
Improved Robustness and Efficiency

for Automatic Visual Site Monitoring

by

Gerald Edwin Dalley

B.S. Electrical and Computer Engineering,
The Ohio State University (2000)

M.S. Electrical Engineering,
The Ohio State University (2002)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

June 27, 2009

Certified by. .
W. Eric L. Grimson

Bernard Gordon Professor of Medical Engineering
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Theses

2

Improved Robustness and Efficiency

for Automatic Visual Site Monitoring

by

Gerald Edwin Dalley

Submitted to the Department of Electrical Engineering and Computer Science
on June 27, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Knowing who people are, where they are, what they are doing, and how they interact
with other people and things is valuable from commercial, security, and space utiliza-
tion perspectives. Video sensors backed by computer vision algorithms are a natural
way to gather this data.

Unfortunately, key technical issues persist in extracting features and models that
are simultaneously efficient to compute and robust to issues such as adverse lighting
conditions, distracting background motions, appearance changes over time, and oc-
clusions. In this thesis, we present a set of techniques and model enhancements to
better handle these problems, focusing on contributions in four areas.

First, we improve background subtraction so it can better handle temporally ir-
regular dynamic textures. This allows us to achieve a 5.5% drop in false positive rate
on the Wallflower waving trees video.

Secondly, we adapt the Dalal and Triggs Histogram of Oriented Gradients pedes-
trian detector to work on large-scale scenes with dense crowds and harsh lighting
conditions: challenges which prevent us from easily using a background subtraction
solution. These scenes contain hundreds of simultaneously visible people. To make
using the algorithm computationally feasible, we have produced a novel implemen-
tation that runs on commodity graphics hardware and is up to 76× faster than our
CPU-only implementation. We demonstrate the utility of this detector by modeling
scene-level activities with a Hierarchical Dirichlet Process.

Third, we show how one can improve the quality of pedestrian silhouettes for
recognizing individual people. We combine general appearance information from a
large population of pedestrians with semi-periodic shape information from individual
silhouette sequences.

Finally, we show how one can combine a variety of detection and tracking tech-
niques to robustly handle a variety of event detection scenarios such as theft and
left-luggage detection. We present the only complete set of results on a standardized
collection of very challenging videos.

3

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard Gordon Professor of Medical Engineering

4

Acknowledgments

I would like to share my gratitude to all those who have contributed to the research

encapsulated in this thesis.

Eric Grimson has been my advisor while at MIT, providing feedback on research

as well as readily granting insight on topics ranging from educational methodology

to career paths to public policy. He also provided me with the opportunity to teach

the venerable MIT 6.001 introductory computer science course, once as a teaching

assistant and once as an instructor.

I thank Bill Freeman and Trevor Darrell for being on my thesis committee as

readers. Bill has also acted as my academic advisor and as a co-mentor during an

internship at Mitsubishi Electric Research Labs (MERL). Each of them has helped

complement what I have learned from Eric and other professors through courses

they have taught and interactions we’ve had in coordinating talks for a departmental

colloquium.

Complementing the academic work I have done at MIT were a collection of in-

ternships graciously provided by Microsoft, MERL, BAE Systems, and D.E. Shaw.

These internships have provided opportunities to work on complementary research

problems, to experience new application areas, and to see real-world applications of

my algorithms and analysis.

I would like to thank those organizations that helped fund this research, including

the following sources.

• MIT Presidential Graduate Fellowship

• Defense Advanced Research Projects Agency (DARPA)

• Singapore National Government

Several fellow student collaborators, listed alphabetically, are as follows.

• Biswajit Bose has been a great friend throughout graduate school, providing

alternative perspectives and expertise on many problems.

5

• Lily Lee provided the opportunity for my first collaboration as a Ph.D. student.

• Josh Migdal and I enjoyed energetic discussions exploring the software engi-

neering side of research. I learned from his great coding and design skills while

together on joint codebases.

• Kinh Tieu’s rational mind whose minimalism produces elegance serves as a great

example.

• Xiaogang Wang and I shared endless discussions on activity modeling and HDPs

along with a thrilling month working jointly on the PETS 2007 dataset [23].

I also appreciate the contributions of Jim Sukha, Krista Ehinger, and Geza Kovacs

as we learned how to make a more efficient pedestrian detector.

There are too many other friends and fellow students here at MIT to list individ-

ually who have contributed to making my time at MIT a rich experience.

Finally, I would like to acknowledge the contribution of my family. My parents

raised me to approach life with curiosity, logic, and determination. Without that

upbringing, I could not have completed this work. I thank my wife for her support,

selflessness, and alternative perspectives.

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Traditional Visual Surveillance Systems 19

1.3 Detection . 19

1.3.1 Adaptive Background Subtraction 20

1.3.2 Layered Models . 29

1.3.3 Strong Object Models . 33

1.4 Tracking . 40

1.5 High-Level Analysis . 42

1.5.1 Event Detection . 42

1.5.2 Activity Co-occurrence and Anomaly Detection 44

1.5.3 Individual Person Recognition 47

1.6 Contributions and Thesis Organization 48

2 Background Subtraction with Temporally Irregular Dynamic Tex-

tures 53

2.1 Introduction . 53

2.2 Our model . 57

2.2.1 Foreground-Background Classification 59

2.2.2 Model Update . 60

2.3 Experiments . 65

2.3.1 Pixel-Level Foreground/Background Classification 66

2.3.2 Experiments on Various Scenes 69

7

2.4 Summary . 71

3 Efficient Pedestrian Detection for Scene Activity Modeling 73

3.1 Introduction . 73

3.2 Challenges Using Background Subtraction 76

3.3 Näıve Feature Point Detection . 88

3.4 Efficient HOG-based Pedestrian Detection 91

3.4.1 Strong Model Motivation . 91

3.4.2 HOG Descriptors . 92

3.4.3 Classification . 95

3.4.4 Detection and Localization . 104

3.4.5 Data-Parallel Implementation 119

3.5 Summary . 136

4 Scene Activity Modeling 137

4.1 Hierarchical Dirichlet Process Model 137

4.1.1 Our Definition of Observations 139

4.1.2 Activity Cluster Mixture Model 140

4.1.3 Generating Trajectories and Observations 141

4.2 Results Using Näıve Feature Points 142

4.3 Results Using HOG Detections . 144

4.4 Summary and Lessons Learned . 153

5 Silhouette Refinement for Gait Recognition 155

5.1 Introduction . 155

5.2 Previous Work . 158

5.3 The Need for Model-based Segmentation 159

5.4 Learning Pedestrian Models . 160

5.4.1 Pedestrian Population Model 161

5.4.2 Pedestrian Sequence Model 162

5.4.3 HMM Training . 162

8

5.5 Raw Silhouette Extraction . 164

5.5.1 The Gait Data . 165

5.5.2 Tracking and Background Subtraction 166

5.6 Model-based Silhouette Refinement 166

5.7 Evaluation Methods . 168

5.7.1 Ellipse Representation . 168

5.7.2 HMM Representation . 169

5.8 Results . 169

5.8.1 Silhouette Comparisons . 170

5.8.2 The Recognition Task . 171

5.8.3 Recognition Results . 172

5.8.4 Discussion . 175

5.8.5 Relationship to Other Chapters 176

5.9 Summary . 177

6 Robust Modeling for Event Detection in Short Videos 179

6.1 Introduction . 179

6.2 Background Modeling . 184

6.2.1 Implementation . 185

6.3 Background Subtraction . 188

6.4 Tracking . 191

6.5 Event Detection . 194

6.6 Results . 195

6.7 Summary . 202

7 Conclusions 203

A Notation and Conventions 207

A.1 2× 2 Confusion Matrices . 207

A.2 Mathematical Objects . 212

9

10

List of Figures

1-1 Background Subtraction Illustration 25

1-2 Typical Improvements for Dynamic Textures 30

1-3 Scene with Dense Pedestrian Traffic 35

1-4 PETS 2007 Event Detection Result 45

1-5 Pedestrian Recognition Results Preview 49

2-1 Foreground Classification Comparison 54

2-2 Traditional MoG Model vs. Ours . 58

2-3 Model Update Options . 62

2-4 Model Update Computation Costs . 65

2-5 Mahalanobis Map Computation Costs 65

2-6 ROC Curves for the Wallflower Dataset 66

2-7 Exploiting Repetitive Texture . 67

2-8 Background Subtraction Results . 68

2-9 Another Typical Result Image . 70

3-1 Concourse at a Transportation Hub 74

3-2 Hand-labeled Locations of All the Pedestrians 76

3-3 Typical Background Subtraction Failures 77

3-4 Don’t Care Mask . 78

3-5 Ground Plane Registration . 79

3-6 Background Subtraction Results . 81

3-7 Block-wise Background Subtraction Results 82

3-8 Foreground Detection Curves . 83

11

3-9 Lighting Conditions and Background Subtraction 85

3-10 Qualitative Regions . 86

3-11 Foreground Detection Curves by Region 87

3-12 Block-wise Corner Detection Results 89

3-13 Feature Point Detection Curves . 90

3-14 Computing a HOG Descriptor . 93

3-15 Positive Training Images from the INRIA-orig Dataset 97

3-16 Negative Training Images from the INRIA-orig Dataset 97

3-17 Positive Training Images from the INRIA-new Dataset 97

3-18 Classifier Renderings . 101

3-19 Classification Results on INRIA-orig 103

3-20 Classification Results on INRIA-new 105

3-21 Classification Results on GrandCentral 106

3-22 Multiple Detections . 107

3-23 Meanshift Illustration . 109

3-24 HOG-based Detection Results . 114

3-25 Detection Precision-Recall Curves . 114

3-26 Accumulated HOG Detection Windows 116

3-27 Background Subtraction versus Pedestrian Detection 118

3-28 GPU-assisted HOG Tracking Pipeline 122

3-29 CPU versus GPU Classification Results 131

3-30 Common False Negatives . 134

3-31 De-skewing Issues . 135

4-1 Hierarchical Dirichlet Process (HDP) Graphical Model 138

4-2 Activity Modeling with Feature Points 143

4-3 Activity Modeling with Pedestrian Detection 146

4-4 High Quality Paths . 147

4-5 Merged Paths . 147

4-6 Weaker Prior Benefits . 148

12

4-7 Directional Degeneracies . 149

4-8 Clustering of Disjoint Regions . 150

4-9 Directional Degeneracies: Tracking Errors 151

4-10 Directional Degeneracies: Mingling 152

5-1 Intensity of a Pixel through Time . 159

5-2 Pedestrian Population Models . 162

5-3 Example Emission Model . 162

5-4 Closeup of the Legs for the Sixth State of a Sequence 164

5-5 Typical Frame for the NIST Gait Dataset 165

5-6 Silhouette Filling Examples . 167

5-7 Computing the Feature Vector for Gait Recognition 169

5-8 Recognition Rates . 173

5-9 CMS Comparisons . 174

6-1 Actor Entering the Abandoned-luggage Warning Zone 181

6-2 Event Detection Pipeline . 182

6-3 Dramatic Inter- and Intra-clip Intensity Changes 185

6-4 Background Model Adaptation for a Challenging Case 187

6-5 An Extreme FG/BG Segmentation Example 190

6-6 S01 Key Frames . 196

6-7 S02 Key Frames . 197

6-8 S03 Key Frames . 197

6-9 S05 Key Frames . 199

6-10 S07 Key Frames . 200

6-11 S08 Key Frames . 201

A-1 Sample ROC and Precision-Recall Curves 211

13

14

List of Tables

3.1 Population Statistics for Some Dense Scenes 75

3.2 Training Datasets . 98

3.3 Test Datasets for Classification . 100

3.4 Training Set Combinations for HOG Classifier Evaluation 100

3.5 CUDA-HOG Speedup Analysis . 127

3.6 Runtime Performance Comparison . 129

3.7 Background Subtraction Timing . 129

5.1 Silhouette Sets . 170

5.2 Gallery versus Probe Differences . 172

6.1 PETS 2007 Clips . 182

6.2 Event Detection Results (PETS 2007) 195

6.3 Comparative Summary of PETS 2007 Results 198

A.1 Mathematical Notation . 208

A.2 2× 2 Confusion Matrix . 210

15

16

Chapter 1

Introduction

1.1 Motivation

Knowing who people are, where they are, what they are doing, and how they interact

with other people and things is valuable from commercial, security, and space utiliza-

tion perspectives. In commercial settings, retail outlets are interested in monitoring

shopper traffic patterns to understand the effectiveness of in-store marketing cam-

paigns and aisle layout choices. Where are people going? Are they stopping at the

sales booth? What are the traffic bottlenecks? How can we better prevent revenue

loss due to customer and employee theft [32]? These are all questions the owners need

answered. Police and security officials are increasingly faced with threats that can

be mitigated through surveillance of key physical assets such as seaports, airports,

transportation hubs, and government buildings. By automating portions of a surveil-

lance network, users may broaden the range of events and activities they can track

and detect.

In setting up a data-gathering network for site monitoring an attractive sens-

ing modality is video. Video cameras are small, safe, inexpensive, and can be used

for many different tasks, unlike specialized sensors such as pressure plates or laser

tripwires. Users can directly view and interpret the raw data, or with appropriate

algorithms, monitoring can be done automatically by computers. An automatic sys-

tem does not experience fatigue like human operators do, and it can be deployed in

17

settings that would be too dangerous for people.

In order to maximize the value of a site monitoring system, many technological

pieces must be integrated. The combined system must achieve acceptably good per-

formance so that the value it provides is not overly diminished by the need to have

humans correct its errors. It must solve a large enough part of the user’s problems

well enough that its cost and complexity are justified.

An ideal automatic site monitoring system should be able to detect all people and

meaningful objects in the monitored area, track them over time, and infer all the

relationships between them. It should be able to associate observations of an indi-

vidual from videos taken days, months, or years apart. One should be able to easily

detect individual activities like running, excessive loitering, or entering unauthorized

regions. It should also be able to detect activities involving multiple actors and/or

objects such as theft, violence, surreptitious coordination, or chasing. Further, it

should be able to characterize and detect larger scale events like crowd formation, a

panic, or shifting traffic patterns.

A system should be adaptable to situations in which there are dense camera

networks, sparse networks, active cameras, infrared or hyperspectral videos, and when

combined with other sensor modalities such as audio or tripwires.

In handling these tasks, the system must be able to clearly communicate the

results back to the user in a timely fashion. For systems used in forensic analysis, it

is desirable to have a flexible query system that can easily and intuitively help the user

sift through the data with minimal training, either for the human or algorithm. For

realtime systems, they must stream results out continuously and in a timely manner,

ruling out typical batch algorithms.

Finally, the ideal system would be cheap, robust, and fully automatic. It would

require no training, and it would adjust itself automatically to changing conditions in

the world such as weather, lighting, and camera placement. When installed, it would

automatically calibrate itself. It would make no mistakes, preserve privacy, and cost

$1.

Unfortunately, there are significant gaps between current vision capabilities and

18

these ambitious long-term goals. In this thesis, we will present advancements in

key computer vision technologies and demonstrate how they help us narrow gaps in

accuracy, cost-effectiveness, and/or adaptivity for four application areas. Our work

primarily focuses on developing more robust and efficient low-level techniques that

enable more effective visual surveillance systems.

1.2 Traditional Visual Surveillance Systems

Many traditional visual surveillance systems [13, 33, 100] utilize a processing pipeline

consisting of the following stages:

1. Data acquisition: Video data is acquired from one or more cameras and trans-

ferred to a computational device.

2. Detection: From each video frame, objects of interest are extracted.

3. Tracking: Associations between objects in one video frame are made to ob-

jects in other frames, forming “tracks.” When applicable, tracks from different

cameras are also associated with each other.

4. High-level Analysis: Using trajectory and/or appearance information, tracks

are analyzed to look for motion patterns or specific objects of interest.

In this section, we provide an overview of common existing methods for addressing

steps 2–4. With literally thousands of papers written on different portions of this

pipeline spanning decades of research, we will focus on those methods that provide

the context for our contributions, which we will highlight in §1.6.

1.3 Detection

After acquiring a stream of video data, it is common to use low-level computer vision

techniques to find the objects of interest in each frame.

19

One can model just the background (§1.3.1). Any pixels with unexpected colors

are assumed to correspond to foreground objects. This is a computationally-efficient

and generic technique that requires little or no training to be able to detect any type

of moving object, but it has shortcomings under adverse lighting conditions, with

non-stationary backgrounds, and in crowded scenes.

Efforts have been made to retain the advantages of a weak model (robustness and

generality) while explicitly modeling the shape and appearance of both the foreground

and background as independent 2D layers (§1.3.2).

The other extreme from background modeling uses a strong model for every class

of object one wishes to detect (§1.3.3). These models typically have better error rates

than a pure background subtraction approach but require much more computation,

require substantial training effort, and have trouble scaling well to large numbers of

object classes.

Below we outline each of these approaches and touch on some of the contributions

we have made in background modeling and strong object models.

1.3.1 Adaptive Background Subtraction

When the video camera is stationary, a typical modeling assumption is that the

visual world consists of (a) non-moving objects like roads, trees, signs, buildings,

and furniture and (b) moving objects like people, cars, boats, or animals. In site

monitoring applications, we typically care most about tracking the moving objects.

Knowing whether a given pixel is observing an object of the background class (a)

versus the foreground class (b) assists us.

We note that a camera pixel that is observing a non-moving object will tend to see

similar color values frame after frame: it’s looking at the same part of the real world.

On the other hand, when a moving object travels through the scene and blocks the

light coming from the background object, the pixel’s observed color value changes to

that of the moving object.

If we know the per-pixel color distribution for the static objects of the scene, we

can estimate the posterior probability that the color value seen at a particular pixel

20

location in a particular frame was the result of no moving object being present. Using

Bayes’ Rule [37], we can formally evaluate this posterior:

p
(
L = 0|C = c(t)

)
=

p
(
C = c(t)|L = 0

)
p(L = 0)

p(C = c(t)|L = 0) + p(C = c(t)|L = 1)
(1.1)

∝ p
(
C = c(t)|L = 0

)
p(L = 0) (1.2)

where C = c(t) is the observed pixel color at time t, L = 0 means the color was

generated by the non-moving background, and L = 1 means it was generated by a

moving object.

An important question is how we estimate the background color likelihood dis-

tribution, p
(
C = c(t)|L = 0

)
. If we could tell the system when there are no moving

objects present, we could build a statistical model of observed colors using whatever

estimation technique was most desirable. Unfortunately, several practical matters

complicate this scenario, such as:

• Labeling Expense: A user must manually identify time periods when there are

no moving objects.

• Labeling Difficulty: In scenes with busy traffic and wide fields of view, there

often do not exist any camera frames with no foreground objects present. A

solution could be to label, for every single pixel, when a collection of video

frames contains no foreground objects. Unfortunately, this would be even more

expensive and time-consuming than per-frame labels.

• Environment Changes: The observed color distribution tends to change over

time due to changes in lighting conditions, so the likelihood actually needs to

be frequently updated. Training based on manually labeled pixels taken from a

single time slice is insufficient.

• Camera Drift: Except in the most tightly controlled circumstances, camera

mounts tend to drift slightly over time. Even when this motion is small, the

effects are noticeable when considering what part of the outside world a single

21

camera pixel is observing.

For these reasons, it is beneficial to have an automatically learned and adapting model

of background color distribution.

Arguably the most commonly-used model is the Mixture of Gaussians (MoG)

proposed by Stauffer and Grimson [101]. This model makes a few fundamental as-

sumptions about every pixel location in the image:

• Modality: the colors produced by the static portions of the scene are drawn

from a small number of Gaussian-distributed modes,

• Independent pixels: the color of each pixel is independent of all others,

• Quasi-stationarity: the Gaussian modes change slowly over time (e.g. due to

environment changes and camera drift), and

• Foreground rarity: moving objects appear infrequently.

The Model: Modality and Independent Pixels

The appearance model for a pixel at location p is defined as a mixture of Gaussian

modes,

p
(
Cp = c(t)

p |Lp = 0
)

=
K∑
k=1

ω
(t)
pkN

(
c(t)
p ;µ

(t)
pk ,Σ

(t)
pk

)
, (1.3)

where K is the number of Gaussian mixture components, ω
(t)
k , µ

(t)
k , and Σ

(t)
k are the

respective mixing weight, mean, and color covariance of pixel p’s component k at time

t, and N (·; ·, ·) is the N -dimensional multivariate normal distribution,

N (X;µ,Σ) =
1

(2π)N/2 ‖Σ‖1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)
. (1.4)

Because of the independent pixels assumption, we can abbreviate the notation in

22

Eqn. 1.3 as

p
(
C = c(t)|L = 0

)
=

K∑
k=1

ω
(t)
k N

(
c(t);µ

(t)
k ,Σ

(t)
k

)
, (1.5)

with the understanding that there is an implicit p subscript where applicable.

Updates: Quasi-stationarity

When a new pixel is observed, the MoG algorithm finds which Gaussian mixture

component, k̂(t), was most likely to have generated it. If none are likely, i.e. if

− logN
(
c(t);µ

(t−1)
k ,Σ

(t−1)
k

)
> τmatch for all k and for some threshold τmatch, we create

a new mixture component.

Assuming an existing component was matched, we downweight past observations

and update the model with the new data:

ω
(t)
k ←

(1− α)ω
(t−1)
k + α if k = k̂(t),

ω
(t−1)
k otherwise,

(1.6)

µ
(t)
k ←

(1− ρ)µ
(t−1)
k + ρc(t) if k = k̂(t),

µ
(t−1)
k otherwise,

(1.7)

Σ
(t)
k ←

(1− ρ)Σ
(t−1)
k + ρ(c(t) − µ(t−1)

k)>(c(t) − µ(t−1)
k) if k = k̂(t),

Σ
(t−1)
k otherwise,

(1.8)

where α is the weight learning rate and ρ is the color learning rate. α and ρ are

user-tunable exponential-forgetting parameters and may take on values within the

(0, 1) range. The color learning rate ρ should be chosen based on how quickly one

expects environmental changes to affect the color distributions. The weight learning

rate α controls how quickly a newly-observed color mode is considered to be part of

the background distribution. Larger values encourage faster adaptation to new data.

We note that it is common practice to normalize the weights of all mixture com-

ponents at each time step after applying the updates of Eqn. 1.6. In this thesis,

23

the equations will be agnostic to normalization. In practice, normalizing the weights

when their sum exceeds 1 is wise for reasons of numerical stability.

Background versus Foreground Modes: Rarity

Over time, Gaussian mixture components that are commonly matched will acquire

large relative mixing weights, ω. Under the assumption that moving objects are rare,

the first b
(t)
p components are interpreted as belonging to the static background objects,

where

b(t)
p = arg min

b′∈(1,...,K)

(
b′∑
k=1

ω
(t)
pk > τbgfrac

K∑
k′=1

ω
(t)
pk′

)
, (1.9)

and τbgfrac is the fraction of the mixing weight assumed to belong to static objects.

An observed color that is unlikely to be emitted from any of the top b
(t)
p components

will tend to be labeled as foreground. 0 ≤ τbgfrac ≤ 1 can be interpreted as the

expected frequency of observing the background.

Background/Foreground Labeling

We have just explained how the MoG model is represented and learned. In back-

ground subtraction applications, its purpose is to produce a per-pixel map of values

representing the likelihood that the observed colors were generated by the static parts

of the scene. As we shall briefly see, this likelihood will be used to classify each pixel

as background (if its color was most likely caused by static objects in the scene) or

foreground (if moving objects most likely generated the color).

Instead of explicitly computing the full posterior of Eqn. 1.2 for each pixel, it is

often convenient to use an approximation of the negative log likelihood (Eqn. 1.3),

d2(c;µk,Σk) = (c− µk)>Σk
−1(c− µk). (1.10)

This approximation is called the squared Mahalanobis distance and it is used because

• Speed: it avoids evaluation of the computationally-expensive transcendental

24

(a) input frame (c for each pixel)

(b) first mixture component (µ1 for each pixel)
p

(c) µ2 for each pixel

(d) best squared Mahalanobis distance for each pixel

(e) thresholded foreground classification (f) MRF foreground classification

(g) overlaid MRF foreground

Figure 1-1: Background Subtraction Illustration: In (b) and (c) we show the mean
color values for the top two Gaussian mixture components at each pixel. For this
video clip, most pixels are well modeled with a single mixture component. In cases
where no second component exists, a black pixel is used. See the text for additional
explanation.

25

exponent function of Eqn. 1.4,

• Implicit regularization: it implicitly acts as a regularization against large co-

variance matrices1, and

• Convenience: later processing steps can be conveniently cast in terms of nega-

tive log likelihoods.

In Fig. 1-1, we illustrate the background subtraction process. A Mixture of Gaus-

sians (MoG) model (Fig. 1-1(b) and Fig. 1-1(c)) is responsible for taking an input

image (Fig. 1-1(a)) and producing a per-pixel map communicating the foreground like-

lihood (Fig. 1-1(e)). A foreground/background classifier such as simple thresholding

can be used to produce a map of foreground/background labels, {lp}p, independently

at each pixel,

lp =


0 if

(
mink∈(1,...,bp) d2(cp;µpk,Σpk) ≤ τmatch

)
1 otherwise,

(1.11)

for some threshold τmatch.

In Fig. 1-1(e) we see that the foreground/background classification results are

good, but not perfect. Parts of the bus passing through the intersection look enough

like the road that they are improperly classified as background. Although most of the

pedestrians have some pixels detected as foreground, they are often broken up into

multiple blobs. In a few other places, most notably just to the right of the rightmost

pedestrian, there are some isolated false positive foreground detections.

These errors can be addressed if we provide a mechanism to encourage spatial

smoothness of the label field. Because moving objects in these scenes are spatially

1Consider an observed pixel value that is equally likely under two mixture components
(i.e. N (c;µ1,Σ1) = N (c;µ2,Σ2)). Combining Eqn. 1.4 and Eqn. 1.10, we see that d2(c;µ1,Σ1)−
1
2 log ‖Σ1‖ = d2(c;µ2,Σ2) − 1

2 log ‖Σ2‖. Suppose that ‖Σ1‖ � ‖Σ2‖. Then d2(c;µ1,Σ1) >
d2(c;µ2,Σ2) and the Mahalanobis distance for component 1 is penalized because it has such a
broad and non-discriminating covariance matrix. This is a desirable regularization property be-
cause the outlined online learning process can easily fall into a trap where a few outliers match one
Gaussian best, expanding its covariance matrix so that it becomes more likely to appear to be a
good match for an arbitrary pixel value. By penalizing large covariance matrices, we favor mixture
components that compactly represent a cluster of color values.

26

coherent and are much larger than a single pixel, if one pixel was generated by a

moving object, its neighbors should probably be labeled as foreground too. Further-

more, there is temporal coherence in video. If a moving object generated a pixel’s

color in one frame, part of that object will probably generate the pixel’s color in the

next frame as well. Similarly, if one pixel is labeled as background, its temporal and

spatial neighbors are probably also background.

These time- and space-biases can be formalized in a model called a Markov Ran-

dom Field (MRF). One good MRF formulation for background subtraction, proposed

by Migdal and Grimson [70, 71], minimizes the following objective function:

E(l) =
∑
{p,q}∈N

Vp,q (lp, lq) +
∑
p∈P

Tp(lp) +
∑
p∈P

Dp(lp) (1.12)

where l = (l1, ..., l‖P‖) is the field of foreground-background labels, P is the set of

pixel sites, N is the 8-neighborhood graph, Vp,q (lp, lq) is a graph edge weight that

encourages spatially adjacent pixels to have the same label, Tp(lp) encourages pixels

to have the same foreground/background label that they had in the previous frame,

and Dp(lp) encourages pixels to be labeled as foreground when they do not match the

background model well. These energy terms have the form

Vp,q (lp, lq) = tNδ(lp, lq) (1.13)

Tp(lp) = tT δ
(
lp, l

′
p

)
(1.14)

Dp(lp) =


tF , if

(
lp = 1

)
∨
(
tF <

bp

min
k=1

d2(cp;µpk,Σpk)

)
;

bp

min
k=1

d2(cp;µpk,Σpk) otherwise,

(1.15)

where δ(·, ·) is the Kronecker delta function, tN is the user-selected spatial mismatch

potential, tT is the user-selected temporal mismatch potential, l′p is the label assigned

to pixel p in the previous frame, and tF is the user-selected foreground label potential2.

2If tN = tT = 0, then the MRF becomes degenerate and does independent thresholding on each
pixel. In that case, tF in Eqn. 1.15 is equivalent to τmatch in Eqn. 1.11.

27

The MRF energy function in Eqn. 1.12 has the form of a 2-label Potts model3. We

can approximately find the label set l that minimizes it through a technique called

Gibbs sampling [70] in which one iteratively samples each label in turn, given the

labels of its neighbors. Alternatively, Greig et al. [43] showed that it can be solved

exactly in polynomial time using a max-flow/min-cut algorithm [16]. Expanding on

that work, Boykov et al. [10, 9] showed that minimizing the N -label Potts model

is NP-hard but they provide a collection of approximate techniques that work by

iteratively solving related 2-label problems exactly.

Having experimented with both Gibbs sampling and min-cut algorithms, we have

found that for the background/foreground segmentation problem, an optimized Gibbs

sampler is easier to implement, especially when one wants to take advantage of mul-

ticore processor architectures. For multithreaded implementations, one can simply

partition the set of pixels and have each execution thread be responsible for resam-

pling labels for one partition. We have found that boundary effects along the partition

edges are negligible even when doing in-place updates. The Gibbs sampler typically

converges within a few iterations (i.e. often much fewer than 5–10 iterations) and its

solutions are nearly identical to those of an exact min-cut algorithm. Recent work

by Anderson and Setubal [1], Wilson and Boykov [26], and Vineet and Narayanan

[109] on parallel min-cut algorithms is promising and may be the better choice in the

future as greater parallelism becomes available.

In Fig. 1-1(f), we see the results of applying this MRF with typical parameter

choices and some minor post-processing4. In Fig. 1-1(g) we show the MRF results

overlaid on the original image.

After labeling all pixels as foreground or background, foreground blobs can be

extracted using connected components analysis. An efficient O(‖P‖) algorithm is well-

known (i.e. Shapiro and Stockman provide pseudo-code in their textbook [92](pages

69–73)). Each distinct blob is considered to be a single moving object, ending the

3If one simplifies this MRF such that N is a 4-neighborhood graph, then the Onsager solution to
the 2 dimensional Ising model can be used to find an exact solution [77].

4We have removed all blobs with fewer than 50 pixels. If we had done this same operation with
the thresholded results seen in Fig. 1-1(e), we would have lost important parts of the bus and many
of the pedestrians.

28

object detection stage in a typical background subtraction pipeline.

Alternatives and Some Extensions

The pipeline just described uses the modeling techniques of Stauffer and Grimson [101]

and the foreground/background classification of Migdal and Grimson [71]. Contem-

poraneous to Stauffer’s work, Toyama et al. [107] showed that in real-world scenarios,

object detectors that use background subtraction are well suited to detecting times

when the model breaks down. For example, when lights are turned on or off, the

assumption of gradual illumination changes is violated. Upon detecting this model

violation, the system can reset itself and discount the old color models in favor of new

data. Others such as Wang and Suter [112, 113] have presented a number of addi-

tional heuristic modifications to the procedure. Most notably, they use more robust

color spaces. To deal with dynamic textures like rippling water or waving trees, some

such as Mittal and Paragios [72] and Sheikh and Shah [93] use fixed-window Gaus-

sian kernel density estimators to model the background color distribution instead of

a Gaussian mixture model.

In this thesis, we will describe contributions we have made on reducing false

positive foreground detections in the presence of dynamic textures (see Fig. 1-2 here

or read more in §2), using foreground blobs for recognizing individual people (§5), and

in combining background subtraction with stronger foreground models to overcome

lighting and crowding challenges (§6). Before describing in §1.4 how tracking is done

on the detections, we will discuss a few alternative approaches to detecting the objects

of interest.

1.3.2 Layered Models

With background subtraction, we explicitly model the color distribution for each pixel.

Observed colors that are unlikely under the model tend to result in corresponding

foreground labels. In Eqn. 1.11, there is an implicit and näıve assumption that the

color distribution for foreground objects is uniform. This begs the question, “Can we

29

(a) Typical False Positive Reduction

(b) Whole-Clip Performance

Figure 1-2: Typical Improvements for Dynamic Textures: Here we preview typical
improvements seen by applying the model of §2 to background subtraction. In (a) true
positives are given in blue and blob-level false positives are highlighted in red. Our
model (right) is able to suppress false positives from trees waving in the wind (left). In
(b), we show the achievable performance tradeoffs between the standard model and
ours as Receiver Operator Characteristic (ROC) curves (left), and precision recall
curves (right).

30

explicitly model the foreground too?” A helpful framework for discussing this topic

is the layered model used by Darrell and Pentland [24] and expanded upon by Wang

and Adelson [114].

In their framework, the world is a collection of independently-moving 2D planar

layers. Each layer is parallel to the image plane and nearer layers occlude more distant

ones. A layer is composed of a mask indicating where it is visible versus where more

distant layers can be seen through it. It also has an appearance: a color distribution

for every non-masked point.

Background subtraction as previously described is a degenerate layered system.

The background layer is the farthest one and its color distribution is modeled as a

point-wise mixture of Gaussians. There is a second layer that represents the fore-

ground. The foreground color model is uniform at every location and the mask for

the foreground layer is inferred in each frame using thresholding or an MRF. The

only temporal constraint on the mask is the set of Tp(lp) terms in Eqn. 1.12.

Wang and Adelson use their model to approach the problem differently. Given

a pair of subsequent video frames, they explicitly search for a segmentation of the

scene that is consistent with a collection of layers, each undergoing independent affine

motion. They first compute dense optical flow using a method such as Horn and

Schunck’s [47](pages 280–293). They then use a form of agglomerative clustering to

group pixels. Each pixel cluster’s optical flow must be consistent with the flow that

would be produced by a plane undergoing a single affine motion.

A few important details make it difficult to use Wang and Adelson’s approach

in practice. By using optical flow as a primary input feature, it becomes difficult

to model thin objects like tree branches well. Most optical flow algorithms do not

produce accurate flow fields in those situations. Furthermore, most optical flow al-

gorithms perform best when there is a high degree of texture throughout the image.

Unfortunately, their approach does not deal with the uncertainties that arise in op-

tical flow estimation given untextured regions. Finally, the agglomerative clustering

can be computationally burdensome.

In 2001, Jojic and Frey expanded on the work by Wang and Adelson by using

31

a variational expectation maximization algorithm to solve the layer segmentation

problem. Their method assumes there are a fixed and known number of layers and

that the layers undergo translation only, not general affine motion. With a series

of modeling approximations and extensive optimizations, the authors were able to

achieve performance of 1 frame per second for 320× 240 images and two layers.

Winn and Blake [120] extended the work of Jojic and Frey to handle general affine

motions and tracking of appearance, but only for two layers. As part of that work,

Winn developed an inference technique called variational message passing [121].

Zhou and Tao [129] used the layer model of Jojic and Frey but find the layers by

bootstrapping with background subtraction. The layered model is sequentially opti-

mized using a number of heuristics, allowing for automatic discovery of the number

of layers over time. As the number of layers increases, their exhaustive search of layer

ordering is likely to cause performance problems because the search is O(L!), where

L is the number of layers.

Kumar, Torr, and Zisserman [58] made significant improvements that automat-

ically find the number of layers, handle rotation, translation, anisotropic scaling,

motion blur, and brightness and contrast changes. Initially, layers are found using

a method that resembles Wang and Adelson’s, but coarse optical flow is computed

and more sophisticated inference algorithms are used for the segmentation. Then

they sequentially refine the layer boundaries, their appearances, and the lighting and

transform parameters. Their algorithm takes several minutes per pair of frames on a

2.4GHz Pentium IV using C++ code.

The layered representation of video just discussed is appealing in that it is an

intuitive abstraction. Like background subtraction, it is a weak model in the sense

that no special training is needed to detect particular types of foreground objects,

beyond some parameter tuning. It is also more powerful than background subtraction

because non-stationary cameras can be handled within the layered framework without

requiring a separate motion compensation mechanism.

Unfortunately, state-of-the-art layered motion algorithms suffer from one or more

of the following shortcomings: (a) high computational complexity, (b) the number

32

of layers must be fixed before inference, (c) only a very small number of layers can

be managed without a combinatorial explosion and/or loss of model fidelity, and (d)

inference must be done in batch. Furthermore, as Sand and Teller demonstrated [87],

the real world is not actually layered. Consider the case where a camera is constantly

pointed at the base of a tree and the camera’s base revolves around the tree at a

constant radius. While logically, one might assume that we could have a ground layer

and a tree layer, it turns out that a world model with 2D layers parallel to the image

plane cannot generate the observed motion.

Great progress has been made in layered modeling in recent years, particularly

that of Kumar, Torr, and Zisserman [58]. Unfortunately, we believe that significant

additional improvements are needed before it will be practical for usage in real-world

settings with continuous video footage and complex motions. We will not be using

layered models in this thesis.

1.3.3 Strong Object Models

In attempting to detect objects of interest, one can use a very weak model such

as background subtraction. That model assumes that a pixel with an unexpected

color observation is caused by a moving object. Because most interesting objects

are spatially coherent5, clusters of neighboring pixels with unlikely colors generally

correspond to the same moving object. As described above, background subtraction

makes several important assumptions: (a) the camera does not move (or that its

movement can be recovered through some external mechanism), (b) moving objects

are distant from each other in the image plane (or else their blobs will be merged),

and (c) we only care about detecting objects that are moving (objects that do not

move for time periods� 1
α

will tend to get incorporated into the background model).

