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Abstract

As modern communication networks become increasingly advanced, so does the ability
and necessity to communicate to make more informed decisions. However, communi-
cation alone is not sufficient; the method by which information is incorporated and
used to make the decision is of critical importance.

This thesis develops a novel distributed agreement protocol that allows multiple
agents to agree upon a parameter vector particularly when each agent has a unique
measure of possibly non-Gaussian uncertainty in its estimate. The proposed hyperpa-
rameter consensus algorithm builds upon foundations in both the consensus and data
fusion communities by applying Bayesian probability theory to the agreement prob-
lem. Unique to this approach is the ability to converge to the centralized Bayesian
parameter estimate of non-Gaussian distributed variables over arbitrary, strongly con-
nected networks and without the burden of the often prohibitively complex filters used
in traditional data fusion solutions. Convergence properties are demonstrated for lo-
cal estimates described by a number of common probability distributions and over a
range of networks. The benefit of the proposed method in distributed estimation is
shown through its application to a multi-agent reinforcement learning problem.

Additionally, this thesis describes the hardware implementation and testing of
a distributed coordinated search, acquisition and track algorithm, which is shown
to capably handle the conflicting goals of searching and tracking. However, it is
sensitive to the estimated target noise characteristics and assumes consistent search
maps across the fleet. Two improvements are presented to correct these issues: an
adaptive tracking algorithm which improves the confidence of target re-acquisition
in periodic tracking scenarios, and a method to combine disjoint probabilistic search
maps using the hyperparameter consensus algorithm to obtain the proper centralized
search map.

Thesis Supervisor: Jonathan P. How
Title: Professor
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Chapter 1

Introduction

In recent years, the development and utilization of quick, reliable communication net-

works has shrunk the world and allowed for collaboration between all corners of the

globe. People and computers are able to communicate across great distances to share

thoughts, ideas, and information, achieving a greater collective understanding of the

world and facilitating more informed decisions. From medical databases to scientific

collaboration to military information collection, these communication networks are

becoming more integrated with modern life and are continually improving their abili-

ties and scope to match the growing demand. Currently, doctors can query a patient’s

database to get past health information, combine it with test results accessed online

from a clinic’s repository, and confer with experts in other hospitals in order to make

an informed decision, even when all these people and locations are distributed around

the country. Alternately, field military commanders can receive camera images of an

enemy target from a reconnaissance drone, locations of nearby troops from global

positioning satellites, and plan with other commanders prior to finalizing any troop

movement.

Many of these systems can be generalized of as a collection of possibly heteroge-

nous nodes communicating with each other over a connectivity graph. The doctor,

database, clinic, and other experts all need to be consulted before making an impor-

tant diagnosis, just as the commander, drone, and other personnel are all nodes in

the military network that have information relevant to completing their objective.
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The end users of this information often need to make decisions based on the available

knowledge and, further, often need to be in agreement with other similar agents on the

same network. For example, multiple field commanders all need to be in agreement

on the state of the world in order to make consistent, coherent, and coordinated plans.

If one commander does not have the same knowledge as the others, they may decide

on plans that are redundant or possibly catastrophic, throwing the entire mission into

jeopardy. This problem of agreement across networks of agents is the primary focus

of the field of consensus. Whether it is agreement between friends on when to meet

for dinner, between investors on the riskiness of a purchase, or between commanders

on the state of the battlefield, intelligent and coordinated decision-making requires

agreement [1].

In particular, the increasing autonomy of unmanned vehicles is making it possible

for some decisions to be made independently of human operators. Because of their

scalability and robustness to individual failure, it is of great interest to have “swarms”

of unmanned aerial vehicles (UAVs) that can autonomously search for and track

targets in regions of interest, allowing fewer human operators to oversee larger groups

of assets, therefore saving time and money. The performance of this task, however, is

often greatly dependent on coordination through shared information. For example,

formation flying requires all agents to have knowledge of the positions of the other

agents and the desired formation shape - if one agent is not in agreement about the

desired heading, the formation dissolves.

Currently, consensus methods exist for many different applications. In partic-

ular, coordinated control of vehicles, such as UAVs in formation and multi-agent

rendezvous, has received much recent attention. These methods generally focus on

agreement on some consensus parameter, such as heading angle or rendezvous time

in the previous examples, and seek to come to a (possibly weighted) average of the

agent’s initial estimates. This class of consensus is often called average consensus

(AC) [2, 3]. Once a consistent value has been reached across the fleet, each agent can

then plan locally to remain in its desired state. This problem is often highlighted by

the “meet for dinner” example introduced in [1]:
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A group of friends have decided to go out for dinner tonight, but fail

to specify a time to meet. Over the course of the afternoon, each friend

realizes this dilemma and must get in contact with the other friends to

agree upon a time. If a conference call is an option then the friends

could debate quickly and find a suitable answer, but, unfortunately, this

only shifts the focus from what time to have dinner to what time to have

the call. Instead, each friend must call the others individually, combine

information locally, and update their current estimate of the time to meet.

Once a time has been agreed to by all the friends, they can each go about

planning the rest of their day so that they successfully meet for dinner at

night.

This example is very simple and represents the motivation behind the majority of

consensus methods. However, it lacks the ability to consider any confidence or uncer-

tainty associated with each friend’s estimate, as may arise in the following situation:

Suppose, recalling their problem from last time, the same group of

friends this time visits the restaurant a day in advance and make a reser-

vation as a group. However, each friend is preoccupied in various forms

and some do not pay full attention as the reservation is made, such that,

after they part ways, each person has a different idea of when to meet for

dinner as well as some confidence in their belief. In this case, the friends

are faced with a similar problem, but now must also try and maximize

their collective confidence in their estimates in the hope of arriving on

time.

This type of consensus requires taking into account a richer form of the agents’ infor-

mation, usually represented by uncertainties in the estimate. These uncertainties can

arise through subjective or objective means, such as prior knowledge, differences in

experience or number of measurements, or varying sensor qualities. Figure 1-1 shows

an example of the discrepancy that could be obtained if confidences are ignored and

agents simply agree upon an average of their mean estimates. The true, centralized
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Figure 1-1: Estimate achieved by average consensus on an arrival rate, λ. Solid lines
represent each agent’s belief; dash-dot lines represent the proper centralized estimate
achieved using a Bayesian combination of each agent’s uncertain estimate

values shown via dashed lines are obtained through a Bayesian aggregation of the

local beliefs with uncertainties.

Some methods, such as those inspired by the Kalman filter, have been developed to

take into account uncertainties in the agents’ respective measurements, but are only

accurate in certain situations. For example, Figure 1-2 shows the result of a Kalman

consensus [4, 5] (KC) approach utilizing the mean and variance of each agent’s initial

estimate. The steady-state values for both the mean and variance (solid and dashed

lines, respectively) are significantly different from the Bayesian result, suggesting

that the Kalman approach is not accurate in this scenario. Further, even in the

linear-Gaussian uncertainty framework that the KC algorithm was designed for, the

resulting consensus estimate is guaranteed to converge to the centralized Bayesian

estimate but the resulting variance may be badly biased.

Belief consensus (BC) methods [6] consider uncertainties in a different manner by

discretizing the possible values of the variable of interest and then coming to consensus

on the likelihood of each outcome. This method can be thought of as an extension
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Figure 1-2: Estimate achieved by Kalman consensus on mean and variance of λ. Solid
lines represent each agent’s mean belief, dashed color lines represent the agent’s asso-
ciated uncertainty in their estimate; dash-dot and dotted lines represent the proper
centralized mean estimate and variance, respectively, achieved using a Bayesian com-
bination of each agent’s uncertain estimate

to the second meet-for-dinner problem where, for example, the available times are

discretized to fall on each quarter-hour from 6:30 to 7:30. Each agent then maintains

a likelihood of each time being correct, and the time with the highest combined

likelihood is then considered the most probable. Though useful for hypothesis testing

situations, it is undesirable in the generic case since the discretization limits the range

of values allowed, and it does not consider the possibility of the likelihoods themselves

to be uncertain.

These three methods are the primary protocols in the consensus community, as

will be discussed next in the Literature Review, but they all have limitations when

uncertainties factor into the decision. The AC protocols do not explicitly consider

uncertainties in the parameter, while KC methods only accurately capture the un-

certainties in select situations. BC allows for variability of a parameter over a set

of possible outcomes, but does not consider uncertainties in the local beliefs. This

improper consideration of uncertainties can not only lead to badly biased consensus
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values but can also affect performance in situations that are sensitive to the parameter

in question. Further, some recent investigations have highlighted the importance of

robustness in decision making through taking uncertainties explicitly into account [7].

Thus, the ability to come to agreement on the proper estimate while maintaining a

valid measure of uncertainty on the estimate is of critical importance to future control

algorithms and has yet to be addressed in the consensus community.

In a manner similar to the BC method, uncertainties in a parameter can be mod-

eled as a probability distribution over a set of allowed values. However, instead of

discretizing the domain, if the entire distribution can be communicated and agreed

upon then a much more robust, adaptable consensus can be achieved. Thus, the goal

of this thesis is to develop a consensus method that allows multiple agents to come to

agreement upon a probability distribution in order to facilitate informed, coordinated,

and robust decision-making.

1.1 Literature Review

1.1.1 Consensus

The modern consensus methods are rooted in the fields of mathematics, computer

science [8], and management science [9–11], and have since been adapted to fit into

the cooperative control framework. Many consensus algorithms are postulated as

differential or difference equations, which have been studied extensively by the math-

ematics community. Additionally, the Bayesian principles frequently used in this

thesis arose initially through study of the theory of probability and statistics, and

have been adopted by the controls community through estimation methods such as

the well-known Kalman filter [12].

Early Work

Early investigations of consensus as an agreement strategy are drawn from the man-

agement science and statistics literature. DeGroot and his contemporaries (see [9]
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and references therein) areconcerned with how to combine many ‘expert opinions’

into a single, central representation that can be used, for example, in risk assess-

ment. In [10], Winkler compares different centralized methods to combine a group of

subjective probability distributions and demonstrates the dependence of the final con-

sensus value on the particular method used, but makes no claim to the correctness of

the examined Bayesian or Kriged (weighted-average) solutions. Further, these initial

investigations consider entirely centralized approaches where all the required informa-

tion is available to a single decision-making agent, and neglects any communication

framework required to achieve these ends.

Many others extended this work to evaluate the asymptotic convergence of shared

probabilistic Bayesian beliefs [13–17]. Primary focus was given to the question of the

existence of a centralized estimate in the two-agent case, but without any explicit

mention of how, exactly, to communicate each agent’s knowledge. Despite this, a

straightforward but very important result was given by Aumann in [13], where he

states that if two agents have the same prior belief and all subsequent knowledge

about an event is considered “common knowledge”, their posterior beliefs accounting

for all shared information must be equivalent. This result is fundamental in the

problem of agreement on distributions, but provides little insight on how to actually

share common knowledge.

Average Consensus

The motivation of most consensus methods considered in this thesis is the need for

agreement in the context of coordinated control, with primary focus on flocking.

Initially, Reynolds [18] proposed a model of biological flocking for use in computer

simulations that was described as an emergent behavior achieved by individual agents

though comparing their current state with their neighbors’ and adjusting according

to some local weights. Vicsek et al. [19] formalized this flocking model by showing

through simulation that, if each agent adjusts its heading to the average heading of

agents close to it, the agents will converge locally to identical headings.

Vicsek’s model has motivated much work on the question of consensus for applica-
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tions to distributed control of autonomous systems [1–3, 20–30]. Jadbabaie et al. [20]

studied the problem of autonomous flocking through heading alignment and showed

that agents were able to converge to an equilibrium heading value using undirected,

nearest-neighbor communication graphs so long as the graphs were connected “fre-

quently enough”. A formal study of the information-theoretic approach to consensus

was conducted in [21], which proposed a linear consensus filter to achieve consensus

on a generic piece of information over a network, leading to the general class of aver-

age consensus methods. A generic analysis of consensus variables and methods was

conducted in [1], while many others have extended the results in [20, 21] to the case

of consensus over directed, fixed or time-varying networks [23, 25, 26] and networks

to promote high convergence speeds [27]. Most consensus methods utilize extensions

of the average consensus method (see [2, 3]), such as the dynamic-average consensus

filters in [31, 32] and belief consensus algorithm in [6].

Belief Consensus

Olfati-Saber et al. [6] introduced the concept of belief consensus as a scalable imple-

mentation of the decentralized Bayesian identification method proposed by Rao and

Durrant-Whyte [33]. The goal of belief consensus is to combine the estimates of many

distributed sensors through consensus on a product of likelihood estimates to be used

for distributed hypothesis testing, such as object classification. This approach allows

for a distributed set of nodes to agree on the most likely hypothesis out of a predefined

set of possible outcomes.

In addition to classification, it can be utilized for estimation of a parameter of in-

terest that is confined to a finite set of possible outcomes. However, belief consensus

is unfortunately limited to these discrete settings and is not applicable to estimation

of continuous variables. Further, though it does allow for a measure of uncertainty

through consideration of multiple hypotheses, belief consensus does not consider un-

certainties in the local beliefs themselves, which can lead to incorrect classifications

based on the observed data.
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Kalman Consensus

In order to consider uncertainties in local estimates, some have approximated the

consensus problem with a multi-sensor Kalman filter [4, 5]. This class of Kalman

consensus filters was originally introduced in [4], where each agent not only has an

estimate of the consensus value but an associated variance in its belief. Assuming

that the estimates are Normally distributed, the consensus algorithm is formulated

to consider communication of each agent’s local estimate and variance as if it is a

measurement made from the process trying to be estimated. This repeated integration

of pseudo-measurements from the other agents allows the agents to apply traditional

Kalman filter measurement updates to information received from neighboring nodes.

This allows the agents to arrive at a consensus value that not only takes into account

all the agents’ initial estimates but also their uncertainties. This method was shown to

be subject to network-induced biases by [5], who extended the algorithm to converge

to the proper unbiased estimate (under the same linear-Gaussian assumption) over

unbalanced networks through adjusting the edge weights of the communication graph.

Though this broadened the application of the Kalman consensus algorithm to a wider

class of network topologies, the fundamental assumption of Normally distributed local

uncertainties still prevents the Kalman consensus algorithm from reaching an unbiased

solution on any more general classes of uncertainty distributions.

1.1.2 Data Fusion

The goal of this thesis is very closely related to that of the data fusion community [34–

42], insofar as the motivation is for information to be aggregated in a well-defined,

principled way. This thesis extends concepts in [39, 40] to help combine these two

communities through the application of consensus methods to data fusion problems,

or, more precisely, through application of data fusion techniques to the consensus

framework.

Data fusion is often concerned with multiple sensor fusion or distributed decision

making [42], where multiple sensors are making measurements that need to be com-
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bined before they can be analyzed and used to aid in the decision-making process.

Often, data fusion methods are centralized [42], though many researchers have ex-

plored the decentralized problem [34–38], while others have examined the distributed

problem [39, 40]. The primary difference between the decentralized and distributed

approach is scalability of the proposed algorithm [40], described next.

Communication protocols in the decentralized data fusion problems generally rely

on the transmission of each node’s complete, current, processed estimate [34–38],

which requires the removal of shared or mutual information before inclusion in an-

other agent’s estimate. This mutual information could be due to network-induced

redundancies, where an agent receives the same information from multiple sources,

as well as through possible correlation of measurements. The latter is often avoided

through assuming independence of measurements (an assumption made in this thesis

as well), though the former problem still remains. This has motivated the develop-

ment of channel filters that maintain estimates of mutual information between all

neighbors of a node such that only the new information is extracted and included in

the local estimate. However, in even marginally complex networks where there are

multiple paths from one agent to another, the calculation of the mutual information

becomes exceedingly complex. Thus, channel filters are very difficult to formulate

except on the simplest of networks and make the decentralized data fusion problem

very difficult to scale [35, 36].

On the other hand, distributed data fusion problems in [39, 40, 43] make use of

consensus-inspired communication protocols to achieve better scalability of the al-

gorithm and avoid the necessity of channel filters for network-induced redundancies.

This thesis takes an approach similar to Xiao et al. [39], which uses average-consensus

methods for communication of local estimates to achieve convergence to the central-

ized estimate. However, they derive their distributed maximum likelihood estimator

assuming linear local measurements of a static process corrupted by Gaussian sensor

noise, which results in a distributed representation of the Kalman filter and is appli-

cable only to Normally distributed estimates. Similarly, Olfati-Saber [40] developed

an approximate distributed Kalman filtering formulation using dynamic-average con-

26



sensus filters [43] for communication between local micro-Kalman filters and shows

the ability of a system with 200 nodes to track a time-varying signal. The use of av-

erage and dynamic-average consensus algorithms in these two approaches avoids the

necessity for channel filters and allows the system to scale to large, complex networks,

though both results remain tied to Normally distributed uncertainties.

In an effort for greater generality, Makarenko and Durrant-Whyte [38] propose

a generic Bayesian decentralized data fusion framework for arbitrary distributions,

but the proposed architecture still heavily relies on channel filtering and is, again,

only demonstrated for the Kalman case. Thus, while the data fusion community is

focused on the proper aggregation of locally uncertain data, almost all approaches for

distributed estimation utilize the Kalman filter framework. Further, those methods

that do support generic distributions are still heavily confined by reliance on channel

filters. Thus, it has been shown that the application of consensus methods for in-

creased scalability of non-Normally distributed information is a relatively unexplored

field in both the consensus and data fusion communities which this thesis will seek

to address.

1.2 Contributions

The primary contribution of this thesis is the derivation and application of the hy-

perparameter consensus method to address some of the primary shortcomings in the

current consensus and data fusion literature; in particular, the lack of a scalable algo-

rithm to achieve an unbiased consensus with non-Normally distributed local parame-

ter uncertainties. A secondary contribution of the thesis is two methods for improving

performance of an autonomous multi-agent coordinated search, acquisition, and track

problem, partially aided by results from the hyperparameter consensus method. With

these goals in mind, the thesis will be proceed as follows:

Chapter 2 identifies and defines the inability of modern consensus methods to

accurately handle many parameterized uncertain beliefs in agents’ initial conditions

as well as the lack of any consensus method to agree on probability distributions
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themselves. Additionally, we recognize that Bayesian data fusion techniques exist

to address these problems, but they generally rely on complex message-passing and

channel filtering schemes to share information. The proposed approach relies on

fundamental consensus protocols defined in this chapter to achieve the same ends

as the data fusion approach, but without requiring such a complex communication

structure.

The hyperparameter consensus method introduced in Chapter 3 merges these

two fields by applying Bayesian probability theory to the consensus problem. This

combination allows multiple agents to come to a distributed agreement not only on

the centralized Bayesian parameter estimate but also on a range of parameterized

distributions themselves, particularly when uncertainties are present in the local pa-

rameter estimates. A key factor is that the Bayesian approach provides a framework

upon which existing linear consensus algorithms can factor in local uncertainties in a

meaningful way, while maintaining the flexibility inherent in these protocols. Further,

the convergence properties of the consensus protocols negate the requirement for the

complex message routing and channel filtering schemes of the data fusion community.

Some particular contributions of the hyperparameter consensus method to various

fields are given below:

• Contributions to the consensus community:

– A new consensus algorithm that permits more robust and accurate decision-

making by allowing for multiple agents to converge on the centralized

Bayesian parameter estimate given uncertain, not necessarily Gaussian,

local information.

– The application of Bayesian probability theory to obtain a method by

which agents can come to an unbiased agreement on an entire parameter-

ized distribution through a proper consensus on its parameters.

• Contributions to the data fusion community:

– Application of a consensus-inspired communication scheme on the hyper-
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parameters of local, non-normal prior and posterior probability distribu-

tions to simplify communication and relax the requirement for channel

filters.

• Contributions to the cooperative control community:

– Application of the hyperparameter consensus method to the estimation

and communication of transition probabilities for observed discrete event

systems.

– A more accurate means by which agents can simultaneously learn and

communicate possibly uncertain decision parameters in order to achieve

better performance using implicit coordination techniques.

Chapter 4 demonstrates the performance of the hyperparameter consensus algo-

rithm in a multi-agent learning context using Markov Decision Processes. It is shown

that this method allows for greatly expedited convergence to estimated model pa-

rameters through the Bayesian aggregation of multiple independent, uncertain local

estimates. This allows multiple agents locally observing independent and identically

distributed processes to converge much faster to the true model parameters through

utilization of the increased observational power of the team.

Finally, the Chapter 5 presents the hardware implementation and testing of a

coordinated search, acquisition, and track mission management algorithm, as well

as some subsequent research motivated by the observed results. The mission sce-

nario considered here is an ongoing area of research in the coordinated planning and

control community, for which the presented hardware implementation is among the

first of its kind. The algorithm itself combines the competing goals of searching

and tracking in a synergistic framework through the proper scheduling of agents to

the respective duties, particularly in resource-deficient scenarios. Sensitivities in the

algorithm observed during testing motivated the investigation of two performance

enhancing modifications: first, adaptive modeling of track targets in order to improve

the quality of the allocation of resources to each task. It is shown through simplified

simulation results that adaptation of the effective process noise of the target model
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can improve the resource allocation problem. This is done by maximizing the time

to search unknown territory while still maintaining a set confidence bound on the

re-acquisition of a temporarily un-observed target. Second, an application of hyper-

parameter consensus to agreement on search maps is introduced to mitigate errors in

situational awareness accrued while agents are searching but out of communication

with the rest of the fleet.

The last chapter provides some concluding thoughts and discussion about the

demonstrated algorithms and results. A brief future work section outlines some of the

primary avenues of future research to expand the application of the hyperparameter

consensus method.
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Chapter 2

Background

This chapter introduces the required background in current consensus methods to

properly formulate and motivate the development of the hyperparameter consensus

method. In particular, it will introduce the notation to be used throughout the

thesis, provide a brief introduction to graph theory, and, expand upon the theory of

the current state of the art in three primary consensus methods: average consensus

(AC), belief consensus (BC), and Kalman consensus (KC). The protocols used for

each method will be defined in order to provide further context for the limitations

stated in Chapter 1 and facilitate the derivation in Chapter 3.

2.1 Notation

Table 2.1: Graph theory notation

V Set of nodes in a graph
E Set of edges connecting nodes, E ⊆ V × V
G = [gij] Connectivity graph, gij =

{
1 if (j, i) ∈ E
0 otherwise

∀ i, j ∈ V

D = [aij] Adjacency matrix associated with G, aij

{
≥ 0 if (j, i) ∈ E
= 0 otherwise

∀ i, j ∈ V
ν Consensus eigenvector of D

31



Table 2.2: Consensus notation

ξ Consensus information vector
w Vector of weights
(·)i Value associated with node i ∈ V
(·)[k] Value associated with consensus iteration k
(·)? Steady state or consensus value
diag(·) Diagonal matrix with diagonal entries defined by the argument
(·)† Element-wise inverse operator
� Element-wise multiplication operator
e Column vector of 1’s

2.2 Graph Theory

1

2

34

5

Figure 2-1: Directed, strongly connected five agent network

Let V [k] = {1, . . . , N [k]} denote a set of N [k] vertices at consensus iteration k.

The set of edges, E [k] ⊆ V [k] × V [k], is defined by pairs (i, j) ∈ E [k] if and only if

node i can talk to node j at time k. It is assumed that each agent is able to talk to

itself at all times ((i, i) ∈ E [k] ∀ i, k). The set of vertices and edges defines a graph,

G[k] = (E [k],V [k]) = gij[k], where

gij[k] =





1 if (j, i) ∈ E [k]

0 otherwise
∀ i, j ∈ V [k]

An adjacency matrix, D[k], can be defined for each graph and will be used to

describe the impact of one agent’s information on another. It is composed of elements

aij[k] that represent the weight agent i gives to information from agent j (the weight
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of edge (j, i)), and follows

aij[k]




≥ 0 if (j, i) ∈ E [k]

= 0 otherwise
∀ i, j ∈ V [k]

A graph is considered undirected if gij = 1⇔ gji = 1, and directed otherwise. A

further assumption on undirected graphs is that the edge weights, aij, are equal in

each direction, aij = aji. A directed path from i to j is a sequence of directed edges

starting at node i and ending at j, (i, i1)(i1, i2) . . . (im, j). A graph is considered

strongly connected if there exists a directed path from every node to every other node

(eg. Figure 2.2). The adjacency matrix D is called balanced if
∑N

j=1 aij =
∑N

j=1 aji ∀ i,
or, in other words, if the weight of all incoming information to a node is equal to

the weight of all outgoing information from that node (note that this condition is

automatically satisfied if the graph is undirected, and is also equivalent to D being

doubly-stochastic, where all row- and column-sums are unity).

2.3 Consensus

The modern consensus problem is generally considered that of obtaining agreement

across a network of agents to a common value of a parameter of interest. This

section will formally define the three primary protocols of interest to this thesis:

average consensus, belief consensus, and Kalman consensus. The discussion to follow

will focus on discrete time consensus protocols due to their direct applicability to

computer systems, though the following methods also have analogous continuous

time equivalents. The AC algorithms will be described first, which achieve agreement

to the arithmetic average of the initial conditions. Next, the BC will be discussed as

it pertains to distributed hypothesis testing, and, finally, the KC algorithm will be

introduced, which assumes a level of uncertainty in the local knowledge and utilizes

this to bias the consensus value towards the more confident agents.
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2.3.1 Average Consensus

Let each agent, i, be represented by a node in a time-invariant communication graph,

G, where i is in the set of vertices, V = {1, . . . , N}, i can transmit to some other node

j if and only if (i, j) is in the set of edges, E , and it is implied that an agent can talk

to itself: (i, i) ∈ E . It is assumed, for simplicity, that the agents communicate using

a synchronous communication protocol over a given connectivity graph that is fixed

and strongly connected. The discrete-time updates for a consensus variable ξ are of

the form

ξi[k + 1] =
N∑

j=1

aijξj[k] ∀ i ∈ V (2.1)

In matrix form, this becomes

ξ[k + 1] = Dξ[k] (2.2)

where the edge weights, aij, are found explicitly from Eq. 2.1. The resulting adjacency

matrix D is assumed to be non-negative (all aij ≥ 0) and row-stochastic (
∑N

j=1 aij =

1 ∀ i), which is achieved by constraining all non-zero entries to

0 < aij <
1∑N

k=1,k 6=i gik
(2.3)

and

aii = 1−
∑

j 6=i

aij (2.4)

Gershgorin’s disc theorem can be used to show that all of the eigenvalues of a row-

stochastic matrix are within the unit disk with at least one eigenvalue at 1 [44]. If

D has a simple eigenvalue at 1, then there exists a normalized left eigenvector ν

associated with the 1-eigenvalue of D, such that

lim
k→∞

Dk = eνT (2.5)
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where e is a column vector of ones. This result is guaranteed if the matrix D is ir-

reducible (or, equivalently, if the underlying graph G is strongly connected)1 through

invoking the Perron-Frobenius theorem [45]. Thus, the final consensus value is ob-

tained as

lim
k→∞

ξi[k] = νT ξ[0]

This result shows that the consensus value is guaranteed to be a convex combina-

tion of the initial conditions with weights ν, hereafter called the consensus eigenvector

of D. It is important to note that ν is dependent only on the communication graph

G and not on the specific values of the aij, as long as the properties in Eq. 2.4 and 2.3

are true2. If the network is known, each agent can determine its local influence in the

resulting consensus value, νiξi[0].

In order to achieve consensus to the arithmetic average of the initial conditions,

it is sufficient to run the protocol in Eq. 2.2 in a network that gives ν = e/N . If the

network is balanced then this condition will be satisfied; however, if the network is not

balanced, the consensus eigenvector will not equal e/N and the arithmetic average

will not be the default steady-state value. In many cases it may be desirable to

achieve a particular result (ie. the arithmetic average) from the consensus algorithm.

For example, in flocking it may be preferable to converge to the arithmetic average of

all initial headings and velocities to minimize the overall alignment work required to

be done by the flock. In the case of an unbalanced network, it is possible to combat

this network-induced bias by a proper weighting of the initial conditions. Therefore, if

each agent knows the influence of its information, given by νi, their initial conditions

can be weighted such that the consensus artificially converges to a desired result.

