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A. CONSTANT-PRESSURE, LIQUID-METAL, MHD CONDUCTION GENERATOR

1. Introduction

One of the drawbacks of the constant-area liquid-metal conduction generator is the

high-pressure drop associated with its operation. The large increase in pressure drop

over that which would occur under ordinary hydrodynamic conditions is due to large

J X B body forces induced by the magnetic field and to increased frictional pressure

drop caused by the flattening of the velocity profile by the magnetic field. The effects

of these J X B forces cannot be alleviated simply by making the generator physically

larger, which is possible with friction forces, since the former are body forces while

the latter are surface forces.

A possible solution is to construct the generator with a diverging channel and thus

convert (or partially convert) the dynamic head at the generator inlet to static pressure;

this would offset the large forces mentioned above. The features and limitations of this

approach are considered in this report.

2. Available Dynamic Head

The total or stagnation pressure at the generator inlet is given by the sum of the

static pressure and the dynamic head, 1/2 pv 2 , at that point. The maximum increase

in static pressure is obtained from a complete deceleration of the flow to zero velocity,

and represents an upper limit on the increase in static pressure obtainable by diverging

the generator channel.

For example, for a liquid metal with density, p, equal to 1000 kgm/m 3 , and an inlet

velocity of 40 m/sec (which is quite high for a liquid-flow system) the upper limit is

This work was supported in part by the U. S. Air Force (Aeronautical Systems Divi-
sion) under Contract AF33(615)-1083 with the Air Force Aero Propulsion Laboratory,
Wright-Patterson Air Force Base, Ohio; and in part by the National Science Foundation
(Grant GK-19).
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1/2 pv = 8 X 105 ntn
m

[Note: PNaK = 850 kgm/m 3 ; the density of Hg is of the order of 10 4 kgm/m 3 . The over-

all effect on dynamic head would not be greater than in this example, since the velocities

attainable in an Hg system would be much lower than the velocity used here.]

This amounts to approximately 8 atmospheres, or approximately 120 psi, which is

negligible compared with the pressure drop of several thousand psi which would be

required by a generator in the megawatt range.

3. Fluid Mechanical Effects

The complete deceleration of the fluid to zero velocity that is assumed implies an

infinite channel divergence or simply a free jet flowing into a reservoir. Since the gen-

erator cannot physically be located in the infinitesimal length between the jet entrance to

the reservoir and the reservoir and the velocity leaving the generator must actually

have a finite value, the divergence must be limited and the static pressure recovery is

then somewhat less than that determined. Moreover, the amount of allowable channel

divergence under actual conditions must be considered.

In ordinary hydrodynamic flow through a diverging channel, a backflow occurs along

the walls if the divergence is too great. This is the result of the inability of the slowly

moving fluid near the channel walls (which has correspondingly less momentum than the

fluid in the core of the flow) to oppose the adverse pressure gradient arising from

the channel divergence. Similar effects may govern the amount of allowable channel

divergence in the presence of a magnetic field. Indeed, if the divergence is too great,

the field may actually freeze the fluid near the channel walls with the result that there is

a constant cross-section flow down the center of the diverging channel.

4. Simplified Analysis

Consider the steady-state, frictionless flow of an incompressible fluid with scalar

conductivity, cr, through a channel with the geometry and coordinates given in Fig. IX-1.

d

=J  Fig. IX-1. Variable-area MHD
x z generator duct.

v u

z=0
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The channel has constant depth d, length 1, initial width wi, final width , and continu-

ous electrodes. It is assumed that the velocity v = v(z) i z is uniform over any cross

section, the magnetic field B = B.i is constant, and the inlet conditions are specified.

From the geometry of the channel,

A(z) = d [z(+(-z).],

where the subscript i denotes inlet quantities.

From the continuity equation,

v.i
v(z) = . (2)

E V V
A loading factor may be defined as k vB vB where E = . Then

E = -kvB
(3)

J = a-(1-k) vB .

Substitution of (1-3) in the momentum equation and integrating yields

p- o -(1-k)B. v.i L
PO - pi = W In.. (4)

To obtain the condition for a device with no pressure drop, set the left side of (4)

equal to zero. Then the inlet velocity required in terms of the fluid properties and the

channel geometry is given by

Zcr(l-k) B In
1.

v. 1= (5)
1 2

p1- -1-

Consider an experimental generator in which the channel geometry and fluid proper-

ties, field strength, and loading conditions are specified. A generator suitable for an

experimental test facility would have the following dimensions:

d = 5 cm = 0.05 m

2 = 30 cm = 0. 3 m

W. = 18 cm = 0. 18 m
1

k = 24 cm = 0. 24 m.
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The dimensions chosen result in an included angle of divergence of 11. 50. This is a

reasonable estimate for an upper limit on the divergence angle before the separation or

possible freezing effects occur.

