,

where the O's are linear second-order differential operators.

E
0

Fig. X-7. Unperturbed density and
electric field.

If the zero-order solutions have the form (see Fig. X-7)

n O(x) = nO e

V o (x) = -Eox + o, Eo >0O

then the coupled equations (5) may be reduced to a single fourth-order differential

equation:

ik
+ 0(iHDe l ReHDil ) Ozn(x)

O 1i 1 1e

- ikEo(P'iH iel e eH iL) 0 2 n(x) - ( ejDi +i IDe±) 0 1 02 n(x) = 0.

We have made the following definitions in Eq. 7:

ViT

aL L

x/x 0n(x) = n'(x) e
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a2

01(x) - z

a2
0 2 (x) = ax2

2 1 8-k x ax
o

2 2 a 1-k -- +-.x ax 2
o x

To solve Eq. 7, we shall neglect the last term [which contains the third and fourth

derivatives of n(x)] and solve the remaining second-order differential equation subject

to the boundary conditions

n(O) = 0
(8)

n(X) = 0.

For each eigenfunction n(x) we find a complex eigenvalue w. Finally, the last term in

(7) is introduced as a perturbation.

3. Results

Equation 7 is solved under the assumptions that

(a + aL N
0.5

0

0.1

y

0.3

-0.5

Fig. X-8.

0.5

Y

fI 1 N

-0.5

Normalized eigenvalues and eigenfunctions with Wc .iT a parameter.

Eigenfunctions n'(x) shown as contour maps in the x-y plane. Size
parameters: kx = 1 rxo/X = 1/4.

0 0
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w .T.

wT 1 and --- << 1,
ce e L T7

ce e

with WcCiTi a parameter. The eigenvalues w and contour maps of the eigenfunctions

n'(x) = n(x) e o are shown in Fig. X-8. The eigenvalues are normalized to kEc/B,

where E is a "corrected" electric field,
c

E =E ci i T T.. (9)c x (9) e
o ( ce e

Since 0 < wN < 1, the perturbation moves with a velocity less than Ec/B, a corrected

Hall velocity. The upper branch of Fig. X-8 represents growing perturbations for Ec >

0, and the lower branch for E < 0.c

4. Instability Mechanisms

To investigate the instability mechanisms, we must examine the shape of the per-

turbed density eigenfunctions. These eigenfunctions are shown as contour maps in the

x-y plane. The smallest loop indicates the perturbed density peak, and the larger loops

are contours of constant (perturbed) density.

Let us consider the case w .7. >> 1. In this case, the Hall mobilities for electrons
C1 1

and ions are equal. The eigenfunction for E > 0 is shown in Fig. X-9. With E > 0 or
c o

with (w.iTi/ ceTe) Te-Ti < 0 (Di >De ) , a charge separation is established. The

resulting E field has a component in the +y direction which will drive the particles

outward because of the Hall mobility.

When E < 0, the eigenfunction is as shown in Fig. X-10. Now with E0 < 0 or
c o

(wciTi/ ce7e) T -T. > 0 (Del>Di ), the indicated charge separation is achieved, and

once more an electric field in the +y direction is obtained to drive the instability.

As w .C. is decreased, there begins to be an appreciable difference between the elec-

tron and ion Hall mobilities. As a result, new mechanisms appear. For E < 0, W .T. = 1,

the eigenfunction is as shown in Fig. X- 11. For Eo < 0, the charge separation shown

is mainly due to the difference in Hall mobilities. When (w .iTi/w ceT e ) T e-T. > 0, dif-

fusion effects create the separation indicated. This is similar to the case worked out

by Simon1 who used a "trial function" similar to the eigenfunction in Fig. X-ll.

When E > 0 at w .i. = 1, the eigenfunction appears as in Fig. X-12. When E > 0,

the perturbations must slant steeply to allow the charge separations resulting from the

perpendicular mobility to overcome that which is due to the Hall mobility. Similarly,

where ( .iTi/ ceT e ) T -T. < 0, diffusion creates the separation shown.

Hall diffusion does not enter into these arguments, since the particle currents caused

by Hall diffusion are divergence-free. Note that the Hall diffusion coefficients do not

appear in (9).
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Fig. X-9. Eigenfunction for w .7. > 1, E > 0.
C1 1 C

Fig. X-10. Eigenfunction for
C .. >> 1, E < O.
Cli 1 C

Fig. X- 11 . Eigenfunction for
Lc T. = 1, E < 0.
Cl 1 C

Fig. X-12. Eigenfunction for C .i. = 1,
E > 0.

c
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5. Stabilizing (Loss) Mechanisms

To evaluate the effect of parallel loss, it is helpful to unnormalize the eigenvalue

plot. This is done in Fig. X-13 for two values of k Ec I/B. The gain constant a for

growing perturbations is the vertical distance between the curve and the shaded area.

a+ aL

k EcI LARGE

k JEcj SMALL
B 1

aL Fig. X-13. Unnormalized eigenvalue plot.
0

aL

3

Finally, we introduce the perpendicular loss as a perturbation of our results. The

shift in eigenvalue is indicated in the "k Ec I/B large" plot by the inward-pointing

arrows. The greatest damping effect occurs on the E c > 0 branch, where the eigen-

functions tilt sharply (see Fig. X-12).

