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A. SIGNAL-TO-NOISE RATIO OF PHOTOMULTIPLIER SPECTRUM MEASUREMENT

AND COUNTING EXPERIMENT

Intensity fluctuations of a narrow-band light source such as an optical maser can be

observed experimentally by letting the light emitted from the source impinge upon a
1-4

photomultiplier. One may either observe the spectrum of the photomultiplier anode

current or connect the anode to a counter and record the photoelectron counts in a set

of fixed time intervals of duration T. The spectral density of the photomultiplier anode

current is given5 by

Ael o p
011(w o + 2r H j (1)

where A is the photomultiplier gain; e, the electron charge; Io, the anode current; F,
the secondary-emission shot-noise enhancement factor; a, the quantum efficiency; h,

Planck's constant; v, the frequency of the light; p (w), the spectral density of the light

power (intensity); and p, the average power. The first term is the enhanced shot noise.

The second term gives the excess noise resulting from time variation of the light inten-

sity and contains the information on the spectral density of the incident light power.

The second-order factorial moment n(n-1) of the photoelectron count n in a time

interval of duration T contains the same information as the spectral measurement. One

can showZ , 6 that

-2 T
n(n-) -n = (T-T) p (r) dT, (2)

n T 0

where p (7) is the normalized time-dependent part of the autocorrelation function of the

light power p(t)

2p(t) p(t+T) = p [1+p ()] ( 3 )

Because p (w)/ 2 and p (7) are related by a Fourier transform, the second factorial

moment indeed yields the same information as the spectral measurement.

The purpose of this report is to evaluate the signal-to-noise ratio of these two
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experiments and compare them with the Brown and Twiss correlation measurement and

coincidence counting experiment. 9 Before we do this, we shall consider briefly the

advantages and disadvantages of these various methods - aside from their respective

signal-to-noise ratios (which will be found to be comparable to each other except for the

coincidence counting experiment). In order to obtain the full spectral information in the

Brown and Twiss correlation measurement and the coincidence experiment, it is neces-

sary to introduce delays into one of the two photomultiplier outputs used in the experi-

ments. The delays must be of the order of the inverse bandwidth of the incident light.

If the light is of narrow bandwidth, such as the light from a gaseous laser, the delays

required are prohibitively long. Thus, the Brown and Twiss experiments are suited for

the measurement of light spectra of bandwidths greater than, say, 1 Mc. The spectral

measurement and counting experiment discussed here take preference for bandwidths

less than that.

The counting experiment, as opposed to the spectral measurement, gives more infor-

mation. Indeed, if enough samples are taken, it is possible to find the complete proba-

bility distribution P(n) of counting exactly n photoelectrons within a time interval of

duration T; however, it is more laborious. Furthermore, the photoelectron rate cannot

exceed the resolution rate of single photoelectron pulses, whereas the spectral measure-

ment does not impose the same stringent restriction. Thus, if the source used is capable

of producing a photoelectron rate higher than the rate that can be resolved, attenuation

must be used at the expense of signal-to-noise ratio.

1. Signal-to-Noise Ratio of the Spectral Measurement

1-4
In the experiments on the fluctuations of the light emitted by a gaseous maser, the

operation was sufficiently near threshold, so that the modulation of the light was strong

and it was not difficult to distinguish the excess noise from the shot noise. In experiments

farther away from threshold,this becomes increasingly more difficult and it is necessary

to study the question of signal-to-noise ratio.

If it were possible to determine experimentally the shot-noise term in Eq. 1 with per-

fect accuracy, one could subtract it from the observed total spectrum 1(w), and thus it

would be possible to discern the signal with no attendant uncertainties. In fact, however,

the shot-noise level cannot be determined with certainty by a spectral measurement of

finite bandwidth B and observation time T . We shall define the signal-to-noise ratio ofo
the spectral measurement by the ratio of the excess noise observed in a bandwidth B to

the uncertainty in the shot-noise level 7

2AeI B- 2n~ (M)/p
Signal o hv p

Noise - Uncertainty of shot-noise level (4)

