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A. ACTIVE SOLID-STATE PLASMAS

1. STIMULATED EMISSION OF PHONONS BY ELECTRONS DRIFTING ALONG

THE MAGNETIC FIELD

In this report we present the results of a quantum-mechanical analysis of the inter-

action between acoustic phonons and electrons drifting along an external magnetic field,

and show the possible relation to recent experiments.l' 2 The coupling between the elec-

trons and phonons is taken through the deformation potential. We find that stimulated

emission of phonons, with electrons making transitions between Landau levels, has a

threshold magnetic field.

We neglect electron-electron interactions, which is valid for high-frequency phonons

in semiconductors (qs >>1, where q is the phonon wave number, and fs is the screening

length for the electrons). The interaction Hamiltonian for the deformation potential in

terms of electron and phonon operators is H' = +CA(x) d 3 x, where is the field

operator for electrons in the Landau gauge, 3 A is the dilation, 4 and C is the deforma-

tion potential coefficient. Assuming that the gyration radius of the electron is small

compared with the phonon wavelength (dipole approximation), we expand H' up to first

order in q • x and obtain

H' = iC(h/2pVw\ ) /Z qn_ c_ - a

q k+q,n k,n -)
q, n, k

- iC(hl/2pVw 
/ 2 q(l/Zm)

I 1/ 2 qx

q, n, k

_X n1/ n c  - (n+1) 1/2 c  c n+- a (1)

k+q, n-1 k+q n+1 k, n q -
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where p is the mass density; V, the volume; wq, the angular frequency of the phonon
+-+

with wave number q; a and a , the phonon operators; c = c(k , k , n) and c , the
q q k,n k,n

electron Fermi operators; m, the effective mass which has been set equal to the electron

cyclotron mass; and we = eBo/m, the electron cyclotron frequency. In (1) an is given

by

n n(qy) = n(x) n(x-iq y/mwc) dx (2)

and represents an overlap integral of two harmonic oscillator states in the interaction.

These two states have different equilibrium positions, separated by 6 = iq y/muc caused

by the recoil of emitted or absorbed phonons. The overlap integral (2) becomes very

small if the separation is larger than the first zero of the harmonic oscillator function 5

given by Fn(h/mw) 1/2, where Fn is approximately unity. Hence, in order to get appre-

ciable interaction we require

2

y
Bo >2 (3)

SFe
n

Diagrams for the zeroth-order terms of H' are shown in Fig. XI-lb. Here the

ks- me s/h (s= sound velocity)

nl z k,,n q k -qz,n

Sn=O

q/ k Zn kz,n
W C

2(b)

C ks kz

q k z,n k ,n q 
kz
,n n

S2 3 4

(c)

Fig. XI-1. (a) Landau-level diagram and examples of the two types of transitions.
(b) Diagrams for phonon emission and absorption resulting from the intra-

Landau level.
(c) Diagrams for phonon emission and absorption resulting from the inter-

Landau level transitions. Circles and dots indicate changes in the electron
radius of gyration.
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electron makes transitions within a Landau level without changing its radius of gyration.

This is shown by arrows "C" in Fig. XI-la and is essentially the same as the (stimulated)

Cherenkov process. In this process the magnetic field does not play an important role,

except for the effect of the overlap integral n, and in the classical limit h - 0 the inter-

action is independent of the magnetic field. The first-order terms in H' are shown in

Fig. XI-1c, where circles and dots represent the change in radius of gyration. Diagram 3

in this figure shows emission of a phonon by electron transitions from a higher to a lower

Landau level, which decreases its radius of gyration ("O" in Fig. XI-la). Diagram 4

shows emission of a phonon by electron transitions from a lower to a higher Landau level,

which increases its radius of gyration (O' in Fig. XI-la). These processes are essen-

tially the interaction between waves and moving oscillators.6, 7 In the classical limit

they correspond to the Doppler-shifted cyclotron resonance interaction. 8

The time rate of generation of stimulated phonons (nq dnq/dt y is obtained from

time-dependent perturbation theory. The results may be summarized as follows.

For intra-Landau level (Cherenkov) processes

22
C mZ cq [ )/2

S(K )-f(K)] [ q sin E sin }]2 dp, (4)
C 3 7, fn( + [2 Tph 3q cos 0 0 n

where

K = (m/hi)(s/cos 6 - v) ± (1/2) q cos 0, (5)

0 is the angle between the magnetic field B and the phonon wave vector, s is the sound

velocity, and v is the electron drift velocity.

For inter-Landau level (oscillator-wave) processes

22 2 2Cm2 2  hq sin 0

* (n+1) f (K (K In(K")-f (K") J

cos 2  n n(q sin 0 sin i) n+1 (q sin 0 sin ) dp, (6)

where

K = K± + mwc/hq cos 0 (7)

K" = K - mW c/q cos O (8)
±+
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In (4) and (6) f is the Fermi distribution function,

fn(K) = {1 + exp[h 2 K 2 /2m+(n+1/2)lhwc-EF]/kT}-' (9)

Net stimulated emission of phonons (y >0) is obtained when the electrons have sufficient

drift, and y exceeds the decay rate of phonons because of other processes.

Our analysis was stimulated by recent experiments1,2 that show microwave emission

from an n-type InSb bar in parallel electric and magnetic fields. For our experiments 2

14 -3
at 9. 3 kmc we used n-type InSb at 77°K with electron concentration of Z x 10 cm ,

mobility 106 cm 2 /volt sec, and the results were q X (electron mean-free path) = 15,

q X (Debye length) = 15, and at 5 kgauss W T = 6 0, hw = kT (T =100 0 K), and q X (elec-

tron gyration radius) < 1 for n < 8. Hence, by using C = 30 ev, 9 (4) and (6) can be used

to evaluate y as a function of 0. The

7 results are shown in Fig. XI-2. We
I0

E80 VOLTS/CM note that for certain angles 0 the inter-

so Landau level process can dominate.

40 The sharp decrease in - for small

20 cos 0 is due to the integrals of 6n n+l
and is approximately predicted by (3).

0 I 2 4 5 6 78
Bo KILOGAUSS Figure XI-3 shows the maximum growth

Fig. XI-3. Maximum (with respect to 0) rate for the inter-Landau level process

time rate of generation of as a function of magnetic field B o . The

phonons as a function of the threshold magnetic field corresponds
applied magnetic field, for
various values of the applied closely to the magnetic field at which
electric field. we observe the onset of enhanced micro-

wave emission. The threshold electric

field, which is also observed experimentally, would be determined from the condition

that y exceed the phonon decay rate resulting from other processes. At present, there

are no data available on the lifetime of 10-kmc phonons in InSb at 77 0 K. The coupling

of the phonons to the microwave field in the waveguide must be assumed to occur at the

boundary of the InSb bar.

T. Musha, A. Bers
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2. LONGITUDINAL INTERACTION OF ELECTRONS WITH PHONONS IN

A MAGNETIC FIELD

In order to gain a more complete picture of electron-phonon interactions we shall

attempt to formulate it in terms of a dispersion relation that contains the interactions

self-consistently. In the future we shall analyze the nature of the stability of these inter-

actions. First, we give our results of a classical self-consistent field analysis, and

then the quantum-mechanical analysis. Both analyses will be for longitudinal acoustic

and electron-plasma waves (q II E), at an arbitrary angle to the applied magnetic field,

and coupled through the deformation potential.

Classical Formulation

The equation of motion for the lattice displacement, $, is

p~ = V T + CVn - m n( -V) v, (1)

where p is the mass density, T is the stress tensor, C is the deformation potential

coupling constant, n is the electron density, m is the electron effective mass, v is

the electron velocity, and v is the effective electron-lattice collision frequency. The

electron distribution function f is taken to satisfy the Boltzmann equation and is assumed

to relax to the local equilibrium function

af 8af e mv 8f nt + w - + w XB - -f f -n - , (2)at m e o - o n ow r aw o w2

where fo is the unperturbed electron distribution function, n0 is the unperturbed elec-

tron density, and Bo is the applied magnetic field.