Given some desired weighted sum of initial conditions with weights defined by

νdesired, by selecting weights as

w = νdesired � ν† (2.6)

1These are sufficient but not necessary conditions for 1 to be a simple eigenvalue.
2While the exact edge weights do not factor into the steady-state value, they do, however, play

a large role in convergence speed [3].
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and applying these weights to the initial conditions ξi[0
−] as

ξi[0] = wiξi[0
−]

the consensus method in Eq. 2.2 will achieve the desired consensus value of νTdesiredξ[0
−].

For example, with the vector νdesired = e/N , the resulting consensus with the pre-

scribed weights will be the desired average value:

lim
k→∞

ξi[k] = νTdiag(w)ξ[0−]

=
N∑

j=1

νiwiξi[0
−]

=
N∑

j=1

νi

(
1

Nνi

)
ξi[0

−]

=
N∑

j=1

1

N
ξi[0

−]

where diag(w) denotes the diagonal square matrix with diagonal entries composed of

the elements of w:

diag(w) =




w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wN




Finally, if the weights wi are selected as 1/νi (ie. νdesired = e), then the result-

ing consensus will be a sum-consensus, with agreement to the sum of all the initial

conditions.

These results can also be extended to some time-varying networks. This is an

important extension in cases with limited connectivity due to line-of-sight or distance

constraints among dynamic agents or losses due to communication noise. Convergence

using Eq. 2.2 over switching topologies has been studied in [20, 23, 25, 26], though,

in general, no guarantees about the convergence value are made other than it is

within the convex hull of the initial conditions (ie. ν exists but is undefined in closed
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form). However, in the case of a finite number of switches between known connectivity

graphs, the following proposition is true:

Proposition 2.3.1. The consensus protocol in Eq. 2.2 will converge to the desired

result

lim
k→∞

ξ[k] = eνTdesiredξ[0
−]

over a switching network composed of K switches among known graphs G0, G1,. . . ,GK−1

when applying local weights after each switch, where the switch from Gi−1 to Gi happens

at iteration ki, with k0 = 0.

Proof. For each graph, Gi, let the associated row-stochastic adjacency matrix be Di

with consensus eigenvector νi. The weights will be applied on each switching iteration,

such that the weights at iteration ki are defined as be w[ki]. The consensus protocol

with local weighting is then given as

ξ[k + 1] =





Didiag(w[k])ξ[k] if k = ki

Diξ[k] for ki < k < ki+1

DK−1ξ[k] for k > kK−1

The resulting update at time k ∈ [ki, ki+1) is then:

ξ[k + 1] = Dk−ki+1
i diag(w[ki])D

ki−ki−1

i−1 diag(w[ki−1]) . . . Dk1
0 diag(w[0])ξ[0−]

If the weights are selected according to

w[ki] = νi−1 � ν†k (2.7)

with the initial weighting defined as

w[0] = νdesired � ν†0, (2.8)

37



then the information at time k + 1 can be defined as

ξ[k + 1] = Dk−ki+1
i diag(νi−1 � ν†i ) . . . Dk1

0 diag(νdesired � ν†0)ξ[0−].

As k →∞, the resulting consensus converges to:

lim
k→∞

ξ[k + 1] = lim
k→∞

D
k−kK−1+1
K−1 diag(νK−2 � ν†K−1) . . . Dk1

0 diag(νdesired � ν†0)ξ[0−]

= e νTK−1diag(νK−2 � ν†K−1)︸ ︷︷ ︸
νK−2

D
kK−1−kK−2

K−2 diag(νK−3 � ν†K−2) . . .

. . . Dk1
0 diag(νdesired � ν†0)ξ[0−] (2.9)

= e νTK−2D
kK−1−kK−2

K−2︸ ︷︷ ︸
νK−2

diag(νK−3 � ν†K−2) . . .

. . . Dk1
0 diag(νdesired � ν†0)ξ[0−] (2.10)

...

= e νT0 D
k1
0︸ ︷︷ ︸

ν0

diag(νdesired � ν†0)ξ[0−]

= e νT0 diag(νdesired � ν†0)︸ ︷︷ ︸
νT

desired

ξ[0−] = eνTdesiredξ[0
−]

where the simplification in (2.9) is because

νTK−1diag(νK−2 � ν†K−1) = νTK−1 � (νK−2 � ν†K−1)T = νTK−2

and the simplification in (2.10) is a result of the property of eigenvalues,

νTi D
k
i = λ︸︷︷︸

1

νTi D
k−1
i = . . . = νT

The final equality is the desired result, which completes the proof.
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2.3.2 Belief Consensus

Hypothesis testing is a key component of the data and senor fusion community,

whereby multiple sensor measurements are used to identify or classify an object into

one of a predefined set of categories. The belief consensus method by Olfati-Saber et.

al. [6] is an algorithm for hypothesis testing in a distributed setting, where multiple

agents attempt to agree on the most likely classification of an event. It builds off

of concepts of Bayesian inference utilized in [33] for decentralized Bayesian target

identification. In particular, the algorithm is derived from Bayes’ rule as given by

P (h|Z) =
P (h)

∏N
i=1 Pi(zi|h)

P (Z)
(2.11)

where h is a realization of the hypothesis event in question within the space of all

outcomes, H, and Z = {z1, . . . , zN} is the set of measurements by the N sensors.

Each element of Bayes’ rule plays a different role:

A Priori Probability: The a priori probability, often shortened to the prior, is the

initial belief on the probability of h, denoted by P (h).

Likelihood: The likelihood represents the probability of a measurement, zi, being

observed given h, and is denoted P (zi|h).

A Posteriori Probability: The a posteriori probability, or the posterior, is the

result of Bayes’ rule, and defines the final probability of h being correct given

the prior information and any measurements. It is denoted P (h|Z).

The denominator, P (Z), is independent of whether or not h is true, and can therefore

be considered a constant required to normalize the resulting probabilities. Note that

each hypothesis is considered independently of the others (ie. determining whether h

is true or false), such that
∑

h∈H P (h) does not necessarily sum to unity. It is assumed

that each agent has an independent belief about the likelihood of h that needs to be

shared with other agents according to Eq. 2.11.

In accordance with the terminology in [6], setting Q =
∏N

i=1 Pi(zi|h) and defining

πi = Pi(zi|h) as the belief of agent i and li = log(πi) as the likelihood of the belief, it
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follows that

log(Q) = log

(
N∏

i=1

πi

)
=

N∑

i=1

log(πi)

=
N∑

i=1

li = N

N∑

i=1

li
N

Thus, Olfati-Saber et al. suggest running the average consensus method in Eq. 2.2

on li in order to agree upon log(Q)/N , such that each agent can then obtain Q by

running an average consensus over a balanced network:

Q = exp

{
N

N∑

i=1

lim
k→∞

li[k]

}

= exp

{
N

N∑

i=1

li[0]

N

}
= exp

{
N∑

i=1

log(πi[0])

}

=
N∏

i=1

πi[0]

Thus, BC can obtain its desired result under the same fairly standard network and

communication assumptions as AC, but, through utilizing simple aspects of Bayesian

probability theory, can achieve a more complex consensus result on beliefs over hy-

potheses. The result obtained with BC allows for some preliminary concept of un-

certainty to be defined over a finite set of hypotheses, but is not directly applicable

to continuous hypothesis spaces and, like average consensus, does not consider any

uncertainty in the local beliefs themselves.

2.3.3 Kalman Consensus

The Kalman consensus method presented in [4] and modified in [5] is currently the

primary method that explicitly considers the uncertainties in local estimates. The

derivation is very similar to the sensor fusion problem of distributed Kalman filtering

pioneered by Durrant-Whyte [34, 36, 37], and is based on the decentralization of

Bayesian updates. Appendix A shows the Bayesian derivation of the Kalman filter
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and associated Information filter, though only the results of the derivation will be

repeated here.

It can be shown that the Kalman filter is the optimal Bayesian update scheme for

the estimation of the mean of a normally distributed random variable with known

second moment properties [46]. This discussion focuses on the discrete-time form

of the filter, such that the second moment properties are captured by a covariance

matrix, though similar discussions hold in the continuous time domain using an in-

tensity matrix to represent second moment properties. In most contexts, the mean to

be estimated represents the state of a process with known dynamics and affected by

white, zero-mean Gaussian process noise with known covariance. Measurements are

taken from a likelihood distribution3 that is also normally distributed with the mean

equal to the true state and covariance given by the covariance of the sensing noise.

In this case, Bayes’ rule is again invoked, though now in the generic form

p(θ|z, ω) =
p(z|θ, ω)p(θ|ω)∫

Θ
p(z|θ, ω)p(θ|ω)dθ

(2.12)

where θ is the estimate of the state, z is a measurement made from the sensing

model, and ω is any information that defines the prior distribution on θ. Also,

in Eq. 2.12 it is explicitly assumed that p(·) denotes a probability distribution in

discrete or continuous space as required by the circumstances. The Kalman filter

utilizes the concept of conjugacy of distributions, whereby a prior distribution is

called conjugate to a likelihood function if the prior and posterior are both of the

same functional form (ie. same type of distribution). In the case of estimating the

mean of a normal distribution, the conjugate prior defining the distribution on the

mean is also Normally distributed and defined, itself, by a mean and variance. In the

process of running a Kalman filter, it is this mean and variance that gets updated,

redefining the posterior (and subsequent prior) distribution.

The key component to the Kalman consensus filter is the assumption that multiple

3The likelihood distribution is equivalent an extension of the likelihood probability defined in
the belief consensus section, though now represents the likelihood of a parameter taking any value
within in its domain given a measurement.
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agents’ uncertain knowledge can be treated as pseudo-measurements by the other

agents, and can therefore be integrated through the same update equations as the

Kalman filter itself. In the KC format, the state to be estimated, ξ?, is assumed to

have trivial dynamics and is only updated by some white, zero-mean Gaussian process

noise, w, with covariance Q:

ξ?[k + 1] = ξ?[k] + w[k]

The pseudo-measurement for agent i is assumed to be of the form

zi[k] =




gi1[k](ξi[k] + ηi1[k])
...

giN [k](ξN [k] + ηiN [k])




=




gi1[k]I
...

giN [k]I


 ξ

?[k] +




gi1[k](ξi[k]− ξ?[k] + ηi1[k])
...

giN [k](ξN [k]− ξ?[k] + ηiN [k])




= Hξ?[k] + vi[k]

where gij[k] is the i, jth entry of the connectivity graph and ηij[k] is the communication

noise between agents i and j which, together with the estimation error, define the

pseudo-measurement noise, vi[k]. It is shown in [4] that this definition leads to a

consensus of the form

Pi[k + 1] =

[
(Pi[k] +Q[k])−1 +

N∑

j=1

gij[k](Pj[k] + Ωij[k])−1

]−1

(2.13)

ξi[k + 1] = ξi[k] + Pi[k + 1]
N∑

j=1

gij[k](Pj[k] + Ωij[k])−1(ξj[k] + ηij[k]− ξi[k]) (2.14)

where Ωij[k] is the covariance in the communication noise, ηij[k]. Alighanbari [5]

shows that this form of the filter is actually susceptible to biases introduced through

unbalanced networks, and developed an extension called the Modified Decentral-

42



ized Kalman Consensus (MDKC) algorithm. A particular extension was noting the

information form of the consensus filter, obtained by setting Yi[k] = Pi[k]−1 and

yi[k] = Yi[k]ξi[k], has the simple measurement update

Yi[k + 1] =
N∑

j=1

aijYj[k] (2.15)

yi[k + 1] =
N∑

j=1

aijyj[k] (2.16)

where the network weights, aij[k], are selected such that

aij =





1

2
if i = j

gij[k]

2
∑N

k=1,k 6=j gkj[k]
if (j, i) ∈ E

0 otherwise

This results in the adjacency matrix D being column-stochastic4, and that there exists

a consensus right eigenvector, ς, such that limk→∞D
k = ςeT . This results in the final

steady-state consensus value derived as

lim
k→∞

ξ[k] = lim
k→∞

(DkY [0])† � (Dky[0])

= (ςeTY [0])† � (ςeTy[0])

= e

{
N∑

i=1

Yi[0]

}−1{ N∑

i=1

yi[0]

}

= e

{
N∑

i=1

P−1
i [0]

}−1{ N∑

i=1

P−1
i [0]ξi[0]

}

which is equivalent to the centralized Bayesian consensus value as defined by the

Kalman updates (shown in Appendix A).

The MDKC algorithm is guaranteed to converge to the true Bayesian centralized

estimate of the mean over known, strongly connected networks and assuming each

4Note the difference between this result and the row-stochastic result in Eq. 2.5.
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agent’s uncertainty is modeled using a normal distribution. However, the MDKC al-

gorithm has two primary deficiencies: first, the consensus value is only properly biased

if the agents’ knowledge is normally distributed. If agents are using other distribu-

tions to model their estimate then the use of first- and second-moment information

in a KC algorithm may be invalid, and the consensus result may not necessarily be

any more accurate than doing parameter consensus alone (recall Figures 1-1 and 1-2

in Chapter 1). Second, the filter converges to the proper unbiased mean, but does

not converge to the unbiased covariance:

lim
k→∞

Pi[k] = lim
k→∞

Y −1
i [k] = (ςie

TY [0])−1 6= (eTY [0])−1

The true covariance can be deduced using some algebra, though the algebra can

only be performed once consensus has been reached. Thus, the resulting covariance

trajectory converges to the wrong result, only to be compensated for after achieving

some desired degree of convergence. This indicates that, if a process is being estimated

concurrently, the agent will have significantly biased estimates through the entire

consensus transient, which may impact the resulting long-term estimation.

2.4 Summary

This chapter has introduced three of the primary consensus algorithms from the

current literature, two of which attempt to, in different manners, deal with forms

of uncertainty in the value of a consensus parameter. Average consensus was shown

to provide a robust method to achieve consensus over a network when there are no

uncertainties associated with the agents’ initial knowledge. Belief consensus utilizes

some average consensus results to converge on a product of initial beliefs as motivated

by Bayesian principles in order to estimate the most likely hypothesis or classification

of an event or object. This form of consensus permits a measure of uncertainty

on the value of a parameter over a fixed, discrete set of possibilities, but does not

consider more general, continuous distributions, nor did it allow for uncertainties
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in the local beliefs. Kalman consensus methods, on the other hand, do explicitly

take into account the uncertainty in agents local estimates in achieving consensus.

Further, they are able converge to the centralized, Bayesian estimate of the mean of a

normal distribution with known covariance over any known, static, strongly connected

network. However, it is not theoretically applicable to any uncertainties described by

non-normal distributions, or, equivalently, it is not applicable when attempting to

estimate distributions with non-normal conjugate priors.

Thus, this thesis develops a consensus method that allows for a broad range of

local uncertainties to be taken into account in a rigorous Bayesian sense. This will

be similar to both the belief consensus and Kalman consensus methods insofar as

it is required to aggregate agents’ information in a principled and well-defined man-

ner. However, it will differ from the existing methods by addressing the question of

uncertainties in initial beliefs that is lacking in BC, and will extend similarly exact

methods as the KC algorithm to alternate distributions.
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Chapter 3

Bayesian Hyperparameter

Consensus

This chapter introduces the proposed Bayesian hyperparameter consensus method in

response to the inability of many current consensus algorithms to properly account

for generic local uncertainties in the agreement protocol as motivated in Chapters 1

and 2. With the possible exception of normally distributed local estimates, which have

been examined through use of Kalman consensus filters, uncertainties characterized

by many common probability distributions are not currently considered in the con-

sensus community. These shortcomings will be addressed through the development

of a consensus algorithm utilizing well-defined fundamentals of probability theory to

guarantee convergence to the centralized Bayesian estimate of a distribution in the

presence of parameterized initial uncertainties.

To achieve the desired goal, the proposed algorithm expands upon principles from

both the consensus and data fusion community. In particular, the communication

protocol will be adapted from existing average consensus methods, while the infor-

mation aggregation will be largely based on Bayesian inference approaches utilized in

data fusion. This approach will enable the consensus algorithm to reach an unbiased

agreement on a broader range of uncertain parameters, while the key contribution to

the data fusion community is the use of consensus methods to partially mitigate the

requirement for complex channel filters that are required to avoid double-counting of
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information (eg. [34]). Further, the use of generalized consensus algorithms over large,

complex communication networks allows for a degree of scalability that is unobtain-

able with many current fusion architectures. Xiao et al. [39] successfully demonstrated

an application of average consensus to the distributed sensor fusion problem, though

they assumed a Kalman filter context and an undirected network. This approach will

be extended to a more generic class of distributions with provable convergence to the

desired centralized Bayesian result. It will aso be shown that the proposed method

converges to the desired parameter estimate, as well as an unbiased representation of

the uncertainty.

The chapter starts with the derivation of the desired centralized Bayesian value

and the primary assumptions of the proposed method. The centralized result will

then be used to motivate a new hyperparameter consensus method that is guaranteed

to converge to the desired values in the static case as well as when each agent is

changing its information locally due to measurements or other inputs. It is shown

that, in the case of independent measurements, the resulting consensus converges

to the proper, changing centralized estimate, such that agents can simultaneously

measure and agree upon an uncertain parameter of interest. Finally, the static and

dynamic approach will be demonstrated on two primary uncertainty distributions of

interest: the gamma and Dirichlet.

3.1 Derivation

This first section outlines the format of the problem, some of the primary assumptions,

and describes how to derive the centralized result. It then formalizes the hyperpa-

rameter consensus method and provides theoretical guarantees on the convergence

result in both the case of both static and dynamic local estiamtes.

The primary problem of interest is effectively that of agreement on a probability

distribution. While this seems to be a new and challenging concept, it is actually

the principle behind Kalman filtering and the Kalman consensus algorithm, though

tailored to the normal distribution. By understanding the Bayesian principles behind
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Kalman filtering, and the pseudo-measurement extension to the Kalman consensus

algorithm, many insights can be developed for the general case. The following brief

discussion is intended to illustrate some of the following concepts in the context of

a well known algorithm, while also motivating the derivation of the hyperparameter

consensus method.

3.1.1 The Bayesian Kalman Filter

When an agent runs a Kalman filter, it is executing an iterative Bayesian inference

scheme to estimate the mean, µ, of a normal distribution with known covariance. The

result of this approach is an estimate of the mean, x̂, and error covariance of that

estimate, P . These variables actually define a conjugate normal distribution over the

value of the mean, µ,

p(µ|x̂, P ) = N (x̂, P ) (3.1)

such that the best estimate of the mean, µ, is equivalent to the mean of the distribu-

tion, x̂ (see Appendix A for more information).

Before continuing, it is important to note that there are many metrics to define

what the “best” estimate of the parameter is given a distribution over its domain,

all of which can be defined as minimizing a loss function or maximizing a utility.

If a constant utility function is used, the resulting best estimate is the maximum a

posteriori (MAP) estimate:

µ̂MAP = arg max
µ

p(µ|x̂, P ) (3.2)

This estimate doesn’t take into account any higher-order properties of the distribu-

tion, and so the mean square error (MSE) loss function is often used in its place:

E[(µ̂− µ)2] (3.3)

Using this loss function (which is equivalent to the posterior covariance), the resulting

minimum mean square error (MMSE) estimate is simply the mean of the posterior
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distribution:

µ̂MMSE =

∫
µp(µ|x̂, P )dµ = x̂ (3.4)

Since the mode, mean, and maximum of the normal distribution all occur at the

same location, most metrics will result in an estimate for µ equal to the mean of the

posterior, x̂. Though there are, of course, infinite loss and utility functions, this thesis

will primarily use the MMSE estimate due to its representative nature and frequent

use in the Bayesian inference community.

The normal distribution in Eq. 3.1 represents either the prior (before measure-

ment) or posterior (after measurement) distribution on the unknown mean value, µ.

The simple, closed form updates of the Kalman filter are possible because of two

properties: the normal distribution is uniquely defined by a set of parameters (the

mean and covariance), and the normal distribution is conjugate to a normal likelihood

function. Thus, taking a sample from the measurement model, which is given as a

normal distribution with sensor noise covariance, R, and defines the likelihood func-

tion, and applying that measurement to Bayes’ rule in Eq. 2.12 with a normal prior

distribution produces another normal distribution as the posterior with parameters

updated through the traditional Kalman filter equations.

By examining the Kalman filter, a number of observations can be made. First,

for parameterized distributions such as the normal distribution, agreement on the

distribution and agreement on the distribution’s parameters are equivalent. Second,

though the parameter itself may be of primary interest, the form of the sampled likeli-

hood and uncertainty distributions are important. If a non-normal prior was selected

with the normal sensing model, then the resulting update would not be available in

as succinct a representation as is available through use of the normal conjugate prior.

Third, the primary parameters that are saved and updated in the Kalman filter, x̂

and P , are actually the parameters of the conjugate distribution, hereafter termed the

hyperparameters [41, 47] to differentiate them from the parameters of the likelihood

function that is being estimated (in this case, µ). These hyperparameters define the

uncertainty on the parameter and are updated in the Bayesian sense through simple
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closed form equations. Finally, though P and x̂ have nonlinear updates, a nonlinear

transformation to the information filter hyperparameters, Y and y, allows for simple

additive updates.

3.1.2 The Centralized Bayesian Estimate

Consider the task of consensus on a probability distribution fX|Θ(x|θ), where X is

a random variable and the distribution is parameterized by a (possibly multivariate)

parameter, θ. Let fX|Θ have a conjugate prior distribution, fΘ|Ω(θ|ω), which defines

the distribution on the parameter θ based on hyperparameters, ω. Finally, define a

non-informative prior [48]1, fΘ(θ), and the likelihood belief as

π(ω|θ) =
fΘ|Ω(θ|ω)

fΘ(θ)
(3.5)

It is assumed that the agents have agreed a priori on the form of the distributions

in question, such that the functional form of the likelihoods and priors are consistent

across the network (ie. all normal or gamma etc.), and that their initial estimates are

independent. Let agent i’s information be denoted by (·)i, both in terms of parameter

estimates and probability distributions, and also let p denote a generic intermediate

probability distribution as defined by the context. The centralized estimate can then

be found using Bayes rule as

fΘ|Ω(θ|ω1, . . . , ωN) ∝ p(θ, ω1, ..., ωN) = π(ω1|θ, ω2, . . . , ωN)p(θ, ω2, . . . , ωN)

=
N∏

i

π(ωi|θ)fΘ(θ)

∝
N∏

i

(
fΘ|Ω(θ|ωi)
fΘ(θ)

)
fΘ(θ) (3.6)

1A non-informative prior is a prior that attempts to provide no initial knowledge on the pa-
rameter [47], such that the resulting ‘best’ posterior estimate (MAP, MMSE, etc) is roughly
equivalent to the maximum likelihood estimate (MLE) given a measurement, z, where θ̂MLE =
argmaxθ fX|Θ(z|θ). These priors are difficult to define, and will be addressed further in Section 3.2.1.
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where the product term arises due to the independence of the agents’ information

(and, therefore, the independence of their hyperparameters). Equation 3.6 is similar

in form to Eq. 2.11 from belief consensus, though now the likelihood belief πi = π(ωi|θ)
is a function of the parameters and hyperparameters rather than a scalar. This

complicates the generic form of centralized estimate, but it is possible to use the

conjugacy property of the distributions to simplify this result.

First, consider Bayes’ rule applied to a single agent with a prior, fΘ(θ). The

update for a measurement Z = z is

fΘ|Z(θ|z) ∝ fX|Θ(z|θ)fΘ(θ)

which can be rearranged to get

fX|Θ(z|θ) ∝ fΘ|Z(θ|z)

fΘ(θ)
= π(z|θ) (3.7)

Thus, noting the functional equivalence between Eq. 3.7 and 3.5, π(ω|θ) can be in-

terpreted as representing a pseudo-measurement that would have been applied to the

non-informative prior fΘ(θ) to get fΘ|Ω(θ|ω) as the resulting posterior. Of primary

importance is the form of the hyperparameter update for a given likelihood/conjugate

prior pair. Fortunately, most conjugate updates have remarkably simple additive up-

dates of the form

ω ← ω + h(z) (3.8)

where h(z) is a generic operator that obtains the relevant quantities from the mea-

surement and measurement model as are required for the hyperparameter update (see

Section 3.2.1 for an illustrative example). Some distributions, such as in the Kalman

filter case, may require a transformation of hyperparameters in order achieve this

result, but many are naturally of this form.

At this point, it is convenient to explain the use of the non-informative prior in the

consensus framework: What this implies is that, given each agent’s initial information

is independent of the other agents’, the entirety of the agent’s belief needs to be
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communicated to ensure consensus. Since the hyperparameters uniquely define the

agent’s information, the complete set of hyperparameters should be shared, which

can easily be achieved by assuming the proper non-informative consensus prior. The

selection of non-informative priors for specific cases will be discussed in the examples

in Section 3.2. In the current generic case, the non-informative prior can be considered

roughly equivalent to the conjugate prior with the hyperparameters ω set to 0 or a

similar null value, such that the update in Eq. 3.8 can be considered as the equality

ωi = h(zi) (3.9)

for the consensus problem, where zi is the corresponding pseudo-measurement.

Finally, Eq. 3.6 can be evaluated by noting that the centralized estimate is ob-

tained using the same consensus prior and aggregating N pseudo-measurements, de-

fined by the likelihood functions π, to achieve a consensus posterior. Thus, the same

closed-form updates hold for the consensus problem as held in the inference problem,

and the centralized result can be found as

fΘ|Ω(θ|ω1, . . . , ωN) =fΘ|Ω

(
θ

∣∣∣∣∣ω =
N∑

i=1

h(zi)

)

=fΘ|Ω

(
θ

∣∣∣∣∣ω =
N∑

i=1

ωi

)
(3.10)

Therefore, the centralized Bayesian estimate is defined as the consensus posterior

with hyperparameters equal to the summation of each agent’s local hyperparameters.

3.1.3 The Hyperparameter Consensus Method

With the desired centralized estimate properly defined, it is now possible to develop a

consensus protocol that will achieve this result. While belief consensus [6] focuses on

algorithms derived from Eq. 3.6, this approach is complicated here by the fact that

πi is no longer a scalar value as is assumed in the literature, but rather a function of

the parameters and hyperparameters of the distributions. Currently, the consensus
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community has no explicit methods for consensus on generic functions, so it is not

immediately clear how to come to consensus on these πi’s. However, if the form of

the function is known and parameterized, then consensus on the parameters of the

function implicitly aligns the functions themselves.

Thus, instead of considering Eq. 3.6, it is beneficial to look to Eq. 3.10 to de-

fine the required consensus protocol. In particular, the latter equation states that

the centralized parameter estimate is distributed according to the conjugate distri-

bution which is defined by a set of hyperparameters. Therefore, since all agents have

agreed on the distributions to use ahead of time (this assumption was stated in the

previous section), then consensus on the hyperparameters will lead to consensus on

the conjugate distributions themselves. Further, if the conjugate distributions are

in agreement, then the agents will also be in agreement on the best estimate of the

parameters and, ultimately, come to agreement on the likelihood distribution that the

parameters define and any corresponding random variables that could be obtained

therefrom.

The question now becomes one of how to agree properly on the hyperparameters,

which, for simplicity, will be assumed scalar for the following discussion. Eq. 3.10

shows that the centralized estimate can be found using the pure summation of each

agent’s local hyperparameters. Therefore, if the same result can be obtained through

a consensus protocol then the centralized Bayesian estimate is obtained locally by

each agent.

