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RESEARCH OBJECTIVES

This group is interested in a variety of problems in statistical communication theory.

Our current research is concerned primarily with the following problems:

1. Work continues on the analysis and application of the "Two-State Modulation

System" that was first described in Quarterly Progress Report No. 66 (pages 187-189).

A static analysis of the system has been made, and work now in progress on the dynamic

analysis is directed toward both control and power-amplification applications.

2. During the past year algorithms have been developed whereby optimum nonuni-

form quantizers can be designed when the quantizer input is either a signal or a signal

contaminated by noise. This study will continue with emphasis placed upon the evalua-

tion of these optimum quantizers. The effects of linear pre-emphasis and post-emphasis

on the optimum quantizer will be investigated. Also, attempts will be made to apply

algorithms similar to these quantizer algorithms to other forms of nonlinear filtering.

3. The use of Linear Algebra in the analysis and characterization of nonlinear

systems is being investigated. This study has led to a generalization of the principle

of superposition and a canonical form for systems satisfying this generalized principle.

4. Theoretical work predicts that the threshold level in multidimensional demodu-

lation schemes can be reduced by use of more sophisticated demodulators. Experimental

work is being conducted to verify these predictions.

5. The study of the performance of optimum and nonoptimum filters with emphasis

on qualitative aspects of their behavior has continued. An investigation is being made

of the limits on the performance of nonlinear filters when some of the message charac-

teristics, such as average power, peak power, power spectrum, and so forth, are known.

6. Many physical processes can be phenomenologically described in terms of a

large number of interacting oscillators. A theoretical and experimental investigation

is being made.

7. A nonlinear system can be characterized by a set of kernels. The synthesis

of a nonlinear system involves the synthesis of these kernels. A study of efficient

methods for synthesizing these kernels continues.

8. A method for the construction of function generators was reported in Quarterly

Progress Report No. 71 (pages 176-178). Work on the method, both theoretical and

experimental, is in progress.

9. The central idea in the Wiener theory of nonlinear systems is to represent the

output of a system by a series of orthogonal functionals with the input of the system being

a white Gaussian process. An attempt is being made to extend the orthogonal represen-

tation to other types of inputs that may have advantages in the practical application of

the theory.

This work was supported in part by the National Science Foundation (Grant G-16526),

the National Institutes of Health (Grant MH-04737-03), and in part by the National Aero-

nautics and Space Administration (Grant NsG-496).
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10. A study is being made to relate the random variations in the composition of
magnetic recording tape to the noise introduced into a signal recorded on the tape. This
will involve an experimental study of the variations in the packing density, orientation,
and magnetic properties of the Fe 2 0 3 particles making up the magnetic coating, in order
to verify a theoretical relation between these properties and the noise.

Y. W. Lee

A. GENERALIZED SUPERPOSITION

1. Introduction

The ease of analysis and characterization of linear systems stems primarily from
the fact that they satisfy the principle of superposition. Through the use of this prin-
ciple, the response of a linear system to inputs that are representable as linear com-
binations of a set of building blocks can be described by its response to each of the
building blocks. When the building blocks are impulses, for example, the system is
described through the superposition integral; when the building blocks are complex
exponentials and the system is time invariant, it is described through its system func-
tion.

The principle of superposition in its usual form is a statement of the definition of
linearity and hence, by definition, cannot be satisfied by a nonlinear system. It can be
generalized, however, in such a way that it encompasses a wide class of nonlinear sys-
tems. This report is concerned with a generalization of the principle of superposition,
and an investigation of the class of nonlinear systems which obeys this generalized
principle. The investigation has been carried out within the framework of linear algebra.
Rather than bury the discussion under the formalism of linear algebra, however, we
shall give only a general discussion of the approach used and the results obtained. In
future reports, details in the analysis will be considered.

2. Homomorphic Systems

Linear algebra deals with linear transformations between vector spaces. The oper-
ations of vector addition and scalar multiplication, which impose an algebraic structure
on the vector spaces, satisfy the algebraic postulates that we normally associate with
addition of time functions and multiplication of time functions by scalars. There are,
however, many other operations, which satisfy these same postulates, that can be per-
formed on time functions. Multiplication of time functions, for example, is commutative
and associative. Similarly, convolution is a commutative and associative binary oper-
ation. Transformations between such vector spaces, although linear in an algebraic
sense, may be nonlinear in a more conventional interpretation.

Systems that are characterized by such transformations satisfy a generalized prin-
ciple of superposition. Specifically, if "o" denotes the binary operation on the inputs
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and "o" denotes the binary operation on the outputs, then

T[vl(t) ov 2 (t)] = wl(t) o w 2 (t)

where

T[vl(t)] = wl(t),

T[v 2 (t)] = w 2 (t),

and T is the system transformation. Also, if the combination of an input v(t) with a

scalar X is denoted by [X> v(t)] and the combination of an output w(t) with a scalar k is

denoted by [X/w(t)], then

T[X> v(t)] = X/w(t)

where

T[v(t)] = w(t).