If the magnetic-field strength, B., is chosen to be 2w/m 2 , and the loading factor is

0. 5, substitution of these values, together with the fluid properties for NaK and Hg, leads

to the required inlet velocities to restrict the pressure drop to zero.

NaK: v. = 6800 m/sec
1

Hg: v i = 184 m/sec.

Note that the NaK inlet velocity corresponds to a fluid flow greater than Mach 4.

If the flow rate is now set at a typical value in a test facility, 250 gpm, the corre-

sponding inlet velocity can be obtained. This calculation results in an inlet velocity of

1. 76 m/sec for the geometry selected. Substitution of this velocity in the original

pressure-drop equation gives the required values for the pressure drop under these

conditions. Table IX-1 summarizes the results obtained for NaK and Hg under

various conditions of magnetic-field strength.

Table IX-1. Comparison of results attainable with NaK and Hg.

Bw Ap(psi) P out(kw) V I(amps X 10 3

m NaK Hg NaK Hg (volts) NaK Hg

2 326 140 17.6 7. 61 0.316 55. 6 24. 1

1.5 184 78 9.9 4. 28 0.237 41.8 18.1

1 81.7 33.8 4.4 1.9 0.158 Z7. 8 12. 05

Tabulated quantities other than pressure

tions.

1

I YO dJdz

V = kB.v.w.
S111

out

5. Conclusion

drop were calculated from the following equa-

c(l-k) Bidvi I
= In

oP 1
-1

The effects of friction were neglected throughout the analysis, although these effects

are by no means negligible and the analysis of the laboratory model was highly idealized.
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In any case, real effects will further degrade performance and lead to greater pressure

requirements - requirements that cannot be met by inlet dynamic head in a typical

laboratory experiment. The implications of these results will be explored both theoreti-

cally and experimentally.

W. D. Jackson, R. J. Thome

B. LOSSES IN SUPERCONDUCTING Nb-Zr25 % SOLENOIDS AT LOW FREQUENCIES

For application of superconducting windings in an AC magnetic field system, the

losses in such a system would have to be small enough to make them more attractive

than the conventional windings. Losses in two small superconducting Nb-Zr 2 5 % sole-

noids have been measured at low frequencies by using a calorimeter technique.

A complete description of the experimental apparatus and procedure has been given

elsewhere. Briefly, the test solenoid was placed inside an inverted bell jar, which was

immersed in liquid helium. A long thin tube was attached to the top of the bell jar. The

other end of the tube was connected to a flowmeter by means of a heat exchanger. The

flowmeter was calibrated to read directly in milliwatts by dissipating a known amount

of power inside the bell jar and measuring the corresponding rate of evaporation of

helium. Excitation was provided by driving a known current through the solenoid.

The results for a 22-mH solenoid are shown in Figs. IX-2, IX-3, and IX-4. This

solenoid was 1. 25 inches long, and had a 9/16 inch bore. It was wound with 1457 turns

of Nylon-coated Nb-Zr 5%wire of 0. 015-inch diameter.

The frequency dependence of power loss is shown in Fig. IX-2. The loss is pro-

portional to the 0. 6 power of the frequency. This result does not agree with that

obtained by Buchhold and Molenda,2 or by Wisseman, Boatner, and Low.3 They observed

that for short straight sections of superconducting specimen, the loss had a linear fre-

quency dependence.

Figure IX-3 shows the frequency dependence of excitation current for constant dis-

sipation in the solenoid. It can be seen that, within experimental error, quantity (I4F)n

is constant. Extrapolation of characteristics shown in Fig. IX-2 shows that the loss p

is proportional to 12. Hence

P c I FI/2

This is the same relationship that exists in normal conductors when skin effect is pres-

ent. This relationship also implies that the effective resistivity p of the superconducting

specimen is independent of current. This result agrees with that obtained by Zar, 4 who

also observed that p is independent of current.

Figure IX-4 shows the variation of resistivity with frequency. The resistivity was

found to be proportional to Fo. 6 within the range of the parameters of the experiment.
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This curve has the same characteristics above 500 cps as those obtained by Zar. There

is reasonable quantitative agreement between the results of the Zar experiments and the

present experiment above 100 cps.

These results do not agree with the results of Wisseman, Boatner, and Low, and of

Buchhold and Molenda. In the present experiments and in those of Zar the specimens

were solenoidal. It appears, therefore, that the different geometrical shape of the

specimen was at least partly responsible for the divergent results.

Frequency dependence of critical current of the solenoid is shown in Fig. IX-5. It

can be seen that below 10 cps, degradation in the current-carrying capacity of the sole-

noid increases faster than the heat dissipation. This indicates that in this region the

solenoid was quenching because of bulk heating effects. The solenoid is obviously not

quenching because of magnetic field effects. A probable reason appears to be mechanical

resonance in the solenoid, which causes localized quenching.