This goal of a sum-consensus on the hyperparameters can be achieved by recalling

previous average consensus results from Section 2.3.1, where a sum-consensus on the

hyperparameter can be achieved by running the update

ωi[k + 1] =
N∑

j=1

aijωj[k] (3.11)

with

ω[0] = diag(ν†)ω[0−] (3.12)
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where ω[0−] and ω[0] are the un-weighted and weighted initial hyperparameters, re-

spectively, and the adjacency matrix is composed of entries, aij, defined as in Eq. 2.4

and 2.3, with corresponding consensus eigenvalue, ν. As was shown in Section 2.3.1,

the protocol defined by Eq. 3.11 and 3.12 will converge to the sum of the initial, un-

weighted hyperparameters. The primary results is stated in the following theorem:

Theorem 3.1.1 (Convergence on Distributions). A group of N agents can come to

asymptotic agreement on a likelihood distribution, fX|Θ(x|θ), that is parameterized

uniquely by θ, through use of the derived hyperparameter consensus algorithm on the

hyperparameters, ω, and under the following properties:

1. the connectivity graph G is time-invariant, strongly connected and known2,

2. the associated adjacency matrix, D, has entries aij as defined as in Eq. 2.4

and 2.3, and consensus eigenvalue ν,

3. the agents’ maintain uncertain local estimates of θ through fΘ|Ω, the conjugate

distribution to fX|Θ,

4. each agent’s initial information is independent of all other agent’s information,

and

5. the agents have decided a priori on the form of the distribution to agree upon3.

Proof of Theorem 3.1.1. Note, first, that fX|Θ(x|θ) is uniquely defined by the param-

eters, θ. Thus, if each agent agrees on estimates of θ, then they will implicitly agree

upon the distribution itself. Second, θ is distributed according to the conjugate dis-

tribution, fΘ|Ω(θ|ω), such that agreement on the hyperparameters, ω, will lead to

a similar convergence on the conjugate distribution. Finally, Eq. 3.10 gives an ex-

pression for the centralized hyperparameter value (achieved assuming properties 3-5)

2The known network property is sufficient, but not always necessary. The goal is to know the re-
sulting value of ν, which may be known without knowing the exact network topology (eg. undirected
networks are inherently balanced → ν = e/N).

3This is not as restrictive as it might seem since this is always the case with any Kalman-derived
method, though confined to the normal distribution. Often, the selection of distribution is derived
automatically from the problem at hand (see Section 3.2).
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that, if obtained, will implicitly achieve agreement to the centralized conjugate dis-

tribution, and, subsequently, the parameter and likelihood distribution. Therefore,

it is sufficient to prove convergence to the sum of initial hyperparameter values as in

Eq. 3.10.

Property 1 implies the existence of the strictly positive consensus eigenvalue ν [26],

such that the weights in 3.12 are well defined. This property, combined with prop-

erty 2, also ensures existence of a steady-state value if each agent runs the consensus

update in Eq. 3.11 [3], which is found to be:

lim
k→∞

ω[k] = lim
k→∞

Dkω[0]

=e νTdiag(ν†)︸ ︷︷ ︸
eT

ω[0−]

=eeTω[0−]

=e

(
N∑

i=1

ωi[0
−]

)
(3.13)

Noting that the ωi terms in Eq. 3.10 are equivalent to the ωi[0
−] terms in Eq. 3.14,

the desired centralized hyperparameter estimate has been obtained by each agent.

By definition, these values uniquely define the conjugate distribution over the

likelihood parameter θ, such that the arrived at agreement on the hyperparameters

also implies agreement on these conjugate distributions. Further, since all agents have

converged to the centralized distribution on θ given in Eq. 3.10, and are all assumed to

be using the same MMSE loss function, the agents have also implicitly agreed on the

centralized Bayesian estimate of the parameter. Finally, the parameter itself uniquely

defines the likelihood distribution fX|Θ(x|θ), which implies that all agents have also

achieved agreement on the likelihood distribution, as stated in the theorem.

Thus, it has been shown that the conjugacy property of certain distributions

can be exploited to perform a distributed Bayesian aggregation of local information

using simple additive updates of the hyperparameters. Further, by formulating local

uncertainties according to a distribution that is conjugate to a likelihood function, the
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pseudo-measurement distribution π(ωi|θ) in Eq. 3.5 is guaranteed to be of the form of

the likelihood function and, therefore, ensures the required conjugacy property and

the existence of the simple hyperparameter updates.

Finally, this approach allows agents to agree upon the centralized posterior dis-

tribution over the defining parameters of a broad range of parameterized likelihood

distributions. As such, not only does this method address the problem of uncertain

local estimates of a not necessarily Normally distributed parameter, but if that pa-

rameter uniquely defines a subsequent distribution then the agents can also agree

upon that distribution and the generation of any random variables associated with

it.

Handling Shared Information

So far, we have assumed that there is no globally shared information between agents.

If this is not the case, such as if agents have previously come to agreement, made

local changes, and must agree again, then the algorithm described thus far would

incorrectly count the shared information from the first consensus as new, independent

information from each agent. To prevent this, two approaches are available:

1. Only come to convergence on the new information since the last consensus.

This requires subtracting the hyperparameters corresponding to the shared in-

formation from the current local counts, running consensus on the difference,

and adding the result of the consensus back to the global information once

convergence has been reached to reconstruct the centralized hyperparameter

estimate.

2. Scale the local information such that the result is an effective average consensus

on the shared information, and a sum consensus on the new measurements.

This does not require any explicit “reconstruction” step, but does also require

knowledge of the shared information.

Both approaches require knowledge of the mutual information between agents, some-

what akin to a channel filter in data fusion approaches. Fortunately, in the context
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considered here, any shared knowledge after a consensus is globally shared knowledge,

and doesn’t require explicitly maintaining a channel filter between each connected

agent. This key difference allows for each agent to simply record a single copy of

the hyperparameters that resulted from the most recent consensus and save them as

the global information, rather than explicitly keeping track of the shared information

between it and each of the other agents as is required with conventional data fusion

methods.

At this point, it is necessary to introduce a second time-scale, (t), that speci-

fies epochs of consensus or measurements, where a consensus epoch is the complete

execution from initial weighting to convergence of the consensus algorithm, and a

measurement epoch is defined as a measurement update obtained outside of any con-

sensus epoch. The epoch time is incremented after each epoch, such that a consensus

on the hyperparameters initiated at time (t) leads to a converged hyperparameter

estimate at time (t + 1). Further, any shared hyperparameters at time (t) will be

denoted as ω(t−), such that the new information for an agent i is

∆ωi(t) = ωi(t)− ω(t−)

Returning to the question of how to address this shared information, the first

approach can be achieved by running the consensus in Eq. 3.11 and 3.12 on the

difference between the local hyperparameters and any shared information, ∆ωi(t).

To obtain the parameter estimate, the current hyperparameter estimate then needs

to be added to the shared information

ωi(t+ 1) = ω(t−) + lim
k→∞

∆ωi[k] = ω(t−) +
N∑

j=1

∆ωj[k]

where ∆ωi[k] is the local estimate of the consensus value at iteration k, and is initial-

ized as

∆ω[0] = diag(ν†)∆ω[0−] = diag(ν†)∆ωi(t)
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The second proposed method is equivalent to the first but does not require the

explicit re-addition of the shared information to the current consensus estimate. In-

stead, the weighted initial conditions for the consensus as derived in Eq. 3.12 are

replaced by

ωi[0] = ω(t−) +
∆ωi(t)

νi

such that

lim
k→∞

ω[k] = lim
k→∞

Dkω[0]

= lim
k→∞

Dk
(
eω(t−) + diag(ν†)∆ω(t)

)

=e


νTe︸︷︷︸

1

ω(t−) + νTdiag(ν†)︸ ︷︷ ︸
eT

∆ω(t)




=e
(
ω(t−) + eT∆ω(t)

)

=e

(
ω(t−) +

N∑

i=1

∆ωi(t)

)
(3.14)

Both approaches are equivalent and it is a matter of preference as to which one

to use for a given situation. If an estimate of the parameter is likely to be required

during the execution of the consensus, the second method may be preferable since

the hyperparameters are directly accessible as the most recent local consensus value.

The complete method for the second approach is outlined in Algorithm 1.

Hyperparameter Consensus with Measurements

In addition to convergence on static local information, the hyperparameter consen-

sus method allows for the local modification of information through measurements of

a static process4 while concurrently running the consensus algorithm. Once a local

modification has been made and incorporated into the agent’s consensus framework,

the consensus scheme will automatically begin to converge to the new, modified cen-

tralized estimate.

4Though not considered in this thesis, some thoughts on the problem derived from estimating a
time-varying process are given in the discussion section of this chapter.
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Algorithm 1 Hyperparameter consensus method with globally shared information

1: Choose a convergence criterion

2: Initialize hyperparameters: ωi[0]← ω(t−) + ωi(t)−ω(t−)
νi

3: Initialize iteration counter: k ← 0
4: while Convergence criterion not satisfied do
5: Update hyperparameters:

ωi[k + 1] =
N∑

j=1

aijωj[k]

6: Find the MMSE estimate:

θ̂i[k + 1] =

∫ ∞

−∞
θfΘ|Ω(θ|ωi[k + 1])dθ

7: Update counter: k ← k + 1
8: Evaluate convergence criterion
9: end while

10: Update local parameter estimate: θ̂i ← θ̂i[k]

Theorem 3.1.2 (Convergence with Measurements). For N agents running the con-

sensus algorithm defined by Equations 3.11 and 3.12 with the properties in Theo-

rem 3.1.1 holding true, then if the agents take independent measurements zi[k] at

times k = 0, ..., K, with 0 ≤ K < ∞, with z[k] = [z1[k], ..., zN [k]]T , then the agents

will converge locally to the new centralized result.

Before proceeding with the proof, the properties of the centralized estimate when

measurements are involved is examined in the following proposition:

Proposition 3.1.3 (Centralized Estimate with Measurements). When a series of

independent measurements is made by each agent,

z1[0], . . . , zN [0], . . . , z1[K], ..., zN [K]

for K ∈ [0,∞), the centralized result at K is given by:

ωcent[K]← ωcent[0
−] +

N∑

i=1

K∑

j=1

h(zi[j]) (3.15)
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where ωcent[0
−] is the centralized result prior to any measurements, and is equal to

the sum of the initial initial local hyperparameters,
∑N

i=1 ωi[0
−].

Proof of Proposition 3.1.3. When a new measurement, z, is taken, the centralized

result should be updated as if the measurement were applied to it directly. This

implies a centralized hyperparameter update of the form:

ωcent ← ωcent + h(z) (3.16)

With repeated independent measurements,

z1[0], . . . , zN [0], . . . , z1[K], ..., zN [K]

the update in Eq. 3.16 becomes recursive, leading to:

ωcent[K]← ωcent[0
−] +

N∑

i=1

K∑

j=1

h(zi[j])

where ωcent[0
−] =

∑N
i=1 ωi[0

−]. Further, if no subsequent measurements are taken,

then for k ≥ K it holds that ωcent[k] = ωcent[K]. An alternate view is that, if consensus

were initiated after all the measurements were taken, then the post-measurement

centralized estimate should be the same as if the measurements were made during

consensus, and would then be equivalent the sum of all the local hyperparameters

after all measurements:

ωcent[k]←
N∑

i=1

(
ωi[0

−] +
k∑

j=1

h(zi[j])

)

which leads immediately to the same result.

With this understanding of the centralized estimate, it is now possible to complete

the proof of Theorem 3.1.2:

Proof of Theorem 3.1.2. Consider an agent i that makes a measurement zi[κ] at some

time κ, and that this measurement is incorporated into that agent’s local information
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as

ωi[κ]← ωi[κ] +
h(zi[κ])

νi
(3.17)

If all the agents make independent measurements at time κ, and letting z[κ] =

[z1[κ], . . . , zN [κ]]T , then the resulting information update across all agents will be

ω[κ+ 1] = D
(
ω[κ] + diag(ν†)h(z[κ])

)

Therefore, letting measurements be taken for all κ such that 0 ≤ κ ≤ K <∞, where

zi[κ] = ∅ if no measurement is made by agent i at time κ, then the state of information

across the network at time k ≤ K is:

ω[k + 1] =D
(
ω[k] + diag(ν†)h(z[k])

)

=D
(
D
(
ω[k − 1] + diag(ν†)h(z[k − 1])

)
+ diag(ν†)h(z[k])

)

=Dkω[0] +
k∑

i=0

Dk−idiag(ν†)h(z[i]) (3.18)

Taking the limit of infinite communication, the resulting consensus value is then:

lim
k→∞

ω[k + 1] = lim
k→∞

(
Dkω[0] +Dk−K

K∑

i=0

DK−idiag(ν†)h(z[i])

)

=eνTω[0] + eTνT
K∑

i=0

DK−idiag(ν†)h(z[i])

=e


νTdiag(ν†)︸ ︷︷ ︸

eT

ω[0−] +
K∑

i=0

νTDK−i
︸ ︷︷ ︸

νT

diag(ν†)h(z[i])




=e


eTω[0−] +

K∑

i=0

νTdiag(ν†)︸ ︷︷ ︸
eT

h(z[i])




=e

(
eTω[0−] +

K∑

i=0

eTh(z[i])

)

=e

(
N∑

i=1

(
ωi[0

−] +
K∑

j=0

h(zi[j])

))
(3.19)
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Algorithm 2 Hyperparameter consensus method with local measurement updates

1: Choose a convergence criterion

2: Initialize hyperparameters: ωi[0]← ω(t−) + ωi(t)−ω(t−)
νi

3: Initialize iteration counter: k ← 0
4: while Convergence criterion not satisfied do
5: if Measurement received by agent i then
6: Update local hyperparameters: ωi[k]← ωi[k] + h(zi[k])

νi

7: end if
8: Update hyperparameters:

ωi[k + 1] =
N∑

j=1

ωj[k]

9: Find the MMSE estimate:

θ̂i[k + 1] =

∫ ∞

−∞
θfΘ|Ω(θ|ωi[k + 1])dθ

10: Update counter: k ← k + 1
11: Evaluate convergence criterion
12: end while
13: Update local hyperparameters: ωi(t+ 1)← ωi[k]
14: Update local parameter estimate: θ̂i ← θ̂i[k]
15: New local distribution is fΘ|Ω(θ|ωi(t+ 1))
16: Update the time step t← t+ 1

Noting that ωcent[0
−] in Eq. 3.15 is equivalent to

∑N
i=1 ωi[0

−], it follows directly

that Eq. 3.19 is exactly the centralized estimate with all measurements considered.

As with the static case, mutual information can also be accounted for in the

consensus on dynamic local estimates through the same augmentations to the initial

conditions. Algorithm 2 shows the algorithm with shared initial information and

measurements occurring concurrently with the consensus.

3.2 Illustrative Examples

This section introduces two formulations of interest that will be used to highlight the

application of the hyperparameter consensus method as well as demonstrate its re-

sults. While the consensus method is applicable to many distributions, two particular
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example cases will be used to illustrate the use of the method. First is a scalar example

of consensus on the value of an arrival rate using the gamma prior, and second is the

application of hyperparameter consensus to a multivariate probability vector using

the Dirichlet prior. Though discussion here will be limited to these two distributions,

Table 3.1 highlights a selection of the other distributions that can be agreed upon

with the hyperparameter approach, as well as their parameters, hyperparameters,

and conjugate and consensus priors.

3.2.1 The Gamma Prior

Though the gamma distribution is conjugate to many different distribution’s param-

eters [47], such as the variance of normal distribution with known mean, the shape

parameter of a Pareto distribution, and the gamma’s own rate parameter, this sec-

tion focuses on the gamma prior as it pertains to the estimation of the arrival rate

parameter, λ, associated with the Poisson and exponential distributions. This is an

important parameter in terms of reliability analysis (how often equipment breaks

down), scheduling (how many cars to expect at a toll checkpoint), and physics (dis-

tribution of arrivals of particles at a detector).

When considering sequential events in time, sequences are often modeled as Pois-

son Point Processes. This assumption carries with it two standard ways of measuring

the data: number of arrivals, k, in a given period, T > 0; and the inter-arrival time,

t, between subsequent arrivals. In the first case, the random variable k is defined by

a Poisson distribution, shown in Equation 3.20, while, in the second case, t is defined

by an exponential distribution, shown in Equation 3.21. Both distributions are char-

acterized by the arrival rate λ, but the Poisson distribution is further described by

the period, T .

fP (k|λ, T ) =
(λT )ke−λT

k!
k = 0, 1, 2, . . . (3.20)

fE(t|λ) =λe−λt t > 0 (3.21)

It is well known that the conjugate prior to both the Poisson and exponential
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distributions is the gamma distribution

fG(λ|α, β) =
βα

Γ(α)
λα−1e−βλ (3.22)

where α is called the shape parameter, and β is the rate parameter. The mean and

variance of the gamma distribution are found as:

µλ =
α

β

σ2
λ =

α

β2

In terms of the Bayesian inference properties, the Poisson or exponential distribu-

tion would be the sampled Likelihood function, while the gamma distribution would

be the form of the prior and posterior, with hyperparameters α and β. Closed-form

update equations of the hyperparameters are derived from the update step (shown

here for sampling the Poisson distribution to obtain a measurement k):

p(λ|α, β, k) ∝p(λ, k|α, β, T )

=fP (k|λ, T )fG(λ|α, β)

=
(λT )ke−λT

k!

βα

Γ(α)
λα−1e−βλ

∝λk+α−1e−(β+T )λ

∝fG(λ|α + k, β + T )

Thus, in the form of Eq. 3.8, the hyperparameter update is given by


 α

β




︸ ︷︷ ︸
ω

←


 α

β




︸ ︷︷ ︸
ω

+


 k

T




︸ ︷︷ ︸
h(z)

These update equations can easily be transformed to account for sampling the inter-

arrival time from the exponential likelihood by letting k = 1 and T = t.
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The selection of non-informative consensus prior can now be motivated through

the application to the arrival rate parameter by extending Equation 3.10 to consider

explicitly the probability distributions relevant to the arrival rate. In particular, an

initial guess for a non-informative prior will be assumed to be gamma with parameters

α[0]i and β[0]i. Thus the centralized estimate becomes:

p(λ|αcent, βcent) =
N∏

i

(
fG(λ|αi, βi)

fG(λ|α[0]i, β[0]i)

)
fG(λ|α[0], β[0])

∝
N∏

i

(
λαi−1e−βiλ

λα[0]i−1e−β[0]iλ

)
λα[0]−1e−β[0]λ

=
N∏

i

(
λαi−1−(α[0]i−1)e−(βi−β[0]i)λ

)
λα[0]−1e−β[0]λ

=
(
λ
∑N

i (αi−α[0]i)e−
∑N

i (βi−β[0]i)λ
)
λα[0]−1e−β[0]λ

= λ
∑N

i (αi−α[0]i)+α[0]−1e−(
∑N

i (βi−β[0]i)−β[0])λ

∝ fG

(
λ

∣∣∣∣∣
N∑

i

(αi − α[0]i) + α[0],
N∑

i

(βi − β[0]i)− β[0]

)

In this form it is apparent that the use of any non-zero prior values will remove

information from the centralized estimate since all the information that each agent

has is independent and contained entirely in the αi’s and βi’s. This means that, for

example, if an agent has seen 5 arrivals in the last 10 minutes but only communicates

that it’s seen 3 arrivals in the last 5 minutes, the other agents lose access to the other

two data points and the system effectively loses information5.

Thus, in order for the centralized estimate to utilize all the information that is

available, it may make sense to try using a prior distribution with α[0] = β[0] = 0 so

as to avoid losing information. This selection unfortunately leads to an unrealizable

prior since the corresponding gamma distribution will contain undefined values in the

numerator (00) and denominator ((−1)!). While this prevents the explicit use of the

5The removal of redundant information is the primary motivation for channel filtering in the
data fusion community, where redundant information is introduced by communication loops in the
network and through correlation of measurements. One of the benefits of using consensus methods
is that network-induced redundancy is eliminated through the form of the consensus protocol.
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gamma distribution, we can instead consider an improper consensus prior6 [47, 49]

of the form λ−1 which will obtain the same end as setting the hyperparameters to

zero. In particular, it is easy to show that, using this prior, the resulting consensus

distribution will be the desired gamma distribution with the aggregation of all the

individual agents’ hyperparameters:

p(λ|αcent, βcent) ∝
N∏

i

(
λαi−1e−βiλ

λ−1

)
λ−1

=
N∏

i

(
λαie−βiλ

)
λ−1

= λ
∑N

i αi−1e−
∑N

i βiλ

∝ fG

(
λ

∣∣∣∣∣
N∑

i

αi,
N∑

i

βi

)
(3.23)

Finally, the centralized parameter estimate for the arrival rate, to be denoted λB,

is given in Eq. 3.24 and is achieved by taking the ratio of the sums of the individual

hyperparameters.

λB =

∑N
i=1 αi∑N
i=1 βi

(3.24)

This last equation can also be motivated intuitively by considering two agents

that have independent hyperparameters α equal to 4 and 6 and β equal to 2 and

8, respectively. These hyperparameters are roughly equivalent to saying that the

agents have seen 4 and 6 arrivals in 2 and 8 minutes, respectively, such that the local

estimates of lambda are 4/2 = 2 and 6/8 = 0.75. Combined, however, the two agents

have observed a total of 10 arrivals in 10 minutes, such that the centralized estimate

should be 10/10 = 1, which is the value that would be obtained using Eq. 3.24.

6Improper priors are priors that are not probability distributions in their own right (and therefore
provide no meaningful a priori information on the parameter) but serve to produce a meaningful
or desired posterior distribution. They are often used as non-informative priors because of their
flexibility and ability to produce unbiased posterior distributions of a desired form.
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Results and Discussion

The following simulation results utilize the same initial conditions as those used in

the motivating examples of average and Kalman consensus trajectories in Figures 1-1

and 1-2. In particular, five agents are trying to reach consensus on the arrival rate

parameter, where the initial conditions are given in Table 3.2.

Table 3.2: Initial conditions for λ consensus

Agent αi βi µλi σ2
λi

1 5 5 1 0.2
2 9 3 3 1
3 12 2 6 3
4 14 2 7 3.5
5 16 2 8 4

The resulting centralized estimate for these initial conditions is α = 56, β = 14,

with a resulting MMSE estimate of λ = 4 and variance of σ2
λ ≈ 0.286. To finalize

the set-up, the parameter and hyperparameter consensus algorithms both use edge

weights, aij, set to 1
N

for i 6= j, (i, j) ∈ E , and aii = 1−∑N
j 6=i aij. These weights are not

optimized for any convergence speed metric nor do they have any particular impact

on the convergence value, but are merely weights that allow for the desired result to

be shown. Further, two five-agent networks will be used to highlight convergence on

balanced and unbalanced graphs. Figure 3-1(a) shows a directed, balanced double-

ring network, while Figure 3-1(b) shows a biased network where agent 5 is able to

talk to everyone. The latter network would result in an uncompensated steady-state

consensus estimate of:

lim
k→∞

ξi[k] =

[
1

16

1

16

1

8

1

4

1

2

]
ξ[0]

Consensus on Initial Conditions

Figure 3-2 shows the resulting parameter trajectory while agents are coming to con-

sensus using the hyperparameter consensus method on the double-ring graph in Fig-
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(a) Balanced double-ring
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(b) Unbalanced

Figure 3-1: Five agent connectivity graphs

ure 3-1(a). Recall that, for sum consensus, it is required to weight the initial con-

ditions to achieve the desired result. This weighting is shown in the transition from

“Initial Value” to “Weighted Value” (equivalent to the step in Eq. 3.12 from k = 0−

to k = 0), after which the consensus proceeds normally. As is expected, the MMSE

estimate and associated variance converge exactly to the centralized values. The

sum-consensuses trajectories for α and β are shown in Figures 3-3(a) and 3-3(b).

Inspecting the transient period before convergence, it is apparent that the weight-

ing of the hyperparameters quite significantly affects the variance of the agents,

though the MMSE parameter estimate remains unchanged. Since, in most cases,

the parameter estimate is of primary concern and is unchanged by the weighting, this

discontinuity can generally be ignored.

The previous results were shown for a balanced double-ring network, where each

agent talks to the next two agents in the ring. The same results can be obtained

when the network is known and unbalanced by selecting alternate weights. Figure 3-

4 shows the same consensus but now on the network in Figure 3-1(b), which is biased

towards agent 5 (purple). Similarly, the hyperparameter trajectories are shown in

Figure 3-5. As required, the purple values denoting agent 5’s hyperparameters are

scaled much lower than the other agents, which allows the system to converge to the

centralized parameter estimate.
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Figure 3-2: Local parameter estimate and variance achieved by hyperparameter con-
sensus on a balanced network
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Figure 3-3: Hyperparameter trajectories during consensus on a balanced network
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Figure 3-4: Local estimate and variance achieved by hyperparameter consensus on λ
over a known, unbalanced network
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Figure 3-5: Hyperparameter trajectories during consensus on λ over a known, unbal-
anced network
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With Measurements

This section graphically displays the result of concurrent measurement during the

consensus phase as outlined in Theorem 3.1.2. Figure 3-6 shows this result on a

balanced network where the measurement is taken after consensus has effectively

been reached, while Figure 3-7 shows the impact of taking a measurement during

the transient period. Both cases show the desired convergence to the augmented

centralized estimate from a measurement made by agent 5 of αmeas = 80 and βmeas =

10. The hyperparameter trajectories for the second case are shown in Figure 3-8.

3.2.2 Unknown Network

Conjecture: On arbitrary unknown networks, agents running consensus on the hy-

perparameters are expected to achieve a steady-state parameter estimate that is closer

to the centralized Bayesian estimate as compared to agents running the same consen-

sus protocol on the parameter values themselves. Further, it is also expected that the

variance in this incurred error will be less in the hyperparameter consensus case than

in the parameter consensus case.

To justify this conjecture, an example problem will be constructed to determine

the expected results: Consider a group of N agents, each of which has an initial local

estimate of α, β, and λ obtained through sampling distributions on α and β. The

α distribution is assumed to be uniform over a discrete set [a, b], while β is given

as the sum of α random variables Xi, each of which are distributed exponentially

with parameter λ. The sum of α independent and identically distributed exponential

random variables is a random variable defined by the Erlang distribution:

fE(β|α, λ) =
λαβα−1e−λβ

(α− 1)!
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Figure 3-6: Local estimate and variance achieved by hyperparameter consensus for λ
with a measurement at k=20
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Figure 3-7: Local estimate and variance achieved by hyperparameter consensus for λ
with a measurement at k=5
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Figure 3-8: Hyperparameter trajectories during consensus on λ over a balanced net-
work with a measurement at k=5

Thus, the joint distribution for a local αi and βi is given by:

p(αi, βi|λ) =p(βi|αi, λ)p(α)

=
λαβα−1e−λβ

(α− 1)!

1

b− a+ 1

All the agents are assumed to have independent beliefs, so the joint distribution over

α = [α1, . . . , αN ] and β = [β1, . . . , βN ] becomes:

p(α, β|λ) =
N∏

i=1

p(βi|αi, λ)p(αi)

Each agent maintains a local estimate λi = αi/βi, and the group of agents come to

consensus over a fixed network which will provide a consensus value of limk→∞ ξi(k) =

νT ξ(0).

It is assumed that the agents are unaware of the network topology, and, therefore,

it is not possible to evaluate Eq. 3.12, so no scaling of the initial results occurs.

Further, it is also required that the selected consensus protocol is independent of

any knowledge of the network. Thus, the following results will be defined using the
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consensus update

ξi[k + 1] = ξi[k] + ε
∑

j∈Ii

(ξj[k]− ξi[k]) ∀ i (3.25)

where ε = 1/N and Ii denotes the set of all incoming neighbors, j, such that (j, i) ∈ E .

This is an equivalent form to Equations 2.2 and 3.11, though does not require explicit

knowledge of the network structure.

