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Abstract

Decisions based on single-point estimates of uncertain parameters neglect regions
of significant probability. We consider a paradigm based on decision-making under
uncertainty including three steps: identification of parametric probability by solution
of the statistical inverse problem, propagation of that uncertainty through complex
models, and solution of the resulting stochastic or robust mathematical programs.

In this thesis we consider the first of these steps, solution of the statistical inverse
problem, for partial differential equations (PDEs) parameterized by field quantities.
When these field variables and forward models are discretized, the resulting system
is high-dimensional in both parameter and state space. The system is therefore ex-
pensive to solve. The statistical inverse problem is one of Bayesian inference. With
assumption on prior belief about the form of the parameter and an assignment of
normal error in sensor measurements, we derive the solution to the statistical inverse
problem analytically, up to a constant of proportionality. The parametric probability
density, or posterior, depends implicitly on the parameter through the forward model.
In order to understand the distribution in parameter space, we must sample. Markov
chain Monte Carlo (MCMC) sampling provides a method by which a random walk
is constructed through parameter space. By following a few simple rules, the ran-
dom walk converges to the posterior distribution and the resulting samples represent
draws from that distribution. This set of samples from the posterior can be used to
approximate its moments.

In the multi-query setting, it is computationally intractable to utilize the full-order
forward model to perform the posterior evaluations required in the MCMC sampling
process. Instead, we implement a novel reduced-order model which reduces in param-
eter and state. The reduced bases are generated by greedy sampling. We iteratively
sample the field in parameter space which maximizes the error in full-order and cur-
rent reduced-order model outputs. The parameter is added to its basis and then a
high-fidelity forward model is solved for the state, which is then added to the state
basis. The reduction in state accelerates posterior evaluation while the reduction in
parameter allows the MCMC sampling to be conducted with a simpler, non-adaptive
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Metropolis-Hastings algorithm. In contrast, the full-order parameter space is high-
dimensional and requires more expensive adaptive methods. We demonstrate for the
groundwater inverse problem in 1-D and 2-D that the reduced-order implementation
produces accurate results with a factor of three speed up even for the model problems
of dimension N≈500. Our complexity analysis demonstrates that the same approach
applied to the large-scale models of interest (e.g. N > 104) results in a speed up of
three orders of magnitude.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Inverse problems arise in many fields of science and engineering. Medical imaging

[2, 53, 3, 26], geophysics [58, 18, 15, 45], heat transfer [59, 63, 72], quantum, wave,

and electromagnetic scattering [27, 22, 21], and electrical impedance tomography

[10, 47, 43] are a few examples. In each of these fields, we have models used to solve

the forward problem. Given a description of the physics and the parametric inputs,

we compute a set of outputs of interest. In many cases, the underlying model used

to solve the forward problem represents a discretization of a set of partial differential

equations (PDEs). Consequently, a forward model evaluation may be computationally

costly. In contrast to the forward problem, the inverse problem represents one of

inference on the parameters given observations or data. For example, in the case

of heat transfer, one forward problem might consist of determining the temperature

distribution across a component subject to a heat source given the spatially-varying

thermal conductivity. The solution of the inverse problem, on the other hand, utilizes

readings of temperature on the surface of the component to predict the thermal

conductivity throughout.

There are several ways to formulate inverse problems. Two popular, but distinct,

approaches are deterministic optimization and statistical inference. In the determin-

istic setting, the inverse problem is posed as a mathematical program. The objective

function is usually constructed such that a normed difference between the data and

model output is minimized. Regularization will be required in most cases to gener-
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ate a unique solution. The solution is one point in the parametric input space. No

estimate of uncertainty in that solution is generally available. The statistical infer-

ence problem is formulated by casting the parameter as a random variable, a process

consistent with the Bayesian approach. Given normality assumptions on the output

error and inclusion of prior knowledge of the parameter, a probability distribution

over the parametric input space is obtained by leveraging Bayes’s rule. In contrast to

the deterministic solution, the solution of the statistical inference problem is one or

more statistical estimators applied to an ensemble of parameters. Furthermore, the

uncertainty in those estimates is quantified directly via the ensemble itself.

In this work, we study the solution of statistical inverse problems for models with

many states and high-dimensional parametric input spaces but with relatively few

outputs of interest. Markov-chain Monte Carlo (MCMC) sampling requires at least

one forward model solution for each member of the ensemble. For the problems of

interest, repeated forward model solution is a prohibitive endeavor. We restrict our

attention to models which are linear in state and whose forward operator is linear in

the parameter. For these models, we can bring to bear goal-oriented model reduction

algorithms to make tractable an otherwise nearly impossible inference problem. Us-

ing a greedy approach, we solve a sequence of optimization problems to obtain the

parameters at which the error between the reduced- and full-order models is maximal.

The parameter and state bases are created directly from these samples. Projection

of the state equations onto the state basis and of the forward operator onto the pa-

rameter basis produces a reduced-order model that is inexpensive to evaluate when

compared to the full-order instantiation. This increase in forward solution efficiency

makes tractable MCMC sampling to solve the statistical inverse problem.

In Section 1.1, we motivate the need for uncertainty quantification (UQ) in large-

scale engineering inverse problems. Section 1.2 provides additional background on

inverse problems, UQ, and model reduction. In Section 1.3, the thesis objectives are

outlined. Finally, Section 1.4 provides a roadmap for the remainder of the work.
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1.1 Motivation

In this section, we demonstrate the need for uncertainty quantification in the solution

of science and engineering inverse problems. We consider the computational require-

ments of the solution of the statistical inverse problem thereby motivating the use of

model reduction.

Uncertainty quantification is an integral component of engineering design. Whether

the design be a bridge, aircraft, car, skyscraper, or oil-drilling plan, engineers must

account for uncertainty in manufacturing, construction, and applied loads. In a jet

engine, for example, there is manufacturing variability in the blades of a turbine blade

row. The uncertainty in this manufactured part must be propagated through a model

to estimate failure probabilities or to design maintenance plans. With a description

of the uncertainty in part or all of the components of an assembly, an engineer can at-

tempt to minimize the risk of failure or maximize the service duration. Stochastic or

robust optimization might be utilized to design under this uncertainty. Using stochas-

tic optimization, a company may derive a production plan based on maximizing an

expected return subject to the uncertainty in supply costs. In robust optimization, a

component may be produced to eliminate risk altogether.

Independent of field, scientists and engineers benefit from knowledge of the uncer-

tainty in design parameters. Many engineering inverse problems are solved to infer

parameters of a design component or an environmental factor. In the statistical in-

verse problem setting, solutions to these problems consist of parameter estimates as

well as quantification of the uncertainty in those estimates. Engineers are then able

to utilize the uncertainty in that component to properly design a complete model.

Inverse problem solutions may also play a role in optimal control problems. In con-

taminant transport, the inverse problem is one of obtaining the initial distribution of

the contaminant. A forward prediction and attempt to mitigate the effects by neu-

tralizing reagent or flow control could be posed as a problem in optimal control. The

resulting mathematical program is subject to the uncertainty in the inverse problem

solution. The benefit of the statistical inverse formulation is that the quantification
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of uncertainty necessarily accompanies the solution.

Markov chain Monte Carlo (MCMC) simulation has become a very popular method

for sampling from complex probability distributions. In particular, it is utilized fre-

quently in the solution of statistical inverse problems to generate samples from the

posterior. The posterior distribution is that which characterizes the probability that

a certain parameter, subject to prior knowledge about the parameter space, produces

the given data when propagated through the forward model. In fact, the posterior is

essentially the solution to the inverse problem; that is, if the parametric input space

could reasonably be enumerated and the associated forward problems solved, then

one could at least represent the posterior numerically.1 In general, this will not be

a tractable solution because the high-dimensional parametric input space could not

be explored exhaustively irrespective of the complexity of a forward model solution.

Instead, MCMC provides a framework through which the posterior can be sampled

indirectly.

By the construction of an appropriate transition kernel, a Markov chain can be

established. If the Markov chain has certain properties (e.g., irreducibility and ergod-

icity) and its invariant measure is that of the posterior, then samples of the chain will

eventually be realizations of the posterior. With the assumption that measurement

error is normally distributed, the forward model appears in the posterior. There-

fore, the posterior depends on the parameter implicitly. There is no direct method

for evaluating moments of the posterior: numerical quadrature is infeasible in high

dimensions. Using MCMC, we produce an ensemble of parameters distributed accord-

ing to the posterior. Statistical estimators of the resulting sample set approximate

moments of the posterior including the mean and variance. As the number of samples

increases, we expect the estimates derived from the sample set to converge to the true

moments of the posterior.

Each sample in the MCMC simulation requires at least one solution of the forward

model. If the forward model represents complex physics, the computational cost of

1Note that pictorial representations of the posterior are limited to low-dimensional parametric
input spaces. While we may revert to such examples to gain insight, the problems of interest usually
do not satisfy this criterion.
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MCMC becomes prohibitive. When the forward model represents the discretization

of a set of PDEs which are linear in state, we can reduce the complexity of a forward

solve by finding a reduced-order model. A reduced-order model is a surrogate for the

high-fidelity model which adequately captures the input-output maps of interest but

is significantly cheaper to evaluate. If the map from parametric inputs to outputs

inhabits a low-dimensional subspace of the state space, it stands to reason that a

reduced-order model may capture the input-output relations of interest while reducing

the computational complexity of a forward solve. With the reduced-order model, we

can produce accurate forward solutions at low cost; therefore, we can utilize MCMC

on some statistical inverse problems which would otherwise be intractable.

Next, we provide additional background on UQ, the solution of large-scale inverse

problems, and model reduction. We provide several useful references for current

research in these areas.

1.2 Background

We now provide the necessary background in uncertainty quantification (UQ), inverse

problems, and model reduction. Epistemic and aleatoric uncertainty are defined.

We focus on UQ related to design under uncertainty. Inverse problem theory is

explored. The ill-posedness of inverse problems in the sense of Hadamard is stated

and explained. We then focus on the large-scale inverse problem and highlight state-

of-the-art methodologies in both the deterministic and statistical settings. Finally,

we highlight important work in model reduction. The most widely used approaches

are cited and the projection-based framework is outlined.

1.2.1 Uncertainty quantification

There are two types of uncertainty to be considered. Epistemic uncertainty is that

which follows from a lack of knowledge; aleatoric uncertainty results directly from

inherent variability in the system [61]. In the Bayesian framework, both types of
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uncertainty can be cast as random variables.2 Any parameter which is not certain is

assumed to vary randomly. Information about its distribution is incorporated through

the prior. The need for uncertainty quantification is motivated by the umbrella of

design-under-uncertainty: model calibration, engineering system design, and policy-

making are three examples.

Model calibration refers to the tuning of model parameters to fit experimental data

often for, but not limited to, computational models. In [44], Kennedy and O’Hagan

utilize a Bayesian approach to calibrate model parameters of a complex black-box

computer code. The formulation is similar to that employed in the current work;

however, the parameter space is low-dimensional and therefore numerical quadrature

can be used to integrate moments of the posterior. This methodology is extended and

implemented in [55]. Model validation via uncertainty propagation is undertaken in

[16]. The authors propose the use of surrogates via polynomial regression and kriging

in cooperation with data transformations to efficiently propogate uncertainty through

a complex forward model. The work of McFarland et al. in [56] compares nonlinear

regression and Bayesian techniques for model calibration.

In engineering system design, uncertainties must be propagated from model inputs

to model outputs. Uncertainty analysis is critical in the design phase: component and

assembly testing are very expensive aspects of development. If non-robust designs can

be eliminated early in the process, the prototyping phase may be much cheaper. In

[17] Chen et al. outline the importance of global sensitivity analysis in design under

uncertainty. In particular, the authors utilize surrogate models including kriging,

radial basis functions, and polynomial approximants for computationally expensive

simulations. Ierapetritou et al. formulate a general process engineering problem with

stochastic parametric inputs in [41]. Four different types of uncertainty are identified

and a multi-step decomposition method is presented for solving the resulting stochas-

tic optimization problem. A thorough review of optimal control under uncertainty

appears in [67].

Policy-making can also benefit from uncertainty quantification. The allocation

2The same is not true of the frequentist viewpoint.

24



of resources to projects can be posed as an optimization problem with uncertain

parameters. For example, one may have a probabilistic sense of a project’s cost and

value. A company or government organization might wish to maximize the ratio

of value to cost under the uncertainties quantified in the projects. In this manner,

different policies can be explored pertaining to different assumptions on the inputs –

and the associated uncertainty would be propagated throughout the analysis. Fiscal

policy problems also require design under uncertainty. In [49], Levin et al. consider

monetary policy and its robustness to uncertainty in pre-defined forecast parameters.

1.2.2 Inverse problems

We now turn to the theory of inverse problems and study the current practice for

large-scale problems.

Hadamard outlined the concept of a well-posed problem in [38]. He stated that

mathematical models of physical problems must have three properties: (1) existence,

(2) uniqueness, and (3) continuous dependence of the solution on the data. By this

notion of well-posedness, an inverse problem is inherently ill-posed: the limited obser-

vation of outputs often necessarily implies nonuniqueness.3 This fact is the entrypoint

for an entire field of regularization theory.

The main idea of regularization is to modify the problem to favor solutions of

a certain type. The exact implementation is usually problem dependent; however,

many versions of regularization have been studied and implemented. Therefore, there

is an extensive base of experience from which to draw. In the problems of interest

to this work, the solution space is a field variable. Suitable regularization schemes

penalize the continuous norm of some combination of the derivatives of that field.

Tikhonov regularization corresponds to penalizing the norm of the zeroth derivative,

for example. The present work penalizes a continuous norm of the first derivative of

the parameter by choosing a Gaussian prior.4

As stated above, problems of interest are usually solved in one of two ways: either

3In addition, inverse problems may also suffer from nonlocality and noncausality.
4The relation between the prior and regularization schemes is explored further in Appendix A.
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deterministically or stochastically. The deterministic inverse problem solution gener-

ally corresponds to the solution of an optimization problem over a high-dimensional

design space. In contrast, the statistical inverse problem requires many forward solu-

tions. The computational cost of the statistical approach depends on two parts: the

cost of a forward solve and the number of realizations of the posterior required to

obtain the desired convergence.

In the deterministic setting, the inverse problem is formulated as a mathematical

program constrained by the forward model. In that case, the solution methodology co-

incides with that of a PDE-constrained optimization problem with high-dimensional

design space. Biegler et al. present a reduced Hessian SQP algorithm in [8] and

demonstrate its numerical performance in [9] on a problem with as many as 517

parameters. For problems with many variables, memory requirements can be con-

straining. In [51], Liu et al. propose a limited memory BFGS method with which they

solve problems with as many as 10 000 variables. Recently, Haber demonstrated that

one can take advantage of the special structure of a problem to speed convergence of

quasi-Newton methods [37]. Solution of larger problems requires massively parallel

implementation and supercomputing resources. Akcelik et al. perform an inversion

over 17 million parameters in 29 minutes and also solve a problem with 139 billion

spatiotemporal unknowns in under five hours with massively parallel algorithms [1].

Whereas our notion of a solution to the statistical inverse problem is characterized

by moment estimators, one may prefer a maximum a posteriori (MAP) estimate.

The MAP estimate is the point in parameter space which is most probable under the

measure of the posterior. The formulation of the inverse problem still follows from

Bayes’s rule, but instead of estimating moments of the posterior, an optimization

problem is solved to maximize it. The geostatistical approach [45] is a two-step

process: structural analysis followed by model calibration. The goal is to ascertain

the MAP estimate. When a gradient-based optimization method is used, the MAP

estimate is subject to local maxima. Like the solution to the deterministic inverse

problem, the solution omits quantification of uncertainty.