One approach to addressing these concerns with background subtraction is layered

modeling. One searches for the motion corresponding to the background layer just

as one searches for motion in other layers, so moving cameras can be handled within

5A stretched-out net made of rope is one example of an object with limited spatial coherence: it
is mostly composed of holes in image space.

33

the framework. As long as different objects have sufficiently distinct motion and

appearance, they can be segmented from each other, even if they overlap in the

image plane. Unfortunately, an object that does not move with respect to another

overlapping one cannot be segmented from it. For example, a stationary person

cannot be segmented from the background under a variety of camera motions6.

An alternative to these bottom-up approaches is a top-down one, which we mo-

tivate here. Consider the scene found in Fig. 1-3. For activity modeling purposes,

there are essentially three types of objects in this scene: people, their possessions,

and context. Contextual objects include:

• the information booth with its clock (in the center of the scene),

• a ticketing booth on the right,

• the floor,

• escalators to the left,

• staircases at the top of the image,

• support structures, and

• various exits to train platforms, subways, and connecting tunnels.

Pedestrians tend to travel from one tunnel or exit to another, gather at various

locations on the floor, wait to purchase tickets, or loiter near the information booth,

against walls, or in lower-traffic areas of the floor.

For a scene like this with fixed context, the most interesting computer vision

problems relate to finding the pedestrians and tracking their movements relative to

each other and the contextual objects. In this scene, we specifically care about finding

pedestrians, and we do not care about finding objects of other classes like pencils,

airplanes, chairs, or horses. While background subtraction and layered models are

6Due to parallax and foreshortening effects, sufficiently large camera translations can allow for
separation, but pure rotations or no camera motion at all produce motion vectors that are identical
with and without, regardless of the presence of stationary occluding objects.

34

(a) Large Image with Many People

true positives matched ground truth false positives false negatives

(b) HOG-based Pedestrian Detections

Figure 1-3: Scene with Dense Pedestrian Traffic: (a) This is a still frame from an eastern-
facing video observing the Great Hall in Grand Central Terminal in New York City. Bright spots on
the floor are due to the morning sun coming through large windows on the east wall (not pictured)
and producing glare on the polished marble floor and strong cast shadows from pedestrians. Bright
spots on the wall are due to internal lighting and signage. (b) Using a pedestrian detector based on
Dalal and Triggs’ HOG features [19], good detection rates are possible despite the crowdedness of
the scene.

35

largely agnostic to the type of foreground object, we know that we only care about

one very particular kind of object.

Given this restricted problem domain, it makes sense to consider approaches that

involve detectors specifically tuned for finding pedestrians. By doing so, we can hope

to overcome the deficiencies of background subtraction and layered models. Unlike

layered modeling, we can handle massive numbers of simultaneously visible objects.

Unlike either layered modeling or background subtraction, we can hope to separate

out individual people from groups of people that occlude each other and jointly move

with coherent motion. What we lose by having a tuned object class detector is

generality. We expect poor performance if there are significant changes in viewpoint

or dramatically different poses. If an activity modeling system using one context were

deployed in a new context with, say cars or farm animals instead of pedestrians, a

new low-level detector would need to be created.

Pedestrian Detection Models

Soon after summarizing [35] the state-of-the-art in pedestrian detection, Gavrila [36]

created a pedestrian detector for automotive applications. A novel image window

is classified as a pedestrian by comparing it with a training corpus of edge images

taken from registered and cropped photographs of pedestrians. He uses the Hausdorff

distance: the average truncated distance of an edge pixel in the probe image to the

nearest edge pixel in the training image. If the Hausdorff distance is small, the image

window is classified as containing a pedestrian. For this to work well, the training

corpus should cover the space of expected poses. To avoid having to compare each test

window with the whole training corpus, he builds a template hierarchy by clustering

training images which are similar, in a Hausdorff sense. An additional verification

step is used to improve the results. For scenes with isolated individuals but sampled

from an extensive space of human poses, Shakhnarovich et al. [91] demonstrated an

efficient alternative mechanism for template matching.

Leibe, Seemann, and Schiele [63] created a pedestrian detection system for usage

in crowded scenes. They learn local features that represent parts of pedestrians.

36

Hough voting is used to find possible pedestrian centroids, then various validation

and cleanup steps are taken to produce the final result. They concentrate on eye-

level views and achieved 65% recall at 80% precision or 45% recall at 90% precision

on their test data.

Dalal and Triggs [19] developed a high-quality detector for upright pedestrians in

general outdoor scenes. They scan the whole image looking for pedestrians. For each

window, they extract a local feature descriptor on a regular grid. These descriptors

are collections of histograms that count the number of image gradients in a particular

direction, weighted by the gradient magnitude. Their Histogram of Oriented Gradi-

ents (HOG) representation is similar to the descriptors used in Lowe’s Scale Invariant

Feature Transform (SIFT) [66]. The local features are concatenated to form a single

feature vector for the detector window. That feature vector is then classified as pedes-

trian or non-pedestrian using a linear Support Vector Machine (SVM). They tested

their algorithm on a varied collection of manually registered positive samples and a

set of random windows from images with no pedestrians. When adjusted to miss

fewer than 5% of pedestrians, they achieve a false positive rate of less than 0.2%7. In

§3 of this thesis, we will discuss their algorithm in detail.

The Dalal and Triggs detector has been extended with flow features to produce

better results in tracking situations [20]. Zhu et al. [130] saw speedups between 16×
and 70× relative to Dalal and Triggs and similar error rates by using a boosted cascade

inspired by the Viola and Jones face detector [110]. Wojek et al. [122] achieved a 30×
speedup on small images by re-implementing key portions of the algorithm to run on

highly parallel graphics card (GPU) hardware. In §3, we describe a GPU port we

have created that achieves a 58− 76× speedup on very large input frames.

We note that all of the strong-model pedestrian detectors described above require

significant amounts of hand-labeled training data. For example, Dalal and Triggs’

detector is trained with 2,416 manually cropped and scaled pedestrian images and

1,218 full images with no pedestrians. The latter set is relatively cheap to obtain: the

7We cite results for their “Lin. R-HOG” classifier. Although their “Lin. R2-HOG” and “Ker. R-
HOG” classifiers perform better, they are prohibitively expensive in terms of speed.

37

annotator need only verify that no pedestrians exist in the whole image. The positive

training set is however quite expensive. We found that just labeling the crown of

each person’s head with a single dot in images like Fig. 1-3 took 10–15 minutes per

frame. In uncalibrated images like Dalal and Triggs’, the whole bounding box must

be selected, which is much more time-consuming. In §3.4, we will explore the effect

of annotation quality. We will show that by providing more consistent registration

in the training and/or test data we could achieve an extra 1% to 10% recall at 80%

precision for various classification experiments.

A long-standing critique of strong models relates to this issue of training data. If

the test data contain different articulations, viewing angles, or types of background

clutter, a high-capacity learned model is likely to see serious performance degrada-

tion. One solution is to augment the training set for each new situation. In §3.4, we

will show that in the Grand Central scene, we see an additive 15% improvement in

recall at 80% precision in full-fledged detection experiments when we provide inde-

pendent training data that mimics the viewpoint, background clutter, and occlusion

characteristics of the test data. An alternative approach is to use bootstrapping:

generate “training data” by using only the most confident detections from a more

robust general detector. We will briefly explore an application of this idea in §2 by

using background subtraction with a very weak object model to obtain data for a

per-individual meanshift tracker.

General Object Recognition: Constellation Models

It is worth pointing out that the last decade or so has seen tremendous progress in

general object recognition. Early work by Fischler and Elschlager [31] represented

images as “pictorial structures.” First, one builds robust detectors for parts of an

object. For example, for face detection we might have specialized detectors for each

eye, each ear, the nose, and the mouth. Then the composite face detector looks for

constellations of low-level detections of the right types that are in the right spatial

positions with respect to each other.

Leung, Burl, and Perona [64] used this model for face detection. Weber and

38

Welling [117] provided an unsupervised mechanism for automatically building classi-

fiers for many different object classes given a large corpus of training images. Fergus,

Perona, and Zisserman [28] proposed a method for efficient joint learning of ap-

pearance (the low-level detectors) and geometry (the spatial constraints on low-level

detections).

General Object Recognition: Bag-of-Words Models

A collection of methods with even weaker geometric constraints derive from natural

language processing research. It turns out that for natural language documents, one

can often determine the collection of topics being discussed by having a simple word

frequency model for each topic. Sports articles might commonly contain words like

“run,” “win,” and “score.” Computer science articles might commonly contain words

like “CPU,” “run,” and “algorithm.” Algorithms such as latent semantic analysis

[59], probabilistic latent semantic analysis (pLSA) [45], and latent Dirichlet allocation

(LDA) [105] can be used to automatically find topics: clusters of words that commonly

co-occur in documents. Given a new document, one can determine the most likely

topic or collection of topics to have generated it. These models are typically called

“bag of words” models because they consider documents to be unordered collections

of words.

In a bag of words object detection model, a training set of low-level features like

Lowe’s SIFT features is generated from image data. The features are clustered into

a codebook, resulting in a large but finite set of “visual words.” An image window is

thought of as a document that contains these visual words, but their spatial locations

within the window are ignored. It is represented as a histogram of the visual words.

Sivic et al. [96] use pLSA to recognize new image windows. Grauman and Darrell

[42] use an efficient multiset matching technique for recognition and other tasks called

the “pyramid match kernel.” The bag of words models tend to be much faster than

constellation models and have competitive performance despite encoding geometry

only implicitly by having features taken from overlapping image patches.

Although general-purpose object detection for a large number of classes has seen

39

important progress, specialized detectors such as Dalal and Triggs’ often outper-

form them. As the field continues to progress, the ability of unsupervised and semi-

supervised object model learning may very well allow general systems to dominate in

the future.

1.4 Tracking

If we wish to do higher level analysis based on knowing the location history of a

given object, we must associate object detections in one video frame with detections

in other frames. If the scene is sparse, the detector is nearly perfect, and objects

move slowly relative to the video frame rate, one can assume that if an object is at

location p at time t, then at time t+1, the detection nearest to location p corresponds

to the same underlying object. When the scene is not sparse, ambiguities can arise.

One solution is to solve the “linear assignment problem.” Given a set of detections

D(t) = {d(t)
i }i at time t, another set D(t+1) at time t + 1, and an assignment cost

function C(·, ·), one wishes to find an assignment T̂(·, ·) of every detection in D(t) to

a single detection in D(t+1) that minimizes the total cost:

T̂(i, j) = arg min
T(·,·)

‖D(t)‖∑
i=1

‖D(t+1)‖∑
j=1

C
(
d

(t)
i , d

(t+1)
j

)
(1.16)

subject to the constraints

T(i, j) ∈ {0, 1} ∀i, j,
‖D(t)‖∑
i=1

T(i, j) = 1, and

‖D(t+1)‖∑
j=1

T(i, j) = 1. (1.17)

The cost function C(·, ·) may be as simple as the Euclidean distance between detection

centroids or it may also include penalties for having different appearance characteris-

tics or underlying detection types. Well-known solutions with O(
∥∥D(t)

∥∥3
) complexity

exist as well as extensions that allow for unmatched detections from each set [16].

If the real-world objects undergo Brownian motion, then it is sensible to have a

40

cost function of the form C
(
d

(t)
i , d

(t+1)
j

)
∝ N

(
d

(t)
i ; d

(t+1)
j ,Σ

)
for some Σ parameter.

A more typical choice is to assume that objects move with a constant velocity or

constant acceleration, plus some noise. A Kalman filter is a common way to estimate

the location of an object given its prior location history [55]. Because standard

Kalman filters use Gaussian distributions for modeling the uncertainty in location,

velocity, acceleration, and observed versus actual location, they can be estimated

efficiently in closed form. Welch and Bishop [118] provide a thorough discussion of

the filter and its usage. Arulampalam et al. provide an overview of additional tracking

techniques that relax the Gaussian assumptions and/or allow one to maintain several

simultaneous data association hypotheses [4].

Zhao, Nevatia, and Wu [125] have built a sophisticated pedestrian tracking system

that simultaneously optimizes foreground blob segmentation with tracking. For the

background model, they use a single Gaussian per pixel. A color histogram model for

each detected pedestrian is used along with the meanshift algorithm to assist with

segmenting foreground objects. Additionally, they use a weak 3D pedestrian model

composed of three ellipses. Because most of the inference is done in 3D coordinates,

explicit occlusion handling can be integrated into the system with little additional

difficulty. Their model also allows for easy adaptations to novel viewpoints. They

assume pedestrians travel on a flat ground plane and that the camera calibration

is known. For temporal estimation, they use Kalman filtering. After computing

priors based on the maximum a priori (MAP) estimate of the state in the previous

frame and from the current frame’s appearance data, they use an Markov Chain

Monte-Carlo (MCMC) sampler to perform frame-to-frame data association. Their

MCMC optimizer utilizes a number of key efficiency improvements and was chosen

instead of particle filtering to avoid a combinatorial explosion with non-trivial state

spaces. They achieve an impressive 98% detection rate and 0.27% false alarm rate

on their outdoor test dataset. With separate segmentation and tracking steps, the

performance drops to 93% detections with 0.18% false alarms. On a 2.8GHz Pentium

IV with 384 × 288 input images, their C++-based system runs at about 2 frames

per second (fps). If we optimistically assume that all the algorithms are linear in the

41

number of pixels (i.e. they are O(‖P‖)), we estimate this is equivalent to 0.36fps on

a 2.66GHz Core i7 with high definition 1920× 1080 video.

In an alternative system, Zhao and Nevatia [124] included a texture model with

exponential forgetting and a collection of 16 walking and 16 running HMMs for ex-

tracting gait phase information. Their emission model uses motion templates of the

legs and is similar in spirit to the work we describe in §5.

In this thesis, we use standard constant velocity Kalman filters where tracking is

needed.

1.5 High-Level Analysis

After detecting and tracking objects, high-level analysis in a site monitoring appli-

cation can be performed. Examples include detecting the occurrence of pre-defined

events, ad-hoc event querying, identifying individual people, characterizing co- occur-

ring activities in the scene, and finding anomalous tracks.

1.5.1 Event Detection

Much of the research in automatic detection of pre-defined events has focused on

using generalizations of language models to interpret the output of a vision system.

Here we chronologically outline some of the major contributions to the area in the

last decade, then we mention research on some recent standardized datasets.

Ivanov and Bobick [49] use a stochastic context free grammar (sCFG) to express

semantics atop low-level detections. Results are demonstrated for gesture recogni-

tion and surveillance applications. In surveillance applications, they handle tracking

failures in the sCFG layer.

Vu, Bremond, and Thonnat [111] use a logic-based approach to recognize pre-

defined events. Their system works by solving a constraint satisfaction problem in-

volving actors, logical predicates, and temporal relations between subevents. By in-

crementally building a representation of subevents that do not violate any constraints,

they are able to have a realtime system that can manage multiple simultaneous actors.

42

In 2002, the system could handle 7 simultaneous actors at 10fps.

Taking in a collection of objects, low-level events, and temporal relations, Ghanem

et al. [40] generate a deterministic Petri Net representation for events. Using a

Petri Net inference engine, they detect instances of these events and can do more

sophisticated operations like counting the number of cars parked in a parking lot.

Inspired by their work, Dalley and Ižo [21] experimented with a system that uses

automatically-parsed schematic diagrams as an input then performs fast inference

using dynamically-compiled queries on large multi-camera tracking databases.

Hongeng, Nevatia, and Bremond [76] represent activities which are composed of

action threads executed by a single actor. Each thread is represented by a stochastic

finite automaton over atomic states detected by low-level trajectory and shape anal-

ysis. Multi-agent events are composed of action threads that satisfy a collection of

temporal constraints. Due to the complexity of their inference methods, the system

is most appropriate when there are a small number of actors in the scene that could

be participating in the multi-agent event of interest.

François et al. [34] created a pair of standardized languages for representing video

events and annotating them. Their ontology framework allows designers to specify

things such as an entity type hierarchy, primitive properties, and deterministic rules.

Joo and Chellapa [53] use probabilistic attribute grammars with logical predicates

to detect events such as casing a vehicle in a parking lot and boarding an airplane

sitting on a tarmac. Cuntoor, Yegnanarayana, and Chellappa [18] uses HMMs to

model characteristic trajectory paths indicative of events like open doors, exiting a

building, or entering a car.

To complement the representational and inference work described above, stan-

dardized datasets were created in 2006 [29] and 2007 [30] for the Performance Evalu-

ation of Tracking and Surveillance workshop (PETS). They come with an evaluation

methodology and a collection of pre-specified deterministic rules defining events such

as loitering, bag theft, and abandoned luggage. The foci are testing the robustness

of low-level vision and evaluating whole tracking systems. A successful system must

be able to tolerate lighting changes, strong specular reflections of the sun, many

43

distracter objects, and simultaneous activities involving individuals and groups of

objects. Here we highlight a few of the approaches used by various authors.

For PETS 2006, Auvinet et al. [5] perform background subtraction in each of the

four provided camera views, they project silhouettes onto the ground plane, then

they retain all projection intersections as detections. Their technique is reminiscent

of the Visual Hull algorithm of Laurentini [60]. Tracking and rule satisfaction layers

are built on top of the detectors. Their system works well in sparse scenes but is

susceptible to a high false-positive person detection rate in dense scenes. Arsić et

al. [3] expanded on this idea for the PETS 2007 challenge by looking for consistency

in silhouettes projected onto planes parallel to the ground plane at different heights.

del-Rincón et al. [68] do multi-camera tracking using a variation on the standard

Kalman filter. Object height is used to classify objects as pedestrian or not. Only

humans who were ever near a dropped object are tracked.

For the 2006 dataset, Lv et al. [67] use frame-to-frame data association of blob

detections, building up an appearance model. They then automatically switch to a

meanshift tracker when the blob tracker fails. Event detection is done via probabilistic

rules.

In §6, we describe our work on the more challenging 2007 videos. We combine

techniques from Lv et al. and del-Rincón et al. with additional low-level techniques,

allowing us to report the most comprehensive set of results on the dataset. In Fig. 1-4

we show the output of our system for several key frames of one of the test sequences.

1.5.2 Activity Co-occurrence and Anomaly Detection

In addition to detecting pre-specified events of interest, it is valuable to be able

to characterize the trajectories that occur in a scene and cluster them such that

semantically meaningful activities can be automatically discovered. This information

can be directly useful in assisting users in understanding the scene. Such a model can

also be used to flag anomalous observations.

Stauffer [99] produced a hierarchical clustering of tracks by vector-quantizing the

tracker’s state (position, velocity, and size) and computing a co-occurrence matrix

44

Figure 1-4: PETS 2007 Event Detection Result: Here we show tracker bounding
boxes for several key frames from our event detection work for PETS 2007 [23]. The
original owner’s track is visualized with a green bounding box. He sets his bag (red)
on the floor, which is stolen by a thief (magenta). Full details are in §6.

that indicates how often one quantized state occurs along with each of the other

states within a track. By doing so, he was able to automatically extract different

modes of behavior from a given scene such as separating different traffic lanes and

distinguishing between pedestrian and vehicular traffic in a parking lot.

Wang, Ma, and Grimson [116] used a Dual-HDP as a more sophisticated and

Bayesian co-occurrence model. A video from a traffic scene is partitioned into 10 sec-

ond “documents” (in a language model sense). Whenever movement is seen within a

block of pixels, a “word” is generated corresponding to that location and the quan-

tized direction of movement. For a 720× 480 video with 10× 10 blocks and 4 moving

directions, the vocabulary has about 14,000 distinct words. The model learns clus-

ters of co-occurring places and directions of motion. In a second layer of clustering,

it also learns how the low-level clusters co-occur with each other. An infinite mix-

ture model is used which adapts the number of learned clusters at both levels in a

data-driven manner and both levels of clustering are jointly optimized with Gibbs

sampling. This approach learns semantically meaningful clusters in an unsupervised

manner when different video partitions contain distinctive activities. They demon-

45

strate results that show the model learning clusters that correspond to different flow

patterns related to different periods in a traffic signal’s cycle. Results are also shown

for video segmentation, anomaly detection, and ad-hoc querying applications.

Unfortunately, in some scenes, activities last much longer than a few seconds to

a few minutes. Consider the Grand Central scene shown in Fig. 1-3. With manual

inspection of the video, one can see a number of activities:

• Through-traffic: The concourse’s main floor has 16 entry/exit points and there

are clear flows between the busiest pairings.

– Subway ↔ Midtown: For example, much of the traffic travels between

either of the two large entrances on the top edge of the image to the

escalators on the left edge.

– Secondary Traffic: Smaller traffic flows travel between other entry/exit

pairs.

• Loiterers: The concourse is popular for waiting, meeting, and touring.

– Information Booth: The information booth in the center is a common place

for people to meet, ask questions of terminal personnel, and loiter.

– Pillars: Other common loitering spots include the vertical structures on

the left side of the image.

– Ad-hoc Clusters: Tour groups and clusters of independent loiterers will

tend to form in low-traffic areas. As they form, those traveling between

low-traffic entry/exit pairings often need to adjust their routes.

– Ticketing: On the right side of the image is one of two banks of ticketing

booths. In the afternoon and early evening hours, queues 5–10 people deep

form.

In scenes with timed traffic lights, activity phases tend to last on the order of 5

seconds to a few minutes. In less-regulated environments like Grand Central, the dis-

tribution of the aforementioned activities tends to be stable on hour-long timescales.

46

Because of this, the 10-second Dual-HDP model learned by Wang, Ma, and Grim-

son’s approach becomes degenerate: it either learns a single cluster describing all

scene motion, or it creates clusters driven by noise. One solution could be to increase

the document timescale and use data collected over extended periods of time. We

have been investigating this approach but we note that it poses significant challenges.

Learning a simpler standard HDP model on a single hour of video after pruning out

98% of the data takes about 20 hours. Learning time is super-linear8 in the amount

of data, so modeling longer time periods will be more expensive. Care will be needed

to reduce computation and memory requirements so the model may be scaled up to

handle day- or week-long video. This is an area of future research.

As an alternative approach, Wang et al. [115] changed the representation over

which the Dual-HDP operates. The language model’s vocabulary is still the cross

product of position with moving direction, but individual tracks are used as the doc-

uments instead of video clips. This allowed them to analyze oceangoing ship behavior

using coastal radar data, and pedestrian and automobile behavior in a parking lot

scene. In §4, we will model activities at a transportation hub using a similar ap-

proach coupled with a novel and efficient Dalal- and Triggs-style pedestrian detector

implementation described in §3. The learned activities in §4.3 are more semantically

meaningful than those using sparse optical flow to produce low-level features in §4.2.

Furthermore, because we use tracks from actual pedestrian detections rather than

simpler flow-based methods of acquiring movement information, our system can be

more readily extended with other modules such as gait recognition.

1.5.3 Individual Person Recognition

If a person is entering a sensitive area, a site monitoring application can be assisted

by knowing who the person is. Interdiction may be needed when an unauthorized

person enters or a system may need to maintain a “watch list” of suspects. Similarly,

8A single Gibbs sampling round is linear in the number of clusters and the amount of input data.
By design, HDP-based models generate more clusters when there is more data. More clusters often
also require more Gibbs sampling iterations to reach convergence.

47

when an event detection system triggers an alert, individual identity information can

be helpful to human operators in knowing how to respond.

Perhaps the most commonly-considered remote biometric is facial appearance.

Sinha et al. [95] have studied the biological characteristics of face recognition per-

formed by the human brain, and Zhao et al. [126] provide an extensive survey of

face recognition techniques available in 2003. Challenges for face recognition include

sensitivity to lighting conditions, difficulty with varying facial expressions, low per-

formance for non-frontal viewpoints, and the ability to mask appearance through

changes in facial adornment such as beards, mustaches, and glasses.

In search of other biometrics, the US Defense Advanced Research Projects Agency

(DARPA) in 2001 began funding an initiative called Human Identification from a Dis-

tance (HID). A standardized dataset was created as well as a baseline algorithm to

study ways of identifying individual people based on their appearance and gait [82, 88].

The best results during the initiative used a hidden Markov Model (HMM) by Sun-

deresan, Chowdhury, and Chellapa [103]. They model the appearance of pedestrian

silhouettes as a vector of distances to a collection of exemplar silhouettes, conditioned

on discrete phases of the walking cycle.

In §5, we describe a similar model that was developed contemporaneously that of

Sunderesan et al. Our observation model is a field of independent binomial random

variables over the silhouettes themselves. A preview of our recognition results is

shown in Fig. 1-5.

1.6 Contributions and Thesis Organization

As described in this chapter, a substantial amount of work has been done in creating

systems for recognizing individuals and interactions amongst them in site monitoring

applications. Now that the computer vision field has made a pass through activity

recognition, there are a number of areas that can be enhanced to provide the opportu-

nities for further improvements. In this thesis, we discuss a collection of four systems

that are aimed at improving the robustness, utility, and scale of existing solutions.

48

(a) HMM Observation Model Example

(b) Abbreviated Rank 5 Recognition Results

Figure 1-5: Pedestrian Recognition Results Preview: In (a) we show the learned HMM
observation model for one person in the USF dataset [81]. Brighter pixels correspond
to a higher likelihood of observing foreground at that corresponding position in a
silhouette. In (b) we see that using cleaner silhouettes results in better performance
when using ellipse moments (compare the light blue and orange bars). Although
our focus was on silhouette quality improvements, our methods compare well to the
contemporaneously-developed work of Sunderesan et al. [103] which focused directly
on the recognition task. The probe sets are ordered from easiest to hardest. Full
details are given in §5.

49

In §2, we present a mechanism for improving background subtraction results in

the presence of temporally irregular dynamic textures such as leaves fluttering in the

wind or rippling water. We achieve state-of-the-art results, demonstrating superior

performance simultaneous with less sensitivity to other parameter choices. Our solu-

tion can be readily integrated into any Mixture of Gaussian background subtraction

system.

In §3, we quantitatively demonstrate the shortcomings of using a weak appearance

model such as background subtraction or corner detection in large crowded scenes.

By using a strong model, we are able to detect and track individual people and we

use these tracks to build a site activity model in §4. Our solution uses the Histogram

of Oriented Gradients (HOG) detector of Dalal and Triggs [19], and we provide ad-

ditional experiments investigating the interplay of annotation registration, camera

viewpoint, and test protocols. We have created an open-source HOG implementation

that takes advantage of the processing power of modern consumer graphics cards

(GPUs) to achieve 1 fps on our full tracking system on 1920 × 1080 high defini-

tion video, despite performing an exhaustive search for pedestrian detections in every

frame. The detection pipeline itself is 58× to 76× faster than our optimized CPU-only

version. Based on performance extrapolations, we believe our implementation offers

double the speedup relative to the fastest prior solution [122]. This extra throughput

makes it practical to track pedestrians in large scenes over extended periods of time.

We show preliminary activity modeling results based on our tracking output, using a

standard HDP model similar to the Dual-HDP Wang et al. [115].

In some site monitoring applications, it is important to be able to identify indi-

vidual people. Given the track of an individual moving fronto-parallel to the image

plane, we demonstrate a system for determining the individual’s identity in §5. We

evaluate robustness to real-world silhouette noise and present HMM-assisted ranking

functions that are competitive with the best contemporaneously-developed solution,

especially for the most challenging scenarios.

In §6, we describe an event detection system built with constrained development

time and a standardized dataset. The system is able to overcome challenges presented

50

by quickly changing lighting conditions, trivial amounts of available training data,

and crowdedness in the scene. Despite using weak models in each part of our hybrid

system, it produces the most complete set of detection results known to us on the

PETS 2007 data. This work reminds us as researchers of problems that need to be

addressed by systems that are meant to be deployed in real-world settings.

We summarize our findings and contributions in §7.

As a convenience to the reader, in Appendix A we provide a summary of the nota-

tion and quantitative evaluation methodologies used in this thesis. Those unfamiliar

with ROC or precision-recall curves will want to read the appendix before proceeding

with any of the body chapters.

51

52

Chapter 2

Background Subtraction with

Temporally Irregular Dynamic

Textures

This chapter contains joint work with Josh Migdal and Eric Grimson [22].

2.1 Introduction

A typical approach to moving object detection in current scene analysis systems is to

build an adaptive statistical model of the background image, of the form introduced

in §1.3.1. When a new frame is presented, pixels that are unlikely to have been

generated by this model are labeled as foreground.

Stauffer and Grimson [101] represent the background as a mixture of Gaussians

(MoG). At each pixel, a collection of Gaussians emits values in RGB (red, green,

blue) or some other colorspace. When a pixel value is observed in a new frame, it is

matched to the Gaussian most likely to emit it. The Gaussian is then updated with

this pixel value using an exponential forgetting scheme that approximates an online

k-means algorithm. This allows online adaptation to changing imaging conditions

such as shifts in lighting or objects that stop moving. Pixel values are labeled as

foreground when they are associated with uncommon Gaussians or when they do

53

(a) Input Frame (b) MoG Foreground

(c) Mittal & Paragios [72] (d) Our Foreground

Figure 2-1: Foreground Classification Comparison: Our method is able to suppress
the two false positive waving tree foreground blobs seen in the MoG results. We are
simultaneously able to retain the two very small pedestrians, unlike the previously
best results on the video.

54

not match any Gaussian well. This approach lends itself to realtime implementation

and works well when the camera does not move and neither does the “background.”

However, for most applications, objects such as branches and leaves waving in the

wind, and waves in water, should be considered as background even though they

involve motion. Because these dynamic textures cause large changes at an individual

pixel level, they typically fail to be modeled well under a fully independent pixel

model. In Fig. 2-1(b), we see how the MoG foreground mask not only (correctly)

includes both pedestrians and the vehicle, but also includes many other pixels due to

image noise and moving trees.

More recently, Mittal and Paragios [72] used the most recent T frames to build

a non-parametric model of color and optical flow, with care taken to handle mea-

surement uncertainty when estimating kernel density bandwidths. Uncertainty man-

agement is especially important here due to the inherent ambiguities in local optical

flow estimation. Although their approach still models the image as a collection of

independent pixels, they produce impressive results as long as the same motions are

observed many times in every block of T frames. In Fig. 2-1(c), we see that their

system suppresses the false positives on the tree. Challenges are likely to occur when

infrequent motions occur, such as trees rustling from time to time (but not constantly)

due to wind gusts. Better classification performance results in a cost linear in T . For

a 200-frame window, their highly optimized implementation is one to two orders of

magnitude slower than typical MoG implementations.

Sheikh and Shah [93] have also developed a kernel-based model of the background

using the most recent T frames. Their kernels are Gaussians over the pixel color

and location. By allowing observed pixels to match kernels centered at neighboring

pixel locations, they are able to interpret small spatial motions such as trees waving

in the wind as being part of the background. Like Mittal and Paragios, they must

maintain a long enough kernel history to represent all modes in the local background

distribution. Fortunately, for many types of scenes, this history length will be shorter

for Sheikh and Shah since information can be “shared” by kernels spawned at nearby

pixel locations.

55

We will show that our approach is able to achieve similar sharing benefits, and we

do so by including a small set of easily implemented modifications to any standard

MoG system. In Fig. 2-1(d), we see that our method is able to avoid false positives

from the shaking tree while still detecting the small pedestrians.

Nam and Han [73] recently published a background subtraction method that uses

particle filtering to track the positions of the generative model’s pixel processes. They

use a constant velocity (plus Gaussian noise) motion model, and they represent the

appearance distribution of an individual pixel process as a color histogram. In order

to make the problem tractable, they make several simplifying assumptions that allow

for independent decisions in the inference and update stages. Limited quantitative

results are given.

Zhong and Sclaroff [127] use an autoregressive moving average model for scenes

with highly regular dynamic background textures like consistently rippling water or

escalators moving at a constant pace. For training clips of 96 frames, they retain

80 eigenimages. Unlike their approach, our method is designed to work well when

temporal structure is lacking from the dynamic textures.

Jojic and Frey [52] have taken a radically different approach, extending a model

proposed by Wang and Adelson [114]. They consider an image to be generated by a

collection of layers, where near layers occlude far ones. Their model assumes that the

number of layers and their depth ordering are known and fixed. Each layer is free to

translate across the image. Extensions include Winn and Blake’s [120] affine motion

model. Because finding the optimal solution is intractable, they employ variational

approximations to their model. Unlike the other methods mentioned, their approach

is batch-mode, so it cannot be used as-is on continuous video feeds.

Our work is most closely related to that of Stauffer and Grimson and of Sheikh

and Shah. We combine the usage of a spatial neighborhood in background likelihood

estimation with the compactness of a semi-parametric MoG representation. In §2.2,

we describe our generative model and how we perform inference on it. In §2.3, we

then highlight experiments we have performed on our algorithm. We summarize in

§2.4.

56

2.2 Our model

Our model uses the same intuition expressed in the kernel-based model of Sheikh

and Shah [93]: small local shifts of background object locations should not cause

them to be flagged as foreground. For example, consider the case where a given pixel

normally is observing the tip of a leaf and our model has learned this. If a sudden

puff of wind occurs, the leaf tip may temporarily move by a pixel and occlude part of

the sky. When observing the green pixel at a normally-blue location, we would like

to acknowledge that its appearance is likely due to movement of the leaf tip moving

rather than a new foreground object appearing.

To capture this concept of small local motions, we model the image generation

process as arising from a mixture of components that have a Gaussian distribution in

color and some spatial distribution, depicted in Fig. 2-2(c) and formalized here:

p
(
cp Φ

)
= p
(
cp zp,Φ

)
p
(
zp Φ

)
, (2.1)

where cp is the observed color at pixel location p, and

Φ =
{
ωqk, µqk,Σqk q ∈ Np ∧ k ∈ {1, 2, ..., Kq}

}
(2.2)

is our model where mixture components are indexed by location, q, and an arbitrary

local index k; ωqk is the weight of a component, µqk is its mean color, Σqk is its color

variance, Kq is the number of mixture components at pixel location q, and Np is

the set of pixel locations in some local neighborhood about p. In practice, we

typically make Np be a 3× 3, 5× 5, or 7× 7 grid of pixels centered around p. A 3× 3

grid is depicted in Fig. 2-2(d).

Each cp is generated from a single independently-chosen mixture component zp =

57

P

Kp

§pk cp

zpwpk

¹pk

(a) Traditional MoG graphical model (b) Mixture component area of influence (MoG)

P

Kq

§qk

P

cp

zpwqk

¹qk

(c) Our graphical model (d) Mixture component area of influence (ours)

Figure 2-2: Traditional MoG Model vs. Ours: In Fig. 2-2(a) and Fig. 2-2(c), we
show a graphical model representation of the traditional Mixture of Gaussians (MoG)
background subtraction model and our model, respectively. Circles represent random
variables, shaded circles represent observed values, and plates indicate replication
of random variables which are independent except where there are arrows. In the
traditional MoG model, the color cq observed at pixel q is generated from a randomly-
selected mixture component at the same pixel location. A given mixture component
can at most influence the observed color for a single pixel (see Fig. 2-2(b)). In our
model, cq is sampled from mixture components at location q as well as components
located at neighboring pixels. Each mixture component can influence the observed
colors within some local neighborhood (a 3 × 3 neighborhood is shown in Fig. 2-
2(d)). This extra spatial neighborhood allows our model to more gracefully handle
backgrounds that undergo small local motions. See the text for precise definitions of
the random variables.

58

(q, k) and

p
(
cp zp,Φ

)
= N

(
cp;µzp ,Σzp

)
, (2.3)

p
(
zp = (q, k) Φ

)
∝

ωqk if q ∈ Np ∧ k ∈ {1, 2, ..., Kq},

0 otherwise.

(2.4)

The same independent pixels assumption is made with nearly all non-layered ap-

proaches, including ones that have a spatial component (e.g. Sheikh and Shah [93]).

Our model is equivalent to the traditional MoG model when the neighborhood is

degenerate, i.e. when Np = {p}. In Fig. 2-2, we show a comparison between our

model and the traditional MoG model using a directed graph representation and a

per-mixture component area of influence illustration.

Note that we are not restricted to the RGB colorspace for observations. As with

other models, we are free to use other colorspaces (such as YCrCb) or build an

observation space over more exotic features such as spatio-temporal gradients [83] or

optical flow [72]. In our experience we have found that when a proper neighborhood

size is chosen, the background-foreground labeling is less sensitive to the choice of

colorspace or the inclusion of optical flow features.

2.2.1 Foreground-Background Classification

The primary purpose of most background models is to determine the likelihood that

each pixel was generated from the background process. In classic MoG approaches,

the model is the same as Eqn. 2.1, with the constraint that the neighborhood function

is degenerate and only selects mixture components at the same location where the

colors are sampled. A collection of mixture components is maintained, where only

those with the highest weights are considered part of the model and used in the likeli-

hood evaluation. Under the assumptions that all Gaussians have similar covariances,

all background Gaussians have comparable weights, and that they do not overlap

59

significantly, the squared Mahalanobis distance

d2
pqk = (cp − µqk)>Σ−1

qk (cp − µqk) (2.5)

serves as a good proxy for the negative log likelihood, and it can be computed much

more efficiently than the precise likelihood value (recall the discussion in §1.3.1). For

the experiments presented in this thesis, we have followed this tradition and used the

squared Mahalanobis feature for foreground-background classification.