In general, sufficiently large B will drive the eigenvalues into the parallel-loss

region. Low values of B decrease w .T. and increase the perpendicular loss until the
Cl 1

gain is swamped out.

6. Correlation between Theory and Experiment 2 ' 3

Figure X-14 is a plot of measured and calculated rotational period against magnetic

field. The rotational period decreases for increasing B because the measured radial

electric field increases with B. Curve (a) shows the measured period, and (b) is the

period calculated from the measured value of Eo/B, 2 inches from the axis. E 0 varies

from 12 v/m to 44 v/m, from the left to the right ends of the curve. Curve (c) is the

period calculated from 0. 9 Ec/B by using x = 1 cm and T i = 0.1 volt.

Perpendicular loss is important for w .T. < 3 and E > 0 (our case). It becomes

rapidly more important as k is increased. This would indicate that in cylindrical

geometry modes above m = 1 would be highly damped. In our experiment, we see only

one spoke (m=l).

At w .7. = 3, we calculate that we would need E = 20 v/m to overcome the stabilizing

effects. This is approximately the value of Ec at which the instability is observed toc
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Fig. X-14. Comparison between measured and
calculated rotational period.

appear. But E increases faster than B over the range of magnetic field available, so

that we are unable to quench the instability.
D. L. Morse
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C. CRITERIA FOR DETERMINING ABSOLUTE INSTABILITIES AND DIS-

TINGUISHING BETWEEN AMPLIFYING AND EVANESCENT WAVES

We have established mathematical criteria and procedures that enable one to deter-

mine and distinguish absolute (nonconvective) instabilities, amplifying waves (convective

instabilities), evanescent (decaying) waves,and the direction of signal flow in propagating

waves. These criteria are free from the difficulties and limitations of previous

attempts.1-6 Here, we shall give a brief outline of the proof of these criteria and show

the physical interpretation that is associated with them.

1. Problem

Consider a general system that is uniform in time (time-invariant) and uniform

in (at least) one spatial dimension, say z. Perturbations of such a system, des-

cribed by linearized equations, are of the form f(rT) exp j(wt-kz), where rT is the
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two-dimensional vector coordinate that is transverse to z. The condition for the exis-

tence of such solutions, together with their satisfaction of the boundary conditions trans-

verse to z is expressed in the dispersion relation

D(w, k) = 0. (1)

(Note that if the system is uniform in all spatial coordinates, the perturbations are of

the form exp j(wt-k - r) and the dispersion relation that results directly from the lin-

earized equation is D(w, k) = 0.)

Equation 1 is, in general, a relation between the complex frequency, w(W=r +jwi),

and the complex wave number, k(k=kr+jki). The problem that remains is that of deter-

mining the meaning of the various possible solutions to Eq. 1. Thus we would like to

know whether the uniform system exhibits any absolute instabilities, and if it does, then

what is the growth rate in time of this instability? If it does not, then at a particular

steady-state excitation which waves are amplifying, which are evanescent, and in which

direction do the purely propagating waves leave the source?

In order to determine the meaning of these solutions to Eq. 1, we shall study sys-

tems that are of infinite extent in z. One should bear in mind, however, that the effect

of boundaries that limit the extent in z can be crucial in determining the behavior of a

given physical system. For example, the presence of reflecting boundaries at some

finite z can, in some cases, lead to growth in time even if the system supports only

convective instabilities when it is uniform in z.

2. Excitation and Response of the System

In order to interpret the various possible solutions to Eq. 1, we consider the prob-

lem of excitation of the uniform system. Since we are allowing for possibly unstable

systems, it is of utmost importance to introduce conditions of causality in both time

and space. (The system is uniform in z, and at z = ±fo there are no sources.) Hence

we choose a source that is localized in space (say, in the region Iz I < d) and which is

"turned on" at t = 0. Let this source function be S(t, z) and let the response of the sys-

tem to this source function be TI(t, z). Hereafter we shall ignore the dependence upon

rT, since it is not relevant to the criteria that we are seeking. The causality conditions

are (a) at any z ( Iz I> d) the response is zero for t < 0, and (b) at any finite t (t> 0)

the response will occupy a finite region of space and be zero outside this region. Thus

we shall use Laplace transforms in time and Fourier transforms in space and write

the response as

P(t, z) = LeJt Fd e-jkz dk G(w, k) S(w, k), (2)

where G(w, k) is the Laplace (t)-Fourier (z) transform of the Green's function of the
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w. k.