If uncertainty quantification is desired, the statistical inverse problem requires
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many forward problem solutions. Those problems which arise from science and engi-

neering may be solved with models representing a suitable discretization of a set of

PDEs over a domain of interest. In some cases, a forward solution can be computa-

tionally expensive. Kaipio et al. recently proposed mesh-coarsening for solving the

linear inverse problem [42]. In particular, they leverage the Bayesian formulation to

quantify the statistics of the error associated with the coarser grid. The proposition is

to utilize this knowledge to suitably reduce the dimensionality of the forward model,

thereby achieving tractibility. Polynomial chaos expansions (PCE) have gained atten-

tion recently. In [54], Marzouk et al. propose the use of stochastic spectral methods to

obtain a surrogate for the posterior which can be evaluated much more rapidly than

the original (which necessarily incorporates the forward model). Najm highlights the

use of PCE for UQ in [61].

As pointed out before, there are two primary sources of cost in the MCMC sim-

ulation. The first is the evaluation of the posterior. This challenge is addressed by

surrogate methods including reduced-order models and PCE. The second cost is the

number of realizations required to converge the estimator. Strategies to accelerate

the convergence include adaptivity [66], delayed rejection [35], multiple-try methods

[52], and Langevin proposals [6]. In delayed rejection methods, if a proposal is re-

jected, instead of remaining at the same point in parameter space, a new candidate is

proposed. Reversibility of the Markov chain is preserved by adjusting the acceptance

rate appropriately. Multiple-try methods draw several candidates at the outset of an

iteration and select one to accept or reject by drawing randomly from the set of can-

didates according to a weighting function. In combination with local optimization,

the authors of [52] demonstrate the speedup in convergence even for simple proposal

distributions. Langevin proposals utilize gradient information to affect a hill-climbing

shift on the proposal distribution. With appropriately selected step sizes, the Markov

chain proceeds rapidly to the support of the posterior.

The current work uses a Metropolis-Hastings MCMC algorithm with delayed re-

jection and adaptive Metropolis [35] for full-order MCMC. Delayed rejection involves

multiple proposals per iteration and improves mixing properties with local adaptiv-
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ity. Adaptive Metropolis uses statistical estimators of the current chain to modify

the proposal distribution to improve the acceptance rate.

1.2.3 Model reduction

Reduced-order models which accurately capture the important input-output rela-

tions of a large-scale high-fidelity model are required by the engineering community.

Model reduction is applied primarily in two settings: real-time and multi-query. In

both cases, the reduced-order model serves as a surrogate for the full-order model. In

engineering applications, the full-order model arises from spatial and temporal dis-

cretization of a PDE. The resulting systems often consist of a large number of states,

typically in the millions. For real-time applications, a reduced-order model is often

required to obtain a forward solve in the given time limit. In the multi-query setting,

e.g. in Bayesian inference, one wishes to repeatedly sample the high-dimensional

parametric input space, thereby requiring many forward solves. While a full-order

model could perform that task, the turn-around time is often far too long for it to

be useful. A reduced-order model, however, could perform the same analysis within

minutes.

Reduced-order models are generated by many methods: Krylov-subspace [28, 29,

33], balanced realization/truncation [60, 34, 50, 64, 69, 48], and proper orthogonal

decomposition (POD) [23, 40, 68]. For the applications of interest to us, POD is

the most widely used in large part due to its applicability to general parameterized

systems. POD is a projection-based model reduction technique. For our problem, we

seek two low-dimensional subspaces: one for the parameter and one for the state. A

basis, often constructed from snapshots of the full-order variables, is then utilized to

project the full-order equations to that subspace. In many applications, this reduced

space can be very low-dimensional, capturing over 99% of the input/output relations

with just tens of reduced state variables. The result is a reduced-order model whose

computational complexity is dominated by factorization of a small dense matrix. In

contrast, the full-order model requires solution of a linear system usually characterized

by a large sparse matrix.
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It is well known that the quality of the reduced-order model depends highly on

the snapshots generated to construct the basis, yet there does not exist a generally

accepted method for sampling to create those snapshots. One heuristic method used

to produce the snapshots is the greedy sampling algorithm proposed in [71, 32] and

utilized in [7, 11, 12]. This systematic approach attempts to generate the snapshots

adaptively by iteratively sampling the point in parameter space at which the error

between the full- and reduced-order models is maximal. Since no global optimization

algorithms exist, however, it is only guaranteed to find local maxima. The greedy

optimization problem for the application of steady porous media flow is derived in

Section 3.3.

1.3 Thesis objectives

There are three primary objectives of this work:

• extend the greedy sampling procedure to high-dimensional parameter spaces

(e.g. discretized field quantities);

• develop methodology for reduced-order modeling with order reduction in pa-

rameter and state spaces;

• solve a large-scale statistical inverse problem in reduced parameter space utiliz-

ing the reduced-order model for posterior evaluations.

We develop a novel approach to large-scale statistical inverse problem solutions by

leveraging projection-based reduced-order modeling. The MCMC sampling process

is conducted in the reduced parameter space where traditional Metropolis-Hastings

algorithms are sufficient. Posterior evaluations are accelerated further by reduction

in state. The parameter and state bases are simultaneously identified by an iterative

greedy procedure. In problems of interest, the parameter is a field quantity whose

discretization leads to a very high-dimensional input space. Our first objective seeks

the extension of the greedy procedure to problems of this type. We address new

challenges associated with the large-scale nonlinear programs which must be solved
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at each iteration. Finally, we recast the statistical inverse problem in the reduced

parameter space and compare the results with the full-order implementation.

In addition, the secondary objectives are:

• develop understanding for existing methods and challenges in high-dimensional

Markov chain Monte Carlo sampling;

• identify potential extensions of current work including error estimation, para-

metric posterior representation, alternative model reduction methods, and adap-

tive sampling schemes.

In order to verify the reduced-order results, we must solve the large-scale statis-

tical inverse problem with the high-fidelity model. Indeed, even for modestly-sized

problems, this can be a very challenging task – one aspect of the motivation for the

reduced-order method. An understanding of the existing adaptive MCMC sampling

methods and remaining challenges is necessary to solve the full-order statistical in-

verse problem. With this further understanding, we propose several future research

thrusts in adaptive sampling and the uncertainty quantification framework.

1.4 Roadmap

Chapter 2 presents the problem formulation and outlines the assumptions inherent in

the remainder of the work. The application to the steady porous media flow equations

is introduced and the governing equations derived. The Bayesian formulation of the

statistical inverse problem is presented and then specified for the application in this

work. We define the 1-D and 2-D groundwater inverse problems.

In Chapter 3 we develop the model reduction methodology. The concept of simul-

taneous reduction in parameter and state is introduced and justified for the applica-

tion to the statistical inverse problem. The greedy sampling approach is explained

in further detail. The optimality conditions for the sampling problem are derived for

the porous media flow equations.

30



Chapter 4 focuses on Markov chain Monte Carlo sampling. The challenges of

high-dimensional MCMC are highlighted through the exploration of traditional and

adaptive methods. The delayed rejection adaptive Metropolis (DRAM) method is

defined. We present two additional adaptive methodologies — Langevin sampling

and componentwise adaptation — and comment on potential extensions based on

techniques from large-scale optimization.

The results of the porous media flow inverse problem application are presented in

Chapter 5. We solve the statistical inverse problem in 1-D and 2-D with the full- and

reduced-order implementations. The results are compared and the computational cost

evaluated. We provide a detailed complexity analysis to understand the extension to

the typical application problem size.

We summarize the results in Chapter 6 and conclude the work with several sug-

gestions for future research thrusts in the field.

31



32



Chapter 2

Inverse problem formulation and

finite element discretization

In this chapter we describe the class of problems of interest through a discussion of

properties of the discretized forward model. In Section 2.1, we outline the properties

of the forward model corresponding to the steady groundwater flow equations. Once

the forward model is established, the inverse problem is formulated in two ways. The

deterministic formulation leads to a nonlinear program (NLP) over parameter space

as we demonstrate in Section 2.2. Although we do not consider the solution to the

deterministic inverse problem explicitly in this chapter, the formulation is noteworthy

because of its close connection to the greedy sampling technique employed in the

model reduction as described in Section 3.3. In Section 2.3, the statistical inverse

problem formulation is derived through assumptions on the measurement error and

prior knowledge about the parameter. Bayes’s rule connects these assumptions to the

posterior, the probability distribution considered the solution to the statistical inverse

problem. While the problem definition up to this point is general, in Section 2.4 we

introduce an application to groundwater flow. The governing equations are derived

and discretized by Galerkin finite elements using a piecewise linear approximation.

Boundary conditions are specified for model problems in one and two dimensions.
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2.1 Forward model

We begin by defining the forward model.1 For our purposes, the forward model is a

map from parameter space to output space. Let p ∈ IRNp be a vector of parameters

and the forward model M : IRNp → IRNo compute outputs y ∈ IRNo . The outputs

are related to the parameters through a state u ∈ IRN . The forward problem consists

of solving

f(u;p) = 0, (2.1)

y = y(u), (2.2)

the state and output equations, respectively, with f : IRN×Np → IRN . In the fully

general form, f(·) and y(·) may be nonlinear functions. In the unsteady case, f(·)

and/or y(·) may contain the state at a set of time steps for a finite time horizon.

With some modification, the forthcoming methodology can be applied in the unsteady

setting as well. We restrict our attention in this work to steady problems with the

following characteristics:

(i) the state equation is linear in state,

(ii) the state equation is linear in parameter through the forward operator,

(iii) the output equation is linear in state,

(iv) and the number of parameters is much larger than the number of outputs.

Under these assumptions we write

A(p)u = s, (2.3)

y = Cu (2.4)

where A(p) ∈ IRN×N is the forward operator which depends linearly on p, s ∈ IRN

is a source term which does not depend on state or parameter, and C ∈ IRNo×N

1During the course of the exposition, we may also refer to the forward problem, an evaluation of
the outputs of the forward model given a specified input parameter.
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is the observation operator. Although the equations are linear, the state depends

nonlinearly on the parameter – a fact which contributes significantly to the challenges

in solving the inverse problem. Note that (2.3)–(2.4) is a special case of (2.1)–(2.2).

For the present work, the map of interest is that from parameter to output through

state. While this relationship does depend on some hyperparameters (e.g. source and

boundary conditions), these are assumed constant for the remainder of the work.2

The applications of interest typically have N,Np > 106 and No < 102, for example,

when the finite element discretization is performed over a 3-D domain, the parameter

is a field quantity defined over the mesh, and the outputs are state variables at nodes

sparsely distributed throughout the domain.

We now turn to the inverse problem and outline the deterministic and statistical

formulations. In contrast to the forward problem, the inverse problem uses data or

observations to infer the underlying parameters. The deterministic inverse problem

formulation attempts to minimize the misfit between data and model output subject

to regularization. The statistical inverse problem formulation uses assumptions on the

distribution of output error and a priori knowledge of the parameter distribution to

determine the posterior, a probability distribution over the parameter space reflecting

the incorporation of the data. In the following discussion, we utilize the general

discrete equations (2.1)–(2.2) above.

2.2 Deterministic inverse problem

The deterministic inverse problem is formulated as a large-scale nonlinear program

over the parameter space. Let D be the parametric space of interest. Additionally,

let r : IRNp → IR be a regularization functional and β ∈ IR+ be a regularization

2Throughout the text, we may relax the parametric specification for convenience. Unless other-
wise specified, the reader may assume that A = A(p), u = u(p), and y = y(u(p)).
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parameter. Then, p∗ is the solution to the deterministic inverse problem if

p∗ = arg min
p∈D

J =
1

2
‖y − yd‖

2 +
1

2
βr(p), (2.5)

subject to f(u;p) = 0, (2.6)

y = y(u) (2.7)

where yd ∈ IRNo is the data and ‖ · ‖ is a suitably defined norm. The first term in

the objective function J is a measure of the misfit between outputs corresponding to

parameter p and the collected data yd. In the absence of measurement error, the first

term vanishes for the parameter which produces the data. Without the regularization

term, the inverse problem is ill-posed in the sense of Hadamard: There may be many

parameters p ∈ D∗ where D∗ = {p | ‖y(p) − yd‖ = 0}. When properly regularized,

the inverse problem becomes well-posed provided that r(p) is unique for all p ∈ D∗.

In particular, the regularization functional provides a method by which solutions of

a particular type may be penalized (or conversely, admitted). The regularization

functional usually consists of a combination of p and its derivatives. Proper choice of

regularization functional is both a science and an art. Indeed, regularization theory

has become a field in and of itself. Although it is important to the solution of the

deterministic inverse problem, we will not study regularization theory further here.

A comprehensive background is provided in [25] for the interested reader.

Irrespective of the particular regularization scheme, the deterministic inverse prob-

lem is a PDE-constrained NLP. In general, we have no guarantees about the con-

vexity of either the feasible set or the objective function. Coupled with the high-

dimensionality of D, these attributes yield a challenging optimization problem. In

Chapter 3 we encounter a similar problem as a result of the formulation of the greedy

sampling procedure for the model reduction. There, we apply a grid continuation

technique in combination with a trust-region Newton method to solve the NLP. We

delay detailed discussion until Section 3.3.

We note one disadvantage of the deterministic inverse problem formulation (2.5)-

(2.7). The solution to the NLP is a single parameter p∗ ∈ D. In particular, we have
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no measure of the uncertainty in that solution. In contrast, uncertainty quantification

follows naturally from the statistical formulation of the inverse problem.

2.3 Statistical inverse problem

In contrast to the single-point estimate of the deterministic formulation, the solution

to the statistical inverse problem is a probability distribution over parameter space.

Under reasonable assumptions, we obtain the posterior analytically. Unfortunately,

the resulting expression depends implicitly on the parameter through the forward

model. Therefore, it is difficult to glean any information of value from the analytical

expression. In particular, we cannot obtain the moments of the posterior directly.

Instead, we must approximate moments via Markov chain Monte Carlo (MCMC)

sampling. We provide details on this matter in Chapter 4.

The statistical inverse problem formulation is an application of Bayesian inference.

Let γp(p) be a probability distribution over parameter space D representing our a pri-

ori knowledge of the parameter. This distribution is appropriately termed the prior.

Selection of the prior is closely related to the choice of regularization functional in

the deterministic setting. In fact, precise links can be made when a maximum a

posteriori (MAP) estimate is computed. When moments of the posterior are desired,

the effect is not as clear. The prior is useful for incorporating problem-specific knowl-

edge. In the absence of prior information, a uniform prior γp(p) ∼ U(D) is often

used. However, if any information is known a priori, it should be incorporated. The

prior provides the tool to do so. In what follows, we select a Gaussian process prior,

γp(p) = exp

{

−
1

2
βpTS−1p

}

(2.8)

where S ∈ IRNp×Np correlates points ~xi and ~xj in space such that S = Ŝ + cI and

Ŝi,j = a exp

{

−‖~xi − ~xj‖
2
2

2b2

}

; (2.9)

for scalar parameters a, b, and c. For some particular choices of prior (e.g., the
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stiffness matrix), a direct link may be drawn between the prior of the statistical

inverse problem and the regularization in the deterministic inverse problem. Please

see Appendix A for further details.

The likelihood function establishes the relative probability of different measure-

ment outcomes given a specified parameter. If we assume that the measurement is

normally distributed with covariance σ2I, then we have the likelihood function

L(yd|p) = exp

{

−
1

2σ2
‖yd − y(p)‖2

2

}

. (2.10)

Given a parameter value p, the likelihood function determines the relative prob-

ability of data yd. Here we assume yd ∼ N (y(p), σ2I); the data are normally dis-

tributed about y(p) with covariance σ2I. Note that the likelihood is not a probability

distribution but instead is a function L : IRNp → IR. Other choices of the likelihood

are possible; however, we find this choice logical and convenient given the context of

sensor measurement and our choice of prior.

The prior and the likelihood are connected to the posterior by Bayes’s rule. The

posterior is

πp(p|yd) =
L(yd|p)γp(p)
∫

Yd
πyd

dYd

. (2.11)

The normalizing constant c =
∫

Yd
πyd

dYd is typically not known and may be as

difficult to quantify as moments of the posterior itself. However, provided c 6= 0,

the normalizing constant is of no particular interest: The relative probabilities of

parameters is important. In particular, we write

πp(p|yd) ∝ L(yd|p)γp(p).