Here, the uncertainty of shot-noise level is
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oi 2 (t) dt T oi 2(t) d , (5)

where i(t) is the current passing the filter of bandwidth B. We shall evaluate the uncer-

tainty of the shot-noise level in the limit of a negligible signal, an assumption that is

legitimate in the limit of a small signal-to-noise ratio. In this case the current i(t) in

(5) is a random time function with a Gaussian amplitude distribution. Assuming that the

filter characteristic is square, one may represent i(t) as a superposition of sinusoids

of random amplitudes, N in number:

N

i(t) = (ai sin wi t + b i cos w i t), (6)

i=l

in which, according to the sampling theorem, N is given by

N = BT o . (7)

The random amplitudes of the sinusoids satisfy the conditions

a.b. = 0
11

a.a. = a 5.. = b.b. (8)

where we have assumed stationarity and symmetry of the current spectrum. The ratio

of the uncertainty of the experimental determination of the shot-noise level normalized

to shot noise is given by

Uncertainty of shot-noise level T o 0 i (t di0 2O i dt

Shot noise 1 To it (9)

T i (t) dt

The shot-noise level in terms of N and a2 may be found immediately by using (6), (7),

and (8):

T

- i 2 (t) dt = NaZ. (10)
On the other hand, we know that0

On the other hand, we know that
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1 T2
T i2 (t) dt = 2BAeIF. (11)

The numerator of (9)

T2 Z _N 2
o o i 2 (t) dt -[ i 2 (t) d = +a+b) -(Na) 2

2 22 2 2 . 22

=N(N+1) a - N a = Na (12)

The second expression in (12) is obtained by introducing (6) and integrating over the time
interval T o . The third expression is obtained by replacing the square of the sum by a

double summation and using the statistical independence of a i and a., ji, and a. and b
the fourth expression results by noting that the single summations contain N terms and

the summations over unequal indices contain N(N-1) terms, and further using the rela-

tionship applicable to the Gaussian variables a. and b.:
1 1

24 2 4a. = 3a = bi (13)1 1 °

Using (11) and (12) in (9), one finally obtains

Uncertainty of shot-noise level 1 1
Shot noise -N- (14)

0

Assuming that the spectral density of the light power, p (w), is that of Gaussian light
with a Lorentzian line shape of bandwidth ALw, so that

p (0)
_M 1 1

-- 2 >rAw 2 '
P w

2

one finally obtains from (4), (9), (11), and (14) for the maximum signal-to-noise ratio
at w -0:

Signal 2r

Noise =- o (15)

in which we have used the fact that the photoelectron rate F is related to p by
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r =h- p.

The signal-to-noise ratio increases with the square root of the bandwidth and of the

observation time, with the photoelectron rate, and decreases with increasing bandwidth

of the incident light. A correction factor would have to be included in (15) to account for

other than Gaussian light.

2. Signal-to-Noise Ratio for the Counting Experiment

The signal of the counting experiment may be defined as

-2
n(n-1) - n

Signal = (16)

This quantity would vanish if the process were Poisson and an infinite number of samples

were taken so that the ensemble averages may be equated to the experimental averages.

Because of the finite number of samples taken in an experiment, however, (16) would not

yield zero even for a Poisson process. It is meaningful to define as the "noise" in this

experiment the mean-square deviation (from zero) of (16) for a pure Poisson process,

because of the finite number of samples taken. In this case one may evaluate the noise

by using Poisson statistics for the photoelectron counts. Assuming that N samples are

taken, we have

21/2

Noise i ni(n ) - n . (17)

Replacing the higher powers of the sums in (17) by multiple sums, one obtains

Noise= n(n-1 ) n (n- 1) + n.n.n n
n ,j i, j,k, f

2 -13 n(i(ni ) nj n . (18)
i, j, k

In the first sum we have to be concerned with terms of equal indices i and j, and with

terms of unequal indices. There are N terms of the former type, and N(N-1) terms of

the latter type. In the second summation, there are N terms in which all subscripts are

the same, 4N(N-1) terms in which three subscripts are the same and one is different;

3N(N-1) terms in which two pairs have equal subscripts; 6N(N-1)(N-2) terms in which
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two subscripts are the same and the others are different; and N(N-1)(N-2)(N-3) terms in

which all subscripts are different. A similar study of the third summation in (18) gives