If, for example,

T[v(t)] = ev(t)

then

and

T[vl(t)+v 2 (t)] = wl(t) w 2 (t)

T[Xv 1 (t)] = [w l(t)]

for all inputs v 1 (t) and v (t) and all scalars X.

Because of the algebraic interconnection between addition and scalar multiplication,

scalar multiplication can be interpreted in terms of the addition operation when the

scalar is rational. Multiplication by irrational scalars can be taken to be a continuous

extension of the definition for rational scalars. Similarly, the operation " > " can be

Fig. XVIII-1. Representation of a general
homomorphic system.

interpreted in terms of the operation "o". Hence, the operations under which a system

satisfies the generalized principle of superposition can usually be summarized by the

operations "o" and "o". A system obeying the generalized principle of superposition
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will be referred to as a homomorphic system. The operation "o" will be referred to

as the input operation and the operation "o" will be referred to as the output oper-

ation. A homomorphic system with system transformation c will be denoted as shown

in Fig. XVIII-I. For example, a system with transformation

T[x] = y = xk (4)

is homomorphic with multiplication as the input and output operation and, hence, would

be denoted in the manner shown in Fig. XVIII-2.

Fig. XVIII-2. Example of a homomorphic system
x k Y with multiplication as both the input

y = x operation and the output operation.

Although the few examples of homomorphic systems which have been given are

memoryless, that is, operate only on instantaneous values of the input, this is-not a

restriction on homomorphic systems in general. The entire class of linear systems,

many of which have memory, is homomorphic with addition as both the input and output

operation. When the canonical form for homomorphic systems is discussed, it will be

clear that many homomorphic systems with memory exist.

The class of homomorphic systems is a very general class and, in fact, can be shown

to include any invertible system. To see this, consider a system with an invertible sys-

tem transformation 4. Let o denote any input operation consistent with the algebraic

restrictions stated previously. Let o, the output operation, be defined as

w 1 (t) 0 w 2 (t) (w) 0 -(w 2) ,  (5)

and let

X/w(t) = PL>4 -(w) . (6)

It is easily verified that with this choice of output operations the system is homomorphic.

Thus any invertible system is homomorphic under any choice of input operation. It can

further be shown that for any homomorphic system, the output operation is specified

uniquely by the input operation, together with the system transformation. Hence, we

are assured that the output operation defined by Eqs. 5 and 6 is the only output operation

under which the system is homomorphic, when the input operations have been specified.

The construction of the output operation by means of Eqs. 5 and 6 does not necessarily

aid in the analysis of homomorphic systems, for it requires a precise characterization

of the system transformation. It does, however, allow the construction of examples of
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homomorphic systems as an aid to developing the theory, and by virtue of the uniqueness

of the output operation, examples constructed in this way will not rely on a trivial

choice for the output operation.

In summary, then, the class of homomorphic systems includes a wide variety of non-

linear systems. In particular, it includes all invertible systems, as well as many sys-

tems that are not invertible.

3. Canonical Representation of Homomorphic Systems

For any choice of input operation o, there exists an invertible homomorphic system

with addition as the output operation. This system is determined entirely by the opera-

tion o. This fact leads to a convenient and useful representation of homomorphic sys-

tems.

Consider a general homomorphic system as shown in Fig. XVIII-1. By virtue of

the existence of an invertible homomorphic system with o as the input operation and

0+ +0 0+, + 0

Mo. a--- -o

Fig. XVIII-3. Equivalent representation of a general homomorphic system.

addition as the output operation, and an invertible homomorphic system with o as the

input operation and addition as the output operation, the system of Fig. XVIII-1 can be

represented in the form of Fig. XVIII-3. The system enclosed in the dotted line, however,

O + + + + 0

a I ON L F _i -I

Fig. XVIII-4. Canonical representation of a general
homomorphic system.

is a linear system, and thus the system of Fig. XVIII-1 can be represented by the sys-

tem shown in Fig. XVIII-4. Hence, any homomorphic system can be represented as the

cascade of three systems, in which the first and last are dependent only on the input and

output operations, respectively, and the second system is a linear system. Furthermore,
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it is easily verified that for any choice of the linear system the cascade will be a homo-

morphic system with input operation o and output operation o. Hence, to generate the

entire class of homomorphic systems having specified input and output operations, we

determine the systems a and P from knowledge of the input and output operations and

then consider all choices for the linear system L.