After the model returns the pixelwise likelihood estimates, a higher-level procedure

is responsible for classifying each pixel as foreground or background. Common choices

for the external classifier often include some combination of a simple thresholder, a

Markov Random Field (MRF) optimizer to perform uncertainty-aware label smooth-

ing, morphological operations to remove isolated foreground detections and merge

disjoint blobs, and higher-level detection, tracking, or explicit foreground modeling

to filter the results. The external classifier choice is outside the scope of the model

itself. For the results shown in this chapter, we used Migdal and Grimson’s [70] MRF

that we discussed in §1.3.1.

2.2.2 Model Update

A model consisting of a single Gaussian may be updated online as new observations

are obtained in an optimal manner by retaining its sufficient statistics. Mixture dis-

tributions add the complexity of needing to know which observations were generated

from which mixture components. In this section, we give a more detailed view of the

update procedure than we gave in §1.

Stauffer and Grimson [101] use an online approximation of expectation maximiza-

tion (EM). Given a pixel location p, they find the observation likelihoodN (cp;µqk,Σqk)

for each mixture component (q, k) (recall that p = q for the traditional model), and

then update its sufficient statistics by assuming an evidentiary weight of (1 − ρ) for

the old statistics and ρ for the new data point, where ρpqk = αN (cp;µqk,Σqk) for

some exponential learning rate α.

60

Typical hard EM-like implementations simplify this further by only updating the

most likely Gaussian using 1−α and α as evidentiary weights. Depending on initial-

ization and the order of online updates, the second approach tends to yield tighter

Gaussian distributions that overestimate the covariance less. More recently, Porikli

and Thornton [84] used a richer prior model with a greedy update scheme to improve

the updates and reduce the effects of the update ordering. All three of these update

mechanisms have been used on likelihood models essentially equivalent to Eqn. 2.1,

with the neighborhood size restricted to only consider Gaussians and observations at

the same pixel location.

In our model, we allow a pixel’s color to be generated from Gaussians positioned

at nearby pixel locations. This means each Gaussian has the possibility of indepen-

dently generating multiple observations and thus potentially needs to be updated from

multiple simultaneous measurements. One way of accomplishing this is to retain the

time-weighted sample sum s
(t)
qk , squared sample sum corr

(t)
qk , and total effective sample

size e
(t)
qk as follows:

s
(t)
qk = (1− α)s

(t−1)
qk +

∑
p∈Nq

ρ̃
(t)
pqkc

(t)
p , (2.6)

corr
(t)
qk = (1− α)corr

(t−1)
qk +

∑
p∈Nq

ρ̃
(t)
pqkc

(t)
p

(
c(t)
p

)>
, and (2.7)

e
(t)
qk = (1− α)e

(t−1)
qk +

∑
p∈Nq

ρ̃
(t)
pqk, (2.8)

where α recursively downweighs old samples and ρpqk is the contribution of the obser-

vation at pixel p to Gaussian (q, k), and ρ̃pqk = ρpqk/
∑

k ρpqk. Our model parameters

are

µ
(t)
qk = s

(t)
qk/e

(t)
qk , (2.9)

Σ
(t)
qk = corr

(t)
qk/e

(t)
qk − µ

(t)
qk

(
µ

(t)
qk

)>
, and (2.10)

ω
(t)
qk = e

(t)
qk

/∑
q′,k′

e
(t)
q′k′ . (2.11)

61

Soft Updates Hard Updates

P
u
re

(a) All matches (b) Best match only

L
o
ca

l

(c) All local (equivalent to soft Stauffer-
Grimson)

(d) Best local only (equivalent to hard
Stauffer-Grimson)

Figure 2-3: Model Update Options: There are several possibilities for choosing which Gaus-
sian mixture components should be updated given an observation. In this illustration, consider
a single observed yellowish green pixel, depicted as a block. Suppose our background model at
the same location has three mixture components: one green, one yellowish green, and one blue.
These components are depicted as the stack of three spheres in the center of each subfigure. For
simplicity, further suppose that we have a single background mixture component for each of the
neighboring pixel locations, shown as additional blue, yellow, and green spheres. We can update
all mixture components in the whole neighborhood whose Mahalanobis distance is less than τmatch

(the red-highlighted spheres in Fig. 2-3(a)). Alternatively, one could update only the single best
match (Fig. 2-3(b)) or perform updates locally, as if a pure Stauffer-Grimson model were being used
(Fig. 2-3(c) and Fig. 2-3(d). In practice, all four methods yield similar performance, but hard local
updates are significantly faster.

62

The question at this point is how to assign the update weights ρpqk amongst all of

the Gaussian mixture components in the neighborhood of pixel p. There are several

logical possibilities, including those shown in Fig. 2-3:

• Pure Soft: For each observation, ci, we update all mixture components that

could have generated it, weighting by the likelihood of being generated by that

Gaussian, i.e.

ρpqk ∝

N (cp;µqk,Σqk) if p ∈ Nq ∧ d2
pqk < τmatch

0 otherwise,

(2.12)

where τmatch is some threshold that allows us to avoid updating poor matches. If

no mixture components pass the τmatch test, we assume some previously-unseen

mixture component generated the pixel and we instantiate a new component k′

at location p instead of performing an update.

• Pure Hard: We choose the single mixture component which was most likely to

have generated the sample and update it alone, i.e.

ρpqk =


1 if (q, k) = arg max

(q′,k′):q′∈Ni

N (cp;µq′k′ ,Σq′k′)

0 otherwise.

(2.13)

If d2
pqk ≥ τmatch for the selected component, we perform the new component

instantiation as was done for pure soft updates.

• Soft Local: We perform Stauffer- and Grimson-style soft updates by only up-

dating mixture components at the same location as the observation, i.e.

ρpqk ∝

N (cp;µqk,Σqk) if p = q ∧ d2
pqk > τmatch

0 otherwise,

(2.14)

handling outliers in the usual fashion.

63

• Hard Local: We perform Stauffer- and Grimson-style hard updates, handling

outliers in the usual fashion, i.e.

ρpqk =


1 if p = q ∧ k = arg max

k′
N (cp;µqk′ ,Σqk′)

0 otherwise.

(2.15)

While the pure soft scheme is appealing from a Bayesian perspective, it (and soft

local) also requires that we actually evaluate the likelihoods, N (cp;µqk,Σqk). The hard

approaches only require evaluating the much more computationally-efficient squared

Mahalanobis distances.

In Fig. 2-4, we have plotted the relative computational costs of the various up-

date methods, relative to the baseline traditional MoG approach (hard local with

W = ‖Np‖ = 1). These plots aggregate the results from running with a variety of

parameter settings on several different machines while processing the traffic sequence

from Mittal and Paragios [72]. The local approaches are relatively unaffected by the

neighborhood size, W , since they do not iterate over the whole neighborhood during

the update phase. It is clear that the pure soft approach incurs a significant addi-

tional performance penalty due to its requirements of full likelihood evaluation and

that potentially all mixture components in the local neighborhood about a pixel must

be updated.

For the same set of experiments, we show in Fig. 2-5 the costs of producing the

Mahalanobis distance maps required by the foreground/background classifier. Given

an update scheme, we expect the computational cost to rise linearly with the neigh-

borhood area (quadratically with the neighborhood diameter). The update schemes

are independent of this step, so it is interesting to note that by either choosing hard

updates and/or local updates, the Mahalanobis calculations become faster. When

we do hard updates, we force each sampled pixel to affect exactly one mixture com-

ponent. Similarly, local updates can only affect a smaller pool of components. The

net effect is that a slightly more compact model can be learned. This more compact

model is more computationally efficient as well because fewer Mahalanobis distance

64

PureSoft SoftLocal PureHard HardLocal
0

10

20

30

40

50

60

R
el

at
iv

e
T

im
e

C
os

t

W=12

W=32

W=52

W=72

Figure 2-4: Model Update Computation Costs: This plot shows the relative length
of time required to update the background model after background subtraction has
been performed. All times are multiples of the fastest: pure hard updates with a
neighborhood of size W = ‖Np‖ = 1, which is equivalent to the traditional optimized
MoG approach. Soft updates are substantially slower than hard ones.

PureSoft SoftLocal PureHard HardLocal
0

10

20

30

40

50

60

R
el

at
iv

e
T

im
e

C
os

t

W=12

W=32

W=52

W=72

Figure 2-5: Mahalanobis Map Computation Costs: This plot shows the relative length
of time required to compute the Mahalanobis distance map used as an input to
the foreground/background classification (see §2.2.1). All times are multiples of the
fastest: pure hard updates with a neighborhood of size W = ‖Np‖ = 1, which is
equivalent to the traditional optimized MoG approach. The algorithm for computing
the map is identical in all cases. Pure hard is fastest because its update mechanism
tends to encourage a more compact model with fewer Gaussian mixture components.

calculations are necessary.

2.3 Experiments

To test our algorithm, we selected several videos from recent publications which

attempt to provide better background subtraction in the face of waving trees and/or

65

Figure 2-6: ROC Curves for the Wallflower Dataset: ROC data points for various
neighborhood sizes for the Wallflower waving trees clip. W = 1 corresponds to the
traditional MoG model.

rippling water. We then hand-labeled all foreground pixels in an evenly-spaced set of

frames. Pixels that are ambiguous or are alpha blends of foreground and background

are marked as “don’t-care” in our labeling and are ignored in our evaluation. Sample

frames from the videos are given in Fig. 2-8.

2.3.1 Pixel-Level Foreground/Background Classification

If we vary the MRF parameters over the course of a collection of experiments and

record the per-pixel classification rates, we are sampling points in the receiver-operator

characteristics (ROC) curve. We then may estimate the overall ROC characteristics

of the system by taking the convex hull of these points [90]. A ROC curve represents

the tradeoffs between labeling actual foreground pixels as foreground (characterized

the true positive rate) while avoiding incorrectly labeling background pixels as fore-

ground (characterized by the false positive rate). An perfect classifier can be tuned

to make no mistakes and it reaches the top left corner of an ROC plot. For a fuller

discussion of ROC curves and related ways of evaluating classifier performance, see

§A.1.

In Fig. 2-6, we show the ROC curve for a collection of experiments on the

Wallflower waving trees video clip [107]. Each curve uses a different neighborhood

size. For this clip, our method shows a clear advantage over the traditional MoG in

66

3.05”

1
.4

2
”

1

2

3

4

5

6

7

8

1 2 3 4 1 2 3 4 1 2 3 41 2 3 4

Background

Model

Observed

Image

9x9

Matching

3x3

Matching

Figure 2-7: Exploiting Repetitive Texture: Consider a background model with one
Gaussian per pixel learned from a stationary pair of leaves against the blue sky
(leftmost image). We will be concentrating on what happens at the pixel location
with the bold outline. Suppose a sudden gust of wind moves the top leaf down and
right, as shown in the middle-left image. We now wish to find the best matching
background Gaussian for the pixel outlined in brown. To match the Gaussian that
actually generated it, we would need to have a 9 × 9 window (middle-right image);
however, a smaller 3 × 3 window allows matching to a similar leaf in the model and
labeling the pixel as background. When the dynamic textures are spatially repetitive,
windows too small to capture all their movement can still be useful.

foreground detection rates. Using a 3×3 window is sufficient in this case because the

tree motion is limited to a few pixels.

For videos where background objects move several pixels between pairs of frames,

larger windows can provide additional benefits; however, they are often unneces-

sary. There is no expected benefit for choosing a window size greater than W =

max (|dx|, |dy|) where (dx, dy)
> is the largest expected displacement vector arising

from the dynamic texture. Fortunately, many types of dynamic textures are spatially

repetitive and allow us to use much smaller windows, as illustrated in Fig. 2-7. For

most scenes, we have found that a 3 × 3 window lowers the false positive rate of

foreground detection without unduly raising the false negative rate or becoming too

computationally expensive.

67

Mittal & Mittal & Sheikh & Shah [93] Zhong &
wallflower[107] Paragios[72] Paragios[72] (unpublished clip) Sclaroff[127]

In
p

u
t

F
ra

m
e

B
es

t
P

u
b

li
sh

ed

There are no known
previously published
results for this video.

M
o
G

M
a
h

a
l.

M
a
p

F
in

a
l

M
o
G

M
a
sk

O
u

r
M

a
h

a
l.

M
a
p

O
u

r
F

in
a
l

M
a
sk

G
ro

u
n

d
T

ru
th

Figure 2-8: Background Subtraction Results: Selected background subtraction results
comparing the best existing methods with a traditional MoG model and our extended
MoG model. Column headings indicate the source of each video. For the Wallflower
example, the “best published” result refers to the result from the proposed method in
that paper [107]. The “Sheikh and Shah” clip was obtained directly from the authors,
though its results were not published in their paper. Refer to the text in §2.3.2 for a
discussion of these images.

68

2.3.2 Experiments on Various Scenes

In Fig. 2-8 we show comparative results from a few selected video frames of our test

videos. In the first two rows, we have the input frames and the best known results to

date. The third and fifth rows show the Mahalanobis distance to the closest matching

appearance model when using a MoG and our model, respectively. The images are

thresholded and intensity-scaled for visualization purposes. The fourth and sixth

rows are final masks after applying an MRF and morphological operations to the

Mahalanobis distance map. The final row contains hand-labeled ground truth where

each object is given a different hue and don’t-care pixels are shown in a lighter shade.

The video clips are ordered from left-to-right as easiest to hardest.

The first column is from the classic wallflower paper by Toyama et al. [107]. For

200 frames, the scene is empty and an off-camera person vigorously and continuously

shakes the tree, producing a semi-regular dynamic texture. A person enters the scene

and a single frame is labeled with ground truth. The “Best Published” results are the

best results from the original paper. For the MoG and our method, we used the same

parameter settings (except the neighborhood size). When looking at the Mahalanobis

distance maps, our approach suppresses the waving trees much more effectively than

the traditional MoG and is still able to pick up the person very well.

The second and third columns are from frames 410 and 150 of Mittal and Para-

gios’ traffic video [72] and we present their results in the second row. The graded

appearance of these results suggests they have used higher-level modules to detect the

vehicles and suppress any noise not corresponding to a vehicle detection. Also note

that the detected foreground regions are significantly smaller than the entire vehicle.

A MoG model is unable to fully suppress the false positives due to waving foliage,

even as we allow its parameters to be optimized independently. Our model is able

to suppress all false positives in these two frames and can even correctly detect the

two pedestrians in frame 150. In Fig. 2-9, we show overlaid pixel-level and blob level

detections in frame 574.

The fourth column is from frame 766 of a very challenging sequence courtesy of

69

Figure 2-9: Another Typical Result Image: All highlighting rectangles are ground-
truth positions. Their hue indicates a true positive object detection (blue), false
positive (red), or missed detection (magenta). Mittal and Paragios’ [72] system misses
the car entering from a side street and has localization errors (the blue blob highlights
are shifted relative to the ground truth bounding boxes). A tuned MoG model has
false positives in the trees. Our model suppresses the false positives, captures the
third car, and has better localization.

70

Sheikh and Shah. We are unaware of any existing published results on the sequence.

The scene consists of rippling water, large-leafed tropical plants blowing in the wind,

and two small ducks swimming by that are very close in color to the water. Our

model is able to produce cleaner silhouettes and have fewer blob-level mistakes than

the best MoG results.

The final column is from frame 36 of a Zhong and Sclaroff dynamic texture clip

[127]. Our foreground detections are cleaner and more fully capture the bobbing jug.

In practice, we have found the performance of our method to be consistent with

these results as it has been employed in traffic surveillance, indoor activity monitoring,

and coastal ship tracking (with mild to moderate waves). For more challenging water

scenery or places with very consistent dynamic textures, we have found the usage of

optical flow and/or spatio-temporal derivatives to be useful as additional modeling

features.

2.4 Summary

In this chapter, we have introduced a new image generation model that takes into

account the spatial uncertainty of dynamic background textures. Our model is much

more compact than recent methods ([127],[93],[72]) that have been introduced to

handle this problem. Ours can be readily implemented in the familiar mixture of

Gaussians framework and it performs better than competing methods. It is most

useful at suppressing clutter from waving trees, but it also can be used for suppressing

false positives arising from rippling water.

This chapter has described a specific example of finding where an existing model

does not explicitly account for particular types of uncertainty and then expanding

that model to make it explicit. Here we recognized that existing background subtrac-

tion models do not adequately account for local spatial perturbations in background

textures such as leaves that blow in the wind. In other vision problems, it is common

to have performance limited by simplifying modeling assumptions. There are often

straightforward ways of relaxing those assumptions to deal with real-world issues.

71

Relating this back to the problem at hand, a single Gaussian model does not work

well when there is a multimodal color distribution due to lighting changes and/or

temporally regular dynamic textures. A Mixture of Gaussians (MoG) model helps

address those issues, but we saw that a MoG model breaks down when the motion in

a dynamic texture is infrequent enough that the mixture components are not learned

well enough. Our MoG enhancements address this issue by explicitly allowing the

data to match mixture components in a local window.

Throughout this thesis, we will continue to explore aspects of background subtrac-

tion. In §3 we present a dataset where a hundreds of simultaneously visible people,

lighting issues, and crowds will challenge background subtraction enough that we

resort to using a strong foreground object model instead. In §5, we will be able to

return to using background subtraction to extract silhouettes for biometric purposes.

In §6, we will combine background subtraction techniques with a foreground appear-

ance model to help detect events in the presence of prevalent occlusion and lighting

changes.

72

Chapter 3

Efficient Pedestrian Detection for

Scene Activity Modeling

Portions of this chapter contains previously unpublished joint work with Jim Sukha,

Krista Ehinger, and Geza Kovacs.

3.1 Introduction

In §1, we discussed the value of detecting objects of interest in a visual scene: given

the locations of all these objects, we can perform higher-level functions such as event

analysis (§6) and recognizing individual people (§5). Especially when moving objects

are well-separated in space, model-free bottom-up approaches can be robust and

computationally efficient (§2). Unfortunately, in some scenarios the objects of interest

densely populate the scene. In this chapter, we will discuss alternative detection

mechanisms and apply them to scenes densely populated with foreground objects.

Here we will be using a collection of videos taken of a concourse at a major

transportation hub, the Great Hall at Grand Central Terminal in New York City.

Typical video frames are depicted in Fig. 3-1. We note that the observed floor area

in these videos is substantially larger than those typically used in academic research

such as the videos we will use in §6, while containing a similar density of people (see

73

Figure 3-1: Concourse at a Transportation Hub: The top image shows typical con-
ditions for our detection experiments in terms of lighting conditions and number of
pedestrians (267 in this case). The leftmost image shows an alternative viewpoint
with more extreme lighting conditions. At times, the concourse can be very heavily
populated (middle right image) or sparsely populated (lower right image).

74

Airport Hallway Grand Central
Statistic (Fig. 6-1) (Fig. 3-1) Units

mean population 4.8 168.6 people/frame
floor area 36 1600 m2

spatial density 13.5 10.5 people/(10m)2

non-masked pixels 2.6× 105 1.17× 106 pixels
image density 18.2 144.6 people/(1000px)2

Table 3.1: Population Statistics for Some Dense Scenes: The airport hallway clips
from §6 have a similar number of people per m2 as the concourse studied in this
chapter, but the concourse views cover a much larger area with individual people
occupying fewer image pixels. These concourse statistics were gathered from 37 ran-
domly selected frames taken from two different camcorders during a single morning
rush hour with moderate scene density (see Fig. 3-2 for typical images from this set).

Tab. 3.1). Although these videos were taken with a higher resolution camera1, the

standoff distance is much larger, so individual pedestrians occupy approximately 8

times less pixel area.

To emphasize the difficulty of using a blob-based tracker, we have hand-labeled

bounding boxes for every person in one frame in Fig. 3-2. Note that the vast majority

of bounding boxes have significant overlap with other boxes.

The remainder of this chapter is organized as follows:

• In §3.2, we will demonstrate the difficulties with using background subtraction

on these videos.

• In §3.3, we show improved classification results with näıve feature point detec-

tion.

• We then discuss the Dalal and Triggs [19] pedestrian detector in §3.4 and our

efficient implementation that uses commodity graphics card hardware.

• We summarize in §3.5.

1Unless otherwise noted, the Grand Central videos were recorded at 1440 × 1080 in progressive
scan at 23.976 or 29.97 frames per second with a pixel aspect ratio of 1.33 : 1, using Canon HG10
and Canon HV30 camcorders. All images in this chapter have had their aspect ratios corrected. The
standard definition (720× 576) recordings we will see in §6 are interlaced at 25 frames per second,
have square pixels, and were captured with a Canon MV-1.

75

Figure 3-2: Hand-labeled Locations of All the Pedestrians: In this frame, there are a
total of 267 pedestrians.

3.2 Challenges Using Background Subtraction

As suggested in chapters 1 and 2 and as we will explore again in chapters 5 and 6, one

traditional approach to detecting people in these images would be to (1) use back-

ground subtraction, (2) group foreground pixels using connected-components analysis,

then (3) consider each extracted blob to be a pedestrian.

We have seen that this approach can work well in sparse scenes, but it becomes

more challenging to get good results in dense scenes. Dense scenes are more difficult

because there is a high likelihood that two real-world objects will be close enough

to each other in image space that their blobs get merged (as in Fig. 3-3). One must

either (a) find a way to segment these blobs, or (b) try to detect when a person is

isolated and only treat their blob as a pedestrian detection at those times, as we

will do in §6. Non-ideal lighting conditions only make this problem more challenging

because they make the background subtraction process less discriminative. The user

is forced to trade off having (1) isolated but over-segmented blobs versus (2) merged

blobs with a low per-pixel miss rate. In this section, we will temporarily sidestep the

76

Input Mahalanobis Foreground
frame distance map highlights

M
er

ge
d

b
lo

b
s

T
o
o-

fr
eq

u
en

t
fo

re
gr

ou
n
d

Figure 3-3: Typical Background Subtraction Failures: These image chips were ex-
tracted from background subtraction results for the frame in Fig. 3-2. In the top row,
we see that the blobs from the three people in the top left get merged. The leftmost
person with a blue shirt has an extra blob that includes his feet, his shadow, and the
head of the woman below him with a pink blouse. The bottom row was extracted
from the passageway near the top right of Fig. 3-2. In addition to merged blobs,
most people are missed because pedestrians are so frequent in that area that no good
background model is learned.

77

Figure 3-4: Don’t Care Mask: We have created a don’t-care mask for each video
clip, this one corresponding to the video depicted in Fig. 3-2. The mask helps our
background subtraction algorithm avoid false positives due to fluttering flags, diffuse
reflections on the structural pillars, and registration changes by lighted signs (§3.2).
For the HOG-based detector, it helps avoid persistent false positives in places like the
balconies and banister columns (§3.4).

segmentation and grouping issues and show that even at a pixel level, it is difficult

to achieve acceptable performance using background subtraction.

Experiment Notes: User-Supplied Mask and Ground Plane Registration

Before proceeding, we note that in this chapter, we will assume that the user has

supplied an approximate mask indicating at which pixel locations a pedestrian can

appear. For example, Fig. 3-4 shows the mask used for the video depicted in Fig. 3-2.

Except where otherwise noted, we ignore detections and ground truth annotations

lying on white areas of this mask. These masks were created with minimal hu-

man effort and we currently make no attempt to register the mask with the video

(other than with the single frame used to create it). Frame-to-frame registration is

an open research problem whose difficulty is exacerbated here by the large number

of independently-moving objects. Correct frame-by-frame registration of the mask

would likely improve the results for all approaches discussed in this chapter; however,

based on our qualitative examination of the results, we do not believe that registration

would change any of the conclusions we make in this chapter.

78

manually−selected image points
projected world points
registration errors
projected 6ft poles

Figure 3-5: Ground Plane Registration: For the Grand Central video, we have manu-
ally created a ground plane registration for a single frame. Here we show the manually
selected image points (blue ×’s) and lines (red) connected them to projections of their
real world coordinates (blue ◦’s) given the registration. For reference purposes, we
also show the projection of a 6 foot tall pole at each of these locations (green lines).
The greatest registration errors occur on the stairway (where the world coordinates
are less accurate) and the entryway center on the right (where the image coordinates
are approximate).

79

In discussing registration, we also note that we have manually measured the rela-

tive locations of several points on the ground plane, allowing us to register against it,

as seen in Fig. 3-5. This ground plane registration will be used in §3.4 and later sec-

tions of this chapter to improve the speed of and decrease the false positive rate of a

strong model pedestrian detector2. In a full system, one might consider an automatic

registration mechanism such as that of Hoiem, Efros, and Herbert [46].

Background Subtraction

To test the utility of background subtraction in this environment, we use a Stauffer

and Grimson-style [101] Mixture of Gaussians (MoG) to model the per-pixel back-

ground color distribution, as has been discussed in §1.3.1 and §2. Because the Grand

Central scene is indoors and there is little motion of the background, it was not

necessary to apply the neighborhood search MoG extensions of §2.

With some tuning, background subtraction is able to yield results typified in

Fig. 3-6(b), where bright red highlights indicate foreground pixels. Although most

pedestrians have at least some of their pixels highlighted, there are significant errors

that would make it difficult to accurately track a large percentage of them. For

example, some of the more notable errors are:

• Merged blobs: On the right side of the image, there are several blobs that

correspond to multiple nearby pedestrians.

• Shadows: Especially in the lower center of the image, there are a number of

cast shadows that are misclassified as foreground.

• Fragmentation: Throughout the scene, it is common for a person to have mul-

tiple disconnected blobs3.

2For the speed tests in §3.4.5, both the CPU and GPU versions use the ground plane registration,
thus the speedup numbers are fair.

3As will be discussed in §6, we can trade off merged blobs with fragmentation artifacts by adjust-
ing the MRF parameters. The parts of the Mahalanobis distance map (Fig. 3-6(a)) that sit between
blob fragments often have a low estimated foreground likelihood (dark shading). If the MRF were
biased sufficiently to join the fragments, there would be significant false merging of blobs throughout
the scene (observe similar gray levels sitting between people).

80

(a) Mahalanobis Distance Map

foreground pixels

(b) Final Foreground Map as Highlights

Figure 3-6: Background Subtraction Results: Fig. 3-6(a) shows the Mahalanobis dis-
tance map for Fig. 3-2 (without the mask from Fig. 3-4 applied). We use an MRF to
produce a spatiotemporally-smoothed foreground/background segmentation, shown
as red highlights in Fig. 3-6(b).

81

true positives false positives false negatives true negatives don’t care

Figure 3-7: Block-wise Background Subtraction Results: Here we visualize how the
background subtraction results shown in Fig. 3-6 are used to generate the statistics to
create Fig. 3-8 (along with the results from other frames). Ground truth labels were
made on 16× 12 pixel blocks. To better visualize the results, pixels from pedestrian-
labeled blocks have been turned to black if the distance to the nearest foreground
detection is less than 1 block (hence the precise boundaries seen on the yellow labels).
There are many missed regions and shadows cause many false positive foreground
detections.

• Glare: In other video frames, glare above and below the information booth in

the center of the image causes image saturation, reducing the discriminability

of the background model.

Block-wise Analysis

To evaluate background subtraction, we randomly sampled 12 frames from the 1920×
1080 video depicted in Fig. 3-2 and hand-labeled each 16 × 12 block of pixels as

pedestrian, non-pedestrian, or don’t-care. If a block had a pedestrian taking up more

than about 10% of its area, the whole block was labeled as containing a pedestrian.

Don’t-care labels were reserved for blocks where the human annotator could not

accurately judge the occupancy. Per-pixel labels were not used because they would

have introduced significant numbers of additional don’t-care labels and would have

consumed an inordinate amount of annotation time.

82

(a) Background Subtraction ROC Curve

(b) Background Subtraction Precision-Recall Curve

Figure 3-8: Foreground Detection Curves: These curves were produced by varying
the required number of pixels within each 16× 12 block that need to be detected as
foreground before labeling the block as belonging to a pedestrian. There is substantial
room for improvement.

83

In our evaluation, we choose some threshold τ , and if the number of detected

foreground pixels in a block is greater than τ , the block is considered foreground and

ideally the ground truth labeling is a pedestrian. If we vary τ from 0 to 16 ·12 = 192,

we can produce a Receiver Operator Characteristic (ROC) curve (Fig. 3-8(a)) and a

corresponding precision-recall curve (Fig. 3-8(b))4. Precision and recall are another

pair of statistics that can be used for evaluating detector tradeoffs. Precision measures

the fraction of detections that are true positives, and recall measures the fraction of

positive examples that are detected. An optimal detector has a precision-recall curve

that touches the top-right corner (i.e. 100% precision and 100% recall). Although

the results in Fig. 3-8(a) are significantly above chance, a non-degenerate classifier

cannot even achieve 80% precision. 70% precision can only be achieved at less than

55% recall.

If we examine the results across the whole video clip, it becomes apparent that

many of the background subtraction errors are systematic and are concentrated in

different image regions. For example, in Fig. 3-9, we show the per-pixel foreground

likelihood for two videos of the Great Hall. In both videos, there is substantial foot

traffic in the area between the information booth (in the image center) and the arch-

way on the far side of the image. On an overcast autumn afternoon, the foreground is

correctly and frequently detected in that region (notice the bright white area between

the information booth and archway in Fig. 3-9(a)). Unfortunately, severe glare on

sunny summer mornings lowers the chances that background subtraction will detect

pedestrians there (notice the dark areas between the same part of Fig. 3-9(b)).

To investigate the performance of background subtraction further, we manually

identified three non-contiguous areas of the scene (see Fig. 3-10, where the camera

faces east). Along the north and south (left and right, respectively) sides of the floor,

the lighting is mostly diffuse resulting in little glare and very mild shadows (green

regions). High glare east of the information booth tends to lower the true positive

4Scott, Niranjan, and Prager [90] showed that ROC curves are monotonic, that one can take the
convex hull of a set of ROC points, and that one can always create a classifier whose performance
sits along a straight line between two other points in ROC space. Davis and Goadrich [25] provide
a description of various ways to correctly find the feasible set of precision-recall points and how to
interpolate between them in a precision-recall plot.

84

(a) Accumulated Foreground (Overcast Afternoon)

(b) Accumulated Foreground (Sunny Morning)

Figure 3-9: Lighting Conditions and Background Subtraction: In Fig. 3-9(a), we
visualize the likelihood that a given pixel in a video will be labeled as foreground.
Lighter shading corresponds to a higher likelihood of a foreground pixel being detected
at that location. The likelihood is estimated over a 1 hour video, recorded on an
autumn afternoon with overcast skies. In Fig. 3-9(b), we visualize a similar likelihood
measure for the same scene, but on a summer morning with clear skies, using a
different camcorder.

85

diffuse lighting (good regions) other non-masked don’t care
strong shadows (shadow regions) high glare (glare region)

Figure 3-10: Qualitative Regions: Manually-chosen regions used when investigating
the performance of background subtraction.

rate of foreground detections (blue region), and deep cast shadows in other areas

raise the false positive rate (red regions). Black areas in Fig. 3-10 are only considered

when evaluating results from all regions. In Fig. 3-11, we see that in the regions with

diffuse lighting (“good regions”), performance improves in terms of the true positive

rate and precision. In the shadow and glare regions, performance is notably worse

than in the good regions or across the whole image.

Background Subtraction Summary

In this section (§3.2), we have seen that we can detect foreground pixels on many

pedestrians using background subtraction. It is a general method with a weak model

that requires very little tuning or training. Unfortunately the results are far from

ideal. We would especially like to improve the results in difficult image regions that

have glare and shadows. Further, we have been ignoring the difficult problem of merg-

ing fragmented blobs and segmenting merged blobs to extract individual pedestrians

from the foreground mask so they can be tracked.

86

(a) Regional Background Subtraction ROC Curves

(b) Regional Background Subtraction Precision-Recall Curves

Figure 3-11: Foreground Detection Curves by Region: Here we expand on the results shown
in Fig. 3-8, showing the ROC and precision-recall curves conditioned on blocks belonging to each
of the image regions depicted in Fig. 3-10. The “good” regions have the best results because the
lighting conditions are best there. Results are worst in the “shadow” and “glare” regions where
strong direct light and shiny floors present challenges for background subtraction. Even if we only
wished to analyze the “good” regions, these results are poor enough a non-specialized tracker built
on top of them (like the solution we will explore in §6) will likely have a prohibitively high error
rate.

87

3.3 Näıve Feature Point Detection

In examining the Grand Central scene (see Fig.3-1), we note that the floor has very

little texture. Pedestrians on the other hand tend to induce intensity edges and

corners. As an alternative to using background subtraction for detecting people, we

briefly consider a system that tries to detect corners and other features that can

be easily tracked. This approach is only suitable for scenes where the background is

textureless and we use it primarily as a secondary performance baseline against which

we will compare a strong pedestrian detection model in §3.4.

This second system uses a detector to find small local features that are suitable for

tracking. In particular, we use the GoodFeaturesToTrack function from the OpenCV

library [78] that implements the Shi and Tomasi feature point detector [94]. We run

the algorithm independently on each of the annotated test frames. Though more

costly than background subtraction, detecting and tracking points with this algorithm

is 1–2 orders of magnitude faster than state-of-the-art strong model detectors such

as Dalal and Triggs’ that we will discuss in §3.4 (when both are implemented on a

CPU). Like background subtraction, no training is needed and little parameter tuning

is necessary.

Algorithm 3.1 Classification Evaluation Algorithm: We use this algorithm for eval-
uating how well feature point detection does at classifying blocks of pixels as pedes-
trians or not. We assume that a block with at least one detected feature point is
classified as belong to a pedestrian. The issue of clustering detections to find individ-
ual pedestrians is sidestepped.

1: for all minimum detector point qualities, qmin ∈ [10−4, 10−1] do
2: for all minimum distances between detected points, dmin ∈ {1, 2, ..., 10} do
3: for all test images, I do
4: Acquire detections using cvGoodFeaturesToTrack(I, qmin, dmin).
5: Discard masked detections.
6: Discard redundant detections in each 16× 12 annotated block.
7: end for
8: Gather ROC and precision-recall statistics for each 16× 12 block.
9: end for

10: end for
11: Compute the ROC envelope and feasible set of precision recall points from all

experiments.

88

true positives false positives false negatives true negatives don’t care

Figure 3-12: Block-wise Corner Detection Results: Here we show the feature point
detections as + signs on a sample test frame, depicted in a manner analogous to
Fig. 3-7. With the parameter settings chosen here, there are nearly no false negatives
(yellow areas far from any detection), but there are many false positives (red +
signs). These false positives occur due to shadows, compression artifacts, and most
importantly, building geometry.

As with fragmentation in background subtraction, we ignore the problems of

grouping point detections and tracking them over time for these experiments. We

also use the mask (Fig. 3-4) from the background subtraction experiments. Our test

procedure is given in Alg. 3.1.

In Fig. 3-13 we see much better results than we did with background subtraction

(Fig. 3-11). As expected, the “good regions” have the best results, but it is interesting

that “all non-masked” results are the worst. This is because it includes non-floor parts

of the image like the stairs and ticket counters that have high false positive rates, as

seen in Fig. 3-12. Although we could try to mask out those areas too, we’d miss

the many people who walk in front of those areas, which are semantically meaningful

(loiterers, people purchasing tickets, etc.).

In §4, we will see that tracking these feature points over time will allow us to do

some modeling of scene-level activities, but the results will not be as compelling as we

wish them to be. We note that to be able to achieve the reasonable classification rates

89

(a) Regional Corner Detection ROC Curves

(b) Regional Corner Detection Precision-Recall Curves

Figure 3-13: Feature Point Detection Curves: Using a feature point detector to find pixel
blocks containing pedestrians yields better results than background subtraction (compare with Fig. 3-
11). “All non-masked” is so bad because the architectural features in the black areas (non-good,
non-glare, non-shadows) of Fig. 3-10 generate a huge number of false positives. Although these
results are better than background subtraction, we cannot achieve better than 85% precision for a
non-degenerate classifier when considering all non-masked areas.

90

seen in this section, we rely heavily on the background being textureless and shadows

being soft or non-existent. For many site monitoring scenarios, this is practical, but

not for all. This suggests that if we use a detector more tuned to find pedestrians,

we may get substantially better results. We will confirm this hypothesis in §3.4.

3.4 Efficient HOG-based Pedestrian Detection

3.4.1 Strong Model Motivation

In typical site monitoring applications, walking humans are the primary objects of

interest; we need not concern ourselves with detecting objects like pencils, boats,

cars, or telephones. Supplying evidence of this xassertion are examples such as a US

Department of Transportation study finding that improved crosswalk safety can be

achieved through automatic pedestrian detection [48]. Gavrila has also worked in

the automotive sector attempting to detect pedestrians to mitigate potential vehicle-

human collisions [36]. The US Defense Advanced Research Projects Agency (DARPA)

funded a multi-year multi-institution research initiative called the Visual Surveillance

and Monitoring (VSAM) project[12]. In it, the focus was on detecting and tracking

vehicles and people and characterizing their interactions. More recently a series of

challenge problem datasets have been produced for the PETS workshops (e.g. [29, 30])

where participants are tasked with tracking pedestrians and their belongings so that

security events can be automatically detected.

In these settings, a critical task is being able to robustly detect and localize pedes-

trians. In scenes like the Grand Central one studied in this chapter, the detection task

is made more challenging by the presence of crowds because many people are always

or almost always occluded by other people. We saw in earlier sections that simpler

techniques like background subtraction that are agnostic to the type of foreground

object do not perform sufficiently well in these settings. Because of this, it can be

advantageous to spend the time developing and training a strong appearance model

instead of using more generic bottom-up techniques like background subtraction.

