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Abstract

A transmitter antenna array has the ability to direct data simultaneously to multiple
receivers within a wireless network, creating potential for a more integrated view of
algorithmic system components. In this thesis, such a perspective informs the design
of two system tasks: the scheduling of packets from a number of data streams into
groups; and the subsequent spatial multiplexing and encoding of these groups using
array processing. We demonstrate how good system designs can help these two tasks
reinforce one another, or alternatively enable tradeoffs in complexity between the two.
Moreover, scheduling and array processing each benefit from a further awareness of
both the fading channel state and certain properties of the data, providing information
about key flexibilities, constraints and goals.

Our development focuses on techniques that lead to high performance even with
very low-complexity receivers. We first consider spatial precoding under simple
scheduling and propose several extensions for implementation, such as a unified time-
domain precoder that compensates for both cross-channel and intersymbol interfer-
ence. We then show how more sophisticated, channel-aware scheduling can reduce the
complexity requirements of the array processing. The scheduling algorithms presented
are based on the receivers’ fading channel realizations and the delay tolerances of the
data streams. Finally, we address the multicasting of common data streams in terms
of opportunities for reduced redundancy as well as the conflicting objectives inherent
in sending to multiple receivers. Our channel-aware extensions of space-time codes for
multicasting gain several dB over traditional versions that do not incorporate channel
knowledge.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Wireless communication has been expanding at an impressive rate for some time

now. Yet in this climate, engineers still struggle with fundamental questions about

network architecture and the underlying physical limitations of communicating over

airwaves. This thesis hopes to contribute to this discussion with improvements in the

understanding and design of antenna array systems to address these issues.

Many wireless network architectures are amenable to the limited use of arrays.

In cellular systems, mobile devices are divided among geographic cells and only com-

municate directly with a base station associated with their current cell. Wireless

ad-hoc networks do not have such central control; a local set of devices is able to self-

configure. Many times, however, it is still useful to route communications through

a single node that has internetwork connectivity and lack of battery-life constraints.

In these and other examples, users are divided into relatively simple, inexpensive de-

vices and a smaller number of more powerful nodes. The latter type, with their less

stringent constraints on power, size, and computation, become natural candidates for

the use of a multiple-element array.

In this thesis, we consider such a model and focus on the interactions between

a single array device and its associated wireless users. Furthermore, we concentrate

on the less-understood “downstream” direction (that is, from the base station to-

ward the various receivers). Since the receivers are battery-limited and typically do

not have a great amount of coordination, responsibility for ensuring high rates and

avoiding interference falls mainly on the transmitter and is the main subject of our

research. Global issues such as handoff among base stations are important, but will

be considered beyond the scope of this thesis. We will see that the single-array con-

19



Scheduling
Processing

Array

Tx

s2[n]

s1[n]

s3[n]

s4[n]

s1

s2

s3

s4

s1

s2

s3

s4

1234
Time Block

Figure 1-1: Block diagram of transmitter with an antenna array, illustrating schedul-
ing and array processing system tasks.

figuration alone offers many opportunities for performance improvements as well as

difficult design decisions.

A major reason for both the complexity and the potential of a transmitter an-

tenna array is that it can direct data to multiple receivers simultaneously. Such a

strategy affects many system components and is reflected in our transmitter system

architecture, shown in Fig. 1-1. We use a packet-based, streaming data model, where

some streams may be intended for individual receivers while other are common to

more than one. Many types of data, such as voice, video, and file transfers, can be

modeled in this way. We partition the processing of this data into two system tasks,

denoted scheduling and array processing. The scheduler divides time into blocks and

decides which data will be sent over each block. In the example shown, packets from

the first two streams are sent in the first time block, etc. Once this has been decided,

the transmitter must then map the data onto the physical antenna outputs in a way

that will allow the receivers to understand the messages with sufficient fidelity. This

is the function of the second task, which we call array processing, and can encompass

multiple-input, multiple-output processing; modulation; coding; and other elements

at the signaling level. Scheduling and array processing roughly correspond to the

standard medium access control (MAC) and physical layers, although some elements

20



of both layers will be present in each of the two tasks.

The standard approach to these types of problems has been through layered pro-

tocols, where functions at different levels of abstraction are considered separately. For

example, the networking community often concentrates on scheduling while assuming

a reliable, interference-free channel. Array processing research, on the other hand,

generally does not consider how the streams are selected or what their different prop-

erties may be. For array systems in particular, however, performance will depend

strongly on the interaction among the data, scheduling, array processing, and phys-

ical channel. This suggests both a more comprehensive design process and greater

integration, or at least awareness, among the different system components. Recently,

there has been some interest in the 802.11 community in designing scheduling algo-

rithms that are more aware of the physical channel and array processing (see [51] and

references therein), though the emphasis for the most part has been on incremental

upgrades of existing systems. In this thesis, we hope to develop a more complete

understanding of scheduling, advanced array processing techniques, and their inter-

actions as they relate to different system goals.

We investigate both scheduling and array processing with an eye toward helping

the two tasks reinforce one another. An important part is incorporating knowledge,

at both levels, of the state of the physical channel and the goals and destinations

of individual data streams. Alternatively, we also consider tradeoffs in complexity

between the two, where computation can be placed in one task or the other depending

on implementation concerns. In many cases, a good portion of the potential gains are

available when only one side incorporates a high degree of sophistication. For example,

we adapt signaling-level precoding techniques to satisfy different kinds of data goals,

and develop channel-aware scheduling techniques that enable high performance under

lower-complexity choices for array processing.

1.1 Outline of Thesis

Chapter 2 lays the groundwork with an overview of several concepts related to trans-

mitter antenna arrays. We discuss how elements of the fading channel model relate to

the challenges and performance goals with which the rest of the thesis is concerned.

Different signaling strategies lead to two basic performance criteria, outage proba-

bility and ergodic capacity, which are important to keep concrete and distinct. We

21



also provide motivation for scheduling several streams simultaneously and summarize

some of the well-known array processing techniques on which later chapters build.

In Chapter 3, we focus on the array processing side while assuming a simple

scheduler that divides streams into sequential or random groups. We primarily build

upon the spatial precoding techniques described by Caire and Shamai [7] and Ginis

and Cioffi [30], which in turn were adapted from precoding for intersymbol interference

and information embedding. Recent results have shown that this family of techniques

achieve the maximum sum capacity across all receivers (in [7] for the two-receiver

channel, and [82, 71, 75] for any number of receivers).

We introduce precoding with a matrix formulation that emphasizes the connec-

tion to other strategies and makes evident various options and extensions. We then

develop implementation aspects, such as robustness, constellation design, and meet-

ing different types of performance criteria. For example, the maximum sum capacity

solution can cause a large asymmetry in performance among receivers; we show how

a modified order of operations results in a more equitable distribution. We conclude

with a unified method of precoding for interference across both time and different

streams and compare it to the multitone solution advocated in [30].

Chapter 4 shifts the focus to channel-aware scheduling and how it can improve

performance. Such schedulers must be in tune with goals and constraints of the data

streams; we develop algorithms for three data classes distinguished by their delay

tolerance relative to certain physical parameters. Although further development is

required before these algorithms can provide some standard quality of service guar-

antees, they do show some dramatic potential improvements. Especially promising

is their ability to select subsets of streams that induce very low interference. In one

example, under beamforming from an 8-element array, the medium-delay algorithm

exhibits a 20 dB gain at 1% outage and more than double the ergodic capacity com-

pared with a random grouping of streams. This places performance in the range of

precoding, with much lower complexity at the array processing level. Because precod-

ing systems start off better, scheduling can not provide as dramatic an improvement,

but still pushes performance toward certain idealized limits and improves robustness.

In Chapter 5, we take a closer look at multicast scenarios where streams are

intended for more than one receiver. In these cases, the scheduler and array pro-

cessing can work together to transmit to all recipients simultaneously and avoid the

redundancy of duplication. Unfortunately, benefits decrease as the number of re-
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cipients grows and it becomes more difficult to direct the stream simultaneously to

all of them. Using a single such stream for illustration, we describe a way to think

about the balance of competing objectives in terms of efficient operating points. We

then discuss methods that achieve these operating points, which we call space-time

multicast codes, as well as more practical implementations. When the number of

recipients is small or ergodic capacity is most important, we determine that beam-

forming strategies are a good choice. In the more general case, we show how to adapt

ordinary space-time codes to this multicast scenario. In our example, these gain up

to 6 dB at 1% outage over methods that do not use channel information and instead

spread transmission out to all possible receivers. Furthermore, the channel informa-

tion allows these multicast groups to fit more naturally into the larger picture of a

system with heterogeneous sets of data and receivers.

We provide some concluding remarks and directions for future research in Chap-

ter 6.
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Chapter 2

Background on Transmitter

Antenna Arrays

The recent interest in wireless communication has resulted in a large number of system

models, algorithmic structures, and channel assumptions. In this chapter, we describe

elements from our framework and introduce notation and concepts that will be used

in later discussion.

We build up our channel model from a single link to timesharing to spatial mul-

tiplexing of multiple streams. Although we will mainly deal with transmitter arrays,

the single link system is enough to illustrate different signaling approaches toward

fading channels. This directly relates to the way we will classify data and judge per-

formance throughout the rest of the thesis. We then introduce arrays, and quickly

review some major issues and traditional array processing techniques. For a more

comprehensive description of wireless communications systems, the reader is referred

to Jakes’ book [39] or the more recent review article by Biglieri, et al. [6].

2.1 Notational Conventions

Scalars are given by lowercase letters (a), vectors by boldface lowercase letters (a), and

matrices by boldface uppercase letters (A). Certain constants or parameters are given

by standard uppercase letters (A). When appropriate, explicit time dependences are

shown using square brackets a[n]. Complex conjugation is denoted a∗, and A† is the

matrix Hermetian (conjugate transpose). Elements of vectors or matrices are denoted

using subscripts (a1 or A1,3), with the first element indexed by 1. If a is a random
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variable, then E [a] is its expectation.

2.2 Communication with Single-Element Anten-

nas

When one talks about “wireless communication,” what is usually meant are electro-

magnetic information-bearing signals, transmitted and received from some kind of

antennas, and propagating without waveguides. Therefore, they are subject to ther-

mal noise, propagation loss that increases with distance, and interference from other

wireless signals. Also important are the self-interference effects of reflections that

depend greatly on the particular geometry of buildings, walls, and other objects in

and around the path between the transmitter and receiver.

This last effect requires more discussion since it introduces a random element

called fading that is the reason for much of the research in wireless communications.

Reflections are received as multiple copies of the same signal, and cause different ef-

fects depending upon the difference in arrival times. If the receiver samples the signal

quickly enough, the different arrivals will become resolvable as separate delays. In

this thesis, however, we will usually assume a narrowband model with symbol-spaced

sampling so that multipath arrivals are not resolvable. The arrivals can then com-

bine constructively or destructively, resulting in amplitude variations. The maximum

bandwidth to ensure this flat fading behavior is called the coherence bandwidth. Un-

fortunately, no exact formula exists to compute its value, although one rule of thumb

is 1/τrms, where τrms is the RMS delay spread of the arrivals [54]. Observed values

of this parameter vary, but some studies place it in the tens of nanoseconds for in-

door environments, and on the order of a few millisecond for urban environments.

Even when the fading is not precisely flat, many of our general findings still apply

when receivers compensate with equalization techniques or the transmitters use more

generalized precompensation such as discussed in Section 3.3.

The essential elements of this channel model can be expressed in the equivalent

complex discrete-time baseband model (where all time dependencies have been sup-

pressed)

y = h∗x + w, (2.1)

where y is the received symbol, x is the transmitted symbol, h is the channel or fading
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coefficient, and w is additive noise that encompasses thermal noise and any unmodeled

background interference. All of the variables in (2.1) are complex-valued scalars.

Unless specified otherwise, the additive noise w will be a zero-mean, independent,

identically-distributed, circularly-symmetric Gaussian random sequence with variance

N0. Both transmitter and receiver are assumed to know the noise variance N0, but not

the particular realization w. Throughout this thesis, we enforce a constraint on the

expected transmitted power, E [|x|2] ≤ P, and investigate how various scheduling and

array processing approaches improve received performance. This constraint is meant

to incorporate physical limitations, government regulatory issues, and the practical

issue of keeping interference to a local set of receivers such as one cell in a cellular

environment. (Wider network-level issues involving multiple transmitters are beyond

the scope of this thesis.) Alternatively, one could use our results to achieve the

received performance of current systems at reduced power.

The fading coefficient h itself is a random variable that, depending on the channel

environment, can be modeled with various distributions. We will most often employ

the commonly-used Rayleigh model, where the real and imaginary components of h

have independent, zero-mean Gaussian distributions. Equivalently, the magnitude

of h has a Rayleigh distribution (and its square magnitude has a distribution that

is equivalently exponential, chi-square with two degrees of freedom, or first-order

Erlang), while the phase has a uniform distribution. This is valid when there are a

large number of scatterers and no direct line of sight between transmitter and receiver,

and accurately models many indoor or urban environments. The coherence time is

the duration over which h stays approximately constant. One popular model places

the coherence time at about [54]

Tc =
0.423λ

ν
,

where λ is the wavelength of the signal and ν is the speed of the receiver. For example,

the coherence time for a receiver traveling at 60 miles per hour with a 900 MHz

signal will be about 6.8 ms. However, even with both transmitter and receiver are

stationary, the fading will typically exhibit some time variation. Whether the fading

stays constant or varies over a block of symbols depends on the physical parameters

and signaling format. The current cellular and cordless phone standards DAMPS,

GSM, and DECT use block durations on the order of hundreds of microseconds to

several milliseconds, but sometimes also interleave over several blocks.
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2.2.1 Performance Measures

There are two basic approaches toward communicating over fading channels. If the

fading coefficient changes relatively slowly with time, then signaling can be performed

within what is essentially a single fade of random quality. At the other extreme,

one can signal across more and more fades and achieve an overall performance that

typically becomes deterministic. Different performance criteria are appropriate for

these two scenarios; we shall designate these criteria as outage probability and ergodic

capacity.

In either case, the algorithms and performance that are available will also depend

on whether one or both sides have knowledge of the fading coefficients. Receiver

knowledge is a fairly common assumption and is possible through training, a sepa-

rate pilot channel, and/or adaptive algorithms during the data phase itself. Most

current wireless standards include mechanisms for this type of channel estimation.

Consequently, we will assume perfect receiver knowledge unless specified otherwise.

By contrast, transmitter knowledge (also called side information) is typically more

difficult to obtain and in some situations is considered to be less crucial. However,

we will see that for multiple-receiver systems, this knowledge is very important to

fulfilling the potential of the array. The transmitter can attain this side information

in two ways. First, the receiver may relay its information through a separate feed-

back channel. Alternatively, if data is being exchanged in both directions over the

same frequency band, such as in time division duplex (TDD) systems, then channel

estimates made for the reverse channel will be valid in the downstream direction as

well.

Characterizing performance by outage and ergodic capacity is not new, although

most authors choose one form or the other. An exception is the diversity–multiplexing

tradeoff expressed by Zheng and Tse [87]. Comparisons to our scheme may be useful

to keep in mind, and will become clearer with the spatial multiplexing techniques of

Section 2.3.2. However, care must be taken in understanding the different contexts

in which the two frameworks come up. Zheng and Tse deal with a transmitter that

does not have channel knowledge. As discussed above, this will lead to a different set

of achievable operating points. Furthermore, we will see that this leads to very differ-

ent ideas of outage and error. Secondly, we consider low-complexity, uncoordinated

receivers, so that the performance at the individual receivers becomes as important

as the aggregate total. Capturing this new tradeoff will be addressed throughout the
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thesis.

Outage Probability

If the channel coefficient h is known at both sides and is constant for the time span

of interest, then the fading channel model (2.1) takes the form of an additive white

Gaussian noise channel with received signal to noise ratio (SNR)

SNRrec =
P|h|2
N0

.

Since both coded and uncoded techniques for this channel are well-developed and

depend only on this measure, we can capture the performance over random fading

with an outage probability curve, which we define here as

Proutage ≡ Pr {SNRrec ≤ SNR0} , (2.2)

where SNR0 is a parameter that can take on any nonnegative value, and is usually

given in units of dB, equal to 10 log10 SNR0. This curve is also equal to the cumulative

distribution function (CDF) of received SNR over the fading channel ensemble.

The outage curve can be considered as a measure of the reliability of communica-

tion. For any target SNR0, the outage curve will show the probability that the target

will be met. Perhaps more in tune with the goals of a system designer, the curve can

also provide the appropriate SNR operating point if a target outage probability is to

be met. Usually, a fairly small level such as 10% or 1% outage or lower is desired. For

this reason, it may be equally or more important to have a probability distribution

with short tails than one with a large mean. In the next section, we will see how

the use of an array can concentrate the SNR distribution around its mean and thus

create a more desirable channel.

For coded systems, a key quantity is the mutual information of the channel, which

in this case evaluates to the rate

R = log2

(
1 +

P|h|2
N0

)
(2.3)

in bits per channel use when given an optimal (Gaussian) input distribution. If the

channel coefficient stays constant for long enough, this mutual information represents

a maximum reliable rate of communication. In principle, this rate can then be ap-
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proached using the same coding and shaping techniques that have been so successful

in the additive white Gaussian noise channel, including trellis coding, turbo coding

and shell mapping [22, 5, 43]. Therefore, we could have defined our outage in terms

of a cumulative distribution on this rate instead of received SNR. We choose the SNR

version because it is also valid for uncoded systems and because scaling by a different

transmitted power P will only result in a horizontal shift in the outage curve (when

plotted in dB).

The instantaneous rate in (2.3) brings up an important difference between our

model and one where the transmitter does not have knowledge of the channel coeffi-

cients. Without side information, the transmitter will not know at what rate it can

reliably encode data. Outage probabilities are still well-defined, and it was in this

context that they were first introduced by Ozarow, et al. [52]. Now, however, an

outage event means a failure without the opportunity to lower the rate to a level that

is known to be achievable. An alternate characterization, used by Zheng and Tse [87]

as well as many other authors (e.g., [61, 34]) comes about from letting the transmitter

choose a fixed modulation and coding scheme and then computing probability of bit-

wise or codeword error over the ensemble of possible channel realizations. The error

rate can be shown graphically for different transmitted powers P. This graph will

be very related to our outage curves because error events of this kind are generally

dominated by low-quality channel realizations. However, we will tend to avoid this

perspective because a transmitter that has channel knowledge will be able to adapt

its modulation and coding scheme (or choose not to send at all) depending on the

realized channel.

Ergodic Capacity

If the channel coefficient h varies ergodically over time, then one could signal across

these variations and hope to achieve a reliable average performance. It turns out that

this idea can be made precise for a variety of situations. We concentrate on coded

performance here, although systems also exist that result in deterministic uncoded

performance [80].

Consider a coded system where the transmitter has knowledge of h at each time

instant. The system achieves the rate in (2.3) over each realization, resulting asymp-
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totically in an average rate

Cergodic = E
[
log2

(
1 +

P|h|2
N0

)]
(2.4)

that is deterministic. This performance, which we will call the ergodic capacity,

depends only on the distribution of h and not on its particular evolution in time. We

will see below that this rate is achievable even when the channel varies too quickly to

send codewords within each individual fade. Some authors refer to ergodic capacity

as the (average) throughput.

Unlike the outage probability curve, which is a distribution, the ergodic capacity

results in a single number. For a given fading distribution, this number depends only

on the input signal to noise ratio,

SNRinput = E
[P|h|2

N0

]
.

From the concavity of the function log2(1+x), ergodic capacity must be smaller than

that of a static channel with the same input SNR, but the penalty turns out not to

be too severe for most fading distributions. For example, with Rayleigh fading at an

input SNR of 0 dB, the ergodic capacity is 0.86 bits/channel use, as opposed to 1

bit/channel use for a corresponding static channel.

Perhaps surprisingly, the same rate in (2.4) is achievable when the transmitter

does not have complete channel knowledge, but knows only the statistics of h and

the input SNR. This follows because the ergodic capacity can also be achieved using

a constant-rate code, as long as the codeword symbols are interleaved across many

channel realizations. Later we will find that with multiple-element transmit arrays,

the ergodic capacity will become higher with side information than without.

Instead of the rate in (2.4), some authors define the capacity with side informa-

tion to be a somewhat higher number achieved through a procedure called temporal

waterfilling. To resolve this issue, recall that in our power constraint, a limit is placed

on the expected power of each symbol x[n]. One might call this a peak power con-

straint (in the stochastic sense; a particular realized value of x[n] may have power

than is higher than P). A somewhat looser, average power constraint would allow the

transmitter to send some symbols with higher power than others, as long as the time

average remains below P. A transmitter with channel knowledge will then use more
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power on stronger channel realizations, “pouring” power over the inverse of SNR [14],

P[n] = P ·
[
λ − N0

P|h|2
]+

,

where the Lagrange multiplier parameter λ is chosen to satisfy the average power

constraint and [a]+ = max(a, 0). Waterfilling can be used to solve a variety of parallel

channel problems, and will show up again later in this role.

2.3 Transmitter Antenna Arrays

Our main results consider a transmitter antenna array and multiple receivers, bringing

an increased complexity to both the channel model and the different approaches a

system may use.

See Fig. 2-1 for a diagram of the channel model with a three-element array and

three receivers. In general, the transmitter now has M antenna elements from which

it can send a vector of symbols, x. These signals arrive at the K receivers through

a cross-coupled channel, where the link between each antenna element and receiver

is an independent Rayleigh channel of the type described in the previous section. If

we collect all of the fading coefficients Hk,m into a matrix H, then this cross-coupled

channel can be succinctly modeled as a matrix multiplication,

y = Hx + w. (2.5)

The power constraint now becomes E [x†x] ≤ P, so that the maximum transmitted

power is the same as with a single antenna element.

The inclusion of the cross-coupled channel has both positive and negative effects.

First of all, the array provides multiple paths to each receiver, so that if one link

undergoes a fade of poor quality, other links are likely to be better. In this way, a

more reliable overall channel can be sustained. This is an example of diversity, which

refers to taking advantage of multiple paths to a receiver. For this to work, however,

it is important that the different copies be independently faded, or at least nearly so.

Whether this is true depends on the physical separation of the antenna elements in

array, the wavelength λ, and the location of scatterers. For indoor Rayleigh environ-

ments, for instance, the necessary separation between elements can be as small as λ/2.

This diversity-centered model is not to be confused with phased array transmitters,
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Figure 2-1: Channel model for transmitter antenna array and multiple receivers.

which operate in a regime where the coefficients have near-perfect correlation.

The potentially harmful effect is interference. A transmitted data stream will go

to all receivers, whether intended or not. To deal with this, various scheduling and

array processing techniques can be used. We begin with the simplest, which is to

transmit to only one receiver at a time and therefore ignore any interference that

is caused. Afterward, we will consider transmitting multiple streams simultaneously

using array processing to mitigate interference, a process called spatial multiplexing.

2.3.1 Array Processing Techniques Under Timesharing

If the scheduler only selects one stream and one intended receiver at a time, interfer-

ence becomes irrelevant. The array processor can then select a transmission scheme

based upon outage or ergodic capacity performance criteria at the intended receiver,

as well as other considerations such as complexity.

The array processor must specify the transformation from the data stream, s[n],

to the vector of antenna outputs, x[n], over the time block of interest. In general, this

may include block processing and any kind of vector coded or uncoded modulation

that satisfies the power constraint. It turns out, however, that optimal performance in

this single-receiver scenario can be achieved by separating the modulation/encoding

from the multiple antenna element considerations using a technique called beamform-

ing.
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Beamforming

Assume that the data stream s[n] has been modulated and, if desired, encoded as

if for a scalar additive Gaussian white noise channel. The array processor can then

perform a linear transformation on each data symbol, x = gs for some set of weights

g, such that the signals from the different antenna elements combine coherently at the

intended receiver. This coherent combining results in the maximum possible received

SNR over each realization, and is therefore optimal.

We can study the performance of this solution in more detail. If the receiver’s

vector of channel coefficients is h, it effectively experiences an additive Gaussian white

noise channel from s[n] with a received SNR of

SNRrec =
P|h†g|2

N0
.

This is maximized by matching the beamforming direction to the channel vector,

g = h/‖h‖, leading to the optimal value of

SNRrec =
P‖h‖2

N0
. (2.6)

The probability distribution of (2.6) under Rayleigh fading is an Mth-order Erlang

(or, equivalently, chi-square with 2M degrees of freedom, denoted χ2
2M). This has

M times the mean of transmission from a single antenna element, with considerably

smaller tails. The implications of this will become apparent shortly.

We plot ergodic capacity and outage probability for several scenarios in Fig. 2-2

and Fig. 2-3, respectively. For normalization, we define an “input SNR per link” as

Input SNR per link ≡ PE [|hm|2]
N0

.

This value will usually be set at 5 dB in our examples, as this leads to reasonable

coded rates in multiuser scenarios and is within the usual operating range given in

the literature.

The ergodic capacity improves with the number of antenna elements, mainly be-

cause of the increase in mean received SNR. Once again, we see that the random

channel variations often do not decrease ergodic capacity significantly. On the other

hand, the shape of the fading distribution is very important when signaling over sin-
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Figure 2-2: Ergodic capacities for an M -element transmit array and input SNR per
link of 5 dB. We show the curve for Rayleigh fading, and for comparison the additive
white Gaussian noise channel that does not encounter fading.

gle fading realizations. In Fig. 2-3, we see how this effect can dramatically affect

the outage characteristic. At 1% outage, adding a second antenna element results

in a gain of over 10 dB, even though the mean only doubles (3 dB). Note also the

diminishing returns that are typical of diversity techniques; most gains occur as the

first few antenna elements are added.

Space-Time Coding

The performance curves above require the transmitter to have knowledge of the chan-

nel parameters. Even if there is a small amount of uncertainty in the channel mea-

surement, it turns out that beamforming is still optimal from the point of view of

maximizing channel capacity [49, 72] or expected received SNR. However, when the

transmitter does not have access to channel information, beamforming in any single

direction results in the same distribution as with single-element transmission. We will
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also see in Chapter 5 that channel information becomes less useful when a stream is

intended for multiple receivers, because the transmitter can not direct data to all of

them simultaneously. In these cases, more complex implementations may be useful

and are often given the general heading of space-time codes.