It is desired to compare the error obtained when using the consensus protocol in

Eq. 3.25 on the parameter λi alone versus the steady-state error obtained by running

the protocol on the hyperparameters αi and βi. To acheive this, define the following

error variables, where λ̄ denotes the steady-state estimate using parameter consensus,

λ̂ denotes the steady-state estimate using hyperparameter consensus, and λB denotes

the centralized Bayesian estimate:

Parameter Error: ē =

∣∣∣∣
λ̄− λB
λB

∣∣∣∣ =

∣∣∣∣
λ̄

λB
− 1

∣∣∣∣

=

∣∣∣∣∣∣

∑
i νi

αi

βi∑
i αi∑
i βi

− 1

∣∣∣∣∣∣

Hyperparameter Error: ê =

∣∣∣∣∣
λ̂− λB
λB

∣∣∣∣∣ =

∣∣∣∣∣
λ̂

λB
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣

∑
i νiαi∑
i νiβi∑
i αi∑
i βi

− 1

∣∣∣∣∣∣

=

∣∣∣∣
(∑

i νiαi∑
i αi

)( ∑
i βi∑
i νiβi

)
− 1

∣∣∣∣
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Thus, we can find an expression for the expected value of these errors:

E[ē(α, β)] =
∑

α

∫

β

ē(α, β)p(α, β|λ)dβ

=
∑

α

∫

β

∣∣∣∣∣∣

∑
i νi

αi

βi∑
i αi∑
i βi

− 1

∣∣∣∣∣∣

N∏

i=1

λαβα−1e−λβ

(α− 1)!

1

b− a+ 1
dβ (3.26)

E[ê(α, β)] =
∑

α

∫

β

ê(α, β)p(α, β|λ)dβ

=
∑

α

∫

β

∣∣∣∣
(∑

i νiαi∑
i αi

)( ∑
i βi∑
i νiβi

)
− 1

∣∣∣∣
N∏

i=1

λαβα−1e−λβ

(α− 1)!

1

b− a+ 1
dβ (3.27)

Equations 3.26 and 3.27 have no closed form solution and need to be integrated

numerically. The approach taken here is to convert the integral to a discrete sum

using Monte-Carlo sampling. The distribution for α and β is sampled Ns = 200, 000

times, each sample giving a value of ê and ē. The integral is then approximated

by summing the resulting sets for each of the errors. Table 3.3 shows the results

for a several different 3- and 5-agent networks7. The apparent trend is that, in all

cases, the expected error using purely parameter consensus is quite far off of the

desired Bayesian centralized estimate and much higher than the error incurred using

hyperparameter consensus. Further, the standard deviation in the parameter error is

much larger than that for the hyperparameter error. This suggests that not only does

hyperparameter consensus perform better on average, but is expected to do better in

worst-case scenarios too.

Figures 3-9(a) and 3-9(b) show the expected performance gap between the param-

eter average and hyperparameter consensus methods. The x-axis of both is a measure

of the bias of the network, which is determined by taking the scaled 2-norm of the

true consensus eigenvalue, ν, minus the desired average consensus eigenvalue, e/N .

The scaling factor is such that ν = [0, ..., 0, 1]T gives a bias score of 1. Thus, a bias

of 0 means that the the network is unbiased and all agents are given equal weight,

while a bias near 1 means that one agent’s information will naturally dominate the

7All results shown for the MC simulations were aggregated over 20 trials, resulting in a sample
variance for each metric of less than 1% of the mean value.
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Table 3.3: Expected consensus error comparison with initial conditions

Network ν Bias α ∈ [a, b] E[ē] σē E[ê] σê
Structure (%) (%) (%) (%)

1

23




1/3
1/3
1/3


 0 [5 10] 11.40 15.12 0 0

1

23




1/4
1/4
1/2


 0.25 [5 10] 12.35 17.63 5.87 4.33

1

23




1/3
1/6
1/2


 0.289 [5 10] 12.93 18.20 6.85 5.41

1

2

34

5




1/5
1/5
1/5
1/10
3/10




0.158 [5 10] 13.71 14.60 4.06 3.19

1

2

34

5




1/16
1/16
1/8
1/4
1/2




0.412 [5 10] 16.74 20.66 10.84 8.56

1

2

34

5




0
0
0
0
1




1 [5 10] 31.81 37.87 31.81 37.87
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Figure 3-9: Monte-Carlo error results obtained over an unknown network
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network (a bias equal to 1 implies that the network is no longer strongly connected

but, instead, that one agent receives no incoming messages and so the other agents

must converge to its estimate). The y-axis of Figure 3-9(a)shows the expected error

difference

E[∆e] = E[ē]− E[ê]

such that positive values imply a larger expected error using parameter consensus than

with hyperparameter consensus. Figure 3-9(b) plots the difference in error variances:

σ2
ē − σ2

ê

In both graphs, positive values show that the respective hyperparameter metric (error

or variance) is smaller than the parameter consensus value.

The results suggest that attempting an average hyperparameter consensus method

using Eq. 3.25 is expected to incur less error than running the same consensus on the

parameter λ itself, especially if the network is nearly balanced. In the cases where

the network is badly biased towards a particular agent’s information (bias close to

1), the two errors approach the same value as that agent begins to dominate both

the hyperparameter and parameter steady-state results. A similar trend also holds

in terms of the variances of the errors, as shown in Figure 3-9(b). The variance in

the hyperparameter consensus error was found to be smaller than the variance in the

parameter error for all cases except when the network has a bias metric of 1, where

the results are equivalent. This suggests that not only is the resulting hyperparameter

consensus value more accurate, it is also more precise than the parameter consensus

method.

3.2.3 The Dirichlet Prior

The Dirichlet distribution is commonly used in the Bayesian estimation community

to represent the current estimate of a probability vector [50–52] since it maintains

a distribution over a vector lying in the unit simplex. In a similar framework, the
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distribution is presented here as a means for agents to maintain and communicate an

uncertain estimate of a probability vector, p ∈ <m, across a network. Though the

use of the Dirichlet can be extended to other vectors with similar properties, such as

a convex vector of weights, primary focus will be given here to the application of the

distribution to probability vectors.

The Dirichlet distribution [47], denoted here specifically as fD(·), is the multi-

variate extension of the beta distribution, and can therefore be extended to the beta

distribution prior, as well as the Bernoulli, binomial, and geometric likelihoods with

little difficulty. It is parameterized by a vector of counts, αi ≥ 1, and has the form:

fD(p|α) =K
m∏

i=1

pαi−1
i ,

∑

i

pi = 1 (3.28)

=K pα1−1
1 pα2−1

2 . . . (1−
m−1∑

i=1

pi)
αm−1

where K is a normalizing factor.

The MMSE estimate of p is given by the mean value of the Dirichlet, p̄. The mean

and variance of each element of the probability vector can be calculated as follows,

where α0 =
∑m

i=1 αi:

p̄i =
αi
α0

(3.29)

Σij =





αi(α0−αi)

α2
0(α0+1)

if i = j

−αiαj

α2
0(α0+1)

otherwise
(3.30)

The Dirichlet distribution is conjugate to the multinomial likelihood [47], fM(·), which

depicts the probability of observing xi occurrences of event i:

fM(x|p) = K

m∏

i=1

pxi
i , xi ≥ 0 (3.31)
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The Bayesian update gives a closed form solution to update the hyperparameters as:

fD(p|α, x) ∝ fD(p|α)fM(x|p)

=
m∏

i=1

pαi−1
i pxi

i =
m∏

i=1

pαi+xi−1
i

⇒ αi ← αi + xi ∀ i ∈ (1, . . . ,m) (3.32)

It may be helpful to some to motivate the additive form of the centralized hy-

perparameter estimate by considering an intuitive example: Two agents are actively

estimating the bias of an unfair coin. Agent 1 has observed 3 heads out of 4 tries, and,

with no initial information on the probabilities (i.e. uses an uninformative prior), its

best estimate is the MLE, pheads = 3/4 = 0.75. Agent 2 has, independently, observed

5 heads out of 20 tries, and believes the probability is pheads = 5/20 = 0.25. Between

the two, they have observed 8 heads out of 24 tries, which should result in an estimate

(under the same assumption of no initial knowledge) of pheads = 8/24 ≈ 0.333.

Again, appealing to the similarity to the conjugate distribution with null hyper-

parameters, fD(p|0), the consensus prior is defined as

p(p) =
m∏

i=1

p−1
i

The derivation of the centralized estimate for the above example is shown below:

fD(p|α) ∝
2∏

i=1

(
pi(p|αi)
pi(p)

)
p(p)

=
p1(p|α1)

p1(p)

p2(p|α2)

p2(p)
p(p)

∝ p
α1

heads−1
1 p

α1
tails−1

2

p−1
1 p−1

2

p
α2

heads−1
1 p

α2
tails−1

2

p−1
1 p−1

2

p−1
1 p−1

2

= p
α1

heads+α2
heads

1 p
α1

tails+α2
tails

2 p−1
1 p−1

2

= p
α1

heads+α2
heads−1

1 p
α1

tails+α2
tails−1

2

= fD(p|α1 + α2)
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When using the Dirichlet, it is important to ensure that the agents have at least one

observation of each outcome in order for the resulting posterior distribution to be a

valid probability distribution. If this is not the case, it may be necessary to either

assume a different prior distribution or implement a hierarchical Dirichlet process

where only observed states are considered in the probability vector [53].

Comparison to Kalman Consensus

Unlike the gamma prior, the Dirichlet prior and the problem of consensus on probabili-

ties has many close parallels to existing methods. Primarily, under some assumptions,

the Dirichlet distribution can closely resemble the normal distribution, suggesting that

the Kalman consensus algorithms may provide a reasonable consensus approximation.

This similarity between the Dirichlet and normal distributions occurs in the limit

as α0 → ∞ and only if α1 ≈ α2 ≈ ... ≈ αm. In other words, as the total number of

observations grows large and if all outcomes are approximately equally probable, then

the Dirichlet distribution can be roughly approximated by a multivariate normal with

mean and variance as defined in Eq. 3.29 and 3.30. Further, [7] derived a closed-form

update recursion for the mean and variance of the Dirichlet after observing a single

measurement of outcome i′:

p̄i[k + 1] =p̄i[k] + Σii
δii′ − p̄i[k]

p̄i[k](1− p̄i[k])
(3.33)

Σ−1
ij [k + 1] =





p̄i[k](1−p̄i[k])Σ−1
ii [k]+1

p̄i[k+1](1−p̄i[k+1])
if i = j

p̄i[k]p̄j [k]Σ−1
ij [k]−1

p̄i[k+1]p̄j [k+1]
otherwise

(3.34)

The closed form mean and variance updates in equations 3.33 and 3.34, combined

with the normal approximation, motivate the possible use of the Kalman consensus

method for agreement on the Dirichlet distribution in [54]8. While this may be a

reasonable approximation under the stated assumptions, the assumptions themselves

8Ref. [54] notes that special consideration is required when using the KC algorithm with the
moments of the Dirichlet since the covariance matrix has zero row- and column-sums and is therefore
not invertible. To compensate, the KC algorithm is only applied to a {m− 1×m− 1} submatrix of
Σ and the {m− 1× 1} subvector of p̄
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Table 3.4: Initial conditions for α consensus

Agent α1 α2 α3 p1 p2 p3

1 13 3 1 0.76 0.18 0.06
2 1 3 3 0.14 0.43 0.43
3 10 1 8 0.53 0.05 0.42
4 11 2 4 0.65 0.12 0.23
5 5 3 5 0.38 0.24 0.38

Centralized 40 12 21 0.55 0.16 0.29

(large number of counts and approximately equally likely outcomes) are fairly restric-

tive and are not appropriate in all situations. However, due to this possible similarity,

Kalman methods will also be applied in the Dirichlet framework to evaluate just how

biased an approximation they provide.

Results and Discussion

The following sections provide simulation results for the hyperparameter and Kalman

consensus methods achieving convergence on uncertain probability distributions. For

all the cases shown, the initial conditions are outlined in Table 3.4, where αi represents

the number of counts for outcome i. The centralized values are shown in the final

row.

The consensus algorithms will be used as introduced in Sections 2.3.3 and 3.1, with

the same communication graphs and graph weights as used for the gamma examples.

Consensus on Initial Conditions

The parameter trajectories from the consensus problem are shown in Figures 3-10(a)

and 3-10(b) for the hyperparameter and Kalman consensus methods, respectively, on

a balanced network. Again, the hyperparameter consensus method converges to the

exact centralized parameter result, with the α trajectories shown in Figure 3-12. The

Kalman consensus approach, however, is obviously biased from the centralized value.

Further, the error in the local covariance matrices can be represented by the matrix

2-norm of the difference, where the 2-norm, or spectral norm, is defined for a square
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matrix A as the square root of largest singular value of A:

||A||2 =
√
σ̄(A)

Figure 3-11 shows the ratio of the spectral norm of the difference between the local

and centralized covariance matrices to the spectral norm of the centralized variance:

||Σlocal − Σcent||2
||Σcent||2

The error for the hyperparameter consensus, shown in dashed lines, steadily decreases

as the hyperparameter-based estimate converges to the true centralized value. The

error for the local covariance matrices obtained through Kalman consensus, however,

converges to a constant ratio of 0.391 suggesting a steady-state bias in the variance

as well. Therefore, despite theoretical similarities between the normal and Dirichlet

distributions, the resulting steady-state Kalman consensus parameters suggest that

the Kalman consensus filter is not accurate in this situation. When the minimum

number of counts for each agent gets large and with roughly equivalent counts for

each outcome (therefore satisfying the assumptions for the normal approximation) the

problem itself becomes rather trivial since each agent has an estimate of p ≈ e/m.

Thus, any reasonable consensus algorithm will perform well due to the fact that the

differences between the estimates is so small (though the hyperparameter method is

still the only one to guarantee the desired convergence). It is then concluded that the

use of the Kalman filter for approximate consensus on the Dirichlet probabilities is

not robust to varied initial conditions and is therefore unadvised.

In the case of hyperparameter consensus over the known, unbalanced network

shown in Figure 3-1(b), the agents are still able to achieve agreement, as evidenced

in Figures 3-13 through 3-19. If attempting average consensus on the probabilities

directly, a cautionary result is highlighted in Figure 3-15, where, due to the scaling

required to achieve average consensus, the transient behavior of the local probabilities

takes them outside of the unit simplex. Therefore, using parameter consensus on

probabilities themselves is not recommended since the variables are not guaranteed
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(a) Hyperparameter consensus method
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(b) Kalman consensus method

Figure 3-10: Local parameter estimate achieved for p on a balanced network
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Figure 3-11: Local covariance error measured by ||Σlocal−Σcent||2
||Σcent||2 for the hyperparameter

consensus (solid) and Kalman consensus (dotted) on a balanced network
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Figure 3-12: Hyperparameter trajectories during consensus on p over a balanced
network
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to remain within the simplex, as well as the fact that they are not likely to converge

to the desired result in the first place.

With Measurements

This section highlights the effects of measurements on the consensus variables. The

measurements are obtained by sampling from a multinomial distribution, such as

observing the outcome of a probabilistic process (ie. toss of a die), possibly several

times before incorporation into the estimate. Given a measurement by agent 4 (teal)

of x4 = [0 1 3]T and 5 (purple) of x5 = [1 0 2]T , the hyperparameter consensus is,

again, able to maintain convergence properties to the new centralized result.
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Figure 3-13: Local estimate achieved by the hyperparameter consensus method on p
over a known, unbalanced network
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Figure 3-14: Local covariance error measured by ||Σlocal−Σcent||2
||Σcent||2 for the hyperparameter

consensus on a known, unbalanced network
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Figure 3-15: Hyperparameter trajectories during consensus on p over a known, un-
balanced network
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Figure 3-16: Local estimate achieved by the average consensus method on p over a
known, unbalanced network

90



Initial Value Weighted Value 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

Lo
ca

lI
nf

or
m

at
io

n,
[p

1
,p

2
,p

3
] i

Local Estimates Over a Known Unbalanced Network Using Hyperparameter Consensus

 

 

Centralized Estimate of p1

Centralized Estimate of p2

Centralized Estimate of p3

Figure 3-17: Local estimate achieved by hyperparameter consensus on p with a mea-
surement at t=20
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Figure 3-18: Local covariance error measured by ||Σlocal−Σcent||2
||Σcent||2 for the hyperparameter

consensus known, unbalanced network with a measurement at t=20
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Figure 3-19: Hyperparameter trajectories during consensus on p over a known, un-
balanced network with a measurement at t=20

3.3 Summary

This chapter introduced the distributed hyperparameter consensus method to al-

low multi-agent systems to converge to the proper centralized Bayesian parameter

estimates. It began by re-introducing the Kalman filter as the optimal recursive

Bayesian estimator of a normally distributed parameter for two purposes: 1) to mo-

tivate the formulation of uncertainties as parameterized probability distributions by

an analogy with a well-known algorithm, and 2) to introduce the important concept

of conjugate priors and hyperparameters. This Bayesian approach was extended to

the subsequent derivation of the centralized Bayesian parameter estimate in the con-

sensus framework and introduction of an improper consensus prior. Insights gained

through the derivation of the centralized estimate were then used to create the hy-

perparameter consensus method which guarantees that local estimates will converge

to the Bayesian estimate under standard network assumptions. The key innovation
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of the hyperparameter consensus method is to run traditional consensus protocols on

the hyperparameters rather than the parameters themselves. This shift of focus to

the hyperparameters allows normal average consensus methods to implicitly transfer

measures of uncertainty among agents and therefore bias the result properly towards

those agents that are more confident.

This chapter also showed the ability of the hyperparameter consensus method to

converge to a time-varying centralized estimate due to measurements made of a static

process during consensus. This assumption of a static process is necessary to avoid

temporal coupling of measurements and the need for a propagation step for the local

information. If the estimated process is changing with time, then the distributed

estimation problem may need to be separated into distinct epochs to allow for a

propagation step of the local information according to some transition model (similar

to the propagation step in the Kalman filter). Further complications arise due to the

temporal coupling of agents’ measurements and the fact that measurements need to

be considered in proper order. An approximate heuristic is to apply a fading factor to

the hyperparameters such that older measurements are given less weight than newer

estimates, which will allow the estimates can track a slowly time-varying process.

Though an interesting question, the problem of estimating a time-varying process

was not explicitly considered in the scope of this thesis and is left as future work.

The hyperparameter consensus method was then illustrated through applications

to the arrival rate and probability vector parameters through use of the gamma

and Dirichlet conjugate priors, respectively. The gamma distribution was utilized

as the conjugate distribution to the exponential and Poisson likelihood distributions,

which are themselves parameterized by an arrival rate, λ. Using Bayesian principles,

the hyperparameter consensus method was focused for the gamma distribution, and,

in particular, consensus on the hyperparameters α and β. It was shown that the

hyperparameter consensus method allowed every agent to converge to the centralized

parameter estimate over both balanced and unbalanced networks and in the presence

of local measurements. Further, the hyperparameter consensus method was compared

to parameter consensus on λ over an unknown, possibly unbalanced network. It
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was not only shown that the hyperparameter consensus method expected to perform

better for all values of network bias, but it was shown to also have a smaller variance

in its error, suggesting that its worst case performance is also better than parameter

consensus.

The Dirichlet distribution was introduced as a method to convey and communicate

uncertainties in a probability vector, p, during consensus. Due to the Dirichlet’s

limiting approximation as a normal distribution, the Kalman consensus algorithm

was investigated in conjunction with the hyperparameter consensus. Despite the

similarities, the Kalman consensus method was shown to converge to biased results

even in the simplest case, with only the hyperparameter method converging on both

balanced and unbalanced networks, with and without local measurements. Finally, it

was also shown that consensus on the entries of the probability vector using traditional

average consensus led to catastrophic transient behavior, especially in unbalanced

networks, where the local probabilities did not remain within the unit simplex, thereby

violating the fundamental axioms of probability theory.
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Chapter 4

Application to Cooperative

Markov Decision Processes

The hyperparameter consensus method introduced in the previous chapter not only

allows agents to come to agreement with local uncertainties, but also facilitates the

distributed estimation of an unknown parameter. By taking measurements using the

same conjugate prior and measurement update as introduced for use in the consensus

algorithm, agents can take measurements locally and subsequently combine their inde-

pendent observations through agreement on the hyperparameters, effectively forming

a distributed sensor network. In order to demonstrate this ability within a conven-

tional framework, this chapter presents a simple but illustrative multiple-machine

repair problem adapted from the single-machine repair problem in [7]. The problem

will be used here to illustrate the sensitivity of resulting policies to knowledge of the

underlying model during the learning process. In particular, multiple agents will be

observing independent, identically distributed local machines and learning the state

transition probabilities online, with the option of communicating with each other

using either hyperparameter consensus or average consensus on the current model

estimate.

This scenario can be applied to reliability analysis in the context of a group of

new machines purchased by a company and distributed among a network of factories,

in which each factory is concerned over its own local operations, but may commu-
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nicate with other factories to share information in order to make more intelligent

decisions. In a more aerospace-related framework, consider a number of reconnais-

sance teams outfitted with identical UAV resources and tasked with observing equally

hostile environments. Each team has its own local goals to increase knowledge of the

surroundings while maintaining consideration for the health of the local vehicle. By

observing multiple missions, each team attempts to learn more of the underlying sys-

tem model, and through communication with other teams, each can formulate a more

accurate model upon which to base future actions.

The following chapter will introduce the basic Markov Decision Process (MDP)

framework upon which the machine repair problem is based, and highlight the MDP’s

use in the reinforcement learning and estimation communities. This modeling struc-

ture will then be applied to the single-machine repair problem and, subsequently,

extended to the multi-agent scenario. It is shown that agreement using hyperparam-

eter consensus on the unknown model expedites learning in the large, cooperative

multi-agent setting, and that this leads to significant performance improvement early

in the estimation process.

4.1 Markov Decision Processes

Markov Decision Processes are a convenient modeling tool to describe how actions

affect the state evolution of a process and the incurred rewards or penalties over time.

All MDP representations maintain some set of states, s ∈ S, and actions, a ∈ A, as

well as some method by which to encode the benefit of taking a certain action at

a certain state, R(s, a) : S × A 7→ <, and a method to depict the state resulting

from the action taken, T (s′|s, a) : S × S × A 7→ p ∈ [0, 1]. The transitions are often

stochastic depending on the action taken at a certain state to depict the probabilities

of arriving at a subsequent state. This chapter will consider the infinite horizon

problem, in which the overall goal is to find a policy, π?(s) : S 7→ A, that maximizes
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the expected time-discounted future given by:

π?(s) = arg max
π

E

[
∞∑

t=0

γtR(xt, π(xt))|x0 = s

]

where γ ∈ (0, 1) is a discount factor such that the infinite sum is finite in value,

and the expectation is taken with respect to the stochastic transition probabilities.

Though this chapter will focus on beneficial rewards, this approach can be similarly

applied to minimize costs by switching from a maximization to a minimization.

Model-based representations explicitly represent the MDP as the collection of

model parameters, M :< S,A, T, R >, where the first two components are the afore-

mentioned set of states and actions, T is a transition matrix that defines the proba-

bility of transitioning from state s to state s′ by taking action a. For the remainder of

the discussion, it will be assumed that T (s′|s, a) denotes the probability of reaching

s′ by taking a at s, and that
∑

s′ T (s′|s, a) = 1 ∀ s ∈ S, a ∈ A. The reward model

to be used here is assumed to be deterministic and depends on either full or partial

observation of the executed transition. Using a reward model over the full transition,

R(s, s′, a) (where s is the initial state, a is the action, and s′ is final state), implies

that the utility of an action is defined by the action as well as its outcome (for ex-

ample, trying to walk across a tight-rope is only good if you make it to the other

side). If the reward model R(s, s′, a) = R(s, a), then the execution of a particular

action at a certain state has an associated utility, regardless of the outcome (i.e. a

fuel-burn penalty associated with moving from a given state). Alternately, defining

R(s, s′, a) = R(s) or R(s′) implies that any reward received is only dependent on the

particular state itself, such as being in a goal or penalty state. In problems such as

in the multi-arm bandit scenario, stochastic reward models may be used with similar

relationships to the state/action dependencies[50].

Various solution methodologies exist for finding the optimal policies, including

Dynamic Programming[55], Linear Programming, and Value Iteration. These rely on

the use of the value function, V (s), that encodes the long-term benefit of being in a
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certain state. V (s) can be determined through the recursive Bellman equations:

Qt+1(s, a) =
∑

s′ T (s′|s, a)[R(s, s′, a) + γVt(s
′)]

Vt+1(s) = maxaQt+1(s, a)
(4.1)

where it is assumed here that the rewards are given deterministically (the stochastic

reward recursion is easily obtained) and V0(s) is initialized to a finite value. The

value function can also be denoted V π(s), which implies that the recursion in Eq. 4.1

occurs using actions determined according to a policy π(s), such that a = π(s), in lieu

of the maximization. The optimal policy, π?(s), will select the most profitable action

from any given state, assuming the same policy is also used to determine all future

actions. It can be found as the policy that solves Bellman’s optimality equation, and

is given by

π?(s) = arg max
a

∑

s′

T (s′|s, a)
[
R(s, s′, a) + γV π?

(s′)
]

4.1.1 Relationship to Reinforcement Learning

In many situations, it may not be possible to model the full MDP and solve for the

optimal policy immediately. This problem could arise if, simply, the model is not

known a priori or only coarse estimates of the model properties are available. If this

is the case, it is required that the system be learned over time so that the optimal

policy can, eventually, be obtained. This process of online learning is one of the

fundamental components of reinforcement learning.

Reinforcement Learning (RL) methods utilize repeated interaction with the sur-

roundings coupled with a received reward or penalty to determine whether the ob-

served transition is beneficial or not. RL often uses a MDP framework to model the

underlying environment, and seeks to learn a representation of this MDP based on

current and past observations. Working with the representations listed in Section 4.1,

RL can be approached through model-free or model-based techniques. Model-free

methods learn the quality of state-action pairs through repeated execution and re-

wards [56, 57], while model-based techniques seek to learn the underlying model,

98



including transition probabilities and rewards, and use this to calculate the optimal

policy [50, 51, 58]. The work in this section will focus on model-based learning and

the estimation and sharing of transition probabilities.

Model-Based RL

Most model-based RL techniques use Bayesian updates to keep a running estimate of

the model of the world based on past observations. As the model is updated with new

information the optimal policy is re-calculated to reflect the most recent knowledge.

Given that an agent’s transition model is stochastic, such that the probability of

arriving in state s′ from state s given action a is T (s′|s, a), we can generate a set of

probability vectors ps,a = T (·|s, a) such that ps
′
s,a = T (s′|s, a). For the moment, and

without loss of generality, we will focus on a generic state-action pairing and drop

the < s, a > indexing, letting ps
′
s,a → ps′ , and assume that the cardinality of the state

space is L, such that |S| = L, and, furthermore, denote these L states as being from

the set S := {1, ..., L}. Therefore, the outcome will be state i with probability pi,

with
∑L

i=1 pi = 1, 0 ≤ pi ≤ 1.

If we let a set of N observations be denoted ZN = {z1, z2, ..., zN}, with each

zj ∈ {1, ..., L}, then we can determine the probability of ZN as:

Pr(ZN |p) =
L∏

i=1

pNi
i

where Ni is the number of occurrences of the outcome i in the set ZN . The previous

probability is a multinomial distribution on the outcome of observations given a dis-

crete probability distribution over the outcomes, p. Thus, the Dirichlet distribution

can be used to model the prior on the probabilities for each probability vector, and

the probability of observing outcome i is

p(z = i|α) =

∫
pip(p|α)dp =

αi∑
j αj

These probabilities can be updated through observing the transitions and incre-
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menting the count associated with the observed final state as in Section 3.2.3. This is

the basis of Bayesian updates on the transition probabilities within the MDP frame-

work. When agents are trying to learn an environment, they can maintain their

experience history by updating the α corresponding to the observed transition. As

the number of observations grows, the approximate transition probabilities will ap-

proach the truth [47].

It is likely that not all states can be reached from every other state in a single tran-

sition, and so not all L outcomes will necessarily be observed from each state-action

pair. Additionally, if it is wrongly assumed that a certain set of outcomes is reachable,

it can often take many observations for the infeasible transitions’ probabilities to be-

come small (though, still, never zero), especially if the corresponding state-action pair

occurs rarely. Friedman et al. formulate a hierarchical sparse Dirichlet representation

that accounts explicitly for the unknown size of the set of reachable outcomes when

determining the confidence in the local estimates[53]. This method relies on a prior

distribution on the size of the reachable set and conditions the expected probabilities

on the set size, updating both the probability distribution and set size distribution

with each new update.

