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 Abstract 
 
Polyelectrolyte multilayers (PEMs) were fabricated via the layer-by-layer (LbL) 
deposition process, incorporating hydrolytically degradable poly(β-amino esters) to result 
in biodegradable PEMs that can release active ingredients in a dosage- and rate-tunable 
fashion.  Specifically, PEMs incorporating several types of antibiotics, ranging from 
aminoglycosides to antimicrobial peptides (AmPs), were fabricated and characterized; 
these coatings are intended for applications onto biomedical device surfaces for infection 
control.  In vitro efficacy against Staphylococcus aureus and nontoxicity towards pre-
osteoblasts MC3T3 were demonstrated.  In vivo evaluations involving a rabbit 
osteomyelitis model were undertaken as well. 
 
Aside from the development of antimicrobial PEMs, additional projects pursued under 
this thesis, all in the context of PEM-based drug delivery, include [1] demonstration of 
the sequential release of two species, [2] assessment of the in vitro activity of anti-
coagulant films, [3] delivery of siRNAs, [4] evaluation of the biocompatibility of poly(β-
amino esters), [5] incorporation of cyclodextrins for the purpose of small molecule 
delivery, [6] incorporation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles 
encapsulating gentamicin, [7] evaluation of film sterilizability via FDA-approved 
methods, and [8] design and characterization of a multi-drug coating for orthopedic 
implants for dual antimicrobial and tissue regenerative actions. 
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Chapter 1.  Introduction 

*Portions adopted with permission from “Polyelectrolyte Multilayers for Tunable 
Release of Antibiotics” by Helen F. Chuang, Renee C. Smith, and Paula T. Hammod.  
Biomacromolecules, 9 (6), 1660–1668, 2008. 10.1021/bm800185h, © 2008 American 
Chemical Society. 
 

1.1 Controlled Release 

Controlled release is defined as drug delivery at a predetermined rate for an 

extended period of time, typically 12 hrs or longer1.  Controlled release can 

improve efficacy and decrease toxicity/side effects by holding the drug 

concentration at the optimal level.  It can also reduce the required number of drug 

administrations, thus improving patient compliance.  Consequently, controlled 

release has been a centerpiece of drug delivery research since its introduction 30 

years ago2.   In particular, polymer-based systems have dominated research in 

controlled release due to the functionalizability, blendability, cost and ease of 

synthesis, and a well-established set of research tools for these materials.   

 

There are two types of controlled release, temporal and distributional2.  In temporal 

control, the drug is delivered over an extended duration or at specific times.  Such 

temporal control is especially beneficial for drugs that are rapidly metabolized or 

have a very narrow window of efficacious concentrationa.  In distributional control, 

                                                 
a For example, opioid painkiller3. Falk, R.; Randolph, T. W.; Meyer, J. D.; Kelly, R. M.; Manning, M. C., 
Controlled release of ionic compounds from poly (-lactide) microspheres produced by precipitation with a 
compressed antisolvent. Journal of Controlled Release 1997, 44, (1), 77-85. 4. Johnson, O. L.; Cleland, J. 
L.; Lee, H. J.; Charnis, M.; Duenas, E.; Jaworowicz, W.; Shepard, D.; Shihzamani, A.; Jones, A. J. S.; 
Putney, S. D., A month-long effect from a single injection of microencapsulated human growth hormone. 
Nature Medicine 1996, 2, (7), 795-799, 5. Chluba, J.; Voegel, J.-C.; Decher, G.; Erbacher, P.; Schaaf, P.; 
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the drug is delivered to a precise region in the body (e.g. a tumor, the intestines, or 

a surgical wound).  Such targeting is needed if the drug causes major side reactions 

to other parts of the body or if the drug cannot reach the target site by natural 

distributionb.  Distributional control can be achieved by either an implant at the 

site10, 13-15 or a colloidal polymeric formulation capable of targeting the site of 

action16-19.  Aside from controlling the release of drugs, polymeric encapsulation 

can also raise efficacy by preserving the active form of the drug within its 

protective microenvironment20. 

 

Polymer-based controlled release systems can be further distinguished based on 

their mechanisms of release1.  The first is diffusion, which is the dominant 

mechanism for such systems as drug encapsulation within polymer capsules16-18, 21, 

22 or uniform drug dispersion within polymer matrices13.  The second is chemical 

reaction, such as degradation of the polymer by solvents23-25 or enzymes26.  The 

third is solvent activation, in which the drug is entrapped in the polymer until either 
                                                                                                                                                 
Ogier, J., Peptide Hormone Covalently Bound to Polyelectrolytes and Embedded into Multilayer 
Architectures Conserving Full Biological Activity. Biomacromolecules 2001, 2, (3), 800-805, 6. Misra, 
G. P.; Siegel, R. A., New mode of drug delivery: long term autonomous rhythmic hormone release across a 
hydrogel membrane. Journal of Controlled Release 2002, 81, (1-2), 1-6., and vaccines7. McGee, J. P.; 
Davis, S. S.; O'Hagan, D. T., The immunogenicity of a model protein entrapped in poly(lactide-co-
glycolide) microparticles prepared by a novel phase separation technique. Journal of Controlled Release 
1994, 31, (1), 55-60, 8. Qiu, L. Y.; Zhu, K. J., Design of a core-shelled polymer cylinder for potential 
programmable drug delivery. International Journal of Pharmaceutics 2001, 219, (1-2), 151-160. can all 
benefit from temporal control. 
b Examples are chemotherapeutic agents9. Dang, W.; Colvin, O. M.; Brem, H.; Saltzman, W. M., 
Covalent coupling of methotrexate to dextran enhances the penetration of cytotoxicity into a tissue-like 
matrix. Cancer Research 1994, 54, (7), 1729-1735, 10. Brem, H.; Gabikian, P., Biodegradable 
polymer implants to treat brain tumors. Journal Of Controlled Release: Official Journal Of The Controlled 
Release Society 2001, 74, (1-3), 63-67. and anti-inflammatory11. Conforti, A.; Bertani, S.; 
Lussignoli, S.; Grigolini, L.; Terzi, M.; Lora, S.; Caliceti, P.; Marsilio, F.; Veronese, F. M., Anti-
inflammatory activity of polyphosphazene-based naproxen slow-release systems. Journal of Pharmacy and 
Pharmacology 1996, 48, (5), 468-473, 12. Benkirane-Jessel, N.; Schwinte, P.; Falvey, P.; Darcy, R.; 
Haikel, Y.; Schaaf, P.; Voegel, J.-C.; Ogier, J., Build-up of Polypeptide Multilayer Coatings with Anti-
Inflammatory Properties Based on the Embedding of Piroxicam-Cyclodextrin Complexes. Advanced 
Functional Materials 2004, 14, (2), 174-182. drugs.   
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the solvent swells the polymer6, 27 or water imbibement generates osmotic 

pressure28.  The fourth is by externally applied stimuli, such as electrochemical29, 

magnetic30, or ultrasonic controls31.  Mechanisms one through three are passive 

controls because the drug release cannot be externally intervened.  On the other 

hand, releases by external stimuli are active controls.  While active controls offer 

the flexibility of human intervention, they also carry the drawback of having to 

implement the control device (e.g. a voltage generator), which could be 

inconvenient and uncomfortable to the patient.   

 

1.2 Surface release from orthopedic implants: 

an unmet need in controlled release 

Arthroplasty, or the surgical repair of a joint, is often performed on disabled 

arthritic patients and those who suffer from other forms of bone degeneration.  

Total joint replacement, particularly of the hip and knee, has become one of the 

most frequent prosthetic surgeries due to its success in restoring mobility to these 

patients.  It is estimated than a million joint placements are performed worldwide 

each year32, about half of which are in the U.S..  Unfortunately, due to surgical and 

implant-derived complications, about 10% such joint replacements eventually fail 

and require a revision arthroplasty33, in which the patient may undergo more than 

two additional surgeries.  Such revisions cost over $1 billion yearly in the U.S.34, 

and the revision cost to the patient can more than double that of the primary 

arthroplasty35.  Therefore, reductions to primary failures and improvements 

revision success are of utmost importance. 
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There are many sources to implant failures, including infection32, 33, 36, 37, aseptic 

loosening33, and long term implant rejection.  Other complications that do not 

directly contribute to implant removal but still need to be addressed are pain, 

inflammation, and other discomforts to the patient.  Additionally, implants have 

been known to cause thromboembolism (blood clotting and embolic migration)38-40, 

ischemia (lowered blood flow) to the lower extremities41, and tumor42, 43 or cyst44 

formations. 

1.2.1 Current implant surface treatment options 

There are several technologies currently available for joint implant surface 

modification to address some of the problems above.  For example, Implant 

Sciences Corp. (Wakefield, MA) offers surface treatments to implants to impart 

specific properties such as durability, adhesion, and ease of visualization. A 

similar technology is practiced by Spire Biomedical Corp. (Bedford, MA) which 

uses ionic treatment of the surface via processes such as ionic bombardment.  The 

surface treatment methods are highly directional and cannot produce uniform 

surface modification on a highly porous or otherwise complex surface.  Such 

surface treatments also cannot release therapeutic agents to address complications 

such as pain and infection.   

 

An emerging technology for implant surface treatment is exemplified by Bacterin, 

Inc. (Belgrade, MT), which developed block copolymers to fabricate thin-film 

coatings loaded with anti-microbial agents that can be applied to orthopaedic 
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implants and other medical devices.  However, this block copolymer based 

coating cannot sequentially release multiple therapeutics, and the copolymer 

casting process may involve harsh solvents or operating conditions that can 

significantly inactivate many drugs. 

 

1.2.2 Current sequential release methods 

Several devices do exist which can deliver multiple drugs sequentially.  The most 

prominent example is the microchip delivery device pioneered by the Langer 

group 45-48.  These microchips have multiple microreservoirs, each covered by a 

separate membrane that can be independently dissolved to release the drug 

content underneath.  The initial prototypes were silicon microchips with gold 

membranes that required external electrochemical stimuli to dissolve 47, 48. 

Current efforts are directed towards bioresorbable microchips made from 

poly(lactic acid) (PLA) with poly(lactic-co-glycolic acid) (PLGA) membranes 46 

that passively dissolve, eliminating the needs for external interfaces and surgeries 

to remove the device.  While these microchips can release multiple agents in a 

sequential, controlled manner, they cannot be deposited onto implants, stents, or 

sutures.  Thus, their implementation would require the insertion of an extra 

foreign object into the patient.  Furthermore, the microchips cannot sustain release 

over a large or extended surface area, and it would be difficult to implement them 

in oral or intravenous dosage forms.  Last but not least, these microchips require 

clean-room fabrication that is laborious and costly. 
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Other biodegradable, multi-agent, and sequential delivery systems have been 

investigated, including a dual-encapsulation polymeric matrix 15, 49 and double-

layered gelatin coatings 50.  The former system involves encapsulating one drug 

agent directly into a PLGA matrix while the second agent is pre-encapsulated in 

microspheres that are in turn incorporated into the said matrix.  The latter system 

is composed of two-layer heterogeneously-loaded and crosslinked gelatin 

coatings.  While both were demonstrated to release two agents in a controlled, 

sequential fashion, neither appears capable of delivering more than two agents, 

and, similar to the bioresorbable microchips, these systems also lack conformality 

and ease of fabrication.  In addition, there are fewer degrees of control for the 

release profiles. 

 

1.3 Layer-by-layer (LbL) assembly as a solution for sequential release 

1.3.1 Introduction 

Sequential, alternating build-up of multilayers based on electrostatic interactions 

was first conducted in 1991 by Decher et al. with bipolar amphiphiles51.  They 

subsequently pioneered the use of polyelectrolytes (PELs), polymers with 

repeated charged units, for multilayer assembly52.  Today, the process of alternate 

depositions of oppositely charged PELs to build multilayers is often referred to as 

layer-by-layer (LbL) self-assembly. Aside from the ease of this technique, LbL 

assembly offers flexibility in substrate geometry and the amenability for multi-

functionalization by other molecules, through either covalent attachment to the 
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PEL building block or nonspecific adsorption during the buildup process.   

Furthermore, film properties such as thickness and density can be easily tuned by 

factors such as the pH and ionic strength of the deposition buffer.  In short, LbL 

thin films can be constructed with nanoscaled control over surface properties, 

morphology, and molecular architecture53. 

 

LbL films have numerous applications, including gas separation54, 

electrochromics55, 56, nanoreactors57, sensors58-61, solid-state electrolytes62, and 

nanomechanical thin films63.   LbL assembly on the mesoscale, using 

microparticles such as polystyrene latex beads64, 65 and metal particles66, 67, led to 

the creation of high-surface-area thin films, electromagnetically active films, and 

catalytic films.  LbL assembly can also be used to create patterned films68 and 3D 

structures69, eliminating the labor and expense of photolithography.  Aside from 

traditional synthetic polymers, one can fabricate LbL thin films using 

biopolymers such as proteins58, 70, 71, nucleic acid61, and even charged 

bionanoparticles such as viruses and lipid vesicles 22.  This opens the door to 

countless biological applications including arterial wall repair72, patterned cell 

arrays73, bioactive coatings5, biosensors58-61, 71, and ultimately drug delivery.   

1.3.2 Applications to drug delivery 

As LbL films are conformal and can be deposited onto any surface geometry, 

applications can range from coated small particles for oral or intravenous 

administrations to coated implants, stents, and sutures for localized delivery.   
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1.3.2.1 Medical devices 

One of the most promising applications, in terms of both medical and 

commercial impacts, is functionalization of orthopaedic implant surfaces, as 

discussed previously. Two implant failures that an LbL coating can readily 

address are infection and aseptic loosening.  In fact, the use of PEMs as wear-

resistant coatings for orthopaedic implants has already been explored by Cohen 

et al. at MIT74, and their tested (PAA/PAH) multilayers can be incorporated into 

our device as a non-degradable base layer.  This permanent base layer will 

reduce incidences of aseptic loosening.  In terms of antibiotic elution, two 

prominent candidates are gentamicin and tobramycin75, both of which are 

cationic polysaccharides and can be incorporated in our model PEM via the 

construction of heterostructures or by pre-encapsulation into nanocomposites.  

The conformality of LbL deposition will ensure thorough coverage of all 

microscopic crevices of the implant surface, addressing the previously 

unsolvable problem of bacterial growth within these compartments. 