The transformation between the data stream s[n] and the antenna outputs x[n]

can take a number of forms. One common element to space-time codes is that the

covariance matrix E [xx†] has rank above one; the vector of antenna element outputs

at a particular time contains information from more than one input symbol. In fact,

the ergodic capacity is maximized by letting this covariance be a scaled identity [63].

Practical implementations include transformations resembling either convolutional

[61, 34] or block encoders [1, 62]. In some special cases, as well as under idealized

assumptions, these techniques are able to achieve performance equivalent to a received

SNR distribution that is Mth order Erlang, but they sacrifice a factor of M in mean

SNR compared with beamforming under perfect channel knowledge.

36



R1 R2

Timesharing α log2

(
1 +

P‖h1‖2

N0

)
(1− α) log2

(
1 +

P‖h2‖2

N0

)

CDMA
1

2
log2

(
1 +

2αP‖h1‖2

N0

)
1

2
log2

(
1 +

2(1− α)P‖h2‖2

N0

)
Spatial multiplex
(orth. channels)

log2

(
1 +

αP‖h1‖2

N0

)
log2

(
1 +

(1− α)P‖h2‖2

N0

)

Table 2.1: Maximum achievable coded rates for sending distinct streams to two re-
ceivers using different multiplexing methods. All methods use the same symbol du-
ration and bandwidth, and spatial multiplexing assumes a best-case scenario with
orthogonal channel vectors h1 and h2. The parameter α represents the fraction of
time (for timesharing) or power (for CDMA or spatial multiplexing) devoted to the
first receiver.

2.3.2 Spatial Multiplexing of Multiple Streams

The scheduler also has the option of sending multiple streams simultaneously. Inter-

ference then becomes an issue, but if it can be dealt with effectively, spatial multi-

plexing has several potential advantages. Among these are:

• Increased Performance: We illustrate the potential improvement using a coded

system example where distinct streams are directed to their intended receivers

using the type of single-user beamforming described above. In the best-case

scenario where the rows of the channel matrix H are orthogonal, the trans-

mitter can send the streams simultaneously without incurring any interference.

With this assumption, Table 2.1 compares the maximum achievable rates to two

receivers for timesharing and spatial multiplexing, as well as a third technique,

code division multiple access (CDMA), whereby the streams are modulated over

linearly independent waveforms. (Actual CDMA systems usually operate in a

wideband regime under different channel modeling assumptions, however.) We

also plot these rate regions for a sample channel realization in Fig. 2-4.

It can be shown (using Jensen’s inequality) that spatial multiplexing over or-

thogonal channels always results in the largest rate region, and that the dis-

parity increases as the number of antenna elements and receivers grows larger.

Looking at the formulas in the table, this improvement is reminiscent of that
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achieved by increasing the bandwidth of a continuous-time channel, where the

capacity with bandwidth W is W log2(1 + P/(N0W)). In fact, something very

similar to this is occurring: the spatial multiplexing system is able to devote its

full time–bandwidth resources to each receiver simultaneously, while timeshar-

ing and CDMA divide these resources up among the receivers. In the extreme

case where the number of antenna elements and receivers (set M = K) grows

large and α = 1/M , the sum rate across receivers for spatial multiplexing be-

comes M log2(1 + P/N0). This dramatic, asymptotically linear increase with

the number of antenna elements recalls similar results when the receivers are

able to fully coordinate [63, 27].

Of course, realistic channel matrices will not often have orthogonal rows, but

the above arguments provide motivation for investigating spatial multiplexing

further. We will apply array processing (Chapter 3) and then scheduling (Chap-

ter 4) to try to approach this performance.
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• Upgrade of Existing Systems: Spatial multiplexing provides a method for in-

creasing the number of receivers that a system can handle. In some cases, this

can be implemented into current standards with relatively few alterations, and

ideally requires only adding a few antenna elements and some additional pro-

cessing to an existing array. Alternative ways to increase system capacity, such

as purchasing additional spectrum or base stations, may be very expensive or

difficult to bring about.

• Flexibility: A spatial multiplexing system can incorporate a great number of

algorithmic and implementation options. For example, in many cases, most of

the benefits of the array are available by adding sophistication to either the

scheduling or array processing task. We will also see how to select and tune

algorithms to meet the goals of different types of data streams. Design choices

can be made based upon implementation issues and the different situations that

are likely to come up, including the number and mobility of receivers.

To effectively use spatial multiplexing, the transmitter must deal with the issue

of interference. One possible element of an interference-avoidance strategy, to be

discussed in Chapter 4, is to design channel-aware schedulers that select groups of

receivers with nearly orthogonal channel vectors. Even with this type of scheduler,

the array processing block will likely need to compensate for some interference. In

this thesis, we will concentrate on so-called “zero-forcing” schemes that remove all

interference, leaving the receivers with only their intended signals and the additive

white noise wk. For the systems we consider, and the regimes in which they operate,

this will lead to analyzable, relatively low-complexity solutions that perform nearly

as well as optimal schemes. In Chapter 3, we present a detailed development of

precoding techniques that are of this vein. For the moment, however, we briefly

describe a well-known linear method for array processing.

Multiple-Receiver Beamforming

We look to extend beamforming, which was sufficient for optimality under timeshar-

ing, to deal with multiple receivers. Once again, assume that each stream has been

modulated and, if desired, encoded as if for an additive white Gaussian noise channel.

The vector of antenna element outputs can now be selected as a linear combination

of the current symbols from all of the streams, x = Gs, where G is a called the
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beamforming matrix. The channel model (2.5) now specializes to

y = HGs + w. (2.7)

If the symbols sk are independent and zero-mean with variance P, then the appro-

priate power constraint on G is trace
{
G†G
} ≤ 1.

Assume for now that each of the elements in s is intended for a separate receiver.

If any streams were common to multiple receivers, the scheduler can simply duplicate

them. We will return to more efficient methods of multiplexing common information

in Chapter 5.

In selecting the beamforming matrix G, there is an inherent tradeoff between

increasing signal power and reducing interference. The zero-forcing approach is to

eliminate interference by finding a G for which HG is diagonal. For independent

Rayleigh fading, this can be done with probability one as long as the number of

antenna elements in the transmitter array is at least as large as the number of re-

ceivers. The pseudoinverse produces the best such matrix in terms of maximizing the

individual SNRs, and was used by Gerlach and Paulraj [29]. Unfortunately, by con-

centrating so much on interference, this solution can result in reduced signal power

at the receivers. For randomly-chosen data streams, we essentially lose the effect of

one of the transmitter antenna elements for every receiver that had to be nulled out.

Other useful beamforming strategies exist. One can optimize received signal power

by setting G proportional to H†, often at the expense of high interference. A balance

between this “matched filter” solution and zero forcing would be to maximize the

signal-to-interference-plus-noise ratio (SINR). This is particularly useful when the

interference is close to Gaussian distributed. Rashid-Farrokhi, et al. [55] found a

solution (later refined by Visotsky and Madhow [73]) for reaching specified SINR

levels at each receiver with the minimum total transmit power. Unfortunately, the

form was of an iterative algorithm, and would require even more iterations to map it

to a power constraint rather than SINR constraints. For the less ambitious problem

of power control to equalize SINRs given a set of beamforming directions, an analytic

solution was found by Yang and Xu [81].
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2.3.3 Coordinated Versus Uncoordinated Receivers

Our basic model of a base station and several low-complexity, geographically sepa-

rated receivers naturally makes it difficult for these receivers to achieve a large amount

of coordination. Therefore, we have assumed that they have no knowledge of each

other’s received signals. Before going on, however, it may be useful to say a few words

about what is possible when they do coordinate.

A variation on the model (2.5) would be for a single receiver to have access to all K

antenna outputs. The usual application would be if all of the receive antenna elements

were located within a single array. The purpose then is to simply communicate as

much total information as possible, rather than dividing the information into separate

streams for the different receivers. We briefly summarize some information theoretic

results for coded systems.

When both transmitter and receiver know the channel matrix H, the transmitter

should send on the principle directions of H and waterfill over the singular values

[63]. Note that this requires both transmitter and receiver to use beamforming.

When only the receiver has channel information, capacity can be achieved when

the elements of x are i.i.d. over both space and time [63, 27]. The capacity is

then asymptotically proportional to min(M, K) at high SNR. If M = K, then this

represents an asymptotically linear growth in capacity with the number of antenna

elements at each end, a result that has generated much excitement in the field. Sim-

plified receivers that strip off and decode one layer of xi at a time do not seem to lose

much over the theoretical capacity [25, 3]. Recent results, though, have shown that

the linear growth in min(M, K) at high SNR relies heavily on having perfect channel

knowledge at the receiver and may not hold up to more realistic assumptions [41].

If neither the receiver nor the transmitter knows the channel, then i.i.d. symbols

over time will not suffice. All information must now be contained in the correlations

between symbols. This type of signaling, then, relies on the channel not changing

too quickly, so researchers often choose a block constant fading model. This channel

has been studied by Marzetta and Hochwald in [45] and subsequent papers that

investigated specific coding schemes. A geometrical perspective is given by Zheng

and Tse [86], including a study of the relationship between the length of the block

fade and the number of antenna elements that can be used effectively.

We will find that, with the proper scheduling and array processing, systems with-

out receiver coordination will often be able to achieve most of the ergodic sum capacity
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that is possible with coordination. It is important to remember, however, that this is

not our only goal. Systems of the type we examine must also consider, for instance,

balancing the requirements of the individual data streams, directing them to single

or multiple receivers, and doing this all with reasonable complexity and robustness.
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Chapter 3

Precoding with Simple Scheduling

Our first in-depth investigation comes at the array processing level, as the transmitter

attempts to direct multiple streams to their respective receivers simultaneously. Very

recently, precoding-based approaches to this problem have appeared in the literature

that show great promise [7, 30]. Yet much work remains in understanding their

properties, performance, and implementations. In this chapter, we place precoding in

perspective within a general matrix-based model, and investigate some of the design

choices involved with different types of data, modulation, and channel models. In

the process, we add several extensions and implementation algorithms to the basic

precoding structure.

The main precoding algorithm, as applied to cross-coupled matrix channels, can

be understood as a refinement of the linear zero-forcing approach described previously.

Instead of diagonalizing the channel matrix (thus eliminating interference) in one step,

precoding adds an intermediate triangularization. The residual interference is then

dealt with using a more complicated operation that combines linear and nonlinear

elements, and often results in much higher overall performance. For example, the

ergodic sum capacity across receivers for precoding can be several times that of zero-

forcing beamforming or timesharing. Even more, this general family of precoding

algorithms has been shown to achieve the maximum sum rate of any method for this

channel [82, 71, 75]. In Section 3.1, we describe this view of precoding and then

characterize its performance and connection with other partitioned approaches such

as BLAST [25].

Section 3.2 is concerned with issues that come up when applying precoding to sys-

tems. These include organizing the processing to meet different performance criteria,
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finding low-complexity modulation techniques to eliminate interference, and a pre-

liminary consideration of robustness to imperfect channel information. By exploring

such issues, we hope to begin bridging the gap between describing what is possible

and addressing design choices for particular systems.

In Section 3.3, we generalize precoding to compensate for interference across both

different streams and time. By considering a matrix transfer function, we determine

the types of processing that should be done. We find that there is more than one

possibility, depending on the ordering of the interference cancellation that is to be

done. We also compare our algorithms with the discrete multitone-based method of

Ginis and Cioffi [30], which converts the matrix intersymbol interference channel into

a number of parallel flat channels with only multiuser interference.

As a final note, the discussions of this chapter should be taken in two ways. First

is the spatial precoder’s value in dealing with the narrowly-focused array processing

problem at hand. Secondly is its use as one of many building blocks within a larger

system, where a large number of streams are communicated with different require-

ments over time-varying channels. We will deal more with this second, higher-level

view as we consider the impact of scheduling later in the thesis.

3.1 Precoding for Multiuser Communications

In this first section, we bring together results on precoding using a framework that

emphasizes partitioning and matrix-based operations. Our development proceeds

through the elements of such a system, from linear processing to multidimensional

coding techniques. In a natural way, it highlights the importance of ordered interfer-

ence, the range of precoding options that are available for a general multiple-receiver

model, and how these relate to other types of array processing. We also set up re-

sults in later sections on implementation and combined multiuser and intersymbol

interference.

Throughout, we assume a simple scheduling algorithm that selects random or

sequential groups of streams for spatial multiplexing, and furthermore duplicates any

streams that are intended for multiple recipients. We will consider more sophisticated

schedulers in Chapter 4 and more efficient multicast approaches in Chapter 5.
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3.1.1 Precoding for Triangular Channels

We first describe precoding for situations where the channel matrix is triangular.

This allows us to apply existing results on layered interference, and will prove to be a

vital step in dealing with arbitrary channel matrices. With this later use in mind, we

formulate precoding in somewhat unorthodox terms as a matrix inverse intertwined

with additional, nonlinear operations.

Precoding relies on an implied ordering in the way symbols or data streams inter-

fere. Recall that in our channel model,

y = Hx + w, (3.1)

the channel matrix of fading coefficients, H, represents the transformation from an-

tenna array outputs to receivers outputs, before white Gaussian noise is added. If this

matrix is lower triangular and x is simply the vector of data stream symbols, then

receivers only get nonzero power from their own stream and those indexed earlier

within the vector x. If the transmitter processes the streams in this indexed order, it

will know a priori what interference is to be expected, and can precompensate for this

known interference. This type of approach first appeared as Tomlinson-Harashima

(TH) precoding [64, 36, 47] over the intersymbol interference (ISI) channel, where a

single stream exhibits self-interference across time. More recently, researchers have

used ideas from Costa’s “writing on dirty paper” [13] to refine precoding and apply

it to many other problems, such as information embedding and digital watermarking

(see [84] and references therein). In most cases, this dirty-paper encoding and its

various implementations [10, 20] can achieve the same coded rates as without any

interference; i.e., had the off-diagonal elements of H been set to zero. Caire and

Shamai [7] and Ginis and Cioffi [30] then applied these ideas to the matrix channel

with arbitrary H matrix by introducing the additional triangularization step.

The intersymbol interference channel can be interpreted as a triangular matrix

channel with special structure, and serves as a useful starting point for our discussion.

Consider a discrete-time, linear time-invariant channel,

y[n] = h[n] ∗ x[n] + w[n], (3.2)

with a causal, monic, minimum-phase impulse response h[n]. If we convert the input,

output, and noise sequences to vectors, then (3.2) can be written as a lower-triangular
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✻

m

−

Figure 3-1: Transmitter for TH precoding system.

matrix channel (3.1). For example, the convolution matrix H for three data symbols

and an impulse response of length 2 will have the form

H =




1 0 0

h[1] 1 0

0 h[1] 1


 ,

where h[0] = 1 because the channel response was assumed to be monic.

Suppose that the transmitter uses uncoded A2-QAM modulation, where A is an

even integer, and wishes to eliminate interference. (Extensions to odd A are straight-

forward.) The real and imaginary parts of each input symbol, s[n], will therefore take

on values from among

{−(A − 1)ζ,−(A − 3)ζ, . . . , (A − 3)ζ, (A − 1)ζ},

where ζ is a real constant chosen so that the transmitted symbols obey the power

constraint. The TH precoding system of Fig. 3-1 has a feedback loop to determine

what the interference would have been for each symbol, then subtracts this amount

off to produce a net effect of zero interference. This subtraction can result in symbols

with large energy, so a modulo operation is performed to correct for this. The receiver

will also have to compensate for this correction, as we describe below.

To understand this system further, and to connect it to our matrix model, con-

sider the function of the modulo operation. This box shifts the real and imaginary

components of its input until both are in the range (−Aζ, Aζ]. In other words, it

adds 2ζA ·m[n] to the input, where m[n] is the unique complex integer such that the
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Figure 3-2: TH precoding system using matrix model. The last box is a “slicer,”
which implements nearest-neighbor detection on a modulo-extended constellation.

output is in the square region A = {(−Aζ, Aζ]× (−Aζ, Aζ]}, which we denote as the

fundamental region of the complex plane with respect to this modulo. If m[n] were

known in advance, this addition could have been performed before the feedback path

is subtracted, resulting in a modulo-equivalent version of the input,

s̃[n] = s[n] + 2Aζ · m[n],

a process known as constellation expansion. If we consider the entire vector of modulo-

equivalent input symbols, then the remainder of the feedback loop is equivalent to a

matrix inverse and the precoder takes the form shown in Fig. 3-2. Note that since we

have assumed that the diagonal elements of H, and therefore of H−1, are unity, the

outputs of the precoder are in the same fundamental region as its inputs. Therefore,

to first order, the precoder conserves the energy of the input symbols. We will see

in Section 3.1.3 that under closer inspection, there is a “precoding power loss” that

becomes noticeable for low-order modulation [23], but can be compensated for by

allowing a small amount of interference through.

The received vector is a noisy version of the modulo-equivalent input, s̃, rather

than of the original input itself. To recover s, the receiver needs to either perform

another modulo operation prior to detection, or to use a slicer based on a modulo-

extended constellation, as shown in Fig. 3-3. In either case, the receiver may make

errors it would not have had the original inputs been sent over a noninterfering chan-

nel and without precoding. For example, this could happen if the “�” symbol was

sent and the noise had very strong, but nonnegative, real and imaginary components.

Therefore, the equivalent noninterfering channel for a precoding system is not ad-

ditive white Gaussian noise, but rather a “modulo noise” channel with somewhat

different properties. This issue was studied by Wesel and Cioffi in [77] for precoding
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(a) Original 4-QAM constellation (b) Modulo-extended version, with A outlined

Figure 3-3: Example of modulo-extended constellation for 4-QAM

of intersymbol interference channels. Once again, we will see in Section 3.1.3 that

these differences can be overcome.

Since m is not known a priori, the precoding will not actually occur in the order

shown in Fig. 3-2, but rather row-by-row as an intertwined linear operation (multipli-

cation by H−1) and constellation expansion (the addition by 2ζA ·m). The recursive

form for ISI channels, as in Fig. 3-1, comes about using a matrix factorization:

H−1 =




1 0 0

h[1] 1 0

0 h[1] 1




−1

=







1 0 0

h[1] 1 0

0 0 1






1 0 0

0 1 0

0 h[1] 1






−1

=




1 0 0

0 1 0

0 −h[1] 1






1 0 0

−h[1] 1 0

0 0 1


 , (3.3)

where each matrix multiplication represents one time through the loop. At each

stage, the next element of m is determined based on the symbols that were previously

precoded. Because of the factorization given in (3.3), the memory only needs to be

as long as the channel length.

A similar row-by-row procedure applies for any finite-size, lower-triangular ma-

trix H (with non-zero diagonal entries). The transmitter chooses the constellation

expansion parameters, m, such that H−1s̃ is in the fundamental region A. The
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original minimum-phase and stability restriction for ISI channels, which ensured that

the process remains stable, are not necessary for finite-length data vectors. If the

diagonal entries of H are not all one, their value may be factored out into a separate

diagonal matrix, where they can contribute directly to the SNR of the channel.

The performance of the TH precoder can be contrasted with that of a purely linear

array processor that also eliminates interference. In this second case, the transmitter

could simply send x = H−1s. However, the transmitted power, assuming an i.i.d.

input vector of length M , becomes

E [‖x‖2] = trace
{
(H−1)†H−1

} E [‖s‖2] (3.4)

Note that trace
{
(H−1)†H−1

}
is the sum of powers of the elements in H−1. In other

words, with channel inversion, all of the elements of H−1 contribute to magnifying

the transmitted energy, while in precoding, only the diagonal elements do (again, to

first order). We could also write the above equation (3.4) as

E [‖x‖2] =
M∑

n=1

1

σ2
m(H)

E [‖s‖2],

where σn(H) are the singular values of H. This shows that as the matrix H gets

close to singular, the increase in energy over the precoding solution can become very

large.

3.1.2 Precoding Over Arbitrary Channel Matrices

We now concentrate on the more important issue, that of communicating over arbi-

trary matrix channels. In Chapter 2, we discussed linear solutions using a beamform-

ing matrix G to diagonalize the channel. However, at least in the case of a triangular

matrix, precoding can be much more efficient. Unfortunately, in the precoding system

of Fig. 3-2, a triangular matrix was crucial to providing an ordered, layered structure

to the interference. For arbitrary channel matrices, we therefore follow [7] and [30]

in proposing a two-step solution, to first convert the K × M matrix (where K ≤ M)

into a triangular channel, and then apply the precoding algorithm of the previous

section.

This two-step solution takes the form of a matrix factorization. Instead of using a

single G matrix to remove interference, we use separate beamforming and precoding
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parts, GB and GP, such that the combined effective channel HGBGP is diagonal.

Putting this all together, and factoring out any power control into a diagonal matrix

D, we organize the system as follows:

Algorithm 1 (Zero-Forcing Precoding) Consider transmission from an M-element

array to K uncoordinated receivers (with K ≤ M) with a given matrix of fading co-

efficients H. A precoding solution that results in no interference is

y = HGBGPDs̃ + w, (3.5)

where HGBGP is designed to be diagonal and

• s̃ = s + 2Aζ · m is the modulo-equivalent vector of symbols to be transmitted.

We assume the constellation is chosen so that the transmitted symbols satisfy

the power constraint.

• D is a diagonal matrix with diagonal elements dk controlling the amplitudes

sent to each receiver. We apply the constraint

K∑
k=1

|dk|2 ≤ 1

• GP is a lower-triangular matrix describing the linear part of the precoding op-

eration. The diagonal elements of GP are all 1.

• GB is the beamforming matrix consisting of orthonormal columns.

The GB and GP matrices can be easily computed using the H = LQ lower-

triangular decomposition. Let GB = Q†, and GP be a scaled version of L−1 so that

the overall product is diagonal.

Actually, there will usually be GB matrices that are not orthonormal yet still

satisfy the other criteria, such as one derived from the LU decomposition for a

square H matrix. However, given our insistence on a lower-triangular GP and zero

interference, an orthonormal GB is sufficient to maximize received SNR.

Furthermore, an orthonormal GB makes it relatively easy to find a scaling factor ζ

to satisfy the power constraint. This way, the beamforming operation leaves the total

power of the precoded symbols unchanged. If we additionally use the approximation

that precoding adds no energy (i.e., that the “precoding power loss” is negligible),
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then one only needs to select a constellation such that s satisfies the power constraint,

without worrying about the precoding and beamforming at all.

The different scalings of the GB and GP matrices illustrate how precoding is more

efficient than beamforming. To ensure (to first order) that neither one changes the

power of the symbol vector, each column of GP is scaled so that the diagonal element

is unity, while GB must be scaled down further so that the entire column has unit

norm.

Assuming there are a finite number of receivers, then stability of the precoding

system is only in doubt if H does not have full row rank, i.e., if the receivers have

linearly dependent channel vectors. For most fading models and M ≥ K, this occurs

with probability zero. The mi coefficients can also be kept below some threshold by

choosing not to transmit to particularly weak receivers.

3.1.3 Performance of Precoding

Evaluating the performance of precoding systems is complicated, and depends on the

modulation, coding, and other signaling-level implementations that are used. We

begin with a preliminary discussion on “idealized” performance, and later describe

how to deal with various issues that cause actual performance to diverge from this.

Idealized Performance

At a basic level, the spatial precoding solution outlined above changes the arbitrary

H matrix into a diagonal matrix, HGBGP. Thus, if we treat the modulo noise

as Gaussian additive noise and neglect the effect of the precoding power loss, what

results is a a series of parallel additive noise channels. It is then straightforward to

determine the SNRs of these parallel channels in terms of the LQ factorization of

H. Recalling that we set the beamforming matrix GB equal to Q†, the diagonalized
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channel matrix becomes

HGBGP = HQ†GP

= LGP

=




l1 0 . . . 0

0 l2 . . . 0
...

...
...

0 0 . . . lK


 ,

where lk are the diagonal entries of L. The last equality results because GP was

specifically chosen to diagonalize the product, and furthermore is lower triangular

with diagonal entries of unity. Including the power control d, the channel to the kth

receiver takes the form

yk = lkdks̃k + wk, k = 1, 2, . . . , K, (3.6)

with received SNR equal to

SNRk =
P|lkdk|2

N0
. (3.7)

We will say that the system does not use power control if all of the dk parameters are

chosen equal to 1/K.

Similarly, the idealized instantaneous capacity of a coded link to the kth receiver

becomes

Ck = log2

(
1 +

P|lkdk|2
N0

)
, (3.8)

with a corresponding ergodic capacity of

C
k,ergodic = E

[
log2

(
1 +

P|lkdk|2
N0

)]
. (3.9)

As we will see below, these rates are achievable with more sophisticated dirty-paper

encoding techniques, supporting our use of (3.7)–(3.9) as performance measures.

The transmitter can adjust the power control and ordering among the streams to

satisfy particular criteria based upon individual-receiver or system-wide goals, outage

or ergodic capacity. We will say more about these choices, and propose algorithms
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appropriate for various situations, in Section 3.2.2.

To compare the performance of precoding with other methods, sum capacity

strategies provide a good illustration and have been the subject of most research

up until now [30, 8, 82]. In these cases, the transmitter should use a waterfilling

power control policy over the parallel channels [14],

|dk|2 =

[
λ − N0

P|lk|2
]+

,

where λ is chosen to satisfy the power constraint. Using this optimal power control

and, for precoding, the max sum ordering method proposed in Section 3.2.2, we

show in Fig. 3-4 the ergodic sum capacity of several techniques in situations where

an 8-element array communicates with up to 8 receivers. In these simulations, we

assume an independent Rayleigh model whereby the elements of the channel matrix

H are i.i.d. complex Gaussian variables. With eight receivers, precoding achieves

well more than double the throughput of a round-robin timesharing strategy. Smarter

scheduling, as in [74], improves the throughput of timesharing only slightly compared

with precoding. Linear array processing, in the form of zero-forcing beamforming,

does well up to a point, but eventually degrades as the transmitter must send nulls

to too many receivers. The top curve represents a bound on performance, showing

the highest achievable rate when the receivers can coordinate their responses, using

Teletar’s system [63]. That precoding can get so close, at least at the selected input

SNR level, suggests that having coordination at either the transmitter or receiver side

is more important that having it at both sides.

Although not shown in the figure, our simulations also suggest that except at very

low SNR, power control plays only a secondary in maximizing the sum capacity. This

is in line with results for communicating over parallel channels in frequency (see, e.g.,

[12]). We will also see in Section 3.2.2 that a random ordering of streams causes some

loss in sum capacity, but still performs well.