We linearize Eqs. 1 and 2 and solve them together with Poisson's equation. Assuming

a dependence exp(-iwt + iq - r), we find that the resultant dispersion relation is
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K +Ke -1= 0, (3)
p e

where

2 2 2 o
S-q s + iwv

K= * 2(4)
mn _ (

2 2 2 mno C L 4 m
w - q s + iWv + 2 q  i - i

P pe q

znp nwc 8f°  af o
2 2 ( c o o

() wI 1w

2 dw I dwl w -n2T n

q -oo In (W+iV- 11-nwc)
K =1- n +iv-qW (5)

e 000 o Jn(p)
1 + iv dwl, dw w. o  ( n

-0o 0 (w+iv-q wI-nC

Here, s is the sound velocity, w is the electron plasma frequency, wo is the electron

cyclotron frequency, q 11 is the wave number component along B o' 0 q is the wave number

component across B , and p = q1WL/Wc.
If the unperturbed electron distribution function is taken as a Maxwellian with ther-

mal velocity vT = KT/m, and shifted along the magnetic field with drift velocity vD,

Eq. 5 may be written in terms of the plasma dispersion function Z(C),

2

2 + In(k) e oZ(j

K = 1 + q  T  n (6)
e iv _X n

1 +/I n(X) e Z( n )q 11 VT N  n

where
= + iv - q lvD - n Wc (7)

) 2  

(8)

Computations on instabilities contained in Eqs. 3-8 are in progress.

Quantum-Mechanical Formulation

To account for quantum-mechanical effects in the interaction we formulate the elec-

tron part of the dispersion relation, K e , in terms of the single-particle density matrix p,
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including a phenomenological damping term. Previous formulations either do not account

for collisions,2 or include collisions but with relaxation to an equilibrium that has no

density fluctuations.3 For our interests in longitudinal oscillations we choose a collision

description with relaxation to local equilibrium, that is, with a perturbed density.

Si [H,p ]= - + P (9)at p - -\ n+

where I is a matrix, each element of which is unity, H is the Hamiltonian, po is the

density matrix for the steady state, n 1 and no are, respectively, fluctuating and aver-

aged electron densities, and [ , ] is the commutation bracket. The relaxation terms on

the right-hand side of (9) imply that p is relaxing with the time constant T to the local

equilibrium, which to first order is given by (l+nlI/n )po. For longitudinal waves with

dependence exp(iwt - iq , r), we obtain

2
mp P (E ) - Po(E ,)2 v v

q 2np E - E - h(-i/T) ' VSno v, ' v v
K e = 1 - (10)

i Pi1 Po(EV) 2

o , E -E ,-(w-i/r) V'V
v, v V V

where E is the electron energy of the state v specified by (k y, kz, n), and 5V, V is the

overlap integral as used in Sec. XI-A. 1.

Assuming that the unperturbed electron velocity distribution is Maxwellian with ther-

mal velocity vT and drift velocity vD, we obtain

2 2P -hio/mT Z/ + Iq{ I -hq1 N /mv_ hq 1 1 \/V-h2 / 2

e c TTz K2 my + mv N+_,

-
N, N 1 - ZT q 2 -N+ ,Ne c

Here, is as defined in Eq. 7. In the classical limit i - 0, the quantum-mechanical

formulation (11) agrees exactly with the classical formulation (6). Computations on

electron-phonon interactions using Eqs. 3, 4, and 11 are also in progress.

A. Bers, T. Musha
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B. INSTABILITIES OF WAVES ACROSS THE MAGNETIC FIELD

1. INSTABILITIES IN TRANSVERSE WAVES ALONG B 0

In previous reports we have discussed instabilities in transelectromagnetic waves

that propagate along an applied magnetic field in a plasma with anisotropic velocity dis-

tribution of electrons. 1,2 In this report we consider the extent of the damping of the

instabilities arising from finite electron temperature along the magnetic field. We also

show that the plasma dispersion equation contains a negative energy wave associated

with the zero-order transverse energy. The instabilities are interpreted in terms of the

coupling between this wave and the well-known passive right circularly polarized waves

in the plasma. Further details may be found in Robertson's thesis. 3

Damping of the Instabilities

For an electron velocity distribution of the form

1
fo( . 'vii) Znv 6(L-Vo_) 6(vll-VoII)

a simultaneous solution of the relativistic Vlasov equation and Maxwell's equation yields

the dispersion relation2

2 2 2o p(w-kv I011)C k -

W 2 (w-kv0ll b)

2 2 2 /c2
p 0(w-kvoi-/c

2(w-kvoII-W b)2 (2)

for right circularly polarized waves with dependence e j (wt-kz) Following the Bers-

Briggs criterion for instability, we plot the real k locus in the complex w-plane. The

Oi/wb
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Fig. XI-4. Real k locus for v 0 11 = 0. Fig. XI-5. Real k locus for finite v 0 11.
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locus for v011 = 0 is given in Fig. XI-4, and for finite v 0 11 in Fig. XI-5. Two unstable

branches are distinguished. A "magnetic instability," caused by first-order forces on

the electron exerted by the first-order magnetic field of the wave, is found for wave

numbers with magnitude greater than wb/c. A "relativistic instability," caused by the

relativistic change in the cyclotron frequency of the electrons as they interact with the

wave is found at wave numbers with magnitude less than wb/c.
For an electron distribution of the form

1 exp 011
f 0 (, v 1) 3/2 (v-v 0 1 ) exp (v )2(3)

(2rr) v T  2I T

where vTII is the electron temperature along BO, the dispersion relation is

2 2

2 1 - - IH(~ + 2 2 k 2 (1+ H(f)), (4)

kyTII 2 TI1k c

where

2

H() =e dx; Im < 0 (5)

and

= - kv011 - ob kvOil b (6)
F- kvTl

The real k locus obtained from (4) is given in Fig. XI-6 for v 0 11 = 0, and in Fig. XI-7

for finite v 0 11. (The scale in Fig. XI-6 is expanded to show the details.) As is evident

from the figures, the magnetic instabilities for large wave numbers are damped by the

longitudinal temperature. As the temperature is increased, the damping of the mag-

netic instabilities extends to lower and lower wave numbers. From Fig. XI-7 it is evi-

dent that there are 6 wave numbers at which the plasma experiences a transition from

stable to unstable. These wave numbers are defined as kl-k 6 in Fig. XI-8. The rela-

tivistic instability exists for wave numbers between k 3 and k 4 . The negative wave num-

ber branch of the magnetic instability exists between wave numbers k 1 and k 2 , and the

positive wave number branch between k 5 and k 6 .

There is a physical reason why the magnetic instability is not found at wave numbers

less than wb/c. The magnetic instability requires that there be some electrons in reso-

nance with the wave. No electrons can have velocities along the magnetic field greater

than c. Thus the upper limit on the phase velocity of an unstable wave is c. Since the
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instability occurs near o 1 wb, the lower limit on the wave number of the mag-

netic instability is near wb/c. Note that the relativistic instability that does not

arise from such a wave resonance condition can have waves with phase veloc-

ities greater than c.

W
b  

u
bWi k=I.2 k=7.1

C C
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The temperature at which the magnetic instability disappears is found by obtaining

the temperature at which k I = k 2 or k 6 = k 5 . The transition wave numbers k 2 and k 5
can be found from the zero temperature dispersion relation (Eq. 2). The plasma becomes

unstable near w = d + kv0l = Wd. Setting w = wd and solving the quadratic in Eq. 2 for

W - Wd yields

2
pbb

- d= -
2(c 2 k 2 2)wd

p b

Z 2 2\
2 -Wd

The instabilities set in when the radical in Eq.

yields for the transition wave numbers

c  2

kc
kc Z c f-W b 01i c 2
Wb

7 is zero. Setting the radical to zero

V
2

Oil
2

c

and
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Vol + +

c bV 01 c

2
v011

1
2

The transition wave numbers k1 and k 6 are found by a method that is due to Sudan. 4 The

dispersion relation is written as

2 _ Pk = 2 0

k 2

dvi- dv
-_

At the transition wave numbers o and k are pure real. The Cauchy type of integral in

Eq. 10, split into its real and imaginary parts, yields the equation for the transition

wave numbers k 1 and k6:

2 2 2
f kv I O \ V l I

2v
2 2TII

Wb 2
01 l

2v

2
v01 0.

p 2

2
v 0

The solutions from (11) are set equal to the solutions from (8) and (9), thereby resulting

in the solution for the thermal velocity at which the magnetic instability disappears. The

0.020- STABLE '-=0

0.016 0.15 UNSTABLE

0.012 STABLE

> 0.008 JUNSTABLE
S IUNSTABLE

0.004 
0

0004UNSTABLEI

0 0.08 0.1 0.24
WUp/ wb

Fig. XI-9. Temperature at which magnetic
instability disappears.

numerical solution for VTII/c is shown in Fig. XI-9 as a function of w p/b for several

values of v 0 1 /c, for the case v 0 11 = 0. From Fig. XI-9 it is evident that 2vi /v 0 ) << 1,

for which an approximate solution for the thermal velocity at which the magnetic insta-

bility is damped as
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3 - 1/2

c 2wb c3 (12)

The relativistic instability was found undamped for the nonrelativistic temperatures

considered.