91

3.4.2 HOG Descriptors

For the work in this chapter, we have chosen to use Dalal and Triggs’ [19] pedestrian

detection algorithm, based on Histograms of Oriented Gradients (HOG). Variants of

this algorithm are widely used because

• it performs well,

• it can be re-implemented without too much trouble, and

• the authors have released their source code.

The algorithm uses a collection of HOG descriptors tiled over a detector window.

Each of these descriptors captures local shape information by building a histogram of

image gradients. A detector window is characterized by a feature vector formed by

concatenating the local descriptors.

To illustrate this process more concretely, we will describe the algorithm with a

standard descriptor configuration. In doing so, we will make frequent reference to

Fig. 3-14. At every location and size in the input image where we want to test for the

presence of a pedestrian, we will construct a detection window descriptor as follows.

After extracting a test window, we rescale it to a canonical size (64 × 128 pixels

in this case) and perform gamma correction: Iγ(x, y) =
√
I(x, y), where I(x, y) is the

intensity of the pixel at position (x, y) in the cropped and rescaled input image.

We then extract block descriptors at every point on a regular 7 × 15 grid whose

points are 8×8 pixels apart. This grid is illustrated as dots on the “Block Descriptor

Locations” image in Fig. 3-14. A block descriptor uses data from a 16× 16 block of

pixels in Iγ(x, y). This means that each block overlaps with each of its 4 neighbors

by 50%.

Each block descriptor is computed by breaking up its input into a non-overlapping

2 × 2 grid of cells, each 8 × 8 pixels in size. In Fig. 3-14, cyan boxes correspond to

blocks and blue boxes within them correspond to cells. From the pixels within a cell,

92

F
ig

u
re

3-
14

:
C

om
pu

ti
n

g
a

H
O

G
D

es
cr

ip
to

r:
In

th
es

e
il
lu

st
ra

ti
on

s,
a

w
in

d
ow

d
es

cr
ip

to
r

is
b
u
il
t

u
p

fr
om

7
×

15
ev

en
ly

sp
ac

ed
an

d
p
ar

ti
al

ly
ov

er
la

p
p
in

g
b
lo

ck
d
es

cr
ip

to
rs

.
E

ac
h

b
lo

ck
d
es

cr
ip

to
r

co
n
ta

in
s

4
n
on

-o
ve

rl
ap

p
in

g
ce

ll
s.

A
b

ov
e

th
e

“I
m

ag
e

G
ra

d
ie

n
ts

”
im

ag
e

is
it

s
co

lo
r

ke
y.

G
ra

d
ie

n
ts

w
it

h
lo

w
m

ag
n
it

u
d
e

ar
e

d
ar

k
,

an
d

th
e

d
ir

ec
ti

on
is

en
co

d
ed

as
a

h
u
e.

S
ee
§3

.4
.2

fo
r

fu
rt

h
er

d
et

ai
ls

.

93

we produce a weighted histogram of image gradient orientations:

h(o; bx, by,C) =
∑
x,y∈C

w(x, y)︸ ︷︷ ︸
spatial kernel

· ||g(x, y; bx, by) ||︸ ︷︷ ︸
gradient magnitude

· δ

o,
⌊

Ω ·
(

∠g(x, y; bx, by)

π
mod 1

)⌋
︸ ︷︷ ︸

histogram bin (from gradient direction)

 , (3.1)

where h(o; bx, by,C) is the weight in a cell’s orientation bin. The bin is indexed by

o. (bx, by) is the pixel location of the center of the block to which the cell belongs,

and C is the set of all pixel locations within the cell. w(x, y) is the “Block-Sized

Spatial Voting Stencil” depicted in Fig. 3-14. It is used to emphasize gradients near

the center of the block and it has the form of a Gaussian:

w(x, y) =e−(x2+y2)/(2σ2) (3.2)

for some user-selected kernel bandwidth σ. The histogram is built up from image

gradients:

g(x, y; bx, by) =

 ∂Iγ(x+ bx, y + by)
/
∂x

∂Iγ(x+ bx, y + by)
/
∂y

 , (3.3)

and it has Ω = 9 bins.

All the cell histograms corresponding to a block are concatenated together to form

a feature vector of length

1 element

orientation bin
· 9 orientation bins

cell
· (2 · 2) cells

block
= 36

elements

block
. (3.4)

This feature vector is then normalized so that the squares of its elements sum to 1.

The normalized feature vector is the block descriptor. Note that the histograms are

computed at the cell level, but spatial voting weights and normalization are associated

with blocks.

94

The set of all block descriptors for a detector window are concatenated to form

the window descriptor. For the standard descriptor layout, it has

36 elements

block
· (7 · 15) blocks

window
= 3, 780

elements

window
. (3.5)

In Fig. 3-14 there is a rendering of the descriptor for the input image window shown in

that same figure. Gray wedges show the histogram mass corresponding to gradients

pointing in the same direction as the wedges. For clarity, block descriptors are tiled

next to each other in this rendering, even though neighboring blocks share input data

(but the data have different spatial weights for each block).

We note that the actual descriptor computation differs slightly from our descrip-

tion above. Eqn. 3.1 shows each gradient casting all of its voting mass into a single

bin. It is more robust to proportionally spread the voting mass between the two

closest bin centers, and we do so in practice. Also, our inputs are color images, so

the image gradients have 3 channels, not just 1. We compute color gradients for each

of the red, green, and blue channels. At each pixel, we retain the gradient with the

highest magnitude. Finally, in this section we have given specific parameter settings

such as the number of histogram bins (9), arrangement of cells within blocks (2 × 2

cells of size 8 × 8), and the arrangement of blocks within windows (7 × 15 blocks

spaced at every 8×8 pixel locations). The algorithm is able to use other layouts, but

we found that Dalal and Trigg’s default choices produced noticeably better results

than other ones with which we informally experimented.

3.4.3 Classification

Support Vector Machines

Given a descriptor for a detection window, we now wish to classify that window as

a pedestrian or non-pedestrian. A typical way to cast classification problems is to

learn a function that returns a positive number for feature vectors extracted from

windows with pedestrians and a negative number for feature vectors corresponding

to non-pedestrian windows.

95

A desirable property of this function is that, given a training set, it maximizes

the difference between the minimum positive number for pedestrian windows and the

maximum negative number for non-pedestrian windows. More formally, suppose we

have a set of n training samples:

D = { (xi, li) | xi ∈ Rp ∧ li ∈ {−1,+1} }ni=1 (3.6)

where xi is a p-dimensional feature vector and li is its corresponding label: +1 if xi

represents a pedestrian and −1 if not. We would like to find a separating hyperplane

with a normal vector w and bias w0 that minimizes ||w|| while classifying all feature

vectors in the training set correctly, i.e.

li ·
(
w>xi − w0

)
≥ 1 ∀ i ∈ {1, ..., n}. (3.7)

Our real-valued classifier function is then

f(x) =
(
w>x− w0

)
. (3.8)

Given a novel feature vector x, we classify it as a pedestrian if f(x) > 0 and as a

non-pedestrian if f(x) ≤ 0.

This form of classifier is called a Support Vector Machine (SVM). SVMs are widely

used in machine learning problems because efficient solvers are available, classification

can be done very efficiently, and they tend to perform well with real-world test data.

Since being introduced by Vapnik in 1963, SVMs have been generalized to support

non-separable training data (i.e. when no w and w0 exist that satisfy Eqn. 3.7) and

nonlinear decision boundaries. An excellent tutorial by Burges [11] goes into detail

about how SVMs work and how to find the optimal w and w0 given training data.

For the work described in this chapter, we use a linear SVM solver based on the

SVMlight package developed by Joachims [50].

96

Figure 3-15: Positive Training Images from the INRIA-orig Dataset: The red rect-
angles delimit the detector window boundaries.

Figure 3-16: Negative Training Images from the INRIA-orig Dataset: All INRIA
negative images have no humans visible anywhere in them.

Figure 3-17: Positive Training Images from the INRIA-new Dataset: These images
are people that were excluded from the INRIA-orig dataset. The outer red box shows
the detector window boundary. The inner red box shows the canonical pedestrian
size within a window.

97

INRIA INRIA INRIA INRIA Grand
-orig -orig-hard -new -new-hard Central

positive images 614 614 25
positive examples 2,416 3,384 4,260

negative images 1,218 1,218 1,218 1,218 N/A
negative examples 9,120 10,935 9,120 10,935 113,787

Table 3.2: Training Datasets

Datasets

To test the performance of our pedestrian detector, we have used several related

datasets. In these classification experiments, individual image chips are extracted

and a single window descriptor is built and tested for each chip.

We have five training datasets (see Tab. 3.2 for key statistics):

• INRIA-orig: This is the dataset provided by Dalal and Triggs and used in

the 2005 paper [19]. The images are typical of photographs taken on vacations.

Most were taken outdoors and ones with humans are nearly always taken at

near eye-level (see Fig. 3-15 for typical examples). Pedestrians with non-trivial

amounts of occlusion were omitted from the training set. All negative examples

were randomly sampled from images containing no visible humans (see Fig. 3-16

for examples of full images).

• INRIA-orig-hard: After training the classifier on the INRIA-orig dataset,

the negative training images were exhaustively scanned for false positive win-

dows, which we call “hard” negative examples, following Dalal’s convention.

These samples are used as additional negative training samples and a new clas-

sifier is trained, as was done by Dalal and Triggs [19].

• INRIA-new: In the INRIA-orig dataset, the positioning of bounding boxes

was qualitatively imprecise for positive examples. We re-annotated all positive

images to provide more consistent alignment. To do so, we instructed the an-

notator to mark the vertical image extent of living tissue in a person and the

centroid of their head. The head centroid was used to choose the horizontal po-

98

sition of the bounding box. Additionally, we added many positive examples that

were excluded from INRIA-orig due to high occlusion (see Fig. 3-17 for some

examples of pedestrians that were excluded from INRIA-orig). The negative

training set is identical to that of INRIA-orig.

• INRIA-new-hard: As was the case for the INRIA-orig-hard dataset, a new

classifier was created using hard negative examples.

• GrandCentral: We have independently created a dataset from the Grand

Central scene featured throughout this chapter. To do so, we randomly selected

a collection of frames from a 1 hour video and hand-labeled the position of every

pedestrian. Low contrast and significant occlusions prevented the usage of the

same annotation protocol that was used for INRIA-new. Instead the tip of each

pedestrian’s head was manually marked. We automatically chose the bounding

box coordinates by assuming all pedestrians are 1.75m tall, by using camera cal-

ibration to find their image height, and by assuming that pedestrians appear as

nearly vertical in image space5. Negative examples were acquired by randomly

sampling detector windows and discarding any that are close to a pedestrian6.

Crowd density, background clutter, and perspective distortions are noticeably

different from the INRIA photographs. Also, the negative examples from this

dataset frequently contain partial pedestrians or pedestrians of incorrect scale,

by design.

For the classification experiments, we have three test datasets (see Tab. 3.3 for

key statistics):

• INRIA-orig: Like the INRIA-orig training set, we re-use Dalal and Triggs’

test set. The images in the test set are independent of those in the training set.

5We did not correct for skew induced by having an image plane that is not perpendicular to
the ground plane. Doing so using nearest-neighbor sampling induces dramatic false gradients. We
believe that the best way to handle this situation would be modify the HOG voting system to correct
for the perspective distortions after computing image gradients.

6Two windows are “close” if they pass the PASCAL Visual Object Challenge 50% overlap test
[106]. See §3.4.4 of this thesis for more details.

99

INRIA-orig INRIA-new GrandCentral

positive images 288 288 12
positive examples 1,132 1,178 3,808

negative images 453 453 N/A
negative examples 995,452 995,452 27,808

Table 3.3: Test Datasets for Classification

Included Training Sets
Classifier Name INRIA INRIA INRIA INRIA Grand

-orig -orig-hard -new -new-hard Central

INRIA-orig X
INRIA-orig + hard X X
INRIA-orig + hard X X X
+ GrandCentral

INRIA-new X
INRIA-new + hard X X
INRIA-new + hard X X X
+ GrandCentral

Table 3.4: Training Set Combinations for HOG Classifier Evaluation

• INRIA-new: We also made the test annotations qualitatively more self-

consistent and added in a number of pedestrians not included in the INRIA-orig

test set.

• GrandCentral: We randomly sampled frames from a second Grand Central

video. This video is 5.5 hours long, with one hour overlapping the time of the

training video, but it was taken from the opposite side of the room. Positive

and negative examples were extracted in the same manner as the training set.

Classification Results

For each training set combination shown in Tab. 3.4, we created a classifier. Because

we are using a linear SVM for classification, the normal of the separating hyperplane,

w, can be rendered in a manner similar to window descriptors. Recall that the

Window Descriptor in Fig. 3-14 shows the voting mass in each orientation histogram

bin as a grayscale wedge. In Fig. 3-18, we show a similar plot for the classifier normals,

where elements of w that are 0 are rendered as 50% gray wedges. If an element is

100

(a) INRIA-orig (b) ...+ hard (c) ...+ GrandCentral

(d) INRIA-new (e) ...+ hard (f) ...+ GrandCentral

Figure 3-18: Classifier Renderings: Here we show renderings of the w portion (see
Eqn. 3.8) of several learned classifiers (see Tab. 3.4).

101

exactly 0, then the corresponding histogram bin is ignored during classification (see

Eqn. 3.8). A white wedge corresponds to histogram bins that should contain a large

amount of voting mass if the image window corresponds to a pedestrian. Bins where

nearly no voting mass should be found are shaded black.

There are several noteworthy aspects of the classifiers depicted in Fig. 3-18. In

Fig. 3-18a, the classifier using the INRIA-orig training set has learned to look for

heads, shoulders, and feet. It is biased against vertical edges (horizontal gradients)

just below the shoulders and feet. It is also biased against horizontal edges in the leg

and upper arm areas. When additional negative training data are included (Fig. 3-

18b), the rendering has higher contrast in many areas, indicating that the learning

algorithm has implicitly chosen to build a stronger, more-tuned classifier. If we add

in the very large GrandCentral training data, the classifier undergoes much more sub-

stantial changes (see Fig. 3-18c). The same general pattern of additional complexity

being captured by larger training sets is observed with the INRIA-new training data

in Fig. 3-18d–f. Note that especially in the head region, the classifier is much more

discriminative when using the INRIA-new dataset (Fig. 3-18d). This is because

INRIA-new was created with the explicit purpose of registering the training data

more consistently, especially with respect to the head.

In Fig. 3-19, we show the classification results on the INRIA-orig test set using

each of the classifiers described in Tab. 3.4. We include ROC curves because they are

widely used in the literature, but we will concentrate our discussion on the precision-

recall curves because the size of the positive and negative classes is so different. These

plots show that there is a clear advantage to matching the annotation protocols for

the training and test data: ignoring the GrandCentral data for a moment, training

based on INRIA-orig is clearly superior to INRIA-new because it takes into account

the imprecise nature of the test annotations. In precision-recall terms, adding the

extra hard training data helps substantially. This is unsurprising because this extra

data is sampled from the same types of images that are found in the test set. Also

unsurprising is the fact that adding in the extremely large GrandCentral training set

makes the results far worse. That dataset is large enough that it causes the classifier

102

Figure 3-19: Classification Results on INRIA-orig: In the top graph, we show ROC
curves for each of the classifiers described in Tab. 3.4 when tested against INRIA-orig
(see Tab. 3.3). Note that both axes use logarithmic scales. The closer the curve is to
the bottom and left of the plot, the better. In the bottom graph, we show precision-
recall curves for the same experiments. The closer the curve is to the top and right,
the better. In both plots, the legend is sorted by the area under the (full) curve. The
more similar the training set is to the INRIA-orig test set, the better the results.

103

to be overfit to it, when used on general vacation-style imagery.

In Fig. 3-20, we show the classification results on the INRIA-new test set. We

see that the best results are achieved when the matched INRIA-new + hard training

data are used. This more-precise test set (relative to INRIA-orig) allows the classifiers

to achieve better performance than was seen with the original annotations. This is

especially apparent when observing that training with the GrandCentral data, there

is less evidence of overfitting (compare the green and magenta curves here to the

magenta and black curves in Fig. 3-19). This improvement in results is encouraging

because we will eventually want to search for the precise locations of pedestrians in

images.

We show our results for the GrandCentral test set in Fig. 3-21. This test set

differs from the INRIA ones in that there is far more occlusion of pedestrians, the

viewpoint is different, and the scene is indoors in a single setting. Also, the negative

examples frequently include parts of people or people at the wrong scale. When

adding hard training data to either INRIA-orig or INRIA-new, the performance gets

worse. This is because the hard data causes the classifiers to too heavily tune towards

discriminating against outdoor scenes. We also note that the results using the INRIA-

new classifier are substantially better than those of the INRIA-orig. Once we add

in the GrandCentral training data, the results improve dramatically and INRIA-new

versus INRIA-orig is less important.

In these classification experiments, we have seen that substantial performance

improvements in the pedestrian detector can be achieved by matching the types of

scenes and the annotation methodology between training and test sets. We have also

seen that our GrandCentral data is challenging even for a strong detector like Dalal

and Triggs’. Next we will investigate the task of finding all pedestrians and their

locations within complete images, not just pre-cropped image chips.

3.4.4 Detection and Localization

Recall that we are using a pedestrian detector so that we can find and track people in

videos. The mechanism just described in §3.4.3 classifies an image window as either

104

Figure 3-20: Classification Results on INRIA-new: See Fig. 3-19 for a description of
how to interpret these ROC and precision-recall plots.

105

Figure 3-21: Classification Results on GrandCentral: See Fig. 3-19 for a description
of how to interpret these ROC and precision-recall plots.

106

Figure 3-22: Multiple Detections: The magenta and yellow bounding boxes indicate
every positive detection made by the INRIA-new + hard + GrandCentral classifier
in this image. Note that for nearly every actual pedestrian, there are many positive
detections.

a pedestrian or a non-pedestrian. This mechanism works well when we supply it with

image chips that have either (a) a pedestrian of the correct size who is centered in

the window or (b) no pedestrians at all.

We saw hints of these constraints breaking down when observing that the curves

in Fig. 3-21 look worse than those in Fig. 3-20 or Fig. 3-19. The negative data for the

INRIA test sets include only windows from images with absolutely no humans present.

Those test sets do not attempt to evaluate the performance of detecting humans at

the wrong scale, of having false positives due to misaligned windows, or of dealing

with significant occlusions. In all three test sets, we ignored the problem of how to

interpret many neighboring windows with high detection scores. These clusters of high

scores can be due to multiple people being present or because the partial translation

invariance in the HOG feature is designed to allow for small misalignments.

In Fig. 3-22, we show all windows where the INRIA-new + hard + GrandCentral

classifier has a positive score (Eqn. 3.8). Note that for nearly every actual person,

there are numerous positive classification results. To be able to track the pedestrians,

107

we want to select just one positive detector window per actual person.

Meanshift and Non-maxima Suppression

To solve the multiple-detection problem, we use the meanshift algorithm [15] and

non-maxima suppression, as was done by Dalal and Triggs [19]. Meanshift is used to

find the primary modes in classifier scores. Non-maxima suppression is then used to

cull modes that are too close to each other.

To illustrate how these work, consider the simulated data shown in Fig. 3-23. In

it, there are pedestrians located at the following image locations: (0, 0), (5, 0), and

(8, 3). We simulated a collection of positive classification scores and locations by (a)

randomly sampling positions around the three ground truth pedestrian locations and

then (b) randomly sampling classification scores. In the figure, the size of a blue dot

is proportional to its score, with larger dots corresponding to cases where the classifier

is more confident that a pedestrian is present.

The meanshift algorithm requires that the user choose a spatial kernel that repre-

sents an object’s shape (at least roughly). Starting with the kernel centered at a given

data point, all points are re-weighted according to the kernel function. The kernel is

then shifted to the mean location of the re-weighted points. This process is repeated

iteratively until convergence. We used a Gaussian kernel for the simulation shown

in Fig. 3-23 and for the real-data experiments described later in this section7. The

trajectory of one such kernel is shown in the middle plot of Fig. 3-23. The ellipses

shown the kernel contour at 2.5 standard deviations.

More formally, the update equation for a meanshift kernel’s position y(j) at step

7For the simulation, our kernel bandwidth is Σ =
(

0.452 0
0 92

)
. For the results that we will discuss

later when we present Fig. 3-24, Σ =
(

42 0 0
0 82 0
0 0 1.32

)
. There is a third dimension because we run

meanshift over location and scale. For the ROC and precision-recall curves discussed later in this
section, the meanshift bandwidth was one of the optimization parameters.

108

−10 −5 0 5 10

−2

0

2

4

6

raw detections (dot size ∝ f(x) score)

−10 −5 0 5 10

−2

0

2

4

6

raw detections

meanshift path

initial kernel boundary

intermediate boundaries

final meanshift boundary

−10 −5 0 5 10

−2

0

2

4

6

raw detections

meanshift paths

meanshift modes

Figure 3-23: Meanshift Illustration: The blue dots represent hypothetical (x, y) image
locations of detection windows with positive classification scores (see Eqn. 3.8). The
size of each dot is proportional to its score. In this simulation, there are pedestrians
at (0, 0), (5, 0), and (8, 3). The middle plot shows the path followed by the meanshift
algorithm for a single data point. The bottom plot shows the meanshift trajectories
for all data points and the final mode locations.

109

j is given by

y(j) =

∑P̂
i=1 xi

point re-weighting︷ ︸︸ ︷
f(xi) exp

(
−1

2

(
xi − y(j−1)

)>
Σ−1

(
xi − y(j−1)

))
P̂∑
i=1

f(xi) exp

(
−1

2

(
xi − y(j−1)

)>
Σ−1

(
xi − y(j−1)

))
︸ ︷︷ ︸

∝ kernel’s supporting weight (w)

(3.9)

where {xi}P̂i=1 is the set of locations where there are positive classification scores, f(·)
is the classifier scoring function from Eqn. 3.8, and y(j−1) is the kernel’s position at

the previous iteration.

In the bottom plot in Fig. 3-23, we show the update trajectories (green curves)

and final kernel positions (red ellipses) resulting from starting a meanshift process at

each data point.

After finding the final kernel positions, we need to cluster them to remove redun-

dant detections. To do so, we retain the kernel with the greatest supporting weight

(see Eqn. 3.9) as the first mode. We then examine each other final kernel position,

in decreasing order of supporting weight. We keep all kernel positions that are at

least one kernel bandwidth, Σ, away from all other existing modes. In Fig. 3-23, this

means that we will keep one mode near each of (0, 0), (5, 0), and (8, 3). Redundant

overlapping red ellipses in the bottom plot will be discarded, and only one of the two

ellipse clusters near (5, 0) will be retained. The full algorithm for culling redundant

detections is outlined in Alg. 3.2.

Detector Evaluation

For the classification experiments, the input was a single image window and the

output was a score. Good classifiers give large positive scores when the input window

contains a pedestrian and large negative scores when the input window does not

contain a centered and properly sized pedestrian. For our detection experiments, the

input is a full image and the detection system is responsible for outputting a list of

110

Algorithm 3.2 Meanshift and Non-maxima Suppression

1: function RemoveRedundantDetections({xi}P̂i=1)

2: {(yi, wi)}P̂i=1 ← Meanshift({xi}P̂i=1)

3: {(y′i, w′i)}P̂i=1 ← SortByDecreasingW({(yi, wi)}P̂i=1)

4: return NonMaximaSuppression({(y′i, w′i)}P̂i=1)
5: end function

6: function Meanshift({xi}P̂i=1)

7: for i ∈
(

1, ..., P̂
)

do
8: yi ← xi
9: wi ← f(xi)

10: repeat
11: Update yi using Eqn. 3.9
12: until convergence

13: end forreturn {(yi, wi)}P̂i=1

14: end function

15: function NonMaximaSuppression({(y′i, w′i)}P̂i=1)
16: M ← ∅ . the set of all modes (final detections)

17: for i ∈
(

1, ..., P̂
)

do . for each final kernel

18: closeToExistingMode← False
19: for m ∈M do . for each discovered mode
20: if ||y′i −m||Σ < 1 then
21: closeToExistingMode← True
22: end if
23: end for
24: if ¬closeToExistingMode then . only if far from all existing modes
25: modes← (modes ∪m)
26: end if
27: end for
28: return M
29: end function

all pedestrian locations. To evaluate this list, we use the PASCAL Visual Object

Challenge (VOC) protocol [106], which we summarize here.

Suppose that for each of I images, we have a set Dgt containing P ground-truth

pedestrian bounding boxes,

Dgt =
{
xj = (ij, xj, yj, wj, hj)

>}P
j=1

, (3.10)

111

where the jth bounding box’s top left corner is at (xj, yj) in image ij and its size is

wj × hj pixels. Further suppose we have a set Ddet containing P̂ detections,

Ddet =
{

(x̂i, ŝi) x̂i = (ii, x̂i, ŷi, ŵi, ĥi)
> ∧ ŝi = f(x̂i)

}P
i=1

,

where ŝi is the classification score for detection i.

We wish to find a bipartite matching m(x̂i,xj) between the detections and the

ground truth, subject to the constraints

m(x̂i,xj) ∈ {0, 1} ∀ i ∈ {1, ..., P̂} ∧ j ∈ {1, ..., P} (3.11)

m(x̂i,xj) = 0 if ¬close(x̂i,xj) (3.12)

P̂∑
i′=1

m(x̂i′ ,xj) ∈ {0, 1} ∀ j ∈ {1, ..., P} (3.13)

P∑
j′=1

m(x̂i,xj′) ∈ {0, 1} ∀ i ∈ {1, ..., P̂}, (3.14)

where m(x̂i,xj) = 1 means that detection x̂i is a close and non-redundant match

to the pedestrian at xj. This system is underconstrained, so we choose a greedy

mapping m∗(·, ·) by iteratively attempting to match the detection with the highest

score, ŝi, to an unmatched ground truth bounding box.

We consider a detection and a ground truth bounding box to be close if the ratio

of intersection to union areas is sufficiently high, i.e. if the following is non-zero:

close(x̂i,xj) =

1 if τdet <
(
Aintersect(x̂i,xj)

/
Aunion(x̂i,xj)

)
0 otherwise

, (3.15)

where τdet = 50% is the minimum overlap threshold. The intersection and union8

8We follow the convention found in the VOC source code that the union area is the area of
the tightest axis-aligned bounding box that contains the (axis-aligned) bounding boxes from the
detection and putative matching ground truth. Except in degenerate cases, this is an over-estimate of
the true area of the union of the two input bounding boxes. This causes Eqn. 3.15 to be biased against
simultaneous boundary misalignments in both the x and y directions, relative to misalignments in
only one dimension.

112

areas are given by

Aintersect(x̂i,xj) =max(0, (min(x̂i + ŵi, xj + wj)−max(x̂i, xj))) (3.16)

·max
(

0,
(

min
(
ŷi + ĥi, yj + hj

)
−max(ŷi, yj)

))
Aunion(x̂i,xj) =max(0, (max(x̂i + ŵi, xj + wj)−min(x̂i, xj))) (3.17)

·max
(

0,
(

max
(
ŷi + ĥi, yj + hj

)
−min(ŷi, yj)

))
.

Given the input data and matching just described, we can compute the entries for

a 2× 2 confusion matrix as

TP =
P̂∑
i=1

P∑
j=1

m∗(x̂i,xj) (true positives) (3.18)

FP = P̂ − TP (false positives) (3.19)

FN = P − TP (false negatives) (3.20)

TN = W − TP − FP − FN (true negatives) (3.21)

where W is the total number of classifier evaluations produced by the sliding window

detector. These entries provide the sufficient statistics for a point on an ROC or

precision-recall curve.

Detection Results

For our detection experiments, we use the same input images and annotations that

were used to generate the GrandCentral classification test set (see Tab. 3.3). We

compute the detection scores using a perspective-aware scanning window that searches

for pedestrians who are 1.58m to 1.84m tall. In Fig. 3-24, we show the detection

results from one frame. In this and other frames, false positives are most commonly

caused by (a) parts of the building with pedestrian-sized features, (b) oblique shadows,

and (c) poor localization. False negatives are most commonly caused by (a) people

whose appearance is very similar to the background and (b) dense crowds.

In Fig. 3-25, we show the precision-recall curves for each of our classifiers when

113

true positives matched ground truth false positives false negatives

Figure 3-24: HOG-based Detection Results: For this particular image, there are 138
true positives, 14 false positives, and 129 false negatives.

Figure 3-25: Detection Precision-Recall Curves: Here we show the precision-recall
curves for running our full-frame detector on the GrandCentral test set. ROC plots
are not shown because they are less meaningful for detection experiments. Due to
the test protocol, detection results are less sensitive to the training set (compare the
recall spreads to those in Fig. 3-21).

114

running our detection experiments. When we were discussing classification results in

§3.4.3, the curves were created by varying the classifier’s w0 bias term (see Eqn. 3.8).

For the detection experiments, we vary w0 as well as the meanshift kernel bandwidth

(see Eqn. 3.9). We then plot the achievable precision-recall curve using the ROC-

transform method of Davis and Goadrich [25]. For the detection experiments, we do

not show ROC curves because the high positive : negative example ratio makes those

curves less amenable to visual analysis.

If we compare our detection results (Fig. 3-25) to the classification results on the

GrandCentral dataset (lower plot in Fig. 3-21), several notable trends are observable.

• GrandCentral classifiers still perform best: In the 80-95% precision ranges, de-

tection using GrandCentral -trained classifiers outperforms those using only IN-

RIA data by approximately 10% in recall. Better results are to be expected

because the training and test data are so similar.

• Capped maximum recall: For the detection results, a non-degenerate solution

never achieves perfect recall. This is because we adjusted w0 so that at most

5% of all windows could be considered as potential detections (see Eqn. 3.7).

From a runtime perspective, more permissive values of w0 than this result in

prohibitively large false positive rates given our O(P̂ 2) meanshift and non-

maxima suppression implementations. Approximate implementations that ap-

proach O(P̂) could be used (see Comaniciu and Meer[15]), but in a real system,

one would probably not want to operate with such a permissive classifier that

the final detection decisions are dominated by meanshift and non-maxima sup-

pression.

• Higher recall for most INRIA-only classifiers: The INRIA and GrandCentral

training sets use different annotation protocols, which greatly affects classifi-

cation results when tested against independent windows (see Fig. 3-21). With

the detection experiments, meanshift coupled with the VOC evaluation proto-

col allow us to overcome many of the annotation issues. If we chose a value

higher than 50% for the minimum intersection/union threshold, τdet, then we

115

Figure 3-26: Accumulated HOG Detection Windows: In a manner similar to Fig. 3-
9’s, we visualize the likelihood of a final detection window overlapping each pixel,
using the same test video that was used in Fig. 3-9(b).

expect that the recall would drop again and annotation issues would return to

prominence.

• Lower recall for the GrandCentral classifiers: The GrandCentral training and

test data were annotated using the same protocol, so the benefits seen when

using INRIA classifiers for detection are applicable to the classifiers trained

with GrandCentral data. For the classification experiments, all positive exam-

ples were aligned exactly by the hand annotations, effectively simulating perfect

suppression of multiple detections. In the detection experiments, we are sub-

ject to an imperfect classifier as well as imperfect meanshift and non-maxima

suppression.

If we examine the spatial distribution of foreground (Fig. 3-9(b) in §3.2) and the

distribution of detections (Fig. 3-26), we see that the pedestrian detector is able to

still find the pedestrians in the area between the information booth in the center of the

image and the east stairway above it. That part of the video experiences significant

glare.

116

One of the most common mistakes in the pedestrian detector is that it consistently

believes that some building features are pedestrians. For example, the bright spot

near the center right edge in Fig. 3-26 is due to the doorway on the far side of the

exiting hallway (see Fig. 3-24 for a frame when the doorway is falsely detected).

We can also make direct comparisons to the experiments described in §3.2. In

Fig. 3-27, we can see that only the strong pedestrian model is able to achieve more

than 85% precision over a feasible range of parameters. Furthermore, recall that

the background subtraction experiments only produce labelings for each block of

16×12 pixels. These plots effectively assume that we can optimally solve the difficult

segmentation and grouping problem to produce individual pedestrian detections after

doing background subtraction. Given the meanshift and non-maxima suppression in

the HOG system, no such problems exist for it.

Broader Lessons

Before proceeding, we wish to highlight a few broader lessons about detection and

localization in surveillance settings.

• Well-trained strong models can outperform generic weak models, as evidenced

in Fig. 3-27.

• Precise localization in training is much less important in detection and local-

ization experiments than classification ones, at least when one only requires

approximate localization such as a 50% VOC overlap, as evidenced by the sim-

ilarity of results in Fig. 3-25 of classifiers trained with INRIA-orig versus the

more precise INRIA-new datasets. The reason is that as long as a detection

fires close to the correct location, it is counted as a match. For more stringent

localization requirements, we expect that the precision in the training set will

be more important as well.

• As with classification experiments, matching training and test distributions im-

proves the test results. In Fig. 3-25, we see that augmenting a generic INRIA

117

(a) ROC Curves

(b) Precision-Recall Curves

Figure 3-27: Background Subtraction versus Pedestrian Detection: Here we overlay the
pedestrian detection results over those from background subtraction (first shown in Fig. 3-8) and
feature point detection (see Fig. 3-13). The HOG detector produces far better detections. Although
feature point detection has higher precision than the HOG detector for very high recall rates, the
HOG detector’s false positives are more randomly-distributed, making it still be more suitable for
tracking applications.

118

dataset with annotations from the same scene (but still using a different view-

point and a different camera) significantly improves the results. In general, it

is known that the more representative a training set is of the test conditions,

the better the detector should perform.

• Strong models can be very slow. As we will discuss in the next section, a single-

threaded CPU-only implementation takes a minute per frame to compute (on

high definition farfield video frames), which is prohibitively expensive. This is

the case even though a very efficient linear SVM classifier is used. To use in

realtime or even semi-realtime settings, one needs to (a) optimize the implemen-

tation, (b) find more efficient algorithms, or (c) find a way to exploit alternative

resources. In §3.4.5, we will explore the last option.

3.4.5 Data-Parallel Implementation

Motivation

Before using our pedestrian detector for activity modeling applications in §4, we first

visit the issue of runtime cost. Even after applying a number of key optimizations

to the code provided by Dalal and Triggs9, it takes nearly one minute to run the

pedestrian detector on a single frame using a latest-generation CPU. In this section,

we will show that porting key elements of the pedestrian detector code to use the

data-parallel hardware on a consumer-grade graphics card results in processing rates

that approach that of CPU-only background subtraction.

Given a set of computational tasks, the throughput of a system is the quotient of

the number of tasks being processed in parallel and the time to process a single task.

One can improve the performance by either increasing the amount of parallelization

and/or decreasing the latency between starting an individual task to completing it.

9The primary algorithmic change was to locally adapt the scale search range based on perspective
calibration. This reduces the search space for the scanning window classifier, by reducing P̂ it allows
meanshift and non-maxima suppression to run faster, and it reduces the false positive rate in the
final output. We also applied various micro-optimizations such as avoiding unnecessary memory
copies and restructuring loops for better cache performance. These optimizations do not change the
final output, but have a significant beneficial impact on runtime.

119

Historically, mainstream CPU manufacturers have primarily focused on improving

performance by lowering latency because the more quickly a task can be completed,

the more tasks that can be done in a fixed amount of time. Process and architectural

improvements have allowed exponential growth rates in single-threaded processor

speed for decades. Unfortunately, we are nearing the end of significant speed im-

provements of this type [104]. The smallest silicon features are now less than 100

atoms thick, making significant issues out of quantum effects like tunneling. Further-

more, high clock speeds tend to require high power consumption and in turn make

heat dissipation an increasing challenge. It is unrealistic to expect improvements in

CPU clock speed to yield the 1, 500× speed improvement required for our HOG code

to run in true real-time.

Fortunately, a secondary market of computational devices has grown out of a need

for better special effects and physics computations in entertainment software. Most of

the difficult computational tasks in this realm are “embarrassingly-parallelizable”: a

massive number of tasks need to be performed which can be computed independently

from other tasks. As a result, graphics processing units (GPUs) are designed to

improve throughput by increasing the number of tasks being handled in parallel.

Furthermore, demand in the entertainment sector has resulted in GPUs shifting from

having fixed hardware pipelines that only do polygonal rendering to having more

general computation abilities. Both the generality of the hardware and toolkit support

have improved to the point that general computation can now be performed on many

modern GPUs. In early 2009, a typical high-end consumer GPU card has a few

hundred floating point units (FPUs) running at 1.4GHz and has a peak performance

of nearly 1 TFLOPS (trillion floating point operations per second). In contrast, a

high-end heavily overclocked 4GHz quad-core consumer CPU has difficulty achieving

10 GFLOPS under ideal real-world conditions [7]. At the time this thesis was written,

the cost of a single one of these high-end CPUs is 3× to 4× the cost of consumer-

grade 1 TFLOP GPU or about the same price as an industrial-grade 1 TFLOP GPU.

The two orders of magnitude difference in throughput/dollar allows a whole class of

problems to be considered that would otherwise require economically infeasible large

120

CPU clusters.