More care must be taken for situations where the individual-receiver outage is

most important, because precoding often results in performance asymmetries among

the various streams. This results from the triangularization step of the precoding

algorithm (3.5), where the beamforming matrix GB must steer more nulls for some

streams than others. Quantitatively, this is evident by looking at probability distri-

butions of |lk|2 (from the idealized SNR (3.7)) over the random ensemble of channel
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Figure 3-4: Ergodic sum capacity for spatial precoding compared with other methods,
when transmitting from an 8-element array to up to 8 receivers. Results are from
simulations assuming independent Rayleigh fading at 5 dB SNR per link. The top
curve represents a upper bound based on coordinated receivers.

matrices H. For our independent Rayleigh model with an M -element array and ran-

dom ordering of K streams, we apply the LQ factorization result quoted in [18] and

see that |lk|2 will have a χ2
2(M−k+1) distribution, or equivalently an Erlang distribution

with M − k + 1 degrees of freedom. This means that the kth receiver has the same

outage performance as in a single-receiver system with a transmit array of M − k +1

elements, if we correct for the fact that the it only gets a fraction |dk|2 of the total

transmitted power. This still compares favorably with a system using zero-forcing

beamforming, where all receivers get the weakest of these distributions (Erlang of

order M − K + 1). However, increasing the effective order of this weakest receiver’s

distribution by only one or two could mean a dramatic improvement in outage (recall

Fig. 2-3). Strategies that maximize sum capacity tend to only increase the asym-

metry among receivers, so we will also address the issue of providing more equitable

performance among receivers in Section 3.2.2.
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Approaching the Idealized Performance

A straightforward TH precoding implementation will differ from the idealized perfor-

mance for a number of reasons, which we have touched upon but summarize here:

• Modulo noise: The modulo operations modify the noise distribution from ad-

ditive Gaussian noise into a modulo-noise channel. The constellation symbols

adjacent to the boundary of the fundamental region A will then have smaller

decision regions, increasing the probability of error.

• Precoding power loss: The original symbols, s, are usually chosen from a discrete

set of points within A, while the precoded symbols GPDs̃ will have a more

uniform distribution over their fundamental regions. In most cases, this causes

an increase in transmitted power.

• Shaping gain: With a QAM constellation, the constellation points are dis-

tributed over a Cartesian product of square regions A. However, for maxi-

mum power efficiency, the transmitted symbols should instead be distributed

over a higher-dimensional sphere [44]. The difference in transmitted power is

quantified by a “shaping gain” that must be bridged to achieve optimal perfor-

mance. The maximum shaping gain occurs at high SNR, where it is equal to

log2(πe/6) = 0.51 bits per two dimensions.

These factors vary in importance depending upon the regime of operation, and

can be addressed in different ways. For example, at high SNR, the first two issues

become negligible and only a shaping loss remains. One can then adapt shaping tech-

niques that were previously used for the intersymbol interference channel. Although

the ISI coder of [42] is not appropriate for layered interference across streams, an

alternate method, trellis precoding [24], was implemented by Yu and Cioffi [83] and

shown to achieve reasonable shaping gains. For low-rate precoding, we introduce in

Section 3.2.3 a method for reducing the precoding power loss in certain situations

with structured interference.

Another option, potentially more complex but offering a more unified approach,

is to apply recent methods from the information embedding community that are

essentially implementations of Costa’s dirty-paper encoding [13]. These are reviewed

in [84] and include quantization index modulation and nested lattices [10, 4, 20]. The

remainder of this subsection will be a brief overview on how they apply to spatial

precoding, a connection first made by Caire and Shamai [7].
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Consider the transmission of a symbol sk with interference b caused by previously-

precoded streams. The precoder uses a lattice code consisting of a “coarse” sublattice

and translates of this sublattice called cosets. For example, in the modulo-extended

constellation of Fig. 3-3, a coset consists of all symbol points of one type, such as

“�”. As shown in Fig. 3-5, the embedding “quantizes” the interference signal to the

nearest point in the coset selected by sk. The transmitter then sends e, the difference

between this quantization point and the expected interference.

Although the preceding example is just another description of TH precoding,

we now add several several elements to approach the idealized performance. If the

distribution of the precoded symbol, e, is not already approximately uniform over

the Voronoi region of the coarse lattice (the dashed box of Fig. 3-5b, but shifted

to be have zero mean), then the transmitter can add a pseudonoise dither signal,

known at both transmitter and receiver, to the entire lattice prior to embedding.

The average transmitted power can now be easily computed from the Voronoi region.

Next, more efficient transmission is made possible by coalescing several time instances

of the embedding problem together and doing vector quantization. The use of good,

higher-dimensional nested lattices simultaneously provides coding gain (by increasing

the minimum distance in the fine lattice) and shaping gain (by making the Voronoi

region of the coarse lattice more like a higher-dimensional sphere). Finally, the modulo

noise and precoding power loss are overcome by a technique known as noise cooling

or distortion compensation, which requires a few more words.

Recall that in many estimation problems, mean-square error can be improved by

intentionally leaving in some interference. Similarly, the slicer error for precoding

systems can be improved by shifting the balance between noise and interference. As

described in [10] and [84], the encoder multiplies the interference it expects by a real

constant α (less than or equal to one) before quantizing to it, therefore sending

e = s̃k − αb,

where again s̃k is the modulo-equivalent message symbol. The receiver then multiplies

its signal by α before slicing, producing

αyk = α(e + b + w)

= s̃k + [αw − (1− α)e] . (3.10)
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Figure 3-5: Embedding of the symbol “00” for the example of Fig. 3-3.

Now, the noise power has been reduced to α2N0 at the expense of a new self-noise

term of power (1− α)2Pk, where Pk is the average transmitted power of this stream.

With optimal lattices in higher dimensions, this self-noise behaves as i.i.d. Gaussian

noise, independent of the other terms in (3.10). The α for receiver k that maximizes

the overall received signal to noise ratio is

αk,opt =
Pk

Pk +N0

and increases this received SNR by one. In this way, the system achieves the idealized

SNR of Pk/N0. Distortion compensation is incorporated into our matrix formulation

by multiplying the off-diagonal elements of row k of the precoding matrix GP by αk.

For example,

GP :




1 0 0

G2,1 1 0

G3,1 G3,2 1


 −→




1 0 0

α2G2,1 1 0

α3G3,1 α3G3,2 1


 .

Receiver k then just needs to multiply its input yk by αk.

Whether a system chooses to implement nested lattices and distortion compensa-

tion or the more simple TH precoding with shaping depends on the potential benefits

and complexity. At high SNR, the modulo noise and precoding power loss disappear,
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making distortion compensation becomes unnecessary; α just degenerates to one. At

lower SNR, high-dimensional lattices with well-shaped Voronoi regions are necessary

to make the self-noise term look Gaussian. This can lead to higher complexity and

decoding delays. In Section 3.2.3, we will explore a different method of reducing the

precoding power loss that is applicable to a few particular interference distributions

that may come up in spatial precoding.

3.1.4 Improving Upon Zero-Forcing Precoding

In our matrix factorization approach to precoding, we assumed that the transmitter

wished to create a diagonal effective channel, causing no interference. It has been

recently shown, for the two-receiver case by Caire and Shamai [7] and for the general

case by several authors [82, 71, 75], that the sum rate can be improved somewhat by

allowing some amount of interference, and that this form exactly achieves the sum

capacity of the channel. It is not known whether modifications of this solution can

achieve the entire achievable region of rate K-tuples.

We will continue on with the zero-forcing (that is, no interference) version, for

a number of reasons. First of all, it leads to easier computation and analysis; as of

now, there is no known closed-form expression or provably convergent optimal iter-

ative algorithm to compute the more general precoder. This is especially important

because we are interested in the distribution of performance among receivers, not

only the maximum sum rate operating point. Secondly, by considering precoding and

the receiver-cooperation bound in Fig. 3-4 and other examples, it appears that the

great majority of the benefit of multiple antenna elements and multiple receivers is

attainable by zero-forcing precoding, at least in this SNR regime. Furthermore, Caire

and Shamai showed that in the limits of high SNR (where interference matters more

than any additive noise) and low SNR (where only one of the streams is sent with

nonzero power), zero-forcing precoding also achieves the maximum sum rate.

3.1.5 Relation to Other Matrix Channel Problems

Our matrix factorization description applies not only to precoding systems, but also

to a variety of other scenarios involving multiple antenna elements at both the trans-

mitter and receiver sides. We will see that a wide variety of algorithms can be

incorporated under this common framework. This process helps to categorize results
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from the literature, place precoding within this larger context, and perhaps lead to

new algorithms within this family.

The different channel scenarios under consideration all share the same mathemat-

ical channel model (3.1) but vary depending on whether there is coordination at the

transmitter side, receiver side, or both. So far, we have looked exclusively at the case

where only the transmitter elements can coordinate. The opposite might be true for

the uplink direction, and a formal duality between this so-called multiple access chan-

nel and precoding has been recently shown [75, 71]. Below, we demonstrate how these

and other techniques can be subsumed under the idea of diagonalizing the channel

matrix using factors corresponding to two types of operations:

• Linear: Simple matrix multiplication, i.e., beamforming

• Interference cancellation: Intertwined matrix multiplication and nonlinear in-

terference subtraction

For example, in precoding, the transmitter performs an LQ factorization of H, where

the Q operation is of the first type and L is of the more efficient, second type.

Receiver-Side Coordination

Consider a situation where a transmitter sends an independent data stream from each

antenna element to a coordinated receiver array. If there are at least as many receivers

as transmit antenna elements, then with probability one, the receivers could remove

interference using a single-step linear operation. This receiver-based beamforming

takes the form of a left multiplication by a matrix GB,

GBy = GBHs + GBw, (3.11)

such that GBH is diagonal. A more efficient method, however, is to only triangularize

the channel in this way, then use a final interference cancellation step. With analogy

to precoding, the receiver detects and decodes the streams in the order implied by the

triangularization, and at each step subtracts off the interference caused by previously-

detected streams.

This two-step receiver has appeared in the literature in different contexts and un-

der many names. For intersymbol interference channels, it is known as the decision-

feedback equalizer; in multiple antenna-element wireless, the V-BLAST system [26];
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and in CDMA (where H represents the spreading sequences), successive interference

cancellation [17]. As with precoding, the higher efficiency of the interference cancel-

lation operation can be seen by considering the different constraints on two matrix

factors. Two avoid noise enhancement, each row of GB should have unit norm, while

the interference cancellation factor has unit diagonal elements (since determining and

subtracting off interference does not enhance the noise). Under the idealized as-

sumption that previously-ordered streams are detected perfectly, the received SNRs

and maximum coded rates of the streams correspond to those of precoding, with the

modification that we now perform an LQ factorization of H† rather than of H. Sim-

ilarly, one can achieve the sum capacity by not requiring the linear factors to strictly

triangularize the channel matrix [3].

The duality between precoding and receiver-side interference cancellation is ap-

parent, and a choice between the two methods depends on where the burden of com-

putation and coordination should lie within a system. There are important practical

distinctions as well. For instance, a precoding system may fall short of the achievable

performance by not using perfect dirty-paper encoding, while receiver-based array

processing can fail if there is too much error propagation from previously-detected

streams.

Coordination at Both Sides

When a system has coordination at both transmitter and receiver arrays, new pos-

sibilities open up. In addition to all the previous strategies, one could use an LQ

decomposition to perform beamforming at the transmitter and interference cancella-

tion at the receiver. This is applicable for K ≤ M and achieves the same SNR or

sum rate performance as precoding, but with the tradeoffs associated with receiver

interference cancellation (such as having to deal with error propagation, but not extra

modulo operations). More interesting, though, are different types of factorizations.

Interestingly, Teletar [63] showed that the sum rate is maximized by splitting the

processing with a singular value decomposition,

H = UΣV †,

where U and V are unitary and Σ is diagonal with nonnegative entries. Transmit

beamforming is done with V and receiver beamforming with U†. A geometric inter-
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pretation would be that we now transmit along principal directions rather than using

a Gram-Schmidt (i.e., LQ) decomposition.

Another interesting choice would be to perform precoding at the transmitter (to

remove interference from earlier streams) and interference cancellation at the receiver

(working in the opposite direction, to remove interference from later streams). This

frees the beamforming to do single-user matched filtering. The precoding and inter-

ference cancellation operations amount to performing a Cholesky LL† decomposition

on HH†. To be more specific, we assume i.i.d. precoded symbols and let the beam-

forming matrix be

GB =
H†√

trace
{
HH†} ,

which will then satisfy the power constraint. Next, the precoder must make the

effective channel matrix HGB triangular so that the receiver’s interference cancellor

can do its job. Since the precoding matrix itself must be triangular, the Cholesky

decomposition is natural. The precoding matrix will be
(
L†)−1

, but scaled such that

the diagonal entries are one. It turns out that this L is the same matrix as the L

from the LQ decomposition of H. When all of this is done, the final received SNRs

apparently become

SNRk =
P|lk|4
N0

· 1

trace
{
HH†}

= (SNRk from precoding) · |lk|2
1
K

∑K
i=1 ‖hi‖2

This can lead to some interesting SNR distributions, increasing the performance of

the receivers with better channels. However, there are two main deficiencies of this

method. First, the perfect information embedding that was assumed in the SNR

computation above is not achievable, since distortion compensation (which involves

changing the off-diagonal entries of the precoding matrix) will affect the signal power

of each stream. Secondly, power control is more difficult to do because the beam-

forming matrix is not orthogonal.

Table 3.1 presents a summary of several of the different methods discussed here.

Recall that from Fig. 3-4, coordination at only one side may actually achieve close to

the same performance as coordination at both sides.
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No coordination among Rx Coordination among Rx

No coordination
at Tx

N/A

Beamforming alone
K − M + 1

V-BLAST — LQ of H†

K − M + i

Coordination
at Tx

Beamforming alone
M − K + 1

Precoding — LQ of H
M − K + i

Hybrid — LQ of H
M − K + i

SVD — H = UΣV †

Maximizes sum capacity

Table 3.1: Summary of array processing algorithms for a variety of scenarios with
M transmit antenna elements and K receiver antenna elements. Shown are the
corresponding matrix factorizations, as well as a measure of performance in terms of
the order of the Erlang distribution of idealized SNR for the ith stream. “Hybrid”
refers to beamforming at the transmitter and interference cancellation at the receiver
side.
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3.2 Implementation Issues

3.2.1 Overview of New Implementation Issues

Although the methods already discussed provide a theoretical basis for precoding,

much work remains in the design of practical precoding solutions. For example, when

adapting techniques derived from the information embedding literature, one must be

aware of the different contexts in which the two problems come up. We summarize

some of the key issues below:

• When information is sent to more than two receivers, a stream can be part of

both an embedding and several hosts. This allows the transmitter to rearrange

the ordering of streams to achieve different performance tradeoffs. Additionally,

it may divide up the available power in a number of ways. We discuss these

issues in more detail in Section 3.2.2, finding that the ordering and power control

can play an important role.

• The would-be interference is not some arbitrary signal, but rather a linear com-

bination of symbols from previously precoded streams. Therefore, it may have

certain properties, such as a particular discrete distribution, that the precoder

may be able to exploit. We look at precoding for some of these situations in

Section 3.2.3.

• Precoding and information embedding often operate in different regimes due to

the goals and constraints of their respective problems. Many times in embed-

ding applications, one wishes to hide a small amount of information without a

noticeable degradation in the host signal. To satisfy this maximum distortion

constraint, embedding rates tend to be smaller than one bit per host dimension.

By contrast, zero-forcing precoding does not cause any distortion in the earlier

streams. Instead, we have a power constraint, which is often much larger and

allows higher-rate transmission. This can lead to different types of modulation

and encoding techniques and, as we have seen, different nonidealities in the

precoding process itself that must be considered.

• To achieve high data rates for wireless applications, complexity can become a

major issue. Ideally, both the transmitter and receiver should perform only

simple operations. If the receivers are battery-operated, complexity there be-
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comes even more important. Simple embeddings may be preferable over nested

lattices.

• Because the precoder’s “host” signal involves interaction with a channel ma-

trix, the algorithm depends critically on the transmitter having knowledge of

these channel characteristics. Similarly, the receiver must have some informa-

tion about the channel and the encoding. We discuss some of these issues in

Section 3.2.4.

In the next few sections, we look at several system components that address one

or more of these issues.

3.2.2 Ordering of Streams

The order in which the streams are precoded will have an effect on their associated

receivers’ performance. This suggests the need for practical algorithms that match the

ordering to specific performance goals. In this section, we concentrate on optimizing

according to two basic criteria, sum capacity and individual-receiver outage.

Several authors have recognized the importance of this ordering, but so far detailed

analysis and algorithms have been lacking. Caire and Shamai [7, 8] discussed this

issue (for both zero-forcing and more general precoding) and stated the solution

for two-receiver sum capacity. For larger numbers of receivers, Yu and Cioffi [82]

proposed an iterative algorithm for approaching the sum capacity, but were not able

to prove convergence nor a closed-form solution. They and others [71, 75] also discuss

a rate region that encompasses all precoding solutions, but do not offer any additional

algorithms for reaching specific operating points of interest. None of these works

directly deal with optimizing single-receiver outage.

Consider first a random ordering of K streams. When the later streams are

beamformed to avoid interference to earlier ones, they incur a loss in channel quality.

As we have seen, the first receiver gets the full Mth-order diversity, the second receiver

M−1, and the Kth receiver M−K+1. If we wish to transmit to each receiver reliably

at a constant rate, however, we would prefer greater symmetry among these receivers.

On the other hand, to maximize throughput (the sum capacity across all receivers),

it will turn out that an asymmetrical distribution is better. In either case, the SNR

distribution resulting from a stream ordering can be augmented by appropriate power

control.
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One basic constraint for all possible orderings can be stated as follows:

Proposition 1 Before power control, the product of received SNRs is independent of

the ordering.

For a full-rank, square H, this is equivalent to saying that the square magnitude of

the determinant of L from the LQ decomposition is independent of the ordering.

This is true because, using E to specify the permutation matrix,

L = (EH) · Q†

⇒ 1

K
| detL|2 =

1

K
| detE|2| detH|2| detQ†|2

=
1

K
| detH|2

regardless of the permutation E. The last equality follows because the determinant

of a unitary matrix or permutation matrix has magnitude 1. For H not square, we

can create a square matrix with the same product of singular values by adding extra

rows that are orthogonal to each other and the other rows of H. For H not full-rank,

the product is always zero. A corollary from this proof is that this product of SNRs is

also equal to the product of the square magnitudes of singular values of 1√
K

H, which

are the SNRs of the parallel channels used in the Teletar scheme (also before power

control) where the receivers can cooperate. �

Proposition 2 Power control can only decrease the product of received SNRs.

Say that the SNRs before power control (that is, sending an equal fraction of power

1/K to each receiver) are βk/K, k = 1, 2, . . . , K. We then use a different power

distribution to achieve the SNRs |dk|2βk, where
∑K

k=1 |dk|2 = 1. Instead of taking the

product of SNRs, we can look at the monotonic function 1/K times the logarithm of

this number. Before power control, we get

1

K
log

(
K∏

k=1

1

K
βk

)
= log

(
1

K

)
+

1

K

K∑
k=1

log(βk),

while after power control,

1

K
log

(
K∏

k=1

|dk|2βk

)
=

1

K
log
(|dk|2
)
+

1

K

K∑
k=1

log(βk).
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Since the mean of the |dk|2’s is 1/K, we can invoke Jensen’s equality to show that

the first computation is at least as large as the second. �

We now go on to study two performance criteria in more detail.

Maximizing Sum Capacity

The goal here is to maximize the sum capacity to all receivers. The algorithm for

a particular channel realization will be the same whether we consider instantaneous

capacity or ergodic capacity, because in the latter case, one only hits a maximum by

optimizing the sum rate over each realization. Furthermore, if the channels are all

i.i.d. and vary ergodically over time, then maximizing the sum capacity at each time

will also result in each receiver achieving the same average rate, thus also achieving

a degree of “fairness.”

As discussed earlier, for a particular channel realization and ideal embedding, the

set of streams are effectively sent to their associated receivers through K parallel

channels with rates log2(1 + SNRk), where SNRk is the received SNR for stream

k. This SNR is determined from the LQ decomposition associated with a particular

ordering of the rows of H. Since in this chapter each stream has only a single receiver,

we interchangeably talk about ordering streams or receivers. To maximize the sum

rate, one must also use power control to waterfill across the different streams.

Some guidelines on ordering streams follow.

Rule 1 (sum capacity) For two streams (K = 2), the one whose receiver has the

larger SNR should be first.

This was stated in [7], and a proof is given here in Appendix A. The same result holds

when waterfilling is not used, and can be shown with a simple convexity argument.

When there are more than two streams, the optimal ordering is still unknown.

However, one rule that must be followed is:

Rule 2 (sum capacity) For K ≥ 2 consider any two consecutive streams, indexed

k and k + 1. When projected away from the first k − 1 receivers’ channel vectors, the

stream with the larger SNR of the two should be first, i.e., given index k.

The ordering of the two streams under consideration will not affect the SNRs of the

other K − 2 receivers. Applying the two-stream result, we can say that for every
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possible way of splitting the available power between these two and all the others,

waterfilling within each grouping will result in a higher sum rate with the ordering

implied above rather than the reverse. By similar reasoning, this rule also holds when

power control is not used.

This rule alone does not imply a unique ordering, however. The following “greedy”

algorithm will satisfy the rules above:

Algorithm 2 (sum capacity) Choose the receiver with the strongest overall chan-

nel to be receiver 1. Then, project all other channel vectors away from this direction.

Choose the strongest one of these as receiver 2, and project all remaining channel vec-

tors away from both receivers 1 and 2. Choose the strongest one of these as receiver

3, etc.

The Matlab command [Q,R,E] = qr(A’) will produce this ordering. This was used,

along with waterfilling, to produce the precoding curve in Fig. 3-4. Although this

algorithm satisfies the rules given above, it is not always optimal. For example, let

H =




0.03 1.1 0.04

1 0.01 0.02

0.8 0.8 0.1


 .

Leaving the streams in the given ordering is optimal for sum capacity, although our

proposed algorithm would do otherwise.

To test the significance of the stream ordering, we plot simulated ergodic sum

capacities in Fig. 3-6 for several possible algorithms. The proposed algorithm gains

around 1 bit per channel use over a random ordering throughout most of the given

range of SNRs. Apparently, concentrating higher performance toward a small number

of receivers can have an impact. Along these lines, a lower-complexity approximation

to this algorithm would be to simply order the receivers by their channel strengths,

without regard to the interdependencies. For the simulation, this led to almost the

same performance as the original algorithm. Reversing the order, from weakest to

strongest (but still using waterfilling), causes a loss of up to an additional bit over the

random ordering. Throughout, this simulation assumed that the receivers have iden-

tically distributed Rayleigh channel coefficients. The effect of ordering on capacity

will be even greater if some receivers have stronger channels than others.
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Figure 3-6: Sum capacities, from simulations, for various stream orderings with M = 8
transmit antenna elements and K = 8 receivers. Waterfilling is used.

Minimizing Individual-Receiver Outage

The sum capacity strategy potentially sacrifices the performance of some receivers

in favor of the “greater good.” This is fine as long as sum capacity is of primary

importance, or if the channel varies ergodically and receivers can tolerate performance

fluxuations. In other situations, however, it may be more important for individual

receivers to maintain strong rates through (almost) all channel realizations. This

might be true in a non-adaptive uncoded system with constant-rate transmission, or

if a strong sense of “fairness” across receivers is most important, or if the channel

varies extremely slowly with time.

Minimizing outage calls for a more conservative strategy that maximizes the per-

formance of receivers with the weakest channel vectors. Ideally, all receivers would

achieve the same SNR, which from Propositions 1 and 2 would reach its maximum
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value at

SNRoutage,ideal =

(
1
K
| detL|2)1/K

N0

, (3.12)

that is, the geometric mean of the SNRs. However, this is not always possible, so we

instead employ a kind of max-min strategy. Afterward, power control can be used to

equalize the SNRs at the receivers, though at a lower level than the ideal of (3.12)

(see Proposition 2).

To be more precise, this max min criterion says that the weakest performance

should be maximized, and then, given this, the second weakest should be maximized,

etc. Note that to find the ordering, it does not matter whether we consider SNR or

log2(1 + SNR).

Once again, the exact ordering is unknown for K streams, but some insights can

be developed:

Rule 3 (max-min) For two streams (K = 2), project each channel vector away

from the other. The receiver with the weaker result should go first.

Note that the first receiver could still be the weaker of the two, even though it no

longer has to project away from the second. In either case, the result is worse if the

ordering is reversed.

Rule 4 (max-min) For K ≥ 2 consider any two consecutive streams, indexed k and

k+1. Project each channel vector away from the other and those of streams 1 through

k − 1. The receiver with the weaker result should be first, i.e., given index k.

This follows from the two-stream case because all other streams are unaffected.

This also suggests a “greedy” algorithm, which obeys the rule above but which may

not necessarily be optimal:

Algorithm 3 (max-min) Project all receivers’ channel vectors away from every

other. Choose as the last receiver the one with the strongest result. Next, project

all remaining channel vectors away from each other. Choose as the second-to-last

receiver the one with the strongest result, etc.

This algorithm produces some interesting results when followed by power-control

that equalizes all the received SNRs. Shown in Fig. 3-7 and Fig. 3-8 are simulated
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Figure 3-7: Outage probability, from simulations, for precoding of K = 8 streams
from an M = 8 element array using various ordering methods. We use power control
at an input SNR per link of 5 dB.

SNR outage distributions for an 8-element array and 8 and 7 streams, respectively.

In the second figure, which achieves a higher sum rate, the proposed algorithm has

close to the same distribution as the ideal (but perhaps unattainable) goal of (3.12).

For comparison, the ordering proposed to maximize sum capacity loses about 3 dB at

10% outage and 6 dB at 1% outage. Even greater gains are exhibited with 8 streams.

As the number of streams is decreased from 7, the effect of the ordering will become

less significant.