N terms in which all subscripts are alike, N(N-1) terms in which j = k, but j # i, 2N(N-1)

for which j = i or k = i, but j # k, and N(N-1)(N-2) for which all subscripts are

different. Further, using the expressions for the moments n k for a Poisson proc-

ess, one may calculate (18) retaining only terms of 0t h and 1s t order 1/N: this is

legitimate because in all experiments, the number of samples N would be large. One

finds that the

Noise N(19)

Again, assuming that the "signal" is produced by Gaussian light of Lorentzian line shape

and bandwidth Aw, one has

-AWT
P (T) = e

and therefore, from (2) and (16) for the maximum signal attained in the limit T >> Aw

2r
Signal = . (20)

Introducing this expression for the signal, one obtains with the aid of (20)

Signal
= 2r N. (21)Noise (21)

This expression has to be multiplied by the same correction factor as (15) to account

for other than Gaussian light. Note the similarity of the signal-to-noise ratio of this

experiment and the signal-to-noise ratio of the spectrum measurement, (15), which is

even enhanced by the fact that the product ToB stands for the number of samples neces-

sary to describe the time function i(t) of bandwidth B in the observation time T.

3. Comparison with Brown and Twiss Experiments

We shall now compare the results obtained here with the corresponding expressions

obtained by Brown and Twiss. 8 ' 9 The correlation experiment yields in their case, for

a square filter characteristic, the result [Eq. (3. 62) of Brown and Twiss 7 ]

N &12 v' -BT 2 NrUw o (22)
N -r Av o rA o

where we have set

-r 1- ;, 9 = 1, A=A =A2
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and

A foa 2(v) n (v) dv

f a(v) n(v) dv AV

Except for the factor N-Zr, this is the same expression as (15).

Next, compare the signal-to-noise ratio of the coincidence experiment with the

expression obtained thus far. Brown and Twiss point out 8 that the signal-to-noise ratio

for the coincidence experiment is given by (22) as well, if one interprets B = 1/4 Tc,

where Tc is the resolving time of the counter. But their analysis applies to the case for

which the inverse resolving time of the counter is much smaller that the light bandwidth

Aw. If one develops an expression for the signal-to-noise ratio for the case A << 1/Te'
one findsl0 [Eq. (5. 23) of Brown and Twiss 9 ]

Signal----- ~57T
Noise o c

=w o c

Insofar as the bandwidth of the spectral measurement can be made comparable to the

light bandwidth (say, 2rrB ~ h /4), the expression above looks like the signal-to-noise

ratio of the spectral experiment, except for the factor [AcwT . The resolving time must
c

be made short enough to accommodate the rate 7. Thus ATC is usually much less than

unity; and, accordingly, the signal-to-noise ratio of the coincidence counting experiment

is smaller than that of the other measurements discussed here.

H. A. Haus
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B. QUANTUM ANALYSIS OF NOISE IN THE LASER OSCILLATOR

1. Introduction and Summary

Spontaneous emission noise is essentially a quantum phenomenon. It can only be

described by an analysis in which the field is quantized. For the laser amplifier and the

laser oscillator below threshold, which are both linear devices, such an analysis is

known.1 In this report we shall give the general outline2 of a quantum analysis of the

nonlinear laser oscillator above threshold. We make use of the concept of quantum noise

sources. These are operators whose first-order moments are zero and whose second-

order moments are nonzero. They drive Van der Pol equations whose variables are

operators. We linearize these equations in the noise, and solve for the first- and second-

order Glauber functions,3 G(1) and G ( 2 ) , and for the expectation value of the commutator

of the field variables. These three results refer to the field inside the cavity.

These results will be compared with the results of an earlier theory4 in which the

semiclassical equations are considered to be driven by the linear noise sources. We

shall call this theory "semiclassical." Our results contain "saturation corrections"

caused by the fact that the correlation functions of our quantum noise sources differ

slightly from the corresponding quantities in the "semiclassical" theory. Our results

also contain "quantum corrections" caused by the fact that our variables are operators.