Under the assumptions of the prior knowledge of the parameter and a likelihood

function, we obtain these relative probabilities in analytical form,

πp(p|yd) ∝ exp

{

−
1

2σ2
‖yd − y(p)‖2

2 −
1

2
βpTS−1p

}

. (2.12)
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Technically speaking, this posterior distribution is the solution to the statistical in-

verse problem up to the normalizating constant. Unfortunately, useful aspects of the

posterior are not evident from the analytics for two reasons: (1) the normalizing con-

stant scales the distribution and can therefore have order of magnitude effects on the

acquired probability for a single parameter and (2) the expression is implicit in the

parameter through the forward model.

From the statistical formulation, we consider two courses by which to proceed.

First, we define the maximum a posteriori (MAP) estimate,

p∗ = arg max
p∈D

πp(p|yd), (2.13)

that parameter which maximizes the posterior. When the posterior has exponen-

tial form, the MAP estimate is obtained via large-scale optimization by maximizing

log πp(p|yd). Like the deterministic formulation, this method results in a single point

estimate of the solution without natural quantification of the uncertainty and is sub-

ject to the same difficulties of all general NLPs.

On the other hand, we may inquire about the moments of the posterior. The first

two moments are the mean and variance and are given componentwise by

p̄i =

∫

D

piπp(p|yd)dD, var(pi) =

∫

D

(pi − p̄i)
2πp(p|yd)dD, i = 1, 2, . . . , Np

(2.14)

respectively. Note that if the parameter space were low-dimensional, we could use

numerical quadrature to approximate the normalizing constant, and in turn, the mo-

ments of (2.14). However, with D ⊂ IRNp and Np large for problems of interest,

numerical quadrature is intractible. Instead, we rely on discrete approximations to

these integrals through an ensemble of parameters drawn from the posterior distri-

bution.

Let S = {p1,p2, . . . ,pNs
} be a set of Ns samples from the posterior distribution.
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By the weak law of large numbers, for Ns large,

p̄i =
1

Ns

Ns
∑

j=1

pj
i , var(pi) =

1

Ns − 1

Ns
∑

j=1

(pj
i − p̄i)

2, i = 1, 2, . . . , Np

are accurate approximations of the mean and variance of the posterior, respectively.

Here we use superscripts to denote the index of the sample in the ensemble and

subscripts to denote the element of the parameter vector. In Chapter 4 we discuss

how MCMC produces the set S. We note here that the solution to the statistical

inverse problem by MCMC leads to quantification of the mean and variance as well as

estimates in the uncertainty in those solutions. It is this more complete probabilistic

characterization of the parameter estimate which is consistent with the decision-

making-under-uncertainty paradigm introduced in Section 1.1.

2.4 Steady flow through porous media

In this section, we introduce the application of our methodology to steady flow

through porous media. We first develop the continuum equations via conservation

of mass and Darcy’s law. In Section 2.4.2 we develop the high-fidelity finite element

model for solution of the steady groundwater flow equations in a domain with a suit-

able finite element mesh. In Section 2.4.3 and Section 2.4.4 the governing continuum

and discretized equations are specified to 1-D and 2-D model problems which will be

studied throughout the remainder of this work.

2.4.1 Derivation of the governing equations

Let u(~x) be the pressure head, p(~x) be the hydraulic conductivity, ~q(~x) be the Darcy

flux, and f(~x) be a source. Consider the control volume pictured in Figure 2-1. The

control volume has differential area dA with boundary δA. By conservation of mass,

the Darcy flux out of the control volume must balance the source inside. That is,

∮

δA

~q · ~n dv =

∫ ∫

dA

f dA (2.15)
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Figure 2-1: Control volume for derivation of the groundwater flow equations.

where ~n is the outward-pointing unit normal vector and dv is a differential arc along

δA. Using Green’s theorem, we convert the line integral over the boundary to an

integral over the domain such that

∫ ∫

dA

∇ · ~q dA =

∫ ∫

dA

f dA (2.16)

where we have introduced the divergence operator. For this equation to be satisfied

for every differential element in domain Ω, we must have equality of the integrands

∇ · ~q = f, ~x ∈ Ω. (2.17)

Darcy’s law relates the pressure head and hydraulic conductivity to the Darcy flux

by the relation

~q = −p∇u. (2.18)

Substituting Darcy’s law into (2.17), we arrive at the steady groundwater flow equa-

tion

−∇ · (p∇u) = f, ~x ∈ Ω. (2.19)

Note the connection to the heat equation. In particular, Darcy’s law is analogous to

Fourier’s law. We make no assumption on the isotropy of the parameter p; it will be

considered heterogeneous for the entirety of this exposition.

Let ΓD and ΓN divide the boundary of Ω into Dirichlet and Neumann boundaries

respectively, i.e. ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅. See Figure 2-2.
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Figure 2-2: A general computational domain Ω with Neumann ΓN and Dirichlet ΓD

boundary conditions.

The solution to (2.19) requires boundary conditions

p∇u · ~n = h on ΓN and u = g on ΓD. (2.20)

On the Neumann boundary we specify the normal component of the Darcy flux. On

the Dirichlet boundary, the pressure head is imposed.

2.4.2 Finite element model

The derivation of our high-fidelity finite element model begins with the variational

formulation of the governing equations (2.19) along with boundary conditions (2.20).

Then we introduce the discretization of Ω and set up the discrete linear system whose

solution will be used to reconstruct the pressure head u(~x).

The variational formulation of the groundwater flow equation is derived by requir-

ing (2.19) to be satisfied in the weak sense,

∫

Ω

v [−∇ · (p∇u) − f ] dΩ = 0 (2.21)

for suitable test functions v ∈ H1
0 (Ω) ≡ {v(x) | v|

ΓD
= 0}. Then, (2.21) is integrated

by parts to yield the variational form

∫

Ω

p∇u · ∇v dΩ =

∫

Ω

fv dΩ +

∫

ΓN

hv dΓ u ∈ XD, ∀v ∈ H1
0 (Ω), (2.22)

where the prescribed flux h has been substituted and XD = {u(~x) ∈ H1(Ω) | u|
ΓD

=
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g}. Although we have introduced some regularity conditions through the restriction

of the spaces in which the solution and test functions reside, the variational problem

is still continuous. Next, we discretize by introducing a triangulation of the domain.

Let T be a finite element triangulation of Ω. We assume that T satisfies the

regularity conditions of a finite element mesh and that the union of the closure of all

simplices Ti ∈ T covers the closure of the domain, i.e. Ω̄ =
⋃

Ti∈T
T̄i. Let XF = {v ∈

H1(Ω) | v ∈ IP1(Ti), ∀Ti ∈ T } be the finite element space.3 Then consider the test

space XF
0 = {v ∈ XF | v|

ΓD
= 0} and trial space XF

D = {v ∈ XF | v|
ΓD

= g̃} where g̃

is the IP1 approximation of g.

Given uF ∈ XF
D, (2.22) becomes

∫

T

pF∇uF · ∇vF dΩ =

∫

T

fvF dΩ +

∫

ΓN

hvF dΓ, ∀vF ∈ XF
0 . (2.23)

where pF ∈ XF is the IP1 approximation of p. To continue the derivation of the

discrete form, we introduce the piecewise linear nodal basis functions φi ∈ XF defined

to be unity at node i and zero elsewhere. Let N be the number of nodes in Ω\ΓD

and ND be the number of nodes lying on ΓD. We make the following assumptions:

uF =

N
∑

j=1

φjuj +

N+ND
∑

j=N+1

φjgj and pF =

Np
∑

k=1

φkpk, (2.24)

where gj are the nodal values of the prescribed pressure head on ΓD. Substituting

(2.24) into (2.23), we find

N
∑

j=1

uj

Np
∑

k=1

pk

∫

T

φk∇φj · ∇φi dΩ =

∫

T

fφi dΩ +

∫

ΓN

hφi dΓ −
N+ND
∑

j=N+1

gj

Np
∑

k=1

pk

∫

T

φk∇φj · ∇φi dΩ, ∀i = 1, 2, . . . , N.

3Increased accuracy could be obtained by considering higher degree polynomial representations in
Ω. Our concern in this work is not the accuracy of the high-fidelity model, but instead the accuracy
of the reduced-order model to be developed in Chapter 3.
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This formulation corresponds to the linear system

A(p)u = Mf + Hh−Bg, (2.25)

where A(p) ∈ IRN×N , p ∈ IRNp, u ∈ IRN , M ∈ IRN×N , f ∈ IRN , H ∈ IRN×N ,

B ∈ IRN×ND , and g ∈ IRND are defined to be

Ai,j =

Np
∑

k=1

pk

∫

T

φk∇φj · ∇φi dΩ, u =

















u1

u2

...

uN

















, Mi,j =

∫

T

φjφi dΩ,

f =

















f1

f2

...

fN

















, Hi,j =

∫

ΓN

φjφi dΓ, h =

















h1

h2

...

hN

















,

Bi,j =

Np
∑

k=1

pk

∫

T

φk∇φj · ∇φi dΩ, g =

















gN+1

gN+2

...

gN+ND

















where fi is the nodal source value and hi is the allocated flux to node i. Note that

the right hand side term −Bg is a source arising from nonzero essential boundary

conditions g 6= 0. Note that (2.25) is an example of (2.3) with s = Mf + Hh − Bg.

We now briefly discuss properties of the state equation (2.25) and potential solution

methods.

The forward operator A is symmetric in this Galerkin formulation. Its inverse is

well-defined provided there is not a cluster of simplices in T over which p = 0. Note

however that physical reality requires positive hydraulic conductivity p > 0, thereby

implying positive definiteness of A. If this positivity constraint is met, the state

equation becomes a linear system defined by a symmetric positive-definite (SPD)

matrix.
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Figure 2-3: A sample uniform finite element mesh with mesh radius h = 1/18. Sensor
nodes are indicated by red circles.

In preparation for our discussion of the model reduction methodology in Chap-

ter 3, we now consider the division of the solution to this forward model into its

homogeneous and particular solutions. Let u0 and uP be the homogeneous and par-

ticular solutions respectively where u0 is the solution to (2.25) when g = 0 and uP

is the solution with nonzero essential boundary conditions but zero source s = 0 and

zero flux h = 0. With these definitions, it is clear that u = u0 + uP . Multiplying

each side by A we have Au = Au0 + AuP = Ms + Hh − Bg. We show later that

this division produces a reduced-order model whose error is invariant to scalings of p.

2.4.3 1-D model problem

In this section, we define the 1-D model problem used in Chapter 5 to demonstrate

the efficacy of our reduced-order approach to the statistical inverse problem. Let the

domain Ω = {x | 0 < x < 1} be the unit interval. The governing equations are

−
d

dx

(

p
du

dx

)

= f in Ω,

du

dx
(x=1) = h,

u(x=0) = g.

Let T be a uniform mesh of triangles with mesh radius r such that there are a total

of N + ND = (1 + 1/r)2 nodes and 1/r elements in the mesh. See Figure 2-3. The

outputs are given by the state at a subset of the nodes corresponding to sensors. For

i = 1, 2, . . . , No, we have yi(x) = u(xi). The sensors are indicated in the figure by red

circles. Typically we will equip approximately ten percent of the nodes with sensors.
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Figure 2-4: A sample finite element mesh with mesh radius r = 0.1 generated by
distmesh2d.m, a finite element mesher developed by Professor Per-Olof Persson and
Professor Gilbert Strang.

In the following, we take g = 0 and h = 0 to simplify some of the analysis; the results

of Chapter 5 will still hold in the presence of inhomogeneities in the data, though the

reduced-order model must be handled more delicately. The function f will be the

sum of Gaussians though many other choices are also possible.

2.4.4 2-D model problem

We now describe in detail the 2-D model problem which is considered in this work.

In particular, we specify the general continuum and finite element formulations above

to a domain and appropriate boundary conditions. Let Ω = {(x, y) | 0 ≤ x, y ≤ 1}

be the unit square, Γ = {(x, y) | x ∈ {0, 1} ∩ y ∈ {0, 1}} be the boundary, ΓD =

{(x, y) | x ∈ {0, 1}}, and ΓN = Γ\ΓD. An example of one of the meshes is pictured in

Figure 2-4.

The governing equations are

−∇ · (p∇u) = f in Ω,

p∇u · ~n = h on ΓN,

u = g on ΓD
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(a) (b)

Figure 2-5: The 2-D model problem: (a) pictorial representation of groundwater
problem and (b) associated computational domain.

where, once again, we take g = 0 and h = 0. The source term f will be a sum of

Gaussians to be specified in Chapter 5. The output equation is defined by a subset

of the nodes such that yi = u(~xi) for all i = 1, 2, . . . , No. A picture of the problem

setup and computational domain is provided in Figure 2-5.
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Chapter 3

Model Reduction

In this chapter, we discuss a simultaneous parameter-state model reduction procedure.

While the efficiency of a forward model solution depends mostly on the dimensional-

ity of the state N , the cost of the construction or application of the forward operator

scales with the number of parameters Np in the groundwater flow equations. Fur-

thermore, the dimensionality of the domain over which the statistical inverse problem

is solved affects the rate of convergence as well. In [65] it is shown that the conver-

gence of estimators scales with N2
p when a random-walk Metropolis algorithm is used

and with N
1/3
p when a Langevin proposal is chosen. Additionally, we expect that

the admission of the important directions of the parameter space to the basis will

relieve some of the anisotropy of the isoprobability contours of the posterior. It is

demonstrated in [14] that exploration of the posterior via MCMC can be slowed sig-

nificantly if the posterior has anisotropic isoprobability contours. For this reason,

the authors suggest approximating the covariance of the posterior and modifying the

proposal distribution accordingly. While this adaptation produces speedups in low-

dimensional parameter spaces, a similar approach in high-dimensional domains can

result in a large proposal generation cost. We address this issue by projecting into

a low-dimensional parameter subspace where the anisotropic isoprobability contours

in the full space become more regular. Therefore, performing MCMC sampling in

the reduced space does not require expensive proposal modifications: we can utilize

traditional Metropolis-Hastings samplers.
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In the remainder of this chapter, we introduce the projection framework for model

reduction, formulate a reduced-order model with reductions in both state and param-

eter, and discuss the greedy sampling method for obtaining the reduced parameter

and state bases. In Section 3.1, the projection framework is discussed. The concept

is applied to reductions in both state and parameter to formulate the reduced-order

model in Section 3.2. In Section 3.3, the greedy sampling method is motivated and

discussed. The application to the groundwater flow equations is delineated and opti-

mality conditions are derived. We conclude with a note on implementational details.

3.1 Galerkin projection framework

In this section, we introduce the projection framework for model reduction. Let

M : D → O be a model which has input space D ⊂ IRNp and output space O ⊂ IRNo

through a state space S ⊂ IRN . Suppose that the input-output maps of interest

occupy a subset Sr of the state space S. Then we can obtain a reduced-order model

which is accurate for the input-output maps which travel through Sr by assuming

that the state always resides in this subspace. Let V ∈ IRN×n be a basis for the state

in the subspace Sr such that span{v1,v2, . . . ,vn} = Sr and n ≪ N . We obtain a

reduced model by assuming u = Vur and projecting the governing equations onto

the reduced subspace. Consider the forward model (2.3)–(2.4). By substitution and

projection, we obtain the reduced-order model

Ar(p)ur = sr, (3.1)

yr = Crur (3.2)

where Ar(p) = VTA(p)V, sr = VT s, and Cr = CV. When the governing equations

arise from the discretization of a PDE, we transform a large sparse linear system

into a small dense system. In a Galerkin manner, we require that the residual be

orthogonal to the basis functions — our test and trial bases are the same. Other

projections are possible, but we do not explore those here.
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There are many interesting questions to be answered about the construction, us-

age, and accuracy of projection-based reduced-order models. How do we select the

basis V? What is the tradeoff between accuracy and computational efficiency for

different numbers of basis vectors? Can we quantify the error in outputs between the

full- and reduced-order models for a parameter p such that u(p) /∈ Sr? We address

the challenge of selecting the reduced basis for large-scale models parameterized by

field quantities. In this setting, we extend previous work to the new challenge of

sampling a very high-dimensional — even infinite-dimensional — parametric input

space; in addition, we pursue reduction in the parameter in addition to the traditional

reduction of state.