 

On top of reducing implant-associated illnesses, we can incorporate growth 

factors into our multilayers to promote bone regeneration and implant 

integration.  Both the osteoinductive agent BMP-2 (bone morphogenetic protein-

2)76-81 and the angiogenetic agent VEGF (vascular endothelial growth factor)82-85 

have been well-studied in vitro and in vivo to have positive therapeutic impact 

on bone regeneration.  They are both net positively charged at pH 7.4, so they 

may be incorporated via heterostructures.  The incorporation of large 
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biomolecules such as proteins into PEMs is well-documented in the literature 58, 

70, 86.  We can also implement proteins via pre-encapsulation by PLGA. 

 

Other potential applications include improved drug-eluting stents, patches or 

implants to aid wound healing, intraocular lens for cataract treatment, and local 

cancer therapy.  Current drug-eluting stents can only release one drug, typically 

a cytostatic agent to prevent restenosis.  We can improve upon this by delivering 

a more complex schedule of drugs, beginning with antibiotics plus anti-

inflammatories (immediate to several days), followed by cytostatic agents (up to 

6 months), and possibly concluding with a gene therapy to reprogram the arterial 

cell tissue for better long term response (weeks to months).  In terms of 

therapeutic angiogenesis, a sequential delivery of vascular endothelial growth 

factor (VEGF)-165 followed by platelet-derived growth factor (PDGF)-BB was 

found to be more effective than either alone or both simultaneously 49.  

Therefore, we could make wound dressings or subcutaneous implants which 

deliver a complex schedule of antibiotics, anti-inflammatory agents, and 

sequentially angiogenic factors. 

 

Another area that may benefit from sequential delivery of multiple drugs is 

recovery from cataract surgery.  Cataract is a clouding of the normally clear lens 

of the eye, and the only treatment is to surgically remove the cataract and 

replace it with an intraocular lens (IOL) implant.  Patients are usually given eye 

drops containing anti-inflammatories and immunosuppressants.  However, 
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proper administration of these agents requires high patient compliance.  A 

practical alternative is to coat the IOL for immediate and concurrent release of 

dexamethasone (anti-inflammatory) 87 and cyclosporine or azathioprine 

(immunosuppressant) 88, possibly followed by a slower, sustained release of 

pilocarpine to suppress development of glaucoma, which is a common 

complication of cataract surgery.  Such a self-dosing IOL will eliminate issues 

of patient compliance or patient error (e.g. applying the wrong amount of eye 

drops) and can also increase therapeutic efficacy by maintaining a constant 

release at the surgical site. 

1.3.2.2 Other localized releases 

Perhaps the most prominent example of localized cancer treatment is the FDA-

approved Gliadel® wafer.   It is used to treat high-grade malignant gliomas (a 

form of brain tumor) and implanted along the floor and walls of the cavity left 

by tumor removal.  Gliadel® can only deliver one chemotherapeutic agent, 

carmustine, or BCNU.  While that is effective against malignant gliomas, other 

forms of cancer may require a complex schedule of multiple agents for optimal 

treatment.  For example, it was found that for locoregionally advanced 

nasopharyngeal carcinoma (an upper respiratory tract cancer), sequential 

administrations of paclitaxel and carboplatin, followed by cisplatin and 

concurrent radiotherapy, may be optimal 89.  Ovarian cancer has also been found 

to require sequential administrations of multiple active agents90.   
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1.3.2.3 Oral and IV applications 

Aside from large-area coatings on implants or patches, LbL films can also be 

deposited onto pills or nanospheres for oral and intravenous administrations, 

allowing the LbL technology to be applied to drugs that need to be systemically 

rather than locally administered.  For example, the DTP (diphtheria, tetanus, and 

pertussis) vaccine is given as a multi-dose series to an infant at 2, 4, 6, and 15-

18 months of age, with a final follow-up at 4-6 years of age 91.  To increase 

parental compliance and reduce stress on infants, one could administer a single 

shot of LbL-coated nanospheres that would automatically release the antibodies 

with the desired schedule of dosage.  Aside from illustrating flexibility in the 

route of delivery, this example also highlights the potential impact LbL films 

can make by delivering a single agent with a complex, controlled profile; its 

versatility is not restricted to the delivery of multiple agents.  These complex 

profiles may involve combinations of distinct profiles, such as constant, 

pulsatilec, and periodic, all potentially achievable by an LbL device through the 

proper layerings of appropriate PELs. 

                                                 
c Another example of single-drug delivery with complex profile is pulsatile release, by which pulses of 
drugs are delivered at variable time intervals.  This release method may be superior in some cases because 
it better mimics the way human body produces certain hormones48. Santini, J. T.; Richards, A. C.; 
Scheidt, R.; Cima, M. J.; Langer, R., Microchips as Controlled Drug-Delivery Devices. Angewandte 
Chemie International Edition 2000, 39, (14), 2396-2407..  For example, plasma insulin concentration has 
been found to pulsate with a natural period of about 14 minutes92. Matthews, D. R.; Lang, D. A.; 
Burnett, M. A.; Turner, R. C., Control of pulsatile insulin secretion in man. Diabetologia 1983, 24, (4), 
231-237..  Hormones of the anterior pituitary gland, such as gonadotropin (regulates reproduction), are also 
produced by the body in a pulsatile fashion48. Santini, J. T.; Richards, A. C.; Scheidt, R.; Cima, M. 
J.; Langer, R., Microchips as Controlled Drug-Delivery Devices. Angewandte Chemie International Edition 
2000, 39, (14), 2396-2407..  Pulsatile drug administration has found success in treating women with 
gonadotropin releasing hormone (GnRH) deficiency, who cannot ovulate normally93. Reid, R. L.; 
Fretts, R.; Van Vugt, D. A., The theory and practice of ovulation induction with gonadotropin-releasing 
hormone. American Journal Of Obstetrics And Gynecology 1988, 158, (1), 176-185..  In fact, therapies 
involving constant sustained release of GnRH has been found to actually suppress gonadotropin release94.
 Kuret, J. A.; Murad, F., In Goodman and Gilman's the Pharmacological Basis of Therapeutics, 8 
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1.3.3 Beyond drug delivery: degradable LbL films for other applications 

The study of degradable LbL multilayers can benefit fields far beyond 

biomedicine.  One example is the field of agriculture, which can benefit from 

controlled release of pesticides, nutrients, and growth promoters into soils.  One 

could make LbL-coated particles that release a complex schedule of chemicals 

appropriate for a given crop.  Efforts are already underway in terms of polymer 

delivery of pesticides 95, but current systems lack the multi-agent and conformal 

versatility of degradable LbL coatings.  Similar to agriculture, the food and 

cosmetic industry has employed controlled release for such products as flavors, 

fragrances, and colorants 96-98.  The LbL technology will open the door to such 

novel products as a “chameleon perfume” that alters its scent throughout the day 

or an all-in-one blemish cream which sequentially delivers the exfoliant, 

antibiotic, and anti-inflammatory for optimal acne treatment.   

 

Aside from contributing to a myriad of potential applications, the knowledge 

gained from studying degradable multilayers can be invaluable to the entire field 

of LbL self-assembly or even to polymer science in general.  The underlying 

science of molecular interactions is fundamental to many disciplines, and full 

comprehension of it will have far-reaching contributions. 

 

                                                                                                                                                 
ed.; Gilman, A. G.; Rall, T. W.; Niles, A. S.; Taylor, P., Eds. McGraw-Hill: New York, 1990; pp 1334-
1360..  Thus, pulsatile release profiles are essential for certain drug deliveries, and the LbL architecture can 
deliver such a profile by alternating high-loading layers with empty spacer layers.   
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1.3.4 Previous work in LbL drug delivery 

LbL assemblies for drug delivery have already been considered by many groups 

12, 17, 19, 25, 99-103.  However, each of these existing systems has a major drawback.  

For example, systems from Dubas et al.100 and Schuler et al.17 require un-

physiologically high salt concentrationsd to degrade, while Sukhishvili et al.’s 

polymers require un-physiological pH (3.6-6.9) to degrade25, 104.  Several others 

suffer from undesirable release behaviors such as unsustainable release (i.e. less 

than one hour)99 or initial burst19.  Some require specific enzymes for polymer 

degradation101, a characteristic which could be advantageous under very particular 

delivery needs but is unsuitable for general applications.  Most importantly, none 

of these systems addresses the delivery of multiple agents in a sequential, 

controlled manner. 

 

1.4 Overview of Thesis 

1.4.1 Background on materials and methods 

Each LbL assembly or polyelectrolyte multilayers (PEMs) requires a prudent 

selection of the polyanion(s) and polycation(s) to be deposited.  For my initial 

studies, the polyanion will be the drug to be delivered (and will thus be varied 

from one study to another), while the polycation will always be a member of the 

hydrolytically degradable poly(β-amino ester) family serving as the structural 

backbone.  The polycation will be referred to as “Poly X” for short, where X is a 

                                                 
d >0.6M NaCl for Dubas et al. and >5M NaCl for Schuler et al. 
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number that denotes a particular chemistry.  Error! Reference source not found. 

shows an example of Poly X, in particular Poly 1.  Due to the hydrolytic 

degradability of Poly X, LbL films formulated with Poly X will be a passive 

release system via the mechanism of chemical reaction, with both temporal and 

spatial controls.  Temporal control comes from the chemistry of Poly X and the 

process by which the LbL films are deposited, while spatial control comes from 

the choice of substrate being deposited, be it a medical device, patch, cather, pill, 

or even micro- and nanoparticles. 

 

Poly X is chosen as our model structural component due to its lack of 

cytotoxicitye and its passive degradability under physiological conditions23.  

Many polycations that have been traditionally popular as transfection vectors, 

such as poly(lysine) and poly(ethylene imine) (PEI), have been found to be 

somewhat cytotoxic105, 106, while others are not readily biodegradable107.   

Poly X was developed by Lynn and Langer23 in an effort to create a DNA delivery 

vehicle that was not only biocompatible and physiologically degradable but also 

easily synthesizedf.  Poly X was among a series of three poly(β-amino esters) 

synthesized in that endeavor.  Its synthesis is based on the conjugate addition of 

bis(secondary amine) monomers to diacrylate esters.  This procedure requires no 

independent preparation of specialized monomers or the use of expensive coupling 

                                                 
e As determined by the MTT/thiazolyl blue dye reduction assay using the NIH 3T3 cell line.; see Lynn and 
Langer 23. Lynn, D. M.; Langer, R., Degradable Poly(amino esters): Synthesis, Characterization, 
and Self-Assembly with Plasmid DNA. J. Am. Chem. Soc. 2000, 122, (44), 10761-10768. . 
f Poly 1 was found to condense plasmid DNA into nanometer-sized structures, with transfection efficiencies 
exceeding those of PEI under certain conditions23. Ibid., as determined using luciferase (Promega) and 
cell protein assay (Pierce) kits.  However, we are not concerned with the gene delivery potential of Poly 1 
at this point. 
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agents, these being drawbacks to other attractive drug-delivering polycations24, 108, 

109.  In addition, both monomers are commercially available in a variety of chemical 

structures, allowing for an easy “mix and match” synthesis to create a large 

combinatorial library of poly(β-amino esters), each with a distinct backbone 

structure.  Such a library would allow for rapid screening for a Poly X  with a 

particular desired property. 

  

Poly X degrades exclusively to 1,4-butanediol and a bis(β-amino acid)(Error! 

Reference source not found.), neither of which is cytotoxic23.  As an example of 

Poly X’s hydrolytic degradability, free Poly 1 was found to degrade completely 

within 5 hrs in PBS at 37ºC, with a half-life of less than an hour.  Due to its 

hydrolysis by the basic mechanism, the degradation proceeds more slowly at lower 

pH.  For instance, under pH 5.1, it degrades with a half-life of ~8 hrs23.  Actual half-

life of Poly 1 within a PEM will depend on many factors, including properties of the 

counter polyanion and the pH/ionic strength of the deposition buffers. 

   

1.4.2 Previous work 

Vazquez et al. made the first set of PEMs that incorporated Poly 1110.  They 

investigated two model polyanions, poly(styrene sulfonate) (PSS), a strong 

polyanion, and poly(acrylic acid) (PAA), a weak polyanion.  Each assembly 

consisted of ten bilayers on top of a nondegradable base layerg.  The resulting 

                                                 
g The nondegradable base layer consisted of 10 bilayers of linear poly(ethylene imine) (LPEI)/PSS or 
poly(dimethyldiallylammonium chloride) (PDAC)/PAA.  This base layer ensures a suitably charged base 
surface for the adsorption of Poly 1[5. Chluba, J.; Voegel, J.-C.; Decher, G.; Erbacher, P.; Schaaf, P.; 
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films were smoothh and degraded by gradual top-down erosion rather than bulk 

deconstructioni.  This study demonstrated not only that Poly 1 can build up PEMs 

that predictably erode under physiological conditions but also that the degradation 

timescale can be easily controlled by the choice of polyanion.  However, 

Vazquez’s multilayer constructs did not contain any model drug molecule.  

 

Zhang, Lynn, et al. established the drug delivery potential of Poly 1 by 

constructing PEMs consisting of Poly 1 and DNA111; in this case, the DNA served 

as the polyanion.  Eight bilayers were deposited onto each substrate, with a 

resulting multilayer stack of ~100nm in thicknessj.  The PEM eroded gradually 

over 30 hrs without signs of bulk erosionk with a concomitant continual release of 

DNA.  Subsequent studies established mechanisms of release112-115, various 

control handles for release rates116, 117, in vitro transfection efficacy112, 118, and in 

vivo evaluation using a stent model is currently under way.  While Lynn’s studies 

demonstrated the ability of Poly 1 to support sustained DNA release under 

physiological conditions, the results cannot be generalized to other drug 

molecules, especially those that are not polyanionic. 