Mode-Coupling Picture of the Instabilities

kc/wb

Fig. XI-10. Dispersion diagram for a cold
plasma.

transverse energy contains a new wave branch.

imate relation

In Fig. XI-10 the k - vs - w dis-

persion diagram is plotted for a cold

plasma (Eq. 2 with v 0 1 = 0 ) . In Fig. XI-11

the dispersion diagram is plotted for

finite v 0 1 . Conditions have been cho-

sen in Fig. XI-11 such that the rela-

tivistic instability does not exist. The

region of the magnetic instability where

w is complex for real k is shown as a

dashed line. From Fig. XI-11 it is

evident that the plasma with finite

This wave branch satisfies the approx-

S'= Wb + kv 011
(13)

The small-signal, time-averaged energy in the plasma can be calculated5, 6 from

(14)wr = I + olz EOE lz a K ,
1 +-4- o-

where K r is the right-hand element of the dielectric tensor in rotating coordinates.

From the dispersion relation the small-signal energy is calculated to be

2 22 2

Wr z p Wb WpV o [w(ob+kv0l, )-c k

4 EJE w(w-kv ll-b) W2 (w-kvOI-wb)3
4-O l O lo

(15)

For the cold (v0 1 = 0) plasma of Fig. XI-10 all waves have positive energy and the plasma

supports only passive waves. For the plasma with transverse energy (v01*0) of

Fig. XI-11 the new wave branch represented by Eq. 13 has been found to carry negative

energy. The small-signal energy of this wave branch is plotted as a function of wave
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number in Fig. XI-12.

The large wave number instability (magnetic instability) can be seen (Fig. XI-11) to

kc/wb

Fig. XI-11.

<Wr> x 10 8

E E 2 /4

2 -I i 2 krc

Wb

-2

S-

Dispersion diagram for a plasma
with zero-order energy transverse
to B 0 ; O indicates a positive en-

ergy branch; E indicates a nega-
tive energy branch.

Fig. XI-12. Small signal energy of active
wave branch.

arise from coupling of the negative energy branch with the right circularly polarized

branch below wb. Since both branches have k - o for w - wb, this instability exists for

any finite v 0 1 . The relativistic instability, which occurs for small wave numbers,

arises because of coupling between the negative energy branch and the right circularly

polarized branch above wb. For the parameters of Fig. XI-11 there is no such coupling.

But, if either (wp/wb) is decreased (which moves the passive branch to lower frequencies)

or (v 0 ./c) is increased (which moves the active branch to higher frequencies), the

coupling will set in. As can be seen from Fig. XI-11, the waves that then couple have

opposite group velocities, and we would expect absolute (nonconvective) instabilities

to arise. We have determined that the absolute instabilities, which we have previously

found from our exact computations,1, 2 are indeed predicted by the coupling described

here. Furthermore, the coupling picture clearly shows how the relativistic instability

may disappear with increasing (wP/wb). E. A. Robertson, A. Bers
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2. INSTABILITIES IN QUASI-STATIC WAVES ACROSS B 0

We have continued 1 the study of instabilities of quasi-static waves (k parallel to )

propagating perpendicular to a static uniform magnetic field in an infinite plasma com-

posed of stationary ions and electrons with an unperturbed distribution function

1
f 0 =2nP 62(p-p 0) (p )  (1)

Here, pl is the magnitude of the momentum across the magnetic field, and pll is the

momentum along the field. The dispersion relation for quasi-static waves propagating

across the field has been shown1, 2 to be

2 k 2 2z
p m-1 m+1 m wbKL(w, kl) = 1 2 ) m 2 } 0. (2)

n=-oo 2Wb(- mwb) (-mob

This was obtained from a dielectric tensor description of the plasma that is consistent

with the complete set of Maxwell's equations and the relativistic Vlasov equation. 3 Here,

w and wb are the (relativistic) electron plasma and cyclotron frequencies, respectively,
th

c is the velocity of light, and J is the n -order Bessel function of the first kind and

argument (klPLO/Mob).

The dispersion relation has been solved numerically for the roots w = w(k ). In our

work an instability is said to exist when w has a negative imaginary part for a real k .
The criteria for classifying the type of instability (convective or absolute) has not been

applied. Two distinct types of instabilities have been found.

The first type of instability had been predicted previously by a nonrelativistic anal-

ysis performed by Harris, Dory, and Guest, although they did not determine the form

of the dispersion characteristics. Their dispersion relation is obtained from (2) by
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letting c - o and interpreting op and wb as the nonrelativistic quantities. The "zero-

frequency" instability that we reported also is an example of this kind of instability.

The study has now been extended to higher frequencies. Figure XI-13 is the dispersion

diagram obtained from the nonrelativistic equation for a plasma whose density is such

that w p/wb = 1. 5. Note that there is a single passband at the cyclotron frequency and

at each of its harmonics. The dispersion characteristics display an oscillatory behav-

ior about the harmonic frequency. All passbands but the fundamental begin at o = m b.
The fundamental begins at the hybrid frequency, w = ( b+L2)1/2. Figure XI-14 shows

a higher density plasma with co = 2. 1 wb. This plasma is similar to the one just dis-

cussed in that the waves are still purely propagating. But the branch of the dispersion

characteristics which may be associated with the cyclotron fundamental at large values

of k_ now starts at w = 2wb . It is the first harmonic that begins at the hybrid frequency.

Note also that the amplitude of the oscillation of the root locus about each harmonic has

increased. Figure XI-15 illustrates the dispersion characteristics of a still higher den-

sity plasma. With wp = 2. 75 ob, bands of unstable wavelengths are observed. By com-

paring Figs. XI-14 and XI-15 it can be seen that the amplitude of the oscillations of the

root locus has become great enough for neighboring modes to overlap. This appears to

happen for all modes studied at a density such that wp = 2. 5 cob. Figure XI-16, which

has been drawn for a still higher density plasma, co = 4. 25 wb' shows that increasing

the density also increases the widths of the unstable bands. Also, we observe the onset

of the "zero-frequency" instability. Figure XI-17 illustrates the growth rates (Wc/Ob)
for the two unstable cases discussed above. The magnitude of the growth rate is seen

to increase with increasing density. These two cases indicate, however, that it is not

always the fundamental that has the maximum growth. Although more data should be

taken to confirm this view, we feel that for a fixed plasma density the growth maximizes

at a particular harmonic.

The small-signal time-averaged energy density for quasi-static waves in a disper-
5.

sive medium is given by

<w> -E= E L (3)
4 aw-IK =0

In Figs. XI-18 and XI-19 we plot the energy density of the fundamental and first harmonic

when w = 2. 1 wb. Note that at the points where the two modes are closest in Fig. XI-14,

one wave (the harmonic) carries negative small-signal energy, while the other carries

positive. This behavior is observed in all of the modes. When the frequency is above

the harmonic the small-signal energy is positive, and it is negative when below. Thus,

the high-density instabilities may be interpreted in terms of an internal coupling of an

active wave (negative small-signal energy) with a passive one. The "zero-frequency"
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Nonrelativistic dispersion diagram for

(wpO/bO) = 2. 1.

4

3

2

2 3 4 5 6 7
ki Voi/w b

Fig. XI- 15.
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Fig. XI- 16.

Nonrelativistic dispersion diagram for
(wpO/bO) = 4. 25.
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Growth rates for the high density
instability.

Fig. XI-19.
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instability is interpreted as a coupling of the mode starting at w = 2Zb (see Figs. XI-15

and XI-16) with the one that would start at w = -2b. (The dispersion relation is sym-

metrical in w.) A numerical calculation has shown, however, that both waves carry neg-

ative small-signal energy.

The second type of instability observed in this plasma appears only in a relativistic

analysis. The relativistic dispersion relation predicts two roots near each harmonic,

while the nonrelativistic equation predicts only one. Figure XI-20 shows the root locus

of the fundamental and first harmonic of a plasma in which w = 0. 5 wb. The nonrela-

tivistic analysis predicted no unstable waves at this low density; however, here we see

bands of unstable wavelengths. Expanding Eq. 2 near the mth harmonic and keeping

terms only to second order in (p0/Mc), we find that the plasma is unstable at the
th

m harmonic if

op/ob 1
< (4)

pL0 /Mc IJm I

where the prime indicates the derivative with respect to the argument of the Bessel func-

tion. Since J' vanishes at discrete values of its argument (k pl0/Mob), the plasma ism (kPLO/Mwb)t
always unstable in bands of wavelengths about these points. The widths of these bands

are always nonzero for finite (W p/b). It is possible that this relativistic instability is

more important than the high-density instabilities discussed earlier because they appear

at such low densities. Note, however, that the new roots of the relativistic equation lie

extremely close to the cyclotron harmonic frequencies. The validity of the quasi-static

approximation used in obtaining Eq. 2 from the dielectric tensor may be in question for

these roots. Further study requires that this approximation be checked. We are at pres-

ent doing this.
C. E. Speck, A. Bers

References

1. C. Speck and A. Bers, Quarterly Progress Report No. 78, Research Laboratory of
Electronics, M.I.T., July 15, 1965, pp. 110-114.