100 -

< 10

i.-Z

U

0.1 I III I I i
10 102 10

3

FREQUENCY (CYCLES)

Fig. IX-5. Frequency dependence of critical current.

Mechanical vibrations are probably also responsible for the large disagreement in

results for solenoidal specimens and straight-section specimens. Any dissipation in

maintaining steady-state vibrations will be observed as a loss in the specimen. This

loss will be in addition to that produced by localized quenching. In the case of a straight-

section specimen, which generates its own magnetic field,3 these vibrations will have

little effect; hence, the observed losses will be lower. Similar results were also obtained

for a 45-mH solenoid.

Losses in a superconducting winding system have been compared with those in a
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nonsuperconducting optimally cooled system and a conventionally cooled system. These
preliminary calculations indicate that an AC magnetic field system having liquid-hydrogen
cooled copper winding (optimum operating temperature for copper is 21. 20 K) would
require only about half the power of an equivalent conventionally cooled system. In the
calculations it is assumed that the refrigeration plant consumes approximately three
times the power required by an ideal Carnot engine.

The superconducting winding system, at 100 cps, would require only 1/30-1/40 of
the power consumed by a conventional winding. Five times the power requirements of a
Carnot engine have been allowed for the refrigeration plant. At lower frequencies even
larger savings should result. More experimental work with larger solenoids would be
required to confirm this.

W. D. Jackson, A. N. Chandra
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C. MAGNETOHYDRODYNAMIC INDUCTION MACHINE OF FINITE LENGTH

An MHD induction machine of infinite length has been considered previously., 2 For
a machine that is not long compared with the entry length of the fluid into the traveling-
field structure, there are severe discrepancies between performance calculations based
on infinite and finite-length models. The solution has been obtained for a finite-length
machine with an ideal iron core of infinite length, and with a lossless core of arbitrary
permeability and infinite length.

1. Model

The model to be analyzed is shown in Fig. IX-6. The fluid flows in the x-direction
between two parallel exciting plates of length f and infinite extent in the z-direction, a
distance 2a apart. The fluid velocity is assumed to be constant and in the x-direction to
uncouple the electromagnetic and fluid equations and thus allow an analytical solution to
be obtained. (This is not necessary for a slit-channel machine, ak << 1, because the field
solution is independent of the velocity profile. 3 The slit-channel machine is the only case
of practical interest. ) The region outside the plates is filled with a core of permeability

ti and conductivity c. The exciting plates, separated from the fluid and core by
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EXCITATION

v FLUID I

I X

Fig. IX- 6. The model.

insulators of infinitesimal thickness to prevent current flow in the y-direction, are

assumed thin so that they can be replaced by current sheets with a surface conductivity

a s = a-e b, where b is the plate thickness, and cae the material conductivity. The plates

are driven by a current source that gives a symmetric surface current density

K = i NI cos (wt-kx), (1)z

which represents a traveling current wave of amplitude NI, frequency W, wavelength X =

Zy/k, and velocity vs = w/k. This is considered to be produced by a balanced two-phase

system with sinusoidally distributed windings of maximum turns density N and peak cur-

rent I. Only two-phase excitation is considered because an n-phase system can be

reduced to a two-phase equivalent.

2. Transformed Potentials

The electromagnetic fields are determined from Maxwell's equations with the usual

MHD approximation of neglecting displacement currents. Assuming constant velocity

eliminates the need for the fluid equations. The analysis is simplified by the use of a

vector potential A and scalar potential defined by

B= VXA (2)

and

8A
E =-7 -at (3)

Noting that Ohm' s law in a moving fluid is J = a(E+vXB), and substituting Eqs. 2 and 3 in

Maxwell' s equations gives

2 A- +VA - a + (v XVXA) = 0, (4)
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and

V27 - p t = 0. (5)

Here,

V A + o- = 0 (6)

has been chosen to uncouple Eqs. 4 and 5. The vector potential is in the z-direction and
independent of z, and must have the same ejwt dependence as the exciting current, but
the e- j k x dependence of the excitation is preserved only in the driven part of the solution.

Spatial transients, determined by the natural behavior of the system, exist because of
the finite length. The analysis is simplified by writing the vector potential in complex
notation

A(x, y, t) = Re zA (x,y) eJ. (7)

The normal method of solving boundary-value problems is to determine the natural
modes in each region from the geometry, and then use the boundary conditions to find
the constants. The modes are not evident here, except for the special case of the ideal
core considered below. Instead, the double-ended Laplace transform of the x-variation
is taken. The transform used here is

A(p, y) = A(x, y) e - p kx dx, (8)

where p is the complex transform variable, normalized with respect to the wave num-
ber k of the excitation. The transformed vector potentials are obtained from the trans-
form of Eq. 4 for the fluid and core, by using the boundary conditions on the magnetic
field at the fluid-core interface. The solution is