 

Wood et al. supplemented Zhang’s study by incorporating three polysaccharides: 

heparin, low-MW heparin, and chondroitin sulfate, into separate PEMs with Poly 
                                                                                                                                                 
Ogier, J., Peptide Hormone Covalently Bound to Polyelectrolytes and Embedded into Multilayer 
Architectures Conserving Full Biological Activity. Biomacromolecules 2001, 2, (3), 800-805. 
h The films were 100nm and 600nm in total thickness for the PSS and PAA assemblies, respectively 
i In PBS buffer, pH 7.4, [NaCl]=150mM, 37ºC, bilayers of PSS degraded over 40 hrs, while those of PAA 
degraded over 9 hrs.  
j When the deposition was carried out in 100mM sodium acetate buffer, pH 5.1.  Film thickness was 
significantly lower (~10nm over 8 bilayers) when Poly 1 and DNA were deposited in DI water. 
k In PBS, pH 7.4, 137mM NaCl, 37°C; erosion was monitored by ellipsometry and UV spectrophotometry. 
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1.  Twenty bilayers of each (Poly 1/polysaccharide) pair were depositedl, resulting 

in total film thickness of ~100nm for all three systems.  Exponential film growth 

was observed119.  While the PEMs eroded with pseudo-first order kinetics, the 

release of heparin (the only drug studied for release) showed a power-law profile 

with larger amounts released at the beginning.  This could be a consequence of 

the exponential film growth, as the outermost layer had the highest loading.  

Subsequently, Wood, Chuang, et al. established the sequential release of model 

drugs dextran and heparin120, as to be discussed in a subsequent chapter. 

1.4.3 Initial objectives 

The original objectives proposed for my thesis were: 

1. Elucidate mechanisms of film buildup and drug release for various PEM 

constructs and establish a set of prognostic guidelines. 

2. Enable the incorporation of therapeutic agents of any charge, size, and 

conformation. 

3. Enhance the controllability of multi-agent delivery through the use of spacer 

layers and other chemical means. 

 

Per objective 1, I would study the film buildup behavior by examining total 

thickness versus bilayers deposited.  Complementarily, I would examine drug 

release from each construct and correlate the release profiles with the observed 

buildup mechanism, with the ultimate goal of establishing a set of rigorous 

                                                 
l Similar to Vazquez et al., there is an (LPEI/PSS)10 base layer.  Depositions were carried out in 100mM 
acetate buffer, pH 5.1. 
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guidelines that would predict growth/release behaviors through the 

physicochemical properties of the PEM constituents.   

 

Objective 2 was identified to address the limitation of LbL assembly in 

incorporating only charged species.  Initial effort would be focused on pre-

encapsulation of drugs in nanoparticles that have a negatively charged surface.  

These nanocomposites should be less mobile than the naked drug, thus retarding 

diffusion between layers and advancing Objective 3.  Dissolution of these 

nanoparticles would present an additional degree of release control which can be 

coordinated with the PEM degradation for complex release profiles.  Due to drug 

diffusion, polymer rearrangement, and other potential factors that could reduce 

the stratification of PEMs, ‘as-made’ PEMs might not demonstrate perfectly 

controllable sequential release.  Thus, Objective 3 aimed to identify simple, cost-

effective ways to improve release control through the use of spacer layers, 

cleavable diffusion-retarding tags, and other chemical means. 

 

1.4.4 Revised objectives 

Soon after delving into my thesis, I realized the unrealistic breadth of the original 

objectives and the need to focus the chosen application, i.e. multi-therapeutic 

coating for orthopedic implants.   With additional literature research and 

preliminary experiments, I decided to focus on the development of antibiotic 

component, as infection was the most serious complication to medical devices.  

Infections not only cause device failure but could also spread systemically 121. 
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This problem is critical and escalating, and it should be either prevented 

prophylactically or eradicated remedially.   

 

Most of the antimicrobial orthopedic implant coatings under development, such as 

dip coating of hydroxyapatite 122 or collagen 123, direct incorporation of antibiotics 

into glass implants 124, bone cement 125, PLGA-based coatings 126, or nitric oxide-

releasing sol-gel coatings 127, cannot be easily tuned with regard to drug dosage or 

release rate.  In some cases, residual foreign materials are left behind, which may 

induce long-term immunogenic responses.  A biodegradable coating that can be 

tuned to deliver the desired dosage of drugs over a specified amount of time, while 

leaving no residual material on the implant surface, would address both problems.  

Such an antimicrobial coating would also be applicable towards other implanted 

devices such as dental implants 128, catheters 129, 130, shunts 131, and guide wires 132.   

 

As bacteria can be introduced either during the surgical process onto the implant 

surface or post-surgically from the patient’s blood, an antimicrobial coating should 

both discourage bacteria attachment and impose antimicrobial action on the tissues 

and fluids immediately surrounding the implant.  Such a dual action would 

effectively prevent biofilm formation, the major source of implant surface 

infection129, 130, 133-136. Due to the widely differing timescales and severities in 

device infections that range from rapid acute infections to longer term chronic 

modes136-138,  antimicrobial coatings with adjustable dosages and release rates are 

needed.  Therefore, a coating with controls over both parameters would be highly 
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desirable.  Hence, we seek to develop an antimicrobial coating that can both 

discourage bacteria attachment to the implant surface and be able to release 

antibiotics into the surrounding tissues at a tunable dosage and rate.  This can be 

achieved through a biodegradable coating that controllably sheds from its surface 

to release antibiotics.  Specifically, we wish to construct a hydrolytically 

degradable thin film via the layer-by-layer (LbL) deposition technique 

encapsulating gentamicin, an antibiotic commonly used to treat device 

infections121, 139-141. 

 

While LbL systems incorporating antimicrobial agents, such as cetrimide and 

silver142-144, have been developed, there is significant concern over the toxicity of 

some of these agents 145. These agents may also be ineffective against bacterial 

colonization of orthopedic implants 146.  Hence, my revised objectives were: 

1. Establish an LbL coating that encapsulates an antibiotic agent already in 

use for orthopedic infections, 

2. Establish controls on dosage and release rate of this antibiotic, 

3. Demonstrate in vitro efficacy and biocompatibility,  

4. (Exploratory) Establish multi-release coating with other therapeutics, 

5. (Exploratory) Demonstrate in vivo efficacy and biocompatibility. 

1.4.5 Summary of thesis progression 

Initial experiments focused on the encapsulation of polysaccharides, as these are 

naturally polyanionic and hence “low-hanging fruits” for LbL incorporation.  

Working closely with Kris Wood, I examined various types of barrier layers to 
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separate heparin and dextran to establish true sequential release, while also 

investigating mechanisms of film growth and erosion in these systems. 

 

Once sequential release was established120,  I wanted to demonstrate in vitro 

activity of heparin films and begin work on the encapsulation of my therapeutic of 

interest – antibiotics.  With assistance from Kris Wood and David Berry, I 

conducted a series of in vitro assays demonstrating activity of heparin-releasing 

films in promoting the proliferation of F32 cells.    

 

On the antibiotic side, since most of the accepted antimicrobial agents were small 

molecules, I began by attempting formation of cyclodextrin inclusion complexes 

to go into LbL assemblies.  In the process I also examined encapsulation of an 

anti-inflammatory, dexamethasone, since it was another therapeutic of interest for 

the orthopedic implant application.  Unfortunately little success was achieved 

using cyclodextrins, but during this time I also noticed that gentamicin could 

directly go into a PEM without any pre-modification.  In order to construct a 

tunable release system that incorporates our unique poly(β-amino esters), I came 

up with the heterostructure [(Poly X/PA)(gentamicin/PA)]n in which PA can be 

any biocompatible polyanion.  This system was found to incorporate and release 

gentamicin in a highly tunable and in vitro active fashion147. 

 

During the development of the gentamicin coatings, I also worked on a side 

collaborative project with Dr. James Quattrochi of Harvard Medical School.  The 
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goal was to establish PEMs on nanospheres to sequentially release siRNAs then 

carbachol.  While there was little success in constructing PEMs on nanospheres 

due to aggregation, I did establish tunable buildup and release of siRNAs from a 

planar substrate using a simple bilayer structure with Poly 1.  

 

Despite having excellent dosage tunability and in vitro activity, the gentamicin 

films had not achieved the multi-day release necessary for full infection control 

on medical devices.  Hence, I undertook several projects in attempt to establish a 

general method for extending small molecule release.  They included alterations 

of PEM components, PLGA encapsulation of gentamicin, insertion of non-

degradable layers, crosslinking of film, and inclusion of co-excipients.  Most of 

these yielded unsatisfactory results, although the inclusion of protein co-

excipients showed some promise.  This finding led to a new project in 

establishing a gentamicin-protein co-release film.  Overall, I learned from these 

experiments that in order to establish truly sustained and highly controllable 

release rate, more involved approaches such as synthetic prodrug designs and 

sophisticated carrier systems would need to be used. 

 

Yet another alterative for achieving more sustained release of antibiotics was the 

use of naturally polymeric antibiotics.  In particular, antimicrobial peptides 

(AmPs) were excellent candidates due to their broad-spectrum, potent activity and 

a charged, oligomeric structure.  While I was still developing the gentamicin 

films, Chris Loose of the Greg Stephanopoulos group approached our group for a 
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potential collaboration on the incorporation of his AmPs into LbL thin films for 

slow release.  Both sides agreed this is a feasible and promising idea, and hence a 

long-term AmP incorporation project was initiated that began to dominate the 

latter half of my thesis.  A variety of AmPs were examined, and various protocols 

for incorporation and diagnostic assays were established.  

 

Another project that took shape in the later phase of my thesis was in vivo 

evaluation of the antimicrobial coatings.  After establishing in vitro efficacy and 

non-toxicity, we believed that we were ready for in vivo evaluation.  An 

osteomyelitis model was designed based extensive research into the literature and 

advice from our consultants.  However, establishing an effective, reproducible 

osteomyelitis model turned out to be more challenging than anticipated.  Hence, 

the in vivo evaluation evolved into a study on osteomyelitis models, and after 

several rounds of modification, we eventually developed a working model that 

can now be used for future evaluations.   

At this point, efforts are ongoing in fine-tuning the osteomyelitis model, 

improving the AmP-released thin films, and characterizing a dual-therapy coating 

that co-releases gentamicin and bFGF for simultaneous infection control and bone 

regeneration.   

1.4.6 Concurrent LbL drug delivery projects 

Several projects on LbL drug delivery are under active investigation in the 

Hammond group.  They include but are not limited to: 

1. Tissue engineering coating for grafts and medical devices (Mara Macdonald),  
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2. Therapeutic coating for intraocular lens (Renee Smith), with focus on the 

delivery of anti-inflammatory agents,  

3. Wound dressing coating for battlefield trauma (Anita Shukla), with hemostatic, 

antimicrobial, and possibly tissue regenerative therapies,  

4. Delivery of small hydrophobic drugs via designed micelles148 (Byeong-Su 

Kim), 

5. Delivery of small hydrophilic drugs (Josh Moskowitz), via liposomes, 

micelles, or prodrugs,   

6. Optimizing poly(β-amino ester) chemistry (Renee Smith),  

7. Spray-misting of LbL coatings for more sustained, sequential release (Mara 

Macdonald, Anita Shukla, and Kevin Krogman),  

8. Electrochemically degradable thin film, to be described below (Daniel 

Schmidt),  

9. Antimicrobial coating incorporating novel synthetic bacteriocidal polymers 

(Jessie Wong). 

1.5 Outlook: Other LbL drug delivery systems 

1.5.1 Electrochemically degradable LbL films 

The specific polymer used in constructing electrochemically-degradable PEMs is 

Prussian blue (PB), which is a transition metal hexacyanoferrate complex.  Non-

degradable PEMs incorporating this compound have been extensively studied in 

the Hammond group for electrochromic applications29, 149, 150.  In one of these 

studies, Dean DeLongchamp found that constant switching of the applied voltage 
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between 0.6V and 1.5V resulted in controlled dissolution of his (LPEI/PB) 

multilayersm29.  Additional studies by Nicole Zacharia et al. confirmed that both a 

constant voltage of 1.5V and a cycling between 0 and 1.5V can result in 

controlled film dissolution and concomitant model drug release (data 

unpublished).  PB was found to be non-toxic and was even considered as a 

remedial drug to radioactive contamination151.   

 

Unlike passive release by hydrolytic degradation, PB-based drug delivery systems 

are actively controlled by externally applied voltage.  While this approach 

minimizes unexpected or uncontrollable drug releases, it carries the drawback of 

having to implement an interface for external intervention.  However, for 

applications such as cancer therapy, active control could be especially 

advantageous as doctors can administer the optimal schedule of chemotherapeutic 

agents based on the observed progress. 

 

Further investigations into the release kinetics of this system will be needed.  The 

quantitative effects of voltage cycling speed and amplitude should also be 

characterized, and stability of these multilayers under physiological conditions 

must be addressed.  Long-term endeavors in this system will be similar to those 

planned for Poly 1, namely expanding the range of encapsulatable drugs and fine-

tuning complex delivery schedules of multiple drugs.  As the PB nanocomposites 

used in the LbL assemblies are anionic, the natural drug candidates for 

                                                 
m DeLongchamp and Hammond postulated that at 1.5V, PB exists in a form that possesses no surface or 
interior ionization, therefore unable to shield its adjacent LPEI layers from electrostatic repulsion.   
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encapsulation are polycationic.  This is opposite to Poly 1 systems, although the 

two systems are rather dissimilar in control mechanisms and may not be natural 

supplements for each other.   

1.5.2 Reductively degradable LbL films 

Our inspiration for a reductively-degradable PEM came from Oupicky et al.’s 

reductively cleavable linear polycations (RPC) synthesized from oxidative 

polycondensation of Cys(Lys)10Cys with dimethyl sulfoxide 152.  It is degraded by 

intracellular glutathione and is thus stable in the extracellular environment.  This 

system is ideal for delivering drugs that should only be released within a cell, 

such as plasmids for gene therapy.  However, one must deposit the PEMs onto a 

particle small enough for efficient cellular uptake.  Kris Wood has conducted 

proof-of-concept studies in which [Cys(Lys)10Cys]n were synthesized via Oupicky 

et al.’s protocol and layered with polyanionic heparin in a 20-bilayer film.  He 

demonstrated that film degradation only occurred in the presence of glutathione.  

The films were smooth with a near-linear degradation profile.  However, heparin 

release kinetics has not been studied.   

 

Similar to the electrochemically degradable system, in-depth characterization of 

this system’s release kinetics is necessary.  In vitro release in plasma and cell 

lysate solution should be conducted to verify that drug release only occurs in the 

intracellular environment.  In addition, we must demonstrate that there is efficient 

cell uptake of our chosen delivery vehicle. 
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While the two systems above are promising candidates for drug delivery, the 

hydrolytically degradable system still holds the most potential as it has been more 

extensively characterized and has a broader range of prospective applications.  