Through most of these cases, the outage curves from our algorithm are even more

steep than for a single stream with 8-level diversity (not shown). This can be explained

by a kind of averaging effect across the different receivers’ channel qualities. Of course,

maximizing the diversity in this way comes at some price in overall throughput. For

the system shown, the maximum sum capacity (reached at 6 streams) is 10.6 bits

per channel use, which is still more than double the 4.6 bits per channel use for

a single receiver. On the other hand, the sum rate of our proposed sum capacity

70



−20 −15 −10 −5 0 5

10
−2

10
−1

10
0

Received SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

Ideal
Max min proposed
Reverse channel strength
Max sum proposed

Figure 3-8: Outage probability, from simulations, for precoding of K = 7 streams
from an M = 8 element array using various ordering methods. We use power control
at an input SNR per link of 5 dB.

algorithm with waterfilling has the even higher value of 12.6 bits per channel use

(with 8 streams), which is only 2 below the bound with receiver cooperation.

The idea of the max min ordering is the opposite of maximuming sum capacity;

we now boost the performance of the receivers that will have a more difficult time

communicating by placing them in the more privileged early positions. This suggests

an approximate algorithm of ordering the receivers in the reverse of their channel

strengths, regardless of the potential interference. As shown in the simulation, this

strategy improves significantly upon the max sum ordering as well. A random ordering

(not shown) falls somewhere between these two.

3.2.3 Constellation Design to Reduce Precoding Power Loss

We discussed earlier how transmitted symbols often have higher average power after

precoding than in the original constellation. One proposed method to overcome this
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precoding power loss involved higher-dimensional lattice codes, distortion compensa-

tion, and dither [84, 10]. However, these techniques can add considerable complexity

at both transmitter and receiver. This motivates a study of the importance of the

precoding power loss as well as other methods of compensating for it.

Using the example of uncoded QAM modulation, we find that precoding power

loss can vary by as much as 3 dB, depending on the particular alignment of signal

and interference. Both the greatest variation and worst-case losses occur for very

low-order modulations when there is only a single dominant interfering signal. For

these situations, we investigate ways of manipulating the symbol constellation that

attempt to ensure one of the better-case scenarios.

Bounds on the Precoding Power Loss

Suppose that a stream uses uncoded A2-QAM modulation, with constellation symbols

spaced 2ζ units apart. We will measure the precoding power loss by analyzing how

much more transmitted power is necessary for precoding than with a QAM constel-

lation at the same distance and no interference. The normalized minimum squared

distance 4ζ2/N0 will be our baseline for performance, as this has an approximate

correspondence with probability of symbol error, but is much easier to deal with.

We ignore the overall effective channel gain (lkdk) here, as this only scales the out-

put. Also note that with some algebraic manipulation, our results can be converted

to instead compute the loss in minimum distance if the transmitted power is held

constant.

Depending on the particular input symbol and interference signal, the precoded

symbol can take on any value in the fundamental regionA = {(−Aζ, Aζ]×(−Aζ, Aζ]}.
To compute the precoding power loss for a particular interference realization, we

should average over all possible input symbol values. It is straightforward to show

that the average power for the input QAM symbol is smallest when the interference

point is centered between four neighboring constellation points (which includes the

case of no interference), while the worst case occurs when the interference coincides

with a constellation point. Because the interference is discrete-valued, it could poten-

tially always be at a best-case location (where we get the same performance as if there

had been no host), a worst-case location, or it may take on many values in between.

The range of average precoded symbol powers can be summarized as follows:

• Best-case interference (or none): 2ζ2

3
(A2 − 1)
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Figure 3-9: Precoding power loss, in terms of SNR gap from a scenario without any
interference. The points shown are for uncoded A2-QAM input symbols.

• Uniformly-distributed interference: 2ζ2

3
A2

• Worst-case interference: 2ζ2

3
(A2 + 2)

The precoding power losses for the different interference possibilities are shown

in Fig. 3-9. The graph indicates that the potential loss is only significant for very

small constellations. Note that the pseudorandom dithering technique can be used

to always ensure that the interference looks uniformly distributed. If this is not done

and we encounter a worst-case alignment, the maximum precoding loss is 3 dB for

4-QAM modulation.

Considering these trends, we would like to know if something can be done to

mitigate this loss for low-order constellations, in effect transforming a worst-case

interference value to something better. Because the worst-case possibility comes

about from discrete-valued interference and constellation points, it makes sense to

try adjusting the constellation design.
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Constellation Design for 4-QAM Interference

We concentrate on embedding two bits per complex interference sample because we

saw that only very low-order constellations such as 4-QAM present a significant po-

tential for improvement. Before the constellation design stage, we need to look at the

distribution of the interference signal.

The interference signal will be some linear combination of the modulo-equivalent

symbols sent to earlier-ordered receivers, s̃1, . . . , s̃k−1. The linear combination is spec-

ified by the off-diagonal entries of the GP precoding matrix, corresponding to the

feedback loop in TH precoding. For later-ordered streams, this linear combination

of symbols can take on quite a great many different values, and will tend toward

the uniform distribution mentioned above (after the modulo is taken into account).

On the other hand, earlier-ordered streams will only see a linear combination of one

or two symbols, so the interference distribution will continue to look discrete, and

may at times hit the worst case. These are the situations where careful constellation

design is most needed and, due to the structure of the interference, where the most

can be done.

2-Bit Signaling with 4-QAM Interference

Let us start with the simplest case, where both of the first two streams use 2 bits per

complex symbol. Since the first stream sees no interference, its constellation will look

like standard 4-QAM. The second stream will then see the first as interference, after

a gain and phase shift. Similar interference could occur for later streams if the linear

combination of earlier symbols heavily favors one of them over the others.

Assume that the transmitter phase-aligns the current input symbol with the 4-

QAM interference. Consider first the two extreme cases of no interference and very

large interference. In either case, we can just send the new symbol s as is, resulting in

the received distributions shown in Fig. 3-10. Both result in the best-case performance

of no precoding power loss. The large-interference case is the same as superposition

coding [14], where the earlier message is strong enough that the receiver can determine

what point was sent, subtract (modulo) that out, and then detect the second message.

In this and the next figure, the precoded signal that was sent is the difference between

the interference point and the nearest “quantizer” point corresponding to the desired

symbol.

In practice, it is likely that something in between these two extremes will occur.
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Figure 3-10: Simple embedding for (a) very small or (b) very large interference.
Possible interference values are shown as •, and embedding points with �, ∗, ◦, and
×.

To adjust for this, first consider the large interference case of Fig. 3-10b. We could

relabel the constellation points and achieve the same, optimal minimum distance with

slightly smaller interference, as shown in Fig. 3-11c. Interestingly, this mapping can

be interpreted as a form of distortion compensation, where some of the “quantizer

error” from a standard TH precoder is added back in the form of self-noise.

As the interference gets smaller, some of the constellation points merge, as in

Fig. 3-11b. At some point, we would expect to go back to the no-interference method,

shown in Fig. 3-11a. It turns out that this switch occurs when the interference has

half the magnitude of the symbol to be embedded. If the possible interference points

are spaced 2ζI units apart, then straightforward calculations yield:

• Method of Fig. 3-11a

Pk =




2ζ2 + 2ζ2
I , 0 ≤ ζI < ζ,

2ζ2 + (2ζ2 − 2ζ2
I ), ζ ≤ ζI < 2ζ,

periodic, consequent ranges of 2ζ.

• Method of Fig. 3-11b

Pk =

{
2ζ2 + 2(ζ − ζI)

2, 0 ≤ ζI < ζ,

2ζ2, ζI ≥ ζ.

For a particular interference distribution, the better of these two methods would be
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Figure 3-11: Modified versions of the embeddings in Fig. 3-10 for more moderate-
power interference.

chosen. As shown in Fig. 3-12, using this adaptive constellation instead of standard

TH precoding provides a gain of 1 to 3 dB over a relatively wide range of possible

interference powers. These include typical scenarios without power control when

there are two receivers and two or three transmit antenna elements (average relative

interference powers of 1 and 0.5, respectively.)

This adaptive constellation does not need to significantly affect the complexity of

the receiver, which must distinguish among the embedding points corresponding to

different input symbols. Since all “◦” points in Fig. 3-11c embed the same symbol

value, the receiver can treat the whole center region as a single decision region in its

slicer. The slicers for the constellations in Fig. 3-11b and c then form a continuum

parametrized by an overall gain. The receiver will have to use a separate slicer for

Fig. 3-11a, but it may be possible to determine which of the two to use based on the

distribution of received data.

2-Bit Signaling in Larger-Order QAM Interference

The interference will not always consist of only four possible points. This is es-

pecially true because the first stream, which causes interference on later ones, will

typically have the best channel quality and is therefore more likely to use higher-order

modulation. The methods of the previous discussion can still be used, although the

description is more difficult and less dramatic gains are possible. This is discussed in

Appendix B.
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3.2.4 Channel Information

Precoding systems of the type described in this chapter involve a unique set of process-

ing and channel knowledge assumptions. In this section, we look at what information

is needed at the transmitter and receiver, and how this affects the processing and

performance.

Transmitter Processing

The transmitter needs to compute the beamforming and precoding matrices as well

as appropriate information rates, so it needs to know the channel vectors of all the

receivers to which it is currently communicating. We have discussed how this can be

accomplished either through feedback from the receivers’ knowledge or by training

on the reverse channel in time-division duplex systems.

Errors in the channel estimation can lead to unintended interference at the re-

ceivers. The modulo operation makes an exact error analysis difficult, but some

indicators of the sensitivity can be found. Recall that the beamforming step converts

the channel matrix H into a lower-triangular form using the LQ factorization. If the

true H differs from the estimated value by a perturbation, then the corresponding

perturbations in L and Q can be magnified by about κ2(H) [59], where κ2(H) is the

condition number of H,

κ2(H) =
σmax(H)

σmin(H)
.

This means that the precoding step will be based on a different L from the true one,

producing interference at the receivers. This effect can be lessened by ensuring that

H is well-conditioned. One way to do this is to send to fewer than the maximum

number of receivers. A different approach, discussed in Chapter 4, is to specifically

select receivers that lead to well-conditioned channel matrices.

Another analysis technique is to use a model for the perturbation. Suppose that

the true H differs from the estimated value by a K × M matrix ∆1 that has i.i.d.

complex Gaussian elements. The received vector before the additive noise will be

(H +∆1)Q†GPDs̃ = LGPDs̃ +∆2GPDs̃,

where ∆2 = ∆1Q
† is a K × K matrix whose elements are i.i.d. Gaussian with
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the same variance as those in ∆1. Since the first term on the right-hand side is

the intended output, the uncertainty in H apparently adds a “noise” term, which

for any particular input vector is Gaussian distributed. With perfect coding and

embedding, the vector of precoded symbols GPDs̃ will look i.i.d. Gaussian, so the

characteristics of this noise term for each receiver can be computed; its variance will

clearly be proportional to the variance of the perturbation. Unfortunately, this does

not provide a complete characterization, since the precoded symbols are dependent

on the original symbols. For example, the constellation expansion in s̃ will likely be

largest when the previous precoded symbols happen to be largest, suggesting that

the new noise term will be at its worst when there are large modulo terms.

To ensure numerical stability of the precoding algorithm, care must be taken in the

choice of LQ factorization. The straightforward implementation, basically the Gram-

Schmidt procedure, can lead to a severe loss in orthogonality among the beamforming

vectors [32]. The “modified Gram-Schmidt” procedure is more careful about internal

scaling, and QQ† differs from identity by a matrix of approximate norm εκ2(H),

where ε is the machine precision. Once again, we see that using better-conditioned

channel matrices helps. A different LQ algorithm using Householder transformations

takes about twice the number of computations but achieves still better orthogonality

(approximately ε from identity).

Receiver Processing

The relevant receiver processing consists mostly of locking on to the gain and phase of

its symbol stream and then detecting the symbols with a slicer. To do this effectively

requires estimating the complex effective channel gain, lkdk, or developing systems

that work around this step. It is at this level that spatial precoding presents some

unique channel knowledge and sensitivity issues.

Although this type of processing is common in digital communication systems,

many of the usual methods may not be appropriate for spatial precoding. For exam-

ple, cellular systems often use phase shift keying constellations that do not require

fine gain estimation. However, the modulo-equivalent constellation points of precod-

ing make gain control a necessity; even if we started with a 4-QAM constellation, the

modulo-extended version would expand to a constellation of higher order. Point-to-

point digital subscriber line (DSL) systems use a rather involved training phase that

allows the receiver to estimate its channel and determine the rates and gains on the
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various subchannels [2]. Once again, however, our channel is different in that these

decisions must be made in a centralized manner based on all of the receivers’ channels

and not each individually.

We are therefore left with two choices: all channel information can be distributed

to all receivers, or the transmitter can inform or train the receivers for their individual

complex gains and rates. The second option appears to be easier and involve the

transfer of less information. Because different constellations can look the same under

the modulo operation, the transmitter could inform the receivers of their streams’

modulation and coding scheme using a few highly-protected symbols, as is common

for this type of header information (see, e.g., [21]). On the other hand, it may

make sense to train the receivers on the complex gain so that they can do their own

adaptive gain control and continue to adjust it as the channel varies slightly from the

transmitter’s estimates.

To see the importance of an accurate gain estimate, consider a modulo-extended

4-QAM constellation, where the constellation points have odd real and imaginary

integer coordinates. The upper-right constellation point (the triangle in Fig. 3-3) will

have real coordinate 4n + 1 for some integer n. If the receiver multiplies its input by

too large or small a gain before slicing, then it could cause an error in the modulo-

extended slicer even in the absence of noise. For instance, for positive n, multiplying

by a gain that is a factor

4n + 2

4n + 1

too large will cause an error. Note that this gets steadily stricter with more severe

constellation expansions: 2, 6/5, 10/9, etc. This type of effect happens for a slicer on

any higher-order constellation; the new wrinkle here is that the modulo makes a low-

order constellation act like a higher-order one. This provides another argument for

choosing well-conditioned channel matrices, since this will help limit the constellation

expansion.

Spatial precoding does provide some immunity to the amplifier saturation problem

that can occur in typical TH precoding systems. These issues come up because gain

control is often done with linear amplifiers or other devices that only provide good

results over a limited range of inputs. With TH precoding, the modulo-equivalent

symbols that are received can sometimes be large and may cause the input to go

beyond this range [9]. Fortunately for spatial precoding, the symbols that are most
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likely to undergo large constellation expansion, belonging to the later-ordered re-

ceivers, are also attenuated the most by the effective channel. To be more specific,

assume a random ordering and no power control. This means that the vector of

precoded symbols, GPDs̃, will be of equal maximum power. Through beamforming

and the actual channel, this vector will be multiplied by the lower-triangular matrix

L = HGB. The first receiver will therefore get the first precoded symbol multiplied

by l1, whose power was previously determined to have an Erlang distribution with

M degrees of freedom. The second receiver will get a mixture of the first precoded

symbol and its own. Its own precoded symbol will be multiplied by a smaller factor

than before, with M − 1 degrees of freedom, but the other symbol will arrive with

Erlang-distributed power with 1 degree of freedom. If the two symbols add up co-

herently, then the overall maximum power has the same distribution as at the first

receiver. This continues: the kth receiver will get a superposition of its own symbol

with an Erlang-distributed power distribution with M −k+1 degrees of freedom, and

k − 1 other symbols, each with first-order Erlang. Therefore, the maximum power

will have the same distribution for every receiver regardless of its ordering placement.

3.3 Precoding for Combined Multiuser and Inter-

symbol Interference

This chapter has been primarily about taking techniques previously used to combat

intersymbol interference and applying them to cross-channel interference between

streams intended for different receivers. One would expect that when both types of

interference are present, a generalization of these methods should follow.

One approach, used by Ginis and Cioffi in [30], is to perform a discrete multitone

transform (DMT) to convert the time-dispersive channels into number of parallel,

one-tap channels. Multiuser precoding can then be performed on each of these sub-

channels. We seek a more unified treatment, using precoding directly for canceling all

interference. This will take the form of two separate algorithms, representing causal

and noncausal processing, depending on the order in which interference is canceled.

After we develop our single-tone algorithms, we compare them with the DMT-based

methods.
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3.3.1 Multiple-Receiver Dispersive Channels

In describing these more general channel models, we take some of our notation from

the multiple-input, multiple-output (MIMO) model of [70]. A discrete-time M -input,

K-output linear time invariant (LTI) system can be represented by a K × M matrix

H(z), whose entries Hkm(z) are the z-transforms of the channel from the mth input

to the kth output. If the regions of convergence all contain the unit circle, than a

matrix Fourier transform H(ejω) can be similarly defined. We define the “‡” operator

to perform a conjugate transpose and additionally reverse the time sequence, so

H‡(z) ≡ H†((z∗)−1).

One special type of MIMO system is called paraunitary. This means that

H‡(z)H(z) = c · I,

a scaled identity matrix. If H(z) is defined on the unit circle, then we can similarly

define a lossless system as a causal, stable system for which

H†(ejω)H(ejω) = c · I.

This is the MIMO analogue to an allpass filter. It turns out that when H(z) is defined

on the unit circle, then the two equations above imply each other, so a lossless system

is the same as a causal, stable paraunitary system.

The basic channel model, before any processing, is

y(z) = H(z)x(z) +w(z),

where y(z) are the channel outputs and w(z) represents a realization of the white

Gaussian noise sequence. We will assume that all the entries in the channel matrix

H(z) are causal and stable, but not necessarily minimum phase. For a precoding

system, the antenna inputs x(z) are the precoded and beamformed symbols, so we

have

y(z) = H(z)GB(z)GP(z)Ds̃(z) +w(z).

GP(z) is the precoding matrix, chosen so that H(z)GB(z)GP(z) is diagonal, where
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each diagonal element of this product consists of only a single tap that is not a function

of z. This way, a receiver sees no interference across time or from other streams. We

also set the diagonal elements of the precoding matrix GP(z) to be monic, which

moves all power control into D.

The beamforming matrix, GB(z), specifies the transformation between precoded

symbols and antenna inputs. In our discussion on flat fading channels, we constrained

the elements of this matrix to be single-tap filters. In our extended model, we now

allow each “beamforming weight” to be an LTI filter. Therefore, each antenna element

output will be a linear combination of filtered precoded symbols from the different

streams. We will also impose an orthogonality constraint on the beamforming (as we

did in Section 3.1.2 for flat fading channels), so that the beamforming matrix GB(z)

must be paraunitary with c = 1,

GB
‡(z)GB(z) = I. (3.13)

Note that this imposes an orthogonality across both time and different streams.

For flat fading channels, GP was made to be lower triangular. This was necessary

so that the intertwined constellation expansion and matrix multiplication operations

of the precoder could be performed recursively over the different streams. In the

more general model, we must precompensate for interference across both streams and

time. We will find that this leads to more than one type of constraint on GP(z), each

corresponding with a different sequence of interference cancellation operations.

3.3.2 Canceling Multiuser Interference with Causal Process-

ing

The kth row of H(z)GB(z) determines the linear combination of symbols that the

kth receiver would see from both its own and other streams, if the precoding step had

been omitted. With precoding, the coefficients of every power of z of each entry of this

row will multiply some precoded symbol. If all of the precoded symbols corresponding

to nonzero coefficients in this row are known when the current symbol is ready to be

processed, then the interference can be computed and subtracted off so that that the

receiver will get only the desired symbol (or a modulo-equivalent version).

The ordering in which symbols are processed, with respect to both time and the

different streams, will determine the necessary structure of H(z)GB(z). Suppose
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(a) Causal algorithm of Section 3.3.2 (b) Noncausal algorithm of Section 3.3.3

Figure 3-13: Order of processing symbols for precoding

for now that one symbol from the first stream is precoded, then one from the next

stream, etc., until all of the symbols at time n = 0 have been processed. Next comes

the n = 1 symbol of the first stream, and so forth. A graphical view of this processing

of symbols is shown in Fig. 3-13a.

For the kth stream to precode its current symbol using this procedure, it needs

to know the past precoded symbols of all streams and the present precoded symbols

of the streams with lower indices. This means that in the kth row of H(z)GB(z),

the first k entries should be causal, and the last K − k entries should contain only

negative powers of z. Since H(z) is already causal, we just need to triangularize the

set of zero-lag taps. This can be done by collecting them into a matrix Ĥ, performing

an LQ decomposition Ĥ = L̂Q̂ on that, and using Q̂
†
as the beamforming matrix

GB(z). In this way, the beamforming matrix still ends up as a set of single-tap,

zero-lag filters, even though this was not specified a priori.

The SNR performance of this method is straightforward to calculate, since only

the diagonal, zero-lag terms of H(z)GB(z)GP(z) contribute to the received signal.

Using the same reasoning as in Section 3.1.3, the received SNR for stream k (to first

order with TH precoding, or exactly with optimal information embedding) becomes

SNRk =
P|l̂kdk|2

N0

,

where l̂k is the kth diagonal entry of L̂.

Note that performance-wise, the terms of H(z) with negative-powers of z were
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essentially ignored, with their energy getting canceled in the precoding. This is fine

when most of the energy in the channel responses resides in the zero-lag terms, but

this is not generally the case.

A solution to this problem for single-user ISI channels is to use a whitened matched

filter front end to make the channel minimum phase. Given an allpass constraint, this

filter forces as much energy as possible into the first tap. For the multiple-receiver ISI

channel, we might like to make all matrix entries minimum phase, but unfortunately

there is no way to filter all of the entries of H(z) independently. Even if this were

possible, it is not clear that it will necessarily lead to the largest SNRs. What we

need is a more general L(z)Q(z) decomposition of H(z) that concentrates as much

energy as possible to the front of the final responses.

3.3.3 Precoding with Noncausal Filtering

For a scalar channel with impulse response h‡(z), the whitened matched filter starts

with a matched filter h(z), resulting in the conjugate-symmetric response h‡(z)h(z).

This is followed by a filter that makes the overall response minimum phase (and

makes the combined filter allpass). These ideas can be extended to transmit arrays,

and eventually, multiple users.

Let us start with a single-user example, with M transmit antenna elements. This

receiver’s channel model is

y1(z) = h‡
1(z)g1(z)s1(z) + w1(z),

where the elements of h‡
1(z) are assumed to be causal. Ignoring the paraunitary

constraint (3.13) for now, the received signal energy is maximized by making g1(z)

proportional to a bank of matched filters,

g1(z) = γ1(z)h1(z),

for some scalar filter γ1(z). This turns the vector channel into a scalar channel, with

only a single scalar filter left to be determined.

The power constraint comes down to

g‡
1(z)g1(z) = 1,
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which is now equivalent to

γ‡
1(z)γ1(z)h

‡
1(z)h1(z) = 1. (3.14)

Finding γ1(z), then, is equivalent to finding a whitening filter for a random pro-

cess with autocorrelation h‡
1(z)h1(z). From well-known results in statistical signal

processing [11], if h‡
1(z)h1(z) is factorizable, then it has a canonical form,

h‡
1(z)h1(z) = |c1|2t‡1(z)t1(z), (3.15)

where t1(z) is causal, monic, and minimum phase. The technical conditions for factor-

izability are that both ‖h1(e
jω)‖2 and ln ‖h1(e

jω)‖2 are integrable over −π < ω ≤ π.

These conditions hold for many functions h1(z) of interest, such as FIR and rational

z-transforms. The constant c1 can be found with

ln |c1|2 =
1

2π

∫ π

−π

ln ‖h1(e
jω)‖2dω.

In general, the solution for γ1(z) in (3.14) is not unique, but can contain factors

from both t1(z) and t‡1(z). From a total SNR standpoint, any of these solutions would

give equal performance. However, because we want to use this system for precoding,

the equivalent channel h‡
1(z)g1(z) should also be causal and minimum phase. This

means that any non-minimum-phase factors must be removed, so we set

g1(z) =
h1(z)

c∗1t
‡
1(z)

(3.16)

and get the equivalent channel

y1(z) = c1t1(z)s1(z) + w1(z). (3.17)

We call this solution “noncausal” because the filter in (3.16) is in general not causal.

At this stage, no optimality has been lost by using this vector whitened matched

filter. In fact, a frequency-domain version of this type of single-user, transmit array

processing was derived by Zangi and Kransy [85], but without the minimum-phase

constraint. Instead of precoding, they assumed an optimal receiver and showed that

this system reaches the channel capacity if waterfilling across frequency is also per-

formed.
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We, on the other hand, choose to do transmitter precoding, so performance is

determined by the zero-lag term of the equivalent channel. Since t1(z) is monic, the

received SNR is c2
1P/N0. Before we go on to multiple-receiver generalizations, it

is useful to go over an example, and also ask whether this method is a significant

improvement over the causal method of the previous section.

Comparison with Causal Precoding

As a simple example, take a two-antenna system, with monic channels

h‡
1(z) =

[
1− αz−1 1− βz−1

]
.

Let the input SNR be P/N0 = 1. The causal processing method of Section 3.3.2

ignores the z−1 terms for the beamforming part and will simply combine the two

channels, each with weight
√
2/2, to get the composite channel

√
2

(
1− α + β

2
z−1

)
.

Since the performance is determined by the zero-lag term, this system will always

have a received SNR of 2, regardless of the values of α and β.

The noncausal solution of this section instead first performs a matched filter and

attempts the spectral decomposition of (3.15). Expanding this formula out, we get

h‡
1(z)h1(z) = −(α + β)z + (2 + |α|2 + |β|2)− (α + β)z−1

= |c1|2(1− dz−1)(1− d∗z)

for some constant d. Since it is |c1|2 that determines the SNR, we solve for it alge-

braically:

|c1|2 = 2 + |α|2 + |β|2
2

+
1

2

√
4 + |α|4 + |β|4 + 2|α|2|β|2 − 8Re{αβ∗}. (3.18)

We see immediately that if |α|2+ |β|2 ≥ 2, the noncausal method will perform at least

as well as the causal method described earlier, and will be much better as |α|2 + |β|2
increases. This is not surprising, because it means that at least one of the two channels

was not minimum phase, so pushing energy toward the beginning of the responses

will help the zero-forcing precoder. At first this situation may seem trivial, since the
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transmitter could individually filter the two channels to be minimum phase. However,

when we move on to multiple receivers, recall that in general, it is not possible for the

transmitter to make all of the channels for all of the receivers to be minimum phase.

When |α|2 + |β|2 < 2, then for the noncausal method to be better, we need

whatever is under the square root sign in (3.18) to be larger than [2− (|α|2 + |β|2)]2.
Subtracting this number from what is under the square root sign, we get

4|α|2 + 4|β|2 − 8Re{αβ∗} = 4|α − β|2,

which is always nonnegative, and equal to zero only when α = β, that is, when the

two channel vectors are the same. Therefore, the noncausal precoding never does

worse than the causal method, and almost always does better.