The MMSE estimate of the probability vector obtained through the sparse Dirich-

let framework is equivalent to the MMSE probability vector obtained by a regular

Dirichlet over the reduced set of outcomes, V , such that

pi =





αi/α0 if i ∈ V
0 o.w.

This result can also be achieved through a slight abuse of the traditional Dirichlet by

defining all αi = 0 for i 6∈ V and using the usual MMSE parameter estimate equation

for all probabilities:

pi =
αi∑
j αj

By utilizing the Dirichlet prior on the distribution of transition probabilities and

performing a Bayesian update based on observed transitions, agents can learn the
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underlying transition model over time. Stochastic reinforcement models over a finite

set of possible immediate rewards can similarly be learned using the Dirichlet prior[50,

51].

4.2 Machine Repair Problems

This section will use a simple machine repair problem to highlight the applicability of

hyperparameter consensus to large-scale, cooperative learning problems. Before in-

troducing the multi-machine problem, the single-machine problem is described. The

multi-machine repair problem is then introduced as a cooperative, distributed esti-

mation problem where multiple operators are attempting to learn the dynamics of a

group of identical machines. Though the problem presented is fairly simple in order

to obtain comprehensible results, the prescribed approach can be adapted to many

multi-agent learning and estimation problems that fall within the MDP framework.

4.2.1 The Single-Machine Repair Problem

The single-machine repair problem that will serve as the basis for this chapter is a

simple, two-state MDP in which, at time t, the machine is either broken (st = 0)

or working (st = 1). If the machine is working, the operator receives $100 and can

choose to perform maintenance on the machine (action m) which will improve the

likelihood of the machine working at the next time step, but at a cost of Cm for parts

and labor. The operator could, alternately, opt to do nothing at no additional cost

(action n), but with an increased risk of the machine breaking. If the machine is

broken, the operator can either fix it (action f) for a fee of Cf or replace it (action r)

for Cr, where it is constrained that, for any reasonable problem, the cost to replace

is more than to fix. If the machine is replaced, then the new machine is guaranteed

to work for the next stage. The model is outlined below:

S =





broken : s = 0

working : s = 1
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If the machine is working, st = 1:

A(st = 1) =





maintenance : at = m

nothing : at = n

R(st = 1, at) =





100− Cm if at = m

100 if at = n

p(st+1|st = 1, at = m) =





1− pm for st+1 = 0

pm for st+1 = 1

p(st+1|st = 1, at = n) =





1− pn for st+1 = 0

pn for st+1 = 1

If the machine is broken, st = 0:

A(st = 0) =





fix : at = f

replace : at = r

R(st = 0, at) =




−Cf if at = f

−Cr if at = r

p(st+1|st = 0, at = f) =





1− pf for st+1 = 0

pf for st+1 = 1

p(st+1|st = 0, at = r) =





0 for st+1 = 0

1 for st+1 = 1

The problem considered here assumes that the operator knows the costs associated

with each state action pair (ie. R is fully known), but the transitions T (st+1|st, at) are

unknown and must be learned. When the machine is working, the transition matrix is

parameterized by the probabilities pm and pn, which designate the probability of the

machine working at the next time step after, respectively, performing maintenance,
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m, or taking no action, n:

T (·|st = 1, at) =


1− pm pm

1− pn pn


 =


pm

pn




When the machine is broken, it is assumed that replacing the machine is known to

guarantee a working state at the next stage, so the transition matrix is parameterized

only by the probability of the machine working given having fixed it, pf :

T (·|st = 0, at) =


1− pf pf

0 1


 =


pf

pr




The objective is to determine an optimal policy for each machine state, π?(s),

that maximizes the time-discounted future reward

π?(s) = arg max
π

V π(s) = arg max
π

E

[
∞∑

t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]

where the expectation is taken over the state transitions, T (st+1|st, π(st)). This prob-

lem can be solved using value iteration, where the recursion in Eq. 4.1 becomes

Vi+1(s) = max
a∈A(s)

R(s, a) + γ
∑

s′∈S

T (s′|s, a)Vi(s
′)

where V0(s) is initialized arbitrarily and the recursion is run until convergence. The

simulations presented in this chapter use a time discount factor γ = 0.8.

Uncertainty in the probability vectors pa = [1− pa pa] can be described by a beta

distribution, the univariate form of the Dirichlet. The beta distribution for action a

is parameterized by counts αa and βa, which represent the number of times action a
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has resulted in a working or broken state, respectively, and are updated by:

αa(t+ 1) =





αa(t) + 1 if working at t+ 1

αa(t) if broken at t+ 1

βa(t+ 1) =





βa(t) if working at t+ 1

βa(t) + 1 if broken at t+ 1

when action a is taken. As an operator explores the state-action space, the counts

are updated to reflect the observed transitions and are used to determine new proba-

bilities for the solver. An undirected Boltzmann method will be used to capture the

exploration vs exploitation trade-off. This approach utilizes the currently expected

Q-values to determine the probability of selecting each action according to

Pr(a|s) =
eQ(s,a)/T

∑
a′ e

Q(s,a′)/T

where T is a heuristic “temperature” parameter that starts large (so all actions are

equally likely) and is set to decay over time to promote greedy selection in the long-

run. In the following simulations the temperature parameter has been tuned to a

large value with a slow decay rate. This promotes a longer exploration phase, such

that the compared methods take approximately equally random actions regardless of

the knowledge of the model and the resulting performance is based on the consensus

algorithm rather than the exploration one.

4.2.2 The Multi-Agent Machine Repair Problem

In the multi-agent setting, N machines are run independently by N agents, but the

agents are allowed to share information among themselves to try and agree upon

the model of the system. Since each agent observes an independent machine, the

measurements it makes are independent from the state or measurements of any of

the other machines. For comparison, the hyperparameter consensus algorithm and

the average consensus algorithm were used, where the average consensus was run on
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the local probability estimates themselves. The results shown here are for a range

of network sizes where agents run each of the consensus algorithms to convergence

at various points in the estimation process and evaluate the resulting agreed-upon

model. Thus, this comparison shows the relative value of consensus at varying stages

of the learning process. Unfortunately, the comparison cannot be easily extended

to concurrent estimation and consensus problems. This is because the estimation

problem utilizes the Dirichlet counts, which are preserved by the hyperparameter

consensus method but are not uniquely defined after executing average consensus on

the probabilities themselves1. Therefore, not only do the following comparisons show

the benefit of using the hyperparameter consensus from a performance standpoint,

but through maintaining representative counts, hyperparameter consensus is able

to work concurrently with the Bayesian estimation scheme where other approaches

(Kalman Consensus and Average Consensus) cannot. Finally, it is necessary to note

that the results shown are obtained only after the agents have agreed on the model

parameters. This assumption allows the results to be generalized to an arbitrary,

known, strongly connected network such that the desired hyperparameter consensus

result can be obtained, and so that inconsistencies in the probabilities that occur

during the transient of the average consensus algorithm (as shown in Section 3.2.3)

are ignored and only the resulting steady-state values (which will lie in the unit

simplex) are used.

Each local learning problem was simulated with the true model as given below.

If the machine is working at a given time, the cost of maintenance is Cm = $10 and

1Since probabilities alone are not enough to uniquely define the counts, additional information,
like the variance, is required but unavailable when using average consensus. Further, though the
mean and variance will uniquely define the counts, in Section 3.2.3 the mean-variance approach
using a Kalman Consensus Filter was shown to provide biased results, and is not considered here
for that reason
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raises the likelihood of the continued functionality of the machine from 0.5 to 0.9:

R(st = 1, at) =





90 if at = m

100 if at = n

p(st+1|st = 1, at = m) =





0.1 for st+1 = 0

0.9 for st+1 = 1

p(st+1|st = 1, at = n) =





0.5 for st+1 = 0

0.5 for st+1 = 1

If the machine is broken, however, the operator can either spend $70 to fix the machine

or $110 to replace it. Since the machine had been previously broken, extra stress may

have fatigued other parts, such that fixing it leads to a working machine at the next

step only 80% of the time.

R(st = 0, at) =




−70 if at = f

−110 if at = r

p(st+1|st = 0, at = f) =





0.2 for st+1 = 0

0.8 for st+1 = 1

p(st+1|st = 0, at = r) =





0 for st+1 = 0

1 for st+1 = 1

The results that follow are the outcome of 300 Monte-Carlo simulations to de-

termine the average response given the true model and some set initial conditions.

Three primary metrics will be used to judge the quality of the learning:

• Probability of finding the optimal policy: This metric determines the likelihood

of obtaining the optimal policy through value iteration using the best estimate

of the transition probabilities. As more measurements are made, the transition

probabilities will converge to the truth and will result in convergence to the

optimal policy. This metric is, however, sensitive to the basin of attraction of

the optimal policy, as it may be possible to obtain the optimal policy even with
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an incorrect model as will be shown at the end of this section.

• Expected error in the discounted future reward: This metric describes the dif-

ference between the average future reward expected using the current model

estimate and the true value of the state under the optimal policy. Like the

probability of optimal policy metric, the estimated value function is expected

to converge to the truth with infinite measurements, but is a smoother, contin-

uous metric that is an overall measure of how well the MDP model has been

learned.

• Error in model parameters: In addition to MDP performance metrics, estima-

tion performance will be evaluated using the expected values of the parameters

themselves.

Using a uniform initial prior on the counts, such that αa = βa = 1, ∀ a 6= r (since

replacing is a deterministic transition), and assuming that this prior information is

common among the agents, the multi-agent machine repair problem was simulated

for a range of agents from N = 2 to N = 200. To account for the shared initial prior

information, two methods for storing, updating, and sharing hyperparameters can be

used:

• Each agent maintains a local estimate of the probabilities achieved through

normal hyperparameter updates (Eq. 3.8) as well as knowledge of any shared,

global information. The hyperparameter consensus method can be derived us-

ing Equation 3.6 and following the derivation in Section 3.1.2 with a proper

prior equivalent to all shared information. Each agent can then run the hy-

perparameter consensus algorithm on the difference between the current local

hyperparameters and the shared hyperparameters, and then add the result back

to the shared hyperparameter value after convergence.2

2Note that this approach is similar to channel filtering in the data fusion community [34], except
for one key difference: each agent needs to only keep track of two sets of hyperparameters (its
own, local hyperparameters and the shared, global hyperparameters) instead of maintaining shared
information between it and all of its neighbors as is typically required of channel filters.
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• Each agent can update their prior with weighted measurements as in Equa-

tion 3.17, leaving the prior un-weighted (i.e. do not multiply the prior by 1/νi).

During consensus, this has the effect of running average consensus on the prior

and sum consensus on the measurements, such that the prior remains counted

only once but the measurements are given the desired weight.

In situations where there are a large number of measurements that separate complete

consensus executions (such as when agents take measurements without communi-

cation, stop taking measurements and run consensus to convergence, then continue

taking measurements), the first approach is likely desirable. Since the estimation and

agreement problems are effectively separated, the first method allows each agent to

maintain a local estimate that is not impacted by the consensus weights (1/νi) that

are applied for hyperparameter consensus. If the consensus epochs are well defined in

the sense that every agent knows when to start communicating and when convergence

is reached, then the problem of maintaining knowledge of the shared information is

not difficult since it is simply the result of the most recent consensus. If it is desired

that consensus and estimation occur simultaneously, the second approach is beneficial

as it requires no distinction between an estimation epoch and a consensus epoch as

either a measurement can be made or messages sent or received at any time without

any additional processing (such as subtracting and adding shared information in the

previous method). Since the comparison problem to be addressed here fits into the

first framework, this method will be used for the following results.

Simulation Results

Using the hyperparameter consensus algorithm, the agents are able to utilize ev-

ery measurement made by each agent and are able to learn the model much faster

than using average consensus on the probabilities, as shown in Figure 4-1. Since all

agents have an identical prior, both methods start with the same initial estimate.

However, using the hyperparameters allows the agents to effectively combine their

observations, such that 100 agents with 2 independent measurements each have the

estimation power of a single agent with 200 measurements. Using average consensus
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on the probabilities themselves, it appears that the probability estimates follow the

same profile regardless of the number of agents, suggesting that there is little or no

benefit to the estimation problem from agreement through averaging of the probabil-

ities. Further, recall that the use of the linear consensus method for combining the

hyperparameters implicitly accounts for the network topology, so there is no need for

channel filtering on complex networks as would be required to obtain the same result

using traditional distributed data fusion techniques.

This expedited learning ability allows the agents running the hyperparameter

consensus to obtain the optimal policy more often and after fewer local measurements

than parameter consensus, as shown in Figure 4-2. The top plot shows benefit of using

hyperparameter consensus early in the estimation problem where its more accurate

model leads to the agents finding the true optimal policy with probability approaching

unity, while post-parameter consensus models almost always achieve a sub-optimal

policy. This “transient” period (in which, traditionally, agents have not fully learned

the true model) is where it is important to use hyperparameter consensus since it

can take advantage of the combined measurements of all the agents. However, after

sufficient local measurements have been made, each agent will individually converge to

the true model, so that, in the limit, the two methods will give equivalent performance

results.

Figures 4-3 and 4-4 show the expected evolution of the discounted future reward

given the best estimate of the model. As with the other results, initially and in the

limit of infinite measurements the two approaches give the same results. In the tran-

sient period, however, the hyperparameter consensus method converges much faster

to the true future reward. The top plot in both figures shows the difference between

the errors in two estimates obtained, and highlights the fact that the hyperparameter

estimate is closer to the true value than parameter consensus by over 50% of the true

value.

As an interesting note, the reduced dimensionality of the problem space allows for

a unique visualization of the optimal policies obtained for different transition models,

parameterized by pf , pm, and pn. Figure 4-5 shows a representation of the basins
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of each of the four possible policies (π? ∈ {[f,m], [f, n], [r,m], [r, n]}) such that

a set of values for the three uncertain probabilities is considered within a policy’s

basin if the probabilities define a model that would result in that particular policy

being deemed optimal. For example, the point [pf pm pn] = [0.5 0.5 0.5], which is

the initial probability estimate of all agents and is denoted by a black triangle in the

figure, falls within the yellow basin corresponding to the policy π? = [r, n], meaning

replace if broken and do nothing if working, whereas the true model probabilities

of [0.8 0.9 0.5], shown as the green circle, lead to a policy of fixing if broken and

performing maintenance if working. The two curves plotted in the figure denote the

post-consensus parameter estimates for both the hyperparameter consensus and av-

erage consensus on the probabilities for N = 200. The hyperparameter consensus

trajectory in blue immediately jumps from the initial conditions to within the true

optimal policy basin in dark blue, and, in fact, to a point very close to the true param-

eters as was suggested by Figure 4-1. The red curve denotes the average consensus

parameter estimates, which actually traverse through the yellow and red basins corre-

sponding to sub-optimal policies before, eventually, entering the true optimal policy

basin near the end of the simulation.

Similar results can be obtained using more informative priors or unique local

priors that aren’t shared across all agents. In the first case, the results are the same

as those shown here but effectively started after taking some prior measurements,

which would look like the tail end of the figures and provides the same benefits as

already described. The second extension has the same traits, but may not directly

mimic the results shown here since each agent is allowed to have a different initial

condition. It is important, however, for the initial conditions to still be representative,

or else they will bias the results when using hyperparameter consensus, which will

not be able to distinguish between the uninformed and informed hyperparameters. If

the initial conditions are uncertain and could be biased, then it may be beneficial to

add a fading factor to the measurements (akin to process noise in the Kalman Filter

setting) such that old information is given less weight than newer information.

Finally, in this section and the next, no explicit mention of the network topology
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is made. This is done for two reasons: first, given each agent’s current local estimate,

the models used for the results considered here are the outcome of different consensus

methods on these models, which have been run to a steady-state value and, thus, avoid

the consensus transient period in which the average consensus estimates would be

heavily impacted by network structure (eg. see Figure 3-15). By taking this approach,

the displayed results are independent of the inherent bias in the network. Second,

both average consensus and hyperparameter consensus have the same convergence

properties over a broad range of networks, such that the only limitation to being

able to obtain the demonstrated results are that the network be strongly connected

and the consensus eigenvector be known. Again, this is in contrast to typical data

fusion approaches where, to obtain the same results as the hyperparameter consensus

algorithm, complex channel filters would be required which are heavily dependent on

the network topology.
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(d) Hyperparameter consensus on pm
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(f) Hyperparameter consensus on pn

Figure 4-1: Expected probability estimates using each consensus method for varying
number of local measurements
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(a) Increased probability of obtaining the optimal policy using hyper-
parameter consensus over average consensus on the probabilities
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(c) Hyperparameter consensus

Figure 4-2: Probability of obtaining the optimal policy using each consensus method
for varying number of local measurements
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(a) Difference in expected error in the discounted future reward for the
working state using hyperparameter consensus over average consensus
on the probabilities
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(b) Average consensus

0 5 10 15 20 25 300

100

200
0

10

20

30

40

50

Expected Percent Error in Estimated Discounted Future Reward
For the Working State using Hyperparameter Consensus

Number of Local Measurements (x2)

N
um

ber

of A
gents

E
xp

ec
te

d
E

rr
or

in
D

is
co

un
te

d
Fu

tu
re

R
ew

ar
d

(%
)

(c) Hyperparameter consensus

Figure 4-3: Expected error in the discounted future reward for the working state
using each consensus method for varying number of local measurements
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(a) Difference in expected error in the discounted future reward for the
broken state using hyperparameter consensus over average consensus on
the probabilities
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(b) Average consensus
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(c) Hyperparameter consensus

Figure 4-4: Expected error in the discounted future reward for the broken state using
each consensus method for varying number of local measurements

115



Figure 4-5: Trajectories of the probability estimates through probability space, su-
perimposed over policy basins, for N = 200. Hyperparameter consensus (blue curve)
estimates converge immediately to the true optimal policy, [f,m] (dark blue basin),
while average consensus on the probabilities (red curve) travels through the [r,m] (yel-
low basin) and [r,n] (red basin) policies before eventually ending up in the optimal.
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4.2.3 The Multi-Agent Machine Repair Problem with Time

Considerations

This section considers a slightly more complicated model than previously presented

whereby each action has an associated time required to complete it before the next

action can be taken. For example, the maintenance action requires hiring a mechanic

and performing the required maintenance in addition to the time required to fulfill the

machine’s normal duties, and is likely to take longer than not performing maintenance.

However, these times are not always the same (some repairs may be harder than

others), and so the time required for each action is determined to be an exponentially

distributed random variable, τ(a) ∼ fE(τ(a)|λa). Each action has an average time to

complete, found as

E[τ(a)] = 1/λa

In order to reflect this added temporal aspect, the expected future discounted

reward is reformulated as

ET (s′|s,a),τ(a)

[
∞∑

k=0

γtkR(xk, π(xk))

∣∣∣∣∣x0 = s, t0 = 0

]

where

tk+1 =
k∑

i=0

τ(ai)

and the expected value is now over the time to complete each action as well as the

state transitions. The corresponding optimal policy is

π?(s) = arg max
π

ET (s′|s,a),τ(a)

[
∞∑

k=0

γtkR(xk, π(xk))

∣∣∣∣∣x0 = s, t0 = 0

]

As with the previous model, the optimal policy and future reward can be found as

π?(s) = arg max
a
Qss(s, a)

V ?(s) = max
a
Qss(s, a)
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where Qss(s, a) is the steady-state solution to the modified recursion,

Qt+1(s, a) = ET (s′|s,a),τ(a)

[
R(s, s′, a) + γτ(a)Vt(s

′)
]

= R(s, a) + E
[
γτ(a)

]∑

s′

T (s′|s, a)Vt(s
′)

Vt+1(s) = max
a
Qt+1(s, a)

and where

E
[
γτ(a)

]
=

∫ ∞

0

γtλae
λatdt =

λa
λa − ln(γ)

Thus, the inclusion of a temporal aspect for each action has the effect of changing

the discount value for any future rewards. Note that the proper discounting trend is

maintained, such that actions with a long expected time-to-complete, corresponding

to a small λ, will discount the future rewards heavily, while as λ → ∞, the actions

become instantaneous and the discount factor approaches unity. Since the discount is

bounded by [0 1) and T and V (s) are finite, the recursion converges to a steady state,

finite Qss(s, a) and the expected discounted future reward also exists and is finite.

As was introduced in Section 3.2, the gamma prior is conjugate to the exponential

distribution and will be used to represent the local uncertainty in the estimate of the

rate parameters, λa. To avoid confusion with the αa and βa already used for the

beta distributions, the gamma will be described by hyperparameters Aa and Ba. As

explained in Section 3.2.1, the gamma hyperparameters are updated after executing

action a as:

Aa(tk+1) = Aa(tk) + 1, Ba(tk+1) = Ba(tk) + (tk+1 − tk)

The plots in Figures 4-6 tp 4-12 depict the results from 300 Monte-Carlo simula-

tions where the true values of λa and corresponding expected time to complete each
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action, E[τ(a)], are given by

λf = 0.2

λr = 0.2

λm = 0.5

λn = 1

E[τ(f)] = 5

E[τ(r)] = 5

E[τ(m)] = 2

E[τ(n)] = 1

The Dirichlet priors on the probabilities were initialized to the same “flat” distribution

as used in the previous section, while the gamma hyperparameters were initialized as

Ainita = 1, Binit
a = 2

to give an initial λa estimate of 0.5. Each agent’s gamma prior on λa was then initial-

ized to these same, common prior hyperparameters for each action (Ana = Ainita , Bn
a =

Binit
a ∀ n = [1, ..., N ]).

Simulation Results

The probability and rate parameter estimation problems are decoupled for any given

action, which leaves the probability model estimates in Figure 4-6 unaffected by the

inclusion of the temporal aspect and displaying the same quick convergence using the

hyperparameter consensus method as in the previous section. Similarly, by aggregat-

ing the temporal observations through summation of the hyperparameters, the agents

are also able to come to a better estimate of the λ values quicker than when using

average consensus, as shown in Figures 4-7 and 4-8.

While the probability estimates were not affected by the temporal aspect, the

inclusion of times does affect the performance by, in this instance, aiding the post-

parameter consensus model in obtaining the optimal policy more often and earlier

than in the previous section, as shown in Figures 4-9 to 4-11 (this result will be

revisited and explained in a moment when discussing the basins of attraction of the

various policies). The probability of obtaining an optimal policy is, again, increased

in the early-going using hyperparameter consensus, such that parameter consensus
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only begins to match the hyperparameter consensus likelihoods after 30 to 40 local

measurements, and, even then, only in the large-scale, 200 agent scenario. This,

again, shows the benefit of the quick convergence to model parameters early in the

estimation problem, even though this problem leads to a shorter transient period

than in the previous section. The estimated future value for the working state in

Figure 4-10 shows much the same trend as in the previous section, where it is able

to converge much faster to the true distribution. Specifically, the hyperparameter

consensus method converges to within 5% of the true discounted future reward after

less than 10 local measurements by each agent (faster for more agents), while it

takes the parameter consensus method upwards of 50 local measurements to converge

within comparable error.

The expected discounted future reward for the broken state, shown in Figure 4-

11, displays an interesting result due to a confluence of estimation values during

the parameter consensus. Initially, both methods underestimate the true discounted

reward, though the hyperparameter consensus results are in keeping with previous

results and converge over large networks to within 5% of the true value after 2 local

measurements, and take a little longer for convergence in the smaller networks of

2 to 5 agents. The average consensus method, however, ends up converging to and

subsequently overshooting the true expected value around 10 local measurements due

primarily to the over-estimation of λf and λr. This over-estimation due to the initial

conditions causes the agents to expect these actions to be accomplished quickly, and

therefore discounts the expected benefit of the subsequent working state less than it

should, causing the expected future reward to quickly increase to and mildly surpass

the true value, though not because of a good knowledge of the model. Despite this

serendipitous result, the difference in expected errors in the discounted future reward

peaks at over 100% of the true value, which is a huge error that the hyperparameter

consensus method is able to avoid. The negative result is due to non-zero error in

the hyperparameter consensus results at the point where the parameter consensus

estimate is passing through the true value.

As alluded to in the preceding discussion, the λ estimates can play a large role in
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the solution of the MDP. Figure 4-12 shows the same three-dimensional visualization

of the policy basins for two sets of estimates of λa: the initial conditions, λa = 0.5,

on the top, and using the true λa on the bottom. Again, the probability estimate

trajectories are plotted for N = 200, starting at the initial conditions of pa = 0.5.

The impact of the temporal properties on the basins is quite noticeable as the vol-

umes associated with fixing the machine when broken have both grown. It follows

from this sensitivity to the temporal characteristics of the problem that the proper

estimation of the execution times is critical for properly estimating the response of

the system. This also explains why the average consensus method was able to obtain

a higher likelihood of optimal policies earlier than in the previous problem despite

an equivalent probability estimate trajectory: the policy basins for the estimated λ

trajectories (which form a series of configurations between the two shown) evolve

such that the basin of the optimal policy (dark blue) grows and encompasses the

estimated probability trajectory earlier in the estimation process than happened in

the non-temporal example.
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(b) Hyperparameter consensus on pf
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(c) Average consensus on pm
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(d) Hyperparameter consensus on pm
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(e) Average consensus on pn
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(f) Hyperparameter consensus on pn

Figure 4-6: Expected probability estimates using each consensus method for varying
number of local measurements
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(a) Average consensus on λf
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(b) Hyperparameter consensus on λf
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(c) Average consensus on λr
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(d) Hyperparameter consensus on λr

Figure 4-7: Expected λ estimates for each consensus method for varying number of
local measurements
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(b) Hyperparameter consensus on λm
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(c) Average consensus on λn
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(d) Hyperparameter consensus on λn

Figure 4-8: Expected λ estimates for each consensus method for varying number of
local measurements
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(a) Increased probability of obtaining the optimal policy using hyper-
parameter consensus over average consensus on the probabilities
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(c) Hyperparameter consensus

Figure 4-9: Probability of obtaining the optimal policy using each consensus method
for varying number of local measurements
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(a) Difference in expected error in the discounted future reward for the
working state using hyperparameter consensus over average consensus
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(b) Average consensus
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(c) Hyperparameter consensus

Figure 4-10: Expected error in the discounted future reward for the working state
using each consensus method for varying number of local measurements
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(a) Difference in expected error in the discounted future reward for the
broken state using hyperparameter consensus over average consensus on
the probabilities

0 5 10 15 20 250

100

200
0

20

40

60

80

100

120

140

Expected Percent Error in Estimated Discounted Future Reward
For the Broken State using Parameter Consensus

Number of Local Measurements (x2)

N
um

ber

of A
gents

E
xp

ec
te

d
E

rr
or

in
D

is
co

un
te

d
Fu

tu
re

R
ew

ar
d

(%
)

(b) Average Consensus
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(c) Hyperparameter Consensus

Figure 4-11: Expected error in the discounted future reward for the broken state
using each consensus method for varying number of local measurements
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(a) Initial λa values

(b) True λa values

Figure 4-12: Trajectories of the probability estimates through probability space, su-
perimposed over policy basins, for N = 200. Top: policy space for the initial λ
estimates, bottom: policy space for the true λ values.
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4.3 Summary and Future Work

This chapter has demonstrated the application of hyperparameter consensus to the

problem of distributed estimation in the context of learning the underlying model

of a multi-machine repair problem. In the proposed formulation, each agent locally

learns the model through measurements that are taken independently of the other

agents, and after a number of local measurements the agents are permitted to com-

municate to try and agree on the model. In order for the model estimation problem

to not be biased towards learning only the actions dictated by the currently deemed

optimal policy, each agent was set to execute a heavily exploratory policy, whereby

the probability of selecting any given action from a state was roughly equal. It was

shown that the hyperparameter consensus algorithm allowed the agents to effectively

aggregate their observations, not just their current estimates, which led to greatly

increased learning rates in larger networks. Conversely, average consensus on the cur-

rent parameter estimates showed little to no improvement over the estimation power

of a single agent, such that the pre- and post-consensus parameter estimates were

roughly equivalent and generally much further from the truth than the equivalent

post-hyperparameter consensus estimates.