Nevertheless, the electrochemical and reductive systems, if successfully 

developed, will be valuable additions to our library of PEMs as they have unique 

features, namely active control and intracellular targeting.  The opportunity to 

study these two systems is certainly an exciting prospect, and these additional 

pursuits may offer insights into LbL drug delivery systems not available from the 

hydrolytic system. 
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Chapter 2.  Incorporation of Polysaccharides 

2.1 Sequential release of polysaccharides 

Reproduced in part with permission from Kris C. Wood, Helen F. Chuang, Robert D. 
Batten, David M. Lynn, and Paula T. Hammond.  Controlling interlayer diffusion to 
achieve sustained, multiagent delivery from layer-by-layer thin films. PNAS 
103(27):10207-10212, 2006. 
© 2006 National Academy of Sciences, with the addition of supplemental data. 
 

2.1.1 Introduction. 

A drug species that was found to build exponentially growing films with Poly 1 

was thought to be a “diffusing” species153, while one that built linear films would 

be non-diffusing.  Examples of diffusing and non-diffusing model drugs are 

heparin and dextran, respectively, of which the growth curves and structures are 

shown in Figure 2.1.   

 
Figure 2.1 - Assembly of LbL films incorporating heparin and dextran.  

(a) A plot of FTIR absorbance versus number of thin-film bilayers demonstrates LbL assembly of 
polymer 1/HEP ( ) and polymer 1/DS ( ) films exhibiting exponential and linear growth, 
respectively. (Inset) Thickness versus number of bilayers for polymer 1/DS films. (b) Chemical 
structures of degradable polymer and model drugs used in this study. 
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Kris et al. observed that a direct sequential layering of the non-diffusing dextran 

beneath heparin would still result in concurrent release (see Figure 2.2).  Hence, we 

decided that it would be necessary to deposit “barrier layers” between different 

therapeutics to impose greater control on sequentiality.  In a series of experiments 

with Kris Wood and Robert Batten, I examined several types of barrier layers, 

varying both thickness and degree of crosslinking, for their ability to prevent 

interdiffusion of the drugs between layers. 

 

 
Figure 2.2 - Heparin (base, ♦) and dextran sulfate (top, ▲)-loaded PEM without dividing layers. 
(a) Fraction of mass release versus degradation time (error bars are small). (b) Fractional release rate 
versus time.  Simultaneous release was observed. 

 

2.1.2 Materials and Methods. 

 Materials. Polymer 1 [Mn = 10,000 (Mn is number-average molecular weight)] was 

synthesized as previously described23. HEP sodium salt (Mn = 12,500) was obtained 

from Celsus Laboratories (Cincinnati). DS sodium salt (Mn = 8,000), poly(sodium 

4-styrenesulfonate) (Mn = 1 million), PAH (Mn = 70,000), and PDAC (Mn = 

100,000) were obtained from Sigma–Aldrich. Linear poly(ethylenimine) (Mn = 

25,000) and PAA (Mn = 90,000) were purchased from Polysciences. Silicon wafers 
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(test grade n-type) were purchased from Silicon Quest (Santa Clara, CA). [3H]HEP 

sodium salt [1 mCi (1 Ci = 37 GBq), 0.30 mCi/mg, Mn = 12,500] and [14C]DS 

sodium salt (100 µCi, 1.5 mCi/g, Mn = 8,000) were obtained from American 

Radiolabeled Chemicals (St. Louis). Radiolabeled and corresponding unlabeled 

polymers were chosen with similar molecular weights and polydispersities to mimic 

the behavior of the unlabeled species as closely as possible. All materials and 

solvents were used as received without further purification. 

  

General Considerations. A Harrick PDC-32G plasma cleaner was used to etch 

silicon substrates (3 x 2 cm) after they were rinsed with methanol and deionized 

water and dried under a stream of dry nitrogen. LbL thin films were deposited with 

an automated Zeiss HMS-series programmable slide stainer. Absorbances from 

growing films were measured by FTIR with a Nicolet Magna IR 550 Series II 

spectrometer. Zinc selenide substrates used for transmission FTIR analysis were 

prepared by the same method used for silicon substrates. Ellipsometric 

measurements for film thickness were conducted by using a Gaertner variable angle 

ellipsometer (6,328 nm, 70° incident angle) and GEMP 1.2 (Gaertner Ellipsometer 

Measurement Program) software interface. The release of radiolabeled polymers 

was quantified by using a Tri-Carb liquid scintillation counter (model U2200, 

Packard). The amount of radiolabel in each sample vial was measured by using 3H, 

14C, and dual counting protocols, each of which were shown to be both consistent 

and highly accurate over a broad concentration range (30–100,000 dpm/ml) in 

calibration experiments performed before drug release. Thermal crosslinking of 



 53

PAH/PAA films was performed by incubating films in a Yamoto DVS400 gravity 

convection oven at 215°C for the time intervals indicated in Figure 2.8. 

 

Thin-Film Fabrication. All films were constructed from dilute aqueous solutions 

(2–10 mM) using the alternating dipping method53. All polymers used in degradable 

thin films were prepared in 100 mM acetate buffer at pH 5.. Nondegradable base 

layers were deposited from dipping solutions of linear poly(ethylenimine) and 

poly(sodium 4-styrenesulfonate) in deionized water pH adjusted to 4.25 and 4.75, 

respectively. Deionized water used to prepare all solutions was obtained via a Milli-

Q Plus (Millipore) at 18.2 M . For degradation experiments, 1x PBS buffer (137 

mM NaCl/2.7 mM KCl/10 mM Na2HPO4, pH 7.4) was used. Films used in this 

study were constructed on either silicon (for ellipsometry and degradation studies) 

or zinc selenide (for transmission-mode FTIR) planar substrates. In all cases, 

degradable, polymer 1-based films were constructed directly on top of 10 bilayer, 

nondegradable base films containing linear poly(ethylenimine) and SPS to ensure 

uniform adhesion to the substrate. After deposition, films were removed from 

rinsing baths and dried thoroughly under a stream of dry nitrogen to avoid 

premature degradation.  

 

Thin-Film Degradation Studies. All film degradation studies were performed as 

follows. Films were immersed in 20 ml of the appropriate buffer solution in a 

screw-top glass vial and tightly sealed. At designated times, films were removed 

and dried thoroughly under a stream of dry nitrogen, and thickness was measured 
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using ellipsometry at 10 predetermined locations on the film surface (measurements 

were performed in triplicate). After the measurements were taken, the films were 

reimmersed in buffer solutions and resealed.  

 

Release Studies. For drug-release experiments, radiolabeled LbL thin films were 

first constructed by alternately depositing polymer 1 and the indicated radiolabeled 

drug(s). Radiolabeled deposition solutions containing [3H]HEP were prepared by 

combining 1 ml of 50 µCi/ml [3H]HEP (0.30 mCi/mg, Mn = 12,500) with 35 ml of 

100 mM acetate buffer. Unlabeled HEP (Mn = 12,500) was added to bring the total 

concentration of HEP (unlabeled plus labeled) to 2 mg/ml (1.5–2 µCi/ml 3H). 

Radiolabeled deposition solutions containing [14C]DS were similarly prepared by 

combining [14C]DS (1.5 mCi/g, Mn = 8,000), unlabeled DS (Mn = 8,000), and 100 

mM acetate buffer to yield a total concentration of DS to 2 mg/ml (1 µCi/ml 14C). 

After fabrication of the indicated films, drug-release experiments were performed 

by immersing each film in 50 ml of 1x PBS buffer in a 200-ml screw-top vial. A 1-

ml sample was extracted at various predetermined time points and analyzed by 

adding 5 ml of ScintiSafe Plus 50% (Fisher Scientific) before measurement. 

Degradation vials were tightly capped between sample extractions to prevent 

evaporation of the buffer solution. Raw data (given in disintegrations per minute) 

were converted to micrograms of drug released using the conversion factor 2.2 x 

106 DPM = 1 µCi, the specific radioactivity of the drug, and our knowledge of the 

ratio of total drug to labeled drug in the deposition solution119.  

 



 55

2.1.3 Results and Discussion. 

Controlling Interlayer Diffusion to Modulate Multiagent Release Profiles.  Our 

first set of experiments involved 20–40 base layers of polymer 1/HEP, followed by 

a set of "barrier" layers consisting of either polymer 1/sulfonated poly(styrene) 

(SPS) (degradable), poly(diallyldimethylammonium chloride) (PDAC)/SPS 

(nondegradable), thermally crosslinked poly(allylamine hydrochloride) 

(PAH)/poly(acrylic acid) (PAA), or nothing at all. Finally, we constructed a set of 

20–40 surface layers of polymer 1/DS. In a similar fashion, we also constructed 

films identical to the others, except that the order of the labeled components was 

reversed (DS base layers and HEP surface layers) (see Figure 2.3).  

 

 
Figure 2.3 - Schematic depicting strategies employed in this study to construct physical barriers to 
control interlayer diffusion in multicomponent films. 

 

As shown in Figure 2.4, when a base layer of polymer 1/DS was coated with a 

single bilayer of PAH/PAA (covalently crosslinked for 20 min at 215°C), followed 

by the deposition of polymer 1/HEP, we observed a multistage, serial release of 

first the surface HEP followed by the underlying DS. Thus, the use of a single 

covalently crosslinked PAH/PAA layer was sufficient to separate the two 

components when deposited onto the surface of the linearly growing polymer 1/DS 



 56

system, as evidenced by the two-stage release profile. After the 25-h time delay, 

underlying DS was released with a linear profile. Interestingly, the average rate of 

DS release was 60% slower than that observed in corresponding films without 

covalently crosslinked barrier layers. Additional experiments using single and 

multiple crosslinked PAH/PAA barrier layers show that the duration of the release 

delay and the rate of release after this delay can be broadly controlled under this 

approach. For example, multiple layers of PAH/PAA crosslinked for longer than 

1.5 h (at 215°C) virtually halted the release of all underlying DS (no release of DS 

was observed for up to 45 days). This result may have important and direct 

applications in drug delivery, because it suggests that both the timing and rate of 

release of an underlying species can be broadly controlled using as little as a single 

crosslinked bilayer.  

 

 
Figure 2.4 - DS (base layer, ) and HEP (surface layer, )-loaded PEM separated by a single, 
crosslinked layer of (PAH/PAA), exhibiting sequential release.  
(a) Fraction of mass-released versus degradation time. (b) Fractional release rate versus time. 
 

Interestingly, we also found that when the order of the two labeled components was 

reversed (HEP as the base layer and DS as the surface layer) it was no longer 
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possible to achieve serial release of the two components using crosslinked spacer 

layers, suggesting that the nature of the base film onto which the crosslinked barrier 

layer is absorbed influences the final properties of the barrier layer (see Figure 2.5).  

 
Figure 2.5 – Release of heparin from a PEM capped with a single crosslinked layer of PAH/PAA. 
Release of heparin-loaded films coated with a single layer of PAH/PAA crosslinked for 45 min at 
215°C (filled diamond) is compared with untreated heparin-loaded films (open diamonds). 
 

Remarkably, all of the noncovalent (noncrosslinked) barrier layers designed to 

physically separate the HEP and DS systems (Figure 2.3) resulted in simultaneous 

release of both components (see Figure 2.6).  To further verify these findings, the 

above series of films was repeated at a range of fabrication conditions (pH, ionic 

strength, and number of deposited barrier layers), yet all resulted in simultaneous 

release in every case (data not shown). 
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(i) - Heparin-loaded (base layer, diamond) and dextran-sulfate-loaded (surface layer, triangle) 
layers, separated by 20 polymer 1/SPS degradable dividing layers, sustain simultaneous release. (a) 
Fraction of mass release versus degradation time (error bars are small). (b) Fractional release rate 
versus time. 
 

 
(ii) - Heparin-loaded (base layer, diamond) and dextran sulfate-loaded (surface layer, triangle) layers 
separated by 50 PDAC/SPS nondegradable dividing layers, sustain simultaneous release. (a) 
Fraction of mass release versus degradation time (error bars are small). (b) Fractional release rate 
versus time. 
 

 
(iii) - Dextran-sulfate-loaded (base layer, triangle) and heparin-loaded (surface layer, diamond) 
layers without dividing layers sustain simultaneous release. (a) Fraction of mass release versus 
degradation time (error bars are small). (b) Fractional release rate versus time. 
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(iv) - Dextran-sulfate-loaded(base layer, triangle) and heparin-loaded (surface layer, diamond) 
layers separated by 50 polymer 1/SPS degradable dividing layers sustain simultaneous release. (a) 
Fraction of mass release versus degradation time (error bars are small). (b) Fractional release rate 
versus time. 
 

 
(v) - Dextran-sulfate-loaded (base layer, triangle) and heparin-loaded (surface layer, diamond) 
layers separated by 50 PDAC/SPS nondegradable dividing layers sustain simultaneous release. (a) 
Fraction of mass release versus degradation time. (b) Fractional release rate versus time. 
 
Figure 2.6 – Heparin and dextran release from films formulated with various types of non-covalent 
barrier layers. 
 

Data from Figure 2.6 suggest that noncovalent, electrostatically assembled barrier 

layers cannot block interlayer diffusion and, therefore, cannot be used to create 

compartmentalized structures involving diffusive polyelectrolytes. This finding is 

particularly interesting in light of another study that showed that compartmentalized 

films containing linearly and exponentially growing regions could be constructed 
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simply by depositing different films directly on top of one other154. The 

incongruities between this study and ours could be a result of a number of factors, 

including different polymer systems, molecular weights, and deposition conditions; 

moreover, they suggest that factors outside of the nature of growth that a given 

system exhibits may powerfully influence the final film architecture.  

 

Another finding that I made independently outside of the published PNAS work 

was that a (Poly 1/DS)n film capped with crosslinked (PAA/PAH)1 without any 

(Poly 1/HEP)m on top did not result in a delayed release of dextran (see Figure 2.7).  