2. C. E. Speck, "Quasi-Static Theory of Plasma Instabilities at Cyclotron Harmonics,"
S.M. Thesis, Department of Electrical Engineering, M. I. T., Cambridge, Mass.,
September 1965.

3. A. Bers, "Dispersion Relations for Plasmas in a Magnetic Field, III," Internal Mem-
orandum, Research Laboratory of Electronics, M.I.T., Cambridge, Mass., August
1964.

4. E. G. Harris, R. A. Dory, and G. E. Guest, "Unstable Plasma Waves Propagating
Perpendicular to a Magnetic Field," Phys. Rev. Letters 5, 131-133 (1965).

5. A. Bers and S. Gruber, "Negative-Energy Plasma Waves and Instabilities at Cyclo-
tron Harmonics," Appl. Phys. Letters 6, 27-28 (1965).

6. A. Bers, "Instabilities in Plasmas with Beam-type Distributions" (Abstract to
appear in Bull. Am. Phys. Soc.)

QPR No. 79 117



(XI. PLASMA ELECTRONICS)

C. QUASI-LINEAR INTERACTION OF A FILAMENTARY ELECTRON BEAM

WITH A PLASMA-FILLED WAVEGUIDE

1. Introduction

In the last few years, a number of authors have examined the nonlinear aspects of
the beam-plasma interaction using the methods of quasi-linear theory. 1 - 3 Several have
considered the development of instabilities in an infinite plasma resulting from a "single-
shot" injection of a beam. That is, the initial distribution function is taken as that of a
plasma and a monoenergetic beam, and this distribution function is allowed to relax
in time because of the development of the instability. This situation is shown in
Fig. XI-21a. Because of spatial symmetry, these nonlinear solutions are independent
of all spatial coordinates. While these studies provide some insight into the behavior of
beam-plasma systems, they have little relevance to those beam-plasma experiments in
which the beam is continuously injected into the plasma region.

INFINITE TRANSITION" LAYER OFFAINBERG AND SHAPIRO

INITIAL CONDITION: AT 0, 
MONOENERGETIC BEAM INITIAL CONDITION: AT z =0,

MONOENERGETIC BEAM
CONTINOUSLY ENTERING THE
PLASMA REGION

(a) (b)

Fig. XI-21. (a) Single-shot injection of a beam into an infinite plasma.
(b) Continuous injection of a beam into a semi-infinite

plasma.

Recently, Fainberg and Shapiro 3 have studied a semi-infinite plasma into which a
monoenergetic electron beam is continuously injected. This is illustrated in Fig. XI-2lb.
They find that a "transition" layer is formed at the plasma boundary, z = 0, because of
the instabilities that develop. This layer is a region of large and highly inhomogeneous
electric field strength. Most of the beam energy is lost in passing through this layer,
and the beam itself emerges from the layer highly diffused in velocity space. These
authors find that the thickness of this layer tends to zero on a time scale of a few
tenths of a microsecond for typical beam and plasma parameters. To keep the layer
thickness finite, one must postulate a loss mechanism to remove energy from the bound-
ary layer. Fainberg and Shapiro assume that the energy is transported away at the
group velocity of the propagating plasma wave.

In this report we have analyzed a problem in which a monoenergetic electron beam
of finite transverse dimensions in continuously injected into a circular plasma waveguide.
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The beam velocity v 0 at the entrance plane z = 0 is taken to be much greater than the

plasma thermal velocity, vT. The ratio of beam to plasma radius, b/a, is taken to be

<<1, and the plasma frequency p , beam plasma frequency wpb, and electron cyclotron

frequency Wce are assumed to satisfy the condition w ce << pb << p. Only circularly sym-

metric solutions of the nonlinear equations will be considered. Under these assumptions,

the beam-plasma system supports only a convective instability, and the electric field

strength according to linear theory increases exponentially away from the beam entrance

plane. Figure XI-22 shows the geometry of the system that we analyze.

PLASMA RADIUS a SEMI-INFINITE CIRCULAR ASSUMPTIONS
WAVEGUIDE, RADIUS a

BEAM RADIUS b Vo>> VT
b<< a

NO AZIMUTHAL VARIATION

z=0
BEAM ENTRANCE PLANE

Fig. XI-22. Geometry of the beam-plasma system.

Since the beam density nb is much less than the plasma density np, the important

nonlinear effects occur in the beam alone. Therefore we treat the plasma as linear and

solve for the beam distribution function in the steady-state limit t - oo. From this func-

tion we obtain the average beam velocity v (z) and the beam temperature Tb(z) in the

steady state.

2. Linear Theory of the Interaction between a Filamentary Electron Beam and a

Plasma Waveguide

The dispersion equation of the beam-plasma system shown in Fig. XI-22 is

1
(o) = (1)

o 220 F(q) b

2voK (w)

where

N (qa)
F(q) = In -+ 0  (2)

qb 2 J(qa)Jo(qa )

and p and q are the transverse wave numbers in the beam and plasma regions, respec-

tively. The transverse dielectric constant KI is given by
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2 2

K 1  2 2
S-0ce3

ce

where

2 2 2
S=w +w ++ p ce

Figure XI-23 is a sketch of the dispersion function (1).

plex roots of P for real w are obtained when KI is negative.

(4)

It is seen from (1) that com-

The complex root with

REAL /
--- REAL PART OF COMPLEX 3

IMAGINARY PART OF COMPLEX

I/Vo
SGAIN

FREQUENCY ( w )

\'i

WP ,.LW+
LOSS

U

Fig. XI-23. Reactive-medium dispersion function for the n = 0 mode.

pi > 0 is an amplifying wave, since for 3. - -oc both roots

half p-plane. The amplification rate .i is given by

Q(L)

i o 1 +Q2 ()

where

2 b 2

F(q) wpbb

Q() = 2v2 Kj(

of p from (1) are in the lower

provided Q is real. The condition of maximum gain is given by Q2 = 1, for which the

maximum gain is

WMAX
iMAX 2v

o
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and the frequency of maximum gain is

2
1 Wp b

WMAX + 1 F(q) b2  (8)
o
0

The "half-power" width of the gain curve is

2
Wpb b

A = T F(q) -- b (9)
v

in the limit -- b << 1. We shall use (7) and (9) below where a nonlinear equation

describing the filamentary beam-plasma waveguide system is formulated.

It can be shown that for the system of Fig. XI-23 the filamentary beam approximation

is valid, provided that bw /2v ,< 0. 1. Furthermore, although this system supports an
p o

absolute instability at beam synchronism with the propagating plasma wave, it can be

shown that the growth rate in time, wi, of this absolute instability is very small com-

pared with the frequency of the oscillations, o . The addition of even a small amount

of collisional damping in the plasma would serve to supress the absolute instability,

since the growth rate, wi, is so very small. Such damping would reduce the large

reactive medium amplification rate (7) but slightly. Accordingly, we assume that the

absolute instability is suppressed, and ignore it in the rest of this report.

3. Quasilinear Theory of the Filamentary Beam Distribution Function

We shall study the distribution function of the electron beam using the methods of

quasi-linear theory. The beam distribution function f(r,V, t) is described by the non-

linear Vlasov equation:

af - af 8f
t + v +- (E + vX Bo) - 0, (10)

ar av

where B = i B is the static magnetic field. The nonlinearity arises because E is
0 ZO

itself a function of f.