Both of these corrections are small. Because our results refer to the fields inside the

cavity, and because experiments5 are performed on the fields of the laser beam outside

the cavity, we cannot yet give an exact discussion of the experimental meaning of these

corrections.

Furthermore, it can be shown that any particular moment of the field can be

rederived from an equivalent classical problem consisting of the semiclassical equations

driven by appropriate noise sources. For different field moments one needs different

noise sources. It turns out that G ( and G (2 ) need the same noise sources. These noise

sources differ slightly from the linear sources of the "semiclassical" theory.

2. Fundamental Equations

We shall consider one field mode in interaction with N two-level systems (particles,

material) in resonance with the field mode. The particles undergo collisions and we

restrict ourselves in this report to one type with collision time T. The field also
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interacts with a loss system consisting of an infinite set of harmonic oscillators, orig-

inally in thermal equilibrium at temperature TL, and with a flat spectral distribution.

We shall concentrate here on the interaction between field and material; the effect of

the loss will be mentioned without proof.1, 2 In between collisions the system is

described by the Hamiltonian

H = ha a + hw wj + ihK.(a p7-p a) + Loss (1)

j j

in which a, a+ are the annihilation and creation operators of the field mode, and wj, pj,
+p. are the energy operator and the negative and positive frequency components of the

i thpolarization operator of the j two-level system. They are adequately normalized so

that

p = 2w ; [wj,p = pi; [p ,w = pi (2)

This Hamiltonian leads to the following equations of motion:

da(t) ( -
dt - Kjp (t) + Loss; and Hermitian conjugate (h. c.) (3)

j

dp (t)

dt- 2K w (t) a(t); and h. c. (4)

dw(t)

dt M CLj[p (t) a(t) + a (t) p (t). (5)

We adopt the following model for collision. When there is no field in the cavity, the

material is in a randomized equilibrium state characterized by a given inversion p+ - p_
(or, equivalently, a given negative temperature -Tm). When the field is excited, a particle

j interacts for some time t. with the field, whereby both field and particle develop com-
J

ponents in each other's Hilbert space. At the collision the interaction stops, the field

retains its components in the jth particle Hilbert space,but the jth particle is kicked back

to its original randomized equilibrium state and becomes independent of all of its pre-

vious states. It is now in fact a "new" jth particle with a new Hilbert space, and during

the next interaction the field will develop additional components in this new space. The

material operators immediately after such a collision will be denoted by p (0), w (0).
They have the properties

p (0) P(0) = 2 Kwj(0 (+m) 6 jk; P (0) Pk(0)> = 2 Kwj(0)> mjk

pn(o = 0; Z(wj(0O= p - p_ (6)
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in which j 0 k for a different particle or collision, and Pm = [(P+/P_)-l]-

[exp(hw 0o/kT )-1]-l

3. Solution

Consider a time interval tt t i + T of order a few times T, and a particular interaction

of particle j with duration tj, somewhere in that interval. We put a (t) = a (ti) in Eqs. 4

and 5 during T. These equations are then solved during this interaction for p (t) in terms

of p (0), w (0) and a (ti) to third order in K t. These solutions are then used to integrate

Eq. 3 in the interval ti t i + T to fourth order in K .t. If T is considered a differential dt,

one may cast the result in the form of a differential equation

da + da + + +dt (y-+aya a) a =x (t); dt - a (y--aya +a) = x+ (t) (7)

22 4 w 2NK2 T<w>,
in which y dt = Z Z K2 t2 w, aydt = Z 2 (1/3) K t w, <y> = 2NKT<w>, <ay> = 8NK 4T4<w>

j c 'j c
(Z means summation over the particle index, Z summation over the collisions in dt, the

j c
argument (0) has been dropped), x (t) = xL(t) + x (t), and h. c. The quantities i and xL1,2
are caused by the loss. The loss noise sources xL are independent of the material

noise sources xm and for t I = t 2

xL(t) xL = 2iL(1/dt); xL (t), xL t 2 ) = 2/dt, (8)

where PL = [expiwo kTL)-] - 1 ; for tl-t > dt these expressions are zero. The mate-

rial noise sources are given by

xm(t) dt = K tjp -(1/3) t [paZ + pa+a

j c

x (t) dt = {ntjp - (1/3) nt p(a+2 + a . (9)
j c

It can be shown that these noise sources are Gaussian (operators u, v, w, x, ...
are defined to be Gaussian in some ensemble if <uvwx> = <uv><wx> + <uw ><vx> +