I I I

wr kr

L CONTOUR F CONTOUR

-0"

(a) (b)

Fig. X-15. Contours pertinent to the integrations in Eq. 2.

(a) Laplace contour L in the complex w-plane.
(b) Fourier contour F in the complex k-plane.

linearized system equations, and S(w, k) is the corresponding transform of the source

function S(t, z). The integration over w is along the contour L (- oo-j- to o0 -jo-), as shown

in Fig. X-15a; the contour L must pass below all singularities of the integrand so that

the causality requirement is satisfied. The integration over k is along the contour F

(-oo to +oo), the real k axis, as shown in Fig. X-15b. In principle, Eq. 2 contains all

of the information that we are seeking. In fact, since it gives the response in detail,

it contains more than that in which we are interested, and the detailed evaluation of

Eq. 2 is not necessary for our purposes.

3. Waves on the Contour L; the k Integration

The integrations in Eq. 2 can be thought of in the following way. For each complex

frequency on the contour L the k integration over the contour F is carried out and yields

a function of w and z:

F(cw, z) = F G(w, k) - S(w, k) e - j k z dk (3)

This function is then integrated over the contour L to give the response

S(t, z) = F(w, z) e j wt d " (4)

The simplest source function that meets our requirements is the delta-function in

both t and z for which S(w, k) is unity. This is also sufficient, since our arbitrary

source function can be built up by superposition of delta-functions. In any case, since

the source function is limited in space, Iz < d, it has a transform that is an entire

function of k. The Green's function contains all of the natural responses (normal modes)

of the system, and these are exhibited by the singularities of G(w, k). With the delta-

function source, the contour L must be chosen to lie below the lowest singularity of
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G(w, k) for any real k. Hence a- (Fig. X-15a) must be greater than the maximum time-

growth rate of any possible natural response (maximum negative W. for real k in Eq. 1).1

The singularities of G(w, k) are, in general, poles and branch points. In the case of

branch points the integrations in Eq. 2 depend strongly upon the type of branch points

and branch lines, of which there can be a great variety, and each case must be treated

individually. Note that these branch lines of G(w, k) will contribute to the response in a

source-free region, that is, physically they can be considered to be a "continuum of

normal modes." In order to present a general closed-form resolution to our problem,

we shall assume that the singularities of G(w, k) are only poles. These are then deter-

mined by Eq. 1, that is, G(w, k) ~ [D(w, k)]-1 . For a particular frequency wL on the

W r

X

\ R - (fl
WL

k. z <-d

X kr

/Z d

(b)

Fig. X-16. For a frequency wL on the contour L (a), the singularities of

G(w L , k) in the k-plane are shown in (b).

contour L, the singularities of G(wL, k) in the k-plane are determined from Eq. 1 for

W = WL and may be as shown in Fig. X-16. Since S(w L , k) is regular in the entire k-plane,

these are also the singularities of the integrand of Eq. 3 in the finite k-plane. If the

integrand in Eq. 3 is well behaved for large values of k i , as is the case in most phys-

ical situations, then the contour F may be closed below the kr axis for z > d and above

the kr axis for z < -d, as shown in Fig. X-16. The integral in Eq. 3 can then be eval-

uated by Cauchy's residue theorem, and thus we can express F(wL, z) as a sum over

the normal modes, that is,

F(wL, z > d) = j Res[ G(w L , k)S(wL, k) eL L k zlower half

k -plane
poles
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F(L, z<-d) = j Res[ G(w L , k)S(wL, k) e-jkz upper half (6)

k-plane
poles

If G(wL, k) also has branch points, Eqs. 5 and 6 will also have contributions from the

contour integrations around the corresponding branch lines in the k-plane.

Hence, by choosing the frequency on the contour L, we are able to determine

unequivocally which of the complex k solutions to Eq. 1 will appear for z > d and which

will appear for z < -d. Note that for w = wL the space dependence for all solutions

appears evanescent (decaying) in space.

4. Absolute Instabilities

In order to determine whether or not the system exhibits absolute (nonconvective)

instabilities we need only evaluate the asymptotic time dependence of the response for

our time-space delta-function source. This is most conveniently done by deforming the

path of integration of Eq. 4 in the w-plane as far as possible into the upper half w-plane.

The asymptotic time dependence of the response, I(t, z), is then determined by the lowest

singularity of the function F(w, z) in the w-plane. If this lowest singularity occurs for

e. < 0, the system exhibits an absolute instability, with a growth rate in time given by
1

that particular value of w.. If, on the other hand, this lowest singularity occurs for W. >
1 1

0, the system does not exhibit an absolute instability, and a steady state in time may be

reached.