E(F, t) = nb f dv + n Sf dV- nb - n. (11)

Usually, (10) is linearized about a known "operating point" or steady-state distri-

bution f (v) by assuming that

f(-,v, t) = fo(-) + f 1(r,v, t). (12)
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In quasi-linear theory, the linearized solutions are used to evaluate the nonlinear
term of (10) and the Vlasov equation is resolved. Provided the linear solution fl is much

smaller than the exact (and unknown) nonlinear solution f, the separation of f into a zero
and first-order distribution function is still useful. The zero-order distribution func-
tion fo must now be considered to vary with r and t. Thus we write for the system

of Fig. XI-23:

f(F,v, t) = f (-,V,t) + f1 (-r,V,t), (13)

where

2

fl ( ,V, t) = do fnw(V) Jo(Pn(c)r) exp[j(ct-pn(c)z)] (14)
-oo

n= 1

In (14), the summation over n represents a sum over the plus and minus signs of the
reactive medium dispersion equation (1). Both roots must be included in fl. The w
integration extends over negative, as well as positive, frequencies. The quantity fn (V)
represents the "Fourier coefficient" of the linearized solution at the real frequency W.
The wave numbers pn (c) and n( ) are in general complex. It should be apparent that
the significant contribution to the o integral comes from the small w regions where the
reactive medium gain in high.

We also write

E(F, t) = E (  t) , (15)
ar

where

2

dwr, t) = d Jo (Pn (w) r) exp[j(wt-pn((w)) ]. (16)
-oo00

n= 1

Now Dw and fnc(V) are related by the linearized Vlasov equation. In the filamentary beam
limit, we obtain

af

q n(w) av
f (0V) z • (17)nc m () v zc

The nonlinear equation describing the rate of change of the zero-order beam distri-
bution function fo (iV, t) will now be derived. We first insert the linear solutions (14-16)
into the nonlinear Vlasov equation (10). Now in the linear theory, f is independent of
time. Accordingly, in the quasi-linear theory, we assume fo(, v,t) to be a weakly
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varying function of time, and we average Eq. 10 over a time, T, satisfying the fol-

lowing inequality

2w << T 2  
(18)

WMAX Aw

where wMAX and Aw are given by (8) and (9), respectively.

becomes

The time-average equation

af q

m

8f q 2

XB + 2 -A
n= 1

S[- ar) e-jp. (W)z ]S J(pn( O) e

af n,(V) -j n,(-w)z
Jon(P( - ) r) e =0 (19)

Taking the filamentary beam limit, performing the summations and integration, and

using (17), (7), (8), and (9), we find

+v + 2(Aw)z az

2 ---- z
2 2 q+ Vo

(0 2
m v

o

af8 o
av av

z z

v z
2 2

-v - 2v + 2v v
z o oz

This is the equation we sought. It is a real, linear equation describing the change in

the zero-order beam distribution function f (r,v, t).
o

af
state = 0. The equation is then separable. Weat

2 2
q 2 (Aw)

o- 2 4
m v

o

z =-z
vz' + zV

vV
vI= 

z
V

o

Then (20) becomes

af
o -Z'

az' e
1 8

o V' 8v'

We now solve (20) in the steady

normalize (21) by the substitutions

I co2

af
av'

2 2v' - 2
(21)

Assuming a separation f (z', v') = g(z') h(v'), we obtain

g(z') = exp[K(1-ez ) ] (22)
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and

dvdh(v') 2 - Kv'h(v') = 0, (23)
d' d - v' + 2v' - 2

where K is the separation constant. Let v' = u + 1 and assume that h(u) is small unless

u z 0. Since at the beam entrance plane h(u) = 5(u), a delta function in velocity space,

this limit should prove interesting. Letting u - 0 in (23) yields

dh + dh Kd 2 Zhd+ Kh = 0. (24)
du o

Equation 24 has exponential solutions e j yu, where K = Eo( 2-jy). Superposing these

solutions with (22) and matching the boundary condition f (u, z'=0) = 5(u), we find

f o (U, z') = exp -(u+ (25)
oN- VT (z') 2 V (z)

where

vT(2) = 2E (e -1) (26)

vd(z) = E (ez'-1). (27)

The energy density U(z') of the beam is

2 z' 2
U(z') = 1 + 0 (e -1) , (28)

and the beam electron density nb is constant. The solution is plotted in Fig. XI-24a.

Summarizing these results, we have found that

1. The zero-order beam density nb does not vary along the length of the beam.

2. The average velocity of the beam vo(z') = vo - Vd(z') decreases with increasing

z according to (27). At first, vo(z') decreases linearly with z', but after a distance z1,

the decrease is exponential with z'. This decrease represents a loss of DC beam energy.
kTb(z') 2

3. The beam acquires a longitudinal temperature, m = vT, given by Eq. 26.

The thermal velocity vT(z' ) increases initially as the square root of z'.

4. The DC energy density of the beam increases as z' is increased. This surprising

result indicates that the beam extracts energy from the plasma.

5. The solution (25) does not obey the conservation laws. For example, electrons

are not concerned, since

d
d--(noV (z)) * 0.
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These results were obtained by approximating the velocity equation (23) by a second-

order linear equation with constant coefficients (24). We might expect that if (23) were

solved exactly, these results would be modified. In particular, the solution of (20)

should obey the conservation laws, and the DC energy density of the beam should prob-

ably decrease with increasing z'.

Since the analytical solutions (25) do not satisfy the conservation laws and lead to an

increasing DC beam energy density, the exact solution of the diffusion equation (20) is of

some interest. This equation has therefore been numerically integrated for Eo = 0.01

and z' in the range 0.4 < z' < 2. 8. The preliminary results of this numerical integration

are presented in Fig. XI-24b. This figure should be carefully examined.

(b)

Fig. XI-24. Normalized thermal velocity vT, velocity decrease of the beam vd,
beam density nb, and beam energy density u as functions of z' (a) in

the limit f (v ) - 0 unless v z  v and (b) computed exactly by numer-

ical integration of Eq. 21.

First, note that the exact solution of (20) conserves electrons. The product

nb(z') vo(z') is constant within one part in 104 over the range of z'. The beam density

n b is now an increasing function of z'. The velocities vT and vd are roughly similar to

the approximate solutions in Fig. XI-24a; however, the DC energy density of the beam

at first increases as in Fig. XI-24a, but then decreases as z' is increased. For
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z' > 2. 1, the average beam electron has lost energy. This energy must have been

absorbed by the plasma; that is, the plasma has been heated by the beam.

M. A. Lieberman
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D. DISPERSION DIAGRAMS FOR HOT-ELECTRON PLASMAS

Computer solutions have been obtained for several beam-plasma dispersion equa-

tions. The computer program was described in Quarterly Progress Report No. 77

(pages 141-144). This program finds the zeros of a transcendental dispersion function

D(W, k, ... ) in the complex w or k plane.

1. Longitudinal Waves in an Infinite Maxwellian Plasma

Consider an electron beam of density nb and velocity vo immersed in an infinite, hot-

electron plasma. The beam flows in the positive z direction, and all particle motion

is assumed to be along z. The plasma electrons have a Maxwellian velocity distribution

with thermal velocity vT, while the plasma ions are assumed to be infinitely heavy. The

dispersion equation for longitudinal (z-directed) waves in this system is

2
pb 1 1 1 01- 2 +22 1 + Z = 0, (1)

(w-kv) k XD L -kk D  pe kk D  pe

Where Lpb and Ope are the beam and plasma frequencies, XD= vT/wpe is the Debye wave-

length, and Z( ) is the plasma dispersion function tabulated by Fried and Conte.1

Three solutions of this dispersion equation are shown in Fig. XI-25. The dispersion

equation (1) is solved under the assumption that the frequency w is pure real. Complex

values of the wave number k = kr + jk i are thus obtained. The quantity ki is the growth

rate of the convective instability which this beam-plasma system supports. It is plotted

as a dotted line in Fig. XI-25. The real wave number kr is plotted as a solid line.

When the plasma thermal velocity vT is zero, the dispersion equation can be solved

exactly to yield

Wpb

k = (2)- vo 2

-pe
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Fig. XI-25. Beam-plasma dispersion equation for longitudinal waves -
Landau damping.

This well-known solution has an infinite growth rate k. near w = w . It is labeled
1 pe

in Fig. XI-25.

The dotted curves labeled O and 0 in Fig. XI-25 are the corresponding growth

rates when the electron thermal velocity vT is finite. As vT is increased, the gain ki
peaks at a finite value that decreases as vT is increased. The frequency of maximum

gain at first increases as vT is initially increased from zero (curve ®), but then

decreases to fall below wpe for vT > v (curve Q). At the same time, the gain curve

broadens as vT is increased from zero. Physically, this broadening represents a kind

of resistive medium amplification, in which the original "inductive" character of the

plasma is diluted by a resistive component caused by the Landau damping in the plasma.