Even when both channels are minimum phase, it turns out that the received SNR

of the noncausal method can be higher by a much as a factor of two. (This happens

when α and β are near the unit circle and differ in phase by π.) It can also be shown

that this noncausal filtering method does no worse than the causal method for any

two-antenna, two-tap system, whether or not the channels are monic or minimum

phase.

Multiple Streams

Once again, (3.16) provides the filtering to be done on the first stream. What must

be done with the second stream? If we use the same method, then this will cause

interference to the first receiver, which should be avoided.

Conceptually, we can perform a similar procedure to what was done with flat

channels and make use of a kind of LQ decomposition. Previously, this amounted to

the Gram-Schmidt procedure of finding a set of orthogonal vectors Q that span the

same space as those in H. Now, instead of letting g2(z) be proportional to h2(z) as

for the first receiver, we need to make it proportional to the component of h2(z) that

is orthogonal to h1(z). From linear algebra, this component can be written as

h2(z)− h‡
1(z)h2(z)

h‡
1(z)h1(z)

h1(z).

(One can also think of the above as a separate orthogonalization for each frequency.)

We now need to normalize this function and make the overall response minimum
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phase. With a little algebra, the autocorrelation is shown to be

(
h‡

1(z)h1(z)
) (

h‡
2(z)h2(z)

)
−
(
h‡

1(z)h2(z)
) (

h‡
2(z)h1(z)

)
h‡

1(z)h1(z)
.

We know from the previous subsections that the denominator has the canonical fac-

torization |c1|2t‡1(z)t1(z). Let the numerator factorization be denoted |c2|2t‡2(z)t2(z).
Then, once we normalize out the maximum-phase terms, we get

g2(z) =

(
h‡

1(z)h1(z)
)
h2(z)−

(
h‡

1(z)h2(z)
)
h1(z)

c∗2t
‡
2(z)c1t1(z)

. (3.19)

The set of beamforming vectors

GB(z) =
[
g1(z) g2(z)

]

now satisfies the paraunitary constraint. Using (3.16) and (3.19), we see that the new

effective channel becomes

H(z)GB(z) =


 c1t1(z) 0

h‡
2(z)h1(z)

c∗1t‡1(z)

c2t2(z)
c1t1(z)


 (3.20)

and the SNR at the second receiver will be

P
N0

· |c2d2|2
|c1|2 .

The procedure for adding yet more streams follows easily, though we omit the details

here since the equations become more cluttered.

Operation of Precoding Algorithm

It is worth taking a minute to consider the precoding algorithm implied by the effective

channel of (3.20). Recall that tk(z) are monic and minimum phase, while h‡
k(z) are

causal. This means that the diagonal elements will be causal, but the entries below

the diagonal will not. What does this say about how the precoding operation must

proceed?

Imagine that the transmitter wants to precode the current data symbol of stream
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Figure 3-14: Simulated outage probability for received SNR for the second of two
receivers. We compare the methods of of Section 3.3.2 and Section 3.3.3, with a 4-
element array, 4 i.i.d. Rayleigh-distributed taps each of variance 0 dB, P/N0 = 0 dB,
and equal power distributed between the two receivers.

k. It needs to compute the interference that will appear for this data symbol, subtract

it out, then perform a modulo on the result. From the structure of (3.20), the inter-

ference will depend on this stream’s own past precoded symbols, and past, present,

and future precoded symbols of earlier streams. Therefore, before the transmitter

can precode this stream, it needs to wait for all earlier streams to be precoded. What

results is the algorithm flow of Fig. 3-13b. The transmitter precodes all the symbols

of the first stream, then all the symbols of the second stream, etc. Realistic imple-

mentations would probably truncate the responses of (3.20), so that the processing

of each stream only needs to stay a specific number of symbols ahead of the next one.

Performance

We expect that this noncausal precoding method will exhibit a performance improve-

ment over the causal method of Section 3.3.2, which only takes advantage of the first
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tap of each channel filter and simply cancels energy from the other taps. The simu-

lated outage curves of Fig. 3-14, for a 4-element array and four taps per channel, bear

this out. Shown is the performance for the second of two receivers; the first receiver’s

performance is similar but is 1 to 2 dB higher. The causal curve is the same as the

usual third-order diversity for flat channels. (Recall that with M antenna elements,

the kth receiver gets diversity order M − k + 1.) Because the filtering in the non-

causal method attempts to use energy from all the taps, it achieves not only better

average performance, but also has smaller tails resulting in a sharper outage curve.

At low outage, the gain is almost 10 dB. Even the noncausal method can not gain

back all of the energy from all of the taps, but it does come close: the first stream’s

mean received SNR is 90 percent of the matched filter bound. Simulations for ergodic

capacity are given in the next section.

3.3.4 Comparison with DMT Method

The DMT-based method of Ginis and Cioffi [30] takes a very different approach, as

summarized in Fig. 3-15. Each stream is broken into blocks of N symbols, and each

block is put through an inverse discrete Fourier transform and then prepended with

a cyclic prefix before being sent through the channel. A receiver waits for the entire

block to be received and takes the N -point discrete Fourier transform (DFT). The

overall effect is transforming the ISI channel into a series of N parallel single-tap

channels, with the taps equal to the N -point DFT coefficients of the channel impulse

response. For this to work, the cyclic prefix, which carries no useful information,

must be as long as the ISI. In the context of the multiple-receiver problem, this

whole procedure transforms the H(z) matrix into N parallel matrices with single-tap

entries. Now, the beamforming/precoding procedure for flat fading channels can be

applied to each of these separately. We will continue to assume that the system uses

the precoding method that results in zero interference.

A comparison between our precoding method with noncausal filtering and the

DMT-based method reveals many features of the classic single tone versus multitone

discussion that has traditionally centered around scalar ISI channels. One way to

think of frequency-selective channels with Gaussian noise is as an infinite number of

parallel channels at different frequencies that can be optimized separately. Multitone

methods try to approximate this with a finite number of parallel channels N , and

break up the input into this many substreams. Different power, modulation, coding,
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Figure 3-15: Block diagrams for DMT method with two receivers. Shown are the
processing at the transmitter and at a typical receiver.

and now, precoding, can be used on the different substreams. Single-tone methods

instead encode the whole stream together and use a filter to spread each symbol over

all frequencies so that the transmit spectrum is optimal. Multitone methods suffer

from the overhead of the cyclic prefix and from the finite number of subchannels

approximation. Single-tone methods typically lead to more complex receivers. This

complexity, along with the necessity of receiver cooperation, was alleviated for the

most part by using precoding, but this solution leads to its own set of issues.

For both methods, precoding forces the ordering among streams to be set at the

transmitter. In the multitone solution, this ordering can be done separately for each

subchannel. This is not quite the same as being able to reorder for each frequency,

both because of the finite number of subchannels and also that the DMT causes some

leakage of energy across frequency bands. As the block size gets large, these issues

should disappear. In any case, there more control over the ordering than the single-
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Figure 3-16: Ergodic sum capacity across two receivers for the different methods.
Parameters are the same as for Fig. 3-14, except the input SNR, P/N0, is made
variable. The DMT method used 32 tones, and the rate penalty from the cyclic
prefix is ignored.

tone solution. There, the channel triangularization was performed over the whole

band, so the same ordering is used over all frequencies.

Another issue is the manner with which the interference is dealt. Both methods

use zero-forcing precoding to eliminate the interference across the different streams.

For interference across time, however, the DMT codes separately at the different fre-

quencies, while the single-tone method again uses precoding. Zero-forcing precoding

is known to be optimal at high SNR [7, 12], but is not in general, so the DMT seems

to have an advantage here.

In our preliminary simulations, these details do not seem to result in major dif-

ferences in performance. For example, Fig. 3-16 shows ergodic sum capacity for two

receivers, four antenna elements, and four taps per channel. The difference between

the DMT method (which includes optimal ordering at each tone, and waterfilling

over both streams and tones) and our noncausal single-tone method (with a random
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ordering, and waterfilling only over streams) is negligible except at very low SNR.

Apparently, the filtering in the single-tone method is able to shift most of the power

to the zero-lag taps and does not suffer from the zero-forcing approach to ISI. It also

suggests that the ordering and waterfilling issues are of secondary importance here.

As expected, the causal precoding method of Section 3.3.2 lags in performance. The

multitone method did not seem to be very sensitive to the number of tones chosen,

either. However, one reason to choose a larger number of tones would be to lower

the overhead of the cyclic prefix: if this had been included, the single-tone method

would have been better at most SNRs. As the number of receivers is increased and

the system becomes more constrained, all of these second-order effects may gain in

importance.

Changing from the zero-forcing to the more general multiuser precoder that max-

imizes sum capacity, as in [82], would be straightforward for the DMT method, al-

though as of now there is no provably optimal algorithm for finding the optimal

beamforming matrix. Similarly modifying the single-tone solution to allow just the

right amount of interference, but now over both streams and time, is likely to be

possible in principle but difficult in practice. Recall, though, that our earlier results

suggested that at reasonable input SNRs, zero-forcing precoding (at least across re-

ceivers) does seem to achieve a large part of the potential gain. Similarly, waterfilling

across both streams and frequencies may be easier for the DMT method (where they

combine to form a single, larger power control problem), but our simulations and

those of others [12] suggest that waterfilling does not play a major role except in

cases of blocking off particularly bad channel segments.

The single-tone solution does have additional practical advantages. Each receiver’s

stream is sent with a single modulation and channel code, as opposed to potentially

different ones for each of the N DMT subchannels. The single-tone beamforming

filters and precoder are somewhat more complex than in multitone, but once again

there is only one set of these. The DMT must run a separate set of beamformers

and precoders, with different coefficients, for each subchannel. The transmitter must

not only operate all of these different functional units, with corresponding added

complexity at the receiver, it also needs to figure out the correct parameters. Fur-

thermore, since precoding is somewhat sensitive to channel estimation errors, having

so many separate precoders may require either more accurate channel estimation or

more conservative rates.
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Both types of systems require a certain amount of delay. For the single-tone

system, the delay is in the noncausal filtering and waiting for earlier-ordered streams

to be precoded first. (Recall the algorithm operation of Fig. 3-13b.) Both of these

can be made finite by truncation. The DMT method processes signals block-wise, so

both transmitter and receiver must wait for entire blocks to appear before processing

them.

3.4 Concluding Remarks

The array processing described in this chapter provides another example of the power

of precoding/dirty paper coding approaches in a variety of applications. These meth-

ods have the ability to layer information at rates that were previously only available

with additional receiver processing and coordination. We view its application to array

processing in terms of a factorization between linear and nonlinear operations. We

saw in both the flat fading and frequency-selective fading scenarios that this parti-

tioning can be done in many ways, leading to different types of processing, multiple

orderings among streams, and various performance tradeoffs.

Our discussion has concentrated at the level of understanding these partitionings

and their implementations in practical systems. Several open questions remain along

these lines, many of which are active research directions. These include developing

coding techniques that “close the gap” to capacity, further characterizing robustness

to imperfect channel knowledge, finding operating points for various performance

criteria, and exploring the role of the distortion compensation parameter for specific

signaling schemes.
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Chapter 4

Informed Data Scheduling

We now focus on how to improve performance by using schedulers that are aware

of the physical channel state and other system components. This is in contrast to

traditional layered architectures, where the two problems of selecting which streams

to send at a particular time and of communicating those selected streams with highest

efficiency have usually been considered separately. For example, cellular systems often

have a medium access control (MAC) layer that assigns slots or waveforms relatively

independently of the channel state, then a physical layer that may apply adaptive

techniques based on properties of the links. The analysis of precoding in the previous

chapter, although incorporating some amount of data stream awareness, was in this

tradition in the sense that the channel vectors were random and presumably selected

by an independent upper layer. However, the strong roles that interference and fading

play in spatial multiplexing suggest that further integration between layers may be

fruitful.

We have seen how both the overall system throughput and the reliability of in-

dividual links can be improved by scheduling more than one stream simultaneously.

However, an array of a given size can only spatially multiplex a limited number of

streams effectively. When more than this many streams have data to sent, the sched-

uler must make decisions on how they are to be grouped. If this scheduling process

is informed by the state of the channel vectors, the general scheme of the physical

layer, and a small amount of information about the data itself, then the system as a

whole will benefit. In addition to performance gains, the system may even be able to

reduce the computational requirements of the array processing, so that less-intensive

techniques such as beamforming can be used instead of precoding.
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Any discussion of optimizing performance must be sensitive to the particular goals

and constraints of the system. In Section 4.1 we describe a classification scheme

based on the delay tolerances of data streams and explain what kinds of scheduling

are appropriate for each class. Once again, we assume that each stream is intended

for a unique receiver. Then, in Sections 4.2–4.5, we study scheduling algorithms for

these classes in more detail. For these scenarios, we discuss the key roles of channel

orthogonality and magnitude, and how our algorithms attempt to optimize these

to improve performance. Finally, in Section 4.6, we bring together some ideas on

combining different data classes within the same system. Although more research is

required if systems must give rate and delay guarantees to individual streams, our

results show the promise of channel-aware scheduling for array systems.

4.1 Data Model: Classification by Delay Tolerance

Scheduling algorithms can operate at a variety of levels, depending on the features of

the channel and data streams they choose to model. On one side are algorithms from

the networking community such as weighted fair queuing [53, 16] that typically assume

a reliable channel and seek to ensure certain qualities of service for a heterogeneous

set of data streams. A refined model called service curves [15, 60] enables a system to

satisfy both rate and delay guarantees simultaneously by having each stream specify

an entire set of rate goals at various delays. Unfortunately, these types of results are

difficult to apply to our wireless channel of interest, where the total system rate de-

pends highly on the particular set of streams selected at each time. Other approaches

pursue less ambitious service guarantees but include a greater consideration of the

physical channel. For example, in the multiuser uplink channel with single-element

antennas, Tse and Hanley [67] derive scheduling and power control algorithms for

maximizing the instantaneous weighted sum of rates among the different streams.

Okamoto [51] and Shan, et al., [57] describe some scheduling algorithms for adding

spatial multiplexing to array systems while maintaining SINR goals. For a downlink

array system, Viswanath and Tse [74] suggest an adaptive timesharing strategy that

transmits a stream whose associated channel realization has high quality with respect

to its mean value.

In this chapter, we consider scheduling algorithms that take advantage of channel

knowledge and lower-layer spatial multiplexing, yet still respect essential differences
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Type Delay tolerance

tight delay one to several packet lengths
medium delay several packet lengths to several coherence times
large delay more than several coherence times

Table 4.1: Summary of data types, organized by delay tolerances

between classes of data. Since the overall performance will depend on the flexibility

of the scheduler to rearrange packets and set rates, we classify data streams based

on a few general levels of delay tolerance, as summarized in Table 4.1. The data

with the tightest delay, such as critical sensor data, must be sent within a small

number of packet lengths. The next level of data, perhaps modeling voice traffic, is

more tolerant but still useless if not received within a few coherence times. In other

words, the scheduler can rearrange the data streams into different groups, but can not

count on waiting for channel realizations to change. We will see that a good strategy

here is to select groups of receivers with nearly orthogonal channel vectors. Finally,

data with the largest delay tolerance, such as background file transfers, is concerned

only with long-term average rates, meaning that the scheduler has the freedom to

send only those streams with good instantaneous channel realizations. Although this

classification, based on when data must be sent, should not be confused with the

discussion of signaling strategies in Section 2.2.1, similar performance criteria are

appropriate. We will primarily look at individual-receiver outage for medium-delay

data and ergodic sum capacity for large-delay data. Data with tight delay constraints

is of a different nature, and is concerned with the delay of a particular packet.

Rather than a detailed source model, we consider a simple mechanism whereby

each stream delivers data into a separate buffer. When the buffer reaches some

minimum threshold, it places an entry into the queue of “ready” streams with data

to send. When this stream is selected for transmission, it passes data from the buffer

to the array processor functions and removes the entry from the queue. We first

consider appropriate scheduling techniques for queues of a single data class, then in

Section 4.6 discuss some ideas for systems with multiple classes.

These results are a starting point for making scheduling more aware of the chan-

nel state and array processing. They show the potential for improved performance,

and of how a channel-aware scheduler can reduce the complexity requirements of
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other system components. Our specific algorithms are not meant to replace quality

of service-based methods without further development. Elements such as source dis-

tributions and admission control are needed before they can hope to make the same

types of guarantees. However, our contention is that an efficient synthesis of the two

approaches must proceed from a firm basis in the lower-level awareness rather than

just a small adjustment off of existing quality of service-based methods.

4.2 Spatial Multiplexing Performance for Data with

Medium Delay Tolerance

Before developing scheduling algorithms, we must first identify the key ways in which

scheduling can impact performance. Let us say that for data with medium delay

tolerance, the scheduler must send each stream in the “ready” queue within a given

bounded waiting time, and that the realized channel vectors remain constant within

this time period. The primary impact of the scheduler, then, will be in how these

channel vectors are grouped together.

In this section, we study the performance of spatial multiplexing methods under

different assumptions on the set of channel vectors. The concentration is on zero-

forcing beamforming, with some discussion on precoding as well. We will see that

the angle between channel vectors plays a major role, and that the scheduler should

therefore choose groups of receivers with nearly orthogonal channel vectors. At the

limit of a purely orthogonal set, precoding reduces to beamforming, suggesting that

with channel-aware scheduling, the computational requirements of array processing

will be reduced. These findings will inform the scheduling algorithms developed in

Section 4.3.

4.2.1 Diversity Analysis with Random Channel Vectors

An interesting way of looking at the tradeoff between the number of receivers and

performance is in terms of the diversity benefit of the array. For a single receiver and

Rayleigh fading, as we saw in Fig. 2-3, the effect of adding transmit antenna elements

is both to increase the average SNR and also to change the distribution to one with

considerably less variation relative to the mean (in particular, an Mth-order Erlang).

When there are K receivers, we expect the power constraint to limit the average
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SNR per receiver to only MP/KN0 rather than MP/N0. However, the interference

issue turns out to have a severe effect as well. Leveraging a result from the zero-forcing

receive diversity solution [79, 65], it can be shown that in the absence of power control

(i.e., if the transmitter sends signals of equal power to each receiver),

SNR ∼ Erlang(M − K + 1), mean =
M − K + 1

K

P
N0

. (4.1)

The important observation is that there is effectively a tradeoff between the diversity

benefit of the array and the number of receivers to be multiplexed. For each receiver

the transmitter has to null out, a stream loses one degree of diversity. For K = M ,

for example, (4.1) suggests that, once the K-fold loss in average transmitted power is

normalized out, each receiver’s SNR distribution is the same as if we were transmitting

to only that one receiver using a single antenna element.

One might think that using power control on the zero-forcing solution to equalize

the SNRs of the different receivers, as was done with precoding in Section 3.2.2, might

help increase the effective diversity (perhaps at the expense of peak performance).

With power control, the SNR for each receiver will be

SNRpc =
P

N0

∑K
k=1

1

σ2
k(H )

≤ P
N0

σ2
min(H), (4.2)

where σk(H) are the singular values of H. This is shown by starting from the fact

that the beamforming matrix G must be a scaled pseudoinverse of H and finding

that scaling factor:

Constraints: G = cH† (HH†)−1
trace
{
G†G
}
= P

⇒ c2trace
{(

HH†)−1
}

= P

c2
K∑

k=1

σ
((

HH†)−1
)

= P

c2 =
P∑K

k=1
1

σ2(H )

.

When K = M , the upper bound in (4.2) has an exponential distribution [18] and

once again equals the single-user, single antenna element distribution (except with a

loss of K in average power).
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The diversity loss will be less severe when there are more antenna elements than re-

ceivers, and performance will tail off more gracefully for good non-zero-forcing strate-

gies, but in all of these cases, we see the fundamental conflict between sending to

more receivers and the benefits of diversity.

4.2.2 Diversity With Orthogonal Channel Vectors

The discussion above assumed that we must transmit to a group of randomly-selected

receivers at a single time. It is exactly this random selection of receivers that causes

the loss in diversity. When selecting streams to spatially multiplex, one solution would

be to choose only those streams whose receivers have nearly orthogonal channels.

Before going on to propose specific systems that attempt to do this, we investigate

the performance potential when sending to a random set of orthogonal channels.

Suppose that K receivers are multiplexed using an M -element array (K ≤ M).

The channel coefficients have the same distribution as before, but now assume that

the channels are orthogonal, so that the transmitter can beamform perfectly to each

receiver without adding interference. The distribution in (4.1) now becomes,

SNRorth ∼ Erlang(M), meanorth =
M

K

P
N0

. (4.3)

As expected, each receiver now gets the full M -level diversity, with just the 1/K

factor in average SNR due to multiplexing among K streams. Precoding can be seen

as achieving a compromise between (4.1) and (4.3), in that the kth receiver sees an

Erlang(M − k + 1) distribution in SNR.

With orthogonal channel vectors and power control,

SNRorth,pc =
P

N0

∑K
k=1

1

‖hk‖2

≤ P
N0

‖hmin‖2 .

Because each receiver, before power control, has an equal or greater SNR than if the

channel vectors had not been orthogonal, this value is necessarily larger than (4.2).

The difference tends to be significant, since the harmonic mean in these formulas is

usually dominated by the weaker elements, and ‖hmin‖2 will typically be much larger

than the minimum singular value σ2
max(H). The outage distribution for an 8-element

array is shown in Fig. 4-1, where the difference in both average SNR and the shape

of the distribution are substantial.

102



−30 −25 −20 −15 −10 −5 0 5 10

10
−2

10
−1

10
0

Received SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

Random channels

Orthogonal channels

Figure 4-1: Outage probability for an 8-element array transmitting to 8 receivers,
with an SNR per link of 5 dB and power control.

The improvement in using orthogonal receivers can also be seen in the determinis-

tic asymptotic performance (as in [68] for receive diversity) for large systems. When

K and M grow to infinity according to a certain ratio β = K/M , the performance

with random and orthogonal receivers are

SNR → P
N0

1− β

β

SNRorth → P
N0

1

β
.

These asymptotic results are plotted in Fig. 4-2 and show a 3 dB advantage for

orthogonal channel vectors at β = 0.5, 6 dB at β = 0.75, and rapidly increasing after

that. For large systems with small β, even randomly selected channels will most often

be nearly orthogonal, so there is not much to be gained in using selected receivers.

This does not completely carry over to small systems with small β, since the non-

deterministic performance may still result in channels with bad correlations, but the
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Figure 4-2: Deterministic received SNR (per receiver) for a large system with K/M =
β and an input SNR per link of 5 dB.

general result still holds that orthogonal receiver selection is much more important

to systems with higher K/M .

A related advantage of trying to find orthogonal channel vectors is in added nu-

merical stability of the beamforming algorithms. For example, when the zero-forcing

beamforming matrix under power control (i.e., pseudoinverse) is computed, relative

perturbations in H can be magnified by a factor bounded by 2κ2(H), where κ2(H)

is the condition number,

κ2(H) =
σmax(H)

σmin(H)
,

of H, as long as the rank is not changed [59]. Similarly, if instead precoding using

the LQ factorization is performed, perturbations magnified by about κ2(H) are seen

in Q and L, and Q†Q differs from identity by a matrix of approximate norm εκ2(H),

where ε is the machine precision. Using nearly orthogonal rather than random channel

vectors results much better conditioned H matrices (i.e., with smaller κ2(H)), thus
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producing more stable computations.

We have demonstrated some of the advantages of using receivers with uncorrelated

channels. However, unless K � M , then these channels are unlikely to occur among

randomly chosen receivers, and this is the regime that provides the smallest advantage.

The solution is to look at a wider view of a system, which will likely contain more

streams than can be spatially multiplexed at any one time. We propose an amount

of integration between the physical and MAC layers, so that the correlations between

channels can inform the transmitter on how to intelligently group streams to help

achieve better overall performance.

4.3 Scheduling Algorithms for Data with Medium

Delay Tolerance

We now go on to develop scheduling algorithms and evaluate their performance. We

begin with an example where all streams are grouped into subsets, and then consider

a more dynamic queuing model whereby the set of streams with enough data to

send changes over time. As more data streams enter the queue, performance should

increase because the scheduler has more flexibility to select appropriate groupings.

We will see that not only does this expected behavior occur, but also that most of

the improvement can happen with a fairly small number of streams in the queue.

The purpose of this study is to determine the potential for channel-aware schedul-

ing. We do not make an attempt to optimize for delay, but rather to minimize outage

while ensuring that all streams in the queue get scheduled before their channel pa-

rameters are likely to change. A more complete characterization of tradeoffs between

delay and outage or throughput performance remains for future study. We do pro-

vide some analysis of delay characteristics, and will revisit this issue in Section 4.6,

but further research is required if precise delay guarantees are necessary. However,

because of the outage improvement seen with only a small amount of grouping flexi-

bility, we expect that systems may be able to support high rates even with additional

delay constraints. Conversely, a system without any additional constraints may be

able to use simplified schedulers and still achieve most of the available gains.
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Figure 4-3: Simulated outage curves when transmitting from a 4-element array to
groups of 3 receivers using zero-forcing beamforming, at an input SNR per link of
P/N0 = 5 dB. Streams are partitioned into groups using a “greedy” algorithm.

4.3.1 Static Model Example

Consider a system with K′ streams, all of which send continuous data. Therefore,

the scheduler must divide all of them into spatial multicast groups for each channel

realization. If these groups are of size K, then �K′/K groups are necessary. Given

the discussion in the previous section, we would like the scheduler to select groups

in which the angles between channel vectors is large. A good scheduling algorithm

should be able to approach the bound of orthogonal channel vectors as K′ increases.

Unfortunately, the optimal scheduling for this problem is unknown, and in any

case appears to be combinatorial in nature. More promising are “greedy” algorithms,

which select the optimal result at each step rather than doing a global search. Fig. 4-

3 shows simulation results for a 4-element array and subsets of 3 receivers using an

algorithm of this type:

1. The first �K′/K streams are put into separate groups
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2. The next �K′/K streams are placed, one by one, into the groups to which

they are “most orthogonal” (that is, the largest angle between the associated

channel vectors), until all groups now contain two streams.

3. The last set of streams are placed similarly, but now to the group with the max

min of angles to those already in the group.

Within each group, we use zero-forcing beamforming without power control. As

the population size increases, the performance grows steadily from the second order

diversity of random groupings to the fourth order diversity of perfectly orthogonal

channel vectors. At 10% outage, 4 dB out of the potential 5 dB gain is achieved with

32 groupings. At 1% outage, a similar portion of the total 7.5 dB gain is achieved.