The investigation of the analytic properties of F(w, z) is most conveniently illustrated

by considering the motion of a single frequency from the contour L as shown in

Fig. X-17a. As the frequency changes from wL to wR, the k-plane singularities of

\< 0

CONTOURS OF kr L

WR F y F
wr L b  kr

L 0 Rz

S WL R L

S/Z>O

(a) (b)

Fig. X-17. As the frequency changes along the path wL to . (a), the

singularities of G(w, k) describe the loci shown in (b).
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G(w, k), for the particular values of w, describe the loci shown in Fig. X-17b. It is then

clear from Eqs. 3, 5, and 6 that F(w, z) will be discontinuous unless the contour F is

deformed into the contour F so as to include (or exclude) any poles that cross the real

k axis, that is, the contours of the real k axis in the w-plane (Fig. X-17a) represent

branch lines of the function F(w, z) as defined by the integration in Eq. 3. The contour

L may be deformed past these branch lines without altering the integration in Eq. 4 if

F(w, z) is properly analytically continued by evaluation along the contour F. This pro-

cedure now can be extended, in principle, to all frequencies on the contour L.

The singularities of F(w, z) are discovered in this process of sweeping the complex

w-plane from the contour L up. These singularities will occur for frequencies at which

two or more poles of G(w, k) merge through the contour F to form a higher order pole,

k.
Wi L

s
F F

W S Wr kr
L

WL L

(a) (b)

Fig. X-18. Appearance of an absolute instability. At the frequency s:
(a) the two simple poles of G(w, k) merge through the contour

F to form a double-order pole in the k-plane; (b) w is then
a branch pole of F(w, z).

since then the integration must pass between the merging poles. The simplest situation

of such a merging of two simple poles is illustrated in Fig. X-18, In the vicinity of the

merger of the poles, we have

(k-k ) 2 (W-W ), (7)

and the evaluation (Eqs. 5 and 6) gives

1
F(w, z) ~ (8)

1/2
s

which shows that ws is a branch pole of F(w, z). If for the moment we consider this to

be the lowest singularity of F(w, z) in the w-plane, then the asymptotic time dependence

of the response can be evaluated along the contour L shown in Fig. X-19, and the
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LsoF
-IS

wi

-*t7 L

1 1r

WS

Fig. X-19. Contour L for the asymptotic evaluation of Eq. 4. As the contour
is moved up toward w. - oo, the dominant contribution to the response

1

for t - o0 comes from the integration along the branch line ending at

s rs jVS

dominant contribution will come from the integration along the branch line ending at c.s
For the branch pole of Eq. 8, for t - oo we find

v t
e j(w rst-k z)
e rstl/e

and we conclude that the system exhibits an absolute instability. We note that the con-

dition of a double root of k for some w = w is the same as the condition that w(k) have

a saddle point at w = w . If this saddle point is to lead to a true singularity of F(w, z)

(and hence to an absolute instability), it is crucial that this saddle point result from two

k-plane poles that merge through the contour F.

The merging of poles through the contour F can be readily generalized. Consider

the formation of a pole of order p on the contour F at k = k s and for w = ws . If, also,

the first (n-1) partial derivatives of D(w, k) with respect to w at (w s, ks) vanish and

( 8 nD/8n)s * 0, then

(k-ks (-s)n

For the merging of the poles through the contour F, Eqs. 5 and 6 give

(10)

(11)F(w, z) ~

[W-s ](p-l)n/p

which may be either poles or branch poles at wo. The asymptotic response for t -oo is
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v t (p-1)n
-1(t, z) tes ; q- 1. (12)

p

5. Amplifying, Evanescent, and Propagating Waves

Finally, if F(w, z) has no singularities in the lower half of the w-plane, there are no

absolute instabilities, and the uniform system may reach a steady state. In particular,

we now may ask for the steady-state asymptotic response of the system at some fre-

quency w = w that is of interest. For this, we consider a source function whose time
rp

dependence is a sinusoid of frequency Wrp that starts at t=0 and is zero for t<0. Thus let

jw t

S(t)- e rp, t> 0 (13)

=0, t < 0, (14)

and its Laplace transform becomes

1
S(w) ~ 1 (15)

j(W-Wrp)

The spatial dependence of the source function may be arbitrary but limited in z; for

convenience, we may chose it to be a delta-function.

The asymptotic response of the system for this situation may be obtained (as in

sec. 4) by again deforming the contour L of Eq. 4 so that it lies as far up as possible

in the upper half of the w-plane. Since we assume that there are no absolute instabilities,

F(w, z) has no singularities in the lower half of the w-plane and the lowest singularity in

F(w, z) is the pole at w = wrp belonging to the source function. (Note that we are assuming

that the Green's function transform has no singularities on the real w axis; if it does,

then these will also contribute to the asymptotic response.) Hence the asymptotic time

dependence of the response, as evaluated along L in Fig. X-20a, will be sinusoidal at

the frequency w of the source. The space dependence of the response, which is already
rp

contained in F(w, z), is obtained from the k integration along the proper contour F for

w (as was done in sec. 4; see Fig. X-17). Some of the possible resulting wave solu-rp
tions are shown in Fig. X-20b. Note that the appearance of a particular wave for z > 0

or z < 0 is completely determined by the locus of the pole in the k-plane as the frequency

is moved from the contour L to the real frequency axis, since in this process the ana-

lytic continuation of the function F(w, z) determines correctly the position of the k-plane

singularities with respect to the contour F.