As the thermal velocity vT is increased above v o , the peak gain k. must decrease,
max

since the Landau damping of those plasma waves whose phase velocities coincide with

v continually decreases.
O
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2. Longitudinal Waves in a Cold-Ion, Hot-Electron Plasma

Consider now the dispersion equation

2 2

2 [1 +z = 0 ( 3)
--- Wpb 2 D j (3)

2 (w- 0 ) k D  kkD  pe -kkID pe

in which the ions are now allowed to participate in the motion of the plasma. In the limit

that the electron thermal velocity vT is zero, this dispersion equation reduces to

2
1 + pb

2 2= 0 (4)

22 2 2
in which + = pe + w , and * is the ion plasma frequency. Equation 4 has as its solu-

+ pe pi pl
2 2

tion (2), in which wpe is everywhere replaced by w . Therefore, in the limit vT - 0, thepe + T
gain is infinite for frequencies w just below w+.

Consider now the limit vT - oo. In this limit the dispersion equation (3) reduces to

2 2
Wpi Wpb

1 2 ( V 2 = 0 (5)

2 2which again has as its solution (2), in which W is everywhere replaced by w .. There-
pe pl

fore in the limit vT - oo, the gain is infinite for frequencies w just below wpi.

It is apparent from these considerations that a transition from a strong electron

interaction to a strong ion interaction must occur as vT is increased from zero. Briggs 2

considers this transition in a hot-electron plasma in which the electrons have a rectan-

gular velocity distribution. He finds that an abrupt transition occurs when the parameter

2
nb v T
np 2 b(6)

p 2v

is unity. For n > 1, a strong ion interaction occurs in which the gain is infinite for fre-

quencies just below wpi. For n < 1, the ion interaction disappears, although the gain

near the ion plasma frequency may still be finite.

In the weak beam limit nb << n, the condition 1 = 1 requires vT >> vo. Landau damping

is small in this limit, so Briggs' results should hold for a Maxwellian hot-electron

plasma. Figure XI-26 shows the exact solution of (3) in the weak beam limit. In

Fig. XI-26a, n = 1/2 and no evidence of a strong ion interaction is apparent.

Figure XI-26a is very similar to curve 0 of Fig. XI-25; that is, the gain mechanism

in both curves is a resistive medium amplification.
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Figure XI-26b shows the case -q = 2, for which Briggs' condition predicts a strong

ion interaction. Such an interaction is indeed observed, although the gain is not infinite

near the ion plasma frequency. The gain mechanism is clearly an interaction of the

beam with the inductive plasma ions, degraded by the slight amount of Landau damping

still present in the plasma. As r is further increased, the maximum gain near the ion

plasma frequency must rapidly increase and tend to infinity as rj - 00.

M. A. Lieberman
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E. NONADIABATIC DIFFUSION IN TOROIDAL GEOMETRY

Construction of the toroidal device discussed in Quarterly Progress Reports No. 77

(pages 164-167) and No. 78 (pages 126-127) is nearly complete and tests are under way

Fig. XI-27. Device for trapping an electron beam.

to determine the performance of one section of the device.

Figure XI-27 shows the device with one U bend removed for performance tests of the

other U bend. These tests are performed by injecting an electron beam parallel to the

field in the first straight section and observing visually the beam location at the entrance

to the U bend by means of a fluorescent coated wire mesh that intercepts approximately

25 per cent of the beam. The beam is detected at the other end of the U bend by a fluo-

rescent coated glass screen.

*This work was supported principally by the U. S. Atomic Energy Commission under

Contract AT(30-1)-3285.
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y cm

ENTRANCE TO U-BEND-

3

THE AVERAGE ROTATION
OF THE BEAM IS:
600 FOR 78 amps
1200 FOR 100 amps

ELECTRON ENERGY = 2kv

B = 95 gauss

B = 5 gauss

S , , x cm

\THESE NUMBERS ARE LABELS
FOR PARTICULAR ENTRANCE
COORDINATES.

EXIT FROM U-BEND WITH THE
ROTATIONAL FIELD CURRENT
OF:

( a ) 0 amps
( b ) 78 amps
( c ) 100 amps

Fig. XI-28. Measured location of the input and output of the beam.

Figure XI-28 shows the location of the input and exit beams for various values of the

rotational field. A vertical field, B 1 , was produced on the U bend to just cancel the

centripetal drift.

R. W. Moir, L. M. Lidsky
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F. MEASUREMENT OF OPTICAL GAIN OF THE HOLLOW-CATHODE DISCHARGE

Attempts by Edmonds, Gerry, and Lidskyl to observe laser action in a suitably con-

figured argon hollow-cathode discharge (HCD) met with no success.

An experiment is in progress to measure directly the optical gain of the argon HCD

at various wavelengths, including 4880A and 5150A. Our method is to direct a modu-

lated light beam of the wavelength to be measured so that it passes axially through the

HCD. The HCD is also modulated, but at a different frequency. Optical gain or absorp-

tion is manifested by an alternating component in the emergent light beam at frequencies

equal to the sum and difference of the modulation frequencies of the HCD and incident

light.

Preliminary results at 4880A and 5150A, obtained with the HCD of Edmonds, Gerry,

and Lidsky, show no gain in excess of 0.1 per cent. The method indicates absorptions

of 7 per cent 4804A and 3 per cent at 4734A.

M. D. Lubin
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G. INTERACTION OF PARTICLES WITH CIRCULARLY POLARIZED

WAVES IN PLASMAS*

The waves under discussion in this report are the right- and left-hand polarized

waves moving with phase velocities very much less than that of light that appear in

regions 8, 10, and 12 of the Allis diagram.1 These are the regions in which one would

expect the maximum wave activity in galactic plasmas on the basis of present density

and magnetic field data. For such waves the ordinary linear dispersion relation can be

written 2

2

2 2 2 p oO
LR = c -n--

s -00

2
dvl vi dv

8F 11 8 F vi 8 F
Sa v av i

(W-Wo-kv 1l)

where v is the wave phase velocity, and wo is the gyro frequency.po

I.,

VI I k

E =0

-W o

VII k'

Bi= BL /Yp

Fig. XI-29. Phase frame transform.

It is apparent that the growth or damping of such a wave depends on a group of reso-

nant particles whose velocity parallel to the main magnetic field is

This work was supported principally by the U. S. Atomic Energy Commission under
Contract AT(30-1)-3285.
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0 - (2)
VII k

This is usually explained by observing that these particles see a Doppler-shifted local

cyclotron resonance frequency and experience a cyclotron acceleration or deceleration.

This is intuitively satisfying, since it presents an image of an efficient energy-transfer

mechanism between the waves and the resonant particles. As a matter of fact, this pic-

ture is misleading because in the actual

case the energy transfer is small,

R WAVE INTERACTION bounded, and periodic. This is easily
VP seen by noting that for these waves prop-

S /, agating principally along the main mag-

v------- + netic field a velocity transformation

n P. -/ o exists which eliminates the wave elec-

v+ v_- 0  tric field and reduces the wave to a
VP periodic spatial magnetic field pertur-

ALL ELECTRONS AND FAST IONS MAY SCATTER 3
RESONANTLY FROM RIGHT HAND WAVES bation. This transformation to the frame

moving with the phase velocity of the wave
Fig. XI-30. Right-hand wave interaction.

is shown in Fig. XI-29, along with the

resonant velocities in the two frames.

It is seen that the resonance condition in the laboratory frame reduces to the condition

for nonadiabatic motion in the phase frame.

Figure XI-30 represents two oppositely propagating right-hand polarized waves in

the phase frame. The spiral line represents the locus of the end of the wave's magnetic

field vector. It is also the orbit of a resonant particle. The only possible interaction

in this frame is a rotation of the particle's total velocity vector. Consequently, we can

represent the laboratory energy transfer in terms of the angular scattering in the vari-

able 6' (defined in Fig. XI-29).

The laboratory energy change is

AW
S= pp A(cos 6'), (3)

where p = v/c, and p = w/kc. That the energy transfer is small is seen from the fact

that p << 1. That the energy transfer is periodic is seen from the equations of motion.
p 4

Roberts and Buchsbaum have shown that

W(t) = W(0) + my p(v(t)-v(0)), (4)

where m is the relativistic mass, and the equation is relativistically correct. Physi-

cally, the wave magnetic field accelerates the resonant particles along the main field

direction. Thus the resonant particles gain energy only while they are approaching the

wave phase velocity. Resonant particles at the phase velocity interact only by virtue of
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their perpendicular velocities and are decelerated in the direction of the main field,
thereby reversing the energy transfer.

Another way of looking at the interaction is to notice that the ratio of wave magnetic
force to wave electric force for the resonant particles is

(FB/FE) = - -o >> 1. (5)

The wave magnetic field destroys the particle's phase correlation with the wave electric
field.