The ergodic capacity (without power control or waterfilling) increases as well, from

4.5 bits/channel use for random selection to 6.2 for 32 groups, out of a potential 6.8

for orthogonal channel vectors.

A first-fit algorithm and its variations in [51] and [57] also multiplexed a set number

of users into timeslots in a greedy-type manner. However, those efforts seeked to

maximize the number of users in each slot given SINR constraints rather than optimize

outage given a number of users per slot, making comparisons difficult. Additionally,

they did not directly emphasize achieving orthogonality between channel vectors, but

only implicitly through the SINR constraint.

4.3.2 Dynamic Queuing Model

Amore realistic and dynamic model considers streams queuing up and the transmitter

when they have data to send. The scheduler could just group the first K streams at

the head of the queue together, but in the spirit of this section, higher performance can

be achieved if there is more freedom in choosing how streams are grouped together.

We quantify this idea by allowing a window of K′ streams at the front of the queue

from which K must be selected. As K′ increases, we expect performance to increase

as a more orthogonal set of channel vectors can be chosen.

To be more specific, imagine a replenishable queue of “ready” streams, each as-

sociated with a random channel vector. A diagram is shown in Fig. 4-4. To ensure

a bounded waiting time, the first entry in the queue must be sent at the current

time, but the other K − 1 streams to be multiplexed can be chosen from anywhere

in the K ′ − 1 remaining streams within the window. For the simulation, these are
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Figure 4-4: Diagram of queueing model

chosen in a similar manner to the static channel, but now we select the channel vector

that is most orthogonal to the subspace of the channels already chosen for the group.

Equivalently, this is the receiver that will lose the smallest fraction of its SNR upon

zero-forcing beamforming. After this set of K entries is sent, they are removed from

the queue, and K new packets with random channel vectors are added to the end of

the queue. By adding more random channel vectors each time, we either assume a

population size much larger than K′, or that by the time new packets from the same

streams reach the window, their receivers’ channel vectors have changed.

Fig. 4-5 shows simulation results for an 8-element array that schedules K = 8

streams at a time. Because the data has medium delay tolerance, we evaluate per-

formance by individual-receiver outage and use power control. As in Fig. 4-3, the

curve when the scheduler just selects the eight streams at the head of queue is far

from the bound for orthogonal channel vectors. However, even a very small amount

of freedom, selecting eight of the first nine streams, leads to gains of 5 to 10 dB for

outages in the range of 1% to 10%. By the time the window size has reached twenty,

the outage curves are starting to approach the orthogonal bound.

Other array processing methods will also benefit from channel-aware scheduling.

For instance, orthogonality between channel vectors is also desirable for the precod-

ing solutions of Chapter 3. There, later streams must direct nulls to earlier-ordered

receivers, although the reverse is not true. The scheduling technique described above

therefore selects the new stream that stands to lose the least by having to precode

off of the streams already selected. In Fig. 4-6, we compare the earlier beamforming
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Figure 4-5: Outage probabilities for a queuing system with M = 8 transmit antenna
elements and K = 8 simultaneous receivers chosen from a window size varying from
8 to 20. We use zero-forcing beamforming, power control, and an input SNR per link
of 5 dB. Shown for comparison is a bound on outage corresponding to orthogonal
channel vectors.

curves side-by-side with those for precoding, where power control and the max min

ordering method of Section 3.2.2 are used. Note how precoding with a small window

size achieves similar outage performance to beamforming with a large window size.

Precoding improves still further with larger window sizes, but by this time the incre-

mental gains are smaller. We see similar trends looking at ergodic sum capacity in

Fig. 4-7. This illustrates one of our main themes, that to get most of the benefits

of a transmitter array, a system designer often has a choice between sophisticated

scheduling or array processing and does not necessarily have to use high complexity

at both sides.

For various reasons, including numerical stability of the beamforming and LQ

operations, it might be desirable at times to spatially multiplex only 6 or 7 streams

using the 8-element array. Outage and sum capacity curves will show the same
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Figure 4-6: Same as Fig. 4-5, but we now add similar curves for precoding, with
power control and proposed max min ordering.

general trends under these circumstances, though with less relative improvement as

the window size increases. The particular P/N0 value will also affect the exact rate

tradeoffs associated with multiplexing more or fewer streams.

It is desirable to have a low-complexity method of grouping streams. The approach

used in this section can be implemented as follows: Find an orthonormal basis (using

the Gram-Schmidt procedure, for example) for the channel vectors of the streams

already in a group. Then, multiply a candidate’s channel vector by the matrix of

this basis, and determine the fraction of energy that remains. Note that the matrix

stays the same for all candidates, and once one candidate is chosen, only one new

element of the updated basis needs to be computed. The group selection appears

to be somewhat robust to different methods as well. A different grouping based on

minimizing the condition number achieved almost the same performance as this one

(at higher complexity). More ad-hoc methods may achieve similar performance at

lower complexity. With most reasonable methods, complexity grows with the window
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Figure 4-7: Ergodic sum capacity for zero-forcing beamforming and precoding, for
the same simulation as in Fig. 4-5 except without power control.

size; fortunately, it appears that most of the performance gains are achievable with

relatively small windows.

Delay Characteristics

This selective grouping procedure can result in longer delays than a simple first-in-

first-out (FIFO) model, but this delay is bounded. Consider a total population of P

streams intended for distinct receivers, backlogged so that the queue always contains

exactly one packet from each stream. (That is, a stream will always have data, but

is not allowed to put another packet on the queue until its previous stream has been

sent.) The transmitter sends K streams at a time. In FIFO, a packet therefore

always jumps K places toward the head of the queue at each time. In the selective

grouping presented above, the packet always moves at least one spot, but perhaps

not more. We can summarize the maximum and minimum delays, in terms of turns

in the queue, as follows:
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• FIFO: Maximum delay of

⌊
P − 1

K

⌋
.

The minimum delay (assuming all streams are backlogged) is only one less than

this. At each time, K new streams are added to the queue. The delay can vary

by one depending on where the packet of interest is among these K.

• Selective grouping, window size P : The maximum delay is

P − K,

but this will occur very rarely. The minimum delay is zero, because this packet

could be chosen as soon as it enters the queue.

• Selective grouping, window size K ′, where K ≤ K ′ ≤ P : This provides a com-

promise, where packets jump K places each turn until they reach the window,

and may move slower after that. By judiciously choosing a relatively small

window size K′ that achieves most of the available performance gains, one can

improve delay as well as complexity. The maximum delay is

1 +

⌊
P − K ′ − 1

K

⌋
+ K ′ − K.

The first two terms are the time it takes to enter the window, while K′ − K

is the maximum time spent within the window. Note that this reverts to the

other two cases (in delay and algorithmically) when K′ = K or K ′ = P .

Our experience from the preceding simulations suggests that the worst-case delay

occurs only rarely. Also, since selective grouping increases the amount of information

that can be transmitted at each time, the disparity in delay per information bit will

not be as great as that of delay in terms of turns in the queue as given above. However,

we do suggest that if minimizing delay is of greatest importance, the scheduling

algorithm should be modified somewhat.
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4.4 Large Delay Tolerance

While the scheduling delay in the previous section was on the order of several packet

lengths, other types of data may tolerate much longer waiting times. For example,

when doing file transfers or system backups, achieving a high average throughput may

be much more important than the delay on any particular packet. In these cases, the

system can simply maximize the sum rate over each channel realization, and over

time the rates for the different streams will even out.

This idea relates to a growing body of literature on “multiuser diversity,” in which

each stream communicates when is associated channel vector is near its peak strength.

However, most of these results are for timesharing strategies where only one stream

can transmit at a time. Below, we provide a discussion of when such timesharing

strategies are optimal and go on to develop scheduling algorithms for spatial multi-

plexing.

4.4.1 Relation to Timesharing Strategies

One can gain a perspective on timesharing versus spatial multiplexing by placing

our problem within a larger context of multiterminal wireless scenarios. The channel

may be in the uplink or downlink direction, and the base station may or may not

have a multiple-element array. By looking at these different cases, we can gain an

appreciation of the roles that waterfilling, power constraints, and spatial multiplexing

play. In some cases, timesharing will be sufficient for maximizing the sum capacity,

while in others, the gains associated with spatial multiplexing will far outweigh those

achieved by simply using a stream during a good channel realization.

Table 4.2 summarizes some results for these different scenarios. One important

factor is the form of power constraint used. In this thesis, we have concentrated on

a peak power constraint, so that at each time, the expected power is below some

prescribed limit, E [x†x] ≤ P. A system could also potentially allow a transmitter

to save up unused power for a later time, so P becomes a constraint on average

power over all time. The first case is more appropriate for satisfying regulatory limits

or minimizing out-of-cell interference, while the second may be a better model for

maximizing battery life. With an average power constraint, each fading realization

may be considered as a kind of parallel channel over time [66] over which power can

be waterfilled. In either case, the uplink power constraint is for each user individually,
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Scenario Peak Power Constraint Average Power Constraint

uplink No Yes [40, 67]
downlink Yes [66] Yes [66]
uplink, array No No [76]
downlink, array No [8] No

Table 4.2: Summary of when timesharing strategies are sufficient for maximizing sum
capacity.

while the downlink power constraint is for all streams combined. The results shown

all assume ergodic variation in the channel parameters and equal distributions for all

users, but do not rely on a Rayleigh fading model.

When there are multiple users in the system with separate streams, the system has

a choice of sending multiple streams at once with signaling-level techniques such as

beamforming (if there is an array), dirty-paper coding, and interference cancellation.

Perhaps surprisingly, then, Knopp and Humblet [40] reported that in a basic uplink

scenario, with an average power constraint and no array, timesharing is sufficient to

achieve the ergodic sum capacity. Simply put, the user with the best instantaneous

channel realization gets a chance to communicate. It then waterfills power over all

such situations in which it expects to be selected (so at some times, there may be no

active streams). Similar results were shown for the downlink [66] and have resulted in

a timesharing mode called HDR for the CDMA 2000 cellular specification [69]. This

idea does not carry over as well to a peak power constraint on the uplink, since a

corner point of the rate region (see [14]) with more than one active user will often

result in the best sum rate for a particular realization.

Things change significantly when the base station has a multiple-element array.

With array processing techniques such as those discussed in this thesis, it can often

separate the signals to or from the various users enough that the channel starts to look

more like parallel streams than additive interference. At this point, the system can

distribute power among the different streams and achieve spatial multiplexing gains,

as discussed in Section 2.3.2 and elsewhere. As we will see, this effect can become even

more important than hitting each user at its peak channel strength. For example, if

there are two users and a base station with a large number of antenna elements, then

the channel vectors will usually be nearly orthogonal and interference will not be a

major issue. Except at very low SNR or very high channel quality variation (in which
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Figure 4-8: Ergodic sum capacity for channel-aware timesharing strategies with var-
ious numbers of transmit antenna elements. The curves were computed using nu-
merical integration over independent Rayleigh fading at an input SNR per link of 5
dB.

case the users want to concentrate the streams in a small portion of the available

time), there are likely to be times when the base station will communicate with both

at once.

To illustrate, we plot in Fig. 4-8 the ergodic sum capacity for downstream time-

sharing under a peak power constraint. Without an array, the overall system per-

formance increases noticeably with the number of receivers, as the transmitter can

select a receiver whose channel realization is near its peak strength. As the array size

increases, we see a lesser relative benefit. This is because the array enables single-user

beamforming, which results in a received SNR distribution with considerably less rel-

ative variation over time. On the other hand, spatial multiplexing can achieve much

higher rates even under simple scheduling methods, as shown earlier in Fig. 3-4. This

motives our emphasis on scheduling algorithms for spatial multiplexing rather than

timesharing in the next subsection.
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There are still situations where timesharing to different receivers from an array

may still make sense. In some cases, the channel strength varies considerably even af-

ter the array processing. For example, the Infostations proposal [33] models receivers

moving relative to the transmitter, so that closer ones may have significantly better

instantaneous channels than those farther away. Another reason is the possibility of

attaining diversity gains without as detailed channel information. This is the sub-

ject of the so-called “dumb antennas” scheme of [74], in which the transmitter sends

along random, time-varying beamforming directions. As the number of receivers in-

creases, the transmitter can approach the ideal timesharing performance discussed

above while only knowing the instantaneous SNRs of the receivers and not their full

channel vectors.

4.4.2 Scheduling for Spatial Multiplexing

We now proceed to develop scheduling that incorporates spatial multiplexing for data

streams with long delay constraints. The goal, once again, is to maximimize the sum

capacity over each channel realization and let the rates for individual streams average

out over time. Although the incremental gains are not always significantly greater

than those discussed earlier for medium-delay data, these new strategies do lead to

increased performance and in some situations points to lower-complexity scheduling

algorithms.

We know that precoding maximizes the sum capacity when the number of streams

was less than the number of transmitter antenna array elements M [82]; perhaps some

extension is possible when there are greater numbers of streams. One might conjecture

that this would involve a selection of no more than M receivers getting information at

each time, since the transmitter can send no more than this many precoded streams

at once and still completely null out interference.

This selection process recalls the “greedy” max sum ordering discussed in Sec-

tion 3.2.2, and indeed involves many of the same issues. As a practical approach,

we could use the same method and simply stop after M streams have been selected.

The results of this procedure, including the subsequent waterfilling across streams,

are shown in Fig. 4-9. There is a clear improvement with precoding over the group-

ing method that only considers orthogonality between channel vectors. Zero-forcing

beamforming does not improve as much, although a method more tuned toward this

transmission strategy may be able to achieve somewhat better gains.
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Figure 4-9: Ergodic sum capacity for zero-forcing beamforming and precoding with an
8-element array and large delay constraints. “Max sum proposed” uses the method of
Section 3.2.2, while “Orthogonality info only” uses only orthogonality information, as
in Section 4.3. Waterfilling across streams was used once the receivers were selected.

One way to think about this problem of user selection/ordering is to say that there

are two issues that affect multiuser performance:

1. Orthogonality among receivers’ channel vectors

2. Instantaneous channel strength, ignoring potential interference

In Section 4.3, we did not effectively make use of the second of these factors be-

cause each receiver had to get information during each channel realization. With

fewer constraints, we now see some improvement by taking this new information into

account.

To see the relative importance of the second factor, compare Fig. 4-9 with Fig. 4-

10. The second figure shows the performance of a four-element array using the “pre-

code order” method described above, which takes both factors into account, as well

as a simpler method that only selects receivers based on their single-user SNRs, i.e.,
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Figure 4-10: Ergodic sum capacity for zero-forcing beamforming and precoding with
a 4-element array and large delay constraints. “Max sum proposed” uses the method
of Section 3.2.2, while “Channel strength” uses only single-user SNR information.
Waterfilling across streams was used once the receivers were selected.

the second factor. Comparing the two figures, it appears that for zero-forcing beam-

forming, most of the gains achieved by increasing the window size are due to selecting

more orthogonal channel vectors, while most of the precoding gain is from choosing

the strongest channels. (The two precoding curves in Fig. 4-10 would be a little

further apart for eight antenna elements, but “channel strength” still achieves better

performance than the orthogonality selection method.) This is because in precoding,

only the last couple receivers (out of those receiving data) have to sacrifice signif-

icant performance to avoid interference, while all receivers have this problem with

zero-forcing beamforming.

This has some promising implications for precoding. If most of the gains are

achieved by selecting receivers by their channel strengths without regard to interfer-

ence, then the complexity of the user selection and ordering methods can be signifi-

cantly reduced.
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4.5 Tight Delay Constraints

So far, we have characterized data by whether the allowable delay is greater or less

than the coherence time of the channel. The practical distinction was whether it

is reasonable for those receivers with weak instantaneous channels to wait for their

channel strengths to improve before starting communication. In either case, it was

assumed that this allowable delay was greater than several packet lengths, so that

some rearranging and spatial multiplexing is tolerable.

At the other extreme is data that needs to be received as soon as possible, with

delay constraints on the order of packet lengths. This might be true for very time-

dependent information, such as control signals for a physical system or critical sensor

data. One approach would be to transmit this delay-critical stream by itself, and

then resume with the usual scheduling procedures. However, if this stream does not

need quite all of the available rersources, it might be possible to take advantage of

some of the throughput improvement inherent with spatial multiplexing.

Suppose that receiver one needs to receive a packet of a certain size by some given

delay. Equivalently, it needs to achieve some average rate over that time span. If

the transmitter wishes to communicate simultaneously to a second receiver, it should

find the solution that maximizes the rate of the second stream given the constraint

on stream one’s rate. Unfortunately, as previously discussed, the multiple-receiver

rate region and the strategies that achieve it are unknown. Still, practical methods

such as beamforming or precoding may be able to increase the total throughput while

satisfying the first stream’s requirements.

One way to visualize this would be to look at capacity regions. Alternatively, we

could take a more direct view and consider delay. If the streams to both receivers have

the same amount of data, they could be sent at the same rate and finish simultane-

ously. But if the first stream has the tighter delay constraint, it may require a higher

rate than this. Its packet will finish first, then the transmitter can send the remaining

bits of the second stream’s packet at its highest possible rate, at full power along the

single-user beamforming direction. The opposite could be done if the second stream’s

packet finishes earliest. As shown in the example of Fig. 4-11, the delays at the two

receivers can be plotted against each other for various transmission strategies and

power distributions among the two streams. Any (delay1, delay2) pair that is exterior

to the curves is achievable (as opposed to capacity regions that are achievable if they

are interior to some boundary). Now, given a minimum delay constraint on stream
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Figure 4-11: Typical delay regions for certain two-receiver strategies, computed for a
sample channel matrix realization. A (delay1, delay2) point is achievable if it is on or
outside (i.e., up and to the right) of the boundaries shown.

one, we can see how fast we can get stream two’s packet across.

This perspective of communicating with both receivers until one of them is fin-

ished, then sending any remaining bits to the second receiver, was inspired by the

“static broadcasting” setup of Shulman and Feder [58]. Their information theoretic

description was for a very general channel and dealt with sending common informa-

tion to both receivers, for which we will have more to say in Chapter 5. Instead of

delay, they plotted its inverse, corresponding to a kind of average rate. We find that

plotting delay relates more closely to the goals of time-sensitive data, and furthermore

avoids potential confusion over average versus sustainable rates.

Other interesting properties come up in the delay plot. For example, timesharing

between the two single-user beamforming strategies does not result in a convex com-

bination of delay pairs, as it would with rate, but rather in the rectangular-shaped

curve shown as the dotted line in the figure. This timesharing therefore only results

in less desirable delay pairs. When multiplexing more than two streams, a higher-
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dimensional plot can capture all of the achievable delay K-tuples.

4.6 Multiplexing Different Classes of Data

We have explored different scheduling strategies based on a few general levels of

delay tolerance. For this to be useful in many realistic systems, these ideas should be

combined into a single framework capable of dealing with a mixture of data classes,

or perhaps even a continuum of priorities. Additionally, this system would ideally

be more amenable to including more concrete servive guarantees. In this section, we

give some ideas on the direction such an effort may take, inspired by the previously-

mentioned weighted fair queueing algorithm [53, 16].

Although a straightforward application of weighted fair queuing to spatial mul-

tiplexing would not take proper account of the physical channel, it does provide a

starting point for incorporating different data priorities and rate guarantees. Given

a constant-rate data channel and set of weights φk on the streams, this algorithm

attempts to guarantee stream k a fraction

φk∑
l φl

of the overall rate, where the summation is over all streams that have data to send. For

packet-based serial transmission, Parekh and Gallager [53] describe a a “virtual time”

implementation that guarantees that no packet will be delayed from a continuous-flow

ideal by more than the largest packet length. Suppose that a packet of length Lk,0

arrives from stream k at virtual time tk,0. This packet is given the timestamp

tk,0 +
Lk,0

φk
, (4.4)

which specifies the finishing virtual time. If the queue already contains a packet from

this stream, then tk,0 in (4.4) is replaced by the timestamp of the earlier packet.

Packets are serviced in increasing order of timestamp.

To apply this idea to spatial multiplexing over fading channels, we interpret (4.4)

and then extend it to this new context. The timestamp can be seen as weighting the

time it will take to send the packet by φk and giving a credit for time spent waiting

in the queue. These ideas can also apply to our fading channel model, although we

lose some of the strict quality-of-service guarantees. If each transmission segment is
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the same length of time (but constains a different number of bits), let tk,0 be the time

segment number in which an entry arrives in the queue. Multiple submissions are not

an issue because we allow a stream to submit only one entry at a time. Next, let L

be some constant, perhaps a threshold number of bits that must be buffered before

a stream can send an entry to the queue. To establish a “finishing time” for this

packet, we need to divide by the rate at which data will be sent, taking into account

the channel state and the other receivers to be spatially multiplexed. With precoding

(and no power control), this rate can be computed from the channel realization and

previously selected streams. Under beamforming, the system can estimate the value

based on this information. After normalizing the first term in (4.4) with respect to

the current time t, we thus select the receiver with the smallest

(tk,0 − t) +
L

rk(t)φk
. (4.5)

This again represents a weighted sum between the time spent in the queue and

the potential rate. Delay-tolerant streams will set a relatively small φk so that they

will be transmitted only when performance is very high or when the system is not

very busy. Streams that are more delay constrained will set a larger φk so that they

will not have to wait very long, even if the channel is not very strong. Note how this

scheme allows for a continuum of delay tolerances, rather than just a discrete number

of classes. However, it will require calibrating the weights to achieve a proper balance

between the two terms in (4.5).

The High Data Rate (HDR) mode in the CDMA 2000 wireless standard [69] and

a related system for transmitter arrays [74] include many of the same issues for their

timesharing-based systems. These systems attempt to schedule each stream near its

peak channel quality while providing “proportional fairness” that channels with higher

average quality do not receive more than their share of timeslots. Mechanically, they

penalyze for data recently sent (rather than crediting for time spent in the queue)

and maximizing on the rate (rather than minimizing on its inverse). A version of

this form of weighting could be formulated for our spatial multiplexing setup, though

again the higher total rates may come at the expense of some guarantees.

Either of these two directions, inspired by weighted fair queuing and HDR, or

a more direct composite of the strategies from Sections 4.3–4.5 could serve as the

foundation for a scheduling algorithm that is more integrated across different types

of data. The two ideas discussed in this section would result in a smoother distri-
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bution of delay times than the moderate-delay queuing scheme of Section 4.3.2, and

may provide an easier base on which more complex networking-oriented algorithms

could be developed. For instance, to decouple the delay and rate priorities, it may

be possible to add in some of the ideas from service curves [15, 60]. On the other

hand, the schedulers from the bulk of this chapter dealt more directly with the ap-

propriate optimization criteria for each data type. Due to the random nature of

the channel, any algorithm will have a hard time providing strict quality-of-service

guarantees. However, with enough potential receivers, the previously-discussed ro-

bustness of scheduling suggests that well-designed algorithms may be likely to achieve

reasonable goals in practice.
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Chapter 5

Multicasting of Common

Information

We now add a deeper consideration at the scheduling and array processing blocks of

whether data streams are intended for single or multiple receivers. Previously, we

assumed that the scheduler would simply duplicate any streams that had multiple

recipients. However, it would seem that in such multicast scenarios, it may be more

efficient to transmit data only once rather than repeating it in this way. The draw-

back is that the transmitter must now satisfy the goals of all the recipients of this

stream simultaneously. Therefore, an investigation into the potential performance

and implementations of multicasting is needed.

To facilitate analysis, we first consider the array processing of a single stream in

isolation, and later describe how to incorporate these ideas into the larger system

context. A useful exercise here is to consider the two extremes where the stream is

intended for a single receiver or for all possible receivers. In the first case, we have seen

that an optimal strategy, implementable by beamforming, is to ensure that the signals

from the different antenna elements coherently combine at the receiver. In the latter

case, the transmitter can not effectively make use of its channel information since

the data must be received at all possible locations. This presents a good application

for space-time codes that do not take into account any channel side information that

the transmitter may have. Using our usual independent Rayleigh fading model, the

two extremes result in the same shape of the received SNR distribution, but with a

factor of M difference in magnitude, where M is the number of transmitter antenna

elements.
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A multicast scenario is concerned with what happens in between, when a stream

is directed to a finite number of receivers. This leads to two fundamental questions:

Where does the performance fall within the spectrum of possibilities given above?

What transmission schemes are optimal or most useful is these cases? To even begin to

answer these questions requires a more precise concept of performance, since schemes

that are good for some receivers may not be good for others. In Section 5.1, we

provide such a discussion of performance and efficient operating points, setting up

the analysis for the rest of the chapter.

We then examine techniques for different regimes and types of signaling. Beam-

forming strategies, analyzed in Section 5.2 and Section 5.3, are most useful when the

number of receivers is small or when the transmitter can signal over many channel

variations. For other scenarios, a potentially more complex class of schemes, of which

beamforming is a subset, may be necessary. We investigate properties and implemen-

tations of this more general class, which we refer to as space-time multicast coding,

in Section 5.4. In one example with an eight-element array and eight receivers, they

achieve up to a 6 dB gain over ordinary space-time codes that do not incorporate

channel knowledge.

Finally, we connect multicasting back to the larger system point of view in Sec-

tion 5.5. In many cases, it is possible to transmit several multicast streams simulta-

neously, and these can be sent alongside receiver-specific streams.

5.1 Overview of Multicast

At the heart of multicast is an attempt to satisfy the goals of a number of receivers

using a single transmission strategy. Because the receivers will experience distinct

realized channel vectors, with correspondingly distinct optimal strategies, selecting

the multicast parameters often requires a balance among conflicting objectives.

A related issue shows up when separate streams are directed to different receivers.

For this scenario (often called a broadcast channel), researches in information theory

have long used the concept of rate regions, which describe all achievable rate K-

tuples to the K receivers. Without arrays, superposition coding [14] or dirty-paper

coding [13, 10, 84] is sufficient to achieve all points in the rate region, while the

region is not completely known when transmitting from an array. Earlier in this

thesis, we described different array processing methods for various types of tradeoffs
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among receivers. As we begin to consider sending common information, we encounter

important differences from these situations. For example, with multicast, interference

is no longer an issue; while with multiplex, the transmitter can do more optimization

on the signaling to different receivers. These details will lead to different tradeoffs,

though many of the same fundamental concepts will appear.