The state basis is usually obtained by sampling the parametric input space, prop-

agating through the forward model, and computing a basis which spans the space of

the resulting states. Popular methods for sampling the inputs vary little in methodol-

ogy but go by many different names. One very popular method is to select the inputs

one expects for one’s particular problem. Then, the resulting states are converted to

an efficient basis by means of a singular value decomposition (SVD). This method

goes by many titles including proper orthogonal decomposition (POD) [68], principal

components analysis (PCA) [60], Karhunen-Loeve (K-L) expansion [46], and empiri-

cal orthogonal functions (EOF) [62] depending on the community. The SVD provides

insight into redundant data and guides the user in deciding how many basis vectors

to retain. In fact, the resulting basis can be shown to be optimal in the sense that the

representation of the states in the basis produces minimal error in the 2-norm. Un-

fortunately, this error bound only holds for the data set computed, which is directly

dependent on the samples chosen.

A projection-based reduced-order model is sensitive to the samples used to gen-

erate the subspace spanned by the basis. If the relevant inputs are not sampled, the

reduced-order model will not be an accurate surrogate for the high-fidelity model.

Therefore, reduced-order models constructed by sampling in an ad-hoc manner may

not be sufficient. When a reduced-order model will be used in the context of inverse

problems, the observability of the system to sampled inputs is especially important.
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To this end, we utilize a systematic, yet heuristic, goal-oriented approach. In Sec-

tion 3.3, we outline the greedy sampling method and discuss its implementation and

application to the groundwater flow equations. First, however, we extend the reduc-

tion to the parameter space as well.

3.2 Parameter and state reduction

Forward models with high-dimensional parametric input spaces may also benefit from

reduction in the parameter. Recall that the forward model (2.3)–(2.4) arises from

discretization of a PDE where the parameter is a field quantity, and is therefore

discretized over the mesh. Furthermore, recall we are interested in models whose

forward operator is linear in the parameter. In this setting, we expect reduction in

the parameter to be beneficial because the construction (or application) of the linear

operator depends linearly on the number of parameters. If a direct method is used

to solve the linear system (2.3), then the construction of the forward operator is

accelerated by reducing the parameter. If instead an iterative method is utilized, the

cost of the application of the forward operator can be reduced in the matrix-vector

product.

There is an additional motivation for reduction in the parameter. In the statistical

inverse problem, we must undertake a separate sampling procedure in the form of

Markov chain Monte Carlo. Conducting MCMC in a high-dimensional parameter

space can be a daunting task. In general, it may take many samples to explore the

space completely. Furthermore, the support of the posterior may occupy a small

region of an otherwise enormous space. If one does not begin the Markov chain near

the body of the posterior, the chain may wander without reaching the support at all.

Additionally, it is shown in [65] that the convergence of a random-walk Metropolis

(RWM) algorithm scales with the square of the number of parameter dimensions. We

propose to conduct MCMC in the reduced parameter space.

We pursue reduction in the parametric input space in an analogous manner to

the reduction in state described in Section 3.1. Suppose the parameters of interest
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reside in a subspace Dr of the parametric input space D. Let P ∈ IRNp×np be the

reduced parameter basis with np ≪ Np and span{p1,p2, . . . ,pnp
} = Dr. We obtain

an accurate reduced-order model for parameters in the reduced subspace by requiring

the parameter to reside in the subspace, i.e. p = Ppr. The reduced-order model is

then written

Ar(pr)ur = sr, (3.3)

yr = Crur (3.4)

where the dependence of Ar is now explicitly on the reduced parametric representa-

tion. For reduced parameters, the forward model outputs are computed directly using

the reduced representation. Thus, the cost of a reduced-order forward evaluation is

independent of the mesh dimension.

We build the reduced-order model by adaptively sampling in parameter space.

At each iteration we sample the parameter space. Using that sample, we obtain the

corresponding state by solving the high-fidelity forward model. The parameter and

state samples are incorporated into the parameter and state bases respectively. See

Algorithm 1.

Algorithm 1 Parameter and state model reduction.

Determine sample in parameter space
Solve the high-fidelity forward model for the state
Build basis P using the parameter sample and basis V using the state sample

3.3 Greedy sampling

We now discuss the selection of the reduced parameter basis and consequently, reduced

state basis. The parametric input space is sampled by an iterative greedy approach

first proposed in [71] and extended in [12]. Instead of sampling the parameter space

at random, we attempt to sample in such a way that the reduced-order model is

accurate over the map from input space to output space. In this way, our samples are
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specified for the governing equations and the output equation, i.e. sensor locations.

3.3.1 Algorithm

The greedy sampling method is an iterative procedure. At each iteration, we attempt

to sample the point in parameter space at which the error between full- and reduced-

order model outputs is maximal [32, 70]. At each local optimum, an objective function

evaluation determines the maximal error. The iteration continues until that error has

decreased sufficiently.1 See Algorithm 2. We note here two important points. Firstly,

as advertised, the procedure is sub-optimal. We do not consider the effect of sampling

a particular point in parameter space before doing so. The worst-case point is se-

lected without forward looking. Secondly, the sampling procedure requires repeated

solution of a large-scale NLP. The solution of such programs requires gradient-based

algorithms, and therefore we are only guaranteed to find local optima.

Algorithm 2 Greedy sampling algorithm.

loop until convergence
Sample the parameter field which maximizes the error in full- and current reduced-
order model outputs (subject to regularization)
Solve the high-fidelity forward model for the sampled parameter to find the corre-
sponding state
Incorporate the parameter and state samples into their respective bases by Gram-
Schmidt orthogonalization
Update the reduced-order model
end loop

Nevertheless, the goal-oriented approach accounts for the governing equations and

model outputs and thereby establishes a reduced-order model which is tuned to be

accurate over the range of inputs which have greater influence over the specified

outputs. If we sample points in parameter space where the model mismatch is large,

we eliminate the model reduction error at the sample. It stands to reason that if

1The stopping criterion may depend on the application, but typically we look for several orders
of magnitude decrease from the first sample. In practice, one may set a stopping criterion on
the objective function value (e.g. J < 10−4), but note that this provides no guarantee about the
output error when the reduced-order model is utilized because of the limitation that gradient-based
optimization can only find local optima.
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we continue this process until the maximal error is small, the result is an accurate

reduced-order model for the input-output map of interest. We now formulate the

greedy sampling problem and derive the optimality conditions for full-order models

of the form (2.3)–(2.4) and reduced-order models (3.3)–(3.4).

At each iteration, we solve an NLP over the full-dimensional parameter space.

The objective function we wish to maximize is the sum of two terms: the first term

accounts for the model mismatch and the second term is a regularization consistent

with the prior we plan to employ in the MCMC simulation. We have

p∗ = arg max
p∈D,‖p‖X=1

J =
1

2
‖y(p) − yr(p)‖2

2 −
1

2
pTS−1p, (3.5)

subject to A(p)u = s, (3.6)

y = Cu, (3.7)

Ar(p)ur = sr, (3.8)

yr = Crur (3.9)

where S ∈ IRNp×Np is the covariance of the chosen prior. Included in the formulation

is a norm constraint on the parameter field. There are two reasons for including

this constraint. Firstly, we are in search of a basis direction and are not concerned

with the magnitude of the parameter we sample.2 Secondly, the constraint limits the

search space over which the optimization must be performed. Program (3.5)–(3.9) is

a PDE-constrained NLP over high-dimensional parameter space. In this formulation,

we assume the regularization parameter has been incorporated into the matrix S.

Note that the problem is constrained by the full-order model and the reduced-order

model. We do not include bound constraints in this formulation though they could

be incorporated if necessary.

A few remarks about NLP (3.5)–(3.9) are necessary here. The motivation for the

2Note that a representation of any scaled basis vector will be perfect; and furthermore, the
resulting state will be represented perfectly as well. The norm ‖ · ‖X should be chosen such that if
p1 and u(p1) are sampled where ‖p1‖X = 1, then u(p1) = cu(cp1) for any c ∈ IR. Therefore there is
no value in sampling parameters in the direction of p1 with any other magnitude, thereby justifying
the norm constraint.
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inclusion of the model mismatch term is self-explanatory and consistent with previous

work. Since our program attempts to find the high-fidelity parameter which maxi-

mizes the error between full- and current reduced-order model outputs, we must use

the reduced-order model with the full-dimensional parameter as input. For example,

we may compute the reduced parameter by requiring a low-fidelity reconstruction to

be equivalent to the full-order parameter under a suitable inner product. In order to

maintain efficiency, the basis vectors should be orthogonalized with respect to this

inner product.

Whether one should or should not include the regularization term is not so clear.

In the context of MCMC sampling, we believe such a penalty should be included for

the following reason. If the MCMC were to be carried out in the full-order parameter

space, then parameters for which pT S−1p is large are unlikely to be sampled when

the prior has the form γp(p) = exp{−1

2
pTS−1p}. Therefore, it is inefficient to sample

unlikely parameters when deriving the reduced-order model, and thus, a penalty

based on the prior is included in the objective function. Furthermore, (3.5)–(3.9)

is nonconvex. In fact, as the greedy sampling procedure progresses, more and more

points in parameter space have model mismatch near zero and the terrain becomes

less and less friendly to an optimizer. The relative effect of this on the objective

function will be determined by the relative weight assigned to the regularity and

to the mismatch. If the mismatch dominates, then the space could become very

unfriendly and special methods (e.g. grid continuation, see Appendix C) will likely

be required. If the regularity dominates, the space will remain smoother, but then

the reduced-order model is less sensitive to the model outputs.

3.3.2 Optimality conditions

We now derive the first- and second-order necessary conditions for an optimal solution

p∗ of the greedy sampling problem (3.5)–(3.9). It is important to note that differ-

entiation and discretization do not always commute in this context. However, when

the forward model represents the steady groundwater flow equations and the regular-

ization term can be represented by an inner product over the domain, differentiation
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and discretization do commute. We proceed with the discretized forms.

To derive the optimality conditions, we take a variational approach. First, we

define the Lagrangian functional by dualizing the state equation constraints (and

substituting the output equations directly into the objective function). Then, the

first-order conditions require stationarity of the Lagrangian with respect to the pa-

rameter, state, and adjoint variables. Let

L = J + λT (Au− s) + µT (Arur − sr) (3.10)

be the Lagrangian functional with adjoint variables λ ∈ IRN and µ ∈ IRn.

We consider first a variation with respect to the adjoint variable λ. For arbitrary

variation λ̂ ∈ IRN , the optimality condition requires

0 =
∂

∂ǫ

[

L(λ + ǫλ̂)
]

ǫ=0

,

=
∂

∂ǫ

[

J + (λ + ǫλ̂)T (Au− s) + µT (Arur − sr)
]

ǫ=0

,

= λ̂
T
(Au− s).

Since this relation must hold for arbitrary variations, we recover the full-order state

equation as expected, i.e. Au = s.

Now consider an arbitrary variation µ̂ ∈ IRn to the reduced adjoint variable µ.

First-order optimality requires

0 =
∂

∂ǫ
[L(µ + ǫµ̂)]ǫ=0

,

=
∂

∂ǫ

[

J + λT (Au− s) + (µ + ǫµ̂)T (Arur − sr)
]

ǫ=0
,

= µ̂T (Arur − sr).

The equation must hold for arbitrary variations and we recover the reduced state

equations Arur = sr.

We now derive the adjoint equations by considering variations in the full-order

57



and reduced-order states. Let û ∈ IRN be arbitrary. Then optimality requires

0 =
∂

∂ǫ
[L(u + ǫû)]ǫ=0

,

=
∂

∂ǫ

[

J (u + ǫû) + λT (A(u + ǫû) − s) + µT (Arur − sr)
]

ǫ=0
,

=
∂

∂ǫ

[

1

2
(C(u + ǫû) − yr)

T (C(u + ǫû) − yr) −
1

2
pTS−1p + λT (A(u + ǫû) − s)

]

ǫ=0

,

= ûTCT (Cu− yr) + ûT ATλ

for all such variations. Thus we obtain the full-order adjoint equation AT λ =

−CT (y − yr). Note that the forward operator of the groundwater flow equations

is self-adjoint, i.e. A = AT . We can take advantage of this fact in the implementa-

tion by reusing information from the solution to the state equations. If an iterative

method is used, we can recycle the Krylov vectors. If a direct method is chosen, the

Cholesky factor can be stored and re-used.

There is an analogous variation for the reduced-order state. Let ûr ∈ IRn be an

arbitrary variation. Then,

0 =
∂

∂ǫ
[L(ur + ǫûr)]ǫ=0

,

=
∂

∂ǫ

[

J (ur + ǫûr) + λT (Au− s) + µT (Ar(ur + ǫûr) − sr)
]

ǫ=0
,

=
∂

∂ǫ

[

1

2
(y −Cr(ur + ǫûr))

T (y −Cr(ur + ǫûr)) −
1

2
pTS−1p + µT (Ar(ur + ǫûr) − sr)

]

ǫ=0

,

= −ûT
r CT

r (y − Crur) + ûT
r AT

r µ

for all reduced-order variations. This leads to the reduced-order adjoint equations as

advertised. We have AT
r ur = CT

r (y − yr). Note the sign difference between the full-

and reduced-order adjoint equations.

Finally, we consider variations of the parameter, thereby leading to the gradient

of the Lagrangian. Let p̂ ∈ IRNp be an arbitrary variation in the parameter. Then,
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the variation of the Lagrangian with respect to the parameter is given by

∇pL =
∂

∂ǫ
[L(p + ǫp̂)]ǫ=0

,

=
∂

∂ǫ

[

J (p + ǫp̂) + λT (Au− s) + µT (Arur − sr)
]

ǫ=0
,

=
∂

∂ǫ

[

−
1

2
(p + ǫp̂)TS−1(p + ǫp̂) + λT (A(p + ǫp̂)u− s) + µT (Ar(p + ǫp̂)ur − sr)

]

ǫ=0

,

= −p̂T S−1p + λTA(p̂)u + µTAr(p̂)ur.

Unaltered, this is the inner product of the gradient with p̂. For optimality, this

gradient should converge to zero for all directions p̂ ∈ IRNp.

The first-order optimality conditions are five coupled ordinary differential equa-

tions: state equations for the full and reduced systems, adjoint equations for the full

and reduced systems, and the control (gradient) equation. At optimality, there will

be a quintuple (p,u,ur,λ,µ) at which all five variations vanish.

We utilize Newton’s method in combination with a trust region globalization strat-

egy to solve the NLP (3.5)–(3.9); therefore, it is necessary we provide the optimizer

with a routine to compute the Hessian-vector product. We now derive the Hessian of

the Lagrangian by using a total differential approach. We have from above

∂L

∂λ
= Au− s = 0,

∂L

∂µ
= Arur − sr = 0,

∂L

∂u
= AT λ + CT (y − yr) = 0,

∂L

∂ur
= AT

r µ −CT
r (y − yr) = 0,

(

∂L

∂p

)

i

= −
(

S−1p
)

i
+ λTAiu + µTAi

rur, i = 1, 2, . . . , Np

where Ai = A(ei) and ei is the unit vector in the ith coordinate direction. We now

consider total differentials of these equations. In the following we use the shorthand

Lx for ∂L/∂x.
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The total differential for the gradient expression is

dLp =
∂

∂p
Lpdp +

∂

∂u
Lpdu +

∂

∂ur
Lpdur +

∂

∂λ
Lpdλ +

∂

∂µ
Lpdµ, (3.11)

(dLp)i = −
(

S−1dp
)

i
+ λTAidu + µTAi

rdur + uTAidλ + uT
r Ai

rdµ, (3.12)

for i = 1, 2, . . . , Np. The incrementals du, dur, dλ, and dµ must satisfy the total

differential relations of the other four first-order optimality conditions,

dLλ = A(dp)u + Adu = 0, (3.13)

dLµ = Ar(dp)ur + Ardur = 0, (3.14)

dLu = A(dp)T λ + ATdλ + CT (Cdu− Crdur) = 0, (3.15)

dLur
= Ar(dp)T µ + AT

r dµ − CT
r (Cdu− Crdur) = 0. (3.16)

This set of incrementals and the total differential of the gradient equation define the

Hessian-vector product. For vector dp ∈ IRNp we solve (3.13) for du and (3.14) for

dur. The results are then substituted into (3.15) and (3.16) to compute dλ and

dµ. Substitution into (3.12) yields the Hessian-vector product as required by an

optimizer. We obtain the Hessian-vector product by one forward and one adjoint

solve at full-order and one forward and one adjoint solve at reduced-order.

