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A. WORK COMPLETED

[Titles followed by a dagger (') are theses that were supervised by members of this

group, although the work was not sponsored by the Research Laboratory of Electronics.

Summaries are included because they might be of interest to workers in this field.]

1. BIOELECTRIC CONTROL OF PROSTHESES

This study has been completed by R. Alter. In August 1965, he submitted the results

to the Department of Electrical Engineering, M. I. T., as a thesis in partial fulfillment

of the requirements for the degree of Doctor of Science. This study will appear as

Technical Report 446 of the Research Laboratory of Electronics.

A. G. Bose

2. FUNCTIONAL ANALYSIS OF SYSTEMS CHARACTERIZED BY NONLINEAR

DIFFERENTIAL EQUATIONS

This study has been completed by R. B. Parente. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Doctor of Philosophy. This study will

appear as Technical Report 444 of the Research Laboratory of Electronics.

Y. W. Lee

3. OPTIMUM LAGUERRE EXPANSION OF SYMMETRIC Nth-ORDER FUNCTIONS

This study has been completed by J. W. Giffin. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

M. Schetzen

.This work was supported in part by the Joint Services Electronics Program (Con-

tract DA36-039-AMC-03200(E)) ,the National Science Foundation (Grant GP-2495), and

the National Aeronautics and Space Administration (Grants NsG-334 and NsG-496).
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4. SOME PROBLEMS IN THE STUDY OF NONLINEAR SYSTEMS WITH

FEEDBACK LOOPSt

This study has been completed by Cynthia L. K. Whitney. In August 1965, she sub-

mitted the results to the Department of Electrical Engineering, M. I. T., as a thesis in

partial fulfillment of the requirements for the degree of Master of Science.

M. Schetzen

5. MEASUREMENT OF VOLTERRA KERNELS OF A NONLINEAR SYSTEM

OF FINITE ORDER

This study has been completed by T. Huang. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

M. Schetzen

6. SEVERAL ADAPTIVE BINARY DETECTION PROBLEMSt

This study has been completed by D. W. Boyd. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

H. L. Van Trees

7. DIGITAL SIMULATION OF ANALOG MODULATION TECHNIQUES OVER THE

RAYLEIGH CHANNELt

This study has been completed by T. J. Cruise. In June 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

H. L. Van Trees

8. SPACE-TIME SIGNAL PROCESSING

This study has been completed by K. Grace, Jr. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

H. L. Van Trees

9. ANALOG COMMUNICATION THROUGH SEPARABLE MULTIPATH CHANNELS

CHARACTERIZED BY TIME-VARYING PATH DELAYSt

This study has been completed by R. R. Kurth. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

H. L. Van Trees
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10. PREDISTORTION IN NO-MEMORY FILTERING AND IN QUANTIZATION

This study has been completed by M. O. Pace. In June 1965, he submitted the results

to the Department of Electrical Engineering, M. I. T., as a thesis in partial fulfillment

of the requirements for the degree of Master of Science and the degree of Electrical

Engineer.

V. R. Algazi

11. A STATISTICAL STUDY OF VLF ATMOSPHERIC NOISEt

This study has been completed by R. A. Grant, Jr. In August 1965, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

V. R. Algazi

B. DETERMINATION OF OPTIMUM NONLINEAR SYSTEMS FOR GAUSSIAN

INPUTS BY CROSSCORRELATION

1. Optimum Systems with White Gaussian Inputs

In the Wiener theory of nonlinear systems, the input, x(t), of a system A, as shown

in Fig. XIII-1, is a white Gaussian process. The output, Ya(t), of the system is repre-

sented by the orthogonal expansion

Ya (t) = I Gn[hn, x(t)] (1)

n=O

in which (h n ) is the set of Wiener kernels of the nonlinear system A, and {Gn) is

x(t) A ya(t)

Fig. XIII-1. Nonlinear system with
white Gaussian input.

If the desired output of the nonlinear

E a (t) = z(t) - Ya(t)

a complete set of orthogonal functionals. The

orthogonal property of the functionals is

expressed by the fact that the time average

Gm[hn , x(t)] Gn[h n , x(t)] = 0 for m n. The

power density spectrum of the Gaussian

input, x(t), is I x(w) = K watts per radian
xx 2 Tr

per second so that the autocorrelator function

of the input is <xx(T) = Kp.(T) where (T) is

the unit impulse function.

system A is z(t), the error, E a(t), is

(2)

We shall show in this report that the Wiener kernels of the optimum nonlinear system A

for which the mean-square error, E (t), is a minimum are given by
a
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z(t) x(t- I) ... x(t-r n ) 1 i= 1,2.... n

n = 0,1,2,...

otherwise

except when two or more a-'s are equal.