For a given fading channel realization, consider the following hypothetical tool

for capturing the benefits of different multicast strategies. Imagine a graphical plot

with separate axes for each of the K intended receivers, denoting some appropriate

measure of performance. This might be SNR for an uncoded system or rate for a coded

one. Then, for a given fading channel realization, every transmission strategy would

correspond to a K-dimensional point in “performance space.” Once all admissible

strategies (or strategies of a given type) have been plotted, the various tradeoffs

among the different receivers should become clear and the transmitter can select an

appropriate operating point based upon system goals. By repeating this procedure

across many fading channel realizations, one could also compute statistics over the

random ensemble. In this way, decisions can be made based on individual receiver or

system-wide goals, outage or ergodic capacity measures.

In the execution of this plan, care must be taken to ensure that the performance

characterization is well-defined. The relationship between SNR and uncoded perfor-

mance may only be clear in certain specialized cases, such as an additive Gaussian

noise channel. For a coded system, the transmitter must choose codewords at a par-

ticular rate, even though different receivers may have the potential to reliably receive

a range of rates. Therefore, a simple rate region interpretation is not sufficient. We

will address these concerns with careful definitions and, at times, special cases.

With coded transmission, we resolve the issue by defining the performance axes

in terms of mutual information rather than capacity. Given a particular input dis-

tribution and channel realization, this mutual information can be computed for each

receiver and represents the maximum reliable rate of communication over that link.

The achievable region then takes on different interpretations depending on the type

of signaling used:

• If the transmitter signals over a particular fading realization at coded rate R,

any receivers with mutual information of at least R for this signaling scheme

will be able to reliably decode the data. Timesharing over different strategies

(within the same channel realization) is also possible.
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• If the transmitter signals over an ergodically varying channel, it can use a code

with rate R and interleave symbols over all channel realizations. Any receiver

with expected mutual information of at least R will be able to reliably decode

the data. (To get this ergodic behavior, the schemes used at each realization

must employ the same input distribution [31, 46], but we will see that this is

automatically satisfied for our encoding schemes.)

Looking at the above descriptions, two particular strategies stand out. For a sin-

gle channel realization, one could maximize the minimum mutual information among

receivers and therefore achieve the highest rate that all can reliably decode. Alterna-

tively, for ergodic signaling, one could maximize the sum of rates among receivers at

each realization. This strategy then maximizes the rate of common information if all

receivers undergo i.i.d. channel variations over the same fading distribution. We will

discuss other operating points of interest throughout this chapter as well.

Our first investigation, however, will be over the particular subset of transmission

schemes corresponding to beamforming. These perform well for small numbers of

receivers (e.g., they are optimal for transmitting to two receivers, as we will show

in Section 5.4.2) or with ergodic capacity goals. Furthermore, they lead to low-

complexity transmission and reception techniques and are compatible with both coded

and uncoded modulation. In Section 5.4, we will return to the more general scenario

and discuss optimal strategies and useful implementations.

5.2 Operating Points for Beamforming

In this section, we consider multicast solutions where the transmitter using a beam-

forming strategy to send identical information to K receivers. The vector of antenna

element outputs consists of a single input symbol multiplied by a vector of weights

g, resulting in coherent combining at some potential location. Each receiver gets a

scaled copy of the input stream plus noise, so received SNR is a valid measure for

uncoded performance (or log2(1 + SNR) for mutual information in coded systems).

As described in the previous section, when the antenna weights g are selected,

there is an associated point (SNR1, SNR2, . . . , SNRK) in K dimensional “SNR-space”

that describes the associated SNRs experienced at the receivers in the system. More-

over, given the transmitter power constraint, there is a well-defined surface that

defines the boundary of those points that are attainable. We refer to this frontier of
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achievable points as the “transmitter operating characteristic” (TOC) for the real-

ized channel and power constraint. As will become apparent, a transmitter operates

efficiently if and only if it results in an SNR vector lying on the TOC.

Using K = 2 receivers for illustration, the TOC can be described as the set of

received SNR pairs (SNR1, SNR2) for which SNR1 is maximized subject to various

thresholds on SNR2. This frontier is equivalently traced out by maximizing

α1SNR1 + α2SNR2 (5.1)

with various nonnegative weights α1 and α2, again subject to the system power con-

straint. In enumerating points on the TOC, also note that it is only useful to send

energy in a direction in the span of h1 and h2.

It can be shown from the characterization of the TOC that the two pairs,

(
‖h1‖2 P

N0

,
|h†

1h2|2
‖h1‖2

P
N0

)
and

(
|h†

1h2|2
‖h2‖2

P
N0

, ‖h2‖2 P
N0

)
, (5.2)

which correspond to beamforming directly to each of the first and second receivers, re-

spectively, must lie on the TOC. This follows because one of the receivers experiences

the maximum possible SNR in each case.

Returning to the weighted sum of SNRs formulation of (5.1), these two points

correspond to α2 = 0 or α1 = 0. On the other hand, when α1 = α2, we wish to find

a beamforming vector g to maximize the sum of SNRs,

max
g:‖g‖2=1

|h†
1g|2

P
N0

+ |h†
2g|2

P
N0

,

which is equivalent to

max
g:‖g‖2=1

‖Hg‖2 P
N0

.

This is the well-known matrix norm problem, which is solved by performing a singular

value decomposition,

H = UΣV †,
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Figure 5-1: The curve shown describes a typical frontier of achievable received SNR
pairs when transmitting common information from an 8-element array to two re-
ceivers, at an input SNR per link of 5 dB. SNR pairs are achievable if and only if
they lie on or inside this transmitter operating characteristic (TOC). Various operat-
ing points of interest are also shown.

and letting g be the first column of V . Then

SNRk = |uk,1|2λmax
P
N0

, (5.3)

where λmax is the largest eigenvalue of H†H, or equivalently the square of the largest

singular value of H, and uk,1 is the kth entry of the first column of U . For any

other combination of (α1, α2) weights, the same procedure can be performed after

first premultiplying H by diag(
√

α1,
√

α2).

The TOC curve for a particular channel realization and power constraint is de-

picted in Fig. 5-1. Note that the SNRs are plotted in normal units rather than in dB.

This will aid in geometric interpretations and properties; for example, the two-receiver

achievable region for beamforming, when plotted in this way, is always convex. We
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will prove this statement and discuss its implications in the later discussion on opti-

mality (in Section 5.4.2). For now, this says that timesharing among two operating

points on the TOC can not improve the time-average SNR.

By its location on the boundary of attainable SNR pairs, any point on the TOC

represents a strategy where the transmitter is operating efficiently. To select among

them, it is up to the system designer to supply a particular performance criterion

that is appropriate to the given application.

Many operating points of interest can be developed from the TOC. The two cir-

cles ‘◦’ correspond to the single-user beamforming points (5.2). To maximize the

minimum performance among receives, discussed in the previous section as a way to

ensure that both receivers achieve sufficient quality, one operates at the intersection

of the TOC with the line SNR1 = SNR2; in Fig. 5-1 this point is indicated via the

symbol ‘�’. In scenarios where the line does not intersect the solid TOC curve, we

operate at the nearest of the points (5.2). In other cases, maximizing the average (or,

equivalently, total) SNR over all receivers is more appropriate. This is achieved by

operating at the point where the TOC has slope −1; in Fig. 5-1 this point is indicated

via the symbol ‘♦’, and corresponds to weights in (5.1) satisfying α1 = α2. A similar

operating point can be found for maximizing the sum of mutual information across

receivers by regraphing the TOC in terms of log2(1+SNR); we saw how this is useful

for maximizing ergodic capacity when the transmitter can code across many channel

realizations.

Operating points other than the max-min point (‘�’) are useful even when signal-

ing over individual channel realizations. In some applications like voice transmission,

one receiver may have higher fidelity requirements than the other. Other times, it

may be important that information gets across to one receiver very quickly. In these

cases, after the data is sent at a high rate that the first receiver can understand,

additional symbols can be sent (perhaps along a different beamforming direction) to

the second receiver. This is the idea behind Shulman and Feder’s static broadcasting

[58], which was developed in a very general, information theoretic model. A practical

implementation may include the use of rate-compatible punctured codes [35]. First,

a high-rate, punctured code is transmitted that the first receiver can decode. Then

the missing bits are sent, which combine with the first set to form the lower-rate code

for the second receiver. These rate-compatible codes sacrifice very little optimality

over the best known codes of the same rates (at least as of the publication of [35]).
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5.3 Maximizing Average SNR per Receiver

We now proceed to answer some quantitative questions about the performance of mul-

ticast, using the operating point that maximizes the sum of SNRs to the K receivers.

This point, achievable with beamforming, is amenable to analysis and gives an upper

bound on the average per-receiver SNR. In this way, it provides information on where

multicast scenarios may fall between the extremes of single-receiver transmission and

communication with all possible receivers. Throughout, we assume that all receivers

have the same Rayleigh fading distribution.

This discussion also serves to illustrate advantages and disadvantages of beam-

forming strategies. If the channel coefficients undergo independent, ergodic channel

variations then the operating point under consideration maximizes the time-average

SNR among all receivers. This offers a low-complexity approximation to maximizing

the common ergodic capacity among receivers and, as we will see, achieves significant

gains over scenarios where the transmitter does not have channel knowledge. On

the other hand, when signaling over a single fading realization, these strategies often

provide some receivers with very good performance at the expense of others. This

makes the outage characteristic degrade rapidly as more receivers are added.

5.3.1 Average Performance Per Receiver

We begin by investigating average SNR per receiver, without regard to how perfor-

mance is actually distributed among the different receivers. This will help characterize

the potential of multicasting, and in particular the value of using channel information

available at the transmitter as the number of receivers grows.

The properties of interest can be derived by analyzing the eigenvalues of certain

random matrices. To achieve the maximum sum of SNRs, the beamforming vector

g is set to the eigenvector corresponding to the maximum eigenvalue of H†H. The

average SNR per receiver then scales with the largest eigenvalue,

Average SNR per receiver =
λmax

(
H†H
)

K
· P
N0

. (5.4)

We then exploit that with Rayleigh fading, the matrix H†H has a complex Wishart

distribution [48] when K ≥ M ; when K < M it is the matrix HH† that is Wishart

distributed.
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When the number of antennas M and receivers K are moderate to large, we can

take advantage of asymptotic properties of Wishart matrices. It can be shown that

when M and K approach infinity in such a way that the ratio M/K of transmitter

antenna elements per receiver approaches a positive constant, then the largest eigen-

value of the associated Wishart matrix converges almost surely [28, 18], resulting

in

Average SNR per receiver
a.s.−→
(
1 +

√
M

K

)2 P
N0

. (5.5)

This asymptotic behavior is shown by the solid curve in Fig. 5-2, from which we see

that the SNR growth is effectively linear in the numbers of antenna elements/receiver

ratio M/K for moderate to high ratios. Moreover, when the number of antenna

elements M is significantly larger than the number of receivers K, there is a gain of

approximately 3 dB in SNR for every doubling of M . We stress that the limit in (5.5)

is no longer random, but rather a deterministic result for all channel realizations.

It is also worth emphasizing that a ratio of M/K = 0 means that M grows much

more slowly than K, i.e., M = o(K). A special case corresponds to using a fixed

number of transmit antenna elements M while allowing the number of receivers K to

increase to infinity. Because a transmitter can not effectively tailor a beamforming

strategy to a very large number of receivers, it is not surprising that this ratio leads

to an average value of P/N0, the same as if channel information were not available.

Also shown in Fig. 5-2 are expected values for representative scenarios involving

antennas with finitely many elements and finite receiver populations (using Monte

Carlo simulations). As the plot reflects, the asymptotic behavior of (5.5) is approxi-

mated reasonably closely for even moderate values of M and K.

For finite values of M and K, the average SNR per receiver is a random variable

whose value depends on the realized channel. If more accurate performance statistics

for this random distribution are desired, it is possible to calculate the probability

distribution of the possible values the SNR may take on. In particular, the joint

distribution of all the eigenvalues λi of a Wishart matrix H†H, where H has i.i.d.

Gaussian entries of variance one, is [18]

fλ1,λ2,...,λM
(λ1, λ2, . . . , λM) =

e−
PM

i=1 λi
∏M

i=1 λK−M
i

∏
i<j(λi − λj)

2∏M
i=1 Γ(K − i + 1) Γ(M − i + 1)

, (5.6)
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Figure 5-2: Expected average SNR per receiver for various values of M/K and an
input SNR per link of 0 dB. The solid line shows the deterministic asymptotic values
when both M and K go to ∞ with the ratio M/K held fixed. The dashed curves
denote representative points corresponding to finite M and K for K = 4 (‘♦’) and
K = 8 (‘�’), from simulations.

where

Γ(b) =

∫ ∞

0

tb−1 e−t dt

denotes the usual Gamma function. Following Edelman [18], the density of the largest

eigenvalue can be computed by integrating over all but one of the λi, and dividing

by (M − 1)! to remove the arbitrary ordering of the eigenvalues. When M = 2, the

resulting probability density for the largest eigenvalue is

fλ(λ) =
e−λλK−2

[
λKe−λ − KλK−1e−λ + (λ2 + (K − 1)(K − 2λ))γ(K − 1, λ)

]
(K − 1)!(K − 2)!

,

(5.7)

where

γ(b, a) =

∫ a

0

tb−1 e−t dt (5.8)
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is the incomplete Gamma function. From these probability functions and (5.4), it is

possible to numerically calculate detailed average SNR statistics over the ensemble of

possible channel realizations.

5.3.2 Individual Receiver Performance

While the average SNR per receiver may be a useful characterization of overall system

performance, it does not reflect the behavior experienced by any individual receiver

in the system. In this section, we focus on the individual-receiver outage and ergodic

capacity.

To determine the distribution of an individual receiver’s SNR under maximum

sum of SNRs beamforming, we begin by repeating (5.3):

SNRk = |uk,1|2λmax
P
N0

,

where λmax is the largest eigenvalue in a Wishart-distributed matrix. Also, uk,1 is an

entry from the random circular unitary matrix U from the singular value decompo-

sition of H. The probability density of |uk,1|2 is (see, e.g., [50])

f|uk,1|2(µ) =


(K − 1)(1− µ)K−2 0 < µ < 1,

0 otherwise.
(5.9)

The marginal distribution for SNRk can then be computed since random variables

λmax and |uk,1|2 are independent — the principal eigenvector of HH† has no preferred

direction [19]. In the limiting case of K → ∞ and M finite, it is straightforward to

verify that SNRk has the same exponential distribution as for a beamforming strategy

that ignores side information. In principle, the SNR distribution can be computed

analytically for any number of antennas or receivers. These computations quickly

become very cumbersome, however, so in the discussion below, we plot results from

simulations.

Maximum sum of SNRs beamforming performs well when signaling over many

fading realizations. In Fig. 5-3, we plot the ergodic capacity (equal for all receivers)

when multicasting from an 8-element array to as many as twenty receivers. For com-

parison, we also plot the performance of an ideal space-time code that does not take

channel information into account. Note that at this input SNR level, the transmitter
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Figure 5-3: Single-user ergodic capacity when multicasting a stream from an 8-element
array to a number of receivers, at an input SNR per link of 5 dB. Also shown is a
curve for a space-time code that does not make use of channel knowledge and achieves
received SNR = ‖h‖2/M · P/N0.

can communicate with twenty receivers simultaneously at a higher rate than is avail-

able by repeating the stream to two receivers separately with round-robin scheduling

(at half the single-user rate for each).

The outage experienced during individual channel realizations does not fare as

well. In Fig. 5-4, we see that the outage probability for maximum sum of SNRs

beamforming degrades considerably as more receivers are added, although it does

remain superior to transmission from a single antenna element. Other beamforming

solutions may do somewhat better, but the outage characteristic will still suffer as the

number of receivers gets large. This is because the coherent combining that occurs

with beamforming also induces nulls at one or more geographic locations. Therefore,

beamforming strategies are most useful when the number of receivers is fairly small

or when performance is averaged across many channel realizations.
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Figure 5-4: Single-user outage probabilities when multicasting a stream from an 8-
element array to a number of receivers, at an input SNR per link of 5 dB. Also shown
are curves for a space-time code that does not make use of channel knowledge.

5.4 General Space-Time Multicast Coding

We now turn to more general transmission schemes, which we refer to as space-time

multicast coding. They can have higher complexity than beamforming, but are able

to achieve a more equitable distribution of performance among the different receivers.

Furthermore, we show that they achieve all possible operating points from the mutual

information point of view.

5.4.1 Optimal Structures

In space-time multicast coding, the outputs at the different antenna elements can

be described using an arbitrary covariance matrix. There are many possible imple-

mentations, but the structure of Fig. 5-5 is particularly useful for analysis. The data

stream is encoded to produce a complex Gaussian sequence of coded symbols that

is i.i.d., zero-mean, circularly symmetric, and has variance P. Such encoders appear
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Figure 5-5: Possible structure for space-time multicast coding.

often in the information theory literature. This sequence is then split into a number

of parallel sequences and then undergoes a linear transformation described by an ar-

bitrary matrix G to produce the antenna element outputs. Note that this procedure

reduces to beamforming in the special case where G is a single column vector. To

satisfy the power constraint, we impose trace
{
G†G
} ≤ 1.

We first show that this structure is sufficient to achieve all possible operating

points for a coded system, and then go on to describe properties and interpretations.

Proposition 3 Suppose a transmitter sends information from an M-element array

to K receivers. The entire frontier of efficient operating points, in terms of mutual

information K-tuples, is achievable by space-time multicast coding as described in

Fig. 5-5.

To prove this, note that space-time multicast coding sends a zero-mean, jointly Gaus-

sian vector of antenna element outputs x with covariance Γx = GG†P. The mutual

information at receiver k is then equal to [50]

log2

(
1 +

h†
kΓxhk

N0

)
. (5.10)

Now consider any other scheme. The mutual information at receiver k will be

I(yk;x) = H(yk)− H(yk|x)
= H(yk)− log2(2πeN0), (5.11)
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where H(·) denotes the entropy of a random variable. The vector of antenna element

outputs x should be zero-mean, because any power that is used in the mean will

not contribute to the mutual information. Using the Cholesky factorization of the

covariance matrix Γx, the vector x can always be written as

x = Ls,

where s is a length-M vector of uncorrelated random variables, each with variance

P, and L is a lower-triangular matrix such that Γx = LL†P and trace
{
L†L
}
= 1.

Receiver k’s output will have variance

σ2
yk

=
M∑

m=1

|h†
klm|2P +N0,

where lm is the mth column of L. Among all random variables with this variance,

the entropy, and therefore the mutual information in (5.11), is maximized with a

Gaussian distribution [14]. This can be achieved with an i.i.d. Gaussian vector s.

Since this same distribution maximizes the mutual information for all receivers (given

a particular Γx), such a Gaussian vector is optimal. The overall system then becomes

equivalent to space-time multicast coding.

This structure is also optimal when coding over ergodic variations of the channel.

When the optimal input distribution is equivalent for all channel realizations, the

maximum achievable rate for a receiver is the expected value of mutual information

(shown in [46] for general channels and applied to fading channels in [31]). For the

case of space-time multicast codes, the distribution on s is the same for all receivers

and all channel realizations. Since an arbitrary G achieves all instantaneous operating

points, we also achieve all operating points on the ergodically-varying channel.

Although we have not technically defined the set of mutual information K-tuples

as a rate region, we should still double check whether timesharing can expand the

region. Consider two matrices G1 and G2 used for space-time multicast, resulting in

mutual information vectors log2(1 + γ1) and log2(1 + γ2), respectively. If the first
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scheme is used a fraction β of the time, we get through timesharing,

β




log2(1 + γ1,1)

log2(1 + γ1,2)
...

log2(1 + γ1,k)


 + (1− β)




log2(1 + γ2,1)

log2(1 + γ2,2)
...

log2(1 + γ2,k)




=




β log2(1 + γ1,1) + (1− β) log2(1 + γ2,1)

β log2(1 + γ1,2) + (1− β) log2(1 + γ2,2)
...

β log2(1 + γ1,k) + (1− β) log2(1 + γ2,k)


 .

However, using Jensen’s inequality, this vector is the same or inferior for every receiver

to the vector 


log2(1 + βγ1,1 + (1− β)γ2,1)

log2(1 + βγ1,2 + (1− β)γ2,2)
...

log2(1 + βγ1,k + (1− β)γ2,k)


 ,

which is achievable by space-time multicast coding with the matrix

G =
[ √

βG1

√
1− βG2

]
.

Similar reasoning shows that timesharing between more than two points does not add

to the region, either. �

The following interpretation of space-time multicast coding provides a connection

to the SNR operating characteristic described earlier in Section 5.2. Consider the

linear transformation in Fig. 5-5 as beamforming each of the parallel sequences along

a direction corresponding to a column of G. Let G in turn be written as

G =
[

α1g1 α2g2 . . . αNgN

]
,

where gn are unit-length vectors, i.e., ‖gn‖2 = 1 for all n. To satisfy the power
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constraint, the αn’s must be chosen so that

N∑
n=1

|αn|2 ≤ 1.

The mutual information to the kth receiver is given by (5.10). Note that the second

term inside the logarithm is

h†
kΓxhk

N0

= h†
kGG†hk

P
N0

= ‖h†
kG‖2 P

N0

,

=

N∑
n=1

|αn|2|h†
kgn|2

P
N0

. (5.12)

This is equal to the time-average SNR had the stream been transmitted along the

columns of G at different times (with each being used a fraction of time |αn|2). Unlike
with timesharing, however, the coded rate corresponding to this “equivalent SNR”

is actually achievable. Beamforming falls out as a special case when the covariance

matrix Γx has rank one.

This motivates the use of “equivalent SNRs,” such as (5.12), as a convenient

parametrization for mutual information. In this way, the performance of space-time

multicast codes is seen as a kind of averaging between beamforming strategies. The

achievable region, in terms of equivalent SNR K-tuples, becomes the convex hull

of the beamforming region. It is important to keep in mind that for higher-rank

covariance matrices, the equivalent SNR simply represents the SNR of an additive

white Gaussian noise channel with the same mutual information, and in general is not

a true SNR achievable by uncoded systems. Later, we will develop implementations

that are more amenable to uncoded transmission.

This discussion also relates to the theory of space-time codes that do not in-

corporate channel knowledge at the transmitter. Without channel information, the

transmitter can still set G to be a scaled identity matrix, or any other unitary matrix,

and achieve the set of equivalent SNRs

SNRk =
‖hk‖2

M

P
N0

. (5.13)

It also maximizes the ergodic capacity in these situations [63]. Exact implementations
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would be complex, so various space-time codes have been developed to approach this

performance at lower complexity. The goal of (5.13) is achievable for space-time block

codes designed for two transmit antennas [1] but has not been reached for larger sizes

[62]. It also shows up as an ideal “matched filter bound” in an early version of

space-time trellis coding sometimes called delay diversity [78]. We will demonstrate

space-time multicast code implementations that approach the equivalent SNR to the

extent that these other types of designs do.

5.4.2 Beamforming Versus Higher-Rank Covariances

We have identified beamforming as a subset of space-time multicast codes where the

covariance of the antenna outputs has rank one. Such strategies have low complexity

and are compatible with most types of coded or uncoded modulation, but have poor

outage characteristics when the number of receivers grows large. In this section, we

investigate when beamforming is sufficient from an optimality standpoint, and when

higher-rank covariances are necessary to achieve certain operating points.

Two Antenna Elements or Two Receivers

In earlier sections, we found that beamforming strategies work well when the number

of receivers is small. Using the concept of equivalent SNRs, we can now make this

statement more precise. We show that beamforming is entirely sufficient for multi-

casting to two receivers, and then look at where it breaks down as the number of

receivers is increased.

Proposition 4 Suppose a transmitter sends information from an M-element array

to two receivers. Then all efficient operating points can be achieved using a rank-one

covariance; in other words, by a beamforming strategy.

Space-time multicast coding is already known to be optimal. Since it averages

the effective SNR for each receiver over several beamforming directions, we can prove

the statement above by showing that that the set of (SNR1, SNR2) pairs achievable

by beamforming is convex. One way to do this is to simply enumerate all of these

points.

First, recall that the transmitter should only send in directions that are in the

span of the two receivers’ channel vectors; components outside of this subspace will

simply produce nulls at the receivers and waste power. Using the Gram-Schmidt

142



procedure, this space can be parametrized by a component in the direction of the

first receiver’s channel vector, and a second component orthogonal to this. Therefore,

the M -antenna problem can be reduced to an equivalent two-antenna problem with

lower-triangular channel matrix and channel vectors

h1 =

[
L1,1

0

]
and h2 =

[
L2,1

L2,2

]
.

If the transmitter is operating at the power constraint ‖g‖2 = 1, the beamforming

vector g can be parametrized as

g =

[
cos θ

ejφ sin θ

]
,

where the two angles θ, which is in the range [0, π/2), and φ, in [0, 2π), produce

the relative gain and phase. We can then enumerate all of the SNR pairs that are

attainable by beamforming:

SNR1
N0

P = |L1,1|2 cos2 θ, (5.14)

SNR2
N0

P = |L2,1|2 cos2 θ + |L2,2|2 sin2 θ + |L2,1L2,2| sin(2θ) cos(φ − φ2), (5.15)

where φ2 is defined using

L2,1L
†
2,2 = |L2,1 L†

2,2| e−jφ2.

Performance is clearly maximized by choosing φ = φ2 so that the final cosine term

in (5.15) is equal to one. The transmitter operating characteristic curve in Fig. 5-1

is produced by following this trajectory as well as a similar one when the ordering of

the two receivers is reversed. The solid portion, which is equivalent to maximizing

a (non-negative) weighted sum of SNRs, is the intersection of these two curve. Any

point in SNR-space that is inside these boundaries can be achieved by transmitting

below the power constraint. By taking second derivatives of (5.14)–(5.15) along the

boundary, it can be shown that the overall region is convex. �

This shows that beamforming is sufficient in the two-receiver case with any number

of transmit antenna elements. On the other hand, we know that it is not optimal for a
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two-element array and a large number of receivers. To understand where this behavior

changes, the method above can be extended to two transmit antenna elements and

any number of receivers. Using the same parametrization as before, we have

hk =

[
Lk,1

Lk,2

]
, k = 2, 3, . . . , K

and

SNRk
N0

P = |Lk,1|2 cos2 θ + |Lk,2|2 sin2 θ + |Lk,1Lk,2| sin(2θ) cos(φ − φk),

k = 2, 3, . . . , K.