The reduced-order models utilized to generate the results in this work are obtained

by solving the greedy sampling problem with Matlab’s fminunc function. The

large-scale optimization routine is a subspace trust-region Newton method [20, 19]

which we now outline. The optimization begins at an initial location and moves from

iterate to iterate by solving approximately the trust-region subproblem. The trust-

region subproblem is the minimization of a quadratic approximation to the objective

function in a neighborhood, the trust-region, of the current iterate. The trust-region

subproblem can be solved very efficiently when restricted to two dimensions. The

fminunc algorithm identifies this subspace by an inexact solution for the Newton

direction via preconditioned conjugate gradients (PCG). The Newton direction is

given by the solution to the system Hdp = −g where Hdp is the Hessian-vector
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product and g is the gradient. If the current iterate is located where the Hessian is

not positive definite, then if a direction of negative curvature is identified by PCG,

it is followed to the edge of the trust-region. A proposed step is accepted if sufficient

decrease is achieved. If decrease is not achieved, the trust-region radius is reduced

and the subproblem is resolved. The iteration continues until the gradient of the

objective function is reduced below a specified tolerance.3 In the implementation the

norm constraint is included as a quadratic penalty term in the objective function.

3Additional details about fminunc can be found in the Matlab documentation.
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Chapter 4

Markov chain Monte Carlo

In Chapter 1 we motivate the necessity for uncertainty quantification in the context of

decision-making-under-uncertainty. In this chapter, we develop further the proposed

paradigm shift to probabilistic descriptions of parametric uncertainty.

Many important decision-making processes are conducted based on single-point

estimates. Such estimates neglect the always-present uncertainty in parameters and

data. Not only should parametric inputs be characterized by complete probabilistic

descriptions, but the outputs of models used to make decisions must properly prop-

agate that uncertainty. The final decision-making step is manifested in a stochastic

or robust optimization problem, depending on the context and the desire to mitigate

risk. In this work, we focus on the first step in this process, namely, the identification

of a probabilistic quantification of uncertain parametric inputs. In particular, we

consider the parameter estimation problem for discretized field quantities (Np>104)

in the form of a statistical inverse problem.

In Chapter 2 we introduce the statistical inverse problem and its key components:

prior, likelihood, and posterior. We note that, in some sense, the posterior is the

solution to the statistical inverse problem but that the analytics are not sufficient

to gain insight into the distribution or make it useful for design under uncertainty.

Instead, we would like to compute moments of the posterior, e.g. the mean and

variance. These metrics give us a better sense of how the posterior is distributed

throughout parameter space. Markov chain Monte Carlo (MCMC) sampling provides
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a method by which to draw samples from the posterior distribution. From these

samples, we may then compute estimates of these moments.

We begin the discussion of MCMC by describing the basic ideas. The standard

Metropolis-Hasting (M-H) implementation is described and its satisfaction of detailed

balance observed. After highlighting some of the disadvantages of M-H, we turn to

adaptive techniques. We outline four adaptive methods including delayed rejection,

adaptive Metropolis, Langevin sampling, and componentwise adaptation. In Sec-

tion 4.4 the potential benefits of reduced-order MCMC are outlined and methodology

explained. Section 4.5 explores connections to techniques from large-scale optimiza-

tion and their potential extension to the probabilistic setting. Finally, in Section 4.6,

we provide a few brief comments about the requirements of an MCMC solution to the

statistical inverse problem from a broader perspective of design-under-uncertainty.

4.1 Basic Principles

MCMC is a powerful combination of two main concepts: Markov processes and Monte

Carlo sampling.

A Markov process is defined by a transition kernel κ(p,q) – that is, a probabilistic

description of a movement from p to q. The transition is Markovian if the transi-

tional kernel depends only on the current parameter p and the proposed parameter

q. A random walk is a set of parameters visited according to transitions by the ker-

nel κ. With sufficiently many transitions, the random walk reaches the stationary

distribution of the Markov process.

Monte Carlo sampling is commonly employed for numerical integration in high-

dimensional spaces where quadrature suffers from combinatorial function evaluation

requirements. If instead samples can be drawn from the integrand, or a weighted

function thereof, the integral can be approximated numerically by the law of large

numbers via the sample mean.

MCMC combines these two ideas to define a methodology for generating samples

from an implicitly-known probability density. A random walk, tending toward sam-
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ples of the posterior, through the parameter space is defined by a transition kernel.

Moments of the posterior are approximated by discrete approximations to the contin-

uous moments. Whereas Markov processes are defined by the transition kernel and

the stationary distribution is the object of interest, MCMC sampling considers the

inverse problem of determining the transition kernel whose stationary distribution

is the posterior. This result is guaranteed only if the transition kernel satisfies the

balance condition as we now describe.

Let p ∈ D be the parameter in domain D. Consider a Markov process with

transition kernel κ(p,q) and transition probability η(p), 0 ≤ η(p) < 1. From an

initial point we repeatedly flip the η(p)-coin and if heads, we transition via κ; and if

tails, we stay put. We normalize the transition kernel to satisfy
∫

D
κ(p,q)dq = 1. By

evaluating the probability that a step of the process leads to a parameter in a subset

B of the domain (see [14], pp. 169–171), we determine that

ψ(q) =

∫

D

π(p) [1 − η(p)]κ(p,q)dp + η(q)π(q) (4.1)

where π(q) is the probability that q ∈ B and π(p) is the probability of parameter p.

Since we wish π(p) to be the stationary distribution, we are left with the problem of

determining κ(p,q) such that ψ(p) = π(p). This requirement leads to the balance

equation
∫

D

π(q)ζ(q,p)dp =

∫

D

π(p)ζ(p,q)dp (4.2)

where ζ(p,q) = [1 − η(p)] κ(p,q). If this relation is satisfied then a Markov process

defined by the transition kernel κ has stationary distribution π(p).

4.2 Metropolis-Hastings

This observation leads directly to the Metropolis-Hastings [57, 39] algorithm. In

particular, (4.2) is satisfied certainly if the integrands are equal, π(q)ζ(q,p) =

π(p)ζ(p,q), when we have detailed balance. Let ξ(p,q) be a candidate generat-

ing kernel such that a proposal q is determined from the current parameter p. Then

65



if we define ζ(p,q) = α(p,q)ξ(p,q), with

α(p,q) = min

{

1,
π(q)ξ(q,p)

π(p)ξ(p,q)

}

, (4.3)

then ζ(p,q) satisfies detailed balance. The flexibility of M-H stems directly from the

unrestricted form of ξ(p,q) because detailed balance is enforced by α.

The M-H transition rule is summarized in Algorithm 3.

Algorithm 3 Metropolis-Hastings transition rule.

From the current parameter p, propose a transition to q by ξ(p,q)
Compute the acceptance ratio α(p,q) according to (4.3)
Draw t from the uniform distribution U([0, 1])
if α > t then

Move to q
else

Remain at p
end if

In theory, samples drawn from almost any reasonable candidate generating kernel

will result in a Markov chain which tends toward samples from the distribution π(·)

as the number of samples Ns approaches infinity. However, the rate of convergence

of the empirical distribution to the actual distribution can vary greatly depending

on the dimensionality of the state space, the regularity of the distribution, and the

region of support of the posterior.

Like unsteady physics, MCMC has a transient and stationary regime. The tran-

sient is termed burn-in and represents the point in the chain where samples start

to be collected from the stationary distribution of the Markov process. The burn-in

is not sampling the posterior and therefore should be discarded before moments are

computed. After that point, the chain enters the stationary regime where selected

samples are representative of the posterior. One source of inefficiency of standard

M-H algorithms stems from the disparate requirements of these two regimes.

Since the samples from the burn-in do not contribute to our knowledge of the

posterior, we attempt to select a candidate generating kernel which minimizes this
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transient phase. Without additional information,1 we must begin the sampling pro-

cess by either sampling from the prior or selecting randomly from the domain D. The

journey from the starting point to the support2 of the posterior could be arduous

indeed. It is often beneficial to increase the covariance of the candidate generat-

ing kernel during this phase. If the candidates are proposed too close together, the

process may take very many samples to burn-in. This issue is addressed in part by

Langevin sampling (see Section 4.3.2) where the proposal distribution is shifted in

the direction of the gradient.

Once the chain reaches the stationary distribution, the candidate generating kernel

must satisfy two opposing requirements: sufficiently explore the entire support while

minimizing the number of samples in the chain. Consider a candidate generating

kernel which results in small steps relative to the characteristic length scale of the

support. Then, many steps will be accepted, but the chain will meander around

the support slowly. Many samples will be required to explore it completely. On

the other hand, if the candidate generating kernel proposes long steps, few proposals

will be accepted and the chain remains stationary. The hope is that we can find

the middleground which represents a compromise between exploring the posterior

completely and accepting enough proposals. The caveat here is that if the candidate

generating kernel is not properly chosen, the middleground may be infintesimally

small or even non-existent. For example, if the posterior is highly anisotropic, the

optimal length scale for a multivariate normal candidate generating proposal may

still result in an inefficient sampler.

In summary, although the M-H algorithm provides a simple recipe by which to

generate candidates from any probability distribution in theory, the practical imple-

mentation has many pitfalls. Based on the above observations, it stands to reason

that an efficient sampler must be adaptive. At the very least, it should operate dif-

ferently in the two regimes. The chain should move swiftly to the support of the

1Some practitioners solve a large-scale NLP to find a parameter with finite probability from which
to start the chain. If one has the tools to solve the optimization problem efficiently, then the MAP
estimate could be computed.

2To be more precise, we use the term support to define the region of the posterior where π(p) > ǫ

such that the isoprobability countour π = ǫ contains 99% of the density.
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posterior to minimize burn-in. Then a balance must be struck between acceptance

rate and sufficient exploration. Adaptive methods have been active area of research

in MCMC for many years but have witnessed a resurgence in the last decade.

The statistics community is responsible in large part for these advances. These

approaches typically treat the model as a black box, designing algorithms around

data. Our models of interest arise from the discretization of PDEs and therefore

contain significant structure of which we may take advantage. A brief discussion of

methods by which the physics can be incorporated into the sampling process appears

later in this chapter.

4.3 Adaptive MCMC

In light of the difficulties highlighted above in defining an efficient sampler, there

has been much recent attention given to adaptive MCMC [36, 66, 65, 35, 52]. In

this section we describe four adaptive techniques. These methods were tested for the

groundwater inverse problem with varied level of success. The DRAM algorithm of

Haario et al. [35] yielded the best practical performance and therefore was utilized to

generate the results of Chapter 5.

4.3.1 Delayed rejection adaptive Metropolis (DRAM)

In this section we highlight one adaptive approach which we utilize to generate the

results of Chapter 5. Delayed rejection adaptive Metropolis (DRAM) [35] combines

local adaptivity through delayed rejection and global adaptivity by adaptive Metropo-

lis. Delayed rejection allows multiple proposals per sample iteration while maintain-

ing reversibility of the underlying Markov process. Adaptive Metropolis leverages

the sample covariance to rotate the proposal distribution in an attempt to match

anisotropy of the posterior. Although the resulting algorithm is adaptive, the effi-

ciency of the sampler is sensitive to several parameters including the non-adaptive

start-up period, the initial candidate generating kernel, the frequency of adaptiv-

ity, and the number of delayed rejection cycles. We now describe in detail delayed
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rejection and adaptive Metropolis methods.

Delayed rejection

In M-H, we propose a new parameter from the candidate generating kernel and accept

the proposal with certain probability, and reject otherwise. When we reject the

proposal, the previous parameter is duplicated in the ensemble – that is, pk+1 = pk.

With delayed rejection [31], we instead propose again without duplicating the previous

state in the chain. If we determine the acceptance probability appropriately in further

proposal cycles, we can preserve reversibility of the resulting chain. This implies

that the delayed rejection procedure can be discontinued at any time, i.e. when the

candidate is eventually accepted or when a preset number of rejection cycles are

performed.

Consider one MCMC sample. At a given parameter p we propose a candidate q1

from the candidate generating kernel ξ1(p,q). We accept the proposal with proba-

bility

α1(p,q1) = min

{

1,
π(q1)ξ1(q1,p)

π(p)ξ1(p,q1)

}

= min

{

1,
N1

D1

}

. (4.4)

This is the usual M-H approach with ξ1 = ξ. We utilize the subscript to indicate the

delayed rejection cycle.

If the proposal q1 is accepted, then the delayed rejection approach reverts to

M-H for this iteration. If the proposal is rejected, instead of duplicating p in the

chain and then reproposing, we repropose right away. Let q2 be the next proposal

generated from the kernel ξ2(p,q1,q2). Note that this candidate generating kernel

can depend on previously rejected state q1. The proposed state q2 is then accepted

with probability

α2(p,q1,q2) = min

{

1,
π(q2)[1 − α1(q2,q1)]ξ1(q2,q1)ξ2(q2,q1,p)

π(p)[1 − α1(p,q1)]ξ1(p,q1), ξ2(p,q1,q2)

}

= min

{

1,
N2

D2

}

(4.5)

chosen to preserve the reversibility of the resulting MCMC chain.

In theory, one could perform many rejection cycles. In general, on rejection cycle
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i, the acceptance probability αi = min{1, Ni/Di} where

Ni = π(qi)ξi(qi, . . . ,q1,p)

i−1
∏

j=1

ξj(qi, . . . ,qi−j)[1 − αj(qi, . . . ,qi−j)] (4.6)

and Di satisfy the recursive formula

Di = ξi(p,q1, . . . ,qi)[Di−1 −Ni−1]. (4.7)

Since the acceptance probabilities are chosen to preserve reversibility, we can

perform any number of delayed rejection cycles. If at some point a candidate is

accepted, we sample that parameter and continue to the next iteration. If we decide

to discontinue the process, then we duplicate the previous parameter as we would in

M-H and then continue on to the next iteration.

The delayed rejection concept is particularly useful when the chain is started in

a region of low posterior probability. Outside of the support, it may be unlikely that

a candidate generating kernel will propose a candidate that will be accepted. With

delayed rejection, one can take advantage of knowledge of rejected parameters to

locally tune the proposal to increase the chance of proposing a candidate that will be

accepted. Without such adaptivity, it is possible for the chain to remain at the initial

state for an extended number of samples thereby realizing a long burn-in period and

an inefficient sampling process.

Adaptive Metropolis

Whereas delayed rejection is a locally adaptive method modifying the proposal distri-

bution from one rejection cycle to the next, adaptive Metropolis attempts to modify

the proposal distribution based on a global view of the samples in the existing chain.

In a manner consistent with a M-H implementation, we begin with a multivariate

normal distribution defined by covariance Γ ∈ IRNp×Np. After an initial non-adaptive

period (n − 1 samples), we utilize the samples in the chain to update the proposal
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covariance such that

Γ = δ [cov(x0, . . . , xn−1) + ǫI] (4.8)

where δ = 2.42/Np is a scaling parameter [30] which optimizes mixing properties for

the multivariate normal case, I ∈ IRNp×Np is the identity matrix, and ǫ is a small

constant chosen to ensure positive definiteness of Γ.