Implementation Choices

Several portions of the HOG algorithm are embarrassingly-parallelizable10, most no-

tably image scaling, gradient computations, building of window descriptors (§3.4.2),

classifying the descriptors (§3.4.3), and meanshift. All but the last of these also ex-

hibits very predictable memory locality. Each output element relies on a fixed set of

input data and memory can be organized so that these data lie in a small number of

contiguous memory blocks. We have ported each of the algorithms with good locality

to run on NVIDIA graphics cards that support the Compute Unified Device Archi-

tecture (CUDA). We use a similar code structure to that of Wojek et al. [122]. Due

to licensing restrictions, we were not able to obtain direct access to their code.

Our code is written the “C for CUDA” language11, which is effectively a superset

of C++. Special tags are used to mark C++ code that will run on the GPU, and an

NVIDIA-supplied preprocessor divides the source into portions that run on the CPU

and those that run on the GPU. The CPU portions may be compiled by any standard

C++ compiler, and the GPU portions use NVIDIA’s compiler. To have performant

CUDA code, most of the programmer effort is spent on optimizing memory access

patterns. An experienced software engineer should typically expect to spend about

the same amount of time writing optimized CUDA code as they would spend writing

optimized C++ code with assembly language compiler intrinsics. For algorithms that

are well-adapted to the GPU architecture, it is common to have a 100× speedup for

CUDA code relative to CPU code.

121

for each frame

for all scales

Read Frame memcpy to GPU

Crop and

Resample

Normalized Block

Descriptors

Linear SVM

Classification
memcpy to CPU

Meanshift
Non-maxima

Suppression
Kalman Tracking Output

Gamma Correction

and Gradients

Data ReorderingDecode Frame

Figure 3-28: GPU-assisted HOG Tracking Pipeline: These are the stages in our
pedestrian tracking application with a GPU-assisted HOG detector. Blocks in green
are executed on the GPU. Blue blocks are executed on the CPU.

Implementation Details

For those interested in the implementation details of our CUDA port, we provide some

high-level information here, drawing connections to the implementation of Wojek et

al. [122] where appropriate. This section will be most meaningful to those with a

prior understanding of the CUDA programming model. Good sources of information

include the NVIDIA CUDA Programming Guide [17] and GPU Gems 3 [75]. We are

separately distributing the source code for the “read frame” through “non-maxima

suppression” stages shown in Fig. 3-2812.

As indicated in Fig. 3-28, we first read input images or video frames and decode

them on the CPU. The raw RGB images are transferred to the GPU synchronously.

We do not spatially smooth padded image borders as done by Dalal and Triggs and

10“Embarrassingly-parallelizable” is a technical term for problems in which there are a very large
number of outputs and each output can be computed independently of all others. Algorithms can
be written for these problems that approach a linear speedup in the number of available parallel
processors.

11“C for CUDA” is typically called just CUDA since it is the only language currently used in a
widespread fashion that exploits the Compute Unified Device Architecture (CUDA) developed by
NVIDIA.

12See the thesis author’s website at http://people.csail.mit.edu/dalleyg for a link to
the CUDA-enabled HOG source code.

122

http://people.csail.mit.edu/dalleyg

by Wojek et al. because we are using very large input images with small pedestrians,

thus we care less about detecting pedestrians that overlap an image boundary. An

efficient GPU-based smoother could be added if needed, with a negligible overall

speed impact.

Like Wojek et al. , once an input frame is on the GPU we reorder its data so that

we can take advantage of dedicated hardware on NVIDIA cards for caching access to

2D arrays.

As an extension to the pipeline, our application is perspective-aware. This allows

us to choose a collection of scales for each image row that are feasible given camera

calibration information. Thus when we resample the input image to test a given

window detector size, we extract only an image band. In the Grand Central scene,

pedestrians vary in image size by a factor of 2. By adding perspective awareness,

we are able to avoid the cost of running the detector with infeasible scales. More

importantly, this helps us avoid obvious false positives such as 4 meter tall people.

We have made this extension to both the CPU and GPU implementations, so the

speedup numbers we discuss in this thesis are fair.

In our timing test application discussed in the next section, we use nearest neigh-

bor resampling with bilinear interpolation to rescale the input image. This is the

same type of rescaling used in our CPU code, the code of Dalal and Triggs, and by

Wojek et al. We have also implemented a resampler that uses Lanczos interpolation

[108]. The Lanczos implementation is half as fast and trades off having some ringing

artifacts with fewer aliasing artifacts.

In the implementation of Wojek et al. , they next do color decomposition, data

type conversion, and gamma compression in one kernel, then they compute the color

gradients in three additional kernels. CUDA code is compiled so that a single func-

tion, a kernel, is evaluated on all processors simultaneously. All caches are flushed

between kernel calls, so it can be advantageous to combine multiple small kernels

when each has similar memory access patterns. In our implementation, the decompo-

sition and type conversion was done back when we did the data reordering. Because

the memory access patterns are amenable to it, we combine the gamma correction

123

and gradient calculations into a single CUDA kernel. Wojek et al. chose to use a

separable convolution implementation for their gradients, which is optimal for large

convolution stencils. Fortunately, a faster and much more straight-forward solution

is available because Dalal and Triggs found that unsmoothed central difference oper-

ators, i.e. (−1, 0, 1), work best. This unified kernel is one of the least time-consuming

portions of our pipeline.

The most important difference between our implementation and that of Wojek

et al. is the way we calculate and store the block-level HOG descriptors. Because

GPUs are massively parallel, the most common bottleneck is memory access. The

hardware tends to have very high memory bandwidth but unfortunately latencies

are measured in several hundred clock cycles. To handle latency better, GPUs are

able to allocate hundreds of thread contexts on each processor. When one thread is

blocked on memory, another waiting thread can be resumed in a single clock cycle. A

common optimization technique is to try to maximize the “occupancy”: the fraction

of hardware supported thread contexts with a thread allocated to it. Using too many

registers or user-managed cache are the primary reasons a CUDA kernel doesn’t

achieve full occupancy.

For our block descriptor kernel, we chose to focus on minimizing the number of

data transfers to main memory rather than maximizing the occupancy. Wojek et

al. have a 50% occupancy for their block histogram kernel and a 67% occupancy for

their block normalization kernel. We compute the cell histograms and then normalize

them in a single kernel that has only 18.8% occupancy. Each GPU multiprocessor

has a collection of threads that work collaboratively. Each thread is responsible for

computing a single block descriptor. This computation is done by having the collec-

tion jointly page in horizontal strips of gradients into a user-managed cache called

“shared memory.” Each thread then individually does the appropriate histogram

voting. Because we have a regular memory access pattern, we can use a special type

of cached memory called “constant memory” to store the spatial voting kernel. The

block histograms are also stored in shared memory. After all the histogram voting has

been performed, each thread normalizes its descriptor, then the collection of threads

124

collaborate to efficiently write the descriptors out to the GPU’s main memory.

Our memory access pattern minimizes the number redundant gradient loads. By

normalizing the block descriptors immediately, we avoid costly memory transfers to

the GPU caches. Because our algorithm requires less total bandwidth, we see better

performance despite having a much lower occupancy.

For the SVM evaluation, each thread is responsible for a single detector window

classification score. We have coordinated the memory layout of the block descriptors

with this step so that we can efficiently stream in contiguous blocks of memory using

a collection of threads. As the memory blocks are streamed, each thread updates

a running dot product. Because we have ordered the data well, all threads in a

collection are guaranteed to be accessing the same element of the SVM classification

vector. This allows us to use the constant memory at full speed. Wojek et al. used a

different memory access pattern that is less efficient.

We note that some of the design decisions of Wojek et al. may have been driven

by the desire to avoid some very severe penalties on their graphics card (NVIDIA

8800 Ultra) for accessing the GPU’s main memory in suboptimal ways. Newer cards

based on the Tesla architecture have relaxed many of these penalties, allowing more

varied memory access patterns.

Like Wojek et al. , we transfer the SVM scores to the CPU and use it to compute

the meanshift modes and perform non-maxima suppression. We believe a GPU-based

meanshift implementation could be made that is at least 10× faster than on the CPU.

When processing videos, we also do Kalman tracking with greedy data association,

as was described in §1.4.

In summary, when we produced our CUDA port of the HOG code we found it

beneficial to concentrate on minimizing the amount of memory traffic between the

large main main memory of the GPU and the on-chip user-managed caches. We

minimize this traffic by arranging our data so that contiguous memory blocks can be

loaded whenever necessary and by organizing our computation threads so they can

maximally share cached data with other threads. We found this emphasis on memory

efficiency to be more important that trying to maximize the number of allocated

125

thread contexts (occupancy). Although many of the particular optimizations may

change with future hardware, we expect that the trend of the last several decades in

hardware design will continue: main memory continues to have higher latencies over

time relative to the clock speed of the compute cores. As such, it will continue to be

important to optimize algorithms so they can exploit local memory access patterns,

at least when the best runtime performance is desired.

Timing Results

We now examine the runtime benefits of our CUDA port. For all the performance

tests, we used a mid-range high-performance desktop machine with the following

configuration:

• CPU: Intel Core i7 920 (2.66GHz, 4 cores)

• GPU (graphics card): NVIDIA GeForce GTX 280 (1GB of RAM, 240 FPUs)

• OS: Debian Lenny, 64-bit

• Compiler: gcc 4.3.213

• CUDA: version 2.1

All tests were performed on the video from which we extracted the GrandCentral test

data.

In Tab. 3.5, we show timing results for an instrumented test version of our CPU

code and our CUDA-based GPU port. We discuss each row here.

• read input (CPU): In both cases, we read a single JPEG image and decode it

on the CPU. Our GPU port is fast enough that this alone takes up 17% of the

total runtime. Note that our full tracking application is able to read video files

and it decodes frames faster than in this test application.

13Some portions of the GPU interfacing code were built with gcc 4.1.3 due to limitations in
NVIDIA’s compiler.

126

Time Time GPU Impl.
Processing Step (CPU Impl.) (GPU Impl.) Speedup

read input (CPU) 68.0ms (0%) 68.0ms (17%)
GPU resizer setup 18.1ms (5%)

resize 1, 045.8ms (4%) 43.0ms (11%) 24.3×
gradients 5, 636.2ms (24%) 34.4ms (9%) 164.0×

normalized block descriptors 13, 412.3ms (57%) 137.2ms (35%) 97.7×
window classification 3, 159.1ms (14%) 31.4ms (8%) 100.6×

cleanup 23.8ms (0%) 45.5ms (12%) 0.5×
detection (CPU) 16.2ms (0%) 15.0ms (4%) 1.1×

TOTAL 23, 082.4ms 392.3ms 58.8×

Table 3.5: CUDA-HOG Speedup Analysis: “CPU Impl.” refers to our optimized
CPU-only version of Dalal and Triggs’ code. “GPU Impl.” refers to our CUDA-
based GPU implementation. The GPU time is wall time for each step, including
CPU time, GPU time, and data transfers.

• GPU resizer setup: When running the CUDA version, we reorganize the input

image into a data structure optimized for 2D locality and transfer it to the

GPU’s memory (“GPU resizer setup”). This allows repeated resizes of the

same input image to be done faster.

• Per-Scale Steps: We run the scanning window detector over a range of image

scales, one at a time. We show the total time of each step, summed across all

scales.

– resize: Because this operation is bound by memory bandwidth on the

GPU, we only achieve an 24.3× speedup. When using Lanczos interpo-

lation instead of nearest neighbor, as in our full tracking application, the

speedup is reduced to 11.3× (not shown in the table).

– gradients: GPUs are specifically designed to optimize highly-localized inde-

pendent operations like gradient computations. We see a 164.0× speedup.

– normalized block descriptors: For both the CPU and GPU implementa-

tions, the main bottleneck is computing and normalizing the block his-

tograms. We spent most of our development effort on optimizing the

memory access patterns for this step, resulting in a 97.7× speedup.

127

– window classification: When evaluating the linear SVM, we dynamically

extract the right block descriptors to simulate the formation of each win-

dow descriptor. Subject to round-off errors, the computed results are

identical to what would be seen if window descriptors were explicitly con-

structed, but this offers significant performance improvements. We see a

100.6× speedup on the GPU. For the CUDA port, these times include the

cost of transferring the results back to the host’s system memory.

– cleanup: Freeing memory takes a surprisingly non-trivial amount of time

(12% of the overall runtime) for the CUDA port. Reusing data structures

should make this cost go to zero. This phase is less costly in our full

tracking application.

• detection (CPU): We have not ported meanshift or non-maxima suppression to

the GPU, so this step is run on the CPU for both implementations. In scenes

with more pedestrians, the cost of this step becomes more significant. The GPU

version of the code takes slightly longer because there are a larger number of

positive detections it must prune. This difference is due to some subtle changes

in the training set which we will discuss momentarily.

Overall, we achieve a 58.8× speedup in this simplified test application14.

We have also extended Dalal and Triggs’ classify rhog application to do GPU

offloading as well as frame-to-frame tracking, as shown in Fig. 3-28. The architec-

ture of that implementation makes it less amenable to profiling individual processing

stages, so we do not provide a breakdown of its timing like we have done for the speed

testing application. The GPU-enhancements and optimizations in it consistently re-

sult in a 76× speed boost when processing real videos.

14Care should be taken when comparing performance numbers to the GPU implementation by
Wojek et al. [122] (34× speedup) and Zhang and Nevatia [123] (20×). Based on a collection of
informal experiments and personal correspondence with Wojek, we estimate that his speedup would
not change significantly on our hardware: our CPU’s increased performance relative to theirs is
roughly equivalent to the performance boost of our GPU versus theirs. On the other hand, Zhang
and Nevatia used an older workstation-class graphics card with a very different architecture, so it
becomes difficult to estimate its relative performance without being able to do direct comparisons.
Various technical and licensing concerns with have prevented us from making that direct comparison.

128

Pipeline Steps Included
in the Timing Measurements

Object
Input Low- Detection, Time Frames
and Level Tracking, per per

Algorithm Preproc. Detection and Output Frame Sec.
background subtraction (w/ MRF) X X 0.37 s 2.71
background subtraction (no MRF) X X 0.14 s 7.11

pedestrian detection (CPU) X X X 51.79 s 0.02
pedestrian detection (GPU) X X X 0.68 s 1.47

Table 3.6: Runtime Performance Comparison: Here we show the runtime costs of
the various algorithms discussed in this chapter. Note that all of these are operating
on high-definition 1920 × 1080 video frames. Timing information for the pedestrian
detection is for our actual full tracking application, not the simplified timing appli-
cation used to generate Tab. 3.5. The GPU-enabled pedestrian detector is within a
factor of 2 of the runtime cost compared to a multithreaded background subtractor
with an MRF, even though the latter only produces foreground blobs and not final
segmented pedestrian detections.

Processing Step Time / Frame

input and preprocessing 74ms
Mahalanobis distance map 39ms

MRF classification 228ms
MoG update 27ms

TOTAL 369ms

Table 3.7: Background Subtraction Timing: Here we show additional timing informa-
tion for doing background subtraction on our primary GrandCentral test video. This
application is multithreaded. Decoding of video frames is performed in a background
thread. We also used multithreaded implementations of the Mahalanobis distance
map calculator, a Gibbs-sampling MRF solver, and the MoG updates.

In Tab. 3.6, we show timing information for each of the detection algorithms

discussed in this chapter, so we can see how fast our HOG-based detector is in com-

parison.

In the first rows, we see that background subtraction is able to process this high-

definition video at 2.71 frames per second. This is equivalent to 18.3 fps on a VGA-

resolution (640 × 480) video. The primary bottleneck is the MRF foreground/back-

ground classifier. If we instead use simple thresholding, the application performance

approaches 7.11fps (equivalent to 48fps on VGA frames), as seen in the second row.

We note that the MRF produces much cleaner foreground masks than simple thresh-

129

olding. To provide extra context, in Tab. 3.7 we show timing information for the

parts of the background subtraction application. Because the scene is dense enough

that a sophisticated segmentation algorithm is needed to robustly track pedestrians,

the following costs are not included: detecting actual pedestrians from the foreground

blobs, tracking pedestrians, and output.

In the last two rows of Tab. 3.6, we show average per-frame timing information

from processing an entire 1 hour video using our full CPU and GPU HOG implemen-

tations, respectively. Unlike the simplified application used to produce Tab. 3.5, this

one explicitly produces full window descriptor vectors for the CPU implementation.

Across the whole video, it also has a slightly lower density of pedestrians than the

single frame used in generating Tab. 3.5, and this lowers the relative cost of the O(P̂)

meanshift and non-maxima suppression implementations. For these reasons, the GPU

pedestrian detection is reported as being 76× faster than the CPU in contrast to the

58× speedup seen in Tab. 3.5. We note that our pedestrian detection application is

only 1.8× slower than multithreaded background subtraction with an MRF15.

Quality of Results

We chose to write our GPU port so that it computes the same values as the CPU

implementation, even if the execution structure of the low-level code is significantly

different. To demonstrate that we achieve the same performance, we show ROC and

precision-recall curves for one representative set of classification experiments in Fig. 3-

29. When using the INRIA-new and INRIA-new + hard training sets, there is no

discernable difference between our GPU and CPU results. We do note that there is

a small performance drop for the GPU implementation when GrandCentral training

data is added. This is due to an implementation detail that currently prevents us

from sampling our training data as finely for the GPU implementation.

15We believe that a GPU implementation of background subtraction with an MRF could easily
achieve a 10× to 100× speedup relative to the current CPU implementation.

130

Figure 3-29: CPU versus GPU Classification Results: Here we show selected classifi-
cation results on the GrandCentral test set. The CPU results match the INRIA-new
ones shown in Fig. 3-21.

131

HOG Summary and Future Work

In §3.4, we have demonstrated that using a HOG-based pedestrian detector yields

good results even on our very challenging GrandCentral test set. By porting key

portions of the algorithm to take advantage of the extra processing power available

on consumer-grade graphics cards, we are able to speed up the detector by 58× to

76× relative to a CPU-only implementation. This puts us within a factor of 2 of

the speed of multithreaded background subtraction with an MRF and it makes it

practical to do off-line analysis of high-definition video or quasi-realtime analysis of

standard-definition video, even in the presence of moderately dense crowds.

Because of constraints imposed by physics on hardware manufacturers (the speed

of light, quantum effects, etc.), much of the future computational throughput capacity

will take the form of offering more concurrency. Because many vision problems are

embarrassingly-parallelizable, their solutions can take advantage of this hardware. In

these cases, it is common to see throughput increases of two orders of magnitude, as

we have seen in most of the HOG steps we have ported to the GPU.

A number of additional optimizations would likely yield additional speed improve-

ments:

• Concurrency improvements

– Multiple GPUs: Multiple GPUs could be installed in a system and have

input frames assigned to them in a round-robin fashion. This should yield

a near-linear speedup in the number of GPUs.

– Asynchronous I/O: A non-trivial amount of the algorithm time is dedicated

to transferring data back and forth between the host memory and the

graphics card. Recent GPUs allow the user to simultaneously have the

GPU be executing a function while the CPU loads the next input and/or

transfers existing results back to main memory.

– CPU-GPU pipelining: In our current implementation, either the CPU or

the GPU is actively computing results. Never are both active. We could

pipeline the implementation so that

132

∗ decoding frame t can happen while

∗ frame t− 1 is being transferred to the GPU,

∗ GPU-based detection is happening on frame t− 2,

∗ frame t− 3’s detection results are being transferred off the GPU, and

∗ meanshift, non-maxima suppression, tracking, and output is being

done on frame t− 4’s detections

• More offloading to the GPU

– Decoding: We currently decode the input images and/or video on the

CPU. Some GPUs have dedicated hardware to accelerate decoding. Since

the encoded stream is smaller than decoded frames, doing the decoding on

the GPU would not only offload computation, but it also reduces memory

transfer costs.

– Meanshift: An initial GPU port of the meanshift code with a 10× speedup

should be straightforward since each meanshift track can be computed in-

dependently. Extra thought would be required to devise a way of effec-

tively sharing input data across multiple tracks to minimize data transfers

between graphics card memory and on-chip GPU caches. If this extra op-

timization is possible, such an algorithm could be expected to improve the

speedup to 100×. The most difficult portion would be finding an efficient

way of grouping all co-incident final kernel locations.

– Non-maxima suppression: With care, it may be possible to have an effi-

cient and accurate non-maxima suppression implementation on the GPU

(e.g. Neubeck and Van Gool [74] have developed parallel solutions to sim-

ilar non-maxima suppression problems).

• Algorithmic changes

– Integral Histograms: If the Gaussian spatial voting kernel were elimi-

nated, we would be free to use an integral histogram to efficiently compute

133

(a) Occlusion (b) Perspective Distortion (c) Low Contrast

true positives matched ground truth false positives false negatives

Figure 3-30: Common False Negatives: The most common sources of false negatives
for the single-frame pedestrian detector are (a) missing or spurious gradients due to
occlusion, (b) image skew induced by perspective distortion, and (c) low contrast
against the background. The problems with low contrast are less prevalent than
occlusion and distortion issues.

arbitrarily-sized cell descriptors. In making this suggestion, we do note

that an efficient GPU cascade detector would be more complex than the

CPU implementation by Zhu et al. [130]. Current GPUs are highly op-

timized for regular memory access patterns with minimal code branches,

but detector cascades tend to randomize the access patterns and branching

decisions.

In inspecting the detection results on the GrandCentral videos, the two biggest

challenges for the detector are occlusion and perspective distortions. See Fig. 3-30

for examples. Here are some ideas we have on mitigating those challenges.

• Explicit occlusion reasoning

– Simulate occlusions in training data.

– Do Hough voting à la Leibe, Seemann, and Schiele [63].

134

Figure 3-31: De-skewing Issues: A potential solution to some perspective distortion
problems is to reproject the images to a plane perpendicular to both the ground plane
of the and the optical axis. As evidenced by the ragged edges in the arms and legs
in the right image, this would induce many false gradients. The upper “×” markers
do not exactly coincide with the tip of the man’s head due to calibration error and
his actual height versus the assumed 1.75m.

• Perspective awareness

– Create different classifiers (or bias the training data) for different view-

points. With a calibrated camera, one can automatically pick the right

classification vector.

– The largest problem with perspective distortion is skew induced by a cam-

era whose optical axis is not parallel to the ground plane. Directly de-

skewing the image does not work well because it introduces very strong

false edges (see Fig. 3-31). One solution is smooth the image after repro-

jection, but that reduces the effective image resolution. Another solution

is to take the gradient vectors and use the camera calibration to undistort

their location and direction before voting.

– It may be beneficial to use a “Latent SVM” version of the HOG detector

similar to that of Felzenszwalb, McAllester, and Ramanan [27]. After using

a standard HOG window descriptor as a root detector, they allow for some

135

deformation by having a second collection of HOG features at a higher

scale. These finer features can have their positions adjusted with respect

to the root detection, allowing for local deformations with an associated

classification penalty.

3.5 Summary

In this chapter, we have demonstrated the difficulties of using background subtrac-

tion for tracking pedestrians in large scenes with harsh lighting conditions and dense

crowds. A näıve feature point detector does yield better results on the particular scene

studied here, but its performance is still sub-par. We then showed how a consumer-

grade graphics card can be used to accelerate a strong-model pedestrian detection

algorithm. Our implementation achieves an overall 76× speedup on real-world track-

ing relative to an optimized CPU-only implementation. On a canned single-frame

test, it is 58.8× faster. At approximately 1 frame per second, our implementation is

nearing the realm of real-time processing and we estimate that it provides double the

speedup of the fastest existing implementation. We have also provided suggestions

on how to further improve the runtime performance.

136

Chapter 4

Scene Activity Modeling

This chapter contains previously unpublished joint work with Xiaogang Wang.

To help demonstrate the utility of our pedestrian detection approach, we now show

that we can use it to generate an activity model that is more semantically meaningful

than one produced by a previous method using sparse optical flow. The model we

use is a Hierarchical Dirichlet Process (HDP) of the form used by Wang et al. [115]1.

We will first review HDP models and how Wang et al. use them to cluster tra-

jectory modes. Using tracked feature points of the form used in §3.3, we are able to

spatially segment the scene, but we are not able to model co-located activities with

different moving directions (§4.2). We then show how tracks based on strong-model

pedestrian detections yield much more meaningful clusters in §4.3.

4.1 Hierarchical Dirichlet Process Model

Here we briefly review the Hierarchical Dirichlet Process (HDP) model. For an in-

depth discussion on the model, we refer the reader to the detailed tutorials by Teh et

al. [105] and Sudderth [102]. Orbanz and Buhmann [79] have written an accessible

paper on simpler Dirichlet Process mixture models coupled with Markov Random

Fields.

1Most of Wang et al. [115] discusses a Dual-HDP model that adds an extra layer of clustering.
We only compare against the standard HDP because it (a) has fewer parameters, (b) is empirically
more robust to tracking errors, (c) is easier to analyze, and (d) can be learned more efficiently.

137

J

Ij

wji

zji

πj

φcλ

∞

αβγ

Variable Intuitive Description Formal Description
β Frequency of each activity cluster, across the whole dataset β ∼ GEM(γ)
γ Bias toward concentrating β’s mass onto a few activity clus-

ters
user supplied scalar

φc Activity cluster: frequency of each quantized observation
in cluster c

φc ∼ H(λ)

H(λ) The base Dirichlet distribution, a pseudo-count prior for
multinomials. Typically, a uniform prior is used.

user supplied prior

λ Bias for how much φc’s samples should resemble the base
distribution. This is a multiplicative factor on the
pseudo-counts.

user supplied scalar

πj Frequency of each activity cluster in trajectory j πj ∼ DP(α,β)
α Bias for how much each πj should resemble β user supplied scalar
zji Index of the cluster chosen for observation i of trajectory j zji ∼ πj

wji A single observed position and motion direction of trajec-
tory j, quantized, indexed by i

wji ∼ φc|c = zji

J Number of observed trajectories data dependent scalar
Ij Number of quantized observations in trajectory j data dependent scalar

Figure 4-1: Hierarchical Dirichlet Process (HDP) Graphical Model: Above we show
a graphical model representation of a Hierarchical Dirichlet Process. This model
is an infinite mixture of multinomials. The plates represent repeated structure of
independent random variables. In the table below the figure, we summarize the role
of each parameter and random variable.

138

The primary attraction of HDP models is that they provide an elegant and princi-

pled way of representing mixture models with countably infinite mixture components.

Because they are posed in a Bayesian graphical model framework, they can readily

be extended to model many more complex distributions. Inference can be done via

Gibbs sampling or (sometimes) variational methods. The primary drawbacks are that

Gibbs sampling can be very slow and that learning is only known to be tractable when

the mixture component distributions are either Gaussians or multinomials. We will

be using Gibbs sampling with base multinomial distributions.

Following the convention of Wang et al. [115], we model an individual person’s tra-

jectory as being composed of an unordered collection2 of observations: their positions

in the scene and direction of motion.

4.1.1 Our Definition of Observations

In Fig. 4-1, each of the J independently-observed trajectories is indexed by j and has

Ij observations, {wji}, indexed by i. The observations are discrete tuples of the form

wji = (x̆ji, y̆ji, ŏji) =

(⌊
Ww

‖P‖x
x̂ji

⌋
,

⌊
Hw

‖P‖y
ŷji

⌋
,

⌊
Ow

2π
arctan

dŷji/dt

dx̂ji/dt

⌋)
(4.1)

where (x̂ji, ŷji) and (dx̂ji/dt, dŷji/dt) are the tracker’s respective estimates of person

j’s ground-plane position and velocity for observation i, x̂ji ∈ [0, ‖P‖x), and ŷji ∈[
0, ‖P‖y

)
. Position is quantized into Ww ×Hw cells, where the units are meters for

rectified data or pixels for trajectories measured in image space. Motion direction is

quantized into Ow direction bins, and optionally an addition bin encoding low velocity

motion. Because wji is a tuple of discrete scalars, it can also be represented as a single

scalar using any standard multidimensional array indexing technique [98].

2The data will always be conditioned on low-level tracking data, so the fact that the collection
is modeled as being unordered is not especially important. We will only be using this model for
inference, not for data generation. Also, any reasonable tracker can be tuned not produce tracks
that randomly skip around the scene.

139

4.1.2 Activity Cluster Mixture Model

We define an activity cluster as a collection of observations that commonly co-occur

within a trajectory. Cluster c is represented as a multinomial over observations, φc.

There are (countably) infinitely many clusters in the model. The clusters themselves

are drawn from a base Dirichlet distribution, H. In the information retrieval litera-

ture, the activity clusters are called topics. Teh et al. call them clusters.

A Dirichlet distribution is a multinomial’s conjugate prior. Whereas a multino-

mial’s parameter space is typically represented by a normalized histogram that gives

the probabilities of each emitted symbol, a Dirichlet distribution’s parameters can be

represented as a normalized histogram with a factor proportional to λ multiplied onto

each element. When λ is large, the emitted multinomials are concentrated: they look

like the normalized histogram, with high probability. When λ is small, the emitted

multinomials fill a larger volume. Given the same dataset, larger values of λ result in

more compact models with fewer learned clusters.

In HDP and similar models, the two most common choices for the base distribu-

tion H are (a) the uniform distribution or (b) the sample marginal of observations.

Empirically, Orbanz and Buhmann [79] found that a uniform distribution tends to

avoid overfitting. We also use a uniform distribution.

The infinite collection of mixing weights is given by β = (β1, β2, ..., βc, ...), where βc

is the weight for cluster c. The elements of β are drawn from a “stick breaking” process

described by Griffiths, Engen, and McCloskey (see Teh et al. [105]), hence the “GEM”

shown in Fig. 4-1’s table. We now describe the process. β1 is sampled from a beta

distribution such that β1 ∼ beta(1, γ). β2 is sampled from β2 ∼ (1− β1) · beta(1, γ).

In general,

βc ∼
(

1−
c−1∑
c′=1

βc′

)
· beta(1, γ) , (4.2)

where the probability density function for the restricted form of a beta distribution

140

we use is given by

p(x; 1, β) =
(1− x)β−1∫ 1

0
(1− u)β−1du

. (4.3)

The analogy is that we start out with a stick of unit length. It is broken at a random

location and the length of the left segment is β1. The right segment is broken again,

with the length of its left segment being β2. The process of breaking the remainder

of the stick is repeated infinitely.

4.1.3 Generating Trajectories and Observations

In a generative process, we start by sampling the infinite mixing weights, β, and

their corresponding activity cluster multinomial distributions, {φc}c∈(1,2,...). We then

create J trajectories, indexed by j. From a modeling perspective, our trajectories

are equivalent to information retrieval’s documents and Teh’s groups. As implied

by the plate notation in Fig. 4-1, each trajectory is sampled independently: we do

not explicitly model any interactions between trajectories. For trajectory j, we first

sample its distribution over activity clusters, πj. This distribution is sampled from a

Dirichlet Process, i.e. πj ∼ DP(α,β), where β is the model’s marginal distribution

over clusters, as we have just discussed. α plays a similar role here to the one played

by λ: larger values cause πj samples to concentrate about β and thus encourage all

trajectories to be sampled from similar distributions over clusters. Smaller values of

α allow different trajectories to be more distinctive.

Once a distribution over activity clusters has been chosen for trajectory j, we

independently sample Ij observations. To generate a single observation, we sample a

cluster index, zji from the trajectory’s infinite multinomial over clusters, πj. Given

the index, we sample an observation from the corresponding activity cluster, wji ∼
φzji

.

Given a set of trajectories and their observations from data, Teh et al. present

three Gibbs sampling algorithms for inferring the cluster assignments, {zji}∀i,j, and

the model, (β, {φc}c). Given finite data, all of these methods will learn an explicitly-

141

represented finite mixture model plus an implicit infinite model. We use his auxiliary

variables method. Refer to [105] for details.

4.2 Results Using Näıve Feature Points

As discussed in §3.2, background subtraction and blob tracking is impractical on the

Grand Central scenes discussed in §3 and this chapter. One solution is to detect

feature points using the method of Shi and Tomasi [94] (see §3.3), then track those

using a sparse optical flow algorithm provided by the OpenCV library [78]. Substan-

tial post-processing is used to smooth the trajectories and reject those with faulty

data associations3.

We then quantize the tracked feature point observations with disjoint spatial bins

of size 10 × 10 pixels and Ow = 4 orientation bins4. In Fig. 4-2, we show the best

results we were able to obtain (judged qualitatively). Note that the learned clusters

are spatially compact, but they fail to separate out different paths that cross over the

same location, but using different moving directions.

To help demonstrate this, we have created Fig. 4-2(j). This plot shows the “ef-

fective number of clusters” at each location, or the conditional perplexity of cluster

assignments given an observation at a specific location. We define the effective num-

ber C̄x̆,y̆ as the exponentiated information entropy, i.e.

log2 C̄x̆,y̆ = −
∞∑
z′=1

p(z′|x̆, y̆) log2 p(z′|x̆, y̆) (4.4)

3Data association reminder: Recall that in multi-target tracking, one starts with a set of existing
trajectories. Each trajectory has a density over detections. For example, a constant velocity Kalman
filter has a Gaussian distribution over the location and velocity of the object at a future time. Given
a collection of detections, the data association step matches observed detections with existing (or
new) trajectories. The trajectories’ densities are then updated.

4The experiments in this section were performed before the high-resolution Grand Central videos
were available. Instead of 1920× 1080 input video, we use a very similar 720× 480 video. The video
used in this section was taken on a day with much milder lighting conditions, so these results are
optimistic relative to the improved results we will see in §4.3.

142

(a) Sorted Cluster Weights (β)) (b) Marginal of Observations (c) Color Scheme

(d) Cluster 1 (e) Cluster 2 (f) Cluster 3

(g) Cluster 4 (h) Cluster 5 (i) Cluster 6

(j) Effective Number of Clusters per Cell

Figure 4-2: Activity Modeling with Feature Points: In Fig. 4-2(a), we show the learned
activity cluster mixing weights, after sorting them. In Fig. 4-2(b), we show the marginal distribution
of all observations (quantized location and moving direction of a tracked feature point) in the
dataset. The hue mask in Fig. 4-2(c) encodes direction, and its alpha matting with respect to
the background image encodes the observation frequency. Fig. 4-2(d)–4-2(i) show the six most
highly weighted clusters. Note that although each cluster does have good spatial compactness, it
captures motion in all directions. The model is unable to learn overlapping clusters where people
are traveling on different paths. Except for a few of the low-weighted ones (which are not shown
here), the remaining 17 clusters are qualitatively similar. In Fig. 4-2(j), we see that there is only a
single cluster representing motion at most locations on the concourse floor.

143

where

p(z′|x̆, y̆) =
Ow−1∑
ŏ=0

φc,x̆,y̆,ŏ (4.5)

and φc = (φc,0,0,0, ..., φc,x̆,y̆,ŏ, ..., φc,Ww−1,Hw−1,Ow−1). In Fig. 4-2(j), notice that only

along cluster boundaries is the effective number greater than 1. We call this effect a

“directional degeneracy” in the model.

We found that when they used smaller spatial bins or more orientation bins, the

learned clusters became less spatially compact. Tuning other parameters did not yield

improvements.

4.3 Results Using HOG Detections

Our primary motivation for developing an efficient pedestrian detector (see §3) was

improving the input data for activity modeling. We now demonstrate how we are

able to obtain more semantically meaningful clusters by using the higher-quality

trajectories produced by our Dalal and Triggs detector, compared to the feature

point tracking. In doing so, we will highlight difficulties we encountered as well as

some initial strategies for mitigating them.

For our input data, we use the 1 hour high definition Grand Central clip we dis-

cussed throughout §3. Our GPU-accelerated detector is used to detect pedestrians.

We use constant velocity Kalman filters and greedy data association to find trajec-

tories, as described in §1.4. We then apply a number of post-processing and filtering

steps to reject problematic observations and tracks. We first apply Gaussian smooth-

ing to the trajectory to reduce the effects of spatial quantization in detector window

placement. We then reject any trajectories with too few observations, ones that do

not travel very far, and ones that are consistently close to the image edge. Observa-

tions with unrealistic speeds are rejected. If a trajectory has too large of a time gap

between observations, only the longest sequence of observations with an allowable

gap is retained. The first and last few observations are the most likely ones to have

144

bad data associations, so they are removed too. These filtering steps are similar to

the ones used for the feature point tracks and most are common heuristics used in

other tracking applications.

The surviving trajectories are then projected onto the ground plane for three

reasons.

• The underlying pedestrian activities take place in the real world, so it makes

sense to do our modeling in that space.

• This choice also allows future work to seamlessly combine data from multiple

registered videos.

• We are able to apply more meaningful trajectory filtering. Specifically, we can

specify tighter bounds on feasible pedestrian speeds because we do not have to

allow for the effects of foreshortening on image speed.

The re-filtered trajectories are then quantized into 12 cm× 12 cm spatial bins and 16

orientation bins. For our trajectories, we found that the additional orientation bins

help reduce the amount of directional degeneracy in the model. Using the quantized

trajectories, we then the HDP model described in §4.1 to learn activity clusters. In

Fig. 4-3, we show a summary of the input data, the learned cluster weight distribution

(when λ is chosen to produce a similar number of clusters as seen in the feature point

results), and the effective number of clusters per spatial quantization cell. Comparing

Fig. 4-3(c) to Fig. 4-2(j), we see that with our quantization changes and higher-quality

trajectories, the HDP model is able to learn clusters that overlap spatially but encode

different moving directions.

In Fig. 4-4, we show the qualitatively best activity clusters. These capture

medium- to long-range common paths with a consistent moving direction.

