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RESEARCH OBJECTIVES

The general purpose of this research program is to study the interaction of gas mole-
cules with solid surfaces. At present, we are concerned with four principal problems.

1. Adsorption

During the past year we developed a quantum-mechanical treatment of the adsorption
of alkali-metal atoms on metallic surfaces (see Sec. XII-A. 1). We are now preparing to
perform experiments designed to test the validity of the theoretical model and analytical
solutions.

2. Gas-Surface Conditions

Using a simple classical model, we have successfully described the general features
of the scattering of gas molecules from solid surfaces (see Quarterly Progress Report
No. 79, pages 67-71). This analysis will continue, and a quantum-mechanical treatment
will be attempted. We are also planning an experimental investigation of the scattering
of molecular beams from solid surfaces.

3. Catalysis

An ultrahigh vacuum system suitable for studies of catalysis has been completed.
Using a mass spectrometer, we shall measure the gaseous products of chemical reac-
tions occurring on the surfaces of various materials. We plan first to consider the cata-
lytical formation of ammonia.

4. Photoinduced Surface Processes

Our experimental investigation of the effects of thermal and ultraviolet light on the
thermionic emission from tungsten has been completed (see Sec. XII-A. 3), and we are
now attempting to extend the study to cesium-covered tungsten.

R. E. Stickney

1. VALENCE-LEVEL SHIFT OF AN ALKALI ATOM AS A RESULT OF

INTERACTING WITH A METAL SURFACE

If an alkali atom is allowed to interact with a metal at the surface of the metal, as

shown in Fig. XII-1, the valence level of the alkali which we call the ns level (n is the

This work is supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E).
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Fig. XII-1. Model for the atom-metal interaction.

principal quantum number) will be shifted from its unperturbed energy. The shifted level

will also broaden. A theoretical approach to the natural width has been previously

reported.1 In the present report, the position of the band center of the perturbed alkali

atom is calculated.

Theory

If the Hartree-Fock equations for the metal-alkali system are interpreted correctly,

it can be shown 2 that the interaction

between the ns electron and the metal

perturbed by the alkali ion core is

2 2
q q

H' - R 4d 1

Fig. XII-2. Classical picture of the atom
and the image charges that it
induces in the metal.

in which R is the distance between the

ns electron and the image charge of the

alkali ion core, and dl is the distance

between the ns electron and the surface.

This is readily understood from the

classical point of view, as shown in

Fig. XII-2.

As the alkali atom is allowed to inter-

act with a metal through the interaction

given by Eq. 1, the first-order energy
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shift is given by

ns Ins)

The coordinate system used in the calculations of the energy shift is one with the ori-

gin, z = 0, at the center of the ion core and with z increasing positively away from the

metal. In this system, shown in Fig. XII-2, the distance of the electron from the metal

surface is given by dl = s - Ir cos 01 = s - I z . The distance between the electron and

the ion core image is given by R z 2s - r cos 01 = 2s - I z . This is a very good approx-

imation for small r, which is the only region in which the electron charge density is sig-

nificant. The unperturbed ns wave functions are taken to be fitted hydrogen 2s wave

functions as described previously.1 With hydrogenic wave functions and Eq. 1, Eq. 2

becomes

2 2 +o-sq 2 2 -2ar

c dz - dxdy (1-2ar+a r 2 ) e2ar

0 2s - Iz 4(s -1 z )(3
AE = (3)

+0oo

Os-sc dz t dxdy (1-Zar+a
2 r2) e-2ar

where the integration has been restricted to the region outside the metal. The value of

s is chosen so that the integration stops when the image potential reaches that which

exists at the bottom of the conduction band. Mathematical details of the integration will

appear elsewhere,2 so only the end result is given here in an extremely cumbersome,

but exact, closed form. It is found that

2 2 9 -4as 3 3 22 e4as -t -e2as 3 s 3
AE = 1.8a 30as - + 4e (32a s -8a s +4as+l) dt - + e (4a s

2 as

2 2± 2as et - 2 a(s-sc) 2 3 2 2-2a s +2as+l) t e 2a s -as + +6a s +3as-6a sc

2as c

-2as( 2 ( -as/ 33 223
+e (56a s 2+4as+6) 2-e as +a2s + 3as+l (4)

where AE is given in electron volts, s in angstroms, and a, which is a characteristic

of the particular alkali in question, in inverse angstroms. Numerical values for the

exponential integral are tabulated as a function of the upper limit. 3 Equation 4 is eval-

uated as a function of distance from the surface for the specific cases of potassium on

platinum and cesium on tungsten and the graph of this function appears in Fig. XII-3.
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Note that both curves exhibit the shape suggested by Gomer 4' 5 at distances greater than

approximately the sum of one-half the lattice constant plus the alkali ionic radii z3 - 4 A.

0.8 I

0.4

0.2

2 4 6 8 10 12

s(A)

Fig. XII-3. Energy-level shift determined from Eq. 2
atom-metal separation for cesium-tungsten
platinum.

as a function of
and potassium-

This is the atom-metal separation when the atom becomes adsorbed. The results are

not really meaningful at smaller separations, as these separations would physically be

prohibited by other repulsive forces not included in this formalism. Note that the energy

level has been shifted upward in both cases by approximately 0. 3 ev for an adsorbed

alkali. This is in accord with the value of 0. 35 ev suggested by Rasor 6 and Levine. 7

The relevance of this calculation to theories of adsorption is discussed in a paper

that has been submitted to the Journal of Chemical Physics.

J. W. Gadzuk
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2. INDUCED AND SPONTANEOUS TRANSITIONS IN GAS-SURFACE INTERACTIONS

The problem of energy exchange in the interaction of a monatomic gas with a solid

surface is considered by using the concept of induced and spontaneous transitions and

the principle of detailed balancing. The problem is treated as the interaction of a gas

atom with the phonons of the solid. The first part of the analysis is analogous to the

well-known analysis1 of the interaction of an atom (or molecule) with the photons of a

radiation field.