Combined with that observed in Figure 2.4, it appeared that the thermally 

crosslinked (PAA/PAH)1 barrier layer alone could not delay dextran release.  The 

heparin top layers might have served as additional diffusion control for the dextran 

underlayers. 
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(a) 

 
(b) 

Figure 2.7 – Release of dextran from PEMs capped with a single layer of (PAH/PAA) crosslinked 
for different amounts of time.  

(a) zoomed into the first 20 hours to compare initial bursts among the three test groups, (b) complete 
release over 500 hours.  No delayed release was observed for the number of barrier layers examined. 

 

To more clearly demonstrate the effect of barrier layers on the average release rate 

from the aforementioned two-component systems, release rate is normalized and 

charted versus the type of barrier layer used in Figure 2.8. In Figure 2.8a, it is 
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apparent that the average release rate (taken as the average slope of the initial, linear 

portion of the release curve) of systems composed of an underlying layer of linearly 

growing DS can be broadly controlled by using both multiple layers of a 

nondegradable system PDAC/SPS or as little as a single layer of crosslinked 

PAH/PAA. Furthermore, by tuning any of the parameters affecting the degree of 

crosslinking (e.g., crosslinking time, temperature, or number of crosslinked layers), 

the release rate can be dramatically altered (crosslinking times of >1.5 h at 215°C 

and barriers containing more than five crosslinked layers, resulted in one- to two-

order-of-magnitude decreases in release rate) (data not shown). Thus, milder 

crosslinking conditions (such as lower temperatures) may allow for a greater degree 

of flexibility in tailoring release profiles. Furthermore, aqueous, chemical 

crosslinking techniques using common biochemical reagents such as carbodiimides 

may represent a suitable alternative to thermal crosslinking when low temperature 

fabrication is required.  Nevertheless, these proof-of-principle studies suggest that 

sampling a range of approaches to control the release of underlying species can 

yield effective results, particularly when the underlying species lacks the ability to 

diffuse throughout the film.  
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Figure 2.8 - Normalized initial average release rate (μg/hr-cm2) from base films containing DS (a) 
and HEP (b). 

Films were capped with either no separation layers (control), or with a single layer of PAH/PAA 
crosslinked at 215°C for variable times, nondegradable PDAC/SPS, or degradable polymer 1/SPS. 
Initial average release rates were calculated from the average slope of the linear portion of the mass-
released versus time curve during the first 50 h (DS) or 10 h (HEP) of degradation. 

 

Taken together, the data in Figure 2.4 and Figure 2.8 yield a set of interesting 

hypotheses with respect to diffusion and release from multicomponent, 

hydrolytically degradable LbL films. First, when initially deposited layers contain a 

highly diffusible species, such as HEP, subsequent deposition of additional layers 

has little to no effect on its release because the diffusible species is likely able to 

migrate through tightly interacting networks within the film, effectively ensuring 

that it always resides near the film surface153. However, when initially deposited 

layers contain a linearly growing species, such as DS, subsequent deposition of new 

species can have a significant impact on its release because the linearly growing 

system provides a structural substratum on which a tightly interacting network of 

barrier layers can be formed (which can then serve to hinder its release during 

degradation by physically separating it from subsequently adsorbed species). We 

demonstrate that a relatively simple understanding of the nature of build up and 

diffusion within a given system can allow one to engineer stratified, 
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multicompartment architectures with complex release profiles and that these 

profiles can be broadly controlled to suit the demands of a particular application.  

 

2.1.4 Conclusion. 

In this work, we systematically probed a series of strategies designed to physically 

separate multiple components within a LbL film by blocking interlayer diffusion. 

We measured the effect of each type of barrier by using an experimental system 

consisting of a hydrolytically degradable polymer alternately deposited with a series 

of radiolabeled polyelectrolytes. With this approach, we uncovered a set of 

strategies that allow for the production of compartmentalized, or stratified, films 

capable of releasing complex, tuned release profiles. In particular, we show that 

covalently crosslinked barriers can effectively block interlayer diffusion, leading to 

compartmentalized structures, although even very large numbers of ionically 

crosslinked (degradable or nondegradable) barrier layers cannot block interlayer 

diffusion. Perhaps most interestingly, we demonstrate that wide-ranging materials 

properties can be obtained from a single, relatively simple set of materials by 

judiciously applying strategies to control interlayer diffusion. Combining the 

attributes of the LbL processing technique, which allows for the rapid, all-aqueous, 

conformal fabrication of nanoscale coatings that are highly uniform and tunable, 

with the ability to spatially order active agents and control release kinetics for 

multiple species may yield significant opportunities in drug delivery, separations, 

electrooptical materials, and other fields.  
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2.2 In vivo assessment of heparin films 

2.2.1 Introduction 

Previous studies by Kris Wood, me, et al. established that polysaccharides such as 

heparin, dextran, and chondroitin sulfate can be encapsulated in layer-by-layer 

thin films with tunable dosage, sustained release, and even sequential release 119, 

120.  Among these model drugs, heparin is of especial interest because of its 

therapeutic action as an anti-coagulant.  Sustained release of heparin could be 

especially useful on blood-contact device surfaces to prevent blood clots.  Given 

our extensive studies on heparin release dosage and rate that demonstrated 

sustained, controllable release, we believed that the films should be assessed on in 

vitro activity.   

 

Hence, the present study seeks to assess in vitro efficacy of layer-by-layer thin 

films encapsulating heparin, making use of an engineered mammalian cell line 

designed to respond to heparin supplementation through increased proliferation.  

Specifically, I used F32 cells, which are BaF3 cells (IL-3 dependent murine pro B 

cell line) transfected with fibroblast growth factor receptor c1 (FGFRc1) and can 

hence proliferate under a combined supplementation of basic fibroblast growth 

factor (bFGF or FGF-2) and heparin when maintained in a medium deficient of 

interleukin 3 (IL-3) 155.  These cells were courtesy of David Berry in Professor 

Sasisekharan’s lab.  The in vitro response of F32 cells to heparin can be easily 

measured by cell density count. 
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2.2.2 Materials and Methods 

NOTE: Materials and methods identical to those of 2.1 are not duplicated. 

Materials.  Recombinant human basic fibroblast growth factor (bGFG or FGF-2) 

and recombinant mouse interleukin-2 (IL-3)  were purchased from R&D Systems 

(Minneapolis, MN).  RPMI 1640 medium, fetal bovine serum (FBS), L-

glutamine, and penicillin + streptomycin supplement were purchased from 

Invitrogen (Chicago, IL).   All materials were used as supplied without further 

purification.  F32, an engineered cell line derived from BaF-3 to proliferate in the 

presence of FGF-2 and heparin, transfected with FGF receptor c1 (FGFRc1) 

isoform 155, was a generous gift from Dr. David Berry of Harvard Medical School. 

 

F32 Culture.  F32 culture maintenance and proliferation assay were done 

following procedures of D. Berry et al. 156.  Briefly, F32 cells were maintained as 

independent suspension cultures in propagation media composed of RPMI-1640 

supplemented with 10% FBS, 100 μg/ml penicillin, 100 U/ml streptomycin, 

500 μg/ml -glutamine, and 1 ng/ml mouse recombinant IL-3. Cultures were 

grown in 75 cm2 flasks at 37 °C in a 5% CO2 humidified incubator and passaged 

1:10 by dilution three times a week. 

 

Unused FGF-2 was stored in sterile RPMI 1640 medium at 1 μg/mL in 1 mL 

aliquots at -80°C.  Unused IL-2 were stored under identical conditions except at 

0.5 μg/mL.  Heparin supplements to the F32 assay cultures were prepared at 100 

μg/mL in sterile RPMI 1640, sterile filtered, and stored in the refrigerator.  Poly 1 
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supplements were prepared right before each assay at 150 μg/mL in sterile RPMI 

1640 and sterile filtered prior to use. 

 

In a typical proliferation assay, F32 cells were seeded at a density of 105 cells/mL 

in IL-3 deficient RPMI-1640 after washing three times. Cell suspension was 

added to each well of 6-well plates, 2 mL/well. Cells were supplemented with 

various amounts of FGF-2, heparin, Poly 1, and or (Poly 1/Hep)n thin films 

depending on the test protocol.  The standard supplement conditions, denoted as 

the “1x” concentration for each component, were 50 ng/mL for FGF-2, 500 

ng/mL for heparin, 750 ng/mL for Poly 1, and an amount of (Poly 1/Hep)n film, 

tuned either by film size or number of bilayers, that would result in a total release 

of 500 ng/mL heparin into the culture.   After defined periods of incubation under 

standard maintenance conditions, cell density was determined using a 

hemocytometer.   Briefly, each well was gently resuspended, and three aliquots of 

10 μL culture were withdrawn from each well.  Each 10 μL culture was mixed 

with 10 μL of Trypan blue, and 10 μL of the mixture was used for hemocytometer 

counting. 

 

2.2.3 Results and Discussion 

Dosage and kinetics of heparin release from (Poly 1/Hep)n films.  Previous 

work reported by Kris Wood et al. 120 showed that (Poly 1/Hep)n films release 

heparin over 20 hours in PBS at room temperature regardless of the film 



 68

thickness, with a dosage of approximate 5 μg/cm2 for a (Poly 1/Hep)20 film (see 

Figure 2.9 left panel).   

 
Figure 2.9 – Kinetics and dosage of heparin (left) and dextrain (right) release from (Poly 
1/heparin, dextran)n films in PBS at 25°C.   

From Wood et al., PNAS 103(27): 10207-10212, 2006. 

 

The present study also saw a 20-hour release of heparin from (Poly 1/Hep)20 

films, but with a much higher dosage of around 45 μg/cm2 (see Figure 2.10).  This 

dosage was reproducible over ten different samples, and the exact cause of 

discrepancy from previous data is yet unknown.  It is worth nothing that Kris also 

saw this high dosage on some of his trials (see Figure 2.11).  

  

 
Figure 2.10 - Kinetics of heparin release from (Poly 1/Hep)40 films in PBS at various 
temperatures. 
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Figure 2.11 - Kris Wood's May 2005 data on heparin release from (Poly 1/Hep)n films. 

 

Data in Figure 2.10 also compared release of heparin in PBS at room temperature 

(25°C) versus 37°C.  Raising the temperature to body condition accelerated 

heparin release to completion within 7.5 hours.  To further characterize heparin 

release under F32 culture conditions, (Poly 1/Hep)20 films were eroded in F32 

culture medium (composed of RPMI 1640 medium with various supplements – 

see Section 2.2.2) at 37°C.  Interestingly, heparin release was found to be 

significantly accelerated in the F32 medium (see Figure 2.12).  This was a 

surprising result as both PBS and F32 medium had similar ionic strength and pH 

(150 mM and 7.4, respectively), which were  thought to be two of the most 

dominant factors inherent to a release medium that affect Poly 1 degradation and 

polyelectrolyte multilayer dissolution rates.  One potential explanation was that 

RPMI 1640 contains divalent ions, specifically calcium and magnesium, both 

around 0.4 mM, whereas PBS is composed entirely of monovalent ions.  Even 
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though a total of 0.8 mM of divalent ions seems low, the divalency could result in 

strong electrostatic interactions that destabilizes the multilayers, so that heparin 

release could be driven by bulk deconstruction of the film rather than degradation 

of Poly 1 by water.  Because of this finding, most subsequent experiments on in 

vitro release of any therapeutic were performed in modified simulated body fluid 

(m-SBF)157, an ionic buffer that closely mimics human plasma including the 

divalent ions. 

 

 
Figure 2.12 - Kinetics of heparin release from (Poly 1/Hep)20 films at 37°C in various media. 

 

Since 45 μg/cm2 is too large of a dosage for my need of 0.5 μg per 1 mL culture, I 

also assessed heparin release from (Poly 1/Hep)10 films and found identical 

release rates under the various culture and temperature conditions, but with a 

dosage of 10 μg/cm2 (data not shown). 
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Response of F32 cells to (Poly 1/Hep)n films.  As specified under Section 2.2.2, 

typical supplementation to F32 cultures, as determined by Berry et al. 155, was 50 

ng/mL of FGF-2 and 500 ng/mL of heparin.  These will be denoted as “1x” 

concentrations in the following discussions, while “nx” will denote a 

concentration n times the 1x conditions.  As an example, since F32 cultures were 

seeded at 2 mL per well, a “1x” amount of (Poly 1/Hep)10 film (10 μg/cm2 of 

heparin) would be 0.1 cm2 to releae a total of 1 μg heparin, translating into 0.5 

μg/mL or 500 ng/mL in a 2 mL culture.  These 0.1 cm2 films were obtained by 

splitting the coated 1.5 cm x 0.5 cm silicon substrates into four 0.4 cm x 0.25 cm 

pieces, discarding the bottom 0.7 cm section as this portion of the substrate.  A 1x 

amount of direct Poly 1 supplementation is 750 ng/mL, or 1.5 times that of 

heparin, as this is the expected Poly 1: heparin ratio within a (Poly 1/Hep)n film 

given 1:1 charge compensation. 

 

The F32 cultures were treated with the specified test conditions immediately after 

seeding at 105/mL.  A small fraction of the each triplicated culture (30 μL per well 

or 1.5% of total initial volume) was withdrawn at each time point for triplicate 

counting of cell density.  In all graphs presented in this section, the “normalized 

cell density” in the y-axis is relative to the seeding density of 105/mL, e.g. a value 

of 10 on the y-axis represents cell density of 10 x 105/mL.  Note that the assays 

run on different days should not be compared on in a quantitative fashion, as F32 

proliferative response was dependent on its passage number and other sources of 

culture variability.  However, within each assay, the comparison between 
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different test groups should be reliable given the triplication in culture and 

counting, equivalent to nine total counts per data point. 

 
Figure 2.13 - F32 cell proliferation response to heparin administered via different means.   

All test groups except for “No Treatment” had 1x FGF-2 supplementation. 