Unfortunately, not all activity modeling results are as ideal. In Fig. 4-5, we see

that sometimes our user-chosen parameters cause multiple semantic path segments

to be represented by a single cluster. By adjusting our priors, we can break up the

cluster into its more meaningful constituents, as seen in Fig. 4-6.

145

(a) Marginal of Observations

(b) Sorted Cluster Weights (β when λ = 0.01)

(c) Effective Number of Clusters per Cell

Figure 4-3: Activity Modeling with Pedestrian Detection: In Fig.4-3(a), we show the
marginal distribution of all observations for the activity modeling experiments using pedestrian
detection, rectified to the ground plane. The video used for this experiment is similar to the one
used in Fig. 4-2, but this one is calibrated with respect to the ground plane, it uses 1920×1080 video
as opposed to 720×480, and it was taken on a day with harsher lighting. We have empirically chosen
λ = 0.010 so that a similar number of clusters is learned in our model compared to the one depicted
in Fig. 4-2. In Fig. 4-3(c) we see that we are not just clustering on spatial location (as was the case
in Fig. 4-2(j)), but we also are able to discriminate by motion direction: from inspection we know
that in the ring around the central information booth, people walk in many different directions. In
those parts of the scene, we have learned a large number of effective clusters. In the next several
figures, we will examine various individual clusters.

146

(a) Cluster 17 (b) Cluster 20

(c) Cluster 26

Figure 4-4: High Quality Paths: A number of the learned clusters are near our ideal: they
represent long and narrow common paths through the scene, with little confusion in the direction
of motion. When using feature point tracking (see Fig. 4-2), few clusters are as long and narrow as
these, and all of those caption motion in both directions for a given location.

(a) Cluster 4 (b) Cluster 7

Figure 4-5: Merged Paths: Several other learned activity clusters group together observations
from trajectories that converge on the same destination. In Fig. 4-6, we will see that the cluster
depicted in Fig. 4-5(a) can be broken up into more semantically meaningful paths by lowering the
pseudo-count prior λ.

147

(a) Sorted Cluster Weights (β when λ = 0.001)

(b) Cluster 71’ (c) Cluster 7’

(d) Cluster 5’ (e) Cluster 6’

(f) Cluster 15’ (g) Cluster 66’

Figure 4-6: Weaker Prior Benefits: When we use a strong uniform prior on the distribution
of observations within each activity cluster, it is easy to encounter problems where we undersegment
the clusters, from a semantic perspective. In Fig. 4-5, we saw that converging paths may be grouped
together when λ is large. Even worse, in Fig. 4-8 we see that semantically meaningful sub-paths
are sometimes randomly clustered together by the Gibbs sampler. A common remedy is to weaken
the prior. Here we show a collection of clusters that are learned when we reduce λ from 0.01 to
0.001. We have selected the clusters that correspond most closely with the original cluster 4 shown
in Fig. 4-5(a). For reference purposes, we also show the sorted cluster weight distribution in Fig. 4-
6(a). Fig. 4-6(b) and Fig. 4-6(c) correspond to people traveling from different parts of the northwest
subway archway to the MetLife escalators. Other subfigures show that the unsupervised HDP
algorithm automatically learned clusters corresponding to each of the possible concourse entrances
on the west side.

148

(a) Cluster 8 (b) Cluster 15

(c) Cluster 22 (d) Cluster 18

Figure 4-7: Directional Degeneracies: The most difficult problem we encountered was the
clustering together of trajectories going in different directions at the same location. To see this
problem manifested, use the color key in the corner of each subplot and notice how the rendered
wedges tend to be paired representing movement in opposing directions, but at the same location.
If we refer back to feature point results in Fig. 4-2, notice that the problem of not being able to
separate out distinct directions into separate clusters is much worse for them: every single cluster
with non-trivial weight experienced this problem. In Fig. 4-9 and Fig. 4-10, we will show the two
most common reasons for having clusters that are degenerate in the motion direction dimension.

149

(a) Cluster 1 (b) Cluster 9

(c) Cluster 10 (d) Cluster 11

Figure 4-8: Clustering of Disjoint Regions: We use a uniform prior for the base distribution
of our HDP model. When the prior is strong (i.e. when the pseudo-count prior λ introduced in
Fig. 4-1 is large), all clusters are more similar to each other. As a result, there is a higher likelihood
of the Gibbs sampler randomly assigning observations from a trajectory to a cluster that does not
represent it well. Those spurious assignments then cause the model to encourage other similar
associations. Given insufficiently many Gibbs sampling iterations, it can be difficult to escape these
local minima. In this figure we show several clusters that include observations spread across the
scene that are a result of insufficient learning, even after 15,000 Gibbs sampling iterations. As
with the case of merged paths (see Fig. 4-5), one solution is to allow the clusters to become more
specialized by lowering the pseudo-count prior, λ. See Fig. 4-6 for an example.

150

(a) Most Likely Trajectories under Cluster 8 (see Fig. 4-7(a))

(b) Closeup of Some Meandering Trajectories

(c) Just the Discussed Trajectories

Figure 4-9: Directional Degeneracies: Tracking Errors: In Fig. 4-7, we presented the
problem of learning clusters that are degenerate in moving direction: some clusters tend to include
observations in the same location but opposing or different directions. In this figure, we explore a
common reason: tracking errors. In Fig. 4-9(a), we show the set of trajectories for which cluster
8 (see Fig. 4-7(a)) is the single most likely cluster to have generated its observations. The first
observation of each trajectory is shown with an ×. Notice that there are trajectories going from the
top of the image down and from the lower parts of the image going up. For clarity, we have zoomed
in on the black and white box, creating Fig. 4-9(b) and Fig. 4-9(c). In those, we have highlighted
four trajectories of interest. The dashed bold ones are typical “good” trajectories, but they have
roughly opposite directions of motion. They have been grouped together in the same cluster because
there are enough tracks like the pair of solid bold trajectories. Because of bad data associations,
these tracks meander through the scene. Because the two solid bold lines do briefly share a common
location and direction, they are able to be clustered together. The cyan trajectory then shares a long
portion of its path with the orange dashed trajectory. The solid orange trajectory shares a portion
of its path with the dashed yellow trajectory. Because of the transitive nature of HDP clustering,
all four trajectories are able to be grouped together. Our primary mechanism for combatting this
problem is to have a conservative tracker that encourages long and straight trajectories traveling at
feasible human speeds. More sophisticated data association would likely help.

151

(a) Cluster 25 (b) Cluster 13

(c) Cluster 14 (d) Cluster 28

Figure 4-10: Directional Degeneracies: Mingling: In Fig. 4-9, we explained how tracking
errors are one of the most common reasons for directional degeneracy within learned activity clusters.
The second most common cause is the existence of “mingling regions” in the image: places where
people tend to stop or turn around. Based on our own observation and conversations with security
officials, people tend to use the information booth in the center of the scene as a meeting and waiting
place. They will also tend to remain in pockets of low traffic when loitering. These pockets tend
to form within a large circular region about the information booth. As people loiter, they tend to
change moving directions. This creates the opportunity for spurious clustering for the same reasons
that bad tracking can, as we discussed in Fig. 4-9. In Fig. 4-10(a), we show a mild case: cluster 25 is
mostly composed of people walking north from Vanderbilt Hall to the MetLife escalators (bluish and
purplish wedges). As it passes by the east side of the information booth, the HDP model tends to
co-cluster with minglers there (all hues). Since some of those minglers head back to Vanderbilt Hall
or to the southwest, a collection of extra observations are also associated with the cluster (greenish
wedges below the information booth). The remaining subfigures show even more mixing of moving
directions due to loitering, dodging, and crowd weaving that tend to happen in their respective
regions. New ways of biasing the training procedure and/or a more sophisticated model are needed
to overcome this issue.

152

As in the feature point results, we do still experience directional degeneracy issues,

but less frequently and less severely. In Fig. 4-7, we show some examples of this

problem. Some of the degeneracies are caused by tracking errors (Fig. 4-8 and Fig. 4-

9), while others are due to legitimate meandering of trajectories (Fig. 4-10).

4.4 Summary and Lessons Learned

In this chapter, we showed how we are able to obtain more semantically meaning-

ful clusters using tracks based on strong model pedestrian detections, compared to

tracks based on feature point detections. In performing our HDP activity modeling

experiments, we learned several several common-sense lessons that may be helpful to

others using similar models.

• Lowering λ avoids random grouping of common trajectory segments, allowing

for greater spatial compactness. In a scene such as the Grand Central one

discussed here, there are many underlying ground truth paths taken, so it makes

sense to try to learn them as best as possible.

• Lowering the spatial resolution reduces the random grouping and thus allows

for greater spatial compactness, but at the expense of more direction grouping.

The spatial compactness improvement is because we have a smaller vocabulary

(a smaller space of quantized positions and moving directions) so it is easier

to avoid overfitting and local minima problems with the Gibbs sampling. The

direction grouping is worse because with larger cells, we have a higher likelihood

of seeing a people spanning multiple direction bins within the cell.

• Lowering the angular resolution tends to encourage false direction grouping for

the same reason that lower the spatial resolution does.

153

154

Chapter 5

Silhouette Refinement for Gait

Recognition

This chapter contains joint work with Lily Lee and Kinh Tieu [62].

5.1 Introduction

In §4, we showed promising results in activity modeling for large scenes. A commonly

desired feature of a site monitoring application is to detect anomalous activities and

then identify the individual participants. For example, if a person is loitering near a

sensitive area, a security official may wish to know if that person has loitered there

in the past. If so, they may be casing the area for nefarious purposes. To answer

this and similar questions, we need a way of identifying and/or matching people

given tracking data. An advantage of building an activity model based on tracked

pedestrian detections (as opposed to weaker detections like corner points) is that when

an anomaly is detected, we can more easily analyze the image data corresponding to

the trajectory in question: we are given the bounding boxes containing the person in

question.

In this chapter, we explore a collection of methods for identifying individual pedes-

trians based on shape features. For privacy reasons, we were unable to perform these

experiments on the Grand Central data discussed in Chapters 3 and 4: for legal and

155

ethical reasons, consent of each test subject is required for research involving the

long-term tracking of people. It is infeasible at this time to either obtain consent

from the estimated 750,000 people who pass through Grand Central each day [39],

to obtain ground truth data for a significant fraction of the population, or to do the

recognition experiments in a way that is guaranteed to preserve privacy.

Instead of doing recognition experiments in the Grand Central setting, we will use

a standardized dataset from the NIST Gait Challenge project1. Because its video clips

were taken under constrained conditions, we return to a background subtraction-based

tracking pipeline and we concentrate on the effects of foreground silhouette quality

on recognition results. Compared to contemporaneously-developed algorithms, our

system achieves competitive results. More recent results are summarized by Sarkar

and Zongyi [89].

To further motivate the extraction of pedestrian silhouettes (as opposed to just

detecting bounding boxes), we note that the ability to accurately segment pedestri-

ans from a video stream is important for applications such as gait recognition, person

height/girth estimation [51], articulated body tracking, pedestrian activity descrip-

tion [44], and 3D reconstruction of people from silhouettes [69]. We use a model-based

approach to pedestrian segmentation that incorporates information from background

subtraction, pedestrian shape models, and an individual shape model sampled at

discrete phases of the walking cycle. Our approach reduces noise introduced by back-

ground subtraction, and fills in missing parts of the pedestrian silhouette, which often

result from camera noise or lack of color/intensity difference between the pedestrian

and the background. In addition, our pedestrian models are learned from a noisy

background subtraction process, hence making the entire process completely auto-

matic.

Traditional approaches to pedestrian segmentation from video generally involve

using a background subtraction algorithm to arrive at foreground silhouettes, then

post-processing to refine the silhouettes. Because background subtraction inherently

detects pixel value changes in the video/image, spurious foreground pixels are formed

1See http://www.gaitchallenge.org.

156

http://www.gaitchallenge.org

by noise in the video, and pedestrian silhouettes will have holes and missing parts

if there is not enough contrast between the pedestrian and the background scene.

The general solutions to these difficulties are to apply large numbers of morphological

operations to fill in holes and remove noise in the silhouettes, or to apply a smoothing

process at the background subtraction stage [81]. In either case, these operations

tend to systematically distort the silhouettes and remove fine details which may be

important for identification.

We investigate the particular case of pedestrians walking in a plane roughly par-

allel to the camera image plane. Under this scenario, it is easy to see that there

are commonalities between all pedestrian shapes. Moreover, the cyclic nature of the

walking action ensures that the silhouette appearance of each individual pedestrian is

repeated at each stride at semi-regular intervals. These observations make it possible

to improve the estimation of silhouette appearance over time and over a popula-

tion of pedestrians. We take advantage of these characteristics to learn two types of

pedestrian models, one that represents all pedestrians, and one that represents each

individual walking video sequence. Using the pedestrian population model and indi-

vidual sequence models, we are able to remove noise from each frame of a silhouette

sequence and fill in missing parts of each silhouette. To show that these silhouettes

are an improvement over the traditional methods of silhouette smoothing, we apply

our approach to the NIST gait data to produce a set of silhouettes and use these

silhouettes in a set of baseline gait recognition tests introduced in [81]. The dataset

contains video clips of 71 different subjects, with up to 8 distinct clips per subject.

Our results show that recognition results are improved using our model-based silhou-

ettes.

While we are only concerned with extracting pedestrian silhouettes in this thesis,

the method we propose is generally applicable to any moving object that demonstrates

the cyclic nature and common overall appearance that are observed in pedestrians.

For example, models for joggers, or trotting dogs or horses may be built using the

same technique.

157

5.2 Previous Work

There are many works related to the problem of pedestrian detection, tracking, and

segmentation. We indicate several of relevance to our approach that were developed

in the 1994–2003 time range, when work on the NIST dataset was most active. As

previously mentioned, Sarkar and Zongyi [89] provide an overview containing a few

more recent results. We categorize these works into two types: pedestrian detection

and pedestrian shape representation.

Oren et al. [80] trained a set of wavelet template representations of the frontal view

of pedestrians. These representations capture the shape gradient difference between

the pedestrian and the surrounding background. The authors applied their pedestrian

representation to images to detect roughly frontal (or back) views of pedestrians.

Gavrila [36] used a set of edge models of pedestrian shapes to detect pedestrians

from video sequences taken with a moving camera. While pedestrian detection is

the goal of both algorithms, additional steps are needed to extract the silhouette of

pedestrians.

Haritaoglu et al. [44] used background subtraction to detect, segment, and track

pedestrians, but they did not eliminate the errors introduced by background sub-

traction. Baumberg and Hogg [6] represented the pedestrian shape by a chain of

edge points. However, a clean segmentation of the pedestrian is assumed, and point

selection requires human intervention.

Kale et al. [54] use a five state HMM for gait identification and reduce their

observation distributions to a single Gaussian per state using noisy silhouettes. Zhou

and Chellappa [128] use a time series continuous state space model to recognize people

walking toward the camera.

The best results during the initiative used an HMM by Sunderesan, Chowdhury,

and Chellapa [103]. They first recover the gait period for a sequence of silhouettes

recovered from a person, then they cluster the silhouettes to find good exemplars at

each of 6 discrete phases in the walking cycle.

While there are pedestrian model representations presented in these papers, they

158

Figure 5-1: Intensity of a Pixel through Time: Within the foreground segment, indi-
cated by the dark bars, there are times when the intensity is indistinguishable from the
background values. Similar situations occur even when examining all color channels
simultaneously, as we will explore in more detail in §6.

do not address problems inherent to background subtraction that make accurate

extraction of pedestrian silhouettes difficult.

Without the full silhouette, questions such as “what color of clothing is the pedes-

trian wearing” can be hard to answer. Our approach seeks to overcome these difficul-

ties by learning a probability distribution of pedestrian foreground models at different

phases of a walking cycle over time and then using these models to provide better

shape definitions and to recover from errors in the background subtraction process.

5.3 The Need for Model-based Segmentation

If pedestrians always appeared in colors that are drastically different from the sur-

rounding background, and there were no cast shadows, then pedestrian segmentation

from any image would be a simple task. However, in any realistic video monitoring

situation people may have colors on the body that are close to the background, and

shadows will appear. For example, Fig. 5-1 shows the intensity of one color channel

of one pixel location in a video sequence. We manually found the frames for which

the pedestrian is the foreground at that location. Clearly, there are some frames for

which the foreground process is indistinguishable from the background process.

The pedestrian in this case is wearing a black shirt and walking past a black back-

159

ground. As a result there are large holes in the torso of the silhouette. These are

difficulties that no local background subtraction algorithm can solve, because back-

ground subtraction only detects changes in pixel intensities. A non-local approach

such as a Markov Random Field classifier (see §1.3) can bridge the gap between the

pedestrian’s head and legs, but only at great risk of also including non-pedestrian

pixels in the silhouette. A model-based pedestrian representation imparts expecta-

tions on the structures of pedestrians, and the confidence level associated with the

expectations will allow us to ignore the noise in the video data and fill in the expected

structure where data is missing.

5.4 Learning Pedestrian Models

We consider the case where the pedestrian is walking in a plane that is roughly parallel

to the image plane and always in the same direction. Under this scenario, the cyclic

nature of pedestrian silhouette appearance is readily apparent. The same phase of

a walking cycle will appear repeatedly in a sequence. Hence we can obtain a better

estimate of a silhouette by using all silhouettes that correspond to that same phase.

To further simplify the problem, we assume that the walking direction is known.

Hence we only need to represent the silhouettes in one direction while the silhouette

appearance from the opposite direction is a mirror image of the standard direction.

The above observations lead to a straightforward method for obtaining a pedes-

trian model within a silhouette sequence using a number of discrete phase represen-

tations:

1. Detect the period of the silhouette sequence using periodic features, such as the

silhouette aspect ratio.

2. Align all silhouettes by the phase of the walking cycle assuming a constant

walking period.

3. Average all silhouettes assigned to the same phase.

160

Assuming that there is no systematic error in the backgrounding process or in the

environment, and that pedestrians walk at roughly constant speed, this method will

generate a good representation of silhouettes over different phases of a walking cycle

that captures the shape of the pedestrian in the walking sequence. However, both of

these assumptions are occasionally violated. If the pedestrian has consistent patches

of clothing that match the background environment, the raw silhouette sequence will

have many frames with large holes in the body. If the walking speed of the pedestrian

changes in a sequence, assigning a silhouette to its correct phase may be difficult.

5.4.1 Pedestrian Population Model

To address the issue of systematic noise in a gait video sequence, we devise a separate

model that represents the appearance of all pedestrians, which we name the pedestrian

population model. We assume that while systematic errors in background subtraction

may occur for one walking sequence, they are unlikely to occur at the same location for

a population of pedestrians. Hence, a silhouette model constructed using a sampling

of silhouette sequences from a general population of pedestrians will not suffer from

systematic background errors. However, because different individuals have different

stride lengths, aligning and averaging silhouettes from different pedestrians by phase

results in blurred legs, especially for the phase with the widest stance. This reduces

the benefits of conditioning the model on the walking phase of a silhouette. As a

consequence, we choose to represent the silhouette of all pedestrians with the mean

silhouette of a training set that is representative of the population, ignoring phase

information.

There are some postural differences between the silhouette appearances of male

and female pedestrians (see Fig. 5-2a and 5-2b), thus the training sequences need to

contain an equal number of male and females. Fig. 5-2c shows the average pedestrian

model computed from 5 males and 5 females randomly chosen from our gait data set.

This population model is generated using 100 random silhouette frames from each

of the 10 training subjects. The amount of data used represents 1% of all the data

frames, and 8% of the total number of frames of the training subjects.

161

Figure 5-2: Pedestrian Population Models: (a) male, (b) female, (c) average model,
and, (d) mask for pedestrian shape–black for turning off a pixel, white for turning on
a pixel, and gray for unchanged pixel).

Figure 5-3: Example Emission Model: Sample model of 8 phases of the walking cycle
for one of our sequences after HMM training.

5.4.2 Pedestrian Sequence Model

To overcome the constraint on constant walking period, we construct a hidden Markov

model (HMM) of the silhouette appearances where each state represents the silhouette

at different stages of walk for each pedestrian silhouette sequence. The transitions

between the states in an HMM contain information about the relative amount of time

a pedestrian stays at each state and thus covertly constrains the period, but this is

not a hard constraint and does allow for adaptation to changing walking speed in a

walking sequence. In addition, because an HMM is trained on each sequence, the

states of the HMM will represent the silhouette appearance of each sequence much

better than a pedestrian model constructed using any generic silhouette sequence.

5.4.3 HMM Training

An HMM is a probabilistic model of a random process with discrete states, s0, s1, ...,

st, In a first order Markov model, the state of the system at time t + 1 can be

predicted knowing only the state at time t, i.e. p(st+1|st, st−1, ..., s0) = p(st+1|st). In

162

our case, the states are 8 phases of the walking cycle, represented as images in Fig. 5-3.

A Markov model is hidden when we are unable to directly observe the states. Instead

we observe some output of the system, characterized by a probability distribution,

p(yt|st). For the pedestrians, we see images (our observations) of a person instead of

having a perfect noise-free “phase detector” (our states).

An HMM is characterized by the probability of starting in some state, p(s0 = i),

the transition probabilities, p(st+1 = i|st = j), and the observation probabilities,

p(y|s). These probabilities are estimated using standard techniques [85], with the

following caveats.

First, we model walking as a set of cyclical transitions between N discrete states,

where we have selected N = 8.

Second, we assume that a person will start being filmed at a random time with re-

spect to the phase, so p(s0 = i) = 1
N

for all i. Third, we set the transition probabilities

to be:

p(st+1 = i|st = j) =


1− 1

f/N
if i = j,

1
f/N

if i = j + 1 mod N,

0 otherwise,

(5.1)

where f is the average number of frames in a walking cycle for the given sequence

(f > N). f
N

is the average number of frames per phase transition, so 1
f/N

is the

probability of transitioning out of a state after one frame. In informal experiments,

we found that allowing the non-zero entries to be learned from data had a negligible

effect.

Finally, our observations are binary silhouette images. We model the probability

of each individual pixel being turned on as an independent Bernoulli random variable.

This model can be represented as an image where the intensity of a model pixel is

the probability that that pixel will be on in an observed binary silhouette image. As

previously mentioned, Fig. 5-3 is a rendering of this model for a particular HMM we

trained.

To train the HMM, we must supply initial estimates of these probabilities. In

our case, the transition and initial state probabilities are fixed as described. For the

163

Figure 5-4: Closeup of the Legs for the Sixth State of a Sequence: Left: original
estimate based on averaged frames. Right: refined estimate after HMM training.

observation probabilities, we start by assuming a near-constant walking speed and

assigning the widest stance to be state 0. We then estimate the state of the frames:

st =

(
s0 +

⌊
t

1

f/N

⌋)
mod N (5.2)

where s0 is the state index for frame 0 and t is a non-negative integer. For our initial

observation probabilities estimates, we then average all of the frames assigned to each

state. For the frames in the NIST gait data we are using, the assumption of near-

constant walking speed is valid, and these initial estimates work well. A more robust

method would be necessary if there were significant changes or drift in the walking

speed.

Once we have the initial estimate of the observation probabilities, we train an

HMM on the sequence silhouettes to refine the probabilities. The HMM is able

to adapt to smaller fluctuations in walking speed and make the observation model

sharper, as seen in Fig. 5-4.

5.5 Raw Silhouette Extraction

We have assumed to this point that the raw pedestrian silhouettes used as input for

our model-based pedestrian silhouette extraction method had been obtained and that

the tracking of the silhouette is accurate. Below we describe the process by which we

obtain such a set of silhouettes.

164

Figure 5-5: Typical Frame for the NIST Gait Dataset: This is a typical video frame
from the NIST gait dataset. Test subjects were asked to walk an elliptical path be-
tween two cones. Different clips were recorded of the same person, varying parameters
such as the camera angle, walking surface (concrete versus grass), shoes worn, with
and without a carried briefcase, etc.

5.5.1 The Gait Data

The data set we are using is the standard NIST gait data set; the details of the data

collection method are described in [81]. Subjects were asked to walk along a smoothly

curving path under differing environmental and imaging conditions. In Fig. 5-5, we

show a typical video frame from the dataset.

The difficulties posed by automatically extracting good silhouettes from this data

set include: shadows on the ground, grass covering feet, moving objects (including

people, palm trees, fluttering construction tape, etc.) in the background, subjects

wearing clothing that is largely indistinguishable from the background. All of these

make the tracking and background subtraction problem difficult. However, the pre-

defined pedestrian path allows us to apply global constraints to simplify the tracking

problem. Because all frames of a gait video sequence are available at processing

time, we are able to use a batch background subtraction algorithm to extract the

foreground.

165

5.5.2 Tracking and Background Subtraction

Because of the moving objects in the scene and the amount of harsh shadows, tracking

the pedestrian accurately becomes a challenging problem if we make no assumption

about the gait data. To simplify the tracking problem, we begin with frame dif-

ferencing (i.e. we subtract color values at each pixel between successive frames) to

initially locate the pedestrian in the image. Frame differencing has the advantage

that it is robust to gradual lighting change, large shadows, and even waving trees,

thus allowing us to localized the pedestrian accurately. However, it does suffer from

missing pixels from the upper portion of the body at times, because the torso gen-

erates less motion than the legs. Hence we have to choose a large bounding box to

outline the pedestrian. A pedestrian detector such as the one discussed in §3 could

be used instead.

After using the frame difference image to localize the pedestrian, we impose a

constraint that the path of the silhouette centroid must be smooth to a 2nd degree

polynomial. We use an iterative robust estimation process to generate a path and a

set of bounding boxes containing the pedestrian.

Given the bounding boxes for the tracked pedestrian in each frame, we extract

the initial silhouettes by performing background subtraction only within the moving

bounding box (see §1.3 for a general description of background subtraction). In these

videos, we learn the per-pixel background model in batch, fitting a single Gaussian

model to the observed color data, but only using observations when no bounding box

overlaps the pixel in question.

5.6 Model-based Silhouette Refinement

Given the raw pedestrian silhouettes generated in the process described in §5.5, and

the pedestrian models described in §5.4, we can post-process the raw silhouettes by

scale normalizing the silhouettes and then using the silhouette models to remove

noise and fill in holes at each frame. Our pedestrian silhouette model involves two

levels of representations: the pedestrian population representation and the pedestrian

166

a b c d

e f g h

i j

k l

Figure 5-6: Silhouette Filling Examples: (a) raw silhouette (b) HMM model for the
state most likely to have generated the silhouette (c) mask made by thresholding b
(d) logical-OR of a and c. (e)-(h) are the same as a-d, except e is the population-
filled silhouette and the HMM in f was trained on the population-filled sequence. (i)
another raw silhouette from a different person (j) i after population- and HMM-filling.
(k)-(l) same as i and j for a third silhouette.

sequence representation, each requiring a different treatment.

The pedestrian population model, generated by averaging a set of training silhou-

ettes equally representing men and women, is used to refine the raw silhouettes. We

can interpret the average as the maximum likelihood estimate of the parameters of

a population silhouette generative process. Each pixel location p is an independent

Bernoulli process with parameter θp = p(lp = 1). Given a sequence of silhouettes

from a pedestrian, we want to choose a binary value for each pixel location in every

frame. We can obtain the posterior distribution of θp given the sequence and a prior

based on the population parameters. In principle, we could threshold the maximum

a posteriori value of θp. However because the population model prior is only valid for

static binary shapes, we can only confidently threshold at pixel locations for which

the shape is static across time (i.e., low variance Bernoulli processes). Empirically, we

found that restricting the prior to be valid only in the range θp ≥ 0.9 and θp ≤ 0.05

worked well. All other pixel locations in the pedestrian silhouette sequence are left

unchanged. This set of thresholds gives us the mask shown in Fig. 5-2d. Note that the

pixels that are consistently turned on are the ones interior to the pedestrian torso and

head region, and the ones that are turned off are far from the edge of the silhouettes,

whereas the unchanged pixels are the edge of the silhouettes and the legs.

167

The pedestrian sequence model, a cyclic silhouette model representing discrete

phases of a walking cycle, is used to produce silhouettes that preserve the fine details

of an individual pedestrian. This model is trained on each sequence and hence is able

to preserve the detailed shape of the silhouette in the sequence.

We begin by training an HMM on the sequence, as described in §5.4.2. Using

that HMM, we determine the most likely state assignments for each of the silhouettes

using the Viterbi algorithm [85]. To do the filling, we turn on any pixel in a silhouette

that has a likelihood of greater than 0.5 in the HMM.

In Fig. 5-6, we see an example of the two filling methods: (a) has no filling, (d)

is HMM-filled, (e) is population-filled, and (h) is both population and HMM-filled.

In this example, the population-filling recovers part of the head and removes a few

spurious pixels. The HMM-filling is able to fill in more of the head and parts of the

lower torso. In (i) and (j), we see an example of filling in the entire upper torso and

part of the hair for a different person. The legs are filled in for a frame of a third

person in (k) and (l).

5.7 Evaluation Methods

To evaluate the quality of our model-based silhouettes, we apply these silhouettes in

a gait recognition task. We use two gait recognition algorithms—an existing algo-

rithm described in [61] briefly summarized below, and a distance metric based on the

silhouette HMM states.

5.7.1 Ellipse Representation

Our gait dynamics feature vector consists of smoothed versions of moment features

in image regions containing the walking person. For each silhouette of a gait se-

quence, we find the centroid and divide the silhouette into 7 parts roughly cor-

responding to head/shoulder, arms/torso (front and back), thighs(left/right), and

calves/feet(left/right) (see Fig. 5-7(a)). For each of the regions, we fit an ellipse to

describe the centroid, the aspect ratio and the angle of the portion of foreground

168

(a) Partition of a silhouette (b) Ellipse fit to each region

Figure 5-7: Computing the Feature Vector for Gait Recognition

object visible in that region(Fig. 5-7(b)).

We assume that all of these features–the centroid, aspect ratio, and angle of

each region–are sampled from a Gaussian distribution and compute the mean and

standard deviation for each of these parameters across each walking sequence. The

feature vector of mean and standard deviation of each region is used in a nearest

neighbor classifier to retrieve the identity whose walking dynamics feature vector is

closest to the query feature vector.

5.7.2 HMM Representation

In addition to the region-based features, we also use the states of our HMM silhouette

model as a gait representation. We use the Euclidean distances between the 8 HMM

state observation models as comparison between two gait silhouette sequences.

5.8 Results

Given a set of gait data, we perform the following steps,

1. For each sequence, track the pedestrian and extract a set of raw silhouettes

using the algorithm described in §5.5.

2. Build the following pedestrian models:

169

Silhouette
Set Name Description

SN The silhouettes provided with the NIST gait data, generated by USF
using a semi-automatic method

Sr Our fully-automatic raw silhouettes (see §5.5)
Sd3 Sr dilated with a neighborhood size of 3
Sd6 Sr dilated with a neighborhood size of 6
Sp Sr cleaned and filled using the population model
SHr Sr filled using an HMM trained using Sr
SHp Sp filled using an HMM trained using Sp

Table 5.1: Silhouette Sets: These are the sets of silhouettes used in the recognition
experiments.

• A population model that represents the appearance of all pedestrians. This

model is constructed using 100 random raw silhouettes from each of 5 male

and 5 female subjects (§5.4).

• A per-sequence HMM that models the silhouette at discrete phases of a

walking cycle.

Note that these two models can be constructed independently of each other, or

with the HMM following the pedestrian population model.

3. For each sequence, refine the silhouettes using the pedestrian population model

and/or the state models of the HMM.

4. Generate a set of region-based gait features for recognition, or use the HMM

states directly for recognition.

We applied the above steps to the NIST gait challenge data set, which resulted in

a suite of silhouettes and gait features. These silhouettes and gait features were then

used in a set of gait recognition tasks.

5.8.1 Silhouette Comparisons

For each gait sequence, we used seven different sets of silhouettes, as described in

Tab. 5.1.

170

The silhouettes that are provided with the NIST gait data are semi-automatically

generated in the following process:

1. Manually track the pedestrian in the video sequences.

2. Compute the Mahalanobis distance between the image containing the pedes-

trian and a background model.

3. Smooth the Mahalanobis distance image with a 9×9 filter.

4. Threshold the smoothed image to obtain the silhouette.

The smoothing process in step 3 has a side effect of smearing out the fine features

of the silhouette and possibly removing some features that may be important to the

identification of individuals.

Excluding the raw silhouettes, the set of silhouettes that we have chosen fall into

two classes, those that reduce noise by a non-model-based process, such as smooth-

ing or morphological operation, which are Sd3, Sd6, and SN , and those that reduce

noise by a model-based method, as in Sp, SHr, and SHp. We will show through gait

recognition experiments that the silhouettes generated using a model-based method

are consistently better.

For each set of silhouettes, we generate the region-based gait features described

in §5.7. In addition, the two types of HMM, generated using Sr and Sp, are also used

for gait recognition.

5.8.2 The Recognition Task

The NIST gait challenge data is comprised of gait video of individuals taken under

different conditions. A standard set of tests, described in [81], examines the gait

recognition rate across different conditions.

The NIST gait data set contains pedestrians walking on different surfaces (concrete

and grass), with camera view change (left and right views), and shoe type change.

The data set is divided into a gallery set and a number of probe sets. The gallery

set contains sequences of pedestrian walking on grass wearing one particular type of

171

Probe Set Difference

A (1) view
B (2) shoe
C (3) shoe, view
D (4) surface
E (5) surface, shoe
F (6) surface, view
G (7) surface, shoe, view

Table 5.2: Gallery versus Probe Differences: One gallery (training) sequence is pro-
vided for each test subject. Additional probe (test) sequences are also provided where
the viewpoint, shoes worn, and/or walking surface are varied. The probes are ordered
from easiest to hardest.

shoes and viewed from one of two cameras. The probe sets differs from the gallery in

the ways described in Tab. 5.2.

There are seven corresponding recognition experiments labeled A through G, each

testing a probe set against the gallery set. The task of a recognition algorithm is to

rank the sequences in the gallery by their distances to the probe sequences. The

recognition performance is evaluated using a cumulative match score (CMS), which

measures the percentage of probes correctly identified at each ranking.

5.8.3 Recognition Results

As in [81], we report the gait recognition rate using the cumulative match score at

ranks 1 and 5, as shown in Fig. 5-8. We observe that the experiments D, E, F,

and G present the most challenging recognition problems because they all involve a

surface change. For them, the feature representation (HMM versus moments) is more

important than the silhouette set choice.

We are interested in the question of how well each silhouette type and gait feature

type perform in all recognition experiments. To present a clearer picture, we aver-

age the CMS for each silhouette type across all recognition experiments A through

G, across experiments A through C (the same surface condition), and across experi-

ments D through G (the change-of-surface condition). The surface condition demands

further investigation because it is the most challenging test. The averaged CMS are

172

(a) Cumulative match score at rank 1

(b) Cumulative match score at rank 5

Figure 5-8: Recognition Rates: Comparison of recognition rates using different sil-
houettes using CMS at rank 1 and 5.

173

(a) Average CMS for all probes (b) Average CMS for probes A, B, C

(c) Average CMS for probes D, E, F, G

Figure 5-9: CMS Comparisons: Comparison of recognition rate using different sil-
houettes using average CMS over all probes, grass probes, and concrete probes.

174

shown in Fig. 5-9. The general trends presented in the recognition results are:

• Recognition rates using the region based features on the NIST silhouette set,

SN , are consistently worse.

• Using the region based features, raw silhouettes performed better than their

dilated cousins in the same surface condition, but are comparable or slightly

worse in the change of surface experiments and the average of all experiments.

• Using the region based features on the Sp and SHp silhouettes (those that used

the population model) resulted in better recognition rates than raw or dilated

silhouettes.

• Using the region based features on the SHr silhouettes (those filled using an

HMM trained on raw silhouette sequence) resulted in only marginally better

performance than using the raw silhouettes.

• Using the distance of the HMM states, the recognition performances are com-

parable between the HMMs trained using the raw silhouettes and the HMMs

trained on preprocessed silhouettes, Sp. They also performed much better than

all other features in the change of surface condition.

5.8.4 Discussion

Our gait recognition experiments above show that incorporating a pedestrian model

component, be it using HMM states for recognition or the region features on silhou-

ettes filled with a pedestrian population model, resulted in better recognition rates

than the non-model based silhouettes and the raw silhouettes.

Based on the gait recognition performance using region based features on the

various silhouette types, we rank, in increasing recognition rate, the quality of the

silhouettes as follows: SHr, Sp, SHp. Simply using a silhouette model based on one

sequence is not adequate because there may be persistent silhouette errors through

a large number of frames. These systematic errors in the raw silhouette tend to

175

be caused by lack of contrast between the foreground object and the background

environment. The pedestrian population model is able to recover from this type of

error because the persistent errors for one sequence are unlikely to persist through a

population of pedestrians.

Using the HMM silhouette model is an improvement over using just the pedestrian

population model because it is able to improve the estimate of the individual shape

over time and capture the appearance of the legs at discrete walking phase.

The recognition rates using the state observation models of the HMM trained on

raw silhouettes and the HMM trained on Sp were among the best three algorithms/sil-

houette data. This indicates that for recognition purposes, HMM silhouette models

are robust to some systematic silhouette errors.

5.8.5 Relationship to Other Chapters

In §2, we proposed a method for improving background subtraction results in the

face of temporally irregular dynamic textures. In this chapter, we have investigated

ways of improving the results of background subtraction by building individual and

population appearance models. These models have been primarily used to mitigate

camouflaging errors and these techniques are complementary to those in §2. For con-

tinuous video sequences under less-controlled circumstances, we could easily envision

a system using both set of algorithms.