A fK(p) cosh y(p) ky
Af(p, y)= , j<YJ a; (9)

k[y(p) sinh y(p)a + KS(p) cosh y(p)a]

and

JfK(p) e- 6 (p )k(Iy I-a)
Ac(P, Y) = , y >a; (10)

k[y(p) tanh y(p)a + K (p)]

where

Y (p)= + jRM + RM(1-s) p, (11)

2 (p) = _p + jRMc ' (12)
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v -v
Ss--, (13)

v
s

f
K = (14)

1cffL

RM = k'f (15)M k

R = ccs (16)Mc k '

and K(p) is the transformed exciting current. The subscripts f, c, and e are used to

denote fluid, core, and exciting-plate quantities, respectively; s is the slip in terms

of synchronous speed v s ; and RM and RMc are the fluid and core magnetic Reynolds

numbers. These equations have the same form as for the infinite-length solution, but

y and 8 are no longer constants. 1' 2

For a uniform traveling current of length 2,

NI[ 1- e- (p+j)k(17)
K(p) - (17)

k(p+j)

This is just the sum of a positive step at x = 0 and a negative step at x = 2, so that super-

position can be used to find the total field solution. The field that is due to the negative

step at the exit is the negative of the positive step solution, delayed in space by a length 2,

and with the appropriate phase shift resulting from the negative step, e- jkf.

The inverse transform for the vector potential is evaluated as a contour integral,

which is the sum of the residues at the poles enclosed within the contour. The poles are

the values of p at which the denominator is zero. One pole is evidently

Pe = - j , (18)

which is due to the excitation; this gives the field with no ends. The other poles are

determined by

y sinh ya + K5 cosh ya = 0, (19)

for which an analytical solution has been found only for an ideal iron core. 5' 6

3. Ideal Core - Fields and Impedance

For an ideal iron core, K = 0, the natural poles occur when y = jnr, or when

RM(1-s) j4 2n
P =  1 1+ 2+ . (20)

n RM(1-s) aRM(1-s)
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The ± sign of p goes with the sign before the radical. The transform is not essential

for this case, as the modes can be determined from the boundary conditions at the ideal

iron core.

The residues at the poles are evaluated by expanding the denominator in a Taylor

series about the pole. The case n = 0, treated separately because the series involves
0

, will differ in all equations by a factor of 2, so that it is convenient to define

A = (21)
n

1 n 0.

The residues could also be obtained by using small-angle formulas.

Examination of the square-root term in Eq. 20 shows that the real part is always

greater than one, and that both the real and imaginary parts are positive. The + poles,

with positive real and imaginary parts, are the poles for negative x, since the natural

response must decay away from the entrance. Similarly, the - poles have negative real

and imaginary parts and apply to positive x. The vector potential that is due to the

entrance is

+
niry p kxfNI(-1) n cos - e n

A (xy) = -a for x < 0, (22)
n=O + \ R M(1-s)- +n=0 a n(pnjn )M 2

and

-jkx ny pnkx
LfNI cosh y(-j) ky e- j k x n NI (-1) n cos e

A (x,y) = + a for x > 0.
ky(-j) sinh y(-j) a n=0 akAnp+j) RM- p-

(23)

The inverse transform and the convergence condition for an infinite number of poles

extending to infinity along the real axis are treated by Churchill. 7

Further information about the field behavior is obtained by restricting attention to the

regime of practical machine parameters; s < 1 for high efficiency, a << 1 for a reasonable

power density, and IsRMI >> 1 for the reactive power to be small compared with the real
1

power. The value of a(1-s)RM will probably be around unity, making the coefficient of

n in the last term under the radical sign of Eq. 20 large and causing an appreciable

increase in the poles from n = 0 to n = 1. The residues for n * 0 are small compared

with the residues for n = 0, and they decay much faster. The fields and powers, with a

small error, can be calculated by using only the excitation and n = 0 components for this

case. The powers resulting from the n * 0 terms are at least two orders of magnitude
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smaller than the powers that are due to the n = 0 components for reasonable parameter

values.
4

Consider next the poles for n = 0. For the region of interest 2 will be less
R M(1-s)

than one, and Eq. 20 may be written approximately

R M(1-s) 2j 2
PO M 1 ± + s+ ,4 (24)

RM(1-s) 2  RM(1-s)4

with only the leading terms of the binomial series retained. The + pole has a decay

length, 1 in wavelengths, of 1 . This is small, a few hundredths of

2r Re 2rr RM (1-s)

RM(1-s)
a wavelength. The - pole has a decay length of 2w , which is several wavelengths.

This clearly shows that the perturbation fields may extend an appreciable distance into

the machine.