 

Three different test conditions were assessed along with the negative (‘no 

treatment’ and ‘FGF-2 only’) and positive (‘w/Hep’) controls, each involving 

direct co-incubation of F32 cultures with pieces of (Poly 1/Hep)10 films cut to the 

appropriate sizes to release the test amount of heparin in to the culture.  A 1x film 

treatment was observed to result in a similar extent of F32 proliferation as the 1x 

positive control, suggesting that heparin was released from the (Poly 1/Hep)10 

films in a therapeutically active form.  Co-incubation with larger amounts of film 

at 2x and 3x amounts brought on additional proliferative response, although the 

contributions between heparin and other film components were not clear at this 

point, and were to be clarified by subsequent experiments. 
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As a follow-up to the previous assay, direct and film-released supplementations of 

heparin were compared at various concentrations.  Heparin at 0.25x, 0.5x, 1x, and 

2x, corresponding to 0.125, 0.25, 0.5 and 1.0 μg/mL was administered either 

through direct supplementation or co-incubation with (Poly 1/Hep)10 films.  The 

resulting F32 response is shown in Figure 2.14.  The data suggested that an 

equivalent amount of heparin released from a film could stimulate higher 

proliferation in comparison to direct heparin supplementation under the same 

concentration.  Hence, co-released Poly 1 could actually affect cell proliferative 

response, either through a direct action on F32 or through secondary enhancement 

of heparin action.  In fact, the secondary enhancement effect had already been 

reported by Berry et al. 158, who showed that Poly 1 enhanced murine melanoma 

cell uptake of heparin, resulting in the cancer cells’ death.   

 
Figure 2.14 - F32 cell proliferation response to heparin administered via different means at 
various concentrations.   
All test groups had 1x FGF-2 supplementation. 
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At this stage, I believed that there was sufficient data to support the hypothesis 

that heparin was released from (Poly 1/heparin)n films in therapeutically active 

forms, and wanted to direct further efforts on accessing Poly 1’s enhancement 

effect.  Additional assays were designed to involve direct supplementations of 

F32 cultures with heparin and various amounts of Poly 1, the latter being freshly 

prepared right before each assay.  Figure 2.15 presents one of the first sets of 

these assays, showing F32 cultures under 1x FGF-2 and heparin 

supplementations, but with different amounts of Poly 1.  Here, 1x Poly 1 

corresponded to 750 ng/mL, 1.5 times that of 1x heparin, and this was based on 

1:1 charge compensation between the two polyelectrolytes – the expected ratio of 

the two components within a (Poly 1/Hep)n film.  However, there was no 

guarantee that the 1:1 charge compensation was an exact mimic of film released 

conditions, only a close approximation. 

 
Figure 2.15 - F32 cell proliferation under various amounts of Poly 1 supplementation.   

All cultures received 1x FGF-2 and 1x heparin. 



 75

 

Data from Figure 2.15 supports the hypothesis that Poly 1 enhances F32 

proliferation in the presence of heparin, and the effect increases with increasing 

amount of Poly 1 within the range of 0.5x to 4x concentrations.  However, this set 

of data did not distinguish between independent proliferative action by Poly 1 

versus cooperative effect with heparin in stimulating proliferation.   To further 

probe the mechanism, assays involving various combinations of heparin and/or 

Poly X supplementations were run, all with 1x FGF. 

 
Figure 2.16 - F32 proliferation under various amounts of heparin and/or Poly 1/2 
supplementation.   

All cultures received 1x FGF-2. 

 

Data Figure 2.16 clearly demonstrated that cultures supplemented with Poly X but 

no heparin could not proliferate.  Those supplemented with heparin alone (middle 

two curves) proliferated at a modest rate, while those with supplementations of 

both heparin and Poly X, whether Poly 1 or Poly 2, proliferated noticeably faster 
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than those with heparin alone.  The enhancement activities appeared similar 

between Poly 1 and Poly 2 as coupled with heparin administration.  These 

observations confirmed the hypothesis that Poly X could not act alone on F32 

cells but instead enhanced heparin action, possibly by increasing heparin uptake 

as observed by Berry at al.158 

 

Several variations of the study exemplified in Figure 2.16 were performed, 

continuing with Poly 1 and Poly 2 as model poly(β-amino esters).  For example, 

in Figure 2.17 the Poly X supplementations were raised to 4x and 20x levels, and 

a combination of Poly 1 and Poly 2 was also examined.  As was observed in 

Figure 2.16, Poly 1 and Poly 2 supplementations gave similar proliferative 

responses, and a combination of 2x Poly 1 + 2x Poly 2 gave a similar outcome as 

individual 4x Poly 1 or 4x Poly 2 treatments.  Large doses of Poly X did not elicit 

significantly more proliferation.  Most likely, all the available heparin had been 

taken up.  Another possibility was that Poly X began exhibiting cytotoxicity at 

higher concentrations, and this inhibitory action canceled out additional 

proliferation enhancement. 
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Figure 2.17 - F32 proliferation under various amounts of Poly 1/2 supplementation.   

All cultures received 1x FGF-2 and 1x heparin. 

 

2.2.4 Conclusion. 

 (Poly 1/Heparin)n films were fabricated in a dosage-tunable fashion with high 

retention of in vitro activity.  Additionally, poly(β-amino esters) were found to 

enhance F32 proliferation in the presence of heparin, likely through augmentation 

of heparin uptake.  The effect appeared equivalent between the two different 

poly(β-amino esters) tested. 

 

However, using the engineered F32 cell line was an indirect method of testing the 

in vitro efficacy of these heparin-releasing films.  Ultimately we should 

demonstrate the film’s in vitro and in vivo anti-coagulant action, through 

appropriate plasma models such as protein adsorption159, plasma calcification 
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time160, and platelet adhesion time160, 161, and work towards a efficacious and 

biocompatible therapeutic film that can be applied on blood-contact devices. 
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Chapter 3.  Biocompatibility assessment of Poly X’s 

3.1 Introduction.   

Given our intended biomedical application, assessment of biocompatibility of both 

individual film components and overall film system was essential.  Most of the film 

components within my study, be the drug or a co-excipient, were expected to be 

biocompatible due to their endogenous origin and/or FDA-approved status.  However, the 

Poly X component was a synthetic polymer that was rather novel, so little 

biocompatibility data was available even on an in vitro level.  

 

Lynn et al. had demonstrated biocompatibility of Poly 1 towards the fibroblastic NIH3T3 

cell line via the MTT assay23 and indirectly showed its nontoxicity towards Cos-7 

through the cell transfection assays in which no significant cell death was observed112.  

Similar indirect inference of nontoxicity could be made from my data on F32 cell 

proliferation by (Poly 1/heparin)n films (see section 2.2).  However, these constitued a 

very limited set of data, some of which involved only 5-hour treatments that were 

significantly shorter than our intended contact times between the film and the body. 

Questions remained as exactly how a direct exposure of mammalian cells to Poly X for an 

extended period of time could affect their viability.  Hence, I conducted a series of assays 

to study the effect of Poly X treatment on two model mammalian cell lines, MC3T3 and 

Cos-7.  These two cell lines were chosen because MC3T3, a murine pre-osteoblast, serve 

as a good model for our intended orthopedic application and was already in use for other 

LbL drug delivery studies, while Cos-7, a monkey kidney cell line, was sufficiently 
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different from MC3T3 to provide a more generalized survey of mammalian culture 

response.  The popular but toxic gene delivery polyer, poly(ethylene imine) (PEI), was 

used as a positive control. 

 

3.2 Materials and Methods.   

Poly X’s were synthesized as previously decribed23.  PEI was purchased from Sigma-

Aldrich.  MC3T3 source and culturing techniques, including alamarBlue® assays, were 

identical to those described under Chapter 5.  Cos-7 cells were maintained and cultured in 

essentially identical procedures as those for MC3T3, except grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% FBS (fetal bovine serum) 

and antibiotics. 

 

3.3 Results and Discussion.   

Note that the assays run on different days should not be compared in a quantitative 

fashion, as cell metabolic activities were dependent on its passage number, and there was 

inherent biological variability of a live system.  Hence, quantitative data of identical test 

conditions may vary from one assay to another.   However, within each assay, the 

comparison between different test groups should be reliable given the identical passage 

number and incubation conditions.  Most of the results below will focus on MC3T3 as it 

is the model mammalian cell line of interest, but a subset of equivalent data on Cos-7 will 

be discussed as well. 
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As-made vs. double-purified Poly 1.  In the first series of experiments, MC3T3 cells 

were exposed to Poly 1 solutions prepared freshly in a culture medium right before the 

administration.  Both “as-made” Poly 1 (Poly 1 as obtained from standard synthesis 

procedure without further purification) and “double-purified” Poly 1 (further re-

crystallized twice) were examined.  Error! Reference source not found. shows the 

result from one of these assays. Metabolic activities were normalized to that of negative 

control.  A two-day treatment time was chosen for to maintain appropriate culture 

confluence throughout the assay period.  Ideally the cells would be exposed for a longer 

period of time to emulate the multi-week exposure of the patient’s body to an implant 

coating.  However, exposure times longer than 2-3 days were not feasible due to potential 

overgrowth of the cells leading to an inappropriate level of confluence. 

Error!  

Figure 3.1 - Metabolic response of MC3T3 cells to Poly 1 solutions after a 48-hour exposure.  

 “pPoly1” denotes double-purified Poly 1. 
 

 



 83

 

As data from Figure 3.1suggests, double-purified Poly 1 was less inhibitory on the 

metabolic activity of the MC3T3 cells.  For the as-made Poly 1, concentrations of 50 

μg/mL or above imposed noticeable inhibitory effect after a two-day exposure.  This is a 

rather tight limit that may restrict the utility of Poly 1 (and possibly other Poly X) based 

films.  However, Poly 1 that are incorporated within an LbL film may be purer than as-

made Poly 1, because the impurities are assumed to be monomeric or oligomeric species 

that would adsorb less readily when deposited from the same solution mixture as the 

polymeric Poly 1. 

 

Assessment of monomers.  Given the suspicion that impurities in as-made Poly 1 would 

cause inhibitory effect on MC3T3s, the next step would be to characterize the degree of 

toxicity of the assumed impurity species.  The impurities were hypothesized to be the 

diamine and diacrylate monomers, i.e. 4,4'-trimethylenedipiperidine and 1,4-butanediol 

diacrylate, that were used to synthesize Poly 1.  A small fraction might not have reacted 

and was not completely washed out at the end of the synthesis.  Hence, a second series of 

assays were conducted to assess potential toxicity of these starting materials.  MC3T3 

cells were treated with various concentrations of either the diacrylate, the diamine, or the 

two monomers combined at a 1:1 molar ratio, as this is the expected molar balance 

between residuals of the two monomers.  In addition, fully degraded (for at least 3 days) 

Poly 1 solutions were examined, as the monomers resulting from Poly 1 hydrolysis, 1,4-

butanediol and β-amino acids, were different from the starting materials, and the toxicity 

effect of both types of monomer pairs should be examined.   Treatments were conducted 
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over both 5 hrs and 2 days to match exposure times previously used by Lynn et al. and 

our first series of assays, repectively.  The resulting metabolic activity data is shown in 

Figure 3.2.  Each “combined” test group in the plot means a combination of the two 

monomers at concentrations indicated in the two test groups immediately to the left. 

 

Error!

 

Figure 3.2 - Metabolic response of MC3T3 cells to various concentrations of diacrylate and diamine 
monomers of Poly 1. 

Exposure times were 5 hrs or 2 days.  

 

Figure 3.2 suggests several trends: (1) the monomers’ effect on MC3T3 could accumulate 

over days, (2) the diacrylate may be more toxic than the diamine, (3) a combined 

treatment of the two monomers tend to reflect the toxicity of the more toxic component, 

suggesting that there was no synergistic action between the two monomers, and (4) at 

equivalent concentrations, the starting monomers may be more toxic than the degradation 

products of Poly 1.  Overall, the data support the hypothesis that residual monomers from 
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the synthesis could decrease observed biocompatibility of a Poly 1 sample.  However, the 

residual amounts were not expected to be on the same order or magnitude as Poly 1 given 

the crystallization and wash procedures built into the synthesis process.  Data from Figure 

3.2 suggest that it would take almost a 1:1 molar ratio between the monomers and Poly 1 

for the level of metabolic inhibition observed for the as-made Poly 1 in Figure 3.2.  This 

seems somewhat unrealistic, so most likely there were other impurities within an as-made 

Poly 1 sample, possibly residual organic solvents.  However, the identify and quantity of 

organic contaminants would be difficult to estimate, and hence no further assays were run 

to check on the identity and level of toxicity of these species. 

 

“Fresh” vs. degraded Poly 1.  Given the findings thus far, double-purified Poly 1 was 

used for all subsequent assays to better clarify the toxicity of Poly 1 itself as opposed to 

other impurities.  Also, as stated above, Poly 1 could be incorporated into an LbL film in 

a purer form due to its higher multivalency over oligomeric and monomeric 

contaminants.  As a follow-up to the first series of assays represented in Figure 3.3, a new 

set was conducted at exposure times other than two days.  A similar assay as Figure 3.3 

was run, but with exposure times of 5 hours, 1 day, and 3 days.  The results are shown in 

Figure 3.3.  Note that not all concentrations were tested at all three exposure times.  Due 

to material limitation at the time, the lower concentrations were administered for longer 

periods, while the higher range was administered for shorter periods. 
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Figure 3.3 - Metabolic response of MC3T3 cells to Poly 1 solutions after various exposure times. 

 

Results in Figure 3.3 were rather puzzling – at several concentrations, Poly 1 actually 

resulted in more metabolic arrest at shorter treatment times.  5-hr treatments were 

surprisingly toxic, with 100 µg/mL Poly 1 being essentially as toxic as an equivalent 

concentration of PEI.  MC3T3 cells appeared to recover over the period of 1-3 days, 

suggesting that most of the detrimental impact of Poly 1 was exerted within the first few 

hours.  In addition, data in Figure 3.3 suggest that up to 100 µg/mL of degraded Poly 1 

could be tolerated by MC3T3 over a 5-hr treatment.  Hence, it appears that undegraded 

Poly 1, rather than the degradation products, accounted for most of the observed toxicity.  

The toxicity could arise from either the polycationic nature of undegraded Poly 1 itself, 

or from the process of degradation.  Many polycations have been found to be mildly toxic 

on mammalian cultures, so undegraded Poly 1 could exert a similar polycation-derived 

toxicity effect.  However, the toxicity could also arise from the chemistry of the 

degradation process.  To further verify this observation, I treated MC3T3 with various 
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concentrations of either “fresh” or fully degraded Poly 1, for several exposure times.  

Again, not all concentrations were represetend under all exposure times due to 

experimental constraints.  The results are shown in Figure 3.4. 
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Figure 3.4 - Metabolic response of MC3T3 cells to "fresh" vs. "degraded" Poly 1 solutions over various 
exposure times. 