Consider some gas atoms in an enclosure, in which the gas density is so low that

collisions between the atoms are very infrequent compared with collisions with the sur-

face. Define the following quantities:

p ijdt = the probability that a gas atom in state i (kinetic energy Ei) will undergo tran-

sition to state j in time dt.

R.. = the probability that a gas atom incident upon the surface in state i will leave

the surface in state j.

-i = the average number of collisions with the surface per unit time for a particular

gas atom in state i.

From these definitions it follows that Rij = P.ij/Yi. By analogy with the analysis for

electromagnetic radiation, the transition of the gas atom between states with kinetic

energies E i and E. (E.>E.) is described by the following expressions.

P..ij = Aij + U(v, T ) Bij.. (1)

P.. = U(v, T ) B.i, (2)

where

A.. = the coefficient for spontaneous transition,
ij

B.. = the coefficient for induced transition,
13

U(v, Ts) = phonon energy density per unit frequency range in the solid at tempera-

ture T .
s

The assumptions about the transitions as expressed by Eqs. 1 and 2, together with the

following analysis, are only reasonable for single phonon transitions.

a. Equilibrium Situation

Consider a gas in equilibrium with the enclosure at temperature T s . Let the num-

ber of atoms in states i and j at equilibrium be N i and N , respectively. Let the degen-

eracies of the energy states i and j be D i and D , respectively. From the principle of

detailed balancing it follows that, at equilibrium, N.P.. = N.P... For the phonon field

assume a relation of the usual form,

U(v, T s ) = G(v)/[exp(hv/kTs)-l],
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where G(v) is a function of v and of the properties of the solid, but not of T .
1 s

By proceeding as in the photon problem, relations can be obtained among the Aij,
B..ij, and Bji. By using these relations in Eqs. I and 2, we obtain

Aij + U(vij, Ts) B.. A..ij

R~. i j 1 (3)
Ri= i i 1 - exp(-hv../kT )

U(vij, Ts) B..i Aij D
1i j ij D. -1R.. = - e F j (4)

jij j ' D exp(hvij/kT ) - 1

where hvij = Ei - E.. Although they have been derived for the equilibrium situation,

these expressions for Rij and Rji may now be applied to the collision of a gas atom with

the surface, irrespective of whether the gas is in equilibrium with the surface. The addi-

tional restriction of low gas density may also be dropped.

b. Gas with Equilibrium Distribution at Temperature T
g

Assume that the gas has an equilibrium distribution at temperature Tg, with Tg# T
g g s

This situation, of a surface at temperature T s in the presence of a gas at temperature

Tg (Tg #Ts ), actually occurs in the usual experimental arrangement for measuring

energy accommodation coefficients. Let i be the number of atoms in state i striking
the surface per unit area per unit time.

The expectation value of the net energy exchange, associated with the energy levels i

and j, from the surface to the gas per unit area per unit time is given by

Eij = hv..(ij(jRji--iRij). (5)

From the definition of yi it follows that i/ yi = Ni/K, where K is some factor that

depends upon the geometry of the surface and will be constant for a given gas-surface

system. For a Maxwellian distribution at temperature T g, (N.D./N.D.) = exp(- g), where
S= hvi ./kT . From Eqs. 3, 4, and 5 we then obtain
g ij g

(-

ij Cij 0- S (6)

e 1"" = C " - -o (6)

where rs = hv ij/kT , and Cij = hvij.KN.Aij is constant for a given gas-surface system

and a given pair of energy levels, i and j.

The terms in Eq. 6 can be written as infinite series, and if we assume that r- and
s

< are of order 1, or less, and neglect small terms, Eq. 6 becomes
g
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g 1 g g

ijC +2 6 12 24 24 (TsTg/Tg

If a- is of magnitude 1, or less, and T > Tg, it is reasonable to neglect the terms
g s

involving (T /Ts) in Eq. 7. Hence,

g g g

E.. C. I + + - (Ts-T )/Tg. (8)

If we put hv.. = pk&, where 8 is the Debye temperature, then = P38/Tg; hv..ij is

the energy of one phonon and k8 is, approximately, the maximum energy that a phonon

may have. Thus P is a positive number less than 1, and a sufficient, but not necessary,

condition for a- < 1 is T > 0. From Eq. 7 it is seen that the condition a- r 1 may be
g g g

relaxed as the ratio T /T increases.

c. Conclusions

The over-all net energy exchange from the surface to the gas is obtained by summing

over all pairs of states ij in Eq. 6. It follows from Eq. 8 that, when T is constant, this

energy exchange is approximately proportional to (Ts-Tg). The energy accommodation

coefficient is given by

net energy exchange to gas
a = 2k(Ts-T )  (9)

Upon substituting for the net energy exchange in Eq. 9 the factor (Ts-T g) cancels,

and thus the analysis predicts that a is approximately constant as T s is varied (for

T > T and T constant). This result agrees with the experimental results of
s g g 34

Thomas and Schofield and Moreton 4 for helium and neon on tungsten and platinum

surfaces.

R. M. Logan
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3. EFFECT OF THERMAL AND ULTRAVIOLET RADIATION ON THERMIONIC

EMISSION FROM TUNGSTEN

a. Introduction

Our interest in the effects of thermal and ultraviolet radiation on electron emission

from metals at high temperatures was stimulated by the results of a simple experiment

performed by A. Shavit, a member of our laboratory. Shavit found that the emission

from a hot tungsten cathode in a low-pressure cesium diode increases significantly when

radiation from the sun is focused upon the cathode. Hoping that this effect was an anom-

alous high-temperature photoelectric effect that might be used to enhance the perform-

ance of thermionic energy converters, we initiated the present investigation in which

cesium vapor was not introduced into the diode because its presence complicates

attempts to interpret the data.