In §3.2, we saw that background subtraction could detect some people in large

crowded environments with adverse lighting conditions like the Grand Central Ter-

minal. Unfortunately, it was not reliable enough to even consider it for tracking a

large fraction of the people traveling through the scene. We then saw in §3.4 how a

high-quality strong-model pedestrian detector could be implemented efficiently using

commodity graphics hardware. Using those tracks, we developed a scene-level activ-

ity model in §4. One of the motivations for developing activity models is to be able

to identify anomalous trajectories. Given an unlikely trajectory, a variety of secu-

rity scenarios call for discovering the identity of the person generating the trajectory.

One could combine multiple techniques to help make this identification: (a) trace the

176

trajectory using pedestrian detector outputs, (b) determine when the trajectory is

isolated from other people and in a region where background subtraction is known

to work well, (c) extract silhouettes during the periods when conditions are most

amenable to it, then (d) feed the silhouettes into a pedestrian recognition system

such as the one described in this chapter.

In §6, we will discuss event detection tasks such as discovering loiterers, theft, and

abandoned luggage. In cases where events of interest occur, we could imagine a full

site monitoring system integrating pedestrian recognition in a manner similar to the

one described above for activity modeling scenarios.

5.9 Summary

We have proposed a method to automatically construct models of pedestrian silhou-

ettes in a walking cycle. Our model contains two components, a pedestrian population

based model, and an individual gait silhouette sequence model that is comprised of

discrete phase states of walking cycles.

The population model is used to recover from systematic noise of a particular gait

sequence.

The sequence model is used to correct for sporadic noise that occur from time

to time within a video sequence. This model construction process can be applied to

any moving object that exhibits cyclic properties and/or overall shape commonalities

that allows one to improve the estimate of shape over time.

Our silhouette models can be used in two ways: to fill in silhouettes for any al-

gorithm that needs accurate silhouette sequences, and to be used directly for gait

recognition. In both cases, we have shown that using a model based silhouette ex-

traction is superior to using a non-model based silhouette smoothing algorithm, such

as morphological operations, or a smoothing process in the background subtraction

phase.

177

178

Chapter 6

Robust Modeling for Event

Detection in Short Videos

This chapter contains joint work with Xiaogang Wang [23].

6.1 Introduction

Beginning in the late 1990s, some key advances were made by researchers such as

Stauffer and Grimson [101] and Haritaoglu et al. [44] that allowed the construction of

full realtime farfield visual tracking systems on commodity hardware. Work has con-

tinued to progress in handling more challenging low-level situations such as variable

lighting and dynamic backgrounds. With those improvements, researchers have been

able to also make progress on higher-level tasks such as directly detecting events of

interest1. In this chapter, we will focus on situations where the events of interest are

well-defined, there is limited data available, and algorithm customization and tuning

time is restricted. This mirrors situations in the real world where ad-hoc monitoring

systems are deployed in response to immediate needs.

In the introductory chapter (§1.5.1) we discussed a body of existing work for

1In §4, we examined activities defined as clustered path segments. In this chapter, when we speak
of event detection, we refer to identifying when a collection of objects jointly satisfy a collection of
spatial, temporal, identity, and relational constraints. For example, an abandoned luggage event
may be defined as a human being separated from a non-moving bag for enough time and distance.

179

event detection that can be divided into two classes. In one class is research fo-

cused on representing and modeling events themselves, with a focus on interpreting

long continuous video feeds. We also mentioned work done on datasets produced for

the Performance Evaluation of Tracking and Surveillance (PETS) workshops. The

challenge problems associated with the most recent datasets emphasize the vision

components of event detection systems by coupling challenging real-world data with

strict evaluation guidelines. The supplied videos tend to be relatively short, which

penalizes approaches that require a significant amount of training data or long boot-

strapping periods. Researchers are given a single month from the release of the

challenge problem to the submission of results and a paper for peer review.

For the PETS 2006 workshop [29], a standardized dataset was created to evaluate

various automatic visual event detection systems. Seven videos were taken from

each of four calibrated cameras overlooking a train station platform. Each video

set recorded a left-luggage event that the automatic visual surveillance systems were

expected to detect. Specularities, shadows, a partially-reflective glass surface, and

mutual occlusions from multiple actors provided varying levels of difficulty depending

on the camera views used and the individual staged scenarios.

Nearly all of the accepted PETS 2006 papers used background subtraction and/or

motion detection to first identify foreground blobs. del-Rincón et al. [68] used multiple

time scales and feedback loops to improve robustness. Lv et al. [67] and Grabner et

al. [41] used the background subtraction results for static object detection and then

used and/or learned a classifier for humans.

Auvinet et al. [5] took the foreground blobs and projected them onto the ground-

plane, looking for multiple silhouette intersections from the four cameras. Li et al. [65]

used a layered model to track objects across time. Lv et al. used Kalman filters on the

human classifier output, falling back to meanshift [14] when necessary. del-Rincón

et al. used an unscented Kalman filter to track the owners of discovered static ob-

jects while Smith et al. [97] used a full MCMC sampler. Krahnstoever et al. [57] and

Auvinet et al. [5] showed results using nearest neighbors for their data association.

The PETS 2007 workshop’s dataset was staged similarly to the 2006 one, adding

180

Figure 6-1: Actor Entering the Abandoned-luggage Warning Zone: In this image
(frame 1120, camera 3, clip S08), we mark the location of a dropped piece of luggage
with a green dot. The owner has just left the 2m-radius area about the bag defining
a warning zone indicated by the yellow circle. After remaining outside the red circle
(3m) for more than 15 seconds, an abandoned luggage alarm should be generated.

several interesting real-world challenges:

• more inter- and intra-clip lighting changes,

• a changing mixture of harsh and soft shadows,

• camera movement between clips,

• denser pedestrian traffic,

• lower effective resolution in a key camera view,2 and

• a broader set of events to detect.

In this chapter, we will be using the PETS 2007 dataset, summarized in Tab. 6.1 and

below.

The dataset consists of 10 video clips from each of four calibrated PAL cameras

(720 × 576, 25fps, interlaced). The BACKGROUND clip is a 1000-frame clip with

2In the PETS 2007 data, the most overhead view (camera 3) recorded interlaced video, whereas
in PETS 2006, the camera for the best view was progressive scan.

181

Input Data

TrackingBackground Subtraction

Background

Modeling

All Clips

BACKGROUND

Clip

Per-Frame

Illumination

Normalization

Per-Frame

Illumination

Normalization

Per-Pixel

Robust

Gaussian Fit

Ground

Plane

Registration

Canonical

BG Model

BG Model

Search

Final BG

Model

Mahalanobis

Distance

BG-Biased

MRF

FG-Biased

MRF

Blob

Extraction

Fragmented

Blobs

Blob

Extraction

Merged

Blobs

Kalman

Filter

Kalman

Filter

Split-

Merge

Analysis

Static

Object

Detector

Mean

Shift

Tracker

Long

Track

Detector

Tracks
Mean

Shift

Tracker

Split-

Merge

Analysis

=36pt

7.125" = 513pt

½
”=
3

3
.0
6
2
5
" =
 2
2
0
.5
p
t

2
.5
6
2
5
" =
 1
8
4
.5
p
t

6.625" = 477pt

Figure 6-2: Event Detection Pipeline: This diagram outlines the primary data pro-
cessing steps in our tracking pipeline. The motivation behind and implementation of
each block is described in §6.2–§6.4.

Subjective
Clip Description Difficulty Notes

BACKGROUND N/A contains sparse pedestrian traffic and no
events of interest, meant for training

S00 No Defined Behavior N/A contains sparse pedestrian traffic and no
events of interest

S01 General Loitering 1 ** contains a single actual loitering event
S02 General Loitering 2 *** contains a single actual loitering event,

with heavier occlusion
S03 Swapping Bag 1 ** contains two scripted loitering events,

one unscripted loiterer, and a luggage
ownership transfer designed to overly
simple systems

S04 Swapping Bag 2 **** contains three scripted loitering events,
the luggage ownership transfer sce-
nario, and heavier occlusion

S05 Theft 1 ** contains two scripted loitering events,
and a luggage theft event (with an im-
plicit luggage abandonment event)

S06 Theft 2 **** contains a single luggage theft event,
with heavy occlusion

S07 Left Luggage 1 ** contains one luggage abandonment and
one theft event

S08 Left Luggage 2 **** contains one luggage abandonment and
one theft event, with heavy occlusion

Table 6.1: PETS 2007 Clips: This is a summary of the 1 training and 8 test clips
included in the PETS 2007 dataset.

182

sparse pedestrian traffic, provided to allow for algorithm training, as needed. The

remaining clips have durations of 2750 to 4500 frames. S00 is a 4500-frame control

sequence in which none of the defined events occur. S01 and S02 were designed to

contain one staged loitering event each under easy and hard conditions, respectively.

For this dataset, loitering is defined as remaining in the scene for more than 60

consecutive seconds. S03 and S04 contain easy and hard staged luggage retrieval

events where a group of two people enter and a bag is placed on the ground. Both

members of the couple stay near the bag and then later the second person picks up

the bag and the couple leaves together. S05 and S06 each contain an example of

theft, where someone other than the owner picks up a bag that was placed on the

ground by the original owner. In S07 and S08, a person drops a bag and “abandons”

it by moving more than 3m away for more than 15s (see Fig. 6-1)3.

Before proceeding to describe our method, we note a few details. Our approach

is purely monocular and we use camera 3 (see Fig. 6-1) exclusively because it offers

the viewpoint with the fewest inter-human occlusions. Because this camera’s video

was interlaced, we subsample the input video without smoothing down to 360 ×
288. Our algorithm is based on generic blob tracking techniques that are readily

implemented and require little training and tuning relative to ones that use strong

human appearance models. For all tunable parameters, we used the same settings for

all clips.

We have implemented a tracking system to detect this workshop’s events. Similar

in spirit to the work of del-Rincón et al. in PETS 2006, our system is attention-

based. Using background subtraction (our attention mechanism), we identify (a)

likely dropped luggage and (b) long spatially isolated human tracks. When dropped

luggage appears, we perform a local spatio-temporal search for the human owner.

Humans identified by long tracks or by association with luggage then have their

tracks temporally extended via meanshift. Our system is able to accurately detect

nearly all of the events that occur in the dataset with no false positives, including

3Originally, the time period was 25s, but it was later changed to 15s because the actors did not
stay away from their luggage for strictly more than 25s

183

some actual loitering events that were omitted from the official ground truth.

Our processing pipeline is illustrated in Fig. 6-2. In §6.2, we discuss our back-

ground modeling approach and why the traditional approach is insufficient for this

dataset. We then detail our foreground/background segmentation algorithm in §6.3

and tracking in §6.4. Our event detection rules are described in §6.5 and its results

are given in §6.6. We summarize our system in §6.7.

6.2 Background Modeling

The first step in our processing pipeline is background modeling. Our goal in this

stage is to build, for each pixel in each clip, a model of the appearance of the static

elements in the scene. The most common approaches to solve this type of problem

are to adaptively model the background as a mixture of Gaussians (c.f. Stauffer and

Grimson [101]) or using a kernel density estimate, as done by Mittal and Paragios

[72], as we discussed in Chapters 1 and 2. Unfortunately these approaches cannot be

used directly for datasets like the PETS 2007’s because they make the fundamental

assumption that the most common color modes for each pixel correspond to the

background: the clips recorded for PETS are short and many have loitering events

where one or more people remain in nearly the same location for almost the entire

clip. In fact, in S02, some pixels view the background less than 10% of the time.

A natural approach would be to use the BACKGROUND clip for training a stan-

dard background model to be used directly and without adaptation in the test clips.

BACKGROUND is indeed mostly background for all important pixels, but its light-

ing is significantly different from all of the other clips, as we will see when we discuss

Fig. 6-3. For most of the clips, the overall illumination is lower, and the locations

of bright highlights on the walls and floor move. Additionally, camera 3 was moved

slightly for clips S05 through S08, causing difficulties for background subtraction

approaches that rely critically on known registration.

An alternative to starting with a foreground/background segmentation is to simul-

taneously learn the appearance and extent of all objects and the background. Unfor-

184

0

50

100

Intra−Clip Time

M
ea

n
In

te
ns

ity

BKGND
S00
S01
S02
S03
S04
S05
S06
S07
S08

Figure 6-3: Dramatic Inter- and Intra-clip Intensity Changes: Here we plot the av-
erage intensity (on a scale of 0 to 255) of each frame over time, for each video clip.
We note that there are significant inter-clip changes (e.g. BACKGROUND vs. S02)
and intra-clip changes (e.g. BACKGROUND and S08).

tunately, full layered model alternatives either make modeling assumptions that are

too strong for this dataset and are very computationally expensive [52, 119] or they

bootstrap off background subtraction [65, 129]. Also, most existing implementations

are inappropriate for very busy scenes with frequent occlusions and changes to layer

depth ordering.

6.2.1 Implementation

We now give the details of our background modeling implementation as outlined in

Fig. 6-2.

As already mentioned, one of the challenges of this dataset is non-constant illumi-

nation, as we now illustrate in Fig. 6-3. Even when just observing the mean intensity

of the scene, we can see large differences over time within many clips as well as large

differences between clips. The lighting effects we observe are consistent with natural

lighting during a partially-overcast day with slowly passing cloud cover. To reduce

these effects, we illumination-normalize each video frame, by using the color c̃
(t)
p ,

c̃(t)
p =

(
Σ

(t)
img

)− 1
2 (
c(t)
p − c̄(t)

)
, (6.1)

instead of the original RGB value c
(t)
p , where p is the pixel location, t is the current

frame number, c̄(t) is the mean RGB color vector for the frame, and Σ
(t)
img is the frame’s

diagonal RGB covariance matrix. The remainder of the background modeling is done

185

independently for each pixel.

Since all pixels of interest in the BACKGROUND clip are sampled from the back-

ground distribution nearly all of the time, we fit a single joint Gaussian distribution

to each pixel’s illumination-normalized RGB value. To add a small measure of robust-

ness to foreground pixels that are present, we discard any pixels with a Mahalanobis

distance greater than 5 from the Gaussian and then refit the distribution to the inliers.

To avoid overfitting, if any eigenvalue in the covariance matrix is less than 0.002, we

round it up to that value. Minimal tuning was used to select these parameters. The

output from this step is a canonical background model for each pixel location.

If the lighting changes were more mild, we could directly use our canonical model

in all clips; however, our illumination normalization is insufficient to be used directly

in these clips. To illustrate the issue, refer to Fig. 6-4, where we examine the observed

colors when a given pixel views foreground objects nearly 90% of the time. For that

pixel in clip S02, we have manually labeled all frames as foreground or background,

and observed the normalized color distributions. The black set of axes represent

the canonical background model. We can see that that model poorly represents the

hand-labeled background distribution (red X’s), but it is much closer to the true

background mode than to any modes from the foreground distribution (blue dots).

In essence we wish to track the background’s color distribution between clips. We

assume (a) that the background is well-modeled by a Gaussian, (b) that the Gaussian

distribution’s mean and covariance shift slowly over time, and (c) that the background

distribution is distinctive from the modes in the foreground distribution. Given these

assumptions, we wish to find the Gaussian mode in the new clip’s distribution that

is closest to the canonical model, as suggested in the previous paragraph. In doing

so, we wish to be agnostic to the observed foreground distribution and only concern

ourselves with finding the closest color mode.

We can simplify our search by warping our illumination-normalized pixel values

so the canonical model is represented as an origin-centered unit normal distribution:

˜̃c
(t)

p = Σ
− 1

2
BG,p(c̃

(t)
p − c̄BG,p) (6.2)

186

(a) Pixel at (253, 319) in clip S02

(b) Adaptation

ground truth background
don’t care
ground truth foreground

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

frame number

no
rm

al
iz

ed
 R

G
B

(c) Color History with Ground Truth FG/BG Labels

Figure 6-4: Background Model Adaptation for a Challenging Case: For pixel (253, 319)
in the S02 clip, we labeled all frames in which the pixel was viewing the background versus any
foreground object. In Fig. 6-4(a), we show the pixel location in question on a rendering of the
background model. In Fig. 6-4(b), color values when the pixel was viewing background are shown
as red X’s in a scatter-plot (projected onto the normalized red and green axes). Blue dots repre-
sent observed foreground color samples. For this pixel, the Gaussian distribution learned for the
BACKGROUND clip is shown as a black-colored set of principle axes. The green axes represent
the learned model after it was adapted to this clip. If we construct a Gaussian classifier from the
learned model for this pixel, the area under the ROC curve is 0.9926 (not shown). In Fig. 6-4(c), we
show the illumination-normalized color history for the pixel with the ground truth annotations in
the background. The pixel analyzed in this figure is a particularly challenging case as it is viewing
foreground objects nearly 90% of the time.

187

where we search for a mode in the ˜̃c
(t)

p space, given the canonical model’s center c̄BG,p

and covariance ΣBG,p.

We then iteratively slide a spherical template of radius 5 to the mean location of

the sample points that fall within the template, until convergence4. We then fit a

Gaussian distribution to the samples that fall within the final template boundaries

and limit the covariance eigenvalues as we did for the canonical model. The output

from this step is a single-Gaussian background model,
(
ĉp, Σ̂p

)
, for each pixel, tuned

for each video clip, and defined in the illumination-normalized RGB space.

For the PETS 2007 dataset, we have used the method just described to track the

background distribution from the BACKGROUND clip to other clips. We have found

this novel implementation to be effective and to require minimal tuning.

6.3 Background Subtraction

Given a statistical model of the background, we can perform likelihood tests to classify

sampled pixels as foreground or background, as is standard practice. Markov Random

Fields (MRFs) are an effective mechanism for applying spatial smoothing priors to a

label field [38] instead of relying on a purely independent thresholding at each pixel.

As described in §1.2, our MRF optimizes the following objective function:

E(l) =
∑
{p,q}∈N

Vp,q (lp, lq) +
∑
p∈P

Tp(lp) +
∑
p∈P

Dp(lp) (6.3)

where l = (l1, ..., l‖P‖) is the field of foreground-background labels, P is the set of

pixel sites, N is the 8-neighborhood graph, Vp,q (lp, lq) encourages spatially neigh-

boring pixels to have the same label, Tp(lp) encourages pixels to have the same

foreground/background label they had in the previous frame, and Dp(lp) encourages

pixels to be labeled as foreground when they do not match the background model

4The template radius was tuned by selecting a single predominantly-foreground pixel location in
each of two test videos and performing a quick ROC analysis. The results are not especially sensitive
to this radius.

188

well. These energy terms are defined as

Vp,q (lp, lq) = tNδ(lp, lq) (6.4)

Tp(lp) = tT δ
(
lp, l

′
p

)
(6.5)

Dp(lp) =


tF , if

(
lp = 1

)
∨
(
tF <

bp

min
i=1

d2(cp;µqk,Σqk)

)
;

bp

min
i=1

d2(cp;µqk,Σqk) otherwise,

(6.6)

where δ(·, ·) is the Kronecker delta function, tN is the spatial mismatch potential, tT

is the temporal mismatch potential, l′p is the label assigned to pixel p in the previous

frame, and tF is the foreground label potential. The background potential (the “oth-

erwise” case) in dp(·; ·, ·) is the Mahalanobis distance from the learned background

model for the given pixel in the given clip.

We have used an existing MRF implementation that uses the fast two-label st-

cut implementation of Boykov, Veksler, and Zabih [9, 10, 56] with the temporal

smoothness terms suggested by Migdal [70]. For other background subtraction work,

we have found tT = tN = 5 and tF = log(2563) ≈ 16.6 to be good default values. We

have used those tT and tN values without any tuning. We next discuss how we chose

tF .

Instead of choosing a single value for tF for the PETS dataset, we construct a

pair of MRFs to address two different detection tasks. One is biased to produce more

foreground labels (tF = 8) and the other is biased to produce more background labels

(tF = 32). These values were chosen empirically by starting with the baseline value

of tF ≈ 16.6 and observing foreground/background classification results on a handful

of frames with a few different settings.

As demonstrated in Fig. 6-5, the foreground-biased MRF (left) tends to capture all

of the foreground into coherent blobs at the cost of mislabeling shadows as foreground

and joining independent objects. On the right, we see the same frame segmented with

the background-biased MRF. Its silhouettes are cleaner and distinct, but camouflaging

189

Figure 6-5: An Extreme FG/BG Segmentation Example: Here we show segmentation
results for the foreground- (left) and background-biased (right) MRFs for frame 500
of clip S08. The frame shown here is a somewhat extreme example of the different
solutions found by the two MRFs. Both MRFs use the Mahalanobis distance values
visualized in the middle image as the background label potential. For display pur-
poses, the intensity is saturated at a distance of 64, twice the foreground potential for
the background-biased MRF (so a 50% gray pixel sits on the classification threshold,
absent any neighborhood effects).

effects have caused some objects to be split into multiple blobs.

When attempting to detect dropped luggage, we wish to obtain robust detections

of relatively small isolated objects. The foreground-biased MRF resists camouflaging

effects of humans that result in fragmented blobs. Thus when a small foreground blob

is present in its solution, there is a high likelihood that it was actually the result of

a small object, not a blob fragment from a human.

For the foreground-biased MRF segmentations, we extract blobs using a standard

4-connected neighborhood connected components extractor. Any blobs that have

fewer than 75 pixels are discarded. Before evaluating the MRF, we mask out regions of

the image corresponding to the ledge on the bottom left of camera and corresponding

to the “British Airways” sign and above on the wall. No humans can move here and

these areas are especially susceptible to lighting changes in some clips. We also reject

any blobs that are very near the edges of the image because they are unreliable for

tracking purposes. The 75-pixel threshold was chosen with minimal tuning and could

be made more robust by scaling it by the square of the estimated distance to the

camera using its calibration. For this dataset, we did not find it necessary to take

this extra step.

When attempting to detect individual humans who are present in the scene for a

190

long time, tracking at a blob-level only works well when the blobs are disjoint. With

the density of human traffic in the PETS 2007 dataset, our foreground-biased MRF

tends to group multiple people into a single blob very frequently and it also mislabels

shadows as foreground. By biasing a second MRF to prefer background labels, we

obtain clean silhouettes which can be tracked more easily, at the cost of needing to

be robust to some blob fragmentation.

For the background-biased segmentations, we extract blobs by grouping any 4-

connected blobs that are within 10 pixels of another blob. The 10 pixel dilation

diameter was chosen by observing differences in the MRF segmentations in a handful

of frames from two clips.

The output of the background subtraction is a collection of segmented foreground

blobs from each MRF. We keep both sets of blobs separately since they are redundant

and optimized for different tracking tasks (dropped luggage versus human tracking).

6.4 Tracking

After extracting the foreground blobs, we need to do enough tracking to detect the

desired events: loitering, luggage abandonment, and theft. These events rely primar-

ily on (a) tracking and maintaining the identity of humans who remain in the scene

for a long time, (b) detecting luggage placed on the ground, (c) identifying who owns

a piece of dropped luggage, and (d) identifying those who pick up luggage. Because

the clips all have many actors who occlude each other, simple blob tracking without

appearance information cannot succeed. One approach is to explicitly build strong

models and attempt to track all humans, as was done by Grabner et al. and Lv et

al. for PETS 2006. We have chosen instead to build an attentional system that iden-

tifies (a) proactive opportunities to build robust models and (b) times when more

extensive tracking are desired.

In this section, we provide a detailed description of our tracking algorithms along

with chosen parameter values. These parameters are specific to this dataset, but the

general approach we take is applicable to other event detection scenarios, especially

191

in cases where there is (a) too much crowding in the scene to just use blob trackers,

and (b) insufficient data (or manual annotations of data) to use a training-based

approach. Due to the lack of independent training data, we are forced to use some

of the test data for tuning our algorithms if we wish to evaluate it on all of the

test sequences using the same parameter settings. We include the specific parameter

settings and how they were chosen in an effort to demonstrate that we have chosen

them conservatively.

Our first tracking submodule takes the background-biased foreground blobs and

performs standard Kalman tracking on them, using a constant velocity model on the

blob’s centroid in the image plane. During data association, we independently asso-

ciate each track with the blobs in the current frame. If multiple tracks are associated

with a single blob, we initialize a new track to follow the merged group as long as it

remains coherent. This track is tagged as containing a group of actors. We similarly

detect tracks that split into multiple blobs. Although we did not find it necessary for

this dataset, it is possible to use trajectory and/or appearance information to disam-

biguate mild to moderate split-merge graphs using approaches such as that of Bose

et al. [8]. At greater computational cost, an MCMC tracker such as the one used by

Smith et al. [97] could be used as well. For this dataset, we used a simplified version

of the implementation of Bose et al. In other datasets where the objects of interest

appear as isolated blobs for non-trivial periods of time, a base level blob tracker such

as this one can be useful. We note that this submodule is not expected to track

through crowds or occlusions.

Our second tracking submodule identifies loitering candidates. When we observe

a non-group track that lasts more than 16 seconds and whose mean blob area is

between 1500 and 3000 pixels (in a 360 × 288 frame), we consider this track as a

good candidate. These are very loose thresholds. We use the pixels in that person’s

tracked blob to learn a color histogram appearance model for that person. We then

use meanshift tracking [14] to temporally extend the track both forward and backward

through occlusions, dropouts, and merge-split events. We stop temporally extending

192

meanshift tracker when the Bhattacharyya distance,

BC(p, q) =

√
1−

∑
c∈[0,15]3

√
p(c)q(c) (6.7)

exceeds some threshold, τmeanshift = 0.14, where c is an RGB color value, p is the

color histogram model, and q is the color histogram of the pixels in the putative

object location. Our color histograms have 163 bins. We have used an existing

meanshift tracker implementation. This second submodule works because the first

blob tracker was able to collect enough data to build a stronger appearance model.

In more general situations, it is common to have a weak model that can track some

objects with very high confidence (and high precision) but low recall. One can then

bootstrap a stronger model that increases the recall. In our situation, the stronger

model does not increase the number of pedestrians detected, but it does increase the

number of frames in which a given person is tracked.

If a tracked object disappears at a scene boundary, we terminate the tracking, but

we retain the meanshift model. This allows us to reacquire targets that reenter the

scene soon after leaving. This stronger model that was bootstrapped allows us to do

this extra task of target reacquisition.

The third tracking submodule performs Kalman tracking on the foreground-biased

blobs. Humans walking near each other are often grouped in the same blob with this

tracker, so it is less effective at identifying individuals. It is however robust to long-

term camouflage effects with humans. This means that a given person rarely produces

a track fragment that represents only a small portion of their body for more than

a few frames at a time. When people drop luggage and leave it on the ground for

an extended period of time, they often are segmented separately from the dropped

luggage for a second or more at a time. This presents us with an opportunity to

detect these static objects. When we see a track with detections between 200 to 1000

pixels of area per observation, we hypothesize that it is a piece of dropped luggage. As

was done with the long isolated human tracks, we initialize a meanshift tracker using

appearance information from the initial track. We then extend the track temporally

193

in both directions until significant movement (τds = 50 pixels) is observed. This

gives us the drop-off and pickup times. In more generic site monitoring situations

where multiple object classes need to be tracked, this kind of injection of top-down

knowledge can improve results. Different low-level detection mechanisms can be tuned

for the different classes.

Given a drop-off and pickup time and a location for a piece of luggage, we would

like to identify the individual who has initiated each event. If a human-sized blob

overlaps the bag’s meanshift template area when it moves by more than τds pixels

from its starting position, we assume that that this person is moving the bag. If we

were searching back in time with meanshift, this blob is the original owner (or victim

in the case of theft), and when searching forward in time, the blob is the new owner

(or thief).

To disambiguate theft, luggage swaps, luggage that always stays near the owner,

and dropped luggage, we need to track the original and new owners. If either of these

people has already been associated with a loitering track, no extra work is needed.

Otherwise, we use a new meanshift tracker for each person to discover their long-term

trajectory.

Any time we have two temporally-separated full tracks (those which we extended

with meanshift trackers), we compare the color histograms that were used for the

meanshift tracking. If the Bhattacharyya distance is less than τreacquire = 0.15, we

consider the two tracks to belong to the same person.

6.5 Event Detection

As described in the previous section, the attentional tracker is configured to output the

primary pieces of information required for event detection. We are able to translate

the events from image coordinates to real-world coordinates by assuming the middle

of the bottom of the blob or meanshift tracker’s bounding box is touching the ground.

Using the supplied camera calibration, we are able to infer the world coordinates of

this point.

194

Loitering Abandoned Luggage Theft Subjective
Clip TP FN Error TP FN Error TP FN Error Difficulty

S00 - - - - - - - - - **
S01 1 - 5.08s - - - - - - **
S02 1 - 1.44s - - - - - - ***
S03 2 1 8.22s - - - - - - **
S04 1 2 0s - - - - - - ****
S05 1 1 19.2s 1 - 0.08s 1 - 0.08s **
S06 - - - - - - - 1 ∞ ****
S07 - - - 1 - 0.12s 1 - 0.08s **
S08 - - - 1 - 0.2s 1 - 0.12s ****

Table 6.2: Event Detection Results (PETS 2007): Key frames from each clip are
shown in Fig. 6-6–6-11. TP is the number of true positive event alarms and FN is
the number of missed alarms. In the PETS 2007 dataset, events of interest have a
well-defined start time (e.g. a loitering alarm should sound the moment a person has
been in the scene for 60 consecutive seconds). The temporal errors reported here are
the absolute value of the time we raised an alarm minus the time we should have
raised it, according to the supplied ground truth. Our system had no false positives
for this dataset. The subjective difficulty was defined by the PETS 2007 organizers.

Any individual tracks that have a human-like size and aspect ratio and exist for

more than 60 seconds trigger loitering events. If the owner of a piece of luggage

travels more than 2 meters away from their luggage, a warning is triggered, and if

they stay more than 3 meters away for more than 15 or 25 seconds (depending on the

scenario, as indicated in the ground truth), an abandoned luggage alarm is triggered.

If a new owner removes a piece of luggage beyond the 3 meter radius, a theft alarm is

triggered after 15 or 25 seconds, as appropriate for that clip. If the new and original

owners both exit the scene together, we have chosen to output a reattended alarm.

As the events of interest are precisely and deterministically defined for this dataset,

our system attempts to directly detect the required conditions for alarms. If a more

sophisticated probabilistic event model were desired, it could be substituted.

6.6 Results

In this section, we briefly summarize our results on the PETS 2007 dataset. Before

doing so, we highlight our strategies for parameter tuning. Because only 9 video clips

195

(a) 0400 (b) 0800 (c) 1200

(d) 3000 (e) 3900

Figure 6-6: S01 Key Frames: This clip contains a single loiterer. We show our
tracker’s estimate of the loiterer in several manually-selected key frames as a red
bounding box. The subfigure labels indicate the frame number, for those wishing to
compare and/or replicate our results.

196

(a) 0244 (b) 0296 (c) 1097

(d) 3143 (e) 3984

Figure 6-7: S02 Key Frames: This clip contains a single loiterer, but heavier occlu-
sions.

(a) 0000 (b) 0977 (c) 2967

Figure 6-8: S03 Key Frames: We successfully track two of the three loiterers (red
and magenta bounding boxes). We track the ownership of the dropped luggage (green
box) sufficiently well to avoid false alarms for stolen or abandoned luggage.

197

N
um

ber
of

N
um

ber
of

M
issed

E
vents

M
ax

T
em

poral
E

rror
A

ctual
A

rsić
R

ibeiro
D

alley
A

rdö
and

A
rsić

R
ibeiro

D
alley

A
rdö

and
C

lip
D

escription
E

vents
et

al.
[3]

et
al.

[86]
et

al.
[23]

Å
ström

[2]
et

al.
[3]

et
al.

[86]
et

al.
[23]

Å
ström

[2]
S01

G
eneral

L
oitering

1
1

0
N

/R
0

0
0.92

N
/R

5.08
s

N
/R

S02
G

eneral
L

oitering
2

1
0

N
/R

0
0

3.56
N

/R
1.44

s
N

/R
S03

Sw
apping

B
ag

1
3

N
/R

N
/R

1
N

/R
N

/R
N

/R
8.22

s
N

/R
S04

Sw
apping

B
ag

2
3

N
/R

N
/R

2
N

/R
N

/R
N

/R
0

s
N

/R
S05

T
heft

1
4

N
/R

N
/R

1
N

/R
N

/R
N

/R
19.2

s
N

/R
S06

T
heft

2
1

N
/R

N
/R

1
N

/R
N

/R
N

/R
∞

N
/R

S07
L

eft
L

uggage
1

2
0

N
/R

0
N

/R
N

/R
N

/R
0.12

s
N

/R
S08

L
eft

L
uggage

2
2

1
0

0
N

/R
N

/R
1

0.2
s

N
/R

T
ab

le
6.3:

C
om

parative
S

u
m

m
ary

of
P

E
T

S
2007

R
esu

lts:
H

ere
w

e
su

m
m

arize
th

e
resu

lts
from

all
P

E
T

S
2007

su
b
m

ission
s,

fo
cu

sin
g

on
th

e
d
etection

rate
an

d
tem

p
oral

errors.
O

u
rs

w
as

th
e

on
ly

sy
stem

for
w

h
ich

resu
lts

w
ere

rep
orted

on
all

clip
s.

W
ith

th
e

ex
cep

tion
of

S
01,

ou
r

tem
p

oral
errors

w
ere

also
sm

aller
th

an
th

ose
of

th
e

oth
ers.

In
th

is
tab

le,
“N

/R
”

d
esign

ates
resu

lts
th

at
w

ere
“n

ot
rep

orted
.”

198

(a) 0532 (b) 0759 (c) 0972

(d) 1136 (e) 2039 (f) 2107

Figure 6-9: S05 Key Frames: We track the two scripted loiterers (green and magenta
bounding boxes). We also track the ownership of the dropped luggage (red boxes)
enabling us to detect the transfer of ownership to the thief.

were supplied with the dataset and the single “training” clip, BACKGROUND, had

no events of interest, it was not possible to have a meaningful separation of training

and test sets. Instead, we chose parameter settings as described in previous sections of

this chapter. As noted in those sections, we used either standard parameter settings

or when necessary, we used very loose thresholds based on minimal information. For

example, at the end of §6.2, we describe an iterative mode finding algorithm. The

large template radius was chosen by examining a single pixel value over time. After

choosing this radius, we used it on all pixels and on all clips without further tuning.

In all cases, we used the same parameter settings on all test videos.

We note that we had no false positive events for any of the clips.

For S00, there were no events that took place (and our system raised no alarms).

For S01, the first loitering clip, there was a single loitering event. Using our

meanshift tracker, we were able to track the loiterer back to 5 seconds after the

actual scene entry. Selected key frames are shown in Fig. 6-6. For S02 (Fig. 6-7), the

199

(a) 1347 (b) 1486 (c) 1551

(d) 1922 (e) 2077

Figure 6-10: S07 Key Frames: We detect the loiterer (green bounding boxes), the
fact that she drops and abandons a purse (red boxes), and that she is the person who
later returns to pick up the purse.

second loitering clip, we achieved excellent results.

In each of S03 (Fig. 6-8) and S04, a couple swapped a piece of luggage. Since

the luggage was never unattended, according to the PETS definition, only loitering

events occurred. For S04, we detected the time correctly, to the exact frame.

In each of S05 and S06, a theft occurs. Because these are very busy scenes,

especially while the event in question is occurring, we fail to track the second member

of the victim couple in S05 (Fig. 6-9) and we are not able to track the couple all

the way back to their entrance time (yielding a high temporal error in the detected

loitering event). For S06 the scene is too busy for us to obtain a successful event

detection.

In S07 (Fig. 6-10) and S08 (Fig. 6-11), a person loiters in the scene, drops a

bag, exits the scene, then later the same person reenters and picks up the luggage.

Using the model trained for meanshift tracking, we are able to not only trigger the

left-luggage alarms with high temporal accuracy, but we are also able to detect that

200

(a) 0543 (b) 0888 (c) 1050

(d) 1121 (e) 1214 (f) 1922

(g) 1972

Figure 6-11: S08 Key Frames: As in Fig. 6-10, we detect loitering, abandoned luggage,
and reattended luggage events.

201

it is the same person picking up the luggage.

The loitering events we report in S03, S04, and S05 were not in the official ground

truth data, but our own manual verification indicates that they did occur.

In Tab. 6.3, we compare our results to others who worked on the PETS 2007

challenge problem. Ours was the only system that reported results on all test clips.

With one exception, our temporal errors were significantly lower than those of the

competition.

6.7 Summary

In this chapter, we have described a event detection system based on a bootstrapped

background subtraction system. When presented with a novel event detection situ-

ation in a site monitoring application, it is valuable to build the tools and intuition

such that new solutions can be deployed quickly. We use blob tracking as an attention

mechanism and when we identify tracks of interest, we employ meanshift trackers to

temporally extend tracks, find related tracks, and associate tracks that are temporally

separated. Our system performs well on the PETS 2007 dataset and all experiments

were performed in a short time period.

202

Chapter 7

Conclusions

In §1, we discussed a traditional visual tracking pipeline and applications of it such

as activity modeling, event detection, and recognizing individual people. These are

commonly desired components of automatic site monitoring systems. In order to

achieve the high level goals of these applications, one needs low-level detectors and

models that are robust enough to real world conditions like moving backgrounds,

crowded scenes, and adverse lighting conditions to be useful. The low-level tools

must also be computationally efficient enough that they can be used on large or even

continuous datasets.

