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A. BOUNDS ON THE NATURAL FREQUENCIES OF LC STRUCTURES

The purpose of this report is to prove the following theorem.

THEOREM: The smallest (nonzero) natural frequency that one can realize from a

set of positive capacitors C1, ... Cm and a set of positive inductors L . . Ln results

when one

1. connects the capacitors in parallel to produce a capacitance C = C1 .. + Cm•

2. connects the inductors in a series to produce an inductance L s = L 1 ... + Ln; and

3. connects C and L in parallel.
p s

Similarly, the largest (finite) natural frequency that one can realize results when one
-l

1. connects the capacitors in a series to produce a capacitance C s = (Cl... +Cm/)
-1

2. connects the inductors in parallel to produce an inductance L = (Ll...+L 1

3. connects C and L in parallel.
s p

The theorem is useful as it provides the following bounds on the natural frequencies

of any transformerless LC structure

1 > > 1 (1)

ps sp

The proof rests upon the fact that every natural oscillation is self-exciting.

PROOF: Let NLC be any transformerless LC network constructed from C 1 ,... Cm
and L1 , ... Ln. Assume that NLC executes a natural oscillation at the frequency s = jWv

and let the (complex) capacitor voltages of NLC be designated respectively as the eCk'
The currents in the capacitors of NLC are given, respectively, by the quantities

jWv CkeCk' If the capacitors of NLC are replaced by current sources which deliver the

capacitor currents jwvCkeCk, then the network behavior remains unchanged. Thus let

this be done and let the resulting netowrk be designated as NLI*

The inductor currents and voltages of NLC may now be determined by analyzing the

current-driven inductor network NL If k denotes the current transfer ratio from the
kth current source to th inductor of N then the ithnductor current is given by

iLL jvCkeCkA (2)

k

where the summation extends over any independent set of the current sources of NLI.

The corresponding branch voltages are given by the expressions

QPR No. 75 211



(XVI. NETWORK SYNTHESIS)

eLU jvL iLf

=_L C keCkAlk. (3)

k

If next the current sources of NLI are replaced by the original capacitors and the

inductors of NLI are replaced by voltage sources supplying the inductor voltages eL'
then the network behavior once again remains unchanged. Thus let this be done, and

let the resulting network be designated as NVC.
The capacitive voltages ej now can be calculated by analyzing the voltage driven

Cj th
capacitor network NVC. If V denotes the voltage transfer ratio from the th voltage

th . .th
source of NVC to the j capacitor, then the j capacitor voltage is given by

eCj = I V jeLk (4)

where the summation extends over any independent set of voltage sources of NVC. Sub-

stitution of (3) into (4) yields the self-excitation condition

ecj V -2LCkAtkj eCk. (5)
k k

The following bound can be inferred for the left-hand member of (5)

leCj w 2 L CkIA kI VJ leCkl (6)
k

Because the purely inductive network NLI cannot exhibit current gain and the purely

capacitive network NVC cannot exhibit voltage gain,

IAkl < 1 and IVjkI -< 1 (7)

Use of inequalities (7) in (6) yields

lecj w L 2CkleCk

<2 max [eCk LC
V LCkiCk

k i

W2 max e Ls C. (8)If the index j in (8) is chosen so as to maximize e there results

If the index j in (8) is chosen so as to maximize ecjI, there results
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max IeCj max eCk L C

j V k P

or, equivalently,

1 < 2 L C (9)
v sp

From (9) it is evident that

W> 1 (10)

s p

Equation 10 proves the first assertion of the theorem, since W can represent any natu-

ral frequency of NLC and NLC can be any network constructed from the given components.

The second assertion of the theorem can be deduced from the first assertion (now

proved) by frequency transformation. Thus, let NLC denote the network derived from NLC

by the frequency transformation s - . The following relationships hold between the

parameters of NLC and NLC (primed quantities refer to N'C):

1
V W V

v 1

L' = C-1
s s

C' = L - 1.  (11)
P P

Application of (10) to NLC yields

1' > I (12)

s p

Use of (11) in (12) yields

1 1
C 1 > i (13)

v -1 -1
s p

or, equivalently,

1 W- . (14)

p s

The second assertion of the theorem follows from (14) just as the first assertion followed

from (10).