Consider this for K = 4 receivers. The three φk are parameters of the realized channel

vectors. Take the case of φ2 = 0, φ3 = 2π/3, and φ4 = 4π/3. Holding θ constant

and alternating between φ = 0 and φ = π makes all three cosine terms average

to zero, while it is impossible to make all of them simultaneously nonnegative for

any single φ. Therefore, the equivalent point in SNR-space corresponding to this

alternating strategy is achievable only through space-time multicast coding with a

rank two covariance. Beamforming from a two-element array is apparently no longer

sufficient when there are four or more receivers.

Arbitrary Numbers of Antennas and Receivers

For larger systems, parametrizations of all beamforming operating points such as

(5.14)–(5.15) become very cumbersome. However, with some additional geometric

insight, we can generalize the two antenna element results and conjecture that for M

transmit antenna elements, beamforming becomes suboptimal when transmitting to

2M or more receivers. This is done with essentially a dimension-counting argument.

In general, beamforming with an M -element array requires specifying 2M real

parameters: the individual gains and phases applied to the different antenna inputs.

For SNR purposes, however, there are really only 2M −1 degrees of freedom, because

an overall phase can be factored out without affecting performance. This implies that

the region achievable by beamforming has dimension no greater than 2M − 1.

Space-time multicast coding achieves any convex combination of points in SNR-

space that are achievable by beamforming. Mathematically, this is a convex hull

operation [56]. If we can show that the resulting region has a higher dimension than
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2M − 1, then clearly beamforming is not sufficient. One way to do this is to show

that there are at least 2M linearly independent points in the beamforming region.

We conjecture that this is true with probability one when the number of receivers

is at least 2M . Consider the points in SNR-space corresponding to the K single-user

beamforming directions. When beamforming in the direction of the kth receiver, the

vector of received SNRs is 


|h†
kh1|2

|h†
kh2|2
...

|h†
khK |2




1

‖hk‖2
· P
N0

.

If we collect these vectors into a K×K matrix, its rank will be equal to the number of

linearly dependent points in SNR-space achieved by these K particular beamforming

directions.

Multiplying each column by a constant will not change the rank, so we therefore

wish to find the rank of the matrix

B ◦ B∗,

where

B = HH†, (5.16)

B∗ represents the conjugation (but not transpose) of B, and “◦” represents the

element-by-element Hadamard product. Applying a singular value decomposition,

B = UΣV †, the Hadamard product above can be taken as a particular submatrix of

(U ⊗ U ∗) ◦ (Σ⊗Σ∗) ◦ (V † ⊗ V T ),

where ⊗ represents the Kronecker product [38]. By noting that B is Hermetian (so

that U = V ) and carefully inspecting the individual elements, it can be shown that

B ◦ B∗ = BuB
†
u,
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where Bu consists of all K2 possible columns of the form

√
σiσku

∗
i ◦ uk.

The rank of the overall product is the same as the rank of Bu. From (5.16), there can

be at most M nonzero singular values σk, at most M2 possible nonzero columns of

Bu, and therefore the maximum overall rank is min(K, M2). Further general analysis

appears difficult, but our simulations and analysis of special cases suggest that this

maximum rank does hold true. We therefore conjecture that when K ≥ 2M then

with probability one, there are at least 2M linearly dependent points in SNR-space,

and consequently higher-rank covariance matrices are necessary to achieve all possible

points in SNR-space.

5.4.3 Implementation Issues

Multicasting With Arbitrary Coding and Modulation

The points achievable by higher-rank covariances are in general not available for ar-

bitrary signaling, but rather are equivalent SNRs for rates achieved by particular

vector-coded systems. More practical implementations may take their inspiration

from existing space-time codes that are adapted to take advantage of channel knowl-

edge.

For example, orthogonal space-time block codes can easily be converted to use

any covariance matrix. These codes are compatible with arbitrary modulation and

scalar coding and have simple detection algorithms. In the Alamouti scheme for two

transmit antenna elements [1], the transmitter sends two symbols, s[1] and s[2], over

two time periods:

Time 1 : x[1] =

[
1

0

]
s[1] +

[
0

1

]
s[2]

Time 2 : x[2] =

[
0

1

]
s∗[1]−

[
1

0

]
s∗[2]. (5.17)
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A receiver with channel vector h = [h1 h2]
T gets

y[1] = h∗
1s[1] + h∗

2s[2] + w[1]

y[2] = h∗
2s

∗[1]− h∗
1s

∗[2] + w[2].

The receiver, knowing the channel, can recover the input symbols by taking linear

combinations and conjugations,

ŝ[1] = h1y[1] + h∗
2y

∗[2]

ŝ[2] = h2y[1]− h∗
1y

∗[2],

to achieve the ideal space-time coding SNR of ‖h‖2P/2N0.

The orthogonal signaling vectors in (5.17) are used because the channel is assumed

not to be known at the transmitter. However, the procedure will work just as well

with arbitrary vectors, g1 and g2:

Time 1 : x[1] = g1s[1] + g2s[2]

Time 2 : x[2] = g2s
∗[1]− g1s

∗[2].

Now, instead of being sent on channels h∗
1 and h∗

2, the symbols are sent on h†g1 and

h†g2. The rest of the procedure works exactly the same as before but with these

substitutions, achieving the received SNR

SNR =
(‖h†g1‖2 + ‖h†g2‖2

) P
N0

.

If g1 = g2 = h/‖h‖, then the full single-user SNR of ‖h‖2P/N0 is achieved. For mul-

ticast streams, such coherent combining will usually not be possible for all receivers,

so distinct vectors g1 and g2 will be used. Also note that it is possible to use different

power distributions among the two gi vectors and effectively produce any weighted

average of SNRs between the two, achieving all the points we expect from space-time

multicast coding that uses a rank N = 2 covariance (5.12).

It is important to note that although the Alamouti scheme is for a two-element

antenna, our adapted version for arbitrary transmission vectors will work for any

number of antenna elements, as long as we only wish to average two beamforming
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directions. In this way, it can achieve the equivalent SNR of space-time multicast

coding with any rank-two covariance matrix, but now with arbitrary modulation

and coding. Other orthogonal space-time block codes can be adapted for covariance

matrices above rank two with a procedure analogous to that outlined above. Instead

of averaging the SNRs over the channel components hi, we average over the SNRs of

the inner products h†gi. Unfortunately, all orthogonal space-time codes of this type

with rank higher than two incur a rate penalty [62]. Still, optimizing the beamforming

directions rather than simply using orthogonal vectors can lead to significant SNR

improvement. Other techniques such as space-time trellis codes can be similarly

converted to achieve “diversity” over the h†gi.

Finding Operating Points

What remains is a method for finding good operating points for space-time multi-

cast coding. We concentrate here on maximizing the minimum performance among

receivers for each channel realization, which leads to the highest coded rate that all

receivers can understand. Recall that outage-based operating points such as this are

where beamforming strategies are weakest.

In general, this problem represents a maximization of a concave function over a

convex set,

max
G:trace

n
G†G

o
≤1

min
k

‖h†
kG‖2,

implying that every local maximum is also a global maximum [56]. This suggests that

iterative optimization algorithms might be useful. Still, the convex set of all achievable

points is rather complicated, which might make an exact approach difficult.

This becomes more tractable if broken down into the separate problems of find-

ing unit-length column vectors for the matrix G and corresponding weights on those

vectors. Given a set of unit vectors, the convex domain is polyhedral, and the op-

timization can be converted to a linear programming problem that can be solved

with the simplex method [56, 37], a standard linear optimization tool. For the unit

vectors themselves, we will find that the single-user beamforming directions lead to

good results. For example, for K receivers and the three received SNR vectors, γ1,
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γ2, and γ3, the goal is

max
α1,α2,α3

min
k=1,...,K

(α1γ1,k + α2γ2,k + α3γ3,k) ,

where α1, α2, and α3 are all nonnegative and sum to one. This can be reformulated

by introducing as a new variable the max min SNR goal, α4:

Maximize α4

given the constraints

3∑
i=1

αiγi,k − α4 ≥ 0, k = 1, . . . , K

α1 + α2 + α3 ≤ 1

αi ≥ 0, i = 1, . . . , 4. (5.18)

With at most a couple sign changes of coefficients to get all the inequalities in the

same direction, this fits the form of the Matlab command linprog and other simplex

method implementations.

Two-Receiver Illustration

For the specific case of two receivers, an interesting result illustrates the relationship

between sending common information and distinct information to two receivers. With

distinct information, the (often suboptimal, but tractable) zero-forcing beamforming

leads to SNRs of

SNR1 =

(
α‖h1‖2 − α

‖h†
1h2‖2

‖h2‖2

)
P
N0

SNR2 =

(
(1− α)‖h2‖2 − (1− α)

‖h†
1h2‖2

‖h1‖2

)
P
N0

where α is the fraction of power sent to the first receiver. Using power control to

equalize the SNRs leads to

SNR1 = SNR2 =
‖h1‖2‖h2‖2 − ‖h†

1h2‖2

‖h1‖2 + ‖h2‖2
· P
N0

. (5.19)
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On the other hand, with space-time multicast coding using the two single-user beam-

forming directions,

SNR1 =

(
α‖h1‖2 + (1− α)

‖h†
1h2‖2

‖h2‖2

)
P
N0

SNR2 =

(
(1− α)‖h2‖2 + α

‖h†
1h2‖2

‖h1‖2

)
P
N0

where α is the fraction of power sent along the first receiver’s direction. (This is

also suboptimal, because we showed that for two receivers, single-rank beamforming

is best.) We wish to optimize α to maximize the minimum SNR. Since increasing

α always improves SNR1 at the expense of SNR2, the best scenario is when we can

make SNR1 = SNR2. If this is possible (that is, if the solution to SNR1 = SNR2 leads

to an 0 ≤ α ≤ 1), then

SNR1 = SNR2 =
‖h1‖2‖h2‖2 + ‖h†

1h2‖2

‖h1‖2 + ‖h2‖2
· P
N0

. (5.20)

Comparing (5.19) and (5.20), the only difference is in the sign of the cross term,

which is essentially the deterministic correlation between the two realized channel

vectors. When multiplexing separate data, correlation between channels is bad, be-

cause it causes interference that either degrades performance or is to be avoided. For

multicast, correlation improves performance, avoiding the need to send redundant

information.

5.4.4 Performance of Higher-Rank Covariance Matrices

Although the value of channel information decreases as the number of receivers gets

large, our space-time multicast codes still exhibit a significant performance advantage

for moderate-sized systems. We illustrate this for an example where an 8-element

array multicasts a single stream to 8 receivers.

To communicate with all receivers reliably, we concentrate on maximizing the

minimum of equivalent SNRs among them. Once again, this optimization tends to

be very difficult in general, so we will constrain space-time multicast coding to using

a weighted set of single-user beamforming directions, as discussed in Section 5.4.3.

Optimal weights between the vectors were computed as in (5.18). Without channel
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Figure 5-6: Weakest-receiver effective SNR, from simulations, when multicasting a
stream from an 8-element array to 8 receivers, at an input SNR per link of 5 dB.
The schemes shown are: “No Array”: single transmit antenna element; “No Tx
Knowledge”: space-time coding with orthogonal matrix G, “ST Multicast”: using
channel knowledge with the weights chosen by the method of (5.18) .

knowledge, ordinary space-time codes would ideally choose a G matrix with orthog-

onal columns.

We compare the outage performance with and without channel knowledge in

Fig. 5-6. As expected, there is a large gain for both methods over not using an

array. Even on this scale, however, channel-aware transmission noticeably outpaces

ordinary space-time codes. The outage curves have similar shapes, but are separated

by about 6 dB at 1% outage. To place this into context, the improvement if the

transmitter could perfectly direct the stream to all receivers simultaneously would

be 10 log2 8 ≈ 9 dB. For similar simulations with a 4-element array and 4 receivers,

about 4 dB of the possible 6 dB advantage is preserved. Since we know these bounds

are unattainable, the fact that we get a good deal of the way there speaks to the

effectiveness of our methods and the usefulness of channel knowledge for multicast.
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5.5 Multicast Within Larger Systems

We now return to the larger picture of a system with a number of data streams, both

multicast and receiver-specific. Such systems must find ways for these streams to

coexist through scheduling, spatial multiplexing, or both. In our vision, the scheduler

doles out streams to different array processing subblocks for precoding, beamforming,

or multicasting; these subblocks in turn work together to get the data across without

undue interference. At a basic level, this consists of incorporating a multicast stream

into the model of earlier chapters, as a “metastream” that has a number of intended

receivers in its multicast group. This discussion brings together many of the tech-

niques developed in this thesis and provides an overall vision for how such a system

may operate.

5.5.1 Integration Among Array Processing Subblocks

If the array processing task is to transmit more than one stream at once, it must find

a way not only to direct the data to its intended recipients but also not to cause inter-

ference at other receivers. For individual-receiver streams, the transmitter’s channel

information enabled us to use spatial precoding and beamforming to accomplish this.

We will find that similar techniques can reduce interference among multicast streams

or between a multicast stream and several individual-receiver streams.

Beamforming-based separation works in much the same way as before. Any

individual-receiver streams must set their beamforming directions to be orthogonal

to all other active receivers’ channel vectors, including those in multicast groups. A

multicast stream similarly needs to transmit orthogonally to all receivers not in the

group. To find the proper space-time multicast coding parameters, the multicast

subblock should first project each of the channel vectors in the group away from all

receivers not in the group, and then optimize the group’s transmission scheme based

on these new channel vectors. Power can be redistributed among the different streams

and metastreams as needed. Note that because space-time codes that do not make

use of channel knowledge are designed to spread their signal throughout the entire

space of possible directions, they are not appropriate for spatial multiplexing with

other streams in this way. This serves as an additional advantage of our space-time

multicast codes.

Precoding, which we saw achieve significant improvements over zero-forcing beam-
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forming in many cases, can be adapted in a more limited way. Recall that precoding

works on an ordered set of streams, where later streams precompensate for interfer-

ence from the earlier ones. Because a multicast stream must send the same message

to a number of receivers, yet each will each receive a different linear combination of

interference from earlier streams, it is difficult to set up a precoding procedure for a

multicast group without suffering a rate loss. On the other hand, it is possible for

later-ordered streams to use precoding to precompensate for interference from one or

more multicast streams. This ordering also has the advantage that a multicast group

can compute its transmission scheme and performance before dealing with the other

receivers.

Putting this all together, we can group the active receivers into a number of

groups based on the array processing of their associated data streams. Individual-

receiver streams may go to the precoding subblock or may instead perform zero-forcing

beamforming, for instance if their receivers do not support modulo-extended slicers.

Each multicast stream has its own group of receivers. We can then partition the array

processing into a global preprocessing step and more local signaling done within each

group. First, order the total set of receivers such that the multicast groups are

first, then beamforming, and finally precoding. Then, the preprocessing step could

ensure that groups constrain their transmission to be orthogonal to channel vectors

in other multicast or beamforming groups. The multicast and beamforming groups

need not worry about causing interference for receivers in the precoding group, since

any crossover interference will be removed by precoding. At this point, processing

within each group can proceed as normal. What results is an effective channel matrix

(before precoding itself) that is a mix between block diagonal (for the multicast and

beamforming groups) and lower triangular (for the precoding group). For example, if

there is a precoding group with four receivers, a beamforming group with two single-

user streams, and a precoding group of two streams, then the possible non-zero entries
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of this matrix are highlighted as

HGB ∼




× × × ×
× × × ×
× × × ×
× × × ×

×
×

× × × × × × ×
× × × × × × × ×




.

This procedure allows spatial multiplexing between different types of groups while

not significantly changing the operation within each array processing subblock.

5.5.2 Integration at the Scheduling Layer

If there are more than a few potential streams, the system will likely also require the

integrated scheduling of multicast and individual-receiver data. The simplest trans-

mitters would timeshare between different types of data streams in a round-robin

manner. However, this ignores the possibility of capturing some of the multiplexing

gains we saw in earlier chapters. Recall that the potential throughput of systems

increased severalfold as the number of receivers approached the number of transmit

antenna elements. A more sophisticated system would attempt to use channel infor-

mation to select appropriate groups of streams for spatial multiplexing. The scheduler

then feeds the selected active streams into their respective array processing subblocks,

where the types of multiplexing described above can occur.

The scheduling algorithm will depend on the delay tolerance of the data, how

many intended receivers there are for each multicast stream, and whether precod-

ing is used for individual-receiver streams. Because both precoding and zero-forcing

beamforming require restricting the transmission of at least some streams, a good rule

of thumb for an M -element array may be to have no more than M active receivers

at any one time, unless all receivers belong to the same multicast stream. Beyond

this, the most important issues will once again be reducing the potential interference

between streams and, if the delay tolerance allows, selecting receivers whose channels

are of high instantaneous quality. Multicast streams make dealing with both of these

issues more difficult because the scheduler must satisfy all receivers of a particular
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stream simultaneously.

One complexity-reducing solution would employ separate queues for multicast

and individual-receiver streams and communicate no more than one multicast group

at any single time. Once the active multicast group is selected, the scheduler can

treat these receivers as if they were getting separate streams as it selects additional

streams according to the algorithms of Chapter 4. For example, with moderate delay

constraints, this selection would be to find a set of channel vectors that are nearly

orthogonal. For a transmitter with an 8-element array, a typical timeslot may include

a multicast stream with four receivers and three or four additional individual-receiver

streams. Unless the multicast groups consist of a very small number of receivers,

such a system is not likely to lose much in performance compared with a fully inte-

grated scheduler. Among the remaining challenges would include building in fairness

constraints to strike the right balance between the different types of streams.

155



156



Chapter 6

Conclusions and Future Work

In this thesis, we have discussed the design of various system components for a trans-

mitter antenna array as well as a higher-level view of how these components interact.

We found that a consideration of the channel parameters and input data stream prop-

erties can be very useful at both the scheduling and array processing levels. Although

this may violate some of the principles of the traditional layered approach, the gains

achieved by channel-aware scheduling or sophisticated spatial multiplexing imply that

a rethinking may be in order.

In an effort to make our results applicable, we have centered the development

around implementations, design choices, and analyzing the key issues involved with

particular system tasks. Some of the major contributions include:

• An overall framework for the integrated design of transmitter antenna array

systems. Of particular importance is the partitioning into scheduling and ar-

ray processing tasks, as outlined in the introduction. We found this led to

convenient problem formulations yet allowed for sufficient interaction among

components to approach the potential of the array. It also helped make clear

the different options for placing complexity throughout the system and the as-

sociated performance of these choices.

• At the array processing level, we added new insights and extensions to spatial

precoding. Building upon a series of recent results, our work concentrated on

variations of the basic precoding precedure to satisfy system goals for different

data classes, channel modeling assumptions, and modulation techniques. This

included changing the ordering of streams for different types of data, adapt-

ing symbol constellations based on the interference distribution, and extending
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precoding to multiuser intersymbol interference channels.

• We demonstrated how channel-aware scheduling techniques have the potential

to increase performance for a number of data types. In particular, we used the

delay tolerance of the various streams to provide the scheduler with flexibility

and constraints in rearranging the ordering and grouping of streams. Even

for a small amount of flexibility, an appropriate grouping can help the array

processing achieve much better reliability and higher rates. More sophisticated

scheduling can also enable lower complexity at the array processing level.

• For the multicasting of common data streams, we developed optimal signaling

techniques as well as more practical implementations. Among these were two

important methods, useful in different regimes, representing beamforming and

an adaptation of space-time codes to accommodate channel knowledge. In this

process, we helped define what it means for the transmitter to operate efficiently

in terms of balancing performance to the multiple recipients.

In this way, we have considered many problems in detail, yet within an overall

structure in which individual algorithms may be included or replaced depending upon

the needs of an individual system.

Future work can continue development within this structure. In addition to nu-

merous possible algorithmic improvements, this may take the form of expanding into

additional components at either end of the signal chain.

On the physical channel side, systems may be developed to more tightly incor-

porate the mechanisms for attaining channel information. This channel estimation

takes up system resources not accounted for in our discussion. Information about

the current data streams and previous channel states could potentially be used to

request when and how much channel information is needed. Another important goal

would be to further characterize the effect that partial, rather than perfect, channel

information has on the main components. Yet another direction is to include more

detail in the channel model, such as the movement of mobile receivers relative to the

transmitter, and then adapt scheduling algorithms to these models.

At the other side would be a further awareness of the data streams and their

performance goals. We have attempted to maximize rate or reliability-related goals

while respecting certain coarse delay constraints. The next step may be a more specific

investigation into the fundamental delay/throughput tradeoffs of spatial multiplexing
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systems. A different, but related, direction involves the development of scheduling

algorithms to achieve more formal quality-of-service measures such as packet drop

rates and delay guarantees. As explained in Chapter 4, we anticipate that although

such goals are not necessarily a good match to array fading channels, in practice it

may be possible to meet them due to the robustness of scheduling over a constrained

set of available channel vectors.

Issues of a more global nature appear when a wireless network contains multiple

array transmitters. For example, signals from one transmitter will cause interference

on the communication from others. Cellular systems often mitigate this interference

by partitioning receivers and bandwidth resources among separate cells. A more ef-

fective approach would use greater coordination across transmitters. At a conceptual

level, the different antenna elements from all of the transmitters may be considered

as one larger virtual array, upon which many of the techniques discussed in this thesis

may be applied. However, as networks extend from several cells to entire metropoli-

tan areas and more, a comprehensive implementation quickly becomes unmanageable.

It is also unnecessary, because interference from a single transmitter will be neglible

except in a small geographic area; mathematically, the channel matrix from the whole

virtual array to all of the receivers will be very sparse. The main network-level prob-

lem is therefore to find some reasonable compromise between partitioning and full

coordination.
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Appendix A

Ordering of Two Streams to

Maximize Sum Capacity

We wish to show that in a two-receiver scenario with precoding, the sum capacity is

maximized by choosing the first receiver to be the one with the best channel, i.e., the

largest ‖hk‖2.

Recall that before power control, the receiver that is ordered first gets its full

single-user SNR and that the product of SNRs to the two receivers is independent

of the ordering. Therefore, we can show the above by proving that, given a constant

product of SNRs, the sum capacity is monotonically increasing with the maximum

value of the two SNRs.

Suppose without loss of generality that with a particular ordering, the SNRs before

power control are β1 and β2, where β1 ≥ β2. Power control gives a fraction α of power

to receiver 1. The sum capacity, given perfect information embedding, is then

C = log2(1 + αβ1) + log2(1 + (1− α)β2).

By taking the derivative, we see that this is maximized with the waterfilling solution

α = max

(
1,

β1 − β2 + β1β2

2β1β2

)
.

If α = 1, that is, if waterfilling gives all the power to one receiver, then capacity

is maximized by choosing β1 as large as possible. Therefore, this case is proved.

From now on, then, assume that nonzero power is sent to both receivers. The sum
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capacity is

C = log2

(
1 +

β1 − β2 + β1β2

2β1β2

β1

)
+ log2

(
1 +

β2 − β1 + β1β2

2β1β2

β2

)

= log2

(
1 +

β2
1 + β2

2 − 2β1β2 + 2β2
1β2 + 2β1β

2
2 + β2

1β2
2

4β1β2

)
. (A.1)

Next, let c be the product of SNRs, c = β1β2. The sum capacity in (A.1) becomes

C = log2


1 + β2

1 + c2

β2
1
− 2c + 2β1c +

2c2

β1
+ c2

4c


 .

We wish to show that for a constant c, this is monotonically increasing in β1. Since

terms that are only functions of c will not affect this property, this is equivalent to

showing that

c1 = β2
1 +

c2

β2
1

+ 2β1c +
2c2

β1

is monotonic in β1. Taking derivatives,

dc1

dβ1
= 2β1 − 2c2

β3
1

+ 2c − 2c2

β2
1

d2c1

dβ2
1

= 2 +
6c2

β4
1

+
4c2

β3
1

.

The first derivative is zero at β1 = β2 =
√

c and the second derivative is always

nonnegative. Since we assumed that β1 ≥ β2, this implies that in the region of

interest, c1 is monotonically increasing in β1, and consequently, the sum capacity in

monotonically increasing in β1. This proves the case when both streams are sent with

nonzero power.
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Appendix B

2-Bit Signaling in Larger-Order

QAM Interference

Consider a 4-QAM embedding (that is, two bits of information) by receiver k with

power constraint Pk. We look at the case when the interfering signal behaves like a

higher-order QAM constellation. For simplicity, assume that this interference con-

stellation has infinite extent, and has equal-probability points spaced 2ζI apart in

both the real and imaginary directions.

If the interference is large enough, we can surround each constellation point with

an embedding constellation, as in Fig. 3-11c, and suffer no precoding power loss. As

we have seen, though, this only works if the spacing between interference points is

large enough. When this is not true, we can match a larger number of interference

points with each quartet of embedding points. Fig. B-1 demonstrates an embedding

where each 4-QAM set surrounds four interference points. An interference point will

get quantized to one member of the surrounding embedding quartet, selected by the

input bit pair. If there are A2 interference points for each quartet, then the embedding

tiling will will not overlap as long as

A ≥
⌈

ζ

ζI

⌉
, (B.1)

where 2ζ is the spacing between embedding constellation points (of different types)

and �· is the ceiling operator.

For this type of embedding, the average transmitted power is the sum of the

powers of a quartet of embedding points and of the set of interference points with
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Figure B-1: Sample embedding of 4-QAM inside large-order QAM interference. In
this example, each “embedding costellation” surrounds four possible interference
points.

with it is matched, if we assume that both groups of points are centered at the origin.

With a set of A2 interference points,

Pk = 2ζ2 +
2

3
ζ2
I (A

2 − 1).

The second term in the formula represents the precoding power loss, so it is clear

that we want to surround as few interference points as possible, working at the lower

bound of (B.1). The precoding power loss is shown in Fig. B-2. As the set of inter-

ference points becomes more dense, its discrete distribution gets closer to a uniform

distribution, so it is not surprising that precoding power loss approaches that of

uniformly-distribributed interference.

A slightly different perspective, perhaps more in line with system goals, would be

to maximize the distance 2ζ given a power constraint Pk. To satisfy both the power

constraint and (B.1), we may at times have to transmit with a power lower than Pk.

Note that the tiling in Fig. B-1b once again looks like a uniform quantizer but

where the embedding points were pulled back to the center of each set, just as in dis-

tortion compensation. However, in true distortion compensation, the reconstruction

points would be pulled back in the direction of the interference points themselves,

not to the center of each set of points.
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