To show this result, let us write the nth-degree functional with x(t- 1) ..
the leading term in an orthogonal set {Hn[k n , x(t) ]} as

. x(t-- n) as

H [k , x(t)] = 1S00

Hn[k n , x(t)] = ... k (T ... , Tn ) x(t-T 1 ) ... (t-Tn) dT 1 ... dTn + F

n = 1,2,3,...

in which F is a sum of homogeneous functionals of degrees lower than n and

k (T ... Tn) = u(T 1 -- 1 ) ... u(T -Cn);

in which u(t) is the unit impulse function. It has been shown I that

Ya(t) Hn[kn, x(t) ] = n!Knhn ( 1 ,.... n) n = 0, 1,2, ....

in which there are no restrictions on the a's.

Now construct the system A with the Wiener kernels given by

1 z(t) H [k ,x(t)];
! Kn  n n

h (a- .. .,a ) =

0 any ai < 0

This system is the optimum nonlinear system.

and (7) that by our construction A,

Ya(t) Hn[kn , x(t)] = z(t) H [k , x(t)]

a. >0
1

n= 0,1,2,...

(7)

To show this, we first observe from (6)

0. 0
1

n= 0,1,2,...

so that from (2)

E (t) Hn[kn , x(t)] = 0

Equation 9 implies that

for a-. > 0
1

n = 0, 1, 2 ... .

E a(t) x(t-(l) ... x(t-an) = 0 for a-. > 0
1

n = 0, 1,2,....

This is easily seen by induction from Eqs. 4 and 9, since

QPR No. 79
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Ea (t) Ho[ko, x(t)] = Ea(t) = 0 (11)

Ea(t) H1[kl,X(t)] = Ea(t) x(t-l) = 0; a >10 (12)

For n = 2 in Eq. 9

Ea(t) H 2 [k 2 , x(t)] = Ea(t) x(t-o) x(t-o 2) + Ea(t)F

= 0 for a , 2' > 0 (13)

Since F in Eq. 13 is the sum of homogeneous functionals of degrees less than 2, we have

from (11) and (12) that in Eq. 13, E a(t) F = 0 and thus

Ea (t) x(t-l) x(t-cr 2 ) = 0 for 0 1, 2 > 0. (14)

By continuing in this manner, the validity of Eq. 10 for any value of n can be estab-

lished. We note that Eq. 10 implies that the average of the product of E a(t) with any

realizable functional of x(t) is zero, since

Ea(t) g(T 1.. g ( T n) x(t-T 1 ) ... x(t-Tn) dTrl... dTn

= . . g (a(t) x(t- 1)... T Ea(t) t-Tn) dT 1 .. dT = 0. (15)

By use of this result, we can now show that no other nonlinear system of the Wiener

class can have a mean-square error smaller than E (t) so that the System A is the opti-

mum system. To show this, we consider another system B with the output Yb(t) for the

input x(t). Let {gn ) be the set of Wiener kernels of System B so that

00

yb(t) = Gn[gn, x(t) ]. 
(16)

n=0

The error, Eb(t), obtained when using System B is

Eb(t) = z(t) - Yb(t)

= z(t) - Ya(t) + Ya(t) - Yb(t)

= Ea (t) + y (t) -Yb(t) (17)

The mean-square error thus can be written
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Eb2(t = 2(t) + [y(t)-Y(t)] + 2 ( [y(t)-y(t). (18)
Eb a b a a (t) . 8

Now

00

ya(t) Yb(t) = G [hn-g n , x(t)]. (19)
n= 0

Thus by use of Eq. 15, the last term of Eq. 18 is zero and

2 2 2
Eb(t) = Ea(t) + [Ya(t)-Yb(t)] . (20)

From Eq. 20, E (t) is a minimum if b(t) = Ya(t) which implies that System B is identical
with System A. Thus no other system can have a mean-square error smaller than E (t)a
and System A with the Wiener kernels given by Eq. 7 is the optimum system. If no two

a's are equal, it can be shown that F in Eq. 4 is zero so that Eq. 3 follows from Eq. 7

and our result is proved.

To develop a procedure of measurement that is valid for all values of the o's,
we need not construct the functional F in Eq. 4. The restriction in (3) on the equal-

ity of the a-'s arises from the presence of G-functionals of order lower than n which
produce an impulse when two or more o's are equal. 1 For example, the restriction
in the determination of h2 is due to Go which produces an impulse when a1 = a2
From (3), G [ho, x(t)] = z(t). Hence if we subtract Go from the desired output, we
have

h2 (- 1 a' 2) 2 {z(t)-G o [ko, x(t) ]} x(t-a-1 ) x(t-0-2 )
2!K

S1' " 2 > 0 including al = a (21)