From the experimental data reported here, we conclude that, rather than being the

result of a photoelectric process, the emission enhancement may be explained simply

as an increase in the thermionic emission caused by radiant heating of the cathode. In

effect, the diode acts as a transducer that produces a measurable electrical output signal

for radiation inputs of rather low intensity. Hence the thermionic diode may be used as

a radiation detector. This application, and others, will be discussed briefly following

the description of the experimental procedure and results.

A detailed discussion of the results has been omitted, since this may be found in a

paper by the present authors which has been submitted for publication to the Journal of

Applied Physics.

b. Experimental Apparatus

The experimental diode and circuitry are shown schematically in Fig. XII-4. The

cathode, a 4. 5 X 0. 32 X 0. 0025 cm polycrystalline tungsten ribbon, is heated resistively.

The collector is a rectangular tantalum box having a 0. 32 X 3. 2 cm slit in the front face

to allow radiation to impinge upon the cathode. A magnetically operated shutter is pro-

vided to cover the quartz window during the high-temperature aging of the cathode. An

ionization gauge and a titanium getter are attached to the diode.

The diode is evacuated by a two-stage mercury diffusion pump through a trap that is

cooled by liquid hydrogen. After several bakeout and outgassing cycles, the titanium

getter is flashed and the diode then sealed off from the vacuum system. The pressure

remains in the 10 9-torr range throughout the experiments. We believe that the cathode

surface is both clean and stable because it has been aged thoroughly at 2400 0 K, emission

measurements are reproducible and stable over long time intervals, and the diode pres-

sure does not rise above the 10- 9-torr range when the cathode temperature is increased

to 2400 0 K.
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The Richardson equation1 for thermionic emission from a metallic surface of

area S at uniform temperature T is

PYREX 2 -/kT
ENVE LOPE I = SAT e (1)

COLLECTOR - QUARTZ
COLLECO WINDOW where A and p may depend upon the

0- " oc ? F !FLTER temperature and the nonuniformity
DC P3'. -R ; '-
SUPPLY R _ of the surface work function. Our

SUPPL ' FOR
HEATi, NG LENS experimental data taken for a tem-
CATHODE TUNGSTEN

CATHODE perature range 1360'K < T < 2000 0 K

can be fitted by Eq. 1 with

O-550V KEITHLEY 150A
amps

D C PO'WER MICROAMMETER SA = 400a - and = 4. 6 ev.
SUPPLY FOR FOR MEASURING (OK)
CATHODE- COLLECTOR

ANODE BIAS _ CURRENT A work function of 4. 6 ev is reason-

able for clean tungsten.

Fig. XII-4. Diagram of diode and associated Quartz lenses are used to focus

optical and electrical components. the radiation from a high-pressure

mercury lamp (Bausch and Lomb

HP-100) upon the cathode. In order to obtain high radiation intensity at the cathode,

Corning sharp-cut filters are employed instead of a monochromator. The radiation

intensity at the cathode for each filter is measured with a calibrated thermopile placed

at the position normally occupied by the diode.

c. Experimental Procedure and Results

After attaining the desired cathode temperature by setting the heating power at the

appropriate value, the cathode-anode voltage is increased until the thermionic current

saturates. With the cathode completely shielded from the lamp radiation, the zero-

suppress circuit in the Keithley 150A microammeter is adjusted to cancel the thermi-

onic current. (In some cases, we have used a homemade circuit to supplement the

zero-suppress capabilities of the meter.) The radiation shield is then removed and the

current resulting from unfiltered radiation is recorded. Following this, filter 9-30 is

placed in the radiation path and the current is recorded. Next, filter 9-30 is replaced

by filter 0-54 and the current is recorded. This procedure is repeated for each of the

filters.

By subtracting the emission currents associated with two different filters, we obtain

the current resulting from the radiation band between the two filters. For example, if

I 1 and 12 are the currents measured for filters 9-30 and 0-54, then AI = II - 12 is the

current produced primarily by radiation associated with the 3100 A line, which is the

QPR No. 80



(XII. PHYSICAL ELECTRONICS AND SURFACE PHYSICS)

Table XII-1. Radiation bands isolated by filter pairs.

IWavelengt

Wavelength
Limits

(A)

X < 2500

2500-3200

3200-3700

3700-4200

4200-4700

4700-5600

5600-5900

Photon
Energy
Limits

(ev)

hv > 4. 96

4. 96-3. 88

3. 88-3. 36

3. 36-2. 96

2.96-2.64

2. 64-2.22

2. 22-2. 10

Approximate
Principal

Wavelength
in Band

(A)

Many lines in
far ultraviolet

3100

3640

4050

4350

5460

2780 (2 lines)

brightest line emitted by the lamp in the band 2500 < X 3200 isolated by these two fil-

ters (see Table XII-1). The filters have been selected to separate the more intense lines

in the lamp spectrum so that, although each pair of filters isolates, at best, a band of

radiation, one line or closely spaced set of lines will predominate. (This technique is

perhaps less satisfactory in the ultraviolet where there are many closely spaced nearly

equally intense lines, but it seems to be adequate for the purposes of our investigation.)

The experimental results shown in Fig. XII-5 are described in terms of F, the emission

current per unit radiation intensity,

AIF- z Q

where AQ = Q1 - Q2 is the radiation intensity of the band between the filters, Q1 and Q2
being the intensities measured for each of the filters. The values of Q and AQ are

recorded in Table XII-1, together with the approximate wavelengths (X) and photon ener-

gies (hv) of the radiation bands associated with each pair of filters.

d. Concluding Remark

A detailed discussion of the feasibility of employing the thermionic diode as a radia-

tion detector has been presented by R. C. Jones.2 He concludes that although no

QPR No. 80

Filter

None

9-30

0-54

0-51

3-73

3-71

3-67

2-63

Radiation
Intensity

Q
(mw/cm2 )

12. 6

9. 8

8.20

5. 94

5. 30

4.55

3. 60

2. 72

AQ
(mw/cm2)

2.80

1. 60

1.26

0. 64

0. 75

0. 95

0. 88
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CATHODE TEMPERATURE,-K

2300 2100 1900 1700 1500

7I IL

_ V

\A 

I, EQ. (2)

I T,EQ.(8) /

z 10

0 X< 2500A;
hv > 4.96 eV

A2500 < X < 3200
7 4.96 > h > 3.88 A

v 3200< X< 3700; V

3.88 > h v>3.36

17 4200< X< 4700;
2.96 >hv>2.64

o THERMIONIC IEASUREMENTS .