<ux ><vw >); the errors made in Eq. 7 by replacing T by a differential are negligible

if y-T < 1 or, in experimental terms, if the cold-cavity bandwidth is smaller than

the collision-broadened linewidth; Eq. 7 conserves the field comutator [a,a + ] = 1;

if we consider the field operators in xm as c-numbers, we must consider y as a

c-number (because of the large number of particles and collisions in dt, this c-

number is obviously <y>).

We use the substitution
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a(t) = [Ro+A(t)] e ; a (t) = [R +A (t)] e (10)

in which A, A+ are operators with [A, A +] = 1, and R and 0t are c-numbers. By putting
2 2

a R = y - i, we have adjusted R so that it is equal to the steady-state photon number
0 0

in the cavity, n , as predicted by the semiclassical theory without noise sources. We

linearize Eqs. 7 in A, A , and 0t; we replace the field operators in xm by their main

terms, which are c-numbers; and consistently consider -y as a c-number. Furthermore,

defining 2ins = x- exp(iOt) - x+ exp(-i t), 2nc = x exp(iot) + x+ exp(-iOt), we obtain

d(A+-A) d(A++A)
i0'2R + = -2in ; + 2(y-2)(A +A) = Zn . (11)

to dt s dt c

Equations 11 can now be solved for the correlation functions of Ot, A, and A+. The third

unknown, Ot, can be chosen freely as an independent Gaussian, but its correlation func-

tion is uniquely defined by the condition that the correlation function of (A -A) should

stay finite. These correlation functions are then used to calculate the moments of the

field. Consistency with the linearization approximation requires that all moments of

A higher than the second be neglected.

From Eqs. 6, 8, and 9 we obtain

<ns(t+T) ns(t) = A 5s6(T)= + (1 + PL)] (T)

nc(t+T) nc(t)) = Ac6(T) = As-4(- )+L) 3m)] 5(T)

i [nc(t+T), ns(t)]>  = (Y-L) 6(T). (12)

This leads to the following results for G (1 ) = (a +(t+T) a(t)) , G( 2 ) = (T+(a+(t) a (t+T))

T(a(t+rT) a(t))) and the field commutator, respectively.

G() =exp 2n o 4 y-

G(2) n2
0 A e ( LI I (13b)

n

[a(t+r), a (t)]) = exp - A sI I] [ 2(y1 IT]. (14)

Here, we have introduced the time-ordering operators T (which puts the later time first)

and T+ (which puts the earlier time first); these were needed in the definition of G (2)

because [a(t-7), a(t)] * 0. We have also introduced the average number of photons in the
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cavity (n(t)> R 2 = no, and the parameter A, defined by

A = A - (y-) = A s - (y-M)(3+4Pm). (15)

We note that all parameters in Eqs. 12-15 have experimental meaning: 2[ is the cold-
cavity bandwidth (A o in Haus5), 2(y-±L) is the hot-cavity bandwidth (Aw in Haus5), 2y =

wo/IQom with Qo the negative cavity Q,5 and no is related to the power, Po, transmitted
in the laser beam by P = 2n hw .

The field commutator (Eq. 14) is 1 for T = 0, decays to 1/2 with time constant

(1/2(y-i)) for ITI small, and to zero with the time constant (2n oAs) for ITI large. The
terms having A in G ( 1) and G ( 2 ) describe the influence of the amplitude fluctuations on

G ( 1) and G ( 2) . The influence on G(1) is small and if we neglect it, the spectrum of G ( 1 )

becomes Lorentzian with full half-power width, Aw o

A h
A no  2P (4) 2 +7 + +P

MO

Apart from the factor [ ], this is the double of the Townes width. 7 The influence on G ( 2 )

is essential: the semiclassical meaning of G(2) tells us that Eq. 13b gives us the relative

correlation function of the photon number, and for 7 = 0 it is

A = [ (-+m)+ (+L) - (3+4m.
(17)

As we have mentioned, we still cannot translate this result
important power correlation in the laser beam.