Thus in Fig. X-20b roots 3 and 4, having crossed the kr axis, are amplifying waves;

root 3 is a wave with growth in space for z > 0, while root 4 is a wave growing toward

z < 0. We note that the presence of amplifying waves (convective instabilities) requires

that some of the contours of kr in the w-plane should have w. < 0.
r 1
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L/ \

L L L 8 /
rp rp L L

L L /

(a) (b)

Fig. X-20. System in which there are no absolute instabilities.
(a) Contour L is pushed up to large values of w.; the1

asymptotic time response is determined by orprp
(b) The contour F appropriate to arp and the pole

loci as the frequency varies from wL to WOrp

Roots 7 and 8, which have not crossed the kr axis, are evanescent waves; root 7 is

a wave that decays in space for z < 0, and root 8 is a wave that decays for z > 0.

All of the remaining roots shown in Fig. X-20b are on the real k axis and hence are

purely propagating waves. The direction in which they carry the signal is entirely deter-

mined by whether these roots appear above or below the F, namely, F, contour. Thus

waves 1 and 2 will be excited for z > 0, and waves 5 and 6 for z < 0. Note that the sign

of the group velocity, dw/dk, for these waves will not necessarily give the correct direc-

tion in which the signal in each wave will flow. Thus for waves 1 and 6 the group veloc-

ity would give the opposite direction to the one determined above, while for waves 2 and

5 it would give the same direction. We therefore note that in systems in which the kr
contours of the dispersion relation in the w-plane appear for o. < 0, the group velocity,

1
in general, will not give the correct direction of signal flow, while our procedure prop-

erly determines this direction.
A. Bers, R. J. Briggs
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D. INTERACTION OF AN ELECTRON BEAM WITH IONS IN A WARM

PLASMA OF FINITE TRANSVERSE DIMENSIONS

In a previous report the dispersion equation for the waves in a waveguide structure

filled with a cold electron beam and a hot-electron plasma has been derived, and some

computations on the resultant complex propagation constants, p, for real frequencies

w are presented. 1 The instability criteria derived by the authors (see Section X-C)

has now been applied to the cases discussed previously.1 It has been found that in all

of these cases there is an absolute instability.

In Figs. X-21 and X-22, the loci of (two of) the roots of complex p for complex w

near the saddle point of w(p) are presented for protons with Ppb = p nb/n = 10

I m P/P pb

-0.5

ImWa

Re w

-o.i 7 wpi

Re w/wpi LOCUS

0.91 (
0.92 0
0.93 0
0.94 )

Re 8/,pb

Fig. X-21. Loci of roots of complex p for complex w; (nb/np)(Te/ZVo) = 1.
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Im e/)pb i

2

Imw

Rew Re w/w i LOCUS

0.90 (
-.43 pi-- 0.95 (

)(0( I.I 01./

1.2

Fig. X-22. Loci of roots of complex p for complex w; T e  o.

=pi 2wci, and the "temperature parameter" (nb/np)(Te/2Vo) equal to 1 and oo. (The

symbols have been defined by Bers and Briggs. ) For these temperature-parameter

values there is an absolute instability with growth rates in time of 0.17W pi and 0.43w pi

respectively.

The presence of the absolute instability has been found to manifest itself in a partic-

ular characteristic of complex p for real w plots, as is indicated in Fig. X-23. For

a very weak beam (w << ), the dispersion would have the general shape shown in
pb pi

Fig. X-23a. When an absolute instability is present, the form in Fig. X-23c is obtained.

The critical point between the two is indicated in Fig. X-23b; at this critical point there

exists a double root of complex p for some real w. Therefore, at the critical point

a saddle point of w(p) is in the process of crossing the real w axis. As this saddle point

passes into the lower half w-plane, an absolute instability appears.