-8
0 5.0 6.0 7.0 8.0

I (ev)- '
kT

Fig. XII-5. Dependence of radiation-induced thermionic emission, r,
on cathode temperature and radiation wavelength. The

total thermionic emission current, I, is also included for

comparison. Notice that the photoelectric current is pre-

dominant when \ < 3200 A and T < 16000K.

experimental data are available, this technique merits further investigation.

We have performed additional experiments which demonstrate that a thermionic diode

may be used to determine the dependence of emissivity on radiation wavelength for mate-

rials at very high temperatures. There are other possible uses if atoms instead of pho-

tons are allowed to impinge upon the cathode. For example, it may be possible to

measure energy accommodation coefficients and the probabilities of dissociation or

recombination at hot surfaces. This technqiue might also be used as a detector of high-

speed or highly excited molecular beams.

The effect of radiation on the thermionic characteristics of a diode may present prob-

lems in certain experiments. For example, measurements of photoelectric emission at

moderate cathode temperatures will be obscured by increases in the thermionic emission
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unless the cathode is so massive that the radiation produces a negligible change in the

temperature. It is also possible that radiation and reflection from the anode or enclo-

sure may introduce errors into measurements of the thermionic properties of materials.

R. A. Stickney, P. B. Sun, M. L. Shaw
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B. Surface Properties of Thermionic Electrodes
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RESEARCH OBJECTIVES

The general objective of this program is to determine the surface properties of

electrodes which are particularly relevant to thermionic energy conversion. A more

specific objective is to obtain both experimental and analytical data on the dependence

of work function on cesium coverage, surface contamination, and substrate properties

(e. g., bare work function, crystallographic structure and temperature).

R. E. Stickney

This work is supported by the National Aeronautics and Space Administration
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C. Free-Molecule Flow Fields
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RESEARCH OBJECTIVES

In this program we are investigating the flow of gases in the transition regime
between the free-molecule and continuum limits. Of primary interest is the near free-
molecule flow regime for orifices and tubes exhausting into a vacuum. During the past
year, we have obtained measurements of the angular distribution of the flow intensity as
a function of the upstream pressure (see Sec. XII-C. 1). At present, we are modifying
the apparatus so that velocity distribution measurements may be performed. Analytical
treatments of the problem will also continue to be considered.

R. E. Stickney

1. ANGULAR DISTRIBUTION OF ORIFICES AND TUBES AT HIGH

KNUDSEN NUMBERS

The angular distributions of flow from orifices and cylindrical tubes have been

determined experimentally for Knudsen numbers of -1 to 100. (The Knudsen number

is defined here as the ratio X/D, where X is the mean-free path, and D is the diame-

ter of the orifice or tube.) These results are summarized here. A detailed description

of the apparatus and the results may be found in the theses of Hastings 1 and Keating. 2

Orifice Flow

The experimental apparatus is designed so that we may measure I, the intensity of

the flow downstream of the orifice, as a function of p, the angular position from the

center line. In the limit of free-molecule flow ( >>D), simple kinetic theory predicts l

that

I(p) = I(0) cos 4, (1)

where I(0) is the intensity along the center line (4= 0). Our experimental results are in

agreement with Eq. 1 only if the upstream pressure is sufficiently low to cause X to be

more than one order of magnitude greater than D. As the upstream pressure increases

This work is supported by the National Aeronautics and Space Administration
(Grant NsG-496).
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20 10 0

Fig. XII-6. Dependence of measured inten-
sity on angular position from
the center line of a sharp-edged
orifice. Solid curve is the the-
oretical cosine distribution
based on the corrected center-
line intensity. Knudsen number,
X/D = 99.

Fig. XII-7. Dependence of measured inten-
sity on angular position from
the center line of a sharp-edged
orifice. Knudsen number, X/D =
24.
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Fig. XII-8.

Dependence of measured intensity on
angular position from the center line of
a sharp-edged orifice. Knudsen number,
X/D = 7. Notice that the experimental
data (dashed curve) deviate from the the-
oretical cosine distribution (solid curve).

Fig. XII-9.

Dependence of measured intensity on
angular position from the center line of
a sharp-edged orifice. Knudsen number,
X/D = 2. 35. Notice that the experimental
data (dashed curve) deviate from the the-
oretical cosine distribution (solid curve).
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(a)

20 10 0 -10 -20

(b)

Fig. XII-10. Normalized intensity vs angle for flow
L/D = 1. 15. (a) X/D = 116. (b) X/D =
represents the theoretical prediction
for the free-molecule limit.

from a tube having
0. 20. Solid curve
of Clausing (1930)
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20 10 0 -10 -20

20 10 0 -10 -20

Fig. XII-11. Normalized intensity vs angle for flow from a tube
having L/D = 3. 03. (a) \/D = 52. (b) X/D = 0. 20.
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20 10 0 -10 -20

20 10 0 -10 -20

(b)

Fig. XII-12. Normalized intensity vs angle for flow from a tube

having L/D = 5. 63. (a) X/D = 116. (b) X/D = 0. 44.
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(that is, as X decreases), the angular distribution deviates from the cosine relation

because the intensity near the center line exceeds the free-molecule prediction. The

data are shown in Figs. XII-6 through XII-9.

We have compared our measurements of the center-line intensity, 1(0), with the

theoretical predictions of Narasimha, 3 Willis, 4 and Morton. 5 These predictions have

the following form in the near free-molecule flow regime:

1(0) = I(0)FM 1 +A~. (2)

I(0)FM is the limiting value for free-molecule flow as calculated by simple kinetic

theory. The magnitude of A depends on the details of the theoretical treatment;

Narasimha, Willis, and Morton obtain values of 0.30, 0.23, and 0.41, respectively.