The coil impedance for a finite-length machine, a function of the coil location, is

Z 1 +

Ro -fVsas y(-j) tanh y(-j) a

+ nJ(eZlP n-1) e ( p n + j) k x e (n-j)kx (5)

for a coil one wavelength long. Here,

2nfv s  c (
R= k (26)

The ± sign is for the two phases; + for the cos kx coils, and - for the sin kx coils. The

first term is the resistance of the coil on account of its finite conductivity, the second is

the impedance with no ends, and the remaining terms are the contribution from the per-

turbation field. The coil impedance is a function of x, where x is the location of the

begining of the coil. For the cos kx coils, x is 0, X, 2X, etc. The exit fields are not

included in this calculation, but their effect is small.

4. Ideal Core - Powers

The finite-length power calculations are considerably more complicated than for the

infinite-length machine because of the infinite sums and the four distinct regions of space,

as shown in Fig. IX-6. Regions 1 and 2 are before and after the entrance, and regions 3
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and 4 are before and after the exit. For a long machine there is also a central core,

where the infinite-machine condition exists. The field solution is already known in all

space in terms of the entrance solution given above and the spatial and phase delays that

are due to the negative step at the exit. The fields in regions 1 and 2 are the solutions

obtained for x < 0 and x > 0 (Eqs. 22 and 23). The fields in regions 3 and 4 are the neg-

ative of those in regions 1 and 2, respectively, from the negative step, multiplied by

e- jki from the phase shift, and centered about x = f.

The power calculations are simplified by breaking up the powers by regions and

sources, and by using the field properties. Only the power supplied by the exciting sys-

tem to the fluid, Ps, and the mechanical power output, Pm' are considered, as the power

dissipated in the fluid can then be determined. For convenience, the powers are split

into four parts, determined by which field or fields are the sources; the excitation

powers, the powers resulting from cross products between the excitation and perturba-

tion fields, the perturbation powers attributable to fields at the entrance or exit alone,

and the perturbation powers resulting from coupling between the entrance and exit fields.

The powers are identified by numerical subscripts for the region, and by e for the exci-

tation power and ep for the cross products. No subscript is used for the perturbation

powers in P . The P terms are all e-p cross products, so no subscript is needed.m s
The results are listed in Table IX-2. There are no cross terms between the different

values of n. There are Pm terms due to coupling between the entrance and exit fields, but

no P terms. For a slit channel the only nonzero P term is for n= 0, but this is thes mep
largest of all of the mechanical perturbation powers. Examination of the equations shows

that Pml is negative, Pm4 is positive, and Ps2 and Ps3 reverse sign with the slip, s.

The results for the ideal-core powers are shown by the values of Table IX-3 for a

machine that is 6 wavelengths long. The principal result is that the power output is
P

decreased but the efficiency, T for a generator, is only slightly changed. This is mis-
m

leading; the total machine efficiency is decreased because, for the same viscous and

excitation losses, less power output is obtained. The end effect is greater at small s

and at small R M . This limits the obtainable efficiency, and means that the smaller RM
machines obtained either with a plasma or with a low-power output generator 4 are less

efficient.

Oscilloscope pictures of the powers give further information about the dependence

on machine length. In Fig. IX-7 only the set for s = -0. 2, R M = 10, and a = 0. 1 is shown

because the general shape is the same for all curves. As s increases, the curves rise

faster, while for small s or smaller RM the slope decreases, as expected from

Table IX-3. A very short machine operates as a flow damper, absorbing both electrical

and mechanical input powers, so that some minimum length is required for generator

operation.
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Table IX-2.

Region 1

Pml aRM(I-s)
P - 4r Re

o

Psl
0O

Region 2

P2 =Pm2ep + P4
m2 m2ep m4

m2ep RM(1-s)
P 0  2 Re

P 27lo

A0n=O

Powers for a machine of finite length.

An(J+(1-s)Pn) + C+ C+

n n

p+ n n n

Ps2
P

0
-r Re

n=0
a (pn+J )2

Region 3 T

Pm3 = Pm3ep + Pml

RM(1-s) 0 -

- 2w Re

+2 ,,+,o-)

+ C 1-O'

j+ +j 2

+ )z )e-
jl- e"

e-j 
z

n
S(R 2 (1-s)

n=O A a(p++j) 2

tExcitation powers must be added to Regions 2 and 3.
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iR M(1-s)
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m3ep

P
0

Ps3

P
0

- 2 Re

- (p"*) 1 e

-(+
n

*2 +(POj
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Table IX-2 (continued).

Region 4

Pm4 aR M(1-s) Re
P 4 Re

n=0

Ps4 = 0

Coupling between Entrance and Exit
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4M Re
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4Mr Re

4Trf
Pn+* C- C +

n n
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Fig. IX-7. P s, P , and efficiency for a finite-length5 m
machine vs length I. (s = -0. 2, R M = 10,

a = 0. 1, and total range of k is 20 wave-
lengths.)

