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A. PLASMA DIFFUSION IN A MAGNETIC FIELD

Experiments on the diffusion of plasma across a homogeneous magnetic field have

been continued since last reported. 1 The experiments with argon discharges were fol-

lowed by studies of helium and helium-mercury low-pressure arc discharges. The

results lead to the following tentative conclusions:

1. Of the discharges studied, only those in He show a clear onset of instability where

the axial electric field E z and radial potential drop V r change radically as a function of

axial magnetic field B. The Ar and He-Hg discharges have a gradual transition of Ez(B)

and Vr(B) from apparently "normal" to "anomalous" diffusion across the magnetic field

lines.

2. Two modes of operation have been found in Ar discharges at magnetic

fields greater than the "critical field" of Kadomtsev and Nedospasov.2 In the

low-voltage mode, Ez(B) is much smaller than Ez(0) and the discharge tube is

almost dark throughout the magnetic field region. In the "turbulent" mode, Ez(B)

is approximately the same magnitude as E (0) and the tube is completely filled

with bright plasma. The transition to the turbulent mode is abrupt, and in some

cases the discharge will not stabilize because of rapid fluctuations between the

two types of operation. The two-mode operation may be related to similar behav-

ior in cesium plasmas in a magnetic field. 3

3. Plasma diffusion at magnetic fields hnuch greater than the critical field is not well

described by Kadomtsev's analogy with hydrodynamic turbulence.4 These experiments

indicate that the coefficient of transverse diffusion Dt is an inverse function of B even

when ( iB) 2 > 1 (Li represents positive ion mobility). Kadomtsev's theory would predict

a constant value of D t for this case.
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B. PERTURBATION OF A PLASMA BY A PROBE 1

An experiment was carried out to examine the validity of Waymouth's theory 2 for

Langmuir probe analysis when Langmuir's requirement that probe dimensions be smaller

than the mean-free paths of all plasma particles is not valid (see Quarterly Progress

Report No. 73, p. 42). As a result of this violation (i) plasma density gradients are set

up which cause the ions and electrons to diffuse to the sheath region and (ii) the probe's

electric field penetrates the plasma.

Waymouth treats the perturbation as a problem in ambipolar diffusion, subject to the

assumptions that the mean-free paths of all plasma particles are comparable to or

smaller than probe dimensions and much greater than the thickness of the probe sheath.

The results are expressed in terms of a parameter QT that, at zero sheath potential, is

approximately equal to the sum of the ratios of probe size to electron mean-free path and

of probe size to ion mean-free path. Predictions of the theory consist of:

1. A 1/r density dependence whose magnitude depends upon QT' which in turn

depends upon sheath voltage.

2. A perturbation of the plasma potential, which (for calculations based upon the dis-

charge tube used in the experiment) is negative for probe potentials near floating poten-

tial and positive for probe potentials near plasma potential.

Using a small probe for which Langmuir's conditions were valid, we examined the

plasma perturbation caused by a large probe that violated Langmuir's conditions. By

reversing the discharge, small probe data could be taken on both sides of the large

probe. Results for cathode-side data consisted of:

1. A definite 1/r density dependence. The correct functional dependence of the den-

sity perturbation upon the large-probe sheath voltage was also well established.

2. The perturbation of the plasma potential was negative for large-probe voltages

near floating potential and positive for large-probe voltages near plasma potential, in

agreement with theory. These perturbations also appeared to be of the correct order of

magnitude.

Anode-side results did not agree as well. They are:

1. The density perturbation did not have a 1/r dependence. Although the density per-

turbation increased with increasing voltage, it did not have the correct large-probe

sheath voltage dependence.

2. Although the potential perturbation caused by a large probe became less negative

with increasing voltage, it remained negative for all potential values.

In most instances, disagreement between theory and experiment could be accounted

for by the wake phenomena that were present in the discharge. The wakes were caused

by drift effects that are necessarily present in a discharge tube of cylindrical geometry.