We shall now interpret the quantities A and As in Eqs. 13 ins

in G -Gm L C T V

Fig. VI-1. Equivalent circuit
of the noisy laser
oscillator.

components i c and i s are supposed to

into the experimentally

the light of an equivalent

classical problem. In Fig. VI-1 we put Gm =
Gm - (aC I Zhwo) G o IV(t) 12, 2 = 1/LC V = V(t)
m m o =  '

cos (wot+0t). The noise source in has positive

and negative frequency components i+ and i- suchn n
+that in = in exp(iwot) + in exp(-iwot). From thesewe derive the in-phase component i = (1/2)

c

[in exp(iOt) + in exp(-iet)] and the quadrature

component is = (1/Z)[i n exp(iOt) - i+ exp(-it)],

so that i = 2i cos (w0 t+ ) + 2i sin (w t+ ). Thebe independen c t processes, twhite
be independent, stationary processes, "white"

with respect to the "hot" cavity bandwidth but narrow-band with respect to w .
One can show that the circuit of Fig. VI-1 gives rise to the equations
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dV+ G-G i - G-G i
dV m + n dV m - n
dt 2C 2C ' dt 2C 2C

The correspondence with our analysis is made by taking the following scaling factors

into account: V+ = (rW /2C)1/2 a+, G/2C = L, Go /2C = Y, (aC/2o ) Go IV(t) 2

+ a,+ = h C)1/2 + i = (21 C)i/2n . By putting A = A = R = c-number
aya a, in 0 eq' c ceq 1
in Eq. 10, we obtain from Eq. 18

dR 1
R = -nseq; dt + 2 (y- t) R =neq  (19)

The "semiclassical" circuit 4 is obtained by postulating n seq(t+T) n seq(t) =

<nceq(t+T) nceq(t) = As6(T) and n eq(t+T) nseq(t) = 0, where 6(T) is a delta function

on time scales of the inverse "hot" cavity bandwidth, but certainly not on time scales of

2
1/. This leads to a stationary i with spectrum S. (f) around W : i = 2S. (f) dfo n 1 o n in n

4Si.(f) df = 4As(2ihwC) df = 4GO (+p + 4G +PL h df. This is the well-known

"linear voltage source" (i. e. , it predicts the exact voltage fluctuations below threshold7

These noise sources would follow from our theory if we dropped the nonlinear terms in

Eqs. 9 for x and x+ . Equation 19 now leads to the results (13) but with A replaced by
m m

As . Therefore, in the "semiclassical" theory one predicts correctly the width A o (Eq. 16)

but because A s differs from A (Eq. 15), one makes an error of( 3 +4 Pm) photons in the rela-

tive photon number fluctuations at T = 0 (Eq. 17). Close to the threshold (y ), /(y-)

is large, so that this error is relatively small compared with the main term of Eq. 17.

Higher above threshold y - 4 increases and the error becomes relatively more impor-

tant, but absolutely it is independent of y - I± and is always small.

The exact equivalent problem instead is obtained by postulating <nseq(t+T) nseq(t

As 6(T), n eq(t+T) nceq(t = A6(T) and n ceq(t+T) n seq(t)> = 0. This leads then to the

exact results (13). Because A * A the new source i is nonstationary. It is interesting

to investigate the cause of A # A . First, A is different from Ac (Eq. 15). This is a

"pure quantum" effect because it is caused by the operator character of A and A , and

by <[nc, ns]> # 0. This effect corrects the relative photon number fluctuation by exactly

1 photon. It is also interesting to note that it is not present in the exact expression for

<a+(t) a(t) a+(t+T) a(t+T , which for T = 0 equals G ( 2 ) + n. Second, Ac is different

from A (Eq. 12). This is a "saturation" effect and can be explained classically. This
s 2 +2

difference is indeed caused by the terms containing a and a in Eqs. 9. These terms

are phase-dependent and they make x and x+ nonstationary, although ns and nc are

stationary. This corresponds to the classical statement that in is nonstationary if

i2 <i >. This effect corrects the relative photon number fluctuation by (2+4)M
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photons. These two effects add and that leads ultimately to A t As, and the correction

(3+4pm) in Eq. 17.