Let us now consider the change in the particle's distribution function because of the
passage of one wave. To do so, we first calculate the average change in the perpendic-
ular velocity of a particle interacting with the wave in the phase frame. We can write
Newton's equation in the form

dv' W
dz j v' = jW+(z), (6)

q
where v+ = vx + jv, and =- (Bx+jB y). The prime refers to the moving framey mc x y
(Fig. XI-29).

If we assume that for the great majority of particles the change in z velocity is
small, we find the immediate solution

Av = j W+(z') exp ( _ dz', (7)

where Av' is the wave induced change in the perpendicular velocity of the particle
between L and -L. Since all initial phases are assumed to be present, the average

change in this quantity is

Av = d (Av') = 0. (8)

The mean-square change

<Av) 2>= YL w +(z') exp j dz' (9)

is finite, however, and constitutes a diffusion coefficient for the particle's perpendicular

velocity. Since the total velocity is constant in the phase frame, this can easily be
related to the diffusion coefficient in 8'.

Equation 9 can be written in terms of the wave spectra by Fourier-transforming
+ (z). We find
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(Avj) Z> Z)'dk wF(k) 'z/ (10)

vz

If L is large, the second factor in the integral oscillates rapidly, and we may replace

it by a delta function in k . Thus we arrive at the final result for the diffusion

coefficient as a function of the wave spectra

2Av> 2 .Vz (11)

This coefficient has broad application. The change in the particle's distribution function

resulting from the passage of a wave is given by

Af v fV. ( Z)
V L Tva1 vL V2  (LZ)

This shows the relaxation effect that the waves produce in the particle distribution. It

is interesting to note that Eq. 12 is identical with the result of a quasi-linear calculation

by Engel.

We have already shown how the energy transferred in a wave-particle collision can

be expressed in terms of the angular scattering in the phase frame. The mean-square

energy transfer is

z v

Employing Eq. 13, one can obtain a statistical acceleration mechanism for cosmic

rays. One can also obtain a diffusion coefficient for the guiding centers of cosmic ray

particles. Assuming that the wave size is small compared with the Larmor radius of

the cosmic ray, one can write this coefficient

Arg)2 = rL&2E)>

or

Such guiding-center diffusion has been invoked by Davis 5 to explain the isotropy of cos-

mic rays.
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Finally, a number of authors have suggested wave-particle scattering to explain the
6-9form of the radiation belts. The diffusion coefficients obtained here should also apply

to the description of the dynamics of this region.

Report XI-H summarizes an application of the diffusion coefficient to the confinement

of particles in static nonadiabatic magnetic fields. By bearing in mind the analogy estab-

lished above between motion in a static nonadiabatic field and wave-particle interaction,

the results given in Sec. XI-H have relevance to the subject of the present report.

J. F. Clarke
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H. NONADIABATIC MAGNETIC TRAPS*

The diffusion coefficient developed in Sec. XI-G can be applied to a study of the rela-

tive efficiency of the nonadiabatic traps that are proposed for accumulating a thermonu-
1-3

clear plasma. Three basic types of nonadiabatic fields have been proposed. In the

complex notation A+ = Ax + jA , these fields can be represented by

o+(z) = W, cos k z -L < z < +L (la)

ew jkoz
o+(z) = e -L < z < +L (lb)

W (z) = _6(koz), (1 c)

0 0
where k satisfies the resonance condition k = W /v for some resonant velocity v .

o o 0z z
Perturbation (la) constitutes an axially symmetric field, (Ib) a helically symmetric

field, and (ic) an impulsive change in the field equivalent to a standing shock wave. This

group can be extended by requiring that the resonance condition be satisfied at every

point on the particle's orbit. That is, the trap is designed to have a variable wavelength.

Each of these variations can be compared in terms of the mean-square step in magnetic

moment, which a trapped particle makes on traversing the perturbation. This mean-

square step is simply related to the diffusion coefficient given in Sec. XI-G.

Consider the Fourier transforms of the perturbations

F w sin (kok) L sin (ko+k) L
w (k) - + ( (2 a)

+ , (k -k) (ko +k)

F () io sin (k o-k) L
w (k) = (2b)

(ko-k)

F 1 (c
w, (k) = (2c)

From the diffusion coefficient

200 sin( k L- I° L

( ) = 0 dk wF(k) (k - ) (3)

This work was supported principally by the U.S. Atomic Energy Commission under
Contract AT(30-1)-3285.
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we see that the magnetic moments of the particles will have large changes only
when the two factors in the integral overlap appreciably.

Figure XI-31 shows graphically the

situation for the three perturbations.
k i The initial trapping occurs when v =w wcos koz 0 z

(a) v z , and the functions on the positive

Fig. XI-31. k axis merge. For trapped particles,
k Diffusion there can never be a complete super-

ko coefficient
factors in position, since some of their initial axial

(b) .0
k space. velocity, vz, has been transformed to

perpendicular velocity. The net scattering
-' ~-~' k comes from the overlapping of the wings

8(k ) of the peaks. It becomes immediately
(c)

clear that on the reverse transit through
the perturbation, when the o/V z peak lies on the negative k axis, the rotating
perturbation is far superior to the axial symmetric one. Furthermore, the res-
onant nonadiabatic systems are superior to the nonresonant because in the latter
case all velocities interact by the same amount and independently of their direc-
tion of motion.

It is also interesting to note the height and breadth of the k0 resonance peaks in
Fig. XI-31. The peak height is w L/27r and its width is 2n/L. Now, considering the fact
that for an untuned system k = 2rrN/L, we see that as the system becomes longer and the
particle interacts with more periods of the perturbation, the peaks grow in height and
become narrower. All of this is in agreement with the physical argument presented
by Wingerson, Dupree, and Rose 4 and the numerical calculations of Laing and

5
Robson.

We turn now to a final example of the use of the'diffusion coefficient. Wingerson,
Dupree, and Rose conclude that a long highly tuned system, in which the perturbation
field goes gradually to zero at both ends, would constitute the optimum trap. We can
examine such a trap analytically.

Let us consider a trap in which the perturbation wavelength lengthens as z
decreases. For simplicity, choose a wave number

2keff = k + k z (4)

and a Gaussian envelope to damp the perturbations away from the origin

S- z exp 2 
(5)+ (z) =- -e exp o+k Iz) z (5)
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In the light of Sec. XI-G, this is the phase-frame form of a wave packet. The Fourier

transform of this function is

(k -k) k1 (k -k)
exp -y2 o j o

e 4 (Y4 +k 1/4 (y4+k4)
F -(k) - (6)

82 . /4
(y2 -jk2)

Since our Gaussian envelope damps the wave, we can take L - oo in the integration

of the diffusion coefficient. This is equivalent to replacing the sine factor by a delta func-

tion. Then the diffusion coefficient reduces to a term proportional to the square of

Eq. 6 with k replaced by o/Vz . Note that the damping coefficient and the increasing

wavelength coefficient appear in "parallel" in this expression. This illustrates the phys-

ical point that both damping and tuning decrease the scatter of nonresonant particles.

These particles rotate faster or slower than the perturbation field, and the scattering

from each field peak tends to be cancelled by the next peak. Only the last peak scatter

has full effect, and the damping reduces this to a low level. Tuning reduces the reso-

nance volume in phase space which is available to particles. In terms of Fig. XI-31,

the central peak is narrowed.

To simplify the expression, let us assume that the damping length is large compared

as with a wavelength, and that the change in wavelength is small compared with a wave-

length. Choosing N wavelengths in our perturbation, we can set

k
o

y = (7a)

and

k
k =0. (7b)1 N

The diffusion coefficient simplifies to

0 2

2 2 + exp - 1 -#]. (8)

This expression illustrates the sharpness of the resonance peak.

In conclusion, we find that the physical arguments presented by Wingerson, Dupree,

and Rose are in full agreement with calculations performed with the simplified diffusion

coefficient derived in Sec. XI-G. An experimental study of this nonadiabatic scattering

phenomenon is underway.

J. F. Clarke
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I. STUDY OF LASER RADIATION THOMSON-SCATTERED BY AN

ELECTRON BEAM

The present experiment is concerned with the dependence on angle of the frequency

of laser light that is Thomson-scattered by a relativistic electron beam. Preliminary

calculations had led us to believe that if the laser beam intersects the electron beam at

900 and the angle of observation from the electron beam is 900, then the relativistic

transformations from the laboratory frame of the laser beam to the moving frame of the

electron beam and back to the laboratory frame of the observation system would result

in a factor of y2  = 1- in the frequency relation. Thus even when the Doppler

shift that is associated with advancing sources (the "normal" shift) is absent, there will

be a shift from the laser wavelength of 2 per cent if the beam voltage is 5 kilovolts. An

exact examination of the relativistic and normal Doppler transformations shows that,

instead of y2, the correct factor is unity when the normal shift is zero. Furthermore, the

total relativistic transformation from the laboratory frame of the laser to the beam

frame and then into the laboratory frame of the observation system is identical to the

normal Doppler transformation.