In general, when we determine the n th-order kernel, all of the lower order kernels
have been determined so that all of the G-functionals of order less than n could be
formed. For the determination of hn, instead of (3) we would have the unrestricted
expression

m=0

a-. > 0 i= 1,2 .... , n (22)1

in which there is no restriction on the equality of the a's

QPR No. 79 182



(XIII. STATISTICAL COMMUNICATION THEORY)

2. Optimum Systems with Non-White Gaussian Inputs

The theory that has been presented can be generalized to the case for a non-white

Gaussian process. Consider that the optimum nonlinear system N shown in Fig. XIII-2

is to be determined for a desired output z(t) and an input, v(t), which is a non-white

Gaussian process for which the power density spectrum is factorable. 2 It can be written

(23)
vv vv vv

in which + (w) is the complex conjugate of 1 (w); also all of the poles and zeros of
VV VV

+ (w) are in the left-half of the complex s-plane in which s = a- + jw. Thus 4+ (w) and
vv Wv

1
+ are each realizable as the transfer function of a linear system. We then can

VV

v(t) N Ya (t) Fig. XIII-2. Nonlinear system with non-
white Gaussian input.

Fig. XIII-3. Equivalent form of the nonlinear system N.

consider the system of Fig.

the transfer functions of the

1
K 1 () (W)

and

K 2 ( ) = + (c)
2vv

XIII-2 in the equivalent form shown in Fig. XIII-3 in which

two linear systems k l (t) and k 2 (t) are

(24)

(25)

Also as shown, the system A is the system formed by the tandem connection of the linear

system k 2 (t) and the system N. We observe that x(t), the input to the system A, is a

white Gaussian process whose power density spectrum is 1 watt per radian per second;
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the output of the system A is a (t). The Wiener kernels of the optimum nonlinear sys-

2 2is a minimum according
tem A for which the mean-square error, Ea(t) = [z(t)-y(t)] is a minimum, according

to Eq. 3, are

(27r )n
h 1'(a a'., n n z(t) x(t-a-)... x(t-a ) for a. > 0 i= 1,2,...,n

n = 0, 1, 2,...

(26)

except when two or more o-'s are equal. The resulting system N is the optimum non-

linear system. To show this, we first observe that

E (t) ) . . .v(t--) ... v(t-) = 0 for o- > 0 i= , 2,..., n

n = 0, 1, 2, ... (27)

This result is obtained by substituting the relation

00
v(t) = 0 k2(0) x(t-ca) do (28)

in Eq. 27 and making use of Eq. 10. By the use of Eq. 27 and an argument identical with

that given for a white Gaussian process, it is easy to show that no other system can have
2

a mean-square error smaller than E (t) so that the system N is the optimum system.
a

The desired crosscorrelation function of Eq. 26 can be expressed in terms of only

v(t) by substituting the relation

x(t) = 0 kl(O) v(t-a-) do- (29)

in Eq. 26. The result is

z(t) x(t-o-) ... x(t-an) = k 1(T 1 ) dT 1 ... k 1 (Tn) dTn z(t) v(t- 1 -T 1 )... v(t-o.-Tn).

(30)

other forms and interpretations for this crosscorrelation function have been given else-

where.3
M. Schetzen
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C. USEFUL APPROXIMATIONS TO OPTIMUM QUANTIZATION

The quantization of random signals has been considered by Max i and, more recently,

by Bruce.2 Max considers the selection of an optimum step size in a uniform quantizer

and also the determination of the optimum nonuniform quantizer and carries out compu-

tations for a Gaussian input and a mean-square distortion measure. Bruce gives a com-

puter algorithm for the determination of the optimum nonuniform quantizer for an

arbitrary distortion measure. These exact approaches to quantization give little insight

and confront someone who has a new quantization problem with a considerable amount of

digital computation. Schteyn3 and Roe 4 have proposed approximations to the optimum

nonuniform quantizer which are of practical interest. In this report we present useful

approximations to the optimum quantizer and to the resulting distortion in uniform and

nonuniform quantization for arbitrary distortion measures.

1. Uniform Quantization

The equation for the quantization step that minimizes the distortion has been given by

Max I and can be solved on a computer by an iterative procedure. Here we obtain a

simple solution by using the following facts.

1. The first-order effect will be due to the truncation of the tail of the distribution.

2. Except for the tails, the probability density of the signal can be simply approxi-

mated between successive quantization steps.

Ps 
( X)

QUANTIZER INPUT LEVELS

N L Fig. XIII-4. Uniform quantizer.
Xk k

N-1
X=q

QUANTIZER OUTPUT LEVELS

Consider Fig. XIII-4 which illustrates the problem. It is clear that a difficulty in

selecting the step size will occur whenever the signal probability density has a long tail.