Poly 1 solutions were either freshly prepared right before exposure (“fresh”) or left to degrade overnight 
prior to use (“degraded”). 

 

Data represented in Figure 3.4 very clearly show that fresh Poly 1 was more toxic than 

degraded products when administered at equivalent concentrations.  However, unlike 

previous observation made with Figure 3.3, the cells did not recover over time.   Hence, 

while the hypothesis of higher toxicity of fresh Poly 1 was well-supported, the ability of 

MC3T3 to “recover” was less certain. 
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Degradation process vs. polycationic effect.  To additionally assess whether the 

degradation process or the polycationic nature of Poly 1 that caused the toxicity, I 

examined treatment of MC3T3 by chitosan, a naturally occuring, non-degrading 

polycation, at several concentrations along with fresh and degraded Poly 1.  Several 

degraded Poly 6 solutions were run along with this assay to check for any differences in 

toxicity between the two sets of degradation products.  Results are shown in Figure 3.5. 

 

 

Figure 3.5 - Metabolic response of MC3T3 cells to chitosan solutions and fresh vs. degraded Poly 1 
solutions over various exposure times.   

 

Chitosan treatments up to 200 µg/mL over 5 hours and 2 days appeared reasonably non-

toxic, in stark contrast to fresh Poly 1 solutions at equivalent concentrations and 

treatment times.  Hence, it appears that the polycationicity alone did not account for the 
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level of toxicity observed.  Degradation products of Poly 1 and Poly 6 appeared equal in 

their nontoxicity over the 5-hour to 2-day exposures. 

 

The observation of fresh Poly 1 being more toxic than its degraded counterpart was 

certainly intriguing, so additionally assays were run to examine very short exposures to 

fresh Poly 1 to capture the more intense degradation activities within the initial hours of 

solution preparation.  MC3T3 was exposed to fresh Poly 1 (dissolved for 30 min prior to 

administration) at various concentrations for 15 min, 45 min, 1.5 hrs, and 3 hrs. The 

resulting “toxicity kinetics” are plotted in Figure 3.6.  PEI at 100 µg/mL was used as a 

positive control. 

Error!  

Figure 3.6 - Short-exposure monitoring of metabolic response of MC3T3 cells to freshly prepared Poly 1 
solutions.   

Values indicated in the legend are in units of µg/mL. 

 

Interestingly, a significant amount of the cytotoxic effect was found to occur within the 

first 15 min of fresh Poly 1 treatment (but bearing in mind that the solution had been 
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stirred for 30 min prior to exposure).  In some instances, MC3T3 appeared to begin 

recovering between 1.5 and 3 hours.  PEI, on the other hand, had a more gradual and 

accumulating effect on the MC3T3 cultures.  This set of data suggest that the degradation 

process, rather than the polycationicity, was detrimental to the MC3T3 cells. 

 

Combing Poly 1 with polysaccharides.  After the degree and source of Poly 1 toxicity 

were determined, a new set of assays were designed to examine the effect of combing 

fresh vs. degraded Poly 1 with a polysaccharide in order to mimic the “cocktail” of 

polyelectrolyte components that a typical LbL drug delivery film would release.  Heparin 

and dextran were chosen as the model polysaccharides.  A fixed amount of 50 µg/mL 

polysaccharide was administered to each culture, with variable concentrations of Poly 1 

in either fresh or degraded forms.  The results are shown in Figure 3.7. 

Error!

 

Figure 3.7 - Metabolic response of MC3T3 cells to various combinations of Poly 1 with heparin or dextran, 
with overnight (18 hrs) exposure. 
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Not surprisingly, combination treatments involving fresh Poly 1 tended to be more toxic 

than those involving degraded Poly 1.  An additional observation was that combinations 

involving heparin were more toxic.  This could be due to the higher toxicity of heparin 

itself, as demonstrated by the “No Poly 1” test group.  Whether the toxicity of fresh Poly 

1 + heparin was accumulative or synergistic is unknown.  Results from the 50 µg/mL test 

groups point out the fact that co-releases of Poly 1 with a polysaccharide at these 

concentrations or above may not be well-tolerated by mammalian cells.  Although the 

results seen for MC3T3 may not generalize to other cell lines or in vivo environments, 

such findings should be taken into consideration when designing films that need to 

release a large amount of payload.   

 

As subsequent thesis endeavors focused on [(Poly 1/HA)(GS/HA)]n films (HA = 

hyaluronic acid and GS = gentamicin sulfate), one should consider how the 

biocompatibility assessments above would apply.  Based on an assumed 1:1 charge ratio 

between Poly 1 and gentamicin within a [(Poly 1/HA)(GS/HA)]n film, resulting in a 

2.14:1.00 mass ratio between the two species, the observed 50 μg/mL toxiity limit for 

Poly 1 would mean that a gentamicin release above 23 µg/mL may result in some adverse 

side effect from Poly 1.  However, this is much higher than the MIC value for gentamicin 

against Staphylococcus aureus (0.1-1 μg/mL), so the gentamicin coatings do have a 

sufficient “operating margin”.  Indeed, as to be seen in Chapter 5, up to at least 10 µg/mL 

release of gentamicin from [(Poly 1/HA)(GS/HA)]n films was nontoxic towards MC3T3 

and efficacious against S. aureus at the same time. 
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Cos-7 assessments.  To assess the generality of the biocompatibility findings above, an 

identical series of assays was performed on Cos-7, a simian kidney cell line.  The 

observed trends were very similar to those of MC3T3.  For example, data in Figure 3.8 

below suggest that Cos-7 was also more sensitive to fresh Poly 1 than to the fully 

degraded form.  However, the normalized metabolic activities appeared lower than those 

of MC3T3 when compared at the same treatment concentrations and times. 

Cos-7, fresh vs. degraded Poly 1
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Figure 3.8 - Metabolic response of Cos-7 cells to fresh vs. degraded Poly 1 solutions over 5-hr to 3-day 
exposure times. 

 

For better comparison of the differences in metabolic responses between MC3T3 vs. Cos-

7, data from Figure 3.4 and Figure 3.8 are overlaid in Figure 3.9.  For exposure times 

greater than 5 hours, Cos-7 had noticeably higher reduction in normalized metabolic 

activities under most treatment conditions, especially in the case of fresh Poly 1.   
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MC3T3 vs. Cos7, 5hr-1 day treatment
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Error!

MC3T3 vs. Cos7, 2-3 day treatment
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Figure 3.9 - Comparison of metabolic responses of MC3T3 and Cos-7 cells to fresh vs. degraded Poly 1. 
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(a) 5hr and 1 day exposure times, (b) 2 and 3 day exposure times.  Data taken from Figure 3.4 andFigure 
3.8. 

 

Cos-7’s higher sensitivity to fresh Poly 1 was further revealed by the short-term response 

data as presented in Figure 3.10.  Again, the largest drop in metabolic activity was 

observed within the first 15 min as was the case for MC3T3.  However, Cos-7 was 

sensitive to fresh Poly 1 even at a low concentration of 10 µg/mL.  For all Poly 1 

concentrations, the normalized metabolic activities of Cos-7 cultures after 1-2 hours were 

approximately half of those of MC3T3.  This finding could be explained by the fact that 

Cos-7 is a highly transfectable cell line, and in fact has been demonstrated by Lynn et al. 

to be efficiently transfected by a combination of Poly X and plasmids 23, 111, 112, 162.  Cos-

7’s transfectability may very well be correlated to its sensitivity to Poly 1.  Assays with 

additional transfectable cell lines could further ascertain this hypothesis. 
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Figure 3.10 – Short-time monitoring of metabolic response of Cos-7 cells to freshly prepared Poly 1 

solutions. 

3.4 Conclusion.   

Biocompatibility of Poly 1 towards MC3T3 and Cos-7 were assessed based on the cells’ 

level of metabolic activity.  Double-purified Poly 1 was found to be less inhibitory than 

as-made Poly 1.  While the identity of the impurities was not fully characterized, the two 

monomers used to synthesize Poly 1, especially the diacrylate, were found to be mildly 

toxic.  However, monomers alone did not appear to account the observed level of 

toxicity, and other impurities such as residual organic solvent may be at play.   

 

For a purified version of Poly 1, a freshly prepared solution was found to be much more 

toxic than a fully degraded one when administered at the same concentration.  Further 
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assessments revealed that the degradation process, rather than the polycationicity of 

undegraded Poly 1, was likely responsible for the observed toxicity.  In fact, for both cell 

lines, most of the toxicity effect was observed within the initial 15 min of fresh Poly 1 

exposure.  The higher toxicity of fresh Poly 1 was observed when co-administered with 

polysaccharides as well.  In particular, a combination with heparin was found to be more 

toxic than one with dextran. 

 

Cos-7 was found to be more sensitive to Poly 1 treatments than MC3T3, especially in the 

cases of fresh Poly 1 exposures.  This sensitivity may correlate with Cos-7’s higher 

transfectability. 
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Chapter 4.  Incorporation of cyclodextrins for small 

molecule encapsulation 

4.1 Introduction 

Cyclodextrins are cyclic oligosacchrides that may include six (α), seven (β) (Figure 4.1), 

or eight (γ) glucose units.  The ringed structure results in unique cup-like morphology 

with a polar exterior and a hydrophobic interior; this allows them to encapsulate small, 

hydrophobic molecules in an “inclusion complex” and 

allows for solubilization of these otherwise insoluble 

species.   They have been used in pharmaceutical 

formulations since the 1950s because of their versatility 

and low toxicity163.   

Figure 4.1 – Structure of unmodified β-cyclodextrin. 
 
 

The exteriors of the cyclodextrin cups can be easily modified with various chemical 

groups for customized needs.  Numerous chemical variants of cyclodextrins have been 

synthesized to optimize the complexation with small-molecule therapeutics such as the 

anti-inflammatories dexamethasone 164-166 and piroxicam12, several classes of antibiotics 

167-170, and anti-anxiety drug lorazepam171.  In addition to functioning as a carrier, 

cyclodextrins may also enhance therapeutic effects168, 172 or reduce toxic side effects of 

drugs173. 

 



 99

For layer-by-layer incorporation of drugs, the ability of cyclodextrins to convert a small, 

hydrophobic therapeutic into a charged or H-bonding species is a very promising feature.  

In fact, modified cyclodextrins have been used for multilayer incorporation of several 

drugs and model compounds 12, 172, 174-178,  for both drug delivery and sensor applications.  

Two approaches were used: “pre-uptake” and “post-uptake” (Figure 4.2).   The pre-

uptake strategy involves formation of cyclodextrin-drug inclusion complexes followed by 

LbL deposition of the resulting complex, whereas the post-uptake strategy involves LbL 

buildup with empty cyclodextrins, followed by drug uptake by the cyclodextrin-loaded 

film.  Benkirane-Jessel et al. used the pre-uptake method when they formed inclusion 

complexes of anti-inflammatory piroxicam with 6A-toluenesulfonyl-β-cyclodextrin then 

bilayered the complex with poly(L-lysine) (PLL) either with or without poly(glutamic 

acid) (PGA)12.  The authors noted that uptake of the inclusion complex by a (PLL/PGA)n 

film was not successful.  On the other hand, Sato et al. reported uptake of methyl orange 

by a (PAH/sulfated α-cyclodextrin)n film, but not by the sulfated β-cyclodextrin 

counterpart178. 
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Figure 4.2 – Schematics of LbL drug incorporation methods via cyclodextrin inclusion complexes.  
(left) “pre-uptake” that involves LbL assembly of pre-formed inclusion complexes, (right) “post-uptake” 
which incorporates unloaded cyclodextrins into LbL films then uptakes drug with completed film. 

 

As a proof-of-concept of drug incorporation via cyclodextrins, I sought anion-

functionalized cyclodextrins that were available from commercial sources.  Anion 

functionalization on the exterior would allow for direct deposition with Poly X as the 

complementary species.  I decided to use sulfated versions of α- and β-cyclodextrins from 

Sigma, each with approximately 8 sulfate groups per cyclodextrin.  As mentioned above, 

this sulfated variant of cyclodextrins has been successfully used by Sato et al. to 

incorporate dyes into LbL films.   

 

In terms of drug candidates, I chose three small molecules of varying degrees of 

hydrophobicity (Figure 4.3): (1) dexamethasone, an anti-inflammatory that is 

hydrophobic, (2) gentamicin sulfate, an aminoglycosidic antibiotic that is hydrophilic and 

highly charged, and (3) ampicillin, a β-lactam antibiotic that is hydrophilic but less 

charged than gentamicin.  These three variants should provide an initial understanding of 

how well sulfated cyclodextrins can facilitate small molecule incorporation with varying 

degrees of hydrophobic interaction and ionic cross-linking. 

 



 101

 

Figure 4.3 – Structures of the therapeutics used in this study. 

 

While sulfated cyclodextrins were reported to form inclusion complexes with a dye like 

methyl orange (see Figure 4.4), other versions of cyclodextrins were used for the three 

proposed drugs.  For example, 2-hydroxypropyl-β-cyclodextrin was most commonly used 

to include dexamethasone 164-166.  However, as proof-of-concept, I decided to use sulfated 

cyclodextrins for all three drug molecules to check on the degree of generality of this 

technique. 

 

Figure 4.4 – Structure of methyl orange 

4.2 Materials and Methods 

Materials.  Radiolabeled dexamethasone (3H-Dex) was ordered from American 

Radiolabeled Chemicals (St Louis, MO).  Gentamicin sulfate and ampicillin were 

purchased from Mediatech (Manassas, VA).  Sulfated α- and β-cyclodextrins were 
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purchased from Sigma Aldrich (St Louis, MO).  IR-transparent silicon wafers were 

courtesy of Kevin Krogman.  All other materials follow the same sources as outlined in 

Chapter 2. 

 

Film construction.  Standard layer-by-layer construction protocol was followed (see 

Chapter 2).  Briefly, all dipping solutions were prepared in 0.1M sodium acetate at a 

concentration of 2 mg/mL unless otherwise noted.  Each deposition cycle lasted for 10 

min, with a cascade of three DI water rinses at 30, 45, and 60 seconds.  All substrates 

were pre-deposited with a (LPEI/PSS)10 base layer. 