Thus, the increased estimation power provided by the hyperparameter consensus

method allowed the agents to converge to the true model with very few local mea-

surements (though many agents), which, in turn, meant that the agents were more

likely to obtain the true optimal policy and a good approximation of the expected dis-

counted future rewards. In particular, the hyperparameter approach is able to limit

the performance loss during the typical learning ‘transient’ period in which a single

agent would be learning the model but has not yet converged to the true value. This

also suggests that, in the context of the exploration vs exploitation trade-off, agents

sharing information using the hyperparameter consensus method can make the tran-

sition to exploit the optimal policy much sooner than those sharing by averaging their

models. This is possible by taking full advantage of all the measurements available

to the combined network of agents through the aggregation of the hyperparameters.
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Since, given enough time, each agent would have learned the model correctly indepen-

dently of any communication, the benefits of hyperparameter consensus over average

consensus (or no consensus) diminish after this learning transient period since it is

assumed that all agents have accurately learned the model anyway. Finally, though

the presented MDP was relatively simple, with two states and two actions per state,

the methodology that was presented was independent of the size of the problem and

so the presented trends can scale to much larger state spaces.

The results shown here assumed shared and, in some sense, “flat” prior distribu-

tions over the model parameters. This is not always the case, but served to place all

the agents and simulations on the same initial footing. In practice, not all agents will

have the same initial conditions, and determining what, if any, of the initial infor-

mation is shared can be a difficult challenge. Typically, each node may start with a

prior based off of assumptions and past experience, but these must be handled care-

fully. If an agent’s prior is biased heavily away from the true values, it could take a

long time to correct for that bias, and may need the application of a fading factor to

exponentially forget old information before being able to converge to the true value.

The same holds true for the consensus case, where if multiple agents have unique un-

representative priors, then the resulting hyperparameter consensus estimate, though

having converged to the centralized estimate, will likely be biased from the true value

that the agents are trying to estimate. Further, if multiple agents have the same

representative prior (ie. a prior that has been determined by possibly observing a

handful of outcomes, such that it is based on the true model but has not converged

to the truth yet), but do not account for the fact that the prior is shared information,

the resulting hyperparameter consensus estimate will be very confident in the prior

information since it will treat each agent’s knowledge as independent and unique.

Thus, in order for the hyperparameter consensus to increase the performance of an

estimation problem, it is critically important that the information upon which the

consensus is being run be treated properly.

An added benefit of using hyperparameter consensus that has not been fully ad-

dressed so far is that not only does each agent converge to the centralized parameter

130



estimate, but also to the centralized variance in the estimate. This fact means that

all agents in the problem addressed in this chapter would not only have a consistent

estimate of the model parameters, but also a consistent estimate of the uncertainty

in the parameters. Dearden et al. [50] and Bertuccelli [7] have utilized the uncer-

tainties in the transition models of MDPs to improve upon existing methods for the

exploration vs exploitation trade-off and solution robustness, respectively. Since the

hyperparameter consensus method preserves the uncertainty in the transition prob-

ability estimates, the approaches explored by these authors may now be applicable

to cooperative multi-agent scenarios, especially in larger problems where the agents

are not able to learn the environment as quickly as demonstrated in this chapter.

Thus, agents may be able to take advantage of the distributed estimation afforded by

hyperparameter consensus as well as improved exploration and robustness strategies

to improve performance in larger-scale MDPs.
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Chapter 5

CSAT in RAVEN

Increased UAV autonomy, particularly in the realm of autonomous search and track

missions, remains at the forefront of much of the current research due to its intrin-

sic challenges. This chapter will highlight results from the hardware implementation

of a Coordinated Search, Acquisition, and Track (CSAT) control architecture devel-

oped by Aurora Flight Sciences in conjunction with MIT in the Aerospace Control

Lab’s Real-time indoor Autonomous Vehicle test ENvironment (RAVEN)[59, 60] as

presented by How et. al. in [61]. At the core of this approach is a decentralized

planning algorithm that allocates the UAVs to different tasks in the environment. A

key result of the solution is a synergistic combination of the search and track missions

that enable the UAVs to periodically switch between modes of operation in order to

both reduce the uncertainty in the unexplored portions of the environment, including

finding lost or unknown targets, as well as to improve the certainty of tracked target

estimates.

Much of the research presented thus far in this thesis was motivated by the results

obtained from this testing. Primarily, the results prompted investigation on the twin

concepts of adaptive tracking and search map agreement, which are discussed at the

end of this chapter. These necessitated the initial investigations into agreement on

uncertain parameters, such as estimated covariance matrices of normal distributions

and large-scale probability vectors for the tracking and searching problems, respec-

tively. Thus, following from the results of the hardware implementation, this chapter
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will introduce some preliminary investigations into the adaptive tracking and search

map fusion techniques to further extend the capabilities of the CSAT algorithm.

The chapter will begin with an overview of the CSAT architecture and the RAVEN

testbed, followed by the implementation methodology used to mimic the distributed

nature of the algorithm within the indoor environment. Some important results will

be displayed from the hardware experiments that motivate the subsequent investi-

gations of an adaptive tracking algorithm and search map consensus, with the goals

of determining an optimal time to revisit tracked targets within the proposed CSAT

framework while allowing for distributed tracking in communication-deficient envi-

ronments. The chapter will conclude with simulated results of the proposed methods

and suggestions for future work.

5.1 CSAT and RAVEN

The Cooperative Search, Acquisition, and Track (CSAT) mission requires an alloca-

tion of UAV assets to the potentially conflicting objectives of searching and tracking.

While the searching component encourages exploration of the environment to max-

imize the probability of finding unknown targets, the tracking objective requires a

vehicle to persistently focus on a single target. A successful mission will necessarily

trade off between these two modes because it is generally undesirable to be in only a

search or track mode throughout the course of the mission. Striking the right balance

between these two objectives is of key importance for overall mission effectiveness

since search must be performed throughout the course of the entire mission. One of

the key results of the tested algorithm is that the dynamic transition between search-

ing and tracking arises naturally from the problem specification, rather than being a

behavior that is artificially encoded in the problem statement.

While many researchers (e.g. [62–64]) have examined algorithms for distributed

task assignment problems, few such as Ref [65] have included strong experimental

results demonstrating the implementation of these algorithms in tightly coupled mis-

sions such as search and track applications. Much of the previous work has primarily
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emphasized one aspect of the mission (such as search [66, 67] or track [30, 37]), but

little work has addressed a more synergistic combination of the two operating modes.

A Bayesian framework for search and track was developed in [68], but did not consider

the multi-vehicle task allocation problem. Elston and Frew [69] developed a hierar-

chical approach to the coordinated search and track mission, but based their revisit

times on mean target motion, rather than explicitly propagating the uncertainty in

the target’s state.

5.1.1 CSAT

To achieve the goal of a decentralized search and track mission, the CSAT algorithm

has been divided into a number of modules that communicate with each other over

a network. Figure 5-1 shows the architecture for several vehicles and several targets.

Each vehicle runs three modules onboard: the onboard vision module (OVM), the

onboard planning module (OPM), and the autopilot module (APM). These work

together to perform the sensing, planning, and control of each vehicle. The OVM

takes in images from the vehicle’s camera and provides a state estimate to the OPM

for each target that it detects in the image. The OPM then either updates its own

target state estimate based on the new information or propagates the estimate and

uncertainty of the target if no measurements are available. If the vehicle does not

find the target after a planned revisit, then the OPM reverts back to searching for the

target, but aided by the knowledge of the target’s last known position and velocity.

The OPM uses these estimates and creates a plan for the vehicle to search for or

track targets, as appropriate. The waypoints generated by the OPM are sent to the

APM, which implements the plan by interfacing to the low-level controller on the

flight vehicle. The APM also manages the vehicle’s state estimate and distributes it

to the other modules as necessary. The Target Manager (TM) generates commands

for the targets and gathers their actual state information (rather than the estimate

provided by the OVM), which are used as truth data for display in the User Interface

(UI) and for subsequent analysis. The UI receives data from the OPM, APM, and

TM and displays it in a bird’s-eye view of the operations area.
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Figure 5-1: CSAT architecture block diagram

For each new vehicle, an additional instance of the OVM, OPM, and APM is

executed. Since the vehicles are operating in a distributed manner, each UAV will

only have direct access to its local information, which can lead to conflicts in the

task assignment. To mitigate the effects of conflicting information, the OPMs on the

vehicles communicate with each other to achieve global consensus on their plans and

to coordinate their search and track efforts. This setup not only allows each vehicle

to run its own algorithms, but allows separation of functions within the vehicle itself.

For example, the high-level planner is a separate module from the low-level autopilot.

The various modules communicate with each other over a TCP/IP network, which

allows the modules to run on separate computers or simply as separate processes

on the same computer. This modular approach adds additional robustness to the
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system, allowing for the overall system to continue to execute the mission even if one

or many modules fail.

Onboard Planning Module

The onboard planning module (OPM) is the vehicle’s high-level path and task plan-

ner. It assigns the vehicle to search for unknown targets or to track known targets.

Whenever a vehicle is searching, the OPM uses a set of probability distributions to

guide the vehicle along an optimal search path that maximizes the likelihood of de-

tecting a target [66, 70–73]. Once a target is found and classified, it must then be

periodically revisited to maintain an up-to-date estimate of its position and veloc-

ity [74, 75]. Between revisits, the OPM determines whether other tasks need to be

executed or if the vehicle should resume searching the local area. This decision is

made by a decentralized task assignment algorithm [76, 77] that continuously runs

within the OPM on each vehicle and ensures that as many tasks as possible are ex-

ecuted without conflicting assignments. The following will describe first the search

and track behaviors followed by how the two are allocated by the tasking algorithm

within the OPM.

Search: To be able to search effectively [66, 70–73], the OPM maintains informa-

tion about what areas of the mission environment have previously been observed. It

does this by maintaining a set of probability maps where each cell (x, y) in the map

Mi has a probability of containing a target P i
t (x, y), at some time t.1 A generic prob-

ability map is maintained for each potential target environment encountered, such as

land or water environments, and is initialized to represent any a priori knowledge of

the unknown targets’ position distributions. In addition, a new map is generated for

each target that had been found at one point but has since been lost. This approach

assumes that there may always be at least one additional undiscovered target in each

environment type beyond those that have already been found. Thus, the generic

search map provides the OPM with a constant incentive to continue searching the

environment even if many targets have already been discovered and are successfully

1All P it (x, y) = 0 for any (x, y) in an obstacle
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being tracked, ensuring that the UAVs maintain a nominal level of exploration of the

environment.

When in search mode, the OPM uses the combined probability maps to determine

a finite-horizon path that maximizes the sum of the probabilities that the sensor

footprint will cover. This path generation scheme is based on a breadth-first tree

search with limited depth and turn constraints, and includes not only the search path

but the route to the next task, if applicable. If other UAVs are in the area, they will

hierarchically coordinate their search paths so that they avoid searching the same

area twice.

If a previously discovered target is lost, it is converted to a search target with

an associated, newly created search map. This map is initialized with a non-zero

probability only within an estimated reachable region based on the target’s last known

position and velocity, and is thereafter propagated based on the last estimate of the

target’s speed. To account for dynamic search targets that have not been found yet,

each generic search map is associated with a phantom search target with its own

velocity estimate to be used to determine how quickly uncertainty diffuses back into

previously explored space. The probability diffusion update for each cell (x, y) in map

Mi at time t is given by the two stage process

P i
t (x, y) =

(
P i
t−1(x, y) + P i

t−1(x′, y′)P (x, y|x′, y′, vi)
)

(1− sc) (5.1)

P i
t (x, y)← P i

t (x, y)∑
x̂,ŷ∈Mi

P i
t (x̂, ŷ)

(5.2)

where P (x, y|x′, y′, vi) is the probability that a target transitions from (x′, y′) to (x, y)

given the search target velocity vi, and sc is the percentage of the cell that is covered

by the sensor at time t. Equation 5.1 is the diffusion process while Eq. 5.2 ensures

the sum of the probabilities is unity. By diffusing the probabilities as such, the OPM

promotes searching for dynamic targets that may have traveled back into previously

explored territory.

Track: Once a target is successfully detected by the vision module, it is classified
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and tracked by a UAV with the required capability. The OVM provides target state

measurements to update the OPM’s internal estimator. In our experiments, a Kalman

filter was used under the assumption that the dynamic system is linear [74]. Target

tracks are maintained by recursively updating the state estimates X̂k+1|k using a

kinematic model A of the target motion with additive noise wk ∼ N (0, Q) to capture

any unmodeled dynamics due to this simplification

True Model: Xk+1 = A Xk +B wk,

Estimate: X̂k+1|k = A X̂k|k (5.3)

Once the uncertainty in the target estimate has been reduced through tracking mea-

surements, the UAV can temporarily leave the target to execute other tasks and be

confident that the target can be re-acquired upon its return. This permits each ve-

hicle to complete multiple tasks even if the number of available tasks exceeds the

number of capable agents.

In order to determine the necessary revisit time, Algorithm 3 is run for each

track-capable UAV (due to possibly differing sensor footprints). The target estimate

and error covariance are both propagated forward until a scaled representation of the

covariance ellipse no longer can be contained within the vehicle’s sensor footprint.2

The scaling multiplier used, denoted nσ in Algorithm 3, can be thought to represent

a desired confidence level on finding the target at the revisit time and location, with

higher values leading to more conservative revisit times. UAVs with different sensor

footprints will in general predict a unique revisit time based on their physical sensor

properties. A track task is then created to visit the target at the revisit time and the

target’s propagated position using a vehicle capable of tracking.

When a vehicle is assigned to track a target, the OPM generates a path that

coordinates the vehicle arrival time at the revisit location to match the predicted

revisit time. Upon UAV arrival at the desired location, the target may or may not

2This forward propagation uses the existing process noise to propagate the error covariance by
recursively using the prediction step of the Kalman Filter and is measurement independent.
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Algorithm 3 Revisit time and location calculation

k ← 0
Initialize process noise covariance Q
Initialize state estimate X̂k|k ← X̂0

Initialize error covariance Pk ← P0

Initialize characteristic size φk ← π
√
|Pk|

while φk < φsensor do
X̂k+1|k ← A X̂k|k
Pk+1|k ← APk|kA

T +BQBT

φk+1 ← π
√
|Pk+1|k|

k ← k + 1
end while
return Revisit time = k

be within the UAV’s field of view. In the first case, the vehicle overflies the intended

target for a predetermined time, keeping the target in its field of view, and updates

its position and velocity estimates. The specified track time is an empirically chosen

value that was determined to be long enough to obtain a reliable state estimate of

the target, though both the tracking trajectory and duration can be modified to

incorporate any desired tracking algorithm. In the second case, however, the target is

declared “lost”, and a new search is initialized. If the target is once again found, the

search probability map is removed and a new revisit location and time is calculated.

Task Assignment Algorithm

Given the updated search probabilities maps and target estimates, the OPM can then

decide whether to search regions of the map that have a high likelihood of containing

targets, or execute existing track tasks. In our framework, search is considered a

“spare time strategy” rather than a task. This means that the vehicles search for

targets when they are not assigned to a track task or when their next track task is

far enough in the future that they can search in the intervening time. This approach

assumes that, given the choice between keeping track of a known, non-trivial target

and searching, it is more beneficial to follow the targets that have already been found.

The OPM uses a modification of a multi-agent task assignment algorithm in-

troduced in Refs. [76, 77], called the Consensus-Based Bundle Algorithm (CBBA).
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CBBA is a cooperative, low-communications-bandwidth iterative auction approach

that uses two phases to achieve a conflict-free task assignment. In the first phase,

each vehicle generates a single ordered “bundle” of tasks by greedily selecting tasks

for itself. The second phase resolves inconsistent or conflicting assignments through

heuristic methods, and improves the global reward through the bidding process. The

implementation of CBBA in the OPM executes these two phases continuously and

concurrently at each time step, allowing the algorithm to rapidly adjust to changes

in the network and environment. See [76, 77] for additional details.

Onboard Vision Module

Images captured from the onboard camera are loaded and analyzed by the vision

processing unit using OpenCV [78]. The received image is converted from an RGB

(Red-Green-Blue) format to a HLS (Hue- Lightness-Saturation) format for easier

color separation. Then, given the expected color ranges for each target, a detection

algorithm determines which pixels fall within the range of colors for each target, and a

smoothing function is applied to each color ‘blob’ to locate its centroid. The location

of the target in the image plane is then projected to the inertial world frame using

a calibrated pinhole camera model, assuming that targets exist on the ground plane

(z = 0). This estimate of the targets’ locations is then fed into a particle filter to

smooth the measurement before transmission to the OPM.

Target state estimation relies on principles from particle filtering [79]. Upon re-

ceiving a (noisy) measurement of the location of the target in the inertial world frame,

each particle’s location is updated using the kinematic motion model of the target.

The particles are then re-weighted based on their distance from the target location

as measured from the camera image, and importance re-sampling is performed on

the set of particles [79]. Particles with low weight are rejected, and new particles are

generated. At this point, the set of particles should approximate the distribution of

possible target states, and the weighted mean value is transmitted to the OPM as

the new target measurement.
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Autopilot Module

The autopilot module (APM) acts as the interface between the low-level vehicle con-

troller and the rest of the CSAT architecture. In simulation modes, it also simulates

vehicle dynamics. Specifically, the autopilot maintains the vehicle state estimate,

provides guidance to fly the vehicle along the waypoints provided by the OPM, and

monitors the health of the vehicle, including fuel status.

The APM’s open architecture allows it to accept state estimate input from various

sources depending on the situation. For example, in simulation it simply takes the

state estimate from the simulated dynamics, while in flight experiments it might

use state estimates from on-board or off-board sensors. The APM can also perform

additional filtering on the state information. This state estimate is then distributed

to the other modules that need the estimate, including the OPM and the OVM, for

use in planning and target estimation.

The APM periodically receives a list of waypoints from the OPM that describe the

planned path over a short time horizon. If the APM is using simulated dynamics, it

generates appropriate steering commands using the nonlinear control law developed

in [80]. If a separate vehicle controller with waypoint following ability is used, such

as in the RAVEN testbed, then the APM only keeps track of which waypoint the

vehicle should fly to next using logic developed in [81] and sends that waypoint to the

vehicle controller. Waypoints are specified as a position, a time at which the vehicle

should reach that location, and a type, such as fly-by, fly-over, or stop, that specifies

when the vehicle can continue on to the next waypoint.

5.1.2 RAVEN

Experimental trials of the CSAT algorithm were conducted in MIT’s RAVEN (Real-

time indoor Autonomous Vehicle test ENvironment) [59, 60], a multi-vehicle platform

allowing for rapid-prototyping of high-level mission management algorithms. This

capability is achieved by using one of two very accurate motion capture systems (the

Vicon MX system [82] and the Motion Analysis Raptor 4 digital real-time system [83])
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Figure 5-2: RAVEN architecture

to produce high bandwidth state estimates of numerous aerial and ground vehicles,

as well as in-house vehicle controllers to provide low-level control and stabilization of

the vehicle hardware.

The system architecture is displayed in Figure 5-2. The motion capture system

detects lightweight reflective dots on the vehicles (as can be seen on one of the quadro-

tor aircraft in the top right of the image) and uses these to calculate the vehicles’

position and orientation within the 25 by 30 foot test room. This data is transmitted

via ethernet to each vehicle’s ground based control computer, which in turn com-

mands its vehicle through a commercial, off-the-shelf (COTS) radio control (R/C)

transmitter [59, 60]. The primary reason for this configuration is that the bulk of

the sensing and control computation is moved off-board into the computational in-

frastructure, thus avoiding the risks associated with using expensive on-board sensors

and equipment and allowing for commercially available vehicles with and, especially,

without complex onboard computational capabilities to be quickly integrated into the

system.

While the RAVEN testbed allows for a wide range of vehicle types to be used,

the room space constraints and prior proven vehicle performance led to the selection

of the Hummingbird quad rotor produced by Ascending Technologies [84] as the

aerial vehicles (see Figure 5-3). The particular model used can stabilize the vehicle
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Figure 5-3: Modified Hummingbird UAVs performing a coordinated search and track
task on tank targets

attitude using onboard sensors and microcontrollers while an associated mid-level

control program running on one of the RAVEN vehicle computers generates attitude

commands to control the position of the vehicle. This vehicle wrapper code is the

link between the Vicon motion capture state estimates, the CSAT Autopilot module,

and the vehicle itself. The wrapper implements a simple LQR controller to follow a

reference trajectory generated by an internal waypoint follower [60]. The APM sends

Activate, Take-off, Land, and Waypoint commands to the wrapper, which are then

converted to the relevant control signals to send to the vehicle.

The Hummingbirds are modified with the COTS Wi-Fi enabled Panasonic BL-

C131A network camera to provide the vehicles with visual detection capabilities. The

camera is networked with the OVM module of the CSAT framework. The internal

mechanisms to control the pan and the tilt of this camera are removed in order

to reduce the overall payload weight, making the current hardware configuration
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constrain the cameras to a fixed orientation looking vertically downward from the

vehicle. This is a 1/6” CMOS sensor, with approximately 320,000 pixels that provides

a footprint of 1.0[m] wide by 0.75[m] high at an altitude of 1.2[m].

5.2 Implementation

The primary focus during the integration of the CSAT algorithm with the RAVEN

system was on maintaining the distributed nature of the algorithm within the con-

fined space. In a full-scale application the algorithms would be running onboard each

vehicle in the fleet; however, the small COTS aircraft that are used in the RAVEN

environment lack the computational ability to run the algorithms onboard. Since

a key feature of the algorithm is its scalability and decentralized assignment algo-

rithm, it was necessary to maintain some measure of this distributed nature. This

was achieved by assigning each vehicle to a dedicated control computer within the

system that would act in place of an onboard processor. Therefore, along the same

lines as the low-level controllers, the typically onboard modules (the OPM, APM and

OVM) would run off-board but on a dedicated computer. This off-board computa-

tion replicates the exact type of computation that would be performed onboard each

vehicle, and it is performed off-board simply to ease the integration process given the

payload restrictions of the current vehicles while preserving the distributed nature of

the algorithm.

For hardware implementation, a few modifications from the proposed architecture

were missing. First, the Autopilot module needed to be modified to access state

information from the Vicon data stream and send the appropriate waypoint messages

to the low-level vehicle wrapper. Second, the OVM was modificatied to poll the

network camera for images and process them to track colored identifiers placed on

each target.
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5.3 Results

This section presents some the results of the CSAT architecture flown in RAVEN.

The indoor flight experiments used 5 targets and 3 UAVs, a limitation imposed only

by the physical size of the indoor test environment. In order to scale the speed of the

experiment to the size of the environment, the UAVs were flown with a maximum

speed of 0.2 m/s at an altitude of 1.2 m. Some of the targets were stationary, while

the dynamic targets were controlled autonomously and by R/C and designed for a

nominal speed of 0.05 m/s.

The following scenario demonstrated a multi-vehicle, multi-target mission with 3

autonomous UAVs, and five targets (two of which were dynamic). In order to model

uncertainty in the targets, their estimated process noise covariance matrices were set

to Q = diag(0.001)[m2/s4] for any target with measured velocity less than 0.005m/s,

and Q = diag(0.05)[m2/s4] for those with velocities over 0.005m/s. Also, Target 2 was

given a higher tracking score and desired confidence level (nσ > 1), specifying that it

is a high priority target that the agents need to track if found. The CSAT planner’s

search map was initialized with a uniform prior distribution of target locations. All

vehicles in this experiment were capable of both searching for and tracking targets.

Figure 5-4 shows a summary of the mission using four metrics: (clockwise from

top left) the vehicle trajectories, vehicle states, area searched and targets tracked. In

general, this mission shows a good balance between searching and tracking, as well

as alternating between tracking erratic dynamic targets and static targets. The top

left figure shows the trajectory of the three UAVs (the apparent noise in the paths is

due to perturbations from the downwash effects of the multiple UAVs rather than the

algorithm). We can see from the overlapping trajectories that the UAVs are using

a fluid search method rather than partitioning the operations area or flying fixed

“zamboni” patterns. The advantage of this approach is that the team is inherently

flexible and the agents can explore regions of high uncertainty regardless of their

location, as opposed to remaining constrained to local areas or inefficient search paths.

Additionally, as agents are sent to complete other tasks, nearby searching vehicles can
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Figure 5-4: CSAT mission performance. Clockwise from top left: Overhead view of
UAV trajectories, UAV modes (search or track), total percentage of the environment
searched, and times at which each target estimate was accurate (line means accurate
estimate)

take over in the newly vacated region.

The top right plot in Figure 5-4 shows the mode (search or track) of each UAV.

Since the environment has a mix of dynamic targets (with high covariance) and static

targets (with low covariance), the UAVs exhibit both short and long revisit times.

This permits agents to naturally execute target hand-offs if one agent needs to service

another target or refuel. This plot also demonstrates the natural shift of focus from

primarily searching early on to primarily tracking as more targets are found.

The bottom plots in Figure 5-4 demonstrate this shift even more clearly. In the

bottom right graph, it can be seen that the UAVs have enough time to search, despite

the track tasks, close to 100% of the map. The bottom left graph shows when the

estimate of each target is within a specified threshold of the target’s true position. All

five targets were found, tracked, and revisited during the mission. As was intended,

UAV 2 (in green) is tracked more frequently due to its higher priority and higher
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Figure 5-5: Comparison of (top) low Q value and (bottom) high Q value results:
UAV mode (left) and percentage of area searched (right). Low Q promotes long
revisit times and allows for searching for new targets, while high Q encourages more
continuous tracking of known targets

desired revisit confidence. This results in the UAVs maintaining a better estimate of

that target than of the other targets, though the agents were all able to contribute

to the search and track components for the duration of the mission.

Need for Tuning the Process Noise Covariance

Two additional tests were conducted using 3 UAVs and 5 targets in which the goal was

to investigate the sensitivity of the CSAT planner to the choice of the process noise

covariance Q. Under the assumption of a target motion model driven by process noise,

the noise covariance is used to determine the revisit time for the tracking exercise

as per Algorithm 3. The process noise covariance is an effective tuning parameter

for the CSAT controller that must be chosen carefully, based on anticipated target

maneuverability. Thus, the true Q will inherently vary between vehicles, specifically

between static and mobile targets, according to the vehicle dynamics.
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Two choices of Q were made in this scenario resulting in two distinct experiments

(the scaling factor nσ = 1 was used for both experiments). The results are shown

in Figures 5-5. The top plots show an experiment with low process noise covariance

(Q = 0.001[m2/s4]) for all targets, while the bottom plots show experiments with

high covariance (Q = 0.05[m2/s4]) for all targets. In the first experiment, the low

value of Q = 0.001[m2/s4] implied that the targets being tracked were assumed to

not be very maneuverable. Because of this, the UAVs track the targets occasionally,

but spend most of their time searching since they are confident they can re-locate the

target upon revisit. Consequently, the cumulative area searched quickly approaches

and eventually reaches 100%. Conversely, in the second experiment, where a high

value of Q = 0.05[m2/s4] was used, the motion of the targets is assumed to be very

uncertain and results in the targets being revisited often. Once a UAV finds a target,

it spends most of its time in tracking mode and only has a few seconds of search

between each revisit. This is reflected in the cumulative search area, which quickly

plateaus once the first UAV begins tracking, and never reaches the same level as in the

low Q experiment. Furthermore, because the UAVs in the high Q situation have so

little time to search between revisits, they can never wander far from their assigned

targets. As a result, they will have difficulty finding any new targets entering the

operations area. Essentially, the area searched after tracking has begun is much lower

in the second case than in the first.

Even in the restricted testing space, the experiments showed that a small change

in the choice of the process noise Q can lead to significant variations in the tracking

strategies. In particular, if the target dynamics are unknown but likely very erratic,

as would be the case with highly maneuverable targets, it is probably a good choice

to select a high Q and emphasize tracking at the expense of search performance.