Let D k be the conditional distortion whenever the input signal, x, is between the input
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quantizer levels of x k and xk+l, and let the probability of this event be pk. Let W(e) be

an even error-weighting function and W 1 (e), its antiderivative. Then Dk is given approx-

imately by

2W1 [I
D k  (1)q

in which q is the size of the uniform step. This result is easily obtained by assuming

that the Ps(x) is well approximated by a straight line between x k and xk+1 . Since Dk is

independent of k, we have

D = PkDk + PTDT (2)

k

in which D T is the distortion in the tails. Let pT be the probability of the tails. We

have then

pk= 1 -PT
k

from which we obtain

2WD 1J
D - ps(x) dx - N-1 Ps(x) dx

-oo 2 q

N-1

+ W x + q ps(x) dx + -1 W x 2 q Ps(X) dx (3)

-- 2 "q

when Ps(x) is even we have the simpler expression

D = 2W 1 - - 2 -1 Ps(x) dx + 2 SN-1 W x q ps(x) dx. (4)

2 q 2 q

Equation 4 is an approximate expression for the distortion as a function of the

step size and has to be minimized by proper choice of q. We could formally set

the derivative equal to zero, but it is generally quite simple to obtain D as a func-

tion q and get an idea of the sensitivity of the distortion to the step size. In

Fig. XIII-5 we give as an illustration the distortion versus the quantization range
N-1

x 2= q for a Gaussian probability density, a mean-square distortion measure,

and 8 quantization steps. We observe that the curve has a well-marked minimum

and that the proper choice of step size is definitely worthwhile. Equation 4 gives
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1.0 2.0 3.0

X

Fig. XIII-5. Distortion vs quantization range.

minimum distortions in good agreement (within 0. 2 db) with the exact values given

by Max for a Gaussian probability density.

2. Nonuniform Quantization

We consider the nonuniform quantizer to be the cascade of two nonlinear devices and

of a uniform quantizer as shown in Fig. XIII-6. For a given uniform quantizer and a

given signal probability density Ps(x) the two nonlinear devices f( ) and g( ) are chosen

f (x) g (y)

N-I
q

X

NONLINEAR DEVICE

N-i

I 0 f(x)
N-i

2

N-1

2

UNIFORM QUANTIZER

N-I
2 q2

NONLINEAR DEVICE

Fig. XIII-6. Nonuniform quantizer.

so as to minimize the distortion D = E{W[s-g(y)]). The distortion D is made up of two

parts: (i) distortion Dn obtained within the range of the uniform quantizer, and (ii) dis-

tortion in the tails DT for which the nonlinear devices f( ) and g( ) are completely

ineffective.

The distortion Dn can be conveniently discussed in terms of an analog model in which
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the uniform quantizer is replaced by additive noise. We obtain an expression for the
N-1

minimum D as a function of X such that f(X) = q. The optimum selection of X is
n 2

then done as for uniform quantization by trading off between Dn and D T.

nn

s f (s) y g(y) Fig. XIII-7. Analog model.
f( +gos

NONLINEAR DEVICE NONLINEAR DEVICE

Consider the analog system shown in Fig. XIII-7. The additive, statistically inde-

pendent noise, n, models the effect of the uniform quantizer. Note that Widrow 5 has

shown that the quantization noise was independent of the signal for a large number of

quantization levels. Here again the nonlinear devices f( ) and g( ) are chosen so as

to minimize the distortion.

Dn = E(W[s-g(y)]}.

To keep the problem relevant to quantization we shall assume that the noise is small,

and it can then be shown that f( ) and g( ) are inverses.

We can now solve easily the analog filtering problem. We write

D n = W(g[f (x)+p]-x) ps (x) pn(P) dxdp. (5)

For small noise we have

g[f(x)+p] Z g[f(x)] + pg'[f(x)].

But since f( ) and g( ) are inverses

g[f(x)] = x g'[f(x)] f 1

and we have

Dn = [f Ps(x) pn(p) dxdp. (6)

To proceed with an arbitrary error-weighting function W(e) we have to model the

noise as uniform from -q/2 to q/2; again, this is a reasonable model quantization noise.5

Then we carry out the integral with respect to p and use the calculus of variations to

minimize Dn by proper choice of f( ). More specific results can be obtained whenever

W[ = W[p] wITiX)I (7)
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which is the class of error-weighting functions W(e) = e c . We have then

Dn _ pc n(P) dP [f(x)c dx. (8)
[f I (x) ]

It can be shown by the calculus of variations that D n is minimized by taking

1

f(x) = K 1  [ps(x)]c+l dx + K 2  (9)

which corresponds to Roe's expression for the approximate quantizer. The constants K 1

and K 2 have to be chosen to give the best fit for the quantization problem. Roe examines

the behavior of the exact quantizer for a large number of levels and large inputs (mean-

square error) and determines accordingly the approximate quantizer. Pace 6 selected

the constant so as to match the exact two-level quantizer. We proceed here as for uni-

form quantization and obtain an approximate expression for the resulting distortion. Note

that under the approximation that the probability density at the input of the uniform quan-

tizer is piecewise linear, we have again

2W1 q
P I c Pn(P) dp = qSJPC P di q 2C(c+1)