Straightforward calculations of the number of photons scattered by the electron beam,

with the Thomson scattering cross section used and the radiation treated as if it were

in the form of particles colliding with the electrons and then scattered in all directions,

show that in order to have reasonably good statistics the electron beam must have a den-

sity greater than 5 X 1010 electrons/cm 3 . This value is true for the 50-joule ruby laser

used in the experiment when it has been focussed to make a beam of 1 mm diameter. A

density such as this corresponds to a beam current of 200 ma at 3 kv if the beam diam-
20

eter is 1 mm. The number of photons in the incident laser beam is = 10 , and the num-

ber scattered is only 10 5 , while the number collected by the observation system is = 500.

These 500 photons pass through an interference filter that will pass only radiation whose

wavelength lies in a 5A interval. From there they hit the cathode of a very sensitive

photomultiplier and produce photoelectrons with an efficiency of only 2 per cent. With

only 10 photoelectrons in each laser shot it is plain that several shots are necessary at

each angle and frequency to get good results.

Thus far, an electron gun of the Pierce type has been constructed and after experi-

encing difficulties in design it eventually evolved to the point where it produces a well-

defined beam of about 1 mm in diameter at 200 ma and 3 kv. The gun has a microper-

veance of 3, and can be operated so that there is no power dissipated in the anode. The

*This work was supported principally by the U. S. Atomic Energy Commission under

Contract AT(30-1)-3285.
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Fig. XI-32. Illustrating the experimental arrangement.
-6

operating pressure is 1 X 10 torr, and beam operation is very stable. Also, an obser-

vation system was designed and built to cover as large a solid angle as was compatible
with frequency spread and vacuum can space requirements. The system can be scanned
from an angle of 900 to 700 from the electron beam direction of motion. The arrange-
ment of the various parts of the experiment is shown in Fig. XI-32.

The problem of the reflection of laser light into the observation system has been
overcome by the use of special light dumps and aperture stops. The experiment is now

under way and it is anticipated that it will be almost completed by December 31, 1965.
The electron beam, laser beam, and viewing system have all been operated separately,
and trial results are now being obtained and the signal-to-noise in the experiment (the
crucial problem here) appears to be satisfactorily low.

M. A. Samis
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J. INCOHERENT SCATTERING OF LIGHT FROM A PLASMA. II.

In Quarterly Progress Report No. 78 (pages 131-135) we reported signal-to-noise

calculations for the cooperative scattering effects at small scattering angles of visible

laser light from a plasma discharge.1 Noise measurements of the light emission from

the plasma indicated that by using an Argon ion laser of sufficient optical power (tens of

watts) one could experimentally undertake the measurement of the weak scattered-light

spectrum. Nominal integration times would suffice for signal-to-noise, but the expected

spectral width would be small, thereby limiting the attainable resolution. Also, the ques-

tion of diffracted or otherwise stray laser light at small angles interfering with the scat-

tered, Doppler-shifted wavelength was posed but not answered. Fortunately, this

question will no longer arise with the new technique presented in this report.

We wish to report the adoption of a new laser, which was unknown at the time of sub-

mitting the last report. The modified experiment will now use an infrared laser developed

by Patel of Bell Telephone Laboratories, Inc. It is a nitrogen, carbon-dioxide laser

yielding very high power output at 10. 6 microns, utilizing closely coupled vibrational

levels in N 2 and CO 2 . A discharge of 4 kv/m and 50 ma DC, in a tube, ~8 ft long and

1 inch in diameter, with continuous gas flow (CO 2 pressure 0.4 torr, N 2 pressure

2 torr), reported by Patel has yielded up to 16 watts cw of 10. 6-micron radiation,

coupled out through a hole in one of the end mirrors. The intracavity power was several

hundred watts.

An indication of benefits from adopting this laser can be seen from the following

discussion. Analogous to the noise calculations of our previous report, we may calculate

the equivalent noise powers for an experiment, using 10. 6-micron radiation. Note that
6

since the spectral width varies as X sin 2 , and that for observation of coherent effects

S ~ 1i, an increased wavelength (10. 6 p versus 0. 5 ) allows observation at very
4rXk sin9D 2
much larger angles, where X is the incident wavelength, XD is the plasma Debye length,

and 0 is the scattering angle with respect to incident direction. At 0. 5 p. one need work

at 0 = 2*, leaving no latitude for angular scan, whereas at 10. 6 [ one can scan to 6= 900.

Two important features result: (i) a larger solid angle in the detector optics can be used,

and (ii) a larger optical bandpass filter can be employed. Note also that detector efficien-

cies at 10.6 p versus 0.5 p (mercury doped germanium and photomultiplier, respectively)

are ~100 per cent and ~10 per cent. Since signal-to-noise varies as qI/ 2AXE , where A2

is the solid angle, AX is the bandpass, E is the quantum efficiency of the detector, a large

increase is to be gained. In fact, the use of 10. 6-p radiation will yield a factor of

*This work was supported principally by the U. S. Atomic Energy Commission under
Contract AT(30-1)-3285.
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100 increase in signal-to-noise for scattered light versus plasma emission; con-
sequently, the plasma itself will be essentially noise-free for an optical power input of

-
VACUUM CAN 0, gOrOVIEWING Ge

LASER BEAM

BAFFLES

Fig. XI-33. Detection optics.

several watts. With reference to Fig. XI-33, the observational result of scattered
radiation at 22. 5' (with solid angle Af2 = Tr X 10- and bandpass Ak = 10 A) for the hollow-
cathode arc plasma (ne~1014/cm3 , Te-4 ev) in the worst case, is expected to be 4 X-16'
10 Po watts, where Po is incident power. The calculated noise power from the arc,
resulting chiefly from Bremsstrahlung is 10- 15 (Af)1/ watts, where Af is the bandwidth
of receiver. Evidently, with several hundred watts incident power the plasma noise can
be neglected.

In fact, the experimental noise to be contended with results from fluctuations in ther-
mal black-body radiation at 300'K, the corresponding wavelength maximum occurring at
9. 6 p. Once again, referring to the geometry of the detection optics, we can calculate
the noise power at 10. 6 p for the plasma vacuum wall and collection lenses at room tem-
perature, and the remaining optics at dry-ice temperature (cooling results in a signif-
icant reduction of noise). The detector (an Hg doped Ge solid-state device) =10 - 3 cm2

in area, subtending a field of view of 60, as a result, sees an equivalent noise power
from all surfaces of ~10-13(Af) watts. Only noise in a 10 A bandpass from the vacuum
wall and collector lenses emerges to the detector, and noise from emission by sur-
faces following the interfeferometer is nominally integrated over 10 . As a consequence,
Po = 250 watts would yield signal-to-noise of unity for a 1-cps receiver bandwidth.
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The laser arrangement is shown in Fig. XI-34. A hemispherical mirror mode will

be employed with two 10 ft, 1-inch diameter, tubes of optically active media. The plasma

PRISM 10-FOOT LASER TUBE CONCAVE
MIRROR

10 FOOT LASER TUBE PLANE
PLANE MIRROR

PLNE
MIRROR PLASMA ARC

Fig. XI-34. Laser cavity arrangement.

will be placed inside the optical cavity and, with 20 ft of optical gain, the laser power

available for scattering should be substantial. A prism is to be used for wavelength iso-

lation; a half-dozen modes separated by 200 A at 10. 6 i are normally present and are of

no consequence to this experiment. The hemispherical mode not only provides efficient

use of the laser volume for power generation but also, since the light focuses to a dif-

fraction limited spot on the plane mirror, makes it possible to determine the desired

beamwidth at the scattering point merely by positioning the plasma arc back from the

plane mirror.

The laser beam will be chopped, and the scattered signal plus noise synchronously

detected by using a PARL lock-in amplifier with low-noise preamplifiers. The output

will be plotted on an X-Y recorder, with spectral scan achieved by varying the optical

path in the Fabry-Perot interferometer (pressurizing with nitrogen). The spectral scan

is to be 300 A in 10 A steps, to yield good resolution of the enhanced scattering effect

that is sought.

A. A. Offenberger
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