Conversely, if the choice of dynamic model is assumed very accurate or the expected

targets are not very maneuverable, then a matching low Q value will allow the agents

to execute other tasks while proceeding with the track. Thus, it is very beneficial

to the overall execution of the CSAT mission to choose a representative Q for each

target to best trade off between the two competing tasks. However, it is often difficult
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to accurately estimate a priori the process noise expected in a system, especially if

the system to be estimated is inherently unknown. This difficulty gave rise to the

idea of an adaptive tracking algorithm that learns from the observed process noise,

which will be discussed next.

5.3.1 Process Noise Adaptation

The key ability of the demonstrated CSAT algorithm that allows for good performance

in both searching and tracking regimes is the concept of leaving known track targets

to pursue other goals, with the assumption that the target can be re-located at a

certain revisit time in the future. This periodic tracking ability is desirable in many

situations, such as when the number of track targets is greater than the available

resources or when it is beneficial that the sensing equipment be used sparingly due to

energy requirements or increased visibility to hostile targets during tracking. In the

situation considered here, each sensor must be able to allocate its time intelligently

among the targets, and ideally be able to track multiple targets by switching or cycling

through the tracks.

To accomplish this periodic tracking ability, the estimation of the target state

must be of sufficient fidelity that the sensor can stop tracking it for a period of time

and be able to resume the track at a later time, with enough time elapsed between the

end of the track and the revisit to conduct other meaningful tasks. In other words,

the problem is to maximize the “down time” of the sensors subject to the constraint

that, at the revisit time and given some mapping between measurements and a state

estimate, the true state will be within that sensor’s footprint, centered at the sensor’s

estimate, with probability greater than η. This formulation desires that the revisit

time is as late as possible, while still providing some bound on the probability of

re-locating the target. This gives rise to the formulation:

Given measurements from time 1 to ttrack, Z
ttrack
j = [z1

j z
2
j ... z

ttrack
j ],

where each ztj is the set of all measurements of target j at timestep t by all

sensors that are tracking target j at that time, and given some estimation
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procedure for sensor i that maps the measurements up to time τ to an

estimate, x̂, at time t, Et|τ
i,j : Zτ

j 7→ x̂ti,j, t ≥ τ , maximize the revisit time

∆ti,jrevisit for each agent such that the probability of re-locating the target

at ti,jrevisit is greater than some threshold, η:

max
∑

i∈sensors

∑

j∈targets

∆ti,jrevisit

s.t. Pr(|x̃t
i,j
revisit
i,j | ≤ risensor) ≥ η

x̃ti,j = xtj − x̂ti,j
x̂
ti,jrevisit
i,j = Eti,jrevisit|ttrack

i,j (Zttrack
j )

ti,jrevisit = ttrack + ∆ti,jrevisit

Where, in the first condition, only the states that are physically measured by the sen-

sor (and therefore must be within its footprint, risensor) are considered, the magnitude

operates element-wise, and Pr(A) denotes the probability of the event A.

For an arbitrary value of 0 ≤ η < 1 and ttrack, and a target that follows a linear-

Gaussian process, the solution to this problem can be achieved using a true model of

the system with accurate noise characteristics, an information fusion scheme between

the sensors, and an intelligent way to determine the revisit time. Information fusion

can be handled in the Kalman filter framework using hyperparameter consensus on

the local Y and y values between state propagation stages or by utilizing methods

similar to those in [34, 39, 43] (Kalman Consensus is inappropriate here due to the

biased error covariance P as demonstrated in Section 2.3.3), though for the following

discussion it will be assumed that there is only one agent tracking the target at a

time to avoid this complexity. The revisit calculation in Algorithm 3 will be shown

to give the appropriate revisit time, but only if the estimation parameters are known

fully. Therefore, the outstanding problem to be addressed is knowledge of the model

parameters. In this case, it is assumed that a good knowledge of the system transition

model exists and that the main uncertainty is in the process noise. Thus, by adapting

to the process noise, the following sections will show that the algorithm can reach an
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approximate solution to the problem as defined above.

Tracking a Target on a Line

To examine the proposed concept, investigations were conducted on the 1-D case.

The assumed dynamics of the target amount to the typical double integrator:

ẍ = u+ w

which, in state space form, gives:


ẋ
ẍ


 =


0 1

0 0




x
ẋ


+


0

1


u+


0

1


w

or, in discrete time, becomes:


xt+1

ẋt+1


 =


1 dt

0 1




xt
ẋt


+


dt

2/2

dt


ut +


dt

2/2

dt


wt

Assuming that the control input is unknown and can be modeled from the estimator’s

point of view as additional process noise, the estimated dynamic equations for the

state are:


xt+1

ẋt+1


 =


1 dt

0 1




xt
ẋt


+


dt

2/2

dt


wt (5.4)

Xt+1 =AXt +Bwt (5.5)

zt =HtXt + vt (5.6)

The typical Kalman filter prediction equations are:

X̂t+1|t =AX̂t|t (5.7)

Pt+1|t =APt|tA
T +BQtB

T (5.8)
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and the update equations are:

Kt+1 =Pt+1|tH
T
t+1(Ht+1Pt+1|tH

T
t+1 +Rt+1)−1

X̂t+1|t+1 =X̂t+1|t +Kt+1(zt+1 −Ht+1X̂t+1|t)

Pt+1|t+1 =Pt+1|t −Kt+1Ht+1Pt+1|t

This research proposes the additional update step of adapting to the process noise

covariance matrix, Q, through a recursive method as suggested by [85, 86]. The

method updates the estimate of the process noise, Q̂, after each sensor measurement

as:

Q̂?
t+1 =B−1((X̂t+1|t+1 − X̂t+1|t)(X̂t+1|t+1 − X̂t+1|t)

T + Pt+1|t+1 − APt|tAT )B−T (5.9)

Q̂t+1 =





Q̂t + 1
L

(Q̂?
t+1 − Q̂t) if the result is � 0

Q̂t otherwise
(5.10)

where L is a user-selected gain. In the above equations, if B−1 doesn’t exist, the

pseudo-inverse can be used, and the � 0 denotes positive-definiteness of a matrix.

Thus, the Q̂?
t+1 represents, in some sense, the MLE of the process noise covariance

matrix given the observation at time t+1, and the positive definiteness of the resulting

Q estimate is ensured through the second equation.

Revisit Calculation

In the considered case where a revisit time and location must be made for a track

task since continuous tracking is not desired or not possible, the determination of

this revisit is highly sensitive to both the assumed process and measurement noise

values (Q and R), the size of the sensor footprint (rsensor), and the desired confidence

level (nσ). The basic determination of the revisit location is to consider when the

propagated state error covariance matrix (given by a recursion of Eq. 5.8) has di-

luted the confidence in the accuracy of the estimate such that the uncertainty ellipse

associated with the estimate is of the same size as the sensor’s footprint. In other
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Algorithm 4 1-D revisit time and location calculation

k ← 0
Set process noise covariance Q← Q̂ttrack

Set state estimate X̂k ← X̂ttrack|ttrack

Set error covariance Pk ← Pttrack|ttrack

φk ← nσ
√
|Pk(1, 1)|

while φk < rsensor do
X̂k+1 ← A X̂k

Pk+1 ← APkA
T +BQBT

φk ← nσ
√
|Pk(1, 1)|

k ← k + 1
end while
Return {k∆t, X̂k}

words, for a one-dimensional case where the (1, 1) entry of P, p1,1, gives the variance

in the x position estimation error and it is this spread that must remain smaller than

the sensor footprint. In particular, taking one standard deviation in the distribution

on x̃ as the square root of p1,1, the revisit time can be tuned such that nσ standard

deviations are within the sensor footprint. Given a Gaussian process in X̂, the error

distribution will be Gaussian, and so the normal confidence levels can be assumed,

with a 99.7%, 95.4%, and 68.3% chance of detecting the target if nσ = 3, 2, 1, respec-

tively. Algorithm 4 shows the revisit calculation process, where (·)ttrack
is the value

after tracking the target for a period, ttrack.

The dependence on Q can be seen explicitly in the revisit algorithm, while both Q

and R are implicitly considered due to the Kalman updates during the sensing interval

between t = 0 and t = ttrack. Figure 5-6 shows the dependence of the revisit time on Q

for various selections of rsensor, and Figure 5-7 shows the dependence of revisit time on

Q for varying R. Both figures show the sensitivity of the revisit time to the assumed

value of Q, with a very high sensitivity for low values of Q and lower sensitivity at

high values of Q. This makes sense since Q represents the “randomness” of the state

evolution, and therefore larger Q means the sensor must initiate the re-track sooner

since it cannot predict far enough into the future. With small Q, the sensor can have

high confidence in its estimate for longer periods of time, and as Q goes to zero the
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Figure 5-6: Revisit time vs Q, parameterized by sensor size

process becomes deterministic, at which point the revisit time approaches infinity. R

factors into the revisit time through the steady-state error covariance that is achieved

prior to calculating the revisit. Thus, if the sensor noise is large, the steady state

uncertainty is large as well, and the revisit time is decreased since it takes less time

for the uncertainty ellipse to reach the size of the sensor footprint.

From Figure 5-6, motivation for determining the proper value of Q̂ can be reasoned

as follows. Consider an initial guess for Q̂ of 15, a sensor size of 20, and a desired

confidence of 99%, implying nσ = 3. Given these conditions, the revisit algorithm

will determine a revisit time around 10 seconds, with an associated estimated revisit

location. If the true Q is also 15, then this confidence holds and the sensor will likely

find the target. If the true Q is closer to 30, our confidence is no longer 99%, but

closer to the 95% of the 2σ curve, and the sensor would re-initiate its track 2.5 seconds

after it should have to achieve the 99% level of certainty. If Q was estimated to be a

value much smaller than truth and, for example, the true value is closer to 120, then

the sensor will likely detect the target only 68% of the time. Conversely, if the true
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Figure 5-7: Revisit time vs Q, parameterized by sensor noise

Q is smaller than the estimated Q, the sensor is more likely to detect the target, but

now the re-tracking is initiated much earlier than needed. This means that the sensor

doesn’t take advantage of the extra time it should have had to pursue other tasks,

conserve power, or do whatever action it would do that makes periodic tracking more

desirable than continuous tracking.

Convergence of the Q-Adaptation Method

The use of this Q-adaptation method must first be shown to actually converge to the

true value of Q from many different starting points. This brief section will show the

convergence of various initial Q guesses to the true value of Q, generally corresponding

to the exponential rate as suggested previously. Using a true value of Qactual = 100,

and initial guesses of Q̂0 = [1, 50, 100, 150, 200], it is shown that Q̂ will converge

to Qactual given evolution according to Equations 5.9 and 5.10. Figure 5-8 shows the

evolution of the error in the estimate of the process noise covariance for different

values of L in Eq. 5.10. As would be expected, increasing L decreases the effective

156



0
5

10
15

20 0
50

100
150

2000

20

40

60

80

100

Initial Q̂ Guess

Q̂ Estimation Error for Different Initial Estimates, L = 1

Time (s)

E
rr

or
,

∣ ∣ ∣Q̂
−

Q
a
c
tu

a
l∣ ∣ ∣

(a) Q update with L=1 (Q̂k = Q̂?k)

0
5

10
15

20 0
50

100
150

2000

20

40

60

80

100

Initial Q̂ Guess

Q̂ Estimation Error for Different Initial Estimates, L = 70

Time (s)

E
rr

or
,

∣ ∣ ∣Q̂
−

Q
a
c
tu

a
l∣ ∣ ∣

(b) Q update with L=70

0
10

20
30

40 0
50

100
150

200
0

20

40

60

80

100

Initial Q̂ Guess

Q̂ Estimation Error for Different Initial Estimates, L = 150

Time (s)

E
rr

or
,

∣ ∣ ∣Q̂
−

Q
a
c
tu

a
l∣ ∣ ∣

(c) Q update with L=150 (note time scale)

Figure 5-8: Q̂ estimation trajectories with varying gains

gain on the innovation term and reduces the impact of Q̂(t)?. If L = 1, as in Figure 5-

8(a), the update simply becomes Q̂(t + 1) = Q̂(t)? and the process noise covariance

mimics the MLE estimate for Q based on the previous time step, which results in an

estimate that is quite noisy. For L = 150, as shown in Figure 5-8(c), the resulting

Q̂ history is quite smooth and converges nicely to Q, but naturally takes longer than

with smaller values of L. Intermediate values will give intermediate results, and the

actual selection of L is a tuning parameter to be selected based on the given system

dynamics and desired approximate settling time.
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Probability of Lost Targets

Figure 5-9 shows the percentage of targets lost after a single tracking period of ttrack =

10 seconds, where ”lost” implies that the target was not within the sensor’s footprint

at the revisit time and location. Each run used a ∆t = 0.01, Qactual = 100, L =

100, nσ = 3, 2, and 1, and the shown results were averaged over 100 Monte-Carlo

simulations. These parameters were selected such that after ttrack seconds the Q-

adaptation process is expected to have converged to within 10% of true value, in

the worst case. For consistency in each of the 100 trials, the adaptive and the non-

adaptive estimations were carried out on the same true state trajectory so as to ensure

no unlucky bias in favor of one or the other in terms of getting an ‘easier’ trajectory

to follow.

In all circumstances, the adaptive tracking method performs at least as well as

non-adaptive tracking, with much better performance when the estimated Q is under

the true value. For the first case with the 3σ confidence level, shown in Figure 5-9(a),

it can be seen that the adaptive method finds the target greater than 99% of the

time for any tested initial Q. Particularly, the case where Q̂0 � Q, the non-adaptive

tracking loses targets close to 80% of the time, as compared to the adaptive tracking

losing only 1 or 2 percent. For the 2σ confidence level, a similar trend holds across

all initial conditions, but with all the likelihoods increased by approximately 5%.

This not only continues to confirm the preference for adaptive estimation but also

experimentally supports our confidence level assumption that the 2σ multiplier leads

to a confidence of approximately 95%. Finally, the 1σ test continues both trends,

with the adaptive estimation losing fewer targets than the non-adaptive at just over

30% of the targets, also matching our approximately 68% desired confidence bound.

Observability of Process Noise

Since the process noise often factors into multiple states (in this example, the process

noise is acceleration, and factors into both the position and velocity states), the best

estimate of the true process noise covariance can be made when all states that the
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(b) nσ = 2, 95.4% Confidence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

50

100

150

200

Percent of Targets Lost; L = 100, ntrack = 1000, nσ = 1

Observed Probability of Losing Target

In
it

ia
l

Q̂
G

ue
ss

 

 

Adaptation

No Adaptation

(c) nσ = 1, 68.3% Confidence

Figure 5-9: Percentage of targets lost at the estimated revisit time and location using
adaptive and non-adaptive tracking

noise affects are measured. So far, full state feedback (FSFB) measurements have

been assumed and have achieved good results. However, if only partial state feedback

(PSFB) of either the position or velocity is considered instead, then the described

performance can degrade. Figure 5-10 shows the convergence of Q for the same

initial conditions but with different measurement capabilities. It is apparent that

the position-only case does a much poorer job at converging to the true value of

Q. This is possibly due to the complexity of Q’s impact on the position: At time

t + 1, the position is a function of the process noise at t, dt2 · w(t), and the velocity

at t, v(t) = v(t − 1) + dt · w(t − 1). Thus, the apparent noise in x without having
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measurements of v comes from the noise at time t and t−1. Conversely, the Q update

from taking the velocity only looks very similar to the full state feedback case3, which

can likely be explained by the fact that the noise only enters the velocity update once

and so produces a less ‘cluttered’ representation.

Tracking Time-Varying Q Values

One of the nice results of utilizing a dynamic estimate of Q is that it can respond to

measured changes in the observed state’s noise as well as to initial errors in the Q

estimate. Assuming that the new true Q value doesn’t cause the filter to diverge, the

update equation can recognize this change in the system just as if it were an error

akin to the initial Q guess. As with the constant Q case, the system is able to adapt

to a varying Q easier if measuring the set of states with the least ‘diluted’ noise input,

such as velocity-only or full state feedback. The system does still attempt to follow

the changing Q with PSFB, but it takes much longer to converge.

Future Work

As mentioned in the introduction, this work contributed to the motivation for de-

veloping the hyperparameter consensus method. The specific need encountered in

the adaptive tracking scenario is the question of properly sharing and updating the

estimated process noise covariance matrix among a team of sensors. Though this

problem has not been directly addressed in this thesis, the hyperparameter consensus

method can be applied here, too. The conjugate prior to the multivariate normal

distribution with known mean and unknown covariance matrix is the multivariate

form of the inverse-gamma, called the inverse-Wishart distribution:

fIW (Σ|Ψ,m) =
|Ψ|m/2|Σ|−(m+p+1)/2e−

1
2
trace(ΨΣ−1)

2mp/2Γp(m/2)

3Of course, with velocity-only measurements, there is no way to remove accumulated uncertain-
ties in position and so the overall estimation suffers and the target is easily lost, so velocity-only
measurement does not make sense in the single-sensor case.
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Figure 5-10: Q-adaptation with different measurement capabilities

where Σ, Ψ ∈ <p×p are symmetric positive definite matrices, m ≥ p, and Γp(·) is the

multivariate gamma function. As with the previous conjugate prior distributions, the

inverse-Wishart’s measurement update given a multivariate observation z ∈ <p×1 can
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Figure 5-11: Response to a step change in Q
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be simplified to an update of the hyperparameters:

m← m+ 1, Ψ← Ψ + zzT

The estimation of covariance matrices is particularly sensitive to outliers and may

require special attention to avoid divergence [87]. However, if divergence can be

avoided, then the above results may be able to translate into a Bayesian estimation

problem approximating the update zzT with the immediate MLE estimate, Q?. This

would allow the agents to learn the noise characteristics of different agents over time,

passing off the estimation problem to different agents on subsequent tracks.

5.3.2 Search Map Consensus

In addition to the Q-adaptation extension, research was conducted into Bayesian

methods to aggregate uncertain probabilistic search maps. Much of the current liter-

ature on autonomous search and track assumes a centralized probability map located

either at a centralized node or on each agent but updated through a fully connected

network [88, 89]. In many situations either centralized planning is undesirable or a

fully connected network at each time step may not be guaranteed, either of which can

lead to discrepancies between the search maps contained on each distributed agent.

It is important to resolve these differences in a representative manner in order to con-

serve as much information as possible and permit implicit coordination of the search

trajectories. The ability of the Dirichlet distribution to represent both a believed

probability and its confidence lends credence to its use to assist with the search map

consensus problem.

Problem Formulation

This section will focus on the use of a counts-based representation of discrete search

maps to achieve consensus representative of the initial probabilities and confidences

of each of the agents. It will be assumed that the search space will be divided up

into a nx by ny grid comprising of M = nxny cells, where each cell has a probability
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of containing a static target independently of any of the other cells. A group of N

agents will be searching the space, each with a different sensor model defined by piFP

and piFN , the probability of reading a false positive when there is no target and the

probability of a false negative when there is a target. For the following discussion, it

will be assumed that a sensor is able to sense only in the cell it’s currently occupying.

Therefore, a Bayesian probability update for sensor i given an initial probability of a

target in the cell, pi(x, y), can be derived as:

pinew(x, y) =





pithere|seen(x, y) =
(1− piFN)pi(x, y)

(1− piFN)pi(x, y) + piFP (1− pi(x, y))

if detected

pithere|not seen(x, y) = 1− (1− piFP )(1− pi(x, y))

1− (1− piFN)pi(x, y)− piFP (1− pi(x, y))

if not detected

(5.11)

It is assumed the sensors are informative, such that 0 < pFP , pFN < 0.5.

In previous sections, the Dirichlet and beta distributions have been shown to

offer a means to estimate and agree upon uncertain probabilities. In [90], Bertuccelli

introduces the use of a beta distribution over the local probabilities within each cell

and uses the binomial hyperparameter update with imperfect sensors to determine

how many “looks,” or samples from the binomial, are required to surpass a certain

probability threshold within the cell. The approach taken here extends this concept

by placing a local beta distribution to describe the uncertain in the probability in each

cell, but bases the measurement update on the sensor model in Eq. 5.11. Therefore,

given a measurement and prior probability within a cell, the sensor model depicts

the desired posterior probability. This update can be considered akin to sampling

repeatedly from the binomial distribution and updating the hyperparameters until

the desired probability is reached. Using this approach, the hyperparameter update
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is modified to

αa(t+ 1) =





αa(t) + n if detected

αa(t) if not detected

βa(t+ 1) =





βa(t) if detected

βa(t) + n if not detected

(5.12)

where n is the number of counts needed obtain the posterior probability, and is found

by:

n =





p̄inew(αi + βi)− αi
1− p̄inew

if detected

(1− p̄inew)(αi + βi)− βi
p̄inew

if not detected

(5.13)

By utilizing this update strategy, the total number of counts is automatically

increased with each subsequent measurement as much as needed to obtain the desired

new probability within the cell. This approach has the benefit of naturally decreasing

the uncertainty of the estimate as more measurements are taken, while keeping the

probability representative of the sensor model update. However, there is one caveat

with this approach whereby, after repeated measurements in a single cell, the total

number of counts either for or against the existence of a target can grow very large and

start becoming numerically intractable. For example, as the posterior cell probability

approaches 1 or 0, Eq. 5.13 states that the number of new counts required approaches

infinity. Therefore, for practical considerations, it may be necessary implement an

artificial ceiling on the number of counts to prevent them from approaching infinity

with repeated measurements.

Searching for Static Targets

Since this problem has an explicit Bayesian update in Eq. 5.11 that does not require

the hyperparameters (unlike the MDP model estimation problem in Chapter 4), it is

possible to simulate the problem without considering any explicit uncertainty in the
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probabilities. In particular, it is possible to compare the evolution of the probability-

based search maps versus hyperparameter-based search maps, including both local

measurements and consensus stages, in order to see the long-term effect of each

method. The parameter-only search problem will be considered using only the prob-

ability estimates themselves, initialized to a particular value, updated locally using

Eq. 5.11, and agreed upon using average consensus. This approach will be compared

to a hyperparameter method, where local measurements are incorporated using Equa-

tions 5.12 and 5.13, and the hyperparameter consensus method is used for agreement.

Further, these two methods will be compared to a centralized probability map that

has been initialized to the same distribution and is updated using Eq. 5.11 for every

sensor at every time step.

Since the search algorithm used can produce a large effect on the overall efficiency

of the search, and is not of primary interest in this research, a näıve locally greedy

algorithm is implemented. After each agent has made a measurement, it either stays

where it is or it moves to one of the adjacent cells. Its movement is based primarily

on whichever cell is thought to have the higher probability of containing a target,

though it is constrained not to enter a cell that is already occupied by another agent

and preferred not to enter a cell for which the counts have reached the maximum

allowed. For all neighboring cells that contain equally high probabilities, the decision

is made randomly among those cells.

The Agreement Problem

In the pure agreement problem to be discussed first, each agent has a different belief

of the world due, for example, to different a priori information or due to differences in

the regions searched by the vehicles prior to coming into communication range. The

scenario presented in Figure 5-12 represents three agents in a map discretized into

a 10 by 10 grid. Each agent begins with a shared uniform prior for the probability

in each cell such that a target is equally likely to be in each cell as not. The initial

search maps shown in Figures 5-12(a) through 5-12(c) are representative of each agent

searching independently for a period of time prior to initiating a consensus protocol
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with the other agents (the search path is overlayed in red). This delay may be due to

communication constraints such as agents being out of range or that communication

is only allowed periodically to conserve energy. The centralized map for the given

sensor history is shown in Figure 5-12(e), with the average consensus and hyperpa-

rameter consensus results in Figures 5-12(d) and 5-12(f), respectively. As expected,

the average consensus method converges to a value that is similar in shape but quite

different in magnitude from the centralized estimate due to the agents considering

their prior flat estimates of equal value to an estimate derived from measurements in

that cell. The hyperparameter consensus method is able to properly capture the in-

creased confidence associated with each measurement and converges to the centralized

estimate.

The Dynamic Search Problem

This section considers the full search problem where multiple sensors are looking

for static targets in an unknown map. As mentioned, each agent can evolve and

communicate their search map in either probability or hyperparameter space. This

section investigates the error in the local search maps achieved using each method

compared to the evolving centralized map. It will be assumed that the agents commu-

nicate their information until convergence between subsequent measurements, such

that the need for concurrent consensus and measurements is avoided (though it was

shown in Section 3.1.3 that hyperparameter consensus can handle this scenario if it

arises). Additionally, since the consensus algorithm will be run after each measure-

ment, when executing the hyperparameter approach, each agent maintains knowledge

of the shared information from the previous consensus and adjusts their hyperparam-

eter consensus protocol accordingly.

In order to generate a fair comparison between different network sizes, the ratio of

the number of agents to the number of cells in the discretized map was kept constant

at 20, such that 2 agents explored a 5 × 8 map while 10 agents explored a 10 × 20

map. The ratio of targets to agents was also kept approximately constant around

0.8. The scenarios were repeated 100 times each in order to determine a trend that is
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Error

Figure 5-12: Static consensus on unique local search maps. Comparison of hyperpa-
rameter and probability-only based approaches to the centralized map
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Figure 5-13: Evolution of errors in the search map using probability-based and
hyperparameter-based search maps

representative of the average result. Each agent’s sensor parameters (pFN and pFP )

were given a different, random initial condition between 0 and 0.1, as well as each

agent being initialized in a different location on each test. Finally, to prevent an agent

from staying on a target once it has been found, it flags the cell once the probability

surpasses 97% and avoids re-entering the cell for the duration of the test.

The results shown in Figures 5-13(a) and 5-13(b) represent the evolution of the

error in probability belief in each cell as a function of time assuming consensus is

run to convergence after each measurement. As suggested by the previous discussion,

the average consensus method does not provide an accurate representation of each

agent’s beliefs and so the search problem using the probability regime incurs large

errors. This is especially pronounced with larger numbers of agents since each agent’s

local measurements impact the post-consensus result less when there are more agents.

The hyperparameter approach, on the other hand , achieves very good performance

and permits the agents to each converge to the centralized map, which is updated

solely according to Eq. 5.11 and without any consideration of the hyperparameters.

A trend that is apparent in the average consensus results is that the errors peak

at around 40 iterations. This is because, for the ratio of agents to cells of 20 and

the semi-random search algorithm, it generally takes around 40 iterations for the

agents to have searched the entire map. Prior to this point, the cells that have not
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(b) Hyperparameter Error

Figure 5-14: Evolution of errors in the search map using probability-based and
hyperparameter-based search maps with consensus after every 5 measurements

been visited yet remain at their initial value and so do not contribute to the error,

while after this point previously visited cells in which targets have not been found

are revisited, causing them to begin approaching the near-zero probability of the

centralized map. The hyperparameter consensus errors, on the other hand, are two

orders of magnitude smaller than the average consensus errors, and lacks any really

noticeable performance loss at any particular time during its execution.

If, instead of communicating after every agent takes a single local measurement,

the vehicles were permitted to search independently for extended periods before run-

ning the consensus algorithm, the accuracy of the post-hyperparameter consensus map

remains much higher than average consensus. Figure 5-14 shows the post-consensus

error for the two consensus method when each agent observes 5 local measurements

between consensus executions. In this situation, both consensus algorithms act as a

correction for errors accrued between consensuses due to a lack of global knowledge of

unshared, local measurements. However, only the hyperparameter consensus method

is able to collapse the error to near zero after agreement, and, therefore, is able to keep

the overall error in the approach an order of magnitude smaller than using average

consensus.
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Future Work

The primary focus of future work on this problem is to address the inclusion of prob-

ability diffusion between cells in order to represent dynamic targets. There are three

key factors at play in the application of this diffusion to the hyperparameter method.

First and foremost, the probabilities should diffuse from areas of high probability to

areas of low probability and should remain the same if surrounded by equal proba-

bilities. Second, the confidence in an agent’s knowledge of the probabilities in a cell

should decrease over time. These imply both an evening of the counts for and against

the target being in the cell, as well as a lowering of the total counts to represent the

increased uncertainty. Finally, a method by which this can be done in a distributed

manner needs to be addressed. This includes consistency on when and how much to

scale the local counts, and how to adjust any shared information to reflect these local

changes.