Now we select K 1 and K 2 in Eq. 9 to give the total range of the uniform quantizer. From

Fig. XIII-5 we have

f(x 2 ) - f(x 1 ) = (N-l)q

from which we get

1

(N-l) q[ps(x)]c+l
f' (x) = 1 (10)

x
2 [ps (x) ]c+l dx

and by substituting Eq. 10 in Eq. 8 we obtain

c+l
1 x2 ]c+1

Dn = c+(N [ps(x)]cl dx (11)
2 c (c+1) (N-1) c  

l

If we take into account the probability of occurrence of D and DT, we have
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D=D [, x 1x1Dn s1 - P s(x) dx - PS (x) dx + 1  x-x 1 c ps(x) dx

00

- x-x21 c s (x) dx (12)
x2

For an even signal probability density we have x 2 = -x = X, and

1 c+l 00

D (c= 2 [s()]c+l dx 1 - 2 ps(x) dx
(c+1) (N-1) c 0 X

+ 2 Ix-X c Ps(x) dx (13)

which has to be minimized by proper choice of X. Once X is determined, we have

1

(N-1)q [ps(a)]c+ da

f(x) 1 " (14)

2 [Ps(a)]c+1 da

Note that the step size of the uniform quantizer will not affect the resulting nonuniform
quantizer.

As an example we consider a Gaussian signal, mean-square error and 8 quantization
steps. The distortion versus X is shown in Fig. XIII-5, and its minimum is in good
agreement with the value given by Max.

3. Uniform Versus Nonuniform Quantization

By comparing the distortion for uniform and nonuniform quantization in Fig. XIII-5,
it appears that there is little to be gained by nonuniform quantization and the added com-
plexity in equipment. To discuss this point more generally we consider again Eqs. 4
and 13. If we rewrite Eq. 4 for W(e) = leC and take X e have for uN-2 q we have for uniform

quantization

D= 1 - 2 ps(x) dx + 2 x-X c s(x) dx. (15)
(N-1) (c+l) I- Ps(X) d. (15)

By comparing Eqs. 15 and 13, we see that the two expressions are quite similar except
for the two factors

F AxC
u
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[ 1 c+l

Fnu [Ps(x)] c+1 dx

The factors F and F affect the distortion within the quantization range. It can be
u nu

shown that Fnu is maximized by a signal probability density Ps(x) that is uniform between

-X and X. We then have F = Xc as expected. An indication of the effect of nonuniform

quantization can be obtained by forming the ratio F(X) = F nu/F u of the quantization

errors within the quantization range. For a Gaussian Ps(x) and large X we obtain

c+l

[2Zn (c+1)] 2
F (X) =

Xc

Since F(X) goes to zero as X goes to infinity, we obtain a large improvement in distor-

tion by nonuniform quantization as N goes to infinity. Note, however, that Dnu/D u = 0. 7

for N = 36 and c = 2; therefore, the asymptotic behavior is not too meaningful here.

V. R. Algazi
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D. TIME JITTER IN TUNNEL DIODE THRESHOLD-CROSSING DETECTORS

In Quarterly Progress Report No. 78 a model was presented which describes the

time jitter arising in a tunnel diode threshold-crossing detector. Analysis of the model

by dimensional methods indicated close agreement with experimental observations. Since

then a more complete and exact analysis of this model has been performed with the help

of the IBM 7094 computer. It has been predicted that the jitter should have a Gaussian

distribution. The mean and standard deviation of this distribution is related to the
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shot noise that is present near the peak of the tunnel diode i-v relation, to the slope of
the input signal, and to other circuit parameters. This predicted behavior agrees
closely with experimental measurements made thus far.

In this report we shall outline the method used in analyzing the model, discuss the
derived results, and present comparisons of these results with experimental obser-
vations.

1. Model for Predicting Switching Jitter

The modell used for predicting the switching behavior is shown in Fig. XIII-8. The
circuitry to the right of the input current source is a commonly accepted model for the

0-+

at V i (v) C(v) n(t)

WHITE SHOT NOISE OF
SPECTRAL HEIGHT q I eff

0

Fig. XIII-8. Equivalent-circuit model for tunnel-diode threshold detector.

2,3
tunnel diode.2,3 Lead inductance and resistance are neglected. We consider i(v), the

familiar static tunnel diode i-v curve, to be an instantaneous relation between i and v.

The total capacitance across the junction, C(v), is considered to be constant and equal

to C in the vicinity of the current peak. leff is the effective shot noise current, and in
the region near the peak is approximately equal to the actual tunnel diode current.