Updating the covariance matrix does not represent significant computational over-

head because it can be obtained by the recursion

Γn+1 =
n− 1

n
Γn +

δ

n

[

np̄n−1p̄
T
n−1 − (n + 1)p̄np̄

T
n + pnp

T
n + ǫI

]

(4.9)

where pn is the nth sample in the chain and p̄n = 1

n

∑n
j=1

xj is the sample mean up

to and including sample n. The mean can be updated by a similar recursive formula

p̄n+1 =
np̄n + pn+1

n + 1
. (4.10)

Since the adaptation is based purely on empirical knowledge, the sampler is sus-

ceptible to over-tuning. If the adaptation is carried out at every iteration and from

the very start of the sampling procedure, the proposal distribution may be tuned to

a very small region of the posterior. At best, this will lead to slow exploration; in

the worst case, the samples may remain in that region for the duration leaving other

regions of significant posterior probability entirely unexplored. It is in part for this

reason that there exists symbiosis between adaptive Metropolis and delayed rejection.

The delayed rejection allows a variety of samples to be collected early in the sampling

procedure, and then the proposal covariance can be updated according to samples

from different regions of parameter space.

4.3.2 Langevin sampling

If we knew the posterior distribution explicitly, sampling from it directly would be

the most efficient process — the ideal case. In general, we do not know the posterior

density explicitly, but instead we can only evaluate the relative probabilities of a set
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of parameters. Based on the ideal case, however, one may propose candidates from

a local approximation to the posterior. Sampling based on the Langevin diffusion

process uses gradient information to modify the proposal distribution.

The so-called Metropolis-adjusted Langevin algorithm (MALA) shifts the can-

didate generating kernel so it is centered about the point pn + δ2

2
∇ log π(pn). By

shifting the proposal distribution in the direction of log π, the chain tends towards

larger values of the posterior. The candidate generating kernel is

ξ(p,q) =
1

2δ2
exp

{

1

δ2
‖q − µ‖2

2

}

(4.11)

where δ is a chosen step size parameter and µ = pn + δ2

2
∇ log π(pn).

This concept can be useful for two reasons. Firstly, the burn-in transient can be

reduced by avoiding many samples in a region of low posterior probability. Secondly,

the shift toward the peak of the distribution can keep the chain from meandering too

far from the most important sector of parameter space. On the other hand, if the peak

of the posterior is not in the region of high posterior density (e.g. if the distribution

has an isolated sharp peak), the chain may be shifted away from a region containing

a significant portion of the posterior density. This could result in misrepresentative

samples in the resulting chain.

Extensions of this method are possible by modifying the covariance matrix of the

proposal distribution. This could be done by incorporating the adaptive Metropolis

ideas above or by picking up second-order information from the analytical posterior

probability.

4.3.3 Componentwise MCMC

Componentwise adaptation has also been suggested [36]. Although the resulting chain

ceases to be Markovian it can be shown to remain ergodic and to converge to the

correct posterior probability density. In the single component Metropolis-Hastings

algorithm, the proposals are performed componentwise. In a given iteration, a one-

dimensional proposal and acceptance/rejection cycle is performed in each dimension
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of the parameter space. The method can be made adaptive by applying the adaptive

Metropolis technique of Section 4.3.1 individually by components.

This algorithm may be particularly useful when the posterior evaluation can be

computed efficiently when just one element of the parameter vector is changed. Oth-

erwise, componentwise MCMC will likely lead to a greater number of total posterior

evaluations, i.e. forward model solutions, and a resulting increase in CPU time. One

may then consider blockwise updating where changes in a block of elements in the

parameter vector are proposed at once. This may reduce the total number of forward

model evaluations, but it raises new questions including how does one decide to group

the components of the parameter.

4.4 Reduced parameter MCMC

Efficient MCMC sampling in high-dimensional parameter spaces remains an open

challenge. Although the adaptive approaches described above represent significant

strides in this area, the plethora of adaptive methods and combinations thereof in

the literature is evidence that no generally applicable methodology has yet been

discovered. With independent samples from the distribution, errors in statistics of

interest converge like N
−1/2
s with Monte Carlo sampling. The samples in MCMC are

not independent and therefore the rate of convergence is decreased. In light of this

fact, the adaptive measures are efforts to obtain an efficient sampler.

We submit that the difficulty in generating an efficient sampler is partially due to

the high dimensionality of the parameter space in which the sampling is conducted.

So instead we propose that the MCMC sampling take place in the low-dimensional

parameter space defined by the reduced-order model of Chapter 3. We cast the prior

and the likelihood into the reduced parameter space; therefore, the posterior is a

function of pr ∈ IRnp with np ≪ Np. Other approaches along these lines include

coarse grid approximations [4] and coarse-scale model preconditioned MCMC [24].

We demonstrate in Chapter 5 that even traditional M-H algorithms will yield

efficient samplers in the reduced space. Not only do we accelerate overall CPU time
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by the reduction in state which speeds up forward model evaluation, the sampling

process will also undergo cost reduction with the elimination of the adaptive measures

i.e. computation of delayed rejection probabilities and empirical statistics.

In consideration of the fact that samples in reduced space can only occupy the

span of the reduced basis, the reduced MCMC approach will only generate samples

from that span. This is certainly a drawback but one we must accept to realize the

benefit of an efficient sampling process. Although we cannot yet show theoretical

results determining the inconsistencies between full- and reduced-order sampling and

how they depend on the quality of the reduced basis, we can state that if the region

of the support of the full-order posterior can be well-approximated by the span of a

reduced set of parameters, the reduced MCMC results will match well the full-order

MCMC results. Determining the inconsistencies and quantifying the error in this

approximation is an important direction for further research.

4.5 Connections to large-scale optimization

In terms of future directions of research in adaptive MCMC, there may be insight to

be drawn from large-scale optimization. The Langevin sampling of Section 4.3.2 can

be viewed as a small step in this direction. In particular, the incorporation of second-

order information in the proposal distribution could provide a significant speed-up in

convergence as it does in the large-scale optimization setting with Newton’s method

[13]. With Hessian information one obtains a second-order accurate picture of the

posterior probability density locally and can leverage that information to develop

an efficient proposal scheme. Furthermore, if the end-use is to have a parametric

representation of the posterior, the second-order information could be incorporated

to extend the range of agreement between the parameterized density and the true

density.

Some other concepts from large-scale optimization may also be useful when ex-

tended to the MCMC setting. Grid continuation and other homotopy schemes,

interior-point methods, and subspace iterations are three examples.
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In light of the extended burn-in period that accompanies even some adaptive mea-

sures in high-dimensional MCMC, efficient methods for determining a good starting

location are critical. We encounter similar issues in large-scale optimization where

the number of iterations can also depend highly on the initial iterate. To generate an

initial iterate closer to the basin of attraction of an optimum, we consider a sequence

of problems corresponding to different coarseness of discretization. We can begin

with an optimization problem in just one- or two-dimensions and solve the problem

by brute force. The grid is refined and the solution to the previous problem prolon-

gated to the new grid. This iterative process can lead to a very good initial iterate

for the optimization problem at the finest grid level. As a result, more optimization

problems are solved but often the total cost is reduced. A similar approach could

be applied to determining an initial sample in two ways. This methodology could be

applied to solving for the MAP estimate in the optimization setting. In an alterna-

tive formulation, one could start the MCMC process in a coarse discretization and

extrapolate the results to successively finer meshes.

Grid continuation is one example of homotopy schemes which are commonly em-

ployed to enhance the robustness and convergence properties of Newton’s method in

the solution of nonlinear systems of equations. The method boils down essentially

to a temporary reparameterization of the problem – a method commonly used in

numerical optimization to enhance the regularity of the objective function. Similar

approaches could be applied adaptively in the MCMC setting to manage a reasonable

acceptance rate.

Bound constraints also pose difficulty for MCMC sampling. In the general case, it

is not feasible to draw proposals from bound-respecting distributions. For one-sided

constraints, the combination of a shift and the natural logarithm can be employed –

so candidates are generated from the log normal distribution; but for multiple-sided

constraints, this author is unaware of such solutions. Without the ability to restrict

proposals to the domain, the MCMC chain has a tendency to get stuck at the bound-

aries where many proposals can land outside of the domain, and therefore must be

immediately rejected. These sequences lead to a very low overall acceptance rate
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and poor mixing of the chain. To address this problem, ideas from interior-point

methods may be extended to the MCMC setting. Interior-point algorithms are char-

acterized by iterates which compromise two objectives: decreasing objective function

and avoiding boundaries of the feasible set. This can be achieved by computing the

central path and taking steps with a component in the direction of the central path. A

similar approach could keep an MCMC chain away from boundaries in a constrained

feasible set in the probabilistic setting as well.

When much of the posterior density occupies a reduced subspace of the parameter

space, identification of that subspace will lead to the design of more efficient candidate

generating kernels. The idea of solving subproblems in subspaces is key to inner-loop

conjugate gradient solutions of the Newton direction in Newton-Krylov optimization

routines. At each iteration, the Newton direction is obtained by solving approximately

the linear system Hv = −g where H ∈ IRNp×Np is the Hessian, v ∈ IRNp is the Newton

direction and g ∈ IRNp is the gradient. The system is often solved inexactly using

Krylov methods; then the Newton direction is restricted to the Krylov subspace. In

the MCMC setting, a subproblem could be posed to identify the important subspace

and generate a candidate based on that information.

4.6 Comment on MCMC requirements

We conclude this chapter with a brief statement about the requirements of an MCMC

solution to the statistical inverse problem. In particular, an emphasis on development

of methods which are applicable and efficient in both the Gaussian and non-Gaussian

settings is critical. As we will see in a brief study in Chapter 5, the posterior of

the groundwater inverse problem is non-Gaussian.3 Much of the existing work in

adaptive MCMC assumes multivariate normality of the posterior at least in part. To

be widely applicable, proposed methods must incorporate techniques to efficiently

sample irregular distributions as well.

3In fact, it closely resembles the Rosenbrock function – an inherently difficult shape for existing
MCMC sampling techniques.
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Furthermore, if the results of the statistical inverse problem are to be propagated

through complex models and inputs to stochastic programs, the data compression

which results from the characterization of the posterior by moments may be insuffi-

cient. Particularly for non-Gaussian densities, the mean may be an uninformative (or

even misleading) statistic. It may correspond to a parameter of very low posterior

probability. To obtain a more complete probabilistic picture, methods to parameter-

ize the density should be considered. A host of response surface modelling techniques

could be leveraged in this case. Approximations would then be aided by first-order

and second-order information like that which would already be computed by Langevin

sampling and in a subspace algorithm.
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Chapter 5

Results

We now demonstrate the methodologies outlined in Chapter 3 and Chapter 4.

In Section 5.1, the greedy sampling results are presented. For cases in 1-D and

2-D, we investigate the resulting basis vectors in both parameter and state. The value

of the objective at the solution of each greedy cycle is also presented. The resulting

reduced-order models are tested against the full-order model for the forward problem

when the parameter field is drawn from a Gaussian smoothness prior.

We then turn to the statistical inverse problem in Section 5.2 and study the prior,

likelihood, and posterior for the 1-D case with just two degrees of freedom in the full-

order problem. Certainly such a coarse mesh will introduce significant discretization

error but the ability to visualize the probability density functions is paramount to

understanding the difficulties of MCMC sampling.

Still in 1-D the number of degrees of freedom is increased and the reduced MCMC

implementation studied. In particular, we explore the same probability density func-

tions except in the reduced space. We hypothesize about the range of validity of

the reduced implementation and highlight the justification for its use in solving the

statistical inverse problem.

In Section 5.3 we move to the full problem size in 1-D. Results from the full-order

and reduced-order implementation are presented and compared. We demonstrate

that the reduced-order implementation leads to similar results in far less CPU time

thereby showing that the combination of state and parameter reduction with sampling

79



in the low-dimensional subspace should be considered for large-scale statistical inverse

problems.

Section 5.4 tests the same methodology in the 2-D case. The problem is not

fundamentally different in that the degrees of freedom are vectorized independent

of the dimensionality in physical space; however, 2-D and especially 3-D problems

have higher computational cost for a forward solution than the 1-D case even with

the same number of degrees of freedom. Therefore, these problems are both more

realistic and a better-justified setting for the reduced implementation.

5.1 Model reduction

In this section, we demonstrate the model reduction algorithm described in Chapter 3.

We plot the basis vectors obtained by the greedy sampling algorithm and demonstrate

the reduction in objective with increasing number of greedy cycles.

Consider the 1-D problem of Chapter 2 with homogeneous boundary conditions

and three superposed Gaussian sources (see Figure 5-1). Before we begin the greedy

Figure 5-1: Three superposed Gaussian sources for the 1-D problem.

algorithm, we first sample the constant parameter distribution. Then, on the first

cycle, we have a reduced-order model that is accurate over the span of constant

parameters. The solution of the first greedy cycle problem yields the next parameter

basis vector. The forward problem is solved using that parameter and the resulting
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state vector is added to the state basis. In Figure 5-2, we plot the parameter and

state basis vectors.

Figure 5-2: On the left, the orthonormalized parameter basis vectors. On the right,
the orthonormalized state vectors.

The orthogonalization process is a Gram-Schmidt process in each case, but the

parameter basis vectors are made orthonormal in the mass-matrix-weighted inner

product 〈p,q〉M = pTMq.

In the greedy sampling algorithm, we iteratively sample the parameter which max-

imizes the error between full-order and current reduced-order model outputs. How-

ever, the greedy optimization problem in this case is nonlinear and also non-convex;

therefore, we cannot guarantee that we select such a parameter. Consequently, we do

not expect to necessarily have a monotonically decreasing optimal objective cost with

increasing greedy cycle. We should, however, observe a generally decreasing trend.

Figure 5-3 plots the objective cost of the sampled parameter at each greedy cycle for

the two test problems in 2-D.

Unfortunately, due to the non-convexity, we cannot make any guarantees about the

worst-case error in the reduced-order model outputs based on this data. It is possible

that there is a parameter for which the worst-case error is much greater than that

shown here. However, in practice, we find that this algorithm is suitable; although it

is heuristic, it has been shown that greedy sampling leads to a more efficient reduced-

order model than those constructed by random sampling, Latin hypercube sampling
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Figure 5-3: The objective of the sampled parameter with increasing greedy cycle for
the 2-D test cases. On the left, N = 59; and on the right, N = 494.

(LHS), and uniform sampling [11].

We demonstrate the accuracy of the reduced-order model with increasing number

of basis vectors in Figure 5-4. For three parameter fields drawn from the prior, we

compute the model outputs using n = 1, 2, . . . , 10 basis vectors. As the number

of basis vectors increases, the parameter and its corresponding state become better

resolved and the error decreases.

5.2 Preliminary study

We now turn to a preliminary study in the statistical inverse problem at full-order

in 1-D. The purpose of this section is to build some intuition for why the MCMC

sampling process is a major challenge for the groundwater flow inverse problem. The

difficulties arise for two reasons: the inversion seeks a field variable which is discretized

on the mesh and therefore has many degrees of freedom for refined meshes and the

likelihood function has non-Gaussian contours. In fact, the contours resemble the

Rosenbrock function, a notoriously challenging density for MCMC.