Table IX-3. Total powers and efficiencies for a machine that is six wavelengths long.

s R a P P e(%) e (%)
M s M 0

-0.05 10 0.1 0.483 0. 537 85. 6 95. 2

-0.1 10 0.1 0.697 0. 723 87. 6 90.0

-0. 2 10 0.1 0.897 0. 909 82.3 83. 3

-0. 3 10 0. 1 0. 927 0. 939 75.9 76.9

-0. 5 10 0. 1 1.008 1.002 67.0 66. 7

-1 10 0. 1 0. 997 0.997 50.0 50.0

-0.01 100 0. 1 0. 033 0.049 66. 6 99.0

-0.1 100 0. 1 0. 971 0. 971 90.9 90.9

-0. 2 5 0.1 0.842 0.866 81.0 83. 3

-0. 2 1 0. 1 0. 716 0.841 71.0 83. 3

Ps, P are normalized to be 1 if there is no end effect.

te is the efficiency with no end effect, 1
1 - s
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5. Lossless-Core Machine

A machine with a lossless core of arbitrary permeability is treated by an extension

of the previous theory. The arbitrary core problem is more complicated for the fol-

lowing reasons.

1. An analytical solution for the poles is not available, although equations can be

found for the fields and powers in terms of the unknown poles.

2. The fields are no longer orthogonal for the power calculations.

3. The fields are not zero in the core.

The solution is described, but not carried through in the same detail as for the ideal-

core machine.

The poles for a lossless core, 5 = 1, are determined from Eq. 19. Writing y as the

sum of real and imaginary parts shows that y must be pure imaginary, y = jb, and that

b tan ba - K = 0. (27)

The roots of Eq. 27, denoted by bn , cannot be determined analytically, although numeri-

cal methods are available. For Ka << 1 or ba >> 1, the roots become the same as for the

ideal core.

The poles, in terms of these roots, are

RM(1-s) RM(1-s)

The poles for an arbitrary core lie at different points on the same curve in the p-plane
as the ideal-core poles.

There is one important distinction for the nonideal core. The lowest root, b , is no
o

longer zero, but lies between zero and Tr/2a. The real part of the square root of Eq. 28

for n = 0 will be larger, and the decay length for po significantly less than for an ideal

core. For the practical parameter values s = -0. 1, R M = 10, and a = 0. 1, the decay

length is 2. 1 wavelengths for an ideal core, but only 0. 19 wavelength for an air core.

The other roots, and thus the poles, are essentially unchanged. The zero-order field

will not be much larger than the others and will not dominate the powers. The perturba-

tion field decays faster, and for this reason may have a smaller net effect on the per-

formance.

The vector potential is

0o 2 p kx
Afy) FifNIb2 cos b ky en

A (x, y) = c n n for x < 0 (29)

n=O k(cosbna) +a 2Z+b RM +-s)n a) - pK IPn +
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and

-jkx
) NI cosh yky e

A (x, y) =
k(y sinh ya+K cosh ya)

co 2 Pnk x
0 4fNIb cos b ky epfnkx

+ _n n forx>0.

n= 0 k(cos bna) K+a (K2+b - P (pn+j)

(30)

The impedance for a coil that is 1 wavelength long, calculated as before, is

Z_ 1 j

R FfVsa s  y tanh ya + K

jn - +J kx e ( p - j ) k x

jb2(e rr )K e (p ) ± e (

n ((31)

n= 0 r K+aK2+b2 )jRM(1-s) n-

in which the terms are the same as those described for the ideal core. The arbitrary

core powers are much more complicated because many of the terms that dropped out

for an ideal core have to be retained now.
E. S. Pierson, W. D. Jackson
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D. PENETRATION COEFFICIENT FOR AN ION IN A PARTIALLY MOBILE FILM

1. Introduction

The importance of an adsorbed monolayer of cesium on the electrode surfaces in
thermionic converters has been treated in great detail., 2 The relation between changes
in electron work function and ionic heat of adsorption has been expressed by the penetra-
tion coefficient f = Ai/A e . This relation has been theoretically obtained for two lim-

iting types of adsorbed films, perfectly mobile and perfectly immobile. 3 These
theoretical expressions have been useful in interpretations of the effects of cesium

fluoride additives on collector surfaces.4

Since the actual adsorbed film is neither perfectly mobile nor perfectly immobile,

experimental values for f fall between the two limiting cases, approaching the penetra-
tion coefficient obtained for perfectly immobile film as the coverage increases. This is
to be expected because at low coverages the thermal effects are comparable to the
particle interaction, and thus the particles in the adsorbed layer have enough thermal
energy to become partially mobile. These thermal effects have been accounted for pre-

5viously in an approximate manner. In this report, thermal effects are considered from
an exact, statistical mechanical point of view, thereby enabling derivation of the pene-
tration coefficient for a partially mobile film, which agrees well with experimental data 6

over the entire range of coverage.