Using Kirchhoff's current law, we may write for the network Df Fig. XIII-8

dvC d- + i(v) = at + n(t). (1)

If we translate our coordinate system so that its origin is at the peak of i(v) and fit a

parabola to the curve at that point, we obtain a new i-v relation

i(v) = -kv 2, (2)

where k is a measure of the curvature at the tunnel diode peak, and v and t are under-

stood to be new variables. Substituting this new relation in (1), we obtain

dv 2
C dt kv = at, (3)

where n(t) is white noise of spectral height, N o. It is from this "switching" equation

that the statistics of the jitter are derived.
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2. Analysis of the Switching Equation (3)

By suitably grouping the parameters a, k, and C, we obtain the new dimensionless

variables

1/3

t' c )  t (4)

kN' 2 N .
o 2  0 o

0 Ca

By substituting these variables in Eq. 3, we obtain the dimensionless equation

dv' 2dt' v' = t' + n'(t'), 
(5)

where n'(t') is white noise of spectral height N'.o
A property of this equation is that if the right side is negative, then v'(t') will tend

to some stable finite value. If the right side becomes positive, then v'(t') will grow until

it reaches infinity at some finite time. We shall consider this to be the time at which

the tunnel diode switches and denote it by the variable T'.s
For a given set of initial conditions and n'(t') = 0 the system will always "switch" at

the same time, T . When noise is added, however, T becomes a random variable,

taking on values distributed around some mean. We shall call this distribution of T',

v'(t )

0

Z
O

F0-mTs = 2.33
DIMENSIONLESS " SECONDS "

Fig. XIII-9. Solution of the dimensionless switching equation with n'(t') = 0.
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PT' (T'; N'), where T' is a range variable for Ts. The distribution will depend on the
s

noise spectral height N' and also on the initial conditions.o
We shall henceforth take the initial conditions to be those for which the system would

be in "equilibrium" at a large negative time t :

v' ti (6)

These initial conditions ensure that the operating point essentially follows the curve i'(v')

until the region of switching is reached. The solution for these conditions and no noise

is shown in Fig. XIII-9.

With noise present the standard deviation and mean of T' will be functions of N'. We
s o

shall denote these functions by -T(No) and T' (N'). The computation of these functions
s

will be described.

3. Computer Solution of the Switching Equation

The computation was performed using the Fortran language on the IBM 7094 compu-

ter. The dimensionless switching Eq. 5 was solved by using standard one-step differ-

ence methods. Noise was introduced by adding a random number at each iteration of

the difference equation. The random number sequence was obtained by using the

"RANNOF" routine. This routine generates a pseudo-random sequence of numbers that

are uniformly distributed from 0 to 1 and which, for our purposes, can be considered

to be mutually independent. The sequence was then adjusted to have zero mean and to

have a variance corresponding to a given spectral height N'.o
The computation was started far enough back in time, subject to the initial conditions

of (6), to ensure that the process would appear to have been going indefinitely. When

v'(t') became large enough to ensure that the noise would have negligible effect on the

future course of the signal, the computation was stopped and the final values of v' and

t' were substituted in an asymptotic form of the solution that is valid for large v'. From

this asymptotic form the switching time T could be obtained.
s

N' was set to some specified value and this solution procedure was carried out0
1000 times, resulting in that many values of the random variable T'. By means of stand-s
ard computing techniques, the mean, standard deviation, and distribution of T' were

s
calculated. These statistics were obtained for N' varying over a range that was slightly

0
wider than that covered in the actual measurements.

4. Results of the Computation

Graphs of a(N'o) and Ts(No ) are presented in Figs. XIII-10 and XIII-11. The fact

that cT (N o) varies linearly with \~N indicates that the result obtained previously I by

assuming this linearity is valid at least over the range of the present computation. It
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Fig. XIII-10. Jitter standard deviation r vs Io (in dimensionless units).
tn

2.5 MEAN SWITCHING TIME T,

0 1.0 2.0 3.0 4.0 5.0
NOISE SPECTRAL HEIGHT

DIMENSIONLESS UNITS

Fig. XIII- 11. Mean switching time T' vs N' (in dimensionless units).
s o
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is interesting that, on the average, switching occurs earlier as noise is increased. The

advance in the mean switching time is directly proportional to N'.
0

It appears that T' (N') is beginning to deviate from its linear behavior at large values
so

of N'. Since the required computation time increases with rN- , we have hesitated to
o o

push the range further until we are certain that an analytic solution could not be obtained

by some other method. Knowledge of how this linear behavior breaks down (if it does)

would be useful for a complete description of the statistical behavior of the jitter.

Within the accuracy of the statistics, the distributions obtained were Gaussian. A

typical distribution is shown in Fig. XIII-12.