Waymouth's theory, which is the solution of a one-dimensional problem in spherical
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coordinates, does not consider the wake phenomena. The validity of the extension of

Waymouth's theory to Langmuir probes in magnetic fields is doubtful since in that case

the wake effects would be much more pronounced and would probably dominate any exper-

imental data.

We applied Waymouth's correction to the apparent density, as determined from the

experimental large-probe curve "knee," and compared the result with the electron den-

sity determined from small-probe data. The comparison showed good agreement.

In order to calculate the Q parameters, the ion temperature was needed. This tem-

perature, as determined from the calculated large-probe curve fit, was too high to be

plausible. Yet, this result may indicate that the ion temperature is greater than is usu-

ally assumed in similar discharges.

This experiment has established the validity of Waymouth's theory for the perturba-

tion of a plasma by a probe. Although discrepancies did arise, they were probably due

to wake effects present in the discharge. Waymouth's theory can be expected to give an

accurate prediction of a plasma disturbance by a probe especially under more nearly

normal conditions when the ratios of probe size to mean free paths are more reasonable.

When Langmuir's condition is violated, Waymouth's theory can be used to predict true

plasma density within the error of experiment.

R. G. Little
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C. LINE-SHAPE STUDIES OF MERCURY RESONANCE RADIATION AT ZERO

MAGNETIC FIELD

The details of our experimental procedure and some preliminary results have been

described in Quarterly Progress Report No. 74 (pages 44-47).

Application of certain of the results of Barrat 1 and Omont 2 gives a linewidth for the

microwave resonance as

/ 2 ) 1 2 11 + T22

12 T12

where A 2 is proportional to the microwave power and T 1 2 is the coherence time given
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Fig. IV-2. Variation of power broadening with atom density. Curve I: Zero
magnetic field. Curve II: Small magnetic field.
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by T 1 2 = T[l1-a(1-e-3PNL)]. T 1 1 and T22 are the imprisonment times for the F = 1/2
S2PN L  

Te4P N L
and F= 3/2 levels, respectively, and are given by T11= re TZ ; is the

true lifetime of the 3 P l state in mercury. N is the atom density and L is a length

related to the cell size. The constant a relates the multiplicity of the involved states

to the probability of coherent excitation transfers from atom to atom, and P is dependent

upon the average absorption coefficient K of the Doppler-broadened line as follows:

2
1 [(2F+I)pR = K - 2F + 1 1
2  4 21+ 1 3

Tk v

where k is the wave number (7-) of the optical radiation and v is the rms velocity of

the atoms.

Variation of coherence time with atom density is shown in Fig. IV-1 for both a zero

magnetic field (Curve I) and for a small magnetic field of ~15-30 gauss (Curve II). The

curves are plots of the theoretical functions indicated on the figure with a = 0. 21, L =

0. 35 cm.

The apparent increase in the effectiveness of the power broadening with increasing

atom density is explained by the ratio of imprisonment time to coherence time appearing

in the power term in the equation for the linewidth. The imprisonment time increases
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Fig. IV-3. Frequency vs vapor pressure for zero field.

more rapidly than the coherence time with increasing atom density. Fig. IV-2 illus-

trates the relation of the experimental points to the theoretical curves, both in zero mag-

netic field and in a small magnetic field. The deviation of measured values from the

theoretical curve at the higher densities in zero field may be due to the fact that some
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of the approximations made in Barrat's theory begin to lose their validity at densities

greater than 2 X 1013 atoms/cm3 or possibly to collisions of the second kind. 3

Figure IV-3 illustrates the displacement of the resonance frequency with increasing

atom density or vapor pressure. This variation appears consistent with the predictions

of Omont, and is due to the slight phase changes caused by the finite transit time of the

photon from one atom to the next. Similar resonance displacements have been observed

by Omont for the even isotopes of mercury in standard double resonance experiments.

C. J. Schuler, Jr.
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