5.4 Summary

This chapter has presented a hardware implementation of a distributed Coordinated

Search, Acquisition, and Track algorithm in MIT’s RAVEN testbed, as well as some

preliminary investigations into technologies to improve the performance of the system.

The basic structure of the various modules of the CSAT architecture were presented,

with emphasis on the searching and tracking algorithms in the onboard planning

module. A key feature of the demonstrated system was its ability to schedule periodic

tracking tasks to permit limited resources track many targets while simultaneously

searching the environment. It was shown that the algorithm is able to function with

the stochasticity inherent in hardware testing with three webcam-equipped quadrotors

simultaneously searching the unknown environment and tracking up to five static and

dynamic ground targets.

During the tests, it was noted that the revisit algorithm used to calculate the

revisit times for the periodic tracking assignments was very sensitive to the estimate

of the target’s process noise covariance matrix. To address this sensitivity and in-
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crease the reliability of the revisit calculation, research was conducted into the use

of adaptive tracking techniques in the one-dimensional tracking problem to learn the

process noise covariance online. This investigation confirmed that the methods pro-

posed by [86] permit the online adaptation to the process noise, and it was shown that

this adaptation greatly increased the likelihood of re-locating a target upon revisit.

Specifically, the Gaussian form of the noise was utilized to estimate nσ confidence

bounds on the re-acquisition of the target, which were confirmed in simulation.

Finally, the implicit coordination of search paths in the CSAT algorithm moti-

vated the investigation into methods to agree upon probabilistic search maps. This

last section built upon a method introduced in [90] by utilizing a discretized search

map with a beta distribution for each cell to describe the imprecise estimate of the

probability that a target is in the cell. This local estimate was then updated us-

ing a customizable sensor model with allowances for false positive and false negative

measurements by interpreting the posterior probability as the result of repeated sam-

ples multinomial. The hyperparameter method was compared to a pure probabilistic

approach in both the static and dynamic cases, and it was again shown that the

hyperparameter method maintained an accurate representation of the confidences of

each agent such that each measurement was given its proper weight and the hyper-

parameter consensus method converged to the true centralized probability map.
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Chapter 6

Conclusion

6.1 Summary

This thesis has presented a number of contributions to the consensus and cooperative

control communities. Primary among these is the development of the hyperparam-

eter consensus method to allow for multiple distributed agents to come to a proper

Bayesian agreement on a parameter estimate with local uncertainties. While similar

concepts have been applied in the linear-Gaussian case, the approach presented allows

for agreement upon a uncertainties defined by a broader set of probability distribu-

tions which includes, but, most importantly, is not limited to the normal distribution.

In particular, the hyperparameter consensus method has been shown to work for any

local uncertainty model that is conjugate to a likelihood distribution, and has been

demonstrated specifically for both the gamma and Dirichlet distributions. In addi-

tion to the development of the method itself, its beneficial application to distributed

estimation has been shown by expediting the learning of the underlying model of a

cooperative machine repair problem framed as a Markov Decision Process. Finally,

the thesis concluded with an experimental implementation of a distributed and co-

ordinated search, acquisition and track algorithm within the ACL’s RAVEN testbed,

which motivated a subsequent discussion of two methods to improve the performance

of the algorithm in both its search and track capabilities.

Each chapter of this thesis provided a different contribution to the overall scope
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of the thesis. The second chapter provided a review of current consensus techniques

in the field of cooperative, coordinated control, and demonstrated a marked lack of

ability to account for non-Gaussian local uncertainties in parameter estimates. In

particular, three methods were discussed: average consensus; belief consensus; and

Kalman consensus methods. Both average consensus and belief consensus utilized

simple linear consensus protocols and have been demonstrated to have strong con-

vergence properties over a large range of static and dynamic network topologies.

However, of the three, only the Kalman filter-inspired methods accounted for any

degree of uncertainty in local beliefs. Unfortunately, this uncertainty was designed

for, and, therefore, only properly handled in the context of a Kalman filter problem,

namely, when the local beliefs are modeled as normal distributions. Thus, the chapter

concluded with an understanding that, within the current consensus community, dis-

tributed agreement with non-Gaussian uncertainties was, at best, handled improperly

using Kalman consensus on the mean and variance, and, at worst, non-existent.

The third chapter presented the main contribution of this thesis: the hyperpa-

rameter consensus method. The derivation of the method rested on a number of

insights from the Kalman filter and Kalman consensus approaches, including the

benefits of conjugacy of distributions and the perspective on agreement as sharing

pseudo-measurements from other agents. It was shown that, if a local distribution

is conjugate to some likelihood function, the pseudo-measurement in Equation 3.5

representative of the local belief will be of the same form as the likelihood, and will,

therefore, ensure the conjugacy of the pseudo-measurement and local uncertainty

distributions. This allows for simple, closed form, additive updates of the hyperpa-

rameters, or the parameters of the local uncertainty distributions. It was shown that

the desired additive updates could be achieved with a slight modification of the con-

ventional average consensus methods presented in Chapter 2, such that convergence

to the centralized hyperparameter values, and therefore the centralized Bayesian es-

timate, is guaranteed over any network over which linear consensus can achieve an

average of initial conditions. Further, the method can account for independent, local

measurements made before and during consensus, and incorporate this new infor-
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mation immediately into the network to guide the consensus to the resulting, new

centralized estimate.

Some primary results of the method are outlined as follows:

• Guaranteed convergence over arbitrary, known networks that are strongly con-

nected. This powerful result states that the agents can come to agreement

on the Bayesian fused estimate of a parameter over a network with any struc-

ture, sparse or fully connected, so long as it is at least strongly connected and

the consensus eigenvector, ν, is known. This is a very important result as it

distinguishes this method from existing techniques within the Data Fusion com-

munity, which seek to achieve the same end as hyperparameter consensus, but

which often require prohibitively complex channel filters and message-passing

schemes to avoid network-induced redundancies. By using a protocol based

on a linear consensus algorithm, and through weighting the initial conditions

dependent on the value of ν, these redundancies are avoided. Further, since

the weights are applied to the hyperparameters and not the parameter of in-

terest, itself, the hyperparameter ratio defining the MMSE parameter estimate

is unchanged, meaning that the best estimate of the parameter value remains

representative of the currently available information during the process of agree-

ment.

• Improved accuracy of hyperparameter consensus versus parameter consensus

over unknown networks. It was demonstrated that, even if the network, and

therefore consensus eigenvector, is not known, then running a consensus protocol

on the hyperparameters (where the protocol was designed to give an average

consensus value on a balanced network) was shown to provide a more accurate

and more precise steady-state parameter estimate compared to the centralized

Bayesian estimate, versus the same algorithm running on the best local estimate

of the parameter itself. This result was achieved over all tested, connected

network topologies and ranges of network-induced biases. Therefore, even in

situations where the network topology is unknown, hyperparameter consensus
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is able to capture enough of the local uncertainty to bias the results towards

the proper value.

• Shared prior information can be easily accounted for. The general concept of

shared information, which drives the necessity for channel filtering in data fu-

sion, is simply handled using hyperparameter consensus. Since network-induced

biases are accounted for by local weightings, shared information in the hyper-

parameter setting takes the form of common priors or results from previously

converged consensuses. Fortunately, this information is shared globally through-

out the network, and, therefore, does not require individual treatment between

neighbors. Instead, the agents simply either do not weight this prior infor-

mation before consensus, or subtract the representative hyperparameters from

their own and come to consensus on the difference. This permits repeated es-

timation and consensus intervals without collapsing the variance in the beliefs

due to repeated confirmation of the same information.

• Convergence properties of the algorithm are already very well known and stud-

ied. Since hyperparameter consensus is an extension of traditional linear con-

sensus methods to a set of variables effectively once removed from parameter

of interest, the convergence properties of the algorithm rely only on the conver-

gence properties of linear, average consensus itself. This field has been studied

immensely over the last decade, in terms of both existence of an equilibrium and

speed of convergence to that value, over a broad range of static and dynamic net-

works. In particular, consensus in terms of flocking with time-varying nearest-

neighbor networks [20], small world networks and convergence speeds [27], and

time delays [23]. See Sections 1.1.1 and 2.3.1 for references.

• Allows for distributed agreement on any parameterized distribution in the expo-

nential family as well as some non-exponential distributions. This result is due

to the fact that a conjugate prior exists for every distribution in the exponen-

tial family (i.e., normal, Poisson, exponential, gamma etc.), and that conjugate

priors exist for a number of non-exponential distributions, too (i.e. multino-
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mial). Since the conjugate prior defines the uncertainty of the parameters of

the likelihood distribution, and since it has been shown that hyperparameter

consensus converges on the centralized Bayesian estimate, then it follows that

any distributions that are parameterized by the value being agreed upon also

become aligned. This has important implications in distributed estimation as,

with time, a distributed sensor network running hyperparameter consensus can

achieve agreement on an underlying stochastic process, itself, when the process

is modeled by one of the relevant distributions.

Chapter 4 introduced the hyperparameter method to a distributed estimation

problem in the context of model-based learning in a Markov Decision Process setting.

The application was formulated as a multi-machine repair problem where multiple

agents observed independent, identically distributed stochastic processes; namely,

transitions of each machine’s state due to different actions. It was demonstrated that

the hyperparameter consensus method effectively aggregated each agent’s individual

observations, rather than just its current model estimate, such that larger networks

were able to learn much faster than individual agents or the same network running

average consensus on the model parameters. This increased learning speed natu-

rally led to performance improvement by significantly reducing the learning transient

and allowing each agent to locally solve the MDP using near-truth transition prob-

abilities (based on a Dirichlet uncertainty model) to achieve near-optimal solutions.

The problem was also extended to a Markov-process inspired form where each ac-

tion has a stochastic execution time associated with it. Similarly improved results

were achieved in this situation, where each agent was simultaneously estimating an

exponential distribution on the time required for each action. Though these results

are also theoretically achievable using data fusion techniques over simple networks,

the application to up to 200 nodes over arbitrary networks would require significantly

complicated if not intractable messaging schemes and, in a general sense, would be

impractical with current data fusion techniques.

The last chapter presented a different aspect of the coordinated control problem

through the implementation of a coordinated search, acquisition, and track (CSAT)
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algorithm in MIT’s RAVEN testbed. The decentralized algorithm was described with

a focus on the synergistic combination of the competing search and track tasks, and,

in particular, how each was allocated among the different assets of the fleet through

the use of periodic tracking of known targets. Though using simple, commercial

vehicle hardware with minimal computational capacity, this decentralized nature was

maintained throughout the implementation by the execution of each vehicle’s control

modules on its dedicated ground computer. Each of the quadrotor aircraft composing

the fleet was outfitted with a camera to permit detection of independently controlled

ground vehicles using vision in the loop.

The experimental tests demonstrated the robustness of the system to the uncer-

tainties implicit in hardware tests, such as environment and sensor noise, and the

ability of the algorithm to successfully trade-off between the competing search and

track objectives. However, it was also shown that this trade-off is sensitive to the

assumed model of the targets to be tracked. In order to mitigate any performance

loss induced by a poor knowledge of the tracked vehicle’s command inputs (modeled

as process noise), an adaptive tracking algorithm was tested in a one-dimensional

tracking scenario. It was shown that not only does the algorithm converge to the

true, observed process noise, but that, in doing so, it mitigated the possibility of

losing a target upon a scheduled revisit.

A second improvement was also investigated, though focused on the search prob-

lem. Specifically, in decentralized networks with intermittent communication, it is

very possible for individual probabilistic search maps updated locally by each agent

to deviate from each other, and so search map fusion based on hyperparameter con-

sensus was investigated to solve the problem. It was shown that, under the search

map representation and sensor model used, hyperparameter consensus on the uncer-

tain probabilities within each cell of a discretized search map allowed the agents to

converge to an equivalent centralized search map with little to no appreciable error.

Further, this approach highlighted the ability of repeated measurement and hyperpa-

rameter consensus phases to disseminate newly acquired information across a network

without incurred error or the need for channel filtering.
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6.2 Future Work

Much of the future work applicable to the hyperparameter consensus method falls un-

der one of two categories: further expanding the range of applicable distributions and

estimation of non-static processes. The first concept requires a deeper investigation

of the form and generation of more generic conjugate priors as is presented in [91] and

references therein. Applications in this thesis have been confined to common conju-

gate pairs (ie. normal-normal, exponential-gamma, multinomial-Dirichlet), though

the concept of conjugacy has a much richer theoretical basis than represented here.

It may be possible to extend the concepts proposed for use in the hyperparameter

consensus method to a more generic class of distributions through use of the mean

conjugate prior proposed in [91].

The second avenue of investigation into distributed estimation of non-static pro-

cesses using hyperparameter consensus is an extension that is critical to many pro-

posed applications. This line of research is akin to the addition of the state propaga-

tion step between subsequent measurements in the Kalman filter, which adds much

complexity in the distributed setting. Particular questions that arise are how to han-

dle out-of-order or otherwise temporally delayed measurements (a problem avoided in

this thesis due to the assumption of a static process, in which order does not matter)

and the specific impact of the propagation on the hyperparameters themselves (which

is sufficiently known in the Kalman sense already, but may be more complicated in

other settings). The first focus is an ongoing area of research in distributed track-

ing [92, 93], and is often assumed avoidable by using scheduled communication and

assuming convergence between subsequent propagation/measurement phases [34, 40].

However, especially when using consensus algorithms, the convergence is not instan-

taneous, and for any high-bandwidth sensor the measurement rate may be sufficiently

fast to prevent consensus between measurements. Therefore, in this application as in

the rest of the community, it remains a necessary focus to determine how to update

out-of-order or delayed measurements. The solution of this problem may be directly

linked with the second presented question of how the state propagation updates affect
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the hyperparameters themselves. In the Kalman filter framework, this update of x̂

and P is done via the well-known propagation equations. In other frameworks, such

as with the Dirichlet prior, the dynamics update may be significantly more compli-

cated and restrictive than in the Kalman setting. For example, the reason that the

Kalman prediction equations are in closed form are because the prior distribution is

also conjugate to the propagation model (in particular, the process noise), which af-

fords equally simple hyperparameter updates. The addition of an equivalent process

noise to a probability vector in the Dirichlet case is not so well defined. Scaling the

hyperparameter counts by a factor may be the best approach (see [54]), though it

does not correspond to a multinomial update as a parallel to Kalman filtering may

suggest. Further, in the problem of repeated estimation (as in the search map appli-

cation of Chapter 5), any propagation model may complicate the knowledge of shared

information. For example, if the probability of one cell of a search map diffuses into

a neighboring cell, how much, if any, of the shared information travels with it and

how is it accounted for in the subsequent consensus problem? What about if com-

munication is sparse and multiple agents have diffused probabilities incorrectly due

to insufficient knowledge of the other agents’ maps?
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Appendix A

Bayesian Derivation of the Kalman

Filter

The following derivation is adapted from [46]. The Bayesian formulation of the

Kalman Filter utilizes two key properties prior to making any distinction on the dis-

tribution of the random variables involved. First is the Markov property, whereby the

combined information available from a history of states, {x0, ..., xn}, or measurements,

{z0, ..., zn}, is entirely encapsulated by the most recent state, xn, or measurement, zn.

The second property is that of conditional independence, where p(xk+1|xk) is inde-

pendent of p(xj+1|xj) for all j 6= k, and p(zk|xk) is independent of everything else,

except for p(zj|kj) when j = k. Using these properties and knowledge of p(xk+1|xk)
and p(zk|xk) ∀ k from the update and measurement equations

xk+1 = f(xk, wk, tk, tk+1) E[wkw
T
j ] = 0 if k 6= j (A.1)

and

zk = g(xk, vk, tk) E[vkv
T
j ] = 0 if k 6= j (A.2)

we can derive the Bayesian update for p(xn+1|Zn = {z1, ..., zn}) as:

181



p(xn+1|Zn) =

∫

x0,...,xn

p(x0, ..., xn, xn+1|Zn)dx0 · · · dxn

=

∫

x0,...,xn

p(x0, ..., xn, xn+1)p(Zn|x0, ..., xn, xn+1)/p(Zn)dx0 · · · dxn

∝
∫

x0,...,xn

p(xn+1|x0, ..., xn)p(x0, ..., xn)p(Zn|x0, ..., xn, xn+1)dx0 · · · dxn

=

∫

x0,...,xn

p(xn+1|xn)p(x0, ..., xn)p(Zn|x0, ..., xn, xn+1)dx0 · · · dxn

=

∫

x0,...,xn

p(xn+1|xn)p(xn|x0, ..., xn−1)p(x0, ..., xn−1)

× p(Zn|x0, ..., xn, xn+1)dx0 · · · dxn
...

=

∫

x0,...,xn

p(xn+1|xn)
n∏

i=1

p(xi|xi−1)p(x0)p(Zn|x0, ..., xn, xn+1)dx0 · · · dxn

=

∫

x0,...,xn

p(xn+1|xn)

(
n∏

i=1

p(xi|xi−1)

)
p(x0)

(
n∏

i=1

p(zi|xi)
)
dx0 · · · dxn

=

∫

x0,...,xn

p(xn+1|xn)

(
n∏

i=1

p(zi|xi)p(xi|xi−1)

)
p(x0)dx0 · · · dxn

=

∫

xn

dxn

(∫

x0,...,xn−1

p(xn|xn−1)

(
n−1∏

i=1

p(zi|xi)p(xi|xi−1)

)
p(x0)

)

× p(xn+1|xn)p(zn|xn)dx0 · · · dxn−1

=

∫

xn

p(xn|Zn−1)p(xn+1|xn)p(zn|xn)dxn (A.3)

The above can be modified into two recursive functions:

Predict: p(xk+1|Zk)︸ ︷︷ ︸
1

=

∫
dxkp(xk+1, xk|Zk)

=

∫
p(xk+1|xk, Zk)p(xk|Zk)dxk

=

∫
p(xk+1|xk) p(xk|Zk)︸ ︷︷ ︸

2

dxk
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and

Update: p(xk|Zk)︸ ︷︷ ︸
2

= p(xk|Zk−1, zk)

∝ p(zk|xk, Zk−1)p(xk|Zk−1)

= p(zk|xk) p(xk|Zk−1)︸ ︷︷ ︸
1

Up to this point, we have made no specification of the types of distributions used

for any of these random variables except that the ‘noises’ wk and vk are uncorrelated

(and hence that the propagation and measurements are conditionally independent),

and that the state follows the Markov property. Given this, the random variables

xk, zk, wk, and vk could be derived from any possible distribution that satisfy the

aforementioned constraints and update equations.

In the framework of a Bayesian likelihood update, Equation A.3 uses the prior

p(xk|Zk−1), likelihood function p(zk|xk), and posterior p(xk|Zk) ∝ p(xn|Zn−1)p(zn|xn).

This posterior is then propagated to a new prior estimate p(xk+1|Zk) by integrating

the posterior state estimate times the transition probability across all possible values

of the intermediate state xn (the current derivation effectively calculates the update

first, then addresses the propagation step).

Let G(x,Σ, µ) = G(µ,Σ, x) be the Gaussian:

1

(2π)n/2(det[Σ])1/2
e

1
2

[x−µ]T Σ−1[x−µ]

where n is the dimension of x, and all matrices are of such dimension that the above is

a valid statement. Reference [94] shows that the product of two particular Gaussian

functions can be given by:

G(x, P, µ)G(z, R,Hx) =G(x,Λ, λ)G(z,R +HPHT , Hµ)

Λ =(HTR−1H + P−1)−1

λ =µ+ (HTR−1H + P−1)−1HTR−1(z −Hµ)

183



If we let the noises wk and vk be normally distributed with mean 0 and covariance

Qk and Rk, respectively, then Equations A.1 and A.2 define the random variables

xk+1 and zk in terms of these noises. Additionally, if we assume linear dynam-

ics in the propagation and measurement functions of the form f(xk, wk, tk, tk+1) =

Φ(tk+1, tk)xk + Γkwk and g(xk, vk, tk) = Hkxk + vk, then we observe that

xk+1|xk ∼N (Φ(tk+1, tk)xk,ΓkQkΓ
T
k )

zk|xk ∼N (Hkxk, Rk)

where Φ(tk+1, tk) will henceforth be denoted Ak, as is commonly done, and signifies

the deterministic portion of the state transformation. From these, we get expressions

for some of the probabilities used earlier as:

p(xk+1|xk) =G(xk+1,ΓkQkΓk, Akxk)

p(zk|xk) =G(zk, Rk, Hkxk)

Defining z0 = ∅ → Z0 = ∅, we let p(·|Z0) = p(·|z0) = p(·). Finally, let the initial

estimate of x be x̂0|0, with an associated covariance P0|0. The Bayesian equations

above can then be written as:

Predict: p(x1|Z0) =

∫
dx0p(x1|x0)p(x0|Z0)

=

∫
p(x1|x0)p(x0)dx0

=

∫
G(x1,Γ0Q0Γ0, A0x0)G(x0, P0|0, x̂0|0)dx0

= G(x1,Γ0Q0Γ0 + A0P0|0A
T
0 , A0x̂0|0)

= G(x1, P1|0, x̂1|0)
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Update: p(x1|Z1 = {z1}) = p(z1|x1)p(x1|Z0)

= G(z1, R1, H1x1)G(x1, P1|0, x̂1|0)

= G(x̂1|1, P1|1, x1)G(z1, R1 +H1P1|0H
T
1 , H1x̂1|0)

∝ G(x1, P1|1, x̂1|1)

Where we turn to proportionality at the end since the dropped term is constant and

defined as the value required to normalize the remaining distribution. Finally, we

have introduced x̂1|1 and P1|1, which are found in the general case as:

Pk|k =(HT
k R
−1
k Hk + P−1

k|k−1)−1

x̂k+1|k+1 =Akx̂k|k + (HT
k+1R

−1
k+1Hk+1 + P−1

k+1|k)
−1HT

k+1R
−1
k+1(zk+1 −Hk+1Akx̂k|k)

x̂k+1|k+1 =x̂k+1|k + Pk+1|k+1H
T
k+1R

−1
k+1(zk+1 −Hk+1x̂k+1|k)

where, additionally, Pk+1|k+1H
T
k R
−1
k is called the Kalman gain, Kk. Thus, we have

arrived at the common update equations of the Kalman Filter, while the prediction

equations are given by:

Pk+1|k =AkPk|kA
T
k + ΓkQkΓ

T
k

x̂k+1|k =Akx̂k|k

In notation similar to that used for the covariance, the mean of xk|Zk−1, is written

as x̂k|k−1, and similarly E[xk|Zk] is denoted x̂k|k.

In the extension to the multi-sensor case, consider now Ns total sensors, of which

only m sensors i = {Ik(1), ..., Ik(m)} are active at time t. Each sensor has its own

measurement equation, given by zik = g(xk, v
i
k, tk) E[vik(v

j
l )
T ] = Ri

kδ(tk − tl)δ(i− j)
(ie. all sensing noises are i.i.d. and uncorrelated in time as well as between sensors).

If, in the above derivation, we let zk denote the set of all measurements made at time

k, such that zk = {zik} ∀i ∈ Ik, and utilizing our assumption of conditional indepen-

dence through uncorrelated white noise, we can obtain a new measurement proba-
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bility p(zk|xk) =
∏

i∈Ik p(z
i
k|xk), where now each p(zik|xk) ∼ N(H i

kxk, R
i
k). Thus, the

centralized update equations will change to:

p(xk|Zk = {z1, ..., zk}) = p(zk|xk)p(xk|Zk−1)

=
∏

i∈Ik

p(zik|xk)p(xk|Zk−1)

=
∏

i∈Ik

G(zik, R
i
k, H

i
kxk)G(xk, Pk|k−1, x̂k|k−1)

= G







z
Ik(1)
k

...

z
Ik(m)
k


 ,




R
Ik(1)
k · · · 0
...

. . .
...

0 · · · R
Ik(m)
k


 ,




H
Ik(1)
k

...

H
Ik(m)
k


xk




×G(xk, Pk|k−1, x̂k|k−1)

= G(zk,Rk,Hkxk)G(xk, Pk|k−1, x̂k|k−1)

= G(xk, Pk|k, x̂k|k)G(zk,Rk + HkPk|k−1H
T
k ,Hkx̂k|k−1)

∝ G(xk, Pk|k, x̂k|k)

where Pk|k and x̂k|k are now given by:

Pk|k =
(
P−1
k|k−1 + HT

kR−1
k Hk

)−1

=



P−1
k|k−1 +




H
Ik(1)
k

...

H
Ik(m)
k




T 


R
Ik(1)−1

k · · · 0
...

. . .
...

0 · · · R
Ik(m)−1

k







H
Ik(1)
k

...

H
Ik(m)
k







−1

=

(
P−1
k|k−1 +

∑

i∈Ik

H iT

k R
i−1

k H i
k

)−1

=

(
P−1
k|k−1 +

∑

i∈Ik

Iik

)−1

(A.4)
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x̂k|k = x̂k|k−1 + Pk|kH
T
kR−1

k (zk −Hkx̂k|k−1)

= Pk|k

(
P−1
k|k x̂k|k−1 + HT

kR−1
k zk −HT

kR−1
k Hkx̂k|k−1

)

= Pk|k

((
P−1
k|k −HT

kR−1
k Hk

)
x̂k|k−1 + HT

kR−1
k zk

)

= Pk|k

(
P−1
k|k−1x̂k|k−1 +

∑

i∈Ik

H iT

k R
i−1

k zik

)

= Pk|k

(
P−1
k|k−1x̂k|k−1 +

∑

i∈Ik

iik

)
(A.5)

If we let Yk|k = P−1
k|k and yk|k = Yk|kx̂k|k, then Equations A.4 and A.5 become:

Yk|k = Yk|k−1 +
∑

i∈Ik

Iik

yk|k = yk|k−1 +
∑

i∈Ik

iik

The above equations are representative of the update equations for the Information

Filter, where I and i are the measurement covariance matrix and measurement vector,

respectively. The Information Filter is used as the framework for both the distributed

Kalman filter [34] and the Kalman consensus filter [4], where both assume that, in

place of an explicit measurement equation, the update step is obtained through the

aggregation of the state estimates of the various agents.

A.1 Distributed Kalman Filter

The distributed Kalman filter performs a local Bayesian state and covariance update

with local information, then augments the local estimates with information from

the other sensors. This arrangement assumes a fully connected network among all

sensing nodes. The transmitted information is equivalent to the measurement vector,

but rearranged as ijk+1 = P̃ j−1

k+1|k+1x̃
j
k+1|k+1−P

j−1

k+1|kx̂
j
k+1|k, where (̃·) is the local updated

value, and the remaining terms are the propagated fused values from the previous

iteration. Similarly, the covariance update is obtained with a transformation of the I
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matrix to Ijk = P̃ j−1

k+1|k+1 − P
j−1

k+1|k. This requires that the measurements are all made

synchronously and reported with no communication delays.

A.2 Kalman Consensus Filter

The Kalman consensus filter is used as a means by which multiple agents can come

to agreement on a parameter that is assumed to be the mean of a normal distribution

with known covariance. This assumption permits a conjugate prior normal distribu-

tion that defines a belief on the parameter through an estimated mean and covariance.

In other words, each agent is trying to come to agreement on the value x, and each

agent has an associated estimate of the value, µix, and a covariance in the estimate,

Σi
x. The outcome of the filter is the mean of a Gaussian that obtains the highest a

posteriori estimate of x given measurements µix with covariances Σi
x, which is denoted

x?k. This value is assumed to have trivial dynamics but perturbed by process noise,

such that x?k+1 = x?k+wk, wk ∼ N (0, Qk). If we let zik = x?k+(µixk
−x?k+νijk ) = x?k+vik,

where νijk ∼ N (0,Ωij
k ), we can define H i

k = 1 and E[vikv
iT

k ] = Ri
k = diag(P i

k + Ωij
k )

where P i
k = E[(µixk

−x?k)(µixk
−x?k)T ]. Subbing these values into the previous equations

leads to the filter.
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