The relationship between the parameters which must be satisfied for a double root

of complex p for real w can be derived from the dispersion equation of the system,1

and is found to be

2W 2 2
pb .ci p

- 1 (1)2 2 2 2 2
pi pi De pb
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Fig. X-23. Schematic illustration of onset of absolute instability. (a) No
absolute instability. (b) Critical point. (c) Absolute instability
present.
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Fig. X-24. (a) Dispersion diagram for wpi = 2wpb
(b) Detail near w = 0.7 o ..
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0.70' 0.72 0.74
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Fig. X-25. (a) Dispersion diagram for wi = 0.75 wpb

(b) Detail near w = 0.7 p..
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Some computations that illustrate this transition are presented in Figs. X-24 and

X-25. The parameters are p2 = 100 p = b00 p = 0.05 i, and w Pi/
pb' De 1 pb ci p pn pb

equal to 2 and 0.75. The application of the instability criteria is presented in

Im P/Ppb

Im w
Re w/wpi

Re w
0.70
0.705

'6O 0.71
0.715

0.72

-- LINE Im w = O0

2 Re P/,pb

LOCUS

0
O
0
0
0D

Fig. X-26. Loci of roots of complex p for complex w; pi = Zpb

Figs. X-26 and X-27. We see that an absolute instability is obtained in the latter case

[w pi/wpb=0.75, Fig. X-27]at a complex frequency w = (0.071-j0.001) wpi

From the computations that have been performed, two general rules have been found

to be valid.

1. An absolute instability arises when

2
S2 2

pb WO . p
2 2 2 2 2
pi Wpi P + De + pb

2. Infinite amplification at w = w . arises when

2
2 2 ci 2
pb 2 2 De

pl ci
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SADDLE POINT AT:

Im ,/,pb W/Wpi = 0.707 - j0.001

,/Rpb = 0.13 + j 0.71

-- LINE Im w = 0

2

-IO ( 2 1 2 Re /I

Imw

Rew/wpi LOCUS
-- Re w

-0.001 Wpi 0.70 (
0.705 0

0@@ 0.71

Fig. X-27. Loci of roots of complex p for complex w; wpi= 0.75 wpb"

These two conditions are independent of each other. In all of this analysis, it was

assumed that V << V Te The extension of these results to cases in which VTe is com-

parable to V 0 is under consideration.
o R. J. Briggs, A. Bers
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E. FUSION REACTOR BLANKET EXPERIMENT: NEUTRON-ENERGY SPECTRUM

FROM A TRITIUM-GAS TARGET

The threshold detectors that will be used to determine the neutron-energy spectrum

in fusion reactor blanket mock-ups I will be calibrated by irradiation with the bare

tritium-gas target. A derivation of the spectrum of the neutrons from the tritium-gas

target is given in this report. A set of Fortran II programs has been written to perform

the calculations.

1. Point-Source Calculation

When deuterons of energy E' strike a thin tritium target of thickness dk, it is

assumed that their energy loss within the target is negligibly small. The total number
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of neutrons produced is n(E') df.

n(E') d = I Nt (E') d, (1)

where I is the deuteron current, o-(E') is the cross section for the H3(d, n) He 4 reaction

(DT reaction), Nt is the tritium number density, and di is the thickness of the target.

For bombarding energies E' < 0.4 Mev, the DT reaction is isotropic in the center-of-

mass (c.m.) coordinate system 2; hence the fraction of neutrons that are emitted at an

angle = cos x in c.m. coordinates within the solid angle dQ = sin 0 dO d is

just dC2*/41r. The calculations are simplified if, instead of using 0 as the independent

variable, we use the direction cosine x ; then dQi = -dx * d* . The fraction in the solid

angle dQ2 = sin 0 dO d4 = -dx d4 in the laboratory coordinate system at angle 0 is found

by using the appropriate transformation

d~ = -dx d4 =-j(E',x) dx d = j(E', x) d . (2)

The fraction of the neutrons that pass through an elemental area dA = r2 dQ at the

point (r, cos - x, ) is then j(E', x) dA/4Trr . Hence the number of neutrons that pass

through this point, which are produced by the deuterons of energy E' in the target of

thickness d, is Pi(E', x, r) didA:

j(E', x)
i(E', x, r) didA = I Nt 0-(E') 4 didA. (3)

All of these neutrons have an energy E = f(E', x). A derivation of f(E', x) and j(E', x)

has been given.3 These functions, as well as the solution of the equation E = f(E', x) for

E' (E' = g{E, x}), are presented in Table X-1.

In a gas target the deuterons slow down (mainly by elastic collisions with the elec-

trons in the gas) at a rate given by

dE'/dl = -N T(E'), (4)

where T(E') is the stopping cross section for deuterons in tritium gas (in Mev-barns).