2. Theory

The immobile film has been defined as that film which displays a well-ordered array
of adsorbates in which all adsorbates are equally spaced from each other. This model
has been described in detail previously. 3

The results of the previous analysis may be summarized as follows.

(i) Potential of an ion in an immobile film,

2.25qk 2 
1/2

V. = .
Im 3 id

(ii) Potential at infinity relative to the surface,

V = 2TrMa- 6 . = i
0 ii d2oo 1 1 d2

(iii) Penetration coefficient for immobile film,

Vi.m 2. 25X 1/2f. ==1 1 6im V Trd i
00
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As the equilibrium temperature of the monolayer is raised above T = 00, thermal

energy will displace some of the ions from the well-ordered array of the immobile film.

Since an ion can be at any potential between V. and oo, there exists an effective poten-

tial at any 0 above that given by (i). This effective potential increase is given by

1v V.

V

Ve kTdg,

where dg = density of states as a function of V. If the adsorbate density on the surface

is uniform and given by p = Gi/4d 2 , then the density of states is written

dg = p dA = idA
( 0d?- i 2 rij drij'

with r.. as identified in the previous report. 3 It has been shown that r.. is expressible

in terms of V as

2qX2

V- (
3r..
13

Equation 3 solved for rij and placed in Eq. 2 yields

dg = ( -d2)(2q2)2/3 V-5/3 dV.

Let u(0) = V(0)/kT. Use of this transformation and of Eq. 4 in Eq. 1 yields

AV= (i - )(2qk2 2/3(kT)1/3 00

im
-u u-2/3 du

e u du

for the single adsorbate.

The penetration coefficient for the partially mobile film is given by

Vim + AV
f=l- =f.

V Im V

Using result (ii) above and Eqs. 5 and 6 for cesium adsorbed on tungsten (X = 1. 65 A,

d= 3. 15 A), we obtain

(5)

f = f. - . .056( T 1/3 j
m 10 0 im()

uim(0)

-u -2/3e u du.

The integral is an incomplete gamma function that has been evaluated by Koskinen

in the following manner. Let u = w3 so that Eq. 7 becomes

QPR No. 75
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f = fm 0.168 )1/3 e dw - =1/3 3 w (8)

which, with T= 800 K (the mean value of temperature for Taylor-Langmuir data), becomes

w i() _w 3

f = f. - 0. 14 + 0. 156 m e dw. (9)im 0

This is the form of the integral that has been evaluated by Koskinen 7 as a function of the

upper limit. By using these results and those of the previous report 3 for f. , the curve

0.9 EQUATION 9

0.8 -

TAYLOR - LANGMUIR DATA
0.7 -

0.6 I I -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. IX-8. Penetration coefficient for partially mobile film vs coverage.

of Eq. 9 can be drawn against coverage as in Fig. IX-8. Also shown there are the

experimental values obtained from Taylor-Langmuir data.

3. Conclusions

Experimental values for the penetration coefficient are in excellent agreement with

theoretical values of Eq. 9 for a partially mobile film. Therefore it may be concluded

that the adsorbed film is accurately described as a partially mobile film. As is to be

expected, as the coverage increases, particle interactions increase and thus the film

can be described as an immobile film; but, at low coverage, temperature dependence

must be included in order to obtain valid results. Accurate values for the penetration

coefficient have been obtained through a theoretical formulation that is valid for the

entire range of coverage.
J. W. Gadzuk
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E. ELECTRON AND ION EMISSION FROM A TUNGSTEN MONOCRYSTAL

1. Introduction

The work functions of the different crystallographic orientations of a single-crystal

tungsten filament in vacuo have been obtained and the results compare well with data

obtained by Nichols, Smith,2 and Hutson. 3 The vacuum measurements, including col-

lector bias (with respect to the emitter) data, anode bias data, guard-ring bias (with

respect to the collector) data, Richardson data, and an emission map of the different

crystallographic faces, indicated that the tube would be a satisfactory test vehicle for

taking emission measurements in cesium vapor.

2. Description of the Apparatus

A schematic diagram of the tube and associated circuitry used to take cesium meas-

urements is shown in Fig. IX-9. The tungsten crystal is a 0. 003-inch diameter wire in

the center of the tube. It is enclosed by a concentric cylindrical tantalum anode, which

is enclosed by a cylindrical collector with guard rings on both sides. The guard rings

and collector are of platinum which has been painted on the glass walls. A slit in the

anode subtends an angle of 4. 00 on the filament. Two iron slugs encased in glass are

spot-welded to the anode so that it can be rotated from outside the tube by magnets. To

measure electron emission, the anode was typically biased at 1 kilovolt positive with

respect to the filament, and the collector at 6 volts positive. The entire tube was placed

in an oil bath regulated within 0. 1 C in temperature.

3. Experimental Techniques

After the cesium ampule was broken, preliminary attempts to obtain collector bias

curves and "S" curves indicated that the two major barriers to taking reliable data were

leakage currents across the glass walls of the tube and contamination in the tube.