The functions T(N') and T'(N') can be approximated analytically from Figs. XIII-10

and XIII-11 by

To o

and (7)

s 0

where A, p, and y are constants.

Using these forms, we can express the jitter distribution analytically as

(T'-p+yN' )
PT' (T'; N' ) exp - (8)

s o ZN A A2N'

The behavior of PT' (T'; No ) with increasing noise is shown in Fig. XIII-13. It is inter-
s

esting to note that PT, (T'; N') satisfies the equation for diffusion in a moving medium.
s

Thus far we have not been able to relate this diffusion equation to the switching process

in any fundamental manner.

5. Transformation of a (N' ) and T' (N' ) back into the Dimensional DomainTo so

Using the relations of Eq. 4, we can transform aT-(No) and Ts(No) back into the

dimensional domain and thus relate the jitter statistics to the circuit parameters a, C,

k, and N . Performing this operation, we obtain

AN1/Zk1/ 6

-T  = (9)

a5/6C1/3

and

2P 1/3 k2/3N0  (10)

s C4/3a/3
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The distribution of the jitter can be obtained as a function of the circuit parameters by

substituting crT and T s in the Gaussian distribution

2

p(T) p 2 - (11)

T T

6. Comparison of Results with Experimental Observations

Using the value of A determined from Fig. XIII- 11 and values of No , C, and k cor-

responding to those existing in a circuit studied experimentally, we plot the relation

between 0-T and a expressed by Eq. 9. Experimentally measured points superimposed

on this curve are shown in Fig. XIII-14.

100

COMPUTED FROM MODEL

MEASURED/ -----
POINTS

10 -

1.0 10 a 100
SLOPE ( amp/sec )

Fig. XIII-14. Jitter standard deviation 0rT vs slope a: a comparison between behavior
predicted by model and experimentally observed behavior.

The experimentally measured distributions were Gaussian. 1 This observation is in
agreement with the results obtained from the model.

We have not yet checked the validity of (10) experimentally. Since a differential
method was used for measuring the switching jitter, all information concerning the mean
Ts was cancelled out.

This work was done partly at the Computation Center of the Massachusetts Institute
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of Technology, Cambridge, Massachusetts.

D. E. Nelsen
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E. NONLINEAR MINIMUM-MEAN SQUARE FILTERING WITH APPLICATION TO

ANALOG COMMUNICATION

The purpose of this report is to briefly describe an approach to nonlinear, minimum-

mean-square filtering and estimation and to mention some applications of the approach

which have been made to analog communications through randomly time-varying chan-

nels. The approach differs significantly from the linear, minimum-mean-square

approach of Wieneri and of Kalman and Bucy 2 because the estimate is not restricted to

being a linear transformation of the observed process. On the other hand, the approach

bears a resemblance to the technique of Kalman and Bucy, rather than to the more clas-

sic technique of Wiener, because of the use of the state variable representation of ran-

dom processes. This representation is used because it is the most convenient way to

represent continuous Markov processes, upon which the approach is theoretically based,

and also because it allows the consideration of multilevel estimation problems without

any added theoretical or manipulative difficulties.
3

The results presented here are an extension of those of Snyder for the scalar case.

The procedure closely parallels that used for the simpler case.

1. Notation

Underscored, lower-case letters denote column vectors and capital letters denote

matrices. Supperscript "T" and "-1" denote transpose and inverse. The exact and

approximate minimum-mean-square estimates of x(t) are denoted by W m(t) and xmv(t)

respectively.

D[f(t:x)] denotes the Jacobian associated with any vector f[t:x(t)] whose components

are memoryless transformations of x(t). The i-row, j-column element of D[f(t:x)] is

a f.(t:x).ax. j
1
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2. Estimation Model and Equation for x (t)-my

Define the two vector processes, x(t) and y(t), by

dx(t) = F x(t) dt + dX(t) (1)

dy(t) = g[t:x(t)] dt + dr(t) (2)

where the components of X(t) and rj(t) are Wiener processes and

E[x(t) XT(t)] = X min (t, u) (3)

E[rT(t) T (t)] = N min (t, u). (4)

Here, X(t) and -q(t) are assumed to be independent, g[t:x(t)] represents a memoryless

transformation of x(t). As defined by (1) and (2), x(t) and y(t) jointly form a continuous

vector Markov process.
d

It is assumed that the observed process, r(t) = -y(t), is available from an initial

time, t 0 , until the present time, t. The observed waveform is denoted by rO, t'