Our experimental data correlate best with A = 0. 45.

The total mass flow rate may be calculated by integrating the measured angular dis-

tributions over the appropriate range of solid angles. These results are in agreement

with the data reported by Liepmann.6

Tube Flow

Experiments similar to those described above were also performed for three cylin-

drical tubes having length-to-diameter ratios of 1. 15, 3.03, and 5.63. The angular

distributions are in general agreement with the analytical results of Clausing7 when X

is much greater than both L and D. As observed for orifice flow, the angular distri-

butions deviate from the free-molecule patterns as X decreases. Typical results are

shown in Figs. XII-10 through XII-12. The results for the center-line intensity, I(0),

are particularly interesting for tube flow because they exhibit minima when plotted

against D/k. (See Fig. XII-13.) The minima become more pronounced with increasing

1.2 -
L/D =0.04

1.0- L/D 1.15

>- 08

L/D 3.03 Fig. XII-13. Dependence of normalized
0.6

S- center-line intensity on in-
SJverse Knudsen number for
-J 04 tubes of several length-to-

L/D = 563 diameter ratios.
z
o 0.2

-2 10
10 10

INVERSE KNUDSEN NUMBER, D/X
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L/D. Other investigators have observed a similar effect in the mass flow rate of gases

through long capillary tubes. (Pollard and Present 8 have considered this problem in

some detail.)

Present Work

Since existing theoretical treatments of near free-molecule flow through orifices

and tubes do not satisfactorily describe our experimental results, we are continuing

our attempts to obtain an analytical solution to the problem. The apparatus is now being

modified so that we may proceed with measurements of the velocity distribution of the

flow as a function of p and x/D.

R. E. Stickney

References

1. W. J. Hastings, S. M. Thesis, Department of Mechanical Engineering, M.I.T., 1964.

2. R. L. Keating, S. M. Thesis, Department of Mechanical Engineering, M. I. T., 1965.

3. R. Narasimha, J. Fluid Mech. 10, 371 (1961).

4. D. R. Willis, Aeronautical Engineering Report 683, Princeton University, March
1964.

5. H. S. Morton, Project Squid Technical Report UVA-4-P-1, University of Virginia,

July 1964.

6. H. W. Liepmann, J. Fluid Mech. 10, 65 (1961).

7. P. Clausing, Z. Physik 66, 471 (1930); Ann. Physik 12, 961 (1932); also see B. B.

Dayton, Am. Vacuum Soc. Trans., Vol. V, 1958.

8. W. G. Pollard and R. D. Present, Phys. Rev. 73, 762 (1948).

QPR No. 80



XII. PHYSICAL ELECTRONICS AND SURFACE PHYSICS

D. Neutralization of Space Charge in Thermionic Diodes*

Academic and Research Staff

Prof. R. E. Stickney

Graduate Students

A. G. F. Kniazzeh

RESEARCH OBJECTIVES

The performance of a thermionic energy converter depends strongly on the effec-
tiveness of the technique used to neutralize the electron space charge. The three common
techniques for generating the ions required for neutralization are (i) surface ioni-
zation at the emitter, (ii) ionization within the plasma by various electron, photon, or
atom impact processes, and (iii) auxiliary sources. We are investigating the physical
processes and relative merits of each of these techniques.

R. E. Stickney

1. CESIUM MOLECULAR-ION FORMATION BY COLLISION OF TWO EXCITED

ATOMS II

Models proposed to explain the voltage-current curves of cesium thermionic diodes

operating in the ignited mode have generally incorporated three volume ionization mech-

anisms: by electron impact with ground-state cesium atoms; by electron impact with

cesium atoms in the first excited state; and cesium molecular-ion formation by the col-

lision of two excited atoms1 - 3 according to the process

+2Cs(6p) - CsZ -Cs + + e. (1)

By using Warner's 4 calculation with measured 5 ' 6 and calculated 7 cross sections, ioni-

zation by the first two mechanisms can be shown to be deficient for sheath neutralization

by a factor of 10 for some experimentally observed diode conditions. On the other hand,
Witting and Gyftopoulos2 have calculated a molecular-ionization cross section that makes

ionization according to Eq. 1 very attractive.

This report concerns an optical pumping experiment similar to Freudenberg's, 8 by

which an upper bound is established for -m, the cross section for molecular-ion pro-

duction by process (1).

This work is supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E).
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a. Description of the Experiment

In our experiment, a cyiindrical resonance tube containing cesium is irradiated by

resonance radiation of X8521 A coming through an interference filter from a cesium arc

lamp, as shown in Fig. XII-14. The radiation is absorbed in the cesium, thereby pro-

ducing atoms in the first excited state which collide and produce molecular ions by proc-

ess (1). The ions formed within the volume enclosed by the dashed lines in Fig. XII-14

ION ANODE -

COLLECTOR ---
hGUARD s,Cs (6p

hv

Cs e
L 2' i hv

R cg WINDOW ARC LAMP

am INTERFERENCE
FILTER

Fig. XII-14. Optical pumping arrangement.

are drawn to an axial collector by an applied potential V, and the difference in the values

of this collector current measured when the arc irradiates the absorption tube and when

the arc radiation is blocked is used to calculate the cross section.

Many radiation-dependent currents might be included in this difference current, so,

in general, the difference current J will consist of the following terms:

J(R +R )/Rcg = J - J - J + J + negligible positive terms. (2)cg am cg m r an v

Here,

Rcg is the leakage resistance from the ion collector to the guard ring (1 MQg,

R is the input impedance of the electrometer in the feedback mode (0. 15 M2),am
J is the total amount of charge produced per unit time by molecular-ion formation

by process (1),

J is the current associated with the molecular ions that recombine before beingr
collected,

J is the molecular-ion current that is collected on the window or anode, and
an

J is the photoelectric current from the ion collector produced by the arc radiation.
V -10

J is negligible because of the small size of J(~10 amp), and at 6 volts applied volt-
r

age J is less than 20 per cent of J for the conditions of the experiment. Thus, to aan m
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good approximation

R +R
cg am

J J + J ,R m +vy
cg

and certainly

J 1. 25
m

Rcg Ram
J.