H. B. Lee
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B. BOUNDS ON IMPEDANCE FUNCTIONS OF R, ±L, ±C, T NETWORKS

1. Introduction

It is well known that for a one-port network N containing positive resist-

ances, ideal transformers, and one reactive element, the locus of the driving-point

Ira Z Z-Plane

Locus of Z(jc)

R R
s o , ReZ

Fig. XVI- 1.

impedance Z(jw), as w varies from -oo to +oo, is a circle in the complex Z-plane

(see Fig. XVI-1). The equation of the circle is

o s o sSR 0 +R R 0 Rs
2 2

where Ro is the driving-point impedance of N when the reactive element is open cir-

cuited, and Rs is the driving-point impedance of N when the reactive element is short

circuited.

In this report we prove two theorems which can be considered as generalizations of

the above-mentioned result. The theorems are as follows:

THEOREM 1: Let Z ii(s) be a driving-point impedance of an R, ±L, ±C, T two-port

network N (that is, a network containing positive resistances, positive and negative

inductances, positive-and negative capacitances, and ideal transformers). Then, as W
varies from -oo to +oo, the locus of Z..(jw) lies within the closed circular disk of

the Z-plane defined by (see Fig. XVI-2)
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R.. +R.. R.. - R..
z iw) - 110 US 110 11s

11 2 2

where R.ii is the driving-point impedance Z.. of N when all reactive elements are open

circuited, and Rii s is the driving-point impedance Z.. of N when all reactive elements

are short circuited.

Z-Plane

Locus of Z. (jwo)

lies within disk

R Rii..11111 Re [Z]

~r Rii. R s110 lisr =

R.. +R..
110 uisZ2 2

Fig. XVI-2.

THEOREM 2: Let Z 1 2 (jw) be the transfer impedance of any R, ±L, ±C, T two-port

network N. As w varies from -oo to +oo, the locus of Z 12 (j ) lies within the closed

Im[z] Z-Plane

Locus of Z2 (n)

lies within disk

RE-' [Z]

R l - R (s) -
R 110 uS Jo Jo

2

R 12o + Rl2s

Fig. XVI-3.
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circular disk of the Z-plane defined by (see Fig. XVI-3)

R 1  + R (R -R ) (RZ-R
12o 12s 11o 11 2 2oR2s

2 2 2

where R120 is the transfer impedance Z12 of N when all reactive elements are open
circuited, and R12 s is the transfer impedance Z12 of N when all reactive elements are

short circuited.

The foregoing two theorems can conveniently be summarized in the following single

theorem.

THEOREM 3: Let Z. .(s) be any open-circuit impedance of an R, ±L, ±C, T two-port

network. As w varies from -o to +oo, the locus of Zij (jw) remains within the closed

circular disk of the Z-plane defined by

R.. + R.. (R..-R.. ) (R..-R..ijo + Rij s  (R -Rs) (Rjj0o-Rjj s )i( ) 2 2 (2)

The quantities R..i and R.. which appear in the preceding theorems are easy to cal-

culate, because they are the impedances of resistance networks. Thus the theorems

provide a simple means for bounding the magnitude, the phase angle, and the real and

imaginary parts of Z ij(jc).

2. Proof of Theorem 1

We begin by considering three lemmas.

LEMMA 1: If a ±R, T network N (that is, a network containing positive and negative

resistances and ideal transformers) is simultaneously excited by complex current

sources I o , 1' ''.. I m , and complex voltage sources E1, ... , En , then the total com-

plex power supplied to N can be expressed as follows:

P= PI + PE

where PI equals the complex power supplied by the current sources acting together, with

the voltage sources set to zero, and PE equals the complex power supplied by the voltage

sources acting together, with the current sources set to zero.

The reader is referred to GuilleminI for a proof of Lemma 1. Guillemin intends his

proof to apply to the case of identical time-varying sources and instantaneous power.

After some obvious modifications, however, his proof applies equally well to the case

described above.

LEMMA 2: When an R, T network N is excited by complex current sources I o ,

Ii' '... I m , the complex power P supplied to the network is such that

Re [P] > R sIo1 2 ,
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where R s denotes the driving-point impedance seen by the source I when all other

sources are short-circuited.