In §2, we showed a way of enhancing the traditional Mixture of Gaussians (MoG)

background model to more effectively separate the moving and non-moving parts of a

scene, even when there are small local motions arising from non-moving objects. That

chapter takes advantage of the approach of enhancing an existing model (traditional

MoG) when one can characterize how its modeling assumptions break down under

real-world conditions (i.e. motions that are irregular in time do result in mixture

components of sufficient strength in the traditional MoG).

The use of background subtraction as an object detection technique can fail un-

der adverse lighting conditions and when a scene is densely filled with objects of

interest. In §3, we described a novel implementation of a strong-model pedestrian

detector that is efficient enough for use in large datasets with high-resolution video.

It uses commodity graphics hardware to achieve up to a 76× speedup versus a CPU-

203

only implementation running on a high-end workstation. This speed improvement

was only possible by focusing the algorithm design on efficient memory access. As

computational hardware becomes ever more parallel, the impact of memory band-

width considerations on throughput is likely to become increasingly important to fast

runtime.

In §4, we modeled scene-level activities with a Hierarchical Dirichlet Process

(HDP) built on observed trajectories. Results are improved significantly when a

strong model pedestrian detector is used instead of a weaker näıve feature point de-

tector. In busy or cluttered scenes, the extra power of the strong model is needed to

diminish the number of bad data associations.

Alternative strong appearance models were used in §5 to help improve the qual-

ity of pedestrian silhouettes for recognizing individual people. There we saw that

we could overcome many systematic background subtraction errors. We did so by

combining information from multiple models. More generic appearance information

gathered from a large population of pedestrians can help remove artifacts that are per-

sistent across a whole sequence of silhouettes. We also used a Hidden Markov Model

(HMM) to combine information from multiple walking periods, reducing the effects

of silhouette errors tied to particular parts of a scene through which a pedestrian

travels.

In §6, we combine many different techniques to produce the most complete set

known of results for a challenging event detection dataset.

If one were to build a new site monitoring system from scratch, we believe that

a hybrid approach is necessary to obtain the best performance under real-world con-

ditions. As in §6, a weak model like background subtraction can be used to obtain

high-confidence information that can be used to bootstrap stronger models. With

care, one can make these weaker models more robust by examining how they break

down, as we saw in §2.

It would be interesting to further investigate the learning of stronger models from

weak ones using an approach like that of Zhou and Tao [129]. Then given an efficient

strong model (§3), a site monitoring system could learn the typical behavior of tracked

204

actors (§4). As tracks or events of interest are detected (§6), stronger per-actor models

could be built and used to further improve the system (§5, §6).

In the end, each layer of the system must be aware of the types of errors occurring

in lower layers so they can be mitigated in the best possible way, either by switching

lower-level layers or by incorporating the errors into the model. In §2, our enhanced

background subtractor can be viewed as a thin additional layer built on top of a

traditional MoG model that allows it to better handle temporally irregular dynamic

textures. In §3 and §4, we saw that a strong pedestrian detector in place of background

subtraction can be beneficial. In §6, we took a hybrid approach where we used

background subtraction when it was robust and switched to a stronger color histogram

model when background subtraction failed.

205

206

Appendix A

Notation and Conventions

In this thesis, we follow standard notation practices for mathematical derivations

and analysis that are used in much of the machine learning and computer vision

communities. In this chapter, we briefly outline these conventions.

The major semantic types of mathematical symbols are indicated by their font

and various ancillary glyphs, as shown in Tab. A.1.

A.1 2× 2 Confusion Matrices

We pose many of the problems in this thesis as binary decision problems: given some

input x, we wish to produce a binary labeling. For example, x might represent

an pixel’s observed color and we wish to determine whether the pixel should be

classified as foreground or background. In other cases we may have a large set of

feature vectors extracted from an image, D = {xi}i and we wish to determine which

subset corresponds to pedestrians shown in the image. A principled way to analyze

the performance of an algorithm is to measure various statistics related to a 2 × 2

confusion matrix.

Consider an experiment involving N inputs. Each input has a binary ground

1Sometimes δxy or δx,y is used to denote the Kronecker delta function and the non-real function
δ(x, y) = lima→∞

1
aexp

(
−(x− y)2/a2

)
is reserved for the Dirac delta, its continuous counterpart.

In this thesis, we will only be using the Kronecker delta. We use the δ(x, y) notation to improve the
readability of subscripts and ancillary glyphs on the function arguments.

207

Example Meaning

x scalar value (standard font)
x observed value of random variable X (lowercase)
X random variable (uppercase)
X constant, often indicating the cardinality of some set (uppercase)
x̂ estimated value of x (often the maximum likely estimate; hat)
x̄ mean value of x (bar)
x̆ quantized value of x (breve)
x̃ normalized value of x (tilde)
f() function (Roman font)
x column vector of the form (x1, x2, ..., xN)> (bold)
S set of mathematical objects (typeface)
{xi}i set of values enumerated by i{

xi xi < 10
}

the set of all xi such that xi < 10

|x| absolute value, |x| =
√
x2

‖x‖ Euclidean or L2 norm of vector x, ‖x‖ = (x2
1 + x2

2 + ...+ x2
N)1/2

‖x‖p Lebesgue p-norm of vector x, ‖x‖p = (xp1 + xp2 + ...+ xpN)1/p

‖Σ‖ determinant of the matrix Σ
δ(x, y) Kronecker1delta function, δ(x, y) = 1 if and only if x = y, otherwise

δ(x, y) = 0. If the second argument is omitted, it is assumed to be
0: δ(x) = δ(x, 0).

Table A.1: Mathematical Notation: We show our notational conventions by way of
example. Note that we will often use the shorthand p(x) instead of p(X = x) when
discussing probabilities of random variables.

208

truth label, yi and the estimated label produced by our system, ŷi. Suppose that if

yi = 1, then input i corresponds to a pedestrian location in an image and yi = 0 if it

is not a pedestrian. ŷi is then our system’s estimate of whether location i contains a

pedestrian or not. The successes and failures of the system can be characterized by

the following 2× 2 confusion matrix shown in Tab. A.2 where

• the true positive count is TP =
∑N

i=1 δ(y, 1) δ(ŷ, 1),

• the false positive count is FP =
∑N

i=1 δ(y, 0) δ(ŷ, 1),

• the false negative count is FN =
∑N

i=1 δ(y, 1) δ(ŷ, 0),

• the true negative count is TN =
∑N

i=1 δ(y, 0) δ(ŷ, 0),

• the positive count is P̂ =
∑N

i=1 δ(ŷ, 1), and

• the negative count is N − P̂ .

There are a number of commonly-used statistics that can be derived from such a

matrix. The true positive rate

TPR = TP/(TP + FN) (A.1)

measures the fraction of pedestrians that are detected by the system. The true

positive rate is also known as the hit rate, sensitivity, or recall. The false positive

rate

FPR = FP/(FP + TN) (A.2)

measures the fraction of system detections that are not actually pedestrians. It is

also known as the false rejection rate. The precision

PR = TP/(TP + FP) (A.3)

measures the purity of the detections: what fraction of the system detections actually

correspond to pedestrians. Precision is also known as the positive predictive value.

209

actual value
yi = 1 yi = 0 total

predicted ŷi = 1 True Positives False Positives P̂

value ŷi = 0 False Negatives True Negatives N − P̂
total P N − P N

Table A.2: 2× 2 Confusion Matrix

The miss rate

MR = 1− TPR = FN/(TP + FN) (A.4)

measures the fraction of pedestrians that are not detected by the system.

Most classifiers have tunable parameters that can be used to generate a variety of

different confusion matrices. For example, a support vector machine [11] outputs real

values which are then thresholded to produce a binary classification. By adjusting

the threshold, the user can bias the classifier to produce more detections but with

more false positives or to produce fewer detections but with more missed detections.

One can produce a curve that characterizes the performance tradeoffs of a classifier

by varying the threshold or other parameters and plotting the true positive versus

false positive rates (Fig. A-1(a)). For historical reasons, this is known as a Receiver

Operator Characteristic (ROC) curve. These curves are monotonic and a perfect

classifier reaches the top-left corner of the plot.

There are situations where the negative class has infinite size and thus a ROC

curve becomes degenerate. For example, suppose we wish to find all pedestrians in

a given image by identifying a single bounding box for each person. If the bounding

boxes can be positioned with arbitrary precision, there will be an infinite number of

bounding boxes that do not correspond exactly to any of the fixed and finite number

of pedestrians. In these cases, it is more appropriate to plot precision versus recall, as

shown in Fig. A-1(b). Unlike ROC curves, precision-recall curves are not monotonic

and the ideal classifier reaches the top-right corner. Davis and Goadrich [25] provide

a more in-depth discussion of how to reason about ROC versus precision-recall curves

and how to convert between the two of them under mild assumptions.

210

(a) ROC Curves

(b) Precision-Recall Curves

Figure A-1: Sample ROC and Precision-Recall Curves: See Fig. 3-8 in §3.2 for a fuller
explanation of this plot.

211

A.2 Mathematical Objects

Here we list most of the mathematical objects used in this thesis.

For the sake of conciseness, superscripts and subscripts are often omitted from

variable names when their values are unambiguous. For example, when discussing

the Mixture of Gaussians (MoG) model where each pixel is modeled independently

of all other pixels, we may abbreviate a Gaussian’s mean as µk, where one should

assume that this refers to µ
(t)
qk where t is the current frame’s time and q is the location

of the pixel being discussed.

Name Description

BC(p, q) Bhattacharyya distance between two probability mass functions,

p and q

b
(t)
p Number of MoG mixture components that are considered to

belong to static portions of the scene for pixel location p at time

t

(bx, by) (x, y) center position of descriptor block to which a HOG cell

belongs

C(·, ·) The cost of associating two detections with each other

C The set of all (x, y) pixel locations within a HOG cell

c
(t)
p Color value observed at time t for pixel location p

c̄(t) Mean color of the whole image at time t

c̃
(t)
p Illumination-normalized color at time t for pixel location p

˜̃c
(t)

p Color of pixel p at time t after illumination normalization and

matching to the background model

corr
(t)
qk Un-normalized Color correlation statistics for MoG mixture

component k at location q and time t, modulated by an ex-

ponential decay

Dgt The set of ground truth pedestrian windows, Dgt ={
xj = (ij, xj, yj, wj, hj)

>}P
j=1

D(t) The set of object detections at time t

212

Name Description

Dp(lp; cp) MRF data energy for measuring the incompatibility between

label lp at pixel location p and the observed color, cp

d(c;µ,Σ) Mahalanobis distance function

dpqk Shorthand for the Mahalanobis distance d(cp;µqk,Σqk)

(dx, dy)
> Maximum (x, y) displacement of a pixel within a dynamic tex-

ture

d
(t)
i Object detection i at time t

e
(t)
qk Total evidentiary weight assigned to MoG mixture component

k at location q and time t, modulated by an exponential decay

f Average number of frames in a given pedestrian’s walking cycle

f(x) Support vector machine (SVM) classification function for feature

vector x

H(λ) The base Dirichlet distribution, a pseudo-count prior for multi-

nomials (user supplied prior)

h(o; bx, by,C) A histogram of oriented gradients (HOG) for a single cell

hj height pedestrian detection j’s bounding box

I Number of input test images

Ij Number of quantized observations in trajectory j (data depen-

dent scalar)

I(x, y) Image whose pixels are indexed by (x, y)

Iγ(x, y) Gamma-corrected image

i Object detection index

ij Image index for pedestrian detection j

J Number of observed trajectories (data dependent scalar)

j Meanshift iteration index

j Object detection index

j Trajectory index

Kq Total number of MoG mixture components at pixel location q

k MoG mixture component index

213

Name Description

L Foreground/background label, used in formal contexts as a ran-

dom variable

l
(t)
p Foreground (1) / background (0) label for pixel location p at

time t

li Pedestrian (+1) / non-pedestrian (-1) label for detection i

N Dimensionality of the color vector c (typically 3)

N Ground truth number of feature vectors that do not correspond

to pedestrians extracted from a given input image

N Number of HMM states

Np Set of 8-connected neighbors of pixel location p where q ∈ N

if and only if p and q are within one horizontal, vertical, or

diagonal pixel location of each other

N (·; ·, ·) Multivariate normal (Gaussian) probability distribution func-

tion

P Number of actual pedestrians in a given video frame

P̂ Number of detected pedestrians in a given video frame

P The set of all possible pixel locations in an image

p Indexes pixel locations. For conciseness, this index is often omit-

ted from variables, e.g. variables like µ
(t)
p are often abbreviated

as µ(t) when the pixel location is implicitly known

p(c) Probability of observing color c under the color histogram p

q Indexes pixel locations.

q(c) Probability of observing color c under the color histogram q

SN The silhouettes provided with the NIST gait data, generated by

USF using a semi-automatic method

Sr Our fully-automatic raw silhouettes (see §5.5)

Sd3 Sr dilated with a neighborhood size of 3

Sd6 Sr dilated with a neighborhood size of 6

Sp Sr cleaned and filled using the population model

214

Name Description

SHr Sr filled using an HMM trained using Sr

SHp Sp filled using an HMM trained using Sp

ŝi Classification score for detection i

s
(t)
qk The sample sum of observed color values assigned to to MoG

mixture component k at location q and time t, modulated by an

exponential decay and {ρ(t)
pqk}p,t

st HMM state at time t

T(i, j) ∈ {0, 1} A match graph where a nonzero entry indicates that detection

i in the first set has been matched to detection j in the second

set of detections

Tp

(
l
(t)
p , l

(t−1)
p

)
MRF temporal energy for measuring the incompatibility be-

tween label l
(t)
p at pixel location p and time t to the label at

the same location but at time t − 1. This is often abbreviated

as Tp(lp)

t Time index; in this thesis, time is discrete except when doing

Kalman tracking

tF Foreground label energy used in Dp(lp; cp)

tN Neighbor label mismatch energy used in Vp,q (lp, lq) when lp 6= lq

tT Temporal label mismatch energy used in Tp

(
l
(t)
p , l

(t−1)
p

)
when

l
(t)
p 6= l

(t−1)
p

Vp,q (lp, lq) MRF neighborhood energy for measuring the incompatibility

between label lp at pixel location p and lq at q

W Spatial search window for our enhanced MoG background model

(W = ‖Np‖)
w(x, y) Block-sized voting stencil used in computing HOG block features

that emphasizes gradients near the center of the block

w Normal vector for the separating hyperplane of a support vector

machine (SVM)

w0 Distance from the origin of an SVM’s separating hyperplane

215

Name Description

wj width pedestrian detection j’s bounding box

wji A single observed position and motion direction of trajectory j,

quantized, indexed by i (wji ∼ φc|c = zji)

x̆ Quantized position

xi Image locations where there are positive detection scores

xj x-coordinate of pedestrian detection j’s centroid

y(j) Meanshift kernel position at iteration j

yj y-coordinate of pedestrian detection j’s centroid

yt HMM observation vector at time t

zji Index of the cluster chosen for observation i of trajectory j (zji ∼
πj)

zp Index of the mixture component selected to generate the color

observed at pixel location p. For our model in §2, zp = (q, k) is a

two-dimensional index that includes the matched pixel location

q and its mixture component index k

α Base MoG learning rate (reciprocal of an observation’s halflife)

α Bias for how much each πj should resemble β (user supplied

scalar)

β Frequency of each activity cluster, across the whole dataset (β ∼
GEM(γ))

γ Bias toward concentrating β’s mass onto a few activity clusters

(user supplied scalar)

θp Bernoulli prior on pixel p being observed as foreground in a

pedestrian silhouette

λ Bias for how much φc’s samples should resemble the base dis-

tribution (user supplied scalar)

µ
(t)
qk Mean statistic for Gaussian mixture component k at time t at

pixel location q

216

Name Description

πj Frequency of each activity cluster in trajectory j (πj ∼
DP(α,β))

ρ Actual data-dependent MoG learning rate

Σ A generic covariance matrix, used in many contexts

Σ
(t)
img Color covariance matrix for the whole image at time t

Σ
(t)
qk Covariance matrix statistics for Gaussian mixture component k

at time t at pixel location q

τbgfrac Fraction of the MoG mixing weight that is assumed to belong

to static objects, for each pixel

τdet Minimum amount of overlap required between a pedestrian de-

tection and a corresponding ground truth bounding box for the

two to be considered a match

τds Minimum amount of bounding box motion required to classify

a dropped object as moving again

τmatch Maximum squared Mahalanobis distance allowed between an

observed pixel value and a matching MoG mixture component

τmeanshift Maximum Bhattacharyya distance to tolerate when performing

meanshift tracking

τreacquire Maximum Bhattacharyya distance to tolerate when matching

objects that have recently left a scene to new entrants

Φ The set of MoG parameters, Φ = {ωqk, µqk,Σqk}q,k
φc Activity cluster: frequency of each quantized observation in clus-

ter c (φc ∼ H(λ))

Ω Number of orientation bins in each cell of a HOG block feature

ω
(t)
i Mixing weight for Gaussian mixture component i at time t for

the pixel of interest

217

218

Bibliography

[1] Richard Anderson and João C. Setubal. A parallel implementation of the push-
relabel algorithm for the maximum flow problem. Journal of Parallel and Dis-
tributed Computing, 29(1):17–26, 1995. 28

[2] H̊akan Ardö and Kalle Åström. Multi sensor loitering detection using online
viterbi. In PETS Workshop, pages 87–94. IEEE, June 2007. 198

[3] Dejan Arsić, Martin Hofmann, Björn Schuller, and Gerhard Rigoll. Multi-
camera person tracking and left luggage detection applying homographic trans-
formation. In PETS, pages 55–62. IEEE, oct 2006. 44, 198

[4] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174–188, February 2002. 41

[5] Edouard Auvinet, Etienne Grossmann, Caroline Rougier, Mohamed Dahmane,
and Jean Meunier. Left-luggage detection using homographies and simple
heuristics. In PETS Workshop, pages 51–58. IEEE, 2006. 44, 180

[6] A. Baumberg and D. Hogg. Learning flexible models from image sequences. In
Proc of ECCV, pages 299–308, 1994. 158

[7] M. Bicak. MaxxPI2 the system bench: Top 10 FLOPS, Apr 2009. http:

//www.maxxpi.net/pages/result-browser/top10---flops.php. 120

[8] Biswajit Bose, Xiaogang Wang, and Eric Grimson. Multi-class object tracking
algorithm that handles fragmentation and grouping. In CVPR. IEEE, 2007
2007. 192

[9] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. PAMI, 26(9),
September 2004. 28, 189

[10] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-
imization via graph cuts. In Pattern Analysis and Machine Intelligence, vol-
ume 23, pages 1222–1239. IEEE, November 2001. 28, 189

[11] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2:121–167, 1998. 96, 210

219

http://www.maxxpi.net/pages/result-browser/top10---flops.php
http://www.maxxpi.net/pages/result-browser/top10---flops.php

[12] “visual surveillance and monitoring”. World Wide Web, 2000. 91

[13] Robert Collins, Alan Lipton, Takeo Kanade, Hironobu Fujiyoshi, David Dug-
gins, Yanghai Tsin, David Tolliver, Nobuyoshi Enomoto, and Osamu Hasegawa.
A system for video surveillance and monitoring. Technical Report CMU-RI-TR-
00-12, Robitics Institute, Carnegie Mellon University, may 2000. 19

[14] D. Comaniciu, V. Ramesh, and Peter Meer. The variable bandwidth mean
shift and data-driven scale selection. In International Conference on Computer
Vision, volume 1, pages 438–445. IEEE, 2001. 180, 192

[15] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. PAMI, 24(5):603–619, May 2002. 108, 115

[16] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press, 1997. 28, 40

[17] NVIDIA Corporation, editor. NVIDIA CUDATMProgramming Guide. NVIDIA,
2.2 edition, April 2009. 122

[18] Naresh P. Cuntoor, B. Yegnanarayana, and Rama Chellappa. Activity modeling
using event probability sequences. Image Processing, IEEE Transactions on,
17(4):594–607, April 2008. 43

[19] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, volume II, pages 886–
893. IEEE, June 2005. 35, 37, 50, 75, 92, 98, 108

[20] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using ori-
ented histograms of flow and appearance. In European Conference on Computer
Vision. IEEE, May 2006. 37

[21] Gerald Dalley and Tomáš Ižo. Schematic querying of large tracking databases.
Technical Report MIT-CSAIL-TR-2006-043, MIT CSAIL, Jun 2006. 43

[22] Gerald Dalley, Josh Migdal, and W. Eric L. Grimson. Background subtraction
for temporally irregular dynamic textures. In Workshop on Applications of
Computer Vision, January 2008. 53

[23] Gerald Dalley, Xiaogang Wang, and W. Eric L. Grimson. Event detection using
an attention-based tracker. In PETS Workshop, pages 71–78. IEEE, June 2007.
6, 45, 179, 198

[24] Trevor Darrell and A. Pentland. Robust estimation of a multi-layer motion
representation. In Workshop on Visual Motion. IEEE, 1991. 31

[25] Jesse Davis and Mark Goadrich. The relationship between precision-recall and
ROC curves. In ICML, 2006. 84, 115, 210

220

[26] Andrew Delong and Yuri Boykov. A scalable graph-cut algorithm for n-d grids.
In CVPR. IEEE, June 2008. 28

[27] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR. IEEE, 2008. 135

[28] Robert Fergus, Pietro Perona, and Andrew Zisserman. Object class recognition
by unsupervised scale-invariant learning. CVPR, 2:264, 2003. 39

[29] James Ferryman and James L. Crowley, editors. PETS. IEEE, jun 2006. 43,
91, 180

[30] James Ferryman and James L. Crowley, editors. PETS. IEEE, jun 2007. 43, 91

[31] Martin A. Fischler and Robert A. Elschlager. The representation and matching
of pictorial structures. Computers, C-22(1):67–92, Jan 1973. 38

[32] Raymund Flandez. Stop that thief. The Wall Street Journal, 16 June 2008. 17

[33] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Prentice Hall, 2003. 19

[34] Alexandre R.J. François, Ram Nevatia, , Jerry Hobbs, Robert C. Bolles, and
John R. Smith. Verl: An ontology framework for representing and annotating
video events. Multimedia, 12(4):76–86, 2005. 43

[35] D. M. Gavrila. The visual analysis of human movement: A survey. CVIU,
73(1):82–98, mar 1999. 36

[36] D. M. Gavrila. Pedestrian detection from a moving vehicle. In ECCV, pages
37–49, 2000. 36, 91, 158

[37] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, 2nd edition, 2004. 21

[38] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. Readings in Computer Vision: Issues,
Problems, Principles, and Paradigms, pages 564–584, 1987. 188

[39] National Geographic. Inside grand central. DVD, 2005. 156

[40] Nagia Ghanem, Daniel DeMenthon, David Doermann, and Larry Davis. Rep-
resentation and recognition of events in surveillance video using petri nets. In
Workshop on Event Mining, page 112, 2004. 43

[41] H. Grabner, P. M. Roth, M. Grabner, and H. Bischof. Autonomous learning
of a robust background model for change detection. In PETS Workshop, pages
39–46. IEEE, 2006. 180

221

[42] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Efficient
leraning with sets of features. JMLR, pages 725–760, apr 2007. 39

[43] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistics Society, 1989. 28

[44] Ismail Haritaoglu, David Harwood, and Larry S. Davis. W4: Real-time surveil-
lance of people and their activitis. Pattern Analysis and Machine Intelligence,
22(8):809–803, August 2000. 156, 158, 179

[45] Thomas Hofmann. Probabilistic latent semantic indexing. In Uncertainty in
Artificial Intelligence, 1999. 39

[46] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Putting objects in perspec-
tive. In CVPR. IEEE, 2006. 80

[47] B.K.P. Horn. Robot Vision. MIT Press, 1986. 31

[48] Ronald Hughes, Herman Huang, Charles Zegeer, and Michael Cynecki. Evalu-
ation of automated pedestrian detection at signalized intersections. Technical
Report FHWA-RD-00-097, Highway Safety Research Center, U.S. Department
of Transportation, Aug. 2001. 91

[49] Yuri A. Ivanov and Aaron F. Bobick. Recognition of visual activities and in-
teractions by stochastic parsing. PAMI, 22(8):852–872, 2000. 42

[50] Thorsten Joachims. Learning to Classify Text Using Support Vector Machines:
Methods, Theory, and Algorithms. The Kluwer International Series in Engi-
neering and Computer Science. Kluwer Academic Publishers, Apr. 2002. 96

[51] A. Johnson and A. Bobick. Gait recognition using static, activity-specific pa-
rameters. In Proc of CVPR, 2001. 156

[52] Nebojsa Jojic and Brendan Frey. Learning flexible sprites in video layers. In
CVPR. IEEE, 2001. 56, 185

[53] Seong-Wook Joo and Rama Chellappa. Recognition of multi-object events using
attribute grammars. In ICIP, pages 2897–2900, oct 2006. 43

[54] A. Kale, A.N. Rajagopalan, and V. Kruger N. Cuntoor. Gait-based recogni-
tion of humans using continuous hmms. In 5th International Conference on
Automatic Face and Gesture Recognition, May 2002. 158

[55] Rudolf E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960. 41

[56] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be mini-
mized via graph cuts? PAMI, May 2002. 189

222

[57] N. Krahnstoever, P. Tu, T. Sebastian, A. Perera, and R. Collins. Multi-view
detection and tracking of travelers and luggage in mass transit environments.
In PETS Workshop, pages 67–74. IEEE, 2006. 180

[58] M. Pawan Kumar, P. H. S. Torr, and Andrew Zisserman. Learning layered
motion segmentations of video. In Proceedings of the IEEE International Con-
ference on Computer Vision. IEEE, 2005. 32, 33

[59] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An introduction to
latent semantic analysis. Discorse Processes, pages 259–284, 19998. 39

[60] Aldo Laurentini. The visual hull concept for silhouette-based image understand-
ing. PAMI, 16(2):150–162, feb 1994. 44

[61] L. Lee and W.E.L. Grimson. Gait aanalysis for recognition and classification.
In Proc of Face and Gesture, 2002. 168

[62] Lily Lee, Gerald Dalley, and Kinh Tieu. Learning pedestrian models for sil-
houette refinement. In International Conference on Computer Vision, pages
663–670, Oct. 2003. 155

[63] Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian detection in
crowded scenes. Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, 1:878–885, June 2005. 36, 134

[64] T.K. Leung, M.C. Burl, and P. Perona. Probabilistic affine invariants for recog-
nition. In CVPR, pages 678–684, Jun 1998. 38

[65] L. Li, R. Luo, R. Ma, W. Huang, and K. Leman. Evaluation of an ivs system for
abandoned object detection on pets 2006 datasets. In PETS Workshop, pages
91–98. IEEE, 2006. 180, 185

[66] David Lowe. Object recognition from local scale-invariant features. In ICCV,
volume 2, pages 1150–1157 vol.2, 1999. 37

[67] F. Lv, X. Song, B. Wu, V. K. Singh, and R. Nevatia. Left luggage detection
using bayesian inference. In PETS Workshop, pages 83–90. IEEE, 2006. 44,
180

[68] J. Mart́ınez-del-Rincón, J. E. Herrero-Jaraba, J. R. Gómez, and C. Orrite-
Uruñuela. Automatic left luggage detection and tracking using multi-camera
ukf. In PETS Workshop, pages 59–66. IEEE, 2006. 44, 180

[69] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-based
visual hulls. In SIGGRAPH Computer Graphics Proceedings, pages 369–374,
2000. 156

[70] Joshua Migdal. Robust motion segmentation using Markov thresholds. Master’s
thesis, MIT, September 2003. 27, 28, 60, 189

223

[71] Joshua Migdal and W. Eric L. Grimson. Background subtraction using markov
thresholds. In IEEE Workshop on Motion and Video Computing, January 2005.
27, 29

[72] Anurag Mittal and Nikos Paragios. Motion-based background subtraction using
adaptive kernel density estimation. In CVPR. IEEE, 2004. 29, 54, 55, 59, 64,
68, 69, 70, 71, 184

[73] Woonhyun Nam and Joonhee Han. Motion-based background modeling for fore-
ground segmentation. In Proceedings of the 4th ACM International Workshop
on Video Surveillance and Sensor Networks, pages 35—44. ACM, September
2006. 56

[74] Alexander Neubeck and Luc Van Gool. Efficient non-maximum suppression.
ICPR, 3:850–855, 2006. 133

[75] Hubert Nguyen, editor. GPU Gems 3. Addison-Wesley Professional, 2007. 122

[76] Somboom Ongeng, Ram Nevatia, and François Bremond. Video-based event
recognition: Activity representation and probabilistic recognition methods.
CVIU, pages 129–162, 2004. 43

[77] Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-
disorder transition. Physics Review, 65(3-4):117–149, Feb 1944. 28

[78] Opencv: Open computer vision library. World Wide Web, 2008. 88, 142

[79] Peter Orbanz and Joachim M. Buhmann. Nonparametric bayesian image seg-
mentation. Technical Report 496, Department of Computer Science, ETH
Zürich, October 2005. 137, 140

[80] M. Oren, C. Papageorgio, P. Sinha, E. Osuna, and T. Poggio. Pedestrian
detection using wavelet templates. In Proc of CVPR, 1997. 158

[81] P. Jonathon Phillips, Patrick Grother, Sudeep Sarkar, Isidro Robledo, and
Kevin Bowyer. Baseline results for the challenge problem of human id using
gait analysis. In 5th International Conference on Automatic Face and Gesture
Recognition, May 2002. 49, 157, 165, 171, 172

[82] P. Jonathon Phillips, Sudeep Sarkar, Isidro Robledo, Patrick Grother, and
Kevin Bowyer. The gait identification challenge problem: Data sets and baseline
algorithm. ICPR, 1, 2002. 48

[83] Robert Pless, John Larson, Scott Siebers, and Ben Westover. Evaluation of
local models of dynamic backgrounds. In CVPR, pages 73–78, 2003. 59

[84] Fatih Porikli and Jay Thorton. Shadow flow: A recursive method to learn
moving cast shadows. In ICCV, 2005. 61

224

[85] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recogni-
tion, chapter 6, pages 321–389. Prentice Hall, 1993. 163, 168

[86] Pedro Canotilho Ribeiro, Plinio Moreno, and José Santos-Victor. Detecting
luggage related behaviors using a new temporal boost algorithm. In PETS
Workshop, pages 63–69. IEEE, June 2007. 198

[87] Peter Sand and Seth Teller. Particle video: Long-range motion estimation using
point trajectories. In Computer Vision and Pattern Recognition. IEEE, 2006.
33

[88] S. Sarkar, P.J. Phillips, Z. Liu, I.R. Vega, P. Grother, and K.W. Bowyer. The
humanid gait challenge problem: data sets, performance, and analysis. PAMI,
27(2):162–177, feb 2005. 48

[89] Sudeep Sarkar and Zongyi Liu. Handbook of Biometrics, chapter Recognition
from Gait, pages 110–129. Springer Verlag, 2008. 156, 158

[90] M. Scott, M. Niranjan, and R. Prager. Realisable classifiers: improving oper-
ating performance on variable cost problems, 1998. 66, 84

[91] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation
with parameter sensitive hashing. In ICCV. IEEE, 2003. 36

[92] Linda Shapiro and G. Stockman. Computer Vision. Prentice Hall, 2002. 28

[93] Yaser Sheikh and Mubarak Shah. Bayesian object detection in dynamic scenes.
In CVPR. IEEE, 2005. 29, 55, 57, 59, 68, 71

[94] Jianbo Shi and Carlo Tomasi. Good features to track. In CVPR, pages 593–600,
jun 1994. 88, 142

[95] P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell. Face recognition by humans:
Nineteen results all computer vision researchers should know about. Proceedings
of the IEEE, 94(11):1948–1962, Nov. 2006. 48

[96] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discov-
ering object categories in image collections. In ICCV, 2005. 39

[97] K. Smith, P. Quelhas, and D. Gatica-Perez. Detecting abandoned luggage items
in a public space. In PETS Workshop, pages 75–82. IEEE, 2006. 180, 192

[98] Juan Soulie. C++ language tutorial: Arrays. World Wide Web, April 2009.
139

[99] Chris Stauffer. Automatic hierarchical classification using time-based co-
occurrences. In CVPR, pages 333–339. IEEE, jun 1999. 44

[100] Chris Stauffer. Perceptual Data Mining: Bootstrapping Visual Intelligence from
Tracking Behavior. Phd, Massachusetts Institute of Technology, May 2002. 19

225

[101] Chris Stauffer and W.E.L. Grimson. Adaptive background mixture models for
real-time tracking. In CVPR, pages 246–252. IEEE, 1999. 22, 29, 53, 60, 80,
179, 184

[102] Erik Sudderth. Graphical Models for Visual Object Recognition and Tracking.
Ph.d., Massachusetts Institute of Technology, Cambridge, MA, 2006. 137

[103] Avarind Sundaresan, Amit Roy Chowdhury, and Rama Chellapa. A hidden
markov model based framework for recognition of humans from gait sequences.
In ICIP, 2003. 48, 49, 158

[104] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s Journal, 30(3), Mar 2005. 120

[105] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hi-
erarchical Dirichlet processes. Journal of the American Statistical Association,
101(476):1566–1581, December 2006. 39, 137, 140, 142

[106] M. Everingham et al. The 2005 pascal visual object classes challenge. In PAS-
CAL Challenges Workshop. Springer-Verlag, 2006. 99, 111

[107] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers. Wallflower:
Principles and practice of background maintenance. International Conference
on Computer Vision, 1:255, 1999. 29, 66, 68, 69

[108] Ken Turkowski. Graphics Gems I, pages 147–165. Academic Press, 1990. 123

[109] Vibhav Vineet and P.J. Narayanan. Cuda cuts: Fast graph cuts on the GPU.
In Workshop on Computer Vision on GPUs, June 2008. 28

[110] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade
of simple features. In CVPR, 2001. 37

[111] Van-Thinh Vu, François Bremond, and Monique Thonnat. Temporal con-
straints for video interpretation. In ECAI, 2002. 42

[112] Hanzi Wang and David Suter. A re-evaluation of mixture-of-gaussian back-
ground modeling. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 1017–1020. IEEE, March 2005. 29

[113] Hanzi Wang and David Suter. Background subtraction based on a robust con-
sensus method. In International Conference on Pattern Recognition, volume 1,
pages 223–226. IEEE, August 2006. 29

[114] John Wang and Edward Adelson. Representing moving images with layers. In
Transactions on Image Processing, pages 625–638. IEEE, September 1994. 31,
56

226

[115] Xiaogang Wang, Keng Teck Ma, Gee-Wah Ng, and W. Eric L. Grimson. Tra-
jectory analysis and semantic region modeling using a nonparametric bayesian
model. In CVPR. IEEE, 2008. 47, 50, 137, 139

[116] Xiaogang Wang, Xiaoxu Ma, and W. Eric L. Grimson. Unsupervised activity
perception by hierarchical bayesian models. In CVPR. IEEE, 2007. 45

[117] M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object
categories. CVPR, 2:2101, 2000. 39

[118] Greg Welch and Gary Bishop. An introduction to the kalman filter. TR 95-041,
University of North Carolina at Chapel Hill, 2004. 41

[119] Christopher K. I. Williams and Michalis K. Titsias. Greedy learning of multi-
ple ojbects in images using robust statistics and factorial learning. In Neural
Computation, volume 16, pages 1039–1062. MIT Press, May 2004. 185

[120] John Winn and Andrew Blake. Generative affine localisation and tracking. In
Advances in Neural Information Processing Systems, volume 17, pages 1505–
1512, 2004. 32, 56

[121] John Winn and Andrew Blake. Variational message passing. Journal of Machine
Learning Research, 6:661–694, 2005. 32

[122] Christian Wojek, Gyuri Dorkó, André Schulz, and Bernt Schiele. Sliding-
windows for rapid object class localization: A parallel technique. In Lecture
Notes in Computer Science, volume 5096/2008, pages 71–81. Springer Berlin /
Heidelberg, 2008. 37, 50, 121, 122, 128

[123] Li Zhang and Ram Nevatia. Efficient scan-window based object detection using
GPGPU. In CVGPU Workshop at CVPR. IEEE, 2008. 128

[124] Tao Zhao and Ram Nevatia. Tracking multiple humans in complex situations.
Pattern Analysis and Machine Intelligence, 29(9):1208–1221, September 2004.
42

[125] Tao Zhao, Ram Nevatia, and Bo Wu. Segmentation and tracking of multiple
humans in crowded environments. PAMI, 30(7):1198–1211, July 2008. 41

[126] W. Zhao, Rama Chellapa, Ariel Rosenfield, and P.J. Phillips. Face recognition:
A literature survey. ACM Computing Surveys, pages 399–458, 2003. 48

[127] J. Zhong and Stan Sclaroff. Segmenting foreground objects from a dynamic
textured background via a robust kalman filter. In ICCV. IEEE, 2003. 56, 68,
71

[128] S. Zhou and R. Chellappa. Probabilistic human recognition from video. In Proc
of ECCV, pages 681–697, 2002. 158

227

[129] Yue Zhou and Hai Tao. A background layer model for object tracking through
occlusion. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1079–1085. IEEE, 2003. 32, 185, 204

[130] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. Fast human
detection using a cascade of histograms of oriented gradients. Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on, 2:1491–1498,
2006. 37, 134

228