R
cg

Even though the resonance chamber is irradiated by radiation that is resonant with

the 6 P 3 / 2 state, we must also consider ionizing collisions involving 6 Pl/ 2 atoms that

are formed by quenching collisions of 6 P 3 / 2 atoms with ground-state atoms according

to the process

Cs(6p 3 / 2 ) + Cs(6s) - Cs(6pl/ 2) + Cs(6s) + 0. 068 ev. (5)

Then Jm will consist of a sum of terms corresponding to collisions of two 6p atoms with

various j values:

ev
Sd3 rN + m12 G d 3 r2N 1 N 2 + m22 d 3rN 2).

Here,

e is the electronic charge,

1 is the average thermal velocity of the atoms,

the integral is over the volume of the resonance chamber,

N 1 is the density of 6p 3 / 2 excited atoms,

N2 is the density of 6P 1 / 2 excited atoms, and

a-i j are the cross sections at 500 0 K for the production of molecular ions by the col-

lision of excited atoms of types i and j.

The excited atom densities are determined by two radiation transport equations that

are solved to give estimates of the integrals appearing in (6). The resulting integral of
2

N2 is less than the other two integrals because quenching is not efficient enough to pro-
duce a large Cs(6p 1 / 2 ) density for our experimental conditions. Since the electronic

energy of two 6P 1 / 2 atoms is 0. 09 ± . 05 ev below the energy required to form a cesium

molecular ion, we can also assume that -m22 is less than o-m11 or 0am12 so that the last

term of (6) can be neglected. Furthermore, for our experimental conditions f d 3 rN 2 is

within a factor of 2 of f d 3 r2N N so that, no matter what the ratio of ll to ( we
1 2 m11 ml 2 '

can approximate to 33 per cent.

r 1 1 d rN2 + ml 2 d 3 r2NIN 2 Z °m d 3 rN 1 (N 1 +2N 2 ), (7)
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where 0- is the effective molecular-ionization cross section,

o= (rm 1 1 +crml 2 )/2. (8)

Then Jm is given bym

ev N d rN 1 (N 1 +2N 2 ). (9)m m

The order of magnitude of JV can be estimated by measuring JW, the ion-collector

current produced by shining a standard tungsten lamp (operating at 15 amps) through the

interference filter and onto the collector of the resonance tube. Then if F and F =

1. 6 X 103 erg/sec are the calculated radiant-energy fluxes to the ion collector from

the arc and tungsten lamps, respectively, we have

F Rcg am

J =C J (cg am (10)v F W R '
W cg

where C (of order unity) is an approximate correction factor accounting for variations

in the photoelectric quantum yield over the ion-collector surface.

Combining (3),(9), and (10) gives

R

j = e + -d 3rN (N +2N )+ CF J,/- m Ram + Rcg 1 1 2 I W W,

We shall determine the constants crm and C by correlating measured values of J, JW'

and Rcg and calculated values of N1, N2, F, and F W . Since the resulting effective cross

section is small, we then return to (4) to determine the upper bound to am

The essential requirement of this argument is to demonstrate the validity of the

excited-atom density distributions used in the calculation. This is accomplished by a

description of the experimental apparatus followed by a discussion of the radiation trans-

port equations that determine the excited-atom density under various experimental con-

ditions.

b. Experimental Apparatus

The main components of the experimental apparatus are shown in Fig. XII-15. Not

shown are power supplies, arc heaters, 17 thermocouples, and an electrometer and

recorder that measure the ion-collector current. The temperature of the cesium in the

resonance chamber was set at approximately 500 0 K throughout the experiment and was

controlled by the front heater which also heated the front window. In order to insure

that a cesium film would not form on the front window, extra heater windings were placed

on the front face of the front heater. Also, the front heater was placed against the
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1. QUARTZ-CESIUM ARC LAMP II. COLLECTOR GUARD RING

2. PYREX WINDOW 12.. BACK HEATER

3. FAN CHANNEL 13. CESIUM RESERVOIR

4. ABSORPTION FILTER 14. CESIUM HEATER

5. INTERFERENCE FILTER 15. ENCLOSED INPUT OPTICS

6. CESIUM RESONANCE TUBE 16. CALIBRATED SPECTROMETER

7. POLISHED OFHC-Cu ANODE 17. HEATED PYREX WINDOW

8. FRONT HEATER 18. RCA 7102 PHOTOMULTIPLIER

9. STAINLESS ABSORBING PLATE 19. DRY NITROGEN

10. POLISHED Cu ION COLLECTOR 20. DRY ICE AND ACETONE

Fig. XII-15. Experimental apparatus.

housing of the interference filter to limit convection cooling of the window, and the

reflecting side of the filter was faced toward the window to reduce radiation cooling.

The resonance tube was assembled, under a reducing gas atmosphere to inhibit oxi-

dation of the electrodes, and then baked on an oil diffusion pump at 380 0 C for 3 days to
-6

a final pressure of 2 X 10 torr. A cesium ampoule was then attached, and the tube
-6

was baked for 2 days at 180 0 C to a pressure of 10 torr. Finally, the ampoule was

broken, the cesium was vacuum-distilled into the appendage, and the tube was sealed off.