PROOF: Let N be excited by the current sources I o , I1' '... I m , and let V o ,

VI ) ... Vm denote, respectively, the voltages developed across these sources. Replace

each current source Ij (j=l, 2, ... , m) by a voltage source of value V.. Observe that this

substitution does not affect the network behavior and, in particular, does not affect the

complex power supplied to N.

Application of Lemma 1 to the network thus obtained shows that the complex power

can be calculated as follows:

P = PI + PE'

where PI is the complex power supplied to N by I with the V. (j=l, 2,..., m) set to zero,

and PE is the complex power supplied to N by the Vj (j= 1, ... , m) acting together, with

I set to zero. It follows that
o

Re [P] = Re [PI] + Re [PE'

But

Re [PI] IIo1 2 R s  and Re [PE] > 0.

Thus

Re [P] > IIoI2 R s .

Q. E. D.

LEMMA 3: The real part of the complex power supplied by the current sources of

Fig. XVI-4a is non-negative (the resistance R s is defined as shown in Fig. XVI-4b).

PROOF: Let I ° denote the current flowing through -R s . The real part of the com-

plex power P supplied by the sources is

Re [P] = Re [P_R s  +Re[Pbox '

where PR denotes the complex power supplied to -R s , and Pbox denotes that supplied
s

to the box. It follows that

Re [PR] =-IIo 0 12 Rs.

Moreover, Lemma 2 assures that

Re [Pbox] > I11 2 Rso
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o
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Fig. XVI-4.

if it is observed that -R s can be replaced by a current source of value I1 for the purpose

of computing Pbox' Thus

Re [P] > 0. Q. E. D.

Theorem 1 now can be proved as follows:

PROOF OF THEOREM 1: Let N be any R, ±L, ±C, T two-port network and let

Zii(s) be one of N's driving-point impedances. Let R.. 0 and R.. s be the resistances

defined in Theorem 1. Finally, let a resistance -R.. be placed in series at port i of N

to create a one-port N' which has the impedance Z'(s) = Zii(s) - Rii s.

Consider the admittance of N'
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1
Y'(s) =

Z..ii(s) - R..ii s

The real part of Y' (jo) is given by

Re [P]
Re [Y' (j)] -

IEo 0
2

(3)

where P denotes the complex power supplied by the voltage source Eo in the experiment

shown in Fig. XVI-5a. For the purpose of calculating Re [P] the reactive elements of N'

SI I
Im 4--

-R

E I + RT Network
o

Fig. XVI-5.
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can be replaced by current sources which carry the reactive currents. The network thus

obtained is indicated in Fig. XVI-5b. According to Lemma 1

Re [P] = Re [PE] + Re [PI].

When the current sources in Fig. XVI-5b are set to zero, the source Eo sees the imped-

ance R.. - R.. > 0. Thus
110 1iS

JE 02
Re [PE Riio R..iis

110 11s

Lemma 3 ensures that

Re [Pi] > 0.

It follows that

EI o2
Re [P] >R.. - R.. (4)

110 llS

Substitution of (4) into (3) yields

Re [Y'(jw)] > R.
ii0 11S

The foregoing inequality shows that the locus of Y' (jo) lies within the closed half of the
1

Y'-plane defined by Re [Y'] > R.. - R.. . It follows that the locus of the reciprocal
110 US

function Z' (jo) lies within the closed circular disk of the Z'-plane defined by

R.. - R.. R.. - R..
110 11S 110 11SZI _ no 1< Z<2 2

But Zii(j) = Rii s + Z'(jo). Therefore the locus of Zii(jo) lies within the closed circular

disk of the Z-plane defined by (1). Q. E. D.

3. Proof of Theorem 2

It is well known that the quadratic form

Z(s) = x2Z 1 1 (s) + 2x 1x 2 Z 1 2 (s) + X2Z22(s) (5)

of the impedance matrix of any R, ±L, ±C, T two-port network can be interpreted as the

driving-point impedance of a related R, ±L, ±C, T one-port network. 2 Thus Theorem 1
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can be applied to the quadratic form (5). This observation underlies the following proof

of Theorem 2.