We begin with a very coarse discretization of the 1-D groundwater inverse problem:

N = 2. With just two degrees of freedom, we can visualize the prior, likelihood, and

posterior to build some intuition. To manage the positivity requirement on K, we
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Figure 5-4: On the left, three parameters drawn from the N = 494 prior distribution.
On the right, the error in parameter, ‖q − Qqr‖M; error in state, ‖u − Vur‖M; and
error in output ‖y − yr‖2.

work instead with q = logK in the following. The parameter is discretized so that

q(x) = q1(1 − x) + q2 is defined by the pair (q1, q2) over the domain Ω = [0, 1]. The

state is discretized in the same manner. The parameter has free boundary conditions,

but the state is required to satisfy u1 = 0. This leaves u2 as the only degree of freedom

given a pair (q1, q2). When we solve for u2 in the discrete form we find

u2(q1, q2) =
1 − exp{−q1}

q1
exp{q1 + q2}, q1, q2 > 0. (5.1)

Take just one sensor output at x = 1 so that y1 = u2. With s = 0.01 and the

likelihood L(y|p) = exp{− 1

2s2‖y(p) − yd‖2
2} we obtain the likelihood contours in
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Figure 5-5 (b). In Figure 5-5 (a) we plot the isoprobability contours of our Gaussian

smoothness prior. It is clear that any weighted combination of these sets of contours

which respects the curvature of the likelihood will contain this Rosenbrock-like form,

and therefore pose several difficulties for the statistical inverse problem.

In Figure 5-6 we plot the contours of the posterior (left) and 100 000 samples

obtained by DRAM (right). In this low-dimensional case, DRAM has little difficulty

exploring the entirety of the support of the posterior. The first important point to

note is that the mean (red dot) of the distribution lies in a region of infinitesimally

small posterior probability. Therefore, the mean is a somewhat misleading statistic

of the ensemble, and therefore the statistical inverse problem itself. The second dif-

ficulty for MCMC arises because the distribution is locally highly anisotropic. Many

schemes propose candidates from Gaussian distributions because they are simple to

define and random number generators are readily available. Unfortunately, Gaus-

sian proposals will not provide an efficient sampler for these shapes of posterior. In

practice, one would like to select the mean and variance of the Gaussian proposal

to satisfy two criteria: the posterior is sufficiently explored and the acceptance rate

attains a prescribed minimum. One cannot draw an ellipse on top of the posterior

which envelopes the majority of the distribution without admitting a lot of area with

very low probability. This implies that if one attempts to satisfy the first criterion,

the second will not be met. Alternatively, one may draw a very small ellipse around

one part of the distribution. In this case, the acceptance rate is good, but MCMC

will require many samples to sufficiently explore the entire distribution.
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Figure 5-5: (a) Contours of −2 log γ(q) in (q1, q2) space and (b) −2 logL(yd|q) in
(q1, q2) space.
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Figure 5-6: (a) Contours of −2 log π(q|yd) in (q1, q2) space and (b) 100 000 samples us-
ing DRAM starting from the actual parameter field values (q1, q2) = (0.5741, 0.0092).
Red dot on right shows sample mean. Note that the mean has very low posterior
probability. Here, DRAM does a very good job of exploring the entire support of the
posterior.
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We now consider similar aspects of the solution when the problem has three degrees

of freedom, N = 3. We can visualize the MCMC samples and get a sense of how the

distribution generalizes to higher dimensions. In Figure 5-7, we plot the MCMC chain

along with the actual parameter coordinates and the ensemble mean. The distribution

appears to be taking on a shape which is the multi-dimensional generalization of that

seen in Figure 5-6 (a).
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Figure 5-7: Actual, mean, and MCMC chain.

In Figure 5-8 we show the histogram of the MCMC chain components on the

diagonal, and the projection into two dimensions of the chain on the off-diagonal. This

corresponds to the distributions for two of the coordinates with the third marginalized.

The distribution looks very similar to the two-dimensional posterior when the third

degree of freedom is marginalized. In the other projections, the distribution is still

far from Gaussian but at least is not locally highly anisotropic.

Reparameterizing the chain by the eigenvectors of the sample covariance results

in the chain in Figure 5-9 and marginalizations in Figure 5-10.

Although the density is not Gaussian in this new parameterization, the isoproba-

bility contours have become more regular for the third unknown. This may provide
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Figure 5-8: On diagonal, histogram of MCMC chain; off-diagonal, MCMC points
projected onto plane.

some insight into the reason why we can utilize traditional Metropolis-Hastings algo-

rithms in reduced MCMC. If the greedy algorithm selects important directions of the

posterior, the density in reduced space may be more regular than it is when expressed

in the original space. It is difficult to make this claim precise due to the nonlinearity

between parameter and state, but our results support it.
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Figure 5-9: MCMC samples in the coordinate system defined by the eigenvectors of
the sample covariance. The black dot is the mean.

Figure 5-10: On the diagonal, histograms and on the off-diagonal, projected samples
in eigenvector coordinates.
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5.3 Results in 1-D

We now move to practical results in 1-D at two discretization levels, N = 51 and

N = 501. In each case, we reduce to n = 5 and demonstrate that the reduced im-

plementation yields accurate results in far less CPU time. The reduction in cost is

achieved for two reasons: firstly, the reduction in state dimension leads to very small

dense linear systems and, secondly, the MCMC sampling is conducted in reduced

parameter space with the cheaper Metropolis-Hastings approach without adaptivity.
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Figure 5-11: On the left, full- (top) and reduced-order (bottom) results for the N =
Np =51 test case. On the right, full- (top) and reduced-order (bottom) results for the
N =Np =501 test case. In each graph we plot the actual parameter field (solid), the
MCMC mean estimate (dash-dot), and the ±2σ envelope (dash). The reduced-order
result for N = 51 predicts a narrower envelope than the full-order result, whereas the
opposite is true for N = 501 where the reduced-order implementation predicts greater
uncertainty in the right half of the domain. Both reduced-order results encapsulate
the true parameter.

The method is tested for N=Np =51 and N=Np =501 degrees of freedom (DOFs)

with reductions to n= np = 5 in each case. The data are obtained by generating a

parameter field from the prior, propagating through the full-order model, and then

adding noise drawn from N (0, s2I). We present results for the full-order and reduced-
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Table 5.1: Number of full-order and reduced-order degrees of freedom and offline,
online, and total time required to generate the results of Figure 5-11 on a DELL
Latitude D530 with Intel Core 2Duo at 2 GHz. The offline time denotes the CPU
time required to solve five iterations of the greedy sampling problem with Matlab’s
fmincon. In the MCMC simulation, the first 10% of the samples were discarded
as burn-in. Two methods used: DRAM with four cycles of delayed rejection and
adaptation every 100 steps (DRAM(4,100)) and vanilla Metropolis-Hastings (M-H)
with no adaptivity.
N No n Offline time (s) Method Samples Online time (s) Total time (s)

51 5 – – DRAM 500 000 1.0508 × 103 1.0508 × 103

51 5 5 3.9778 × 102 M-H 150 000 1.5988 × 102 5.5766 × 102

501 25 – – DRAM 500 000 2.4344 × 104 2.4344 × 104

501 25 5 7.2415 × 103 M-H 150 000 2.5345 × 102 7.4950 × 103

order MCMC solutions to the statistical inverse problem. For each full-order case, we

use DRAM to perform the MCMC sampling; for reduced-order implementations we

use traditional random walk Metropolis-Hastings. The parameters are hand-tuned to

provide the best practical performance the author could achieve for each test case.

Figure 5-11 plots the results. The actual log hydraulic conductivity is plotted

with the MCMC sample mean and the ±2σ envelope for full- and reduced-order

implementations. The reduced-order method ascertains the mean field on par with

the full-order implementation. In the N = 51 case, the reduced-order results predict

a more narrow envelope near x = 1. For N = 501, the reduced-order results indicate

less certainty than the full-order results, but the match with full-order results is

generally consistent. The remaining inconsistency may be corrected if more samples

are collected in the reduced MCMC chain.

In Table 5.1, we present the CPU timings for the offline, online, and total cost

of the full- and reduced-order implementations. The offline cost corresponds to the

greedy sampling procedure to build the reduced-order model bases. These repeated

large-scale NLP solutions dominate the total cost of the reduced implementation. By

conducting the MCMC sampling process in the reduced parameter space and utilizing

the reduced-order model for posterior evaluations we realize a speed up of about two

orders of magnitude in the online phase. Although the overall computational savings

is a factor of two or three, we note here that we have demonstrated the methodology on
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(a) (b)

Figure 5-12: Sensor array (a) and source term (b) for the N = 59 test case with
No = 5 sensors.

small model problems. The high-fidelity problems of interest have many more degrees

of freedom; in that setting, the full-order MCMC is computationally intractable.

Although there is a substantial offline cost to construct the reduced-order model,

the reduced-order MCMC sampling can be performed without adaptivity, which re-

sults in a significant reduction in sampling cost. We realize a factor of two speed-up in

the N = 51 case and a factor of three in the N = 501 case; we expect this speed-up to

improve as the number of full-order DOFs increases. Indeed the best setting for this

methodology is for problems with N > 104 in multiple dimensions when a full-order

forward solve becomes very expensive.

5.4 Results in 2-D

Consider now the 2-D model problem described in Chapter 2. We present results here

for the full-order and reduced-order implementations for the problems with full-order

dimension N = 59 and N = 494. For these problems, the unstructured meshes are

composed of simplices and generated by distmesh2d.1

1Thanks to Professor Per-Olof Persson for the Matlab mesher distmesh2d which is freely avail-
able at http://math.mit.edu/∼persson/mesh/.
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Figure 5-13: True, or actual, q(x) for test case N = 59. This parameter field was
drawn from the prior distribution.

Figure 5-14: The results of the MCMC solution to the N = 59 test case. The q̄ − 2σ
and q̄ + 2σ interval bounds on the left and right, respectively. The mean is shown in
the center. Actual parameter field shown in Figure 5-13.

We begin with the N = 59 case. The domain has No = 5 sensors arranged into

wells. See Figure 5-12 (a). Figure 5-12 (b) shows the source term f(x). In Figure 5-

13 we plot the actual parameter field – the one used to solve the forward problem

and generate the noisy data. Figure 5-14 plots q̄ − 2σ, q̄, and q̄ + 2σ for the full-

order implementation. It is these results to which we compare the same quantities

from the reduced-order MCMC. We investigate the behavior for one reduced model of

dimension n=5. The parameter basis vectors and the state basis vectors are plotted

in Figure 5-15 on the left and right respectively.

With just five basis vectors, the reduced-order results presented in Figure 5-16

match very nicely the full-order results. The resulting interval defined by (q̄− 2σ, q̄+
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Figure 5-15: The parameter q(x) (left) and state u(x) (right) basis vectors obtained
by the greedy sampling algorithm for the N = 59 test case.

2σ) is tighter than the same interval of the full-order results. This results is likely

due to the fact that some of the full-order MCMC chain cannot be represented by a

linear combination of the parameter basis vectors. As the number of basis vectors is

increased we expect to capture all of the samples in the full-order MCMC chain. In

practice, however, for large-scale models of interest, we cannot afford to compute the

full-order chain; therefore, the reduced MCMC approach provides a method for un-

certainty quantification in the statistical inverse problem — an attractive alternative

to single-point estimation.

94



Figure 5-16: The results of the MCMC solution to theN = 59 test case with reduction
to n = 5. The q̄ − 2σ and q̄ + 2σ interval bounds on the left and right, respectively.
The mean is shown in the center. Actual parameter field shown in Figure 5-13.

We now turn to the N = 494 test case. The domain has No = 49 sensors arranged

loosely into wells. The problem is forced by a superposition of Gaussian sources as

shown in Figure 5-17 (a). The sensors are distributed according to Figure 5-17 (b).

(a) (b)

Figure 5-17: On the left, source term f(x), and on the right, sensor distribution, for
the N = 494 test case.

The data are produced by running a full-order forward model solution for a pa-

rameter field sampled from the prior.2 The outputs are calculated and noise is added

2Evaluating our approach by generating synthetic data from the prior requires the assumption
that our prior is accurate. Although in practice it may be difficult to formulate an appropriate prior,
here we eliminate that source of error in order to evaluate the reduced-order implementation.
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such that the error is Gaussian, i.e. yd = N (y(p), s2I) with s = 0.01.3 The true, or

actual, parameter field is pictured in Figure 5-18.

Figure 5-18: True, or actual, q(x) for test case N = 494. This parameter field was
drawn from the prior distribution.

First we present the results from the full-order implementation. It is important

to recall here that, although we present the mean q̄, it may not be an informative

statistic for these types of non-Gaussian posteriors. More reliable in this case is the

range between (q̄ − 2σ, q̄ + 2σ). The results from the MCMC solution are plotted in

Figure 5-19.

Figure 5-19: The results of the MCMC solution to the N = 494 test case. The q̄−2σ
and q̄ + 2σ interval bounds on the left and right, respectively. The mean is shown in
the center. Actual parameter field shown in Figure 5-18.

The full-order implementation identifies an interval in which the actual parameter

3For our parameter fields, the isoprobability contour containing 95% of the likelihood density
corresponds to approximately 2% error in the sensor measurements.
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field is fully contained. As discussed earlier, we do not expect the mean to match the

parameter field. Here, the mean is qualitatively close to the actual parameter field,

but certainly differs slightly. Although we do not have the ability to determine the

true distribution here, we take these full-order MCMC results as truth and use them

as a baseline to compare the reduced MCMC results.

Figure 5-20: The parameter q(x) (left) and state u(x) (right) basis vectors obtained
by the greedy sampling algorithm for the N = 494 test case. The first five basis
vectors are pictured in the left column (a) and the last five on the right (b).

We now consider the reduced MCMC results. For a sequence of reduced-order

model sizes, we plot the q̄ ± 2σ interval along with the mean itself as in Figure 5-

19. We consider reduced-order models of size n = 5 and n = 10 and understand

how the performance of the reduced implementation depends on the span of the

reduced parameter space. For each set of results, we plot the projection of the actual

parameter field onto the reduced subspace for reference. In particular, if our reduced

subspace does not include the actual parameter, then we do not expect the proximity
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Figure 5-21: The results of the MCMC solution to the N = 494 test case with
reduction to n = 5. The q̄ − 2σ and q̄ + 2σ interval bounds on the left and right,
respectively. The mean is shown in the center. Actual parameter field shown in
Figure 5-18. For reference, we show the projected actual parameter field below in
Figure 5-22 (a).

of the results to be any closer than the true projection.

In Figure 5-20 we plot the parameter and state basis vectors in pairs. The first

five pairs are shown in the first two columns (left) and the last five pairs in the two

rightmost columns.

(a) (b)

Figure 5-22: The actual parameter field shown in Figure 5-18 projected onto the
reduced parameter space for (a) n = 5 and (b) n = 10.

We now turn to the n = 5 case. The MCMC results are shown in Figure 5-21.

Here, the reduced-order MCMC does not identify perfectly the actual parameter field,

but it obtains a close shape and general trend as well as identifying the magnitude
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closely. However, the sample variance is not large — note the proximity of q̄ − 2σ

and q̄+ 2σ. This is likely due to an inadequate subspace. If the span of the subspace

does not include the posterior density then we will have errors in these predictions.

It is important to note though that the solution here does correspond very closely

with the actual parameter field when projected onto the reduced parameter space:

see Figure 5-22 (a).

Figure 5-23: The results of the MCMC solution to the N = 494 test case with
reduction to n = 10. The q̄ − 2σ and q̄ + 2σ interval bounds on the left and right,
respectively. The mean is shown in the center. Actual parameter field shown in
Figure 5-18. For reference, we show the projected actual parameter field below in
Figure 5-22 (b).