To account for the moderation of the deuterons, we split the gas target into many small

slabs of thickness di, which are such that the deuteron energy within these slabs may

be considered constant. We shall consider a slab in which the deuterons have reached

energy E' (<E ax the energy of the deuterons incident on the gas target). We use

Eq. 4 to convert di to the appropriate energy width and find that the flux of neutrons

through the point (r, cos-1 x, 1), produced by deuterons between energies E' and E' +

dE', is

E(E') j(E', x)
4'(E', x, r) dE' = I 2 dE'. (5)

T(E') 4rrd

To obtain (E, x, r), the flux of neutrons per unit neutron-energy width at the point
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Table X-1. Energy-angle relationships for the nuclear reaction M 2 (M, M 3 )M 4 . Here, E' is the energy of the incident

nuclide M1 in laboratory coordinates; E is the laboratory energy of M 3 after the reaction; x is the cosine

of the angle between the paths of M3 and M. in laboratory coordinates; x is the same cosine in center-of-

mass coordinates; m i is the mass of the it h nuclide Mi; and Q = {(m l +m 2 )-(m 3 + m 4 )} c 2 , where c is the

velocity of light. The derivation of these equations has been given elsewhere. 3

Functions Equations Restrictions

Nl Real
f(E',x) = E = m 3 x-E' i[x2E'+(m4 /m 3 +1)(m 4 /ml )(Q+E')-E'}]1/2 JE> 0

3 4 (See Note A)

x -(1-x ){a(E')} ± [1-(1-x2)fa(E')}] 1 /  x Real

a(E') = [(mlm 3 /m 2 m 4 )/{l+(Q/E')(ml/m 2 +1)}]1/2 Ix I 1

x2{a(E')}2
j(E', x) = 8x/ax = 2x a(E') ± [1-(1-x2){a(E')}1/ 2  1 + (See Note A)

ax/ax I - (1-x2)a(E')2

4mm 3  - fE' Real
g(E, x) = E' ' = m - 1 -xNJ xE+(m4/ml-1)E-(m4/m3)(Q-E)} 1/2 J > 0

- 1  m(See Note B)

Note A: Where ± occurs, only the plus sign may be used if Q > 0 for restrictions to be satisfied; for Q < 0, both signs
are sometimes possible; that is, the function is double-valued.

Note B: Reverse of Note A; only the plus sign may be used for Q < 0, but the function is sometimes double-valued
when Q > 0.
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-I
(r, cos-1 x, c), it is only necessary to change the energy width in Eq. 5 from dE'

to dE:

dEdE' = dE (6)
(dE/dE')x= const.

where

(dE/dE')x=const.= 8f(E',x)/8E' (point source) (7)

for r >> fo, the thickness of the gas target. By substituting Eqs. 6 and 7 for dE' in Eq. 5,

the desired expression for #(E, x, r) is found to be

o(E') j(E',x)
(E, x, r) = I - - 2 8f(E, x)/8E1, ,8)

T(E') 41r 2

where E' = g(E, x). Only the magnitudes of j(E',x) and 8f(E', x)/8E' are used, since only

the magnitudes of (dQ2 /d)E=const. and (dE/dE') are of interest. A sample set

of spectra at various angles, calculated from Eq. 8, is plotted in Fig. X-28 as

r 4(E,x,r) vs E.

2. Numerical Problems

The function f(E', x) = E for a given value of x has the general shape shown in

Fig. X-28. From the figure it can be seen that if E' > E' and E' . < E' wheremax m min m'
E' is the energy at which unreacted deuterons leave the target, and

min

af(E', x)/aE' = 0 (E'=E' ), (9)m

there may be two deuteron energies E' that can produce neutrons of energy E

(Emin <E<E =f(E',x)). The fluxes resulting from each of these E' are then

added.

Since 8f/8E' appears in the denominator of Eq. 8, #(Emin' x, r) is singular if

Emin = f(E' , x). The singularity may be formally avoided by adding a smallmmn m
increment to E mi n . Since the zero of af/aE' is calculated from the difference of

mmn 4
numbers that are accurate to, at most, one part in 10 , there will be large round-

off errors in (E, x, r) in regions near af/aE' = 0. If c(E, x, r) is being used in an

integration - to find the average of a cross section a-'(E), for instance, for which

the detailed shape of the neutron-energy spectrum is not desired - it is better to

use Eq. 5, integrate over deuteron energy, and use a-'(f(E', x)} in the integral. Then the

problem of singularities does not arise.
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Fig. X-28.

13 13.5 14 14.5 15 15.5

NEUTRON ENERGY (Mev)

Point-source calculation of neutron-energy spectrum from gas target.
Target length, 3. 175 cm; target pressure, 0. 42 atm of tritium; deu-
terons enter gas at 0. 4 Mev and leave at 0. 04 Mev. Note that the
spectrum has the general shape of the DT cross section, distorted by
division by (dE/dE')x=const.,' a value that is positive at 00, passes

through zero at ~100', and then becomes negative. Note that for 0'
the spectrum immediately drops to zero at 15. 6 Mev. The spectrum
drops to zero at 15. 25 Mev for 450, etc.
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3. Finite-Source Calculation

If the distance r of the point of observation P from the target is of the same order

as the thickness of the target f (see Fig. X-29), the calculation of c(E, x, r) is more0

ES max

-

Z

Z

2 El
Z Emlf

--- I--

I I
E . E'

min m
E'max

DEUTERON ENERGY E'---

Fig. X-29. Schematic curve of E = f(E', x) for a constant value of x.

complicated than is outlined in section 1.