PROOF: Consider the quadratic form (5) for the network N.

Theorem 1 to (5) shows that

xU+2x x2U +x 2 U 2 2
1 11 12 12 222 x1V11

R.. +R..
1jo 13s

Uij = Z. ij(j) - 2
ii hi 2

and

Application

+ 2X X2V12 + x2V22'

R.. - R.i
1o 13s

V.. =
10 2

(i, j= 1, 2).

Substitution of -xl for xl in (5) yields the companion inequality

x1 Ull-1 212 2 2 ' x 1V 11 - 2x 1x 2V 12  x2 V22

Addition of (6) and (7) leads to

2 2

+xU 1 1 -2x 1x2 1 2+x2 U 2 2

< Vx2 + 2x 2 V1 11 2 2

S2x1Vll + 2x2V22.

Use of the triangle inequality IA-B I< I A + I BI in the left-hand member shows that

2 2
41X IX1 IU121 < 2x 1 Vll + 2X2 V22

This expression implies that

4xx 2 1U 1 2  2xV 1 1 + 2x2V22

or equivalently

0 -< XV 2xx IZ 2"

x1V11 - 2x1x2 12 + x 2V 22 .

Because (8) holds for all real values of xl and x2, the quadratic form

2
F(xl, x2) = XlV11 - 2x1x2 IU12 + x2V2z

is positive semidefinite, and the following relationships obtain:
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V11 > 0

V22 > 0

V11Vzz u12z2.

Inequality 9c shows that

U12  4v 11V12 i,
or equivalently

R + R
R 120o  12s

z12jW) 2

(9a)

(9b)

(9c)

(R l -R l
) (RZ -R 2 2 )

2 2

Q. E. D.

It is interesting to note that the radius of the bounding disk for Z 1 2 (jo) is the geo-

metric mean of the radii of the bounding disks for Z 1 1 (jw) and Zz2 (jw). This means that

the bounding disk for Z 1 2 (jo) is smaller than one of the bounding disks for Z 1 1 (jw) and

Z 2 2 (jw), and larger than the other.

4. Corollaries of Theorem 1

We next list some useful corollaries of Theorem 1. Unless otherwise specified, the

corollaries follow directly from Fig. XVI-2.

COROLLARY 1:

R iis< Re [Zii(jw)] < R..Riis 11o1

COROLLARY 2:

R.. - Rii s..

Im [Zii (jw)] 110o 2

COROLLARY 3:

Rii s < IZ.ii(jw) < Rii O

for -oo < w < oo.

for -oo < w < co.

for -oo < w < oo.

COROLLARY 4:

ZZii (jw) I < sin-1 Ro..+ R..s
110 llS

for -oo < < oo.

COROLLARY 5: Let Z. (s) be an RCT or RLT driving-point impedance. As w

varies from -oo to +oo, the locus of Z. i(jw) lies within the closed circular disk11
of the Z-plane defined by
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Z..(0) + Z..(oo) Z..(0)- Z..(oo)
Z- 11 11 11

2 2

PROOF: Corollary 5 follows from Theorem 1 by observing that for an RCT network

R.ii. = Zii(0) and R.. = Zii(oo); and for an RLT network R.. = Zii(oo) and R..i = Z..(0).

5. Corollaries of Theorem 2

In completely analogous fashion we list the following corollaries of Theorem 2 (see

Fig. XVI-3). Each of these corollaries employs the shorthand

1
c= (R +R

2 120 12s

and

(R lo-Ri2s )

r= 2

COROLLARY 1:

(22o 22 s
2

c - r < Re [Z 1 2 (j0)] < for -00 < o < oo

COROLLARY 2:

IIm[Z 12 (jw)]I < r

COROLLARY 3:

I fc -rj < iZ1 2 (j) I

for -oo < o < oo

Icl + r for -oo < < oo

COROLLARY 4:

-1 r
sin -

c if r <c

if r < -c

for -oo < o < 00

COROLLARY 5: Let Z 1 2 (s) be the transfer impedance of an RCT or RLT two-port

network. As w varies from -oo to +m, the locus of Z 12 (jw) remains within the closed

circular disk of the Z-plane defined by

Z 12(0) + Z1 2 () Z 1 1 () - Z 1 1 ( ) Z 2 2 (o) - 2 2 ()
2 2 2

PROOF: See the proof of the corresponding corollary of Theorem 1.