As an example, let us return to the homomorphic system of Fig. XVIII-2. The

system defined by Eq. 3 is an invertible homomorphic system with addition as the

input operation and multiplication as the output operation. Hence, its inverse, the

natural logarithm, is an invertible homomorphic system with multiplication and addi-

tion as the input and output operations, respectively. It should be clear that the sys-

tem of Fig. XVIII-2 can be represented as shown in Fig. XVIII-5. The entire class

* + + - + + &

w = In v W x = kw X y = e

Fig. XVIII-5. Representation of the system of Fig. XVIII-2 in the
canonical form of Fig. XVIII-4.

of homomorphic systems with multiplication as both the input and output operation can

be generated by replacing the amplifier of gain K by other linear systems.

The canonical representation of Fig. XVIII-4 is effectively a substitution of vari-

ables which reduces a homomorphic system to a linear system. The substitution of

variables is dependent only on the input and output operations of the homomorphic sys-

tem. It can be shown that if the system a is memoryless, then the operation o is

memoryless, that is, it is an operation on the instantaneous values of the inputs. Sim-

ilarly, if P is memoryless, then the output operation o must also be memoryless.

Furthermore, it can be shown that if o and o are memoryless operations, then all of

the memory in the homomorphic system can be concentrated in the linear portion.

4. Systems with Nonadditive Feedback

Consider a feedback system in which the forward and reverse paths contain homo-

morphic systems and the signal fed back is combined with the input according to some

binary operation o, as shown in Fig. XVIII-6. The output operation of 1 and the input

operation of 2 are identical. Also, the input operation of 1 and the output operation

of 92 are taken to be the same as o. If 1 and 2 are replaced by their canonical repre-
-1sentations, the system of Fig. XVIII-7 results. Because a and a are homomorphic,

some elementary block diagram manipulations permit the system of Fig. XVIII-7 to be
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Homomorphic feedback system with nonadditive feedback.

Fig. XVIII-7. Equivalent representation of a feedback system
form shown in Fig. XVIII-6.

L

L I

Fig. XVIII-8. Canonical representation of a homomorphic feedback system
with nonadditive feedback.
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redrawn as shown in Fig. XVIII-8. Hence,
x - I the system of Fig. XVIII-6 is homomor-

phic with the same input and output oper-

ations as 1. Furthermore, the linear

L system L in its canonical representation
2 is an additive feedback system with the

linear portion of 1 in the forward path

Fig. XVIII-9. General feedback system and the linear portion of Z in the feed-
with linear elements and back path.
nonadditive feedback.

If the systems in the forward and

feedback paths are linear systems but the
feedback operation is not addition, then the nonlinearity in the system cannot be removed
from the feedback loop as it could in the system of Fig. XVIII-6. The notion of homo-

morphic feedback systems, however, does permit representation of this type of feedback

system as an additive feedback system with nonlinearities in the forward path. Specif-

ically, consider the feedback system of Fig. XVIII-9. It was stated previously that there

will always exist an invertible homomorphic system with "o" as the input operation and
addition as the output operation. If we denote this system by y, then the system of

Fig. XVIII-10. Equivalent representation of the feedback system of Fig. XVIII-9.

Fig. XVIII-l1. Representation of a feedback system having the
form shown in Fig. XVIII-9.
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Fig. XVIII-12.

Example of a feedback system of
the form shown in Fig. XVIII-9.

LINEAR

CONTROLLER

Fig. XVIII-9 can be represented in the form of Fig. XVIII-10. If the linear system L 2

is invertible, then the block diagram of Fig. XVIII-10 can be manipulated into the form

of Fig. XVIII-11. The essential feature in the representation of Fig. XVIII-11 is that

a system with nonadditive feedback has been represented in a more conventional form.

As an example, we might consider the system shown in Fig. XVIII-12. The systems

h l (t) and h 2 (t) are linear systems. The impulse response hl(t) is linearly dependent on

the output y(t). This represents a feedback system in which convolution is the binary

feedback operation. Hence, this system can be represented in the form of Fig. XVIII-9,

with o taken to be convolution.

5. Conclusions

The results obtained to date concerning homomorphic systems seem to indicate that

this is a useful means of classifying many nonlinear systems. The canonical represen-

tation of these systems permits their investigation in terms of linear systems, for which

many analytical tools are available. It is difficult to predict the areas in which homo-

morphic systems will assume practical significance. It is hoped that as the theory pro-

gresses its engineering applications will become clear.