Even though the tube had been well outgassed and pumped down to a pressure of a
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L AND N TYPE K POTENTIOMETER

Fig. IX-9. Schematic diagram of the tube and circuit used
for cesium measurements.

few times 1011 torr before breaking the cesium ampule, the decay of electron emission

currents to approximately half of their original values, 30 minutes after flashing the fil-

ament to a high temperature, indicated that some type of contaminate was present in

the tube. Best 4 has shown that large quantities of hydrogen are evolved when Pyrex is

exposed to alkali metals. Thus, some degradation of emission, which is due to hydrogen,

was expected. The results of Stickney 5 indicate, however, that the addition of H 2 to a

Cs-W system actually enhances the emission. Therefore there is some doubt about the

nature of the contamination. Flashing the titanium getter on the tube only marginally

decreased the amount of contamination. The technique used to avoid the decay of
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emission was to flash the tungsten crystal at approximately 2050 'K (or above) and plot

the "S" curve on an X-Y recorder as the crystal was cooled to the bath temperature. An

"S" curve could be taken in a couple of minutes in this manner, in contrast to the hour

(or more) required in the more tedious point-by-point method.

We found that the resistance of each of the guard rings from one end to the other was

too great to effectively shield the collector from leakage currents when the guard rings

were simply grounded. The resistance of the heated folds between the guard rings and

the collector was of the order of 105 ohms when the folds were at approximately 150 C.

This resistance was somewhat less than expected. The combination of high-resistance

guard rings and low-resistance leakage paths produced leakage currents of the order of

10-7 amp (or more) at typical anode and collector bias values. These leakage currents

to the collector are larger than the emission currents to the collector. We found, how-

ever, that the leakage currents could be balanced out by biasing the guard ring at

approximately 3 millivolts negative with respect to ground. This balance was

apparently not affected by the voltage applied across the filament to heat it. By
-9

using this "bucking voltage," the leakage currents were reduced to less than 1 X 10 amp

(3. 8 X 10- 4 amp/cm2), and the following results could be obtained.

4. Results

An "S" curve of electron emission from the (110) face at a cesium temperature of

40°C is shown in Fig. IX-10. This curve was found to be quite reproducible and to be

independent of the electrometer input resistance RE , as long as RE was no greater than

103 ohms. At R E = 104 ohms, the collector current decreased approximately 25 per
5

cent; this is consistent with the value, ~10 ohms, for the leakage resistance between

the guard rings and collector.

The data appeared to be qualitatively the same as data taken on polycrystalline sur-

faces by other workers. The actual values of the observed currents were an order of

magnitude larger than those observed by Taylor and Langmuir.6 This is surprising,

since they assumed that their polycrystalline surface was composed primarily of (110)

faces. The effective work function at the low-temperature peak (T=750*K) of the "S"

curve is 1. 62 ev at zero field. The minimum work function observed by Taylor and

Langmuir was 1. 70 ev.

At the high-temperature end of the curve, the last four points fall on a straight line

with a Richardson slope R of 2. 34 ev at zero field. At these temperatures (> 1900 K),

the surface should be completely free of cesium and the measured currents should be

identical to those measured in vacuo. The R of 2. 34 ev is, however, half that meas-
1 2

ured by Nichols and by Smith. At the low values of electron emission, there is appar-

ently some distortion of the curve because of leakage currents.

There is no obvious explanation for these anomalously high values of electron
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emission. Spurious effects, such as secondary electrons, x-ray electrons or photo-

electrons produced at the collector and accelerated to the anode, would decrease the

PEAK CURRENT IS A FACTOR OF -40 LARGER THAN
THAT MEASURED BY TAYLOR AND LANGMUIR

( E = 1.
62

ev AT 7500K AND ZERO FIELD

0.6 0.8 1.0 1.2 1.4 1.6 1.8

i03/T (1/OK )

Fig. IX-10. "S" curve on (110) face at TCs = 40 0 C.

10-5 L

0.4

current measured at the collector. It is possible that the leakage currents were not

completely balanced out by the bucking-voltage technique.

The tube developed a leak after these data were taken and, in an attempt to prepare

the tube for reprocessing on the vacuum system, the platinum guard rings and collector

were washed off the glass walls. Apparently the poor bond between the platinum and the

glass was the major cause of the high resistance of the guard rings.
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5. Summary and Future Plans

A new tube with a more elaborate guard-ring system is being constructed. The

platinum guard rings and collector have been evaporated onto the glass, instead of painted

on as before. It is hoped that these guard rings will eliminate the troublesome leakage

currents and thus help determine whether the observed high values of collector current

are due to spurious effects, or are actually electrons emitted from the surface under

study. Measurements of ion currents should provide a cross-check on the measured

values of work function.

J. L. Coggins
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