It should be noted that for a general R, ±L, ±C, T network N, the R.. and the R..13o 13s
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are not properties of the Z. i(s); rather, the Rij ° and the Rij s are properties of N. Thus,

in general, our bounds on the Zij(jw) cannot be determined directly from the Zij(s) but

must be determined from some network realization of the Z. (s). In the special cases of

RCT and RLT impedances, however, the Rij ° and the Rij s are properties of the Zij(s).

In these cases the bounds on the Zij(jw) can be determined directly from the Zij(s) (Cor-

ollary 5 of Theorems 1 and 2).

6. Discussion

It has been assumed here that the R..js are nonzero and the R.. noninfinite. A review

of the proofs of Theorems 1 and 2 shows that these restrictions are unnecessary; the

situations depicted in Figs. XVI-2 and XVI-3 remain valid in these limiting cases.

When R.. = 0, the allowable disk of Fig. XVI-2 becomes tangent to the imaginary
11S

axis at the origin. If Rii o = oo, the allowable disk enlarges to become the half plane

defined by Re [Z] > Ri.. When both R.. s = 0 and Rii.. = , the allowable disk enlarges

to become the entire right half plane of the Z-plane (including the imaginary axis).

If any of the R.ij equal zero, the situation shown in Fig. XVI-3 continues to hold. If

any of the R.ij are infinite this situation also holds, but the radius of the allowable disk

becomes infinite and the allowable region becomes the entire Z-plane.

It is interesting to note that three classical types of driving-point impedances require

the limiting disks described above. These cases are as follows:

(i) Zii(ji) has a zero at s = jwo;

(ii) Zii(jw) has a pole at s = jo;

(iii) Z ii(jw) is minimum resistive at s = jwo [that is,

Re [Zii(jwo)] = 0 but Im [Zii(jwo)] * 0].

When Z. (jw) has a j-axis zero, the bounding circle must pass through the origin of the

Z-plane to accommodate the zero value of Zii(jw ). When Zii(jo) has a j-axis pole, the

bounding circle must become a vertical line to accommodate the infinite magnitude of

Z. i(jw ). When Z..i(jo) is minimum resistive, the bounding circle must become the
11 0 11

imaginary axis of the Z-plane to accommodate the value Z ii(jwo) = jX.

It should be noted that our main theorem is basically a mapping theorem. The

theorem states that the impedance function Zij(s) maps the j-axis of the s-plane into the

closed circular disk of the Z-plane defined by (2). In this connection we should like to

point out that the following stronger mapping theorem applies if attention is restricted to

the driving-point impedances of RLCT networks.

THEOREM 4: Any driving-point impedance Z ii(s) of an RLCT network N maps the

right half of the s-plane (Re [s] > 0) into the closed circular disk of the Z-plane defined

by (1).

PROOF: Let N be any RLCT network, and let Zii(s) be a driving-point impedance

of N. Consider the related impedance function Z! (s) = Z. (s+a), where a G> 0. Z!.(s)
11 11 11
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can be regarded as the impedance of a new network N' obtained from N (i) by placing

a resistor of value aL in series with each inductor L of N, and (ii) by placing a con-
m m

ductance of value aCn in parallel with each capacitor Cn of N. Application of Theorem 1

to Z!.(jw) shows that the locus of Zi(a+jw) [a> 0] lies within the closed circular disk of
11 11

the Z-plane defined by

R!. + R!. R!. - R!.110 US 1i i 1s (1 0)
2 2

where R!. is the impedance Z!. of N' when all reactive elements are short circuited,
US 11

and R!. is the impedance Z!. of N' when all reactive elements are open circuited.

Now it is evident that R.. ~<R'. andR!. _<R.. . This fact shows that the disk of the Z-11s Us 110 110
plane defined by (1) encloses that defined by (10) which in turn encloses the locus of Zii(a+jw)

[a >0]. Thus the disk defined by (1) encloses the locus of Zii(a+jw) [a >0]. Q.E.D.

T. S. Huang, H. B. Lee
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