Given r 0  we seek to determine x (t). An equation for x (t) can be obtained in
0, t -my -my

a straightforward way from the equation for the conditional probability density functional,

p(x;t Ir, t), correctly derived by Kushner. 4 Using the fact that x mv(t) is the conditional

mean, the result is

dx (t) = F x (t) + E[{x- (t)}g(t:x)] N-l [dy(t)-E g(t:x) dt], (5)
-my v -m-

where the expectations are with respect to p(x;t Ir 0 ,t). An alternative expression for

im (t) can be obtained by substituting the multidimensional Taylor expansion for g(t:x),

which is assumed to exist, in (5). The resulting expression cannot be solved nor readily

implemented. By assuming, however, that the error, x- x (t), is small, an approxi-

mate estimate, x (t), can be obtained. Keeping terms leading to the second moment

of the error, we obtain

dmv -mv m -1

where V = V(t) is an error-covariance matrix satisfying

d V(t)= FV+ VF + X + VD Dg(t:v) N - 1  (t)-g t:x V. (7)

Under steady-state conditions (7) reduces to

0 = FV+ VFT + X- VD[g(t:x N- D [(t:x V (8)mI1 -mI1
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in which the bar indicates time or ensemble averaging which are assumed to be

equivalent.

3. Communication Model

The communication model is shown in Fig. XIII-15. a(t) and b(t) are defined by

da(t) = F a(t) dt + da(t) (9)a-

db(t) = Fb b(t) dt + dp(t), (10)

where the components of a(t) and P(t) are Wiener processes with the associated covari-

ance matrices A min (t, u) and B min (t, u). a(t) and b(t) can represent one or more

Gaussian processes occurring as messages and channel disturbances.

1 ..
bal(t) st: (t)] b t [t:x()]

-I (n2(t)

b u s By soi 2 [ta-(t)i 
[ t :

ot
(

ut)] +che w2(t) o r
y

z n r(t)

a(t) s [t:a(t)] g to(t) 1

white Gaussian noise. Fig. XIII-relationship between 15. Communication model.

a(t) is transformed by a memoryless, nonlinear modulator into c signals represented

by s[t:a(t)]. By a suitable interpretation of a(t), modulation schemes with memory, such

as FM, fall within thmessage ctor and channof the model.

When[t:a(t)] is transformed into p signals by the "randomly time-varying" portion of the

channel. The resulting signals are represented by g[t:x(t)] and are observed in additive

white Gaussian noise.

The relationship between the estimation model and the communication model is evi-

dent when it is noted that x(t) represents the vector obtained by adjoining a(t) and b(t).

x v(t) is then a vector whose elements are the approximate minimum-mean-square

estimates of the message vector and channel-disturbance vector.

4. Examples

When g[t:x(t)] is a linear transformation of x(t), the exact and approximate estimates
2

are equal, and (6) and (7) reduce to the equations of Kalman and Bucy. Communication
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ANALOG MESSAGE SOURCE

F-------------------

(a)(t)

S nm  (t)-- Xi( 0(t )  PHASE t

M I MODULATOR

Cmsin I 0 t ()d t]

(a)

rFor the case when g[t:x(t)] is a nonlinear tram- nsformation of (t), several examples(t)
m -

1

sm+dwhere.
5 

These are listed here.dm

(The communicatios model and resulting demodulatot+r for this case are shown(t)

MODULATOR D +

Fig. XIII-16. (a) FM communication model.
(b) Approximate minimum-smean-square FM demodulator.

models with linear modulation schemes, such as suppressed- carrier AM and single-

sideband AM, fall within this case and can be easily treated.

For the case when g[t:he demodult)] is a nonlinear transformation of x(t), several examples

have been studied and reported by Snyder. 5 For brevity, we give only the result for fre-

quency modulation and cite other examples of interest which have been discussed else-

where. 5 These are listed here.

6. Single message, general modulation, additive channel.

2. Single message, phase modulation, additive channel.

3. Single message, frequency modulation, additive channel.

(The communication model and resulting demodulator for this case are shown

in Fig. III-16. The v.s occurring in the demodulator are the components of V
in the steady-state and (t) is a white Gaussian process.)

4. Single message, general modulation, c diversity or multipath channels.

5. Single message, phase modulation, c diversity or multipath channels.

(For this case, the demodulator structure is in the form of a maximal ratio com-

biner followed by a phase-locked loop.)

6. Single message, phase-modulation, simple multiplicative channel.

(In this instance, the demodulator is in the form of a joint message and channel

estimator.)

7. Single message, phase modulation, Rayleigh channel.
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8. Single message, phase modulation, random phase channel (oscillator instability).

9. m messages, PMm/PM, additive channel.

5. Conclusion

An approach has been outlined for nonlinear, minimum-mean-square filtering. The

resulting fibers (or demodulators) bear a close relation to the demodulators obtained by

the maximum a posteriori estimation procedure described, for example, by Van Trees. 6

The minimum-mean-square demodulators are identical to the realizable portion of the

cascade realization of the maximum a posteriori demodulators. The communication

model discussed in this report was used by Van Trees 7 who studied it with the alterna-

tive approach.

D. L. Snyder
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