A. V. Oppenheim

B. ENERGY DISTRIBUTION IN TRANSIENT FUNCTIONS

In this report, we shall present some results that have been obtained concerning the

distribution of energy in transient functions, f(t), which are zero for t < 0. The Laplace

transform, F (s), of the transient function fl(t) is

-stF 1(S) = fl(t) e-st dt, (1)

in which s = cr + jw. Also, the partial energy, which is the energy in the first T seconds

of f (t), is
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E1 (T) = T fl(t) 2 dt. (2)

We assume that Fl(s) contains a zero at s = pl so that it can be written as

F 1 (s) = [s-pl ] G(s). (3)

If the zero in the s-plane is moved to a new position at s = p 2 , the transient function

f 2 (t) results for which

F 2 (s) = [s-p 2 ] G(s). (4)

The results that we shall present in this report concern the difference between the par-

tial energies of fl(t) and f 2 (t) for the case in which the zero in the s-plane is moved

parallel to the cr axis. For our derivations, we shall consider only those transient func-

tions for which

f (0+) lim sF (s) < oo (5 a)
S-c00

and

fl(c) = lim sF (s) = 0. (5b)
s-0

To obtain an expression for the difference of the partial energies, we let g(t) be the

inverse transform of G(s). Equation 3 then can be expressed in the time domain as

d
fl(t) = dt g(t) - plg(t). (6)

Thus the square of the magnitude of f (t) is

If 1(t) I2  = f 1(t) f(t) = Ig'(t) 2 + Jplg(t) 2 - p 1g(t) g'(t) - pig(t) g'(t), (7)

in which the prime indicates the derivative and the bar indicates the complex conjugate

of the function. In a similar manner, the square of the magnitude of f 2 (t) from Eq. 4 is

If 2 (t) 12 = Ig(t) 12 + 2pg(t) 2 p 2g(t) g'(t) -p 2 g(t) g'(t). (8)

Consequently,

1(t)2 - If 2(t) 12 = iplZ Ip 2 I2] Ig(t) Z + 2 Re {[p 2 -p 1 ] g(t) t}, (9)

in which Re means the real part of the quantity within the braces. Since the zero is

moved parallel to the ar axis, we have p2 - p = r2 -c 1 and ipl12 - ip212 =( 21 - r, so

that Eq. 9 can be written
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f(t) - f2 i 2 g(t)

[ 2 2S - 2_

+ 2(a2- 1) Re {g(t) g'(t)}

g(t) 1 + ( d2-cr1) -- g(t) j2jg~~j z It dt

The difference between the partial energies of fl(t) and f 2 (t) is

E 1 (T) - E 2 (T) 2)

TO g(t) 2 dt + (o72- 1 d g(t) 2 dt

= (ari-U2)A + (2-o1)B,

in which the partial energy of g(t), A, is

A = Ig(t) I2 dt > 0

and

B = g(t) 2 >, 0.

As a function of c-2 , Eq. 11 is the equation of a parabola that crosses
B

at the points o-2 = o 1 and - A "1 . The parabola has a maximum at a 2z 1 2 A 1

point E 1 (T) - E 2 (T) = A B '1]2.

Fig. XVIII-13.

Figure XVIII-13 is a plot of E 1 (T) - E 2 (T) vs 0-2 for

B
2A

B
A 1

Difference of the partial energies versus a-2"

We observe from Fig. XVIII-13 that

- a 1 , and that E 2 (T) is a minimum for

E2 (T) < E 1 (T) for a-2 in the range y1 
<

B-2 = -A > 0. Thus for pl # 0 the total

energy of f 2 (t) which is E2(oo) is a minimum for -2 = 0 because B = 0 at T = oO. We show
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that it is a minimum from (3), (5b), and (12b) and the fact that pl # 0, for which we have

lim g(T) = lim sG(s) = lim s F (s)
T-- 00 s-O s 0  - pl 1

1
= - lim sF (s) = 0.

l sO 1

This result implies that if the s-plane zeros of a transform, F(s), are moved parallel

to the c- axis, then, of all the corresponding transient functions, the transform of the

one with the minimum total energy has every one of its zeros on the jw axis.

Let us now consider the special case for which o2 = - o l > 0. For this case, IF l() I
JF 2 (w) I and, consequently, the energy-density spectrum of fl(t) is identical with that of

f 2 (t). Then, from Eq. 11, the difference of their partial energies is

E 1 (T) - E 2 (T) = -2-lB

= -2o( 1 g(T) 2 0, (13)

since we have assumed that a-1 < 0. We thus note that of all transient functions with the

same energy-density spectrum, the transform of the one with the greatest partial energy

has all its zeros in the left half of the s-plane and the transform of the one with the

smallest partial energy has all its zeros in the right half of the s-plane.
s -Pl

As another application of this last result, let F (s) = F(s) s + and F 1(s) =
s + p l

F(s) s + p F(s). Then E 2 (T) -< E 1 (T). Thus, in general, the partial energy of the

transient input of an all-pass system is greater than that of the output. For example,

the partial energy of the Laguerre functions, 1 (t), is a monotonically decreasing func-

nntion of n, since the Laplace transform of 1 n(t) is

(p-s) p - s
L (s) = L (s).

n ((s)+s)n+ p + s n-i

Since the total energy of each Laguerre function is one, this result means that the energy

of successive Laguerre functions is delayed, and this delay is a monotonically increasing

function of n.

M. Schetzen
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