In this case the MCMC sample mean matches well the actual parameter field. We

hypothesize that this occurs because the basis vectors have identified the principal

directions (in this case, fields) of the distribution. The effect is that the distribution

becomes more Gaussian in reduced space. We cannot, however, guarantee that the

interval (q − 2σ, q + 2σ) is accurate. For the inclusion of this reduced MCMC into

the decision-making under uncertainty framework we must understand how the error

in the reduction produces errors in this interval. Based on observation in this work,

it appears that the reduced implementation leads to a tighter interval than does the

full-order MCMC. This is a drawback of the method. We would prefer a looser bound

which could then be used in the robust optimization setting. If we base decisions on

tight inaccurate bounds, we neglect a portion of the posterior density which may be

important. Although this is far better than basing decisions on single-point estimates,

we would like to do better.
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Table 5.2: Number of full-order and reduced-order degrees of freedom and offline,
online, and total time required to generate the results of Figure 5-11 on a DELL
Latitude D530 with Intel Core 2Duo at 2 GHz. The offline time denotes the CPU
time required to solve n−1 iterations of the greedy sampling problem with Matlab’s
fmincon. In the MCMC simulation, the first 10% of the samples were discarded as
burn-in. We used DRAM for the full-order implementation and Metropolis-Hastings
(M-H) with no adaptivity for the reduced-order MCMC. For DRAM, it was more
beneficial to run DRAM with more delayed rejection cycles and, in the N = 494 case,
to discard the proposal adaptivity altogether.
N No n Offline time (s) Method Samples Online time (s) Total time (s)

59 5 – – DRAM 500 000 1.1015 × 103 1.1015 × 103

59 5 5 2.0448 × 101 M-H 150 000 1.5664 × 102 1.7709 × 102

494 49 – – DRAM 500 000 1.6702 × 104 1.6702 × 104

494 49 5 4.6913 × 103 M-H 200 000 3.3169 × 102 5.0230 × 103

494 49 10 1.0384 × 104 M-H 200 000 4.9238 × 102 1.0876 × 104

Table 5.2 presents the CPU timings for the results in 2-D. We see similar results

to those of Table 5.1. We recognize again that the offline cost, the greedy sampling

procedure to build the reduced-order model, contributes almost entirely to the total

time. The MCMC sampling process, on the other hand, is accelerated by almost

two orders of magnitude. This data also demonstrates that a doubling from n=5 to

n= 10 reduced basis vectors results in an approximately 50% increase in the online

time. Therefore, for relatively small reduced-order models,the online time will not

grow quickly with increased fidelity of the reduced-order model.

Consider now the n = 10 case. Now we have more basis vectors and the actual

parameter field can be better resolved. In Figure 5-22 (b) we plot the projected

parameter field on this more enriched subspace. Compare this result with that of

Figure 5-22. Since we can resolve the actual parameter field better with ten basis

vectors, we expect the reduced MCMC results to be more accurate. The results are

plotted in Figure 5-23.

5.5 Complexity analysis

We now consider the asymptotic complexity analysis for the full- and reduced-order

implementations. We reiterate here that the CPU timing results presented herein
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demonstrate some overall speedup for the reduced-order MCMC, but that we test

the methodology for small model problems for which we can obtain full-order results.

The models of interest have many more degrees of freedom and the full-order MCMC

is computationally intractable. We show here that the reduced-order MCMC strategy

will show significant savings over full-order MCMC in the large limit.

The asymptotic complexity is broken down for the offline and online portions, and

then further by subtask in Table 5.3. We assume here that the number of MCMC

samples scales quadratically with the number of parameter dimension [65]. In prac-

tice, adaptive samplers may be used in both scenarios to reduce the complexity of this

task. As pointed out above, however, we expect to develop more efficient samplers

for the reduced parameter dimension; therefore, we find additional savings for the

reduced implementation.

Table 5.3: Complexity analysis for solution to the statistical inverse problem by
MCMC sampling in full- and reduced-order. We assume here that the number of
MCMC samples scales quadratically with the number of parameter dimension. Let k
be a small bounded constant corresponding to the number of iterations required by
an iterative solver. The number c is the average number of neighbors of a given node
in the mesh.

Operation Full-order Reduced-order
1. Offline greedy cycles n
2. subcycle iters m
3. gradient O(Npnp +Nn)
4. Hessian-vector O(Npnp +Nn)
5. Newton step O(kNpnp + kNn)
6. solve u(p) O(cNp + kN)
7. Subtotal O(km(Npnpn +Nn2))

8. Online MCMC samples O(N2
p ) O(n2

p)
9. proposal O(kNpN) O(knpn

2)
10. prop. eval. O(Np) O(np)
11. post. eval. O(3cNp + kN) O(knpn+ kn2)
12. Subtotal O(kNN3

p ) O(kn3
pn

2)

13. Total O(kNN3
p ) O(km(Npnpn +Nn2) + kn3

pn
2)

If we assume that the parameter and state representations have the same dimen-

sionality for full and reduced cases, i.e. N =Np and n= np, then the full-order cost

is O(kN4) and the reduced-order cost is O(kmNn2 + kn5). In the large limit, we
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expect the number of reduced basis vectors required to capture the finite number

of important directions to remain constant. That is, limN→∞ n = c < ∞. There-

fore, for N sufficiently large, Nn2 >n5. This implies that the dominant cost of the

reduced-order approach is the greedy sampling procedure, O(kmNn2). The cost of

the reduced approach scales linearly with the number of full-order degrees of freedom.

In comparison with the full-order implementation, we have a speedup of three orders

of magnitude in this large limit.

Suppose N is large, then with the full-order implementation we expect an approx-

imate 16-fold increase in runtime when we double N . With the reduced-order model

implementation, we expect m and n to be roughly constant with changes in N when

N is large, thus we expect just a doubling in the total time for the reduced-order

model implementation.
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Chapter 6

Conclusion

In this chapter, we summarize the major findings of this work and present several

interesting directions for future research. In Section 6.1 we review the process for

reduced-order MCMC with reductions in parameter and state. Suggestions for future

work are outlined in Section 6.2.

6.1 Summary

The solution to the statistical inverse problem is the first step in the decision-making

under uncertainty framework outlined in Chapter 1. In this thesis, we consider the

inverse problem for linear systems whose forward operator is linearly dependent on

a field parameter. For such systems, high-fidelity models are very high-dimensional

in both parameter and state space. The usual multi-query solution of the statistical

inverse problem by MCMC is then no longer computationally tractable. Instead, we

use a novel approach which seeks reduction in both parameter and state.

Whereas MCMC in high-dimensional spaces requires adaptive measures to yield

reasonable solutions, traditional Metropolis-Hastings non-adaptive samplers can be

utilized in the low-dimensional parameter space. The combination of speed-up ob-

tained by foregoing adaptivity and the acceleration of forward evaluations resulting

from the reduction in state yield a solution methodology which is very efficient. Fur-

thermore, if the reduced subspaces contain the parameter fields of interest, the results
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are also accurate. To include the appropriate parameter fields in the subspace, we

develop our reduced-order model via the greedy sampling procedure of Chapter 3.

In the greedy sampling procedure, we iteratively sample parameter fields which

maximize the error between the high-fidelity and current reduced-order model out-

puts. With a regularization by the prior, we sample parameters which are admitted

by our prior belief and which are observable by the sensor outputs. The resulting

reduced-order model spans the important subspace of the prior and is sensitive to

those parameters which give rise to high-energy outputs.

The resulting reduced-order models are tested against full-order model solutions

of the 1-D and 2-D groundwater inverse problems for mesh dimensions as large as

501 degrees of freedom. While reduced-order models could continue to perform past

this limit, MCMC simulations with full-order models greater than N = 500 degrees

of freedom require many hours of hand-tuning and many samples to obtain proper

results. In the aforementioned tests, the reduced-order models accurately identify the

posterior distribution within the span of the reduced basis and do so in far less CPU

time than the full-order implementation.

6.2 Future Work

Many interesting future research directions have come out of this work. Fully un-

derstanding all three steps of the decision-making under uncertainty process – the

statistical inverse problem, uncertainty propagation, and stochastic programming –

is essential to defining the requirements of the solution to the statistical inverse prob-

lem. The linear Gaussian case is amenable to existing methods, but the groundwater

inverse problem is inherently non-Gaussian and non-linear. For these problems, we

need more robust methods for all three steps.

In this thesis, we have seen two major disadvantages of current MCMC practice for

non-Gaussian posteriors. Firstly, some moments of the posterior will be uninformative

statistics, for example, when the mean occupies a region of parameter space with very

low posterior probability. When the posterior is non-Gaussian, an approximation by

104



a Gaussian may be very inefficient, especially when that uncertainty is propagated

through a complex model. Secondly, the posterior may be very difficult to explore

efficiently with existing MCMC methods. Even with adaptive methods, schemes

required many hours of hand-tuning to turn out reasonable results. Both of these

problems may be addressed by a more comprehensive parametric description of the

posterior.

The reduced-order models have been selected to satisfy the prior belief and sample

those parameters which excite the sensor outputs. Although these are two require-

ments of the important subspace, we neglect the difficulties of MCMC sampling when

we select the reduced bases. For these small model problems there is not an issue,

but for more complex time-dependent problems, we may require many more reduced

basis vectors and therefore will need an efficient MCMC sampler in a space with

several hundred dimensions. In this regard, it may be advantageous to choose the

reduced-order bases to force the posterior distribution to be Gaussian. This sort of

requirement could be included in the objective function of the greedy algorithm.

If efficient MCMC sampling is required by the final decision-making under uncer-

tainty framework, there appears to be a wealth of knowledge from large-scale opti-

mization which can be leveraged. The concepts which may be extended include, but

are not limited to, grid continuation for obtaining better starting points, homotopy

schemes to make more regular the isoprobability contours, interior-point methods to

account for non-trivial boundary conditions, and subspace iterations for local adap-

tivity. Many of these ideas will work well in concert with reduced-order modelling. In

addition, higher-order derivative information may be incorporated to both improve

the efficiency of the sampling process and develop a wider range of applicability for

a response surface model.

Finally, we must devise proper a posteriori error quantification for the reduced

MCMC procedure. This is a daunting task considering the full-order solution may

be completely intractable. However, it may be possible to provide some bounds or at

least some rules of thumb to determine how many basis vectors one must include, for

example. Pursuit of this goal would include a complete treatment of error quantifica-
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tion for Galerkin projection reduced-order models in addition to statistical sampling

errors. An empirical approach would require a thorough parameter study.
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Appendix A

Regularization and Prior

In Chapter 2, we proposed a connection between choice of regularization functional in

the deterministic setting and that of the prior distribution in the statistical setting.

Here we make this statement more concrete by demonstrating that the NLP arising

from the deterministic setting with T1(p) regularization is equivalent to that which

we get from computing the MAP estimate in the statistical setting with Gaussian

priors defined by the stiffness matrix.

We previously defined the T1 regularization functional

T1(p) =

∫

Ω

∇p · ∇p dΩ.

The deterministic inverse problem formulation leads to the following NLP

p∗ = arg min
p∈D

J =
1

2
‖y − yd‖

2 +
1

2
βpTSp, (A.1)

subject to f(u;p) = 0, (A.2)

y = y(u) (A.3)

where we have discretized the regularization functional using the piecewise linear

nodal basis functions defined in Chapter 2.

We now demonstrate that computing the MAP estimate from the statistical formu-

lation leads to the same NLP. We utilize the Gaussian prior γp(p) = exp
{

−1

2
βpTSp

}
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and likelihood function L(yd|p) = exp
{

−1

2
‖y(p) − yd‖

2
2

}

. The Bayesian formulation

yields the posterior

πp(p) ∝ exp

{

−
1

2
‖y(p) − yd‖

2
2 −

1

2
βpTSp

}

.

The MAP estimate is computed by solving the NLP

p∗ = arg max
p∈D

πp(p),

= arg max
p∈D

exp

{

−
1

2
‖y(p) − yd‖

2
2 −

1

2
βpTSp

}

,

= arg min
p∈D

1

2
‖y(p) − yd‖

2
2 +

1

2
βpTSp

where we used the positive semidefiniteness of S. The last step follows from ‖ · ‖2
2 ≥ 0

and pTSp ≥ 0. Note the equivalence to (A.1) as originally stated.
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Appendix B

Positivity in reduced parameter

space

In this appendix, we prove the connectedness of the region in reduced parameter

space corresponding to the positivity constraints on the reconstructed parameter.

Let P ∈ IRn×m be a basis for a subspace of IRn with n > m. Furthermore, let

p ∈ IRm be a vector of coefficients such that Pp is a discrete reconstruction of a

parameter. We now state and prove the connectedness of the region D ⊂ IRm such

that for all p ∈ D we have Pp > 0.1

Theorem Let P ∈ IRn×m. If there exists a vector p ∈ IRm such that Pp > 0, then

p is contained in one connected region D ⊂ IRm.

Proof : The key to the proof is to interpret the matrix-vector product not as an

expansion in the columns of P but rather as a set of inner products. Let aT
i be the ith

row of P. Consider in turn the subspaces of IRm for which v ∈ IRm satisfy aT
i v > 0.

Each aT
i v = 0 defines a hyperplane in IRm passing through the origin; this hyperplane

defines a halfspace in which aT
i v > 0. We now consider a sequence of restrictions of

IRm. Let Di =
⋂i

j=1
{v | aT

j v > 0}.

Without loss of generality we begin with aT
1 , the first row of P. In particular,

aT
1 v > 0 defines a halfspace of IRm. We have immediately D1 = {v | aT

1 v > 0}. With

1We use the greater than sign here to indicate the conditional applied to every element of the
resulting vector. That is, v > 0 if and only if vi > 0 for all i.
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the inclusion of each row vector aT
i , the space gets more and more restrictive. Let

this restriction process occur for the first i < n row vectors of P and consider the

next restriction. There are two possibilities for Di+1: either (1) Di+1 ⊂ Di or (2)

Di+1 = ∅. This bifurcation is general to the restriction at any step.

If Di+1 is empty, then there does not exist a vector p ∈ IRm such that Pp > 0

and the basis is insufficient for representation of positive quantities. If Di+1 ⊂ Di for

every i = 1, 2, . . . , n− 1, then we have Dn = D and for all p ∈ D we have Pp > 0 as

desired.

We now demonstrate that if D 6= ∅ that any q /∈ D violates Pq > 0. For such

a vector q we must have at least one index i ∈ {1, 2, . . . , n} such that aT
i q ≤ 0;

therefore Pq 6> 0. This demonstrates that there cannot exist another region F ∈ IRm

such that p ∈ F satisfy Pp > 0; and therefore, D is connected and the only set

containing parameter vectors whose reconstruction satisfies the positivity constraint.
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Appendix C

Grid continuation

In Chapter 3 it is pointed out that the greedy sampling procedure can become an

especially challenging task when the regularization (alternatively, prior) term is out-

weighed by the mismatch in the objective function. We recommend grid continuation

as an approach to mitigate the resulting difficulties. In this appendix, we highlight

the procedure one might utilize to overcome these challenges. Please see [5] for further

details.

Perhaps the most well-known analogy to grid continuation in the optimization

setting is that of homotopy methods in Newton’s method for solving nonlinear sys-

tems. Homotopy methods use continuous deformations of the original problem to

form a sequence of subproblems. In the nonlinear systems root-finding setting, the

problem is solved in series. First, the nonlinear function is altered greatly to achieve

a more amenable system for Newton’s method. Then Newton’s method is converged

on that subproblem. The solution to that subproblem is then utilized as the initial

condition to the next problem in the sequence, which is driven closer and closer to

the original problem in succession. The result is that the sequence of subproblems

(hopefully) leads to a starting point for the original problem which resides in the

basin of attraction of the root of the original system. If the homotopic sequence is

chosen appropriately, Newton’s method may only require a handful of iterations to

converge for each subproblem.

Grid continuation represents a similar method in nonlinear programming. In some
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ways, the method utilizes the simplest homotopy scheme available. We define several

levels of discretization of the field over which we wish to optimize. In practice, we

may have five meshes of varying fineness. It is usually best to select the coarsest mesh

to be one on which the optimization problem can be solved inexpensively by brute

force, to ensure a good start. Then we interpolate the solution onto the next finest

mesh. This interpolation becomes a starting point for our optimizer at this level of

discretization. That solution will be interpolated and used as an initial condition for

the next mesh, and so on. The process continues until the optimization problem has

been solved on the finest mesh in the hierarchy. Similarly to the homotopy schemes for

Newton’s method, the goal is to find a good initial guess for the optimization problem

at each step. Once again, if the mesh discretizations are not drastically different from

step to step, one can hope to require relatively few optimization iterations at each

level. Although we cannot prove anything rigorous about this method in most cases,

it has been shown to yield better results than attempting the full-scale optimization

problem immediately from a random starting location [5].
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