The arc lamp operated at 0. 1-0. 35 torr cesium pressure, 13-17 volts, and

25-50 amps. Quartz was used for the arc envelope, because of serious melting prob-

lems encountered with Pyrex. Cesium attack of the quartz produced an absorbing and

partially reflecting dielectric film on the center section of the arc envelope which dete-

riorated arc performance with use. There were also short-term fluctuations of the are

intensity caused by relaxation of the various temperatures in the arc following a step in

arc current. Since the excited-atom density in the resonance tube was proportional to

the incident radiation intensity, the intensity of the arc at the center of the k8521 A line

was monitored continuously by using a calibrated Jarrell-Ash 500-mm spectrometer and

an RCA 7102 photomultiplier. Occasionally, arc line shapes were recorded also. The

\8521 A line shapes obtained experimentally showed no shifts outside the uncertainty in

the spectrometer frequency calibration (0. 15 A), and no self-absorption for pressures

below ~0. 25 torr and currents above ~30 amps. On the contrary, the arc line shapes
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at high current and low pressure were quite peaked, and did not exhibit a flat portion that

is characteristic of a spatially uniform excitation temperature. The intensity at line

center corresponded to an excitation temperature of between 25000K and 3500 0 K. The

optical system used for arc-intensity measurements was calibrated in frequency by using

a small mercury lampand in intensity by using a secondary standard tungsten lamp.

Calculations 9 show that spectrometer broadening did not affect the line shapes by

more than 15 per cent.

Since the experiment requires a large primary radiation intensity, it was necessary

to keep the optical path from the arc to the absorption tube as short as possible. With

this geometry and with the absorbing side of the interference filter facing the arc, it

was necessary to cool the filter by placing it in a fan duct. The temperature of the filter

varied from 70' to 110°C during a run; however, this high temperature did not affect

its transmission properties permanently. The blocked filter had a maximum trans-

mission of 0. 65 with half-transmission points at 90'C at approximately X8430 A and

X8635 A, and less than 0. 001 transmission outside the range X8280 A-X8750 A.

Data were taken with the arc operating at various pressures and currents and with

the absorption-tube cesium pressure and ion-collector temperature set at various levels.

The bias voltage (V, in Fig. XII-15) was usually set at 6 volts, since this was found suf-

ficient to saturate the current, J. For each setting of the arc and absorption-tube con-

ditions, measurements of the ionization current were taken on an electrometer and a

time-running XY recorder, while various absorption filters were inserted in the fan duct

to attenuate the primary radiation. An average of 7 data points was taken for each set

of conditions.

c. Analysis

The excited-atom densities are determined by two coupled radiation transport equa-

tions which account for the absorption and re-emission of resonance radiation and the

de-excitation of excited atoms by quenching collisions with ground-state atoms. The

rigorous derivation of the radiation transport equations is lengthy and can be found else-

where.10 As a first approximation, we neglect excited-atom diffusion ; assume that

the polished copper anode and ion collector are specularly reflecting, the stainless-

steel plate (9, in Fig. XII-15) is perfectly absorbing, and the front window is trans-

mitting to scattered photons; approximate the arc lamp as spatially uniform in intensity

and as filling the small solid angle of acceptance of the interference filter for \8521 A

radiation (as shown by the cones of acceptance of Figs. XII-14 and XII-15). Then the

problem becomes one of radiation transport in plane-parallel layersl3 in which the spa-

tial variation of the excited-atom density depends only on the distance y into the reso-

nance tube measured from the front window.

We also assume that scattering of radiation is isotropic in direction and incoherent
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in frequency. These last two approximation lead to a form of the Holstein-Bibermanl4

transport theory which is appropriate to quenching.15

Taking account of hyperfine structurel 6 and Doppler, natural, 1 7 and resonance
18broadening, we find that a transmission function Li(y) can be approximated to ±20 per

2, 14, 15
cent over more than 98 per cent of the resonance chamber,14,15 by

L (y) = dv k (v) exp[-ki(v)y]J dv ki(v) = 1. 15(rkpy)- 1/2, (12)

where ki(v) is the absorption coefficient for radiation of frequency v near voi, the

unperturbed frequency for the 6p i-6s transition; and kpl is the absorption coefficient at
line center for the resonance-broadened 6p3/ 2 -6s line without hyperfine structure. We

also calculate the amount of radiation absorbed per unit volume from the primary arc

intensity. For this calculation, we approximate the typical arc line shape, shown as

the curved line in Fig. XII-16a, by a triangle. The height of the triangle is determined

by 1o, the average intensity at the wavelengths of the two effective hfs components of

the 6 P 3 / 2 - 6s line. The width of the triangle AXA is determined by the full width of the

true arc line at an intensity equal to one-half 1o, as shown in Fig. XII-16a. Using this

triangular approximation and detailed balance, 1 8 we calculate the normalized arc trans-

mission H(x, z) shown in Fig. XII-16b. Here x is the normalized optical depth, calcu-

lated by using Gregory's resonance-broadening data and oscillator strengthsl 8 ' 19 which

satisfy the sum rule, and z is the normalized arc linewidth:

- 2
kply pl 42

x 2 1 =3. 2 X 10 o Xo(P o ) - x(y=y o )  (13a)
2 X hfs,l o

Az = > 3. 9. (13b)AXhfs, 1

Here Akhfs, 1 is the effective hfs splitting, AXpl is the full half-width for resonance

broadening of the 6p3/2-6s line, po is the reduced pressure in torr, and yo is the depth
of the resonance chamber.

The quenching frequencies associated with (5) and with quenching to the ground state

are calculated from the results of resonance-fluorescence experiments 2 0 2 1 and arc

power measurements. 2 2 The neglect of quenching by contaminants 2 3 24 is justified if
the pressure of contaminants is below 3 X 10 - 3 torr.

The preceding approximations result in two coupled, singular, integral, radiation

transport equations whose approximate solutions are
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Fig. XII-16. (a) Arc line shape (40 amps, 0. 15 torr).
(b) Normalized arc transition, H(x, z).
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L0 . 66 + x - 1/2 + (x-x) 1/ H(x, z)
L

2.16 + x1/2 + (x -x) 1/2 1 + ( x
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Fig. XII-17.
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the Cs(6s) density, and t is the average of t'(8), the transmission of the interference

filter and two layers of Pyrex for X8521 A radiation incident at an angle 6,

t= t'(0) sin 0 dO = .018. (16)

The excited-atom densities given by (14) are plotted in Fig. XII-17 for typical conditions.