As the deuterons slow to energy E', they travel a distance i = f(E'):

E'
I(E') = E max dE'/Ntr(E').

.¢E'
(10)

As can be seen from Fig. X-30, the neutrons produced by the deuterons that pass

through the point P now travel a distance R, given by

R = r + - 2rx.

The cosine of the angle between R and the deuteron path is now not x by y, where

y = (r -k)/R.

(11)

(12)

The energy of the neutrons is E = f(E', y) and the ratio of the solid angles in c.m. and

laboratory coordinates is j(E', y). Furthermore, (dE/dE')x=const. is no longer simply

af/8E' but

(dE/dE')x=const.
8f(E', y) af(E', y) dy di

S E' + 8y dk dE' (finite source).

We find dk/dE' from Eq. 4; dy/dk can be found by differentiating Eq. 11.
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dy/di = (y 2 -1)/R. (14)

The expression for the neutron-energy spectrum p(E, x, r) for a finite source is found

from Eq. 8 by replacing x with y, r with R, and af/8E' with Eq. 12:

cr(E') j(E', y)
(E, x, r) = I - 2

T(E') 4trR

8f(E',y) af(E',y) (y2-1)

" a-iy R N tT (E ')

(finite source).

(15)

Here, dy/dk and df/dE' have been replaced with the right-hand side of Eqs. 4 and 14.

It is no longer possible to find the deuteron energy E' analytically from the neutron

energy E and the coordinates of the point of observation (r, cos-l x, j); a numerical

DEUTERON

BEAM

-1
COS X

Fig. X-30. Schematic diagram of a gas target for
finite-source calculation.

approach must be used.

A sample calculation of the neutron-energy spectrum for cos - 1 x = 70 0 is shown

in Fig. X-30 for various radii. Notice in Eq. 15 that as r becomes large y - x,

R ---- r, and the second term in braces becomes much smaller than the first; thus

Eq. 15 approaches Eq. 8 for the point source. This is shown in Fig. X-31, in which the

results of the finite-source calculation merge with those of the point-source calculation

as r increases. The spectrum broadens as r decreases, since the neutrons that pass

through the point of observation can come from a wider range of angles with the deu-

teron path. The continued increase of the spectrum as E approaches 13.93 for r = 5 cm

is caused by the fact that in this case the term in braces in Eq. 15 approaches zero.

The problems of singularities in c(E, x, r) for the finite-source calculation are similar
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13.8 14.0 14.2 14.4 14.6

NEUTRON ENERGY (Mev)

Fig. X-31. Finite-source calculation of neutron-energy spectrum
from tritium-gas target. Target is 3.175 cm thick and
contains 0. 41 atm of tritium. Maximum deuteron en-
ergy, 0.4 Mev; minimum deuteron energy, 0.034 Mev.
r is the distance of the point of observation from the
target window at which the deuterons enter the target
at 0. 4 Mev (r = co refers to the point-source calcula-
tion shown in Fig. X-28). The angle between r and
the deuteron path is 700.
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to those discussed for the point-source calculation in section 2.

4. Generalizations

a. Deuteron Depletion

In Eqs. 5, 8, and 15, it is implicitly assumed that the deuteron current is not reduced

in passage through the target. A correction for this depletion can be made by multi-

plying the right-hand side of each of these equations by the term

exp max dz (-(z)/T(z) ,

but this correction is unnecessary, since less than 1 deuteron in 1000 undergoes a DT

reaction as it transverses the target.

b. Solid Tritium Target

If the tritium, instead of being in the gaseous phase, is absorbed in a solid, Eq. 4

would have to be replaced by

dE'/di = -NtT(E') - NsT (E'), (16)

where Ts(E') is the stopping cross section, and N s is the number density of the solid

material. Then T(E') on the right-hand side of Eqs. 5, 8, and 15 would have to be

replaced by T(E') + (Ns/Nt)T(E') . Since in most solid tritium targets N /N t > 1, and

T s(E') is roughly proportional to _IZ-, where Z s is the atomic number of the solid mate-

rial, the reason for the increased efficiency of the gas target (in neutrons per deuteron)

becomes apparent. The increased slowing-down rate of the deuterons in the solid target

decreases their chance of undergoing a DT reaction.

c. Other Reactions

Obviously, the expressions above can be applied to any charged-particle reaction

by using the appropriate values of the parameters involved. If the Q-value of the reaction

is negative, a singularity in (E, x, r) cannot occur. Then, however, cases do arise for

which neutrons of two distinct energies can be produced at the same angle cos-1 x by

a given deuteron energy E' in the laboratory coordinate system, since with a negative

Q-value the functions f(E', x) and j(E', x) may be double-valued.

P. S. Spangler
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