H. J. Pauwels
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C. SPECTRAL ANALYSIS OF LASER OSCILLATOR BY MEANS OF HIGHER

AUTOCORRELATION FUNCTIONS

Reported here is the theoretical basis for an experimental confirmation of the sup-

posed Gaussian property of the noise caused by spontaneous emission in a cavity-type

laser oscillator. This noise in the semiclassical analysis appears as a random source

in a van der Pol equation describing the oscillation of the electric field of a laser opera-

ting somewhat above threshold.1 It has been shown experimentally that in that region

the noise is due mainly to spontaneous emission. 2

The variation R 1 (t) in the electric field amplitude about its steady-state value R °

above threshold is assumed to satisfy a linearized equation derivable from the van der

Pol equation. In this region of operation, it is found that information about the third-

order autocorrelation function R1 (t) R 1 (t+T 1 ) R 1 (t+T 2) R1 (t+T 3 ) can be extracted from the

spectrum of the square of the anode current in a photomultiplier placed in the laser beam.

This is accomplished with the aid of a direct current and lowpass filter before squaring.

We assume that the effect of the filters is to produce the following form for the trans-

form of the deterministic current pulse:

eA < <

F .() = (1)
1 0o, = 0 or I
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where cf is the filter bandwidth, A is the photomultiplier gain, and e is the unit

of electronic charge. Each pulse is the result of the emission of one photoelec-

tron, if the effect of secondary emission is neglected. With no lowpass filter

present, Wf can be interpreted as the photomultiplier bandwidth, which can be
8 9

10 -10 rad/sec.

In the region where the linearized theory is valid, the modulation coefficient m
2 2

R I(t)/R is much less than unity. Furthermore, if the noise source is Gaussian,then R 1 (t)

must be Gaussian in this region. Using these facts and the assumptions of the preceding

paragraphs, we obtain for the squared current spectrum S 2 (w) when A << wf, and when

the modulation process bandwidth wo is much less than f

8A 4e 4  2 2 o 128A e 4 2 oSrm2)
S (2) 3 Wfr m 2 + r m 4 (2)
I (A+ 

4 2 + 0
0 0

Here, r is the average rate of emission of photoelectrons, which ranged around
10 -1

10 sec in the measurements made above threshold on the ordinary spectrum as

reported by Haus. 2 The first term in Eq. 2 arises from the first-order autocorrelation

R 1 (t) R 1 (t+T) and is basically the same as the term measured in the unsquared spectrum.

The second term arises from the third-order autocorrelation of R 1 (t). All other terms,

including shot-noise terms and contributions from even higher autocorrelation functions

of R 1 (t), are negligible in the region where the linearized theory is valid, and not too

far above threshold.

By increasing the attenuation in front of the photomultiplier, r is decreased and the

first term of (2) will predominate. Increasing r or decreasing Wf will make the second

term predominate. It is shown elsewhere 3 that the assumption of typical realizable DC

and lowpass filters instead of the ideal filter represented by (1) only increases the first

term of (2) by r 2/4. The second term, which is independent of wf, remains unchanged

as long as w lies within the passband of the filter.

If the predictions of (2) are verified by experiment, then we may conclude that the

spontaneous emission noise source of the semiclassical analysis is Gaussian. This

assumption could not be checked with measurements of the ordinary spectrum. Further-

more, as m increases and threshold is approached, the linearized theory will become

invalid. Measurements of the squared current spectrum with the filters used as discussed

above should show deviations from the linearized theory before measurements of the

ordinary spectrum. Because of the possibility of using filters and operating with a

higher photoelectron emission rate, we also conclude that measurements of the squared

current spectrum could yield more information about the third-order autocorrelation

of R 1 (t) than could counting experiments. Higher speed and thus less sensitivity to drift

in laser operation would also be achieved. J. L. Doane
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