Finally, the total charge production rate by process (1) is given by Eqs. 9 and 15:

-5 -
10 ev

J
m 2-

(17)

-2
2-

3o tIog iN3k o 1 0 2
4hvol o m

where R = 0. 95 cm and yo = 2. 5 cm are the radius and length of the resonance chamber,

and

= 0 5 2 t; o dx
nl(nl+2n 2) x

D is calculated numerically from Eq. 14 and is plotted in Fig. XII-18. We also use

(14) and (15) to find the contribution to F from scattered X8521 A radiation.

0.005 0.010 0.015 0.020

II45 50Ill I 60 65l
45 50 55 60 65

Po ( torr )

I I I I
70

TCs (C)- 100
75

I 1180
80

Fig. XII-18. Normalized excited-atom density integral.
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Using this calculated F and (17) in (11) and evaluating the known quantities yields

the correlation equation

J/A = m + CF (A (19)

where

A = 20012 R (R +R ) (amp/A2) (20)0 cg cg am

qI= 105Lz+133po IoJw/2 /A (A2) (21)

Here, I is in erg/cm 2 steradian, J and JW are in amps, and po is in torr.

d. Results and Conclusion

Data were taken for a resonance chamber temperature of 500 0 K, for various bias

voltages V (usually 6 volts), and for various values of the resonance tube cesium-

reservoir temperature TCs, the ion-collector temperature Tc, the arc cesium-

reservoir temperature TA, and the arc current JA Also, various absorption
filters f. were inserted in the fan channel of Fig. XII-15 to attenuate the arc intensity.

The resulting ion-collector currents J(fi) were correlated with t(fi)Io, replacing Io in

Eqs. 20 and 21, where t(fi) is the transmission of f. at X8521 A:
1 1

t(f) = 0. 53, t(fi) = 0. 19, t(f 2 ) = 0. 70. (22)

Rcg and J were found to depend almost exclusively on the variable

T = 1000/TCs- 1000/T c . (23)

JW was found to saturate at ~0. 5 volt and to depend linearly on the tungsten lamp inten-

sity, thereby clearly indicating its photoelectric origin. J and I were measured simul-

taneously during a run; JW, Rcg' and z were measured between J-runs or were
determined by interpolation, with the use of correlations of JW(T), Rcg(T) and z(TAJA)
and measured values of T, TA, and JA. The ranges of the experimental variables

appearing in (19) are listed in Table XII-2.

The correlation of these data as presented in Fig. XII-19 is best described by the
relation

J/A= 0. 07 + (0.1 ±.05) (A 2) (24)

Since the uncertainty in the values of 10 and JW and the approximations made in the anal-

ysis probably introduce errors of less than a factor of 2, the effective cross section
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Table XII-2. Ranges of variables entering into Eq. 14.

J .2-2. 5 7 .16-. 33

J(f) (10-1 0 amp) . 1-1.0 JW (10-10 amp) . 12-3.9

J(fl )  .02-. 22 Rcg (106 ohm) .4-7. 8

TCs (0 C) 143-182 I (10-6 erg/cm ) i. 2-4. O0

T (0C) 183-230 z 3.9-15.4

JA (amp) 20-50 D .26-1.94

TA ( 0C) 207-257 A (10 - 10 amp/A 2 ) 1. 4-20.9

indicated by (24) is within a factor of 3 of

- = 0. 07 A2 (25)
m

This interpretation of the data is supported by the intensity dependence of J plotted in

Fig. XII-20. Except for the points that have tails to the right, fall higher than the rest,

and correspond to conditions for which the arc line shapes are self-absorbed, the ratio

J(fi)/J is close to [t(fi)] 2 at low I, and approaches t(f i ) at large 9. This indicates that

a large part of J at low 'F is due to molecular ions, while J dominates at large TF.

(Here, 'I, is calculated with the unattenuated intensity Io , not with t(fi)Io.) Also shown

are curves of J(fi)/J calculated by using Eq. 24 with -m/C = 0. 7 A2 and 2. 2 A2

Sf.. (26)

S -m/C + F 1

These curves fall among the data points, thereby indicating that oa-/C of Eq. 14 has the

right order of magnitude.

An alternative interpretation of the data might be that all of the observed ion-

collector current is due to photoelectric emission, as indicated by the straight line in

Fig. XII-19. This interpretation, however, does not describe the trends of either

Fig. XII-19 or Fig. XII-20. Whichever interpretation is accepted, the upper bound to

a-m is still given by

a <0.2A . (27)
m

If we disregard a factor of 1. 25, this is the result that would be obtained by applying

(14) to the data of Fig. XII-19 for low TI.
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Fig. XII-19. Correlation of collector-current data.
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Fig. XII-20. Intensity dependence of the ion-collector current.

Table XII-3. Comparison of cross-section estimates for process (1).

Condition Requirement T( ° K)

02
This experiment -m 

< 0. 2A 500

25 26 0 2
Harris 2 5 (Hammer and Aubrey ) recombination data rm < 7 A 1600

used with Witting and Gyftopoulos 2 calculation ( m < 18±13 A 2 ) (1380)

Cs 2 production dominates Cs + production from 6s and 6 p > 2. 1 A 1600
4-7 m

states (following Warner )

Cs ions neutralize the electrode sheaths 4 m > 20 A2 1600
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Comparison of this result with other entries in Table XII-3 shows that if the cross sec-

tion is not a strong function of temperature, molecular-ion production by the collision

of two 6p cesium atoms will neither dominate ionization from the 6s and 6p states, nor,
a fortiori, provide sufficient ions to neutralize the electrode sheaths in a cesium thermi-

onic diode.

A. G. F. Kniazzeh
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