 

Pre-uptake method.  Inclusion complexes were formed by stirring a solution of the 2 

mg/mL cyclodextrin with molar balance of the drug in 0.1M sodium acetate buffer at 

room temperature.  The stirring was allowed to proceed overnight or until the solution 

appeared completely clear.  This solution was then used as the anion dipping solution the 

layer-by-layer assembly. 

 

Post-uptake method.  (Poly 1/s-CyD)n films were made using standard deposition 

conditions, in which the s-CyD species was deposited from a 0.1M sodium acetate 

solution at 2 mg/mL.  For ampicillin and gentamicin, the cyclodextrin-loaded films were 

then soaked in a stirred solution of a drug at 10 mg/mL in 0.1M sodium acetate at pH 5.1 

(natural pH of the acetate solution) and/or pH 3.5 under room temperature.  

Dexamethasone uptake was performed in ethanol at 10 mg/mL and 0.1M sodium acetate 

without pH adjustment. 
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FTIR measurements.  FTIR measurements of a thin film were performed by depositing 

the film on IR-transparent silicon, prepared in the same way as standard silicon 

substrates.  Spectra were collected on a Nicolet Magna-IR® 550 Series II 

spectrophotometer, with accompanying OMNIC software version 6.1.  All spectra were 

collected with at least 250 scans.  A background of transparent silicon with (LPEI/PSS)10 

was subtracted from all images. 

 

Drug release measuremet.  Standard scintillation protocol was used to measure the 

release of 3H-dexamethasone from thin films (see Chapters 2 and 5).  Briefly, , 3H-dex 

labeled films were immersed in 25 mL of pre-warmed PBS in a tightly-capped Falcon 

tube, maintained at 37°C in a water bath.  A 1 mL sample was extracted at predetermined 

time points and analyzed by adding 5 mL of ScintiSafe Plus 50% (Fisher Scientific, 

Atlanta, GA) prior to measurement.   The resulting mixtures were analyzed using a Tri-

carb liquid scintillation counter (Model U2200).  Raw data (disintegrations per minute, 

DPM) were converted to micrograms (μg) of dexamethasone using the conversion factor 

2.2 x 106 DPM = 1 μCi = 1.0 μg 3H-dex.   

 

4.3 Results and Discussion 

Growth of (Poly 1/s-CyD)n films.  Direct bilayering between Poly 1 and both sulfated α- 

and β-cyclodextrins (denoted as s-α-CyD and s-β-CyD, respectively, or s-CyD for 

sulfated cyclodextrins in general) resulted in steady monotonic growths, as shown in 

Figure 4.5.  Both cyclodextrins resulted in linear growths with Poly 1, suggesting that the 
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cyclodextrins did not diffuse too freely.  Interestingly, even though α- and β-

cyclodextrins only differ by one glucose unit (six for α vs. seven for β), and both were 

reported by Sigma-Aldrich to have approximately 8 sulfate units per cyclodextrin, the 

growth rates between the two species were very different, with (Poly 1/s-β-CyD)n 

growing about four times faster than the α counterpart.  S-α-CyDs do have higher charge 

densities than s-β-CyD given the same number of sulfate units at a lower molecular 

weight, and this could result in (Poly 1/s-α-CyD)n being more compact.  It is also 

possible that s-α-CyD’s smaller ring resulted in a more efficient “packing” into the 

multilayers.   

 

Figure 4.5 – Growth curve of (Poly 1/s-CyD)n films.   

Values represent averages of ellipsometer readings over multiple locations of a representative 
substrate, with error bars representing standard deviations from these readings.  From SepOct05. 

 

The growth curves suggest that the negatively functionalized cyclodextrins could 

be easily incorporated into an LbL film, despite their lack of polymeric structure.  

The linearity of the growth curves was a promising suggestion that cyclodextrins 
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did not diffuse readily within these films, and hence could be useful for the design 

of multilayers for sequential release of small molecules.  Erosion curves were not 

collected at this point, as I wanted to first verify the ability of these films to 

encapsulate and release small molecule drugs in a sustained fashion. 

 

Since (Poly 1/s-α-CyD)n films were much thinner, their FTIR spectra also gave 

much weaker signals, making the results difficult to interpret.  Coupled with the 

fact that β-CyD’s were more commonly used in the reported literature, I decided to 

focus the data discussion on results from the (Poly 1/s-β-CyD)n films. 

 

Ampicillin uptake.  Figure 4.6 compares the FTIR spectra from a (Poly 1/s-β-

CyD)60 film (bottom spectrum) and a (Poly 1/[s-β-CyD.AmP])60 films, where [s-β-

CyD.drug] denotes the hypothetical inclusion complexes between s-β-CyD and a 

drug species that was assumed to have formed.  While (Poly 1/ [s-β-CyD.AmP])60 

gave a stronger signal, all the peaks match those of (Poly 1/s-β-CyD)60 without any 

additional peaks indicative of ampicillin’s presence.  Hence, it appears that 

inclusion complexes did not form, but the presence of ampicillin in the s-β-CyD 

dipping solution altered the film construction in a way to promote thicker films. 



 106

 

Figure 4.6 – Pre-uptake of AmP.  

FTIR spectra of a (Poly 1/s-β-CyD)60 film (bottom spectrum) and a (Poly 1/ [s-β-CyD.AmP])60 film 
(top spectrum).   

 

Figure 4.7 shows uptake of ampicillin by (Poly 1/s-β-CyD)60 in 0.1M sodium 

acetate, either without pH adjustment (around 5.1, a), or pH adjusted to 3.5 by HCl 

(b).  The experiments at the lower pH meant to check whether potential increase in 

protonation of ampicillin would aid its uptake. 
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(a) 

 
(b) 

Figure 4.7 –Post-uptake of ampicillin.  

FTIR spectra of (Poly 1/s-β-CyD)60 film after noted amounts of immersion times in ampicillin solutions in 
0.1M sodium acetate at (a) pH 5.1 (no adjustment), and (b) p 3.5 (adjusted by HCl). 

 

At both pH 5.1 and 3.5 in the post uptake method, no noticeable spectra evolution 

occurred over the course of the multi-hour immersions.  The consistency in the 

intensity of the peaks over time suggest that the (Poly 1/s-β-CyD)60 films did not 
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degrade appreciably over the examined time frame, except for the 14-hour 

immersion at pH 3.5.  Overall, it appears that using s-β-CyD in an LbL film was 

not the best approach to encapsulating a polar uncharged species like ampicillin. 

 

Dexamethasone uptake.  Unlike ampicillin, dexamethasone (Dex, a non-steroidal 

anti-inflammatory drug, or NSAID) was hydrophobic and hence a more suitable 

candidate for cyclodextrin uptake.  When dispersed in 0.1M sodium acetate, Dex 

created a cloudy solution that would not clear, suggesting its low solubility.  

However, with 1:1 molar addition of s-β-CyD, the solution eventually cleared after 

3-4 hours of stirring under room temperature.  This was taken as a visual indication 

that Dex was solubilized by forming an inclusion complex with s-β-CyD, although 

the formation of these complexes was not verified by physicochemical means. 

 

The hypothetical [s-β-CyD.Dex] solution was then bilayered with Poly 1, and the 

resulting films were compared by FTIR with those made with pure s-β-CyD.  The 

FTIR spectra of (Poly 1/s-β-CyD)n and (Poly 1/[s-β-CyD.Dex])n films are shown in  

Figure 4.8.  A comparison between spectra of (Poly 1/s-β-CyD)10 and (Poly 1/[s-β-

CyD.Dex])10 and those of (Poly 1/s-β-CyD)40 and (Poly 1/[s-β-CyD.Dex])36 did not 

reveal any significant difference, aside from an anomalous dip was seen around 600 

cm-1 and a small extra peak was seen for (Poly 1/[s-β-CyD.Dex])10 around 1100 cm-

1.  Neither peak was characteristic of dexamethasone and could be instrumental 

artifacts.  Despite visual observation that suggested inclusion complex formation, 

the resulting moiety did not appear to result in dexamethasone incorporation into 



 109

the film.  Either empty s-β-CyD were favored over [s-β-CyD.Dex] complex during 

the deposition process, or dexamethasone might have “fallen out” of the 

cyclodextrin cups during deposition due to unknown competing forces.  In either 

case, the pre-uptake strategy with the current methods did not assist with 

dexamethasone uptake. 

 

Figure 4.8 – Pre-uptake of Dexamethasone. 
FTIR spectra of a (Poly 1/s-β-CyD)10, 40 films and a (Poly 1/ s-β-CyD.Dex)10, 36 films.  Each 
spectrum is identified on the graph itself. 
 

Similar to the pre-uptake method, the post-uptake strategy of immersing a (Poly 1/s-β-
CyD)60 film in either ethanol or 0.1M sodium acetate did not yield definitive indication of 
dexamethasone uptake.  (b) 
Figure 4.9 (a) shows the FTIR spectra of a (Poly 1/s-β-CyD)60 film after various amounts 

of immersion time in an ethanol solution of dexamethasone at 10 mg/mL.  Essentially no 

change in the spectra was observed over 12 hours of immersion. 

 

(b) 
Figure 4.9 (b) shows the FTIR spectra of a (Poly 1/s-β-CyD)60 film after 0, 5 hr 20 min, 

and 9 hr 10 min immersions in a 0.1M sodium acetate solution of dexamethasone at 10 
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mg/mL.  While dexamethasone was insoluble in 0.1M sodium acetate, the undissolved 

particles were continuously stirred to promote contact with film surface.  Interestingly, I 

observed two distinct peak evolutions around 600 cm-1 and the other around 1100 cm-1, 

corresponding to those found in the pre-uptake method that did not match any 

characteristic absorption of dexamethasone.   This additional finding suggests that [s-β-

CyD.Dex] might have signature bands at those wave numbers, but no verification of this 

hypothesis was done. 
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(a) 

 

(b) 

Figure 4.9 – Post-uptake of dexamethasone. 

FTIR spectra of (Poly 1/s-β-CyD)60 film after noted amounts of immersion times in dexamethasone 
solutions in (a) ethanol, (b) 0.1M sodium acetate, pH 5.1. 
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Since it was unclear whether dexamethesone was truly incorporated in the case of Figure 

4.9 (b), I made (Poly 1/s-β-CyD)60 with 6-hr uptake of 3H-Dex in 0.1M sodium acetate, 

then performed drug release assessment in PBS at 37°C.  The resulting cumulative 

releases are shown in Figure 4.10.  As suggested by the graphs, little to no 

dexamethasone was released over the time period investigated.  The substrate appeared 

completely film-free after one day, but release was taken to as far as 5 days to verify the 

lack of dexamethasone release.  

 
(a) 

 
(b) 

Figure 4.10 – Cumulative release of dexamethasone from (Poly 1/s-β-CyD)60 after 9-hr uptake in ethanol. 

(a) data from three separate films over a release period of 25 hours, (b) one of the samples was extended to 
120 hours to ascertain the lack of dexamethasone release.  Error bars represent scintillation machine 
counting error. 
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Gentamicin uptake.  In the case of gentamicin, no pre-uptake was attempted since 

gentamicin was highly charged and hence not expected to form inclusion complexes with 

cyclodextrins.  However, it was tested in the post-uptake method as a comparison to 

ampicillin and dexamethasone.  A (Poly 1/s-β-CyD)60 film was immersed in a 0.1M 

sodium acetate solution of gentamicin at 10 mg/mL with no pH adjustment (pH 5.1).  

FTIR spectra were collected at various amounts of time ranging from one to six hours 

(see Figure 4.11 (b)).   

 
(a) 

 
(b) 

 
Figure 4.11 – Post-uptake of gentamicin.  
(a) FTIR spectrum of pure gentamicin, (b) FTIR spectra evolution for (Poly 1/s-β-CyD)60 immersed in 
0.1M sodium acetate, pH 5.1 solution of gentamicin for different amounts of time. 
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A peak around 1100 cm-1 was seen to emerge after six hours of uptake.  This absorption 

did correspond to a major peak in gentamicin’s FTIR spectrum (see Figure 4.11 (a)) and 

suggested that gentamicin might have diffused into the film.  Gentamicin uptake by the 

film was likely due to favorable electrostatic interactions with the sulfate groups of s-β-

CyD.  However, there was also the possibility that the peak was an artifact arising from a 

similar cause as that for dexamethasone’s post-uptake.  Gentamicin release was not 

assessed due to the unavailability of a labeled form at the time.  

 

Subsequent experiments that directly incorporated gentamicin into an LbL assembly 

without any “helper” or pre-modification were successful.  Gentamicin was deposited via 

the architecture [(Poly X/PA)a(gentamicin/PA)b]n, where Poly X could be any member of 

the poly(β-amino ester) family, PA was a biocompatible polyanion, e.g. hyaluronic acid, 

alginic acid, or chondroitin sulfate, and (a, b, n) were independently adjustable 

parameters that could be used to tune film architecture.  The construction and assessment 

of these LbL assemblies became a major portion of my thesis and will be elaborated in 

subsequent chapters. 

 

4.4 Conclusion 

Sulfated α- and β-cyclodextrins were successfully bilayered with Poly 1 with linear 

growth curves.  However, under the conditions investigated, these molecules did not 

support incorporation of several small molecule drug candidates: dexamethasone, a 

hydrophobic anti-inflammatory drug, ampicillin, a polar but uncharged antibiotic, and 

gentamicin, a highly charged antibiotic.   
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The preliminary findings reported here do not necessarily discourage further 

experimentation with cyclodextrins, as there were many limitations to the present study: 

(1) the chemistry of the cyclodextrins, i.e. sulfation, was not necessarily optimized for the 

model drugs, (2) the uptake conditions, in both the pre- and post-uptake methods, were 

not necessarily optimized in terms of solvent choice, ionic strength, temperature, etc., and 

(3) the detection method, i.e. FTIR, might not be sufficiently sensitive and might produce 

artifacts.   Improvements to the above include (1) using cyclodextrins of a specific 

chemistry that has been reported to form inclusion complexes within a given drug or a 

close structural analog thereof, e.g. 2-hydroxypropyl-β-cyclodextrin for dexamethasone 

164-166, (2) optimizing solvents conditions, e.g. ones with less favorable interaction with 

the drug molecule to encourage its inclusion by cyclodextrins. This optimization should 

be done for both pre- and post-uptake methods, and (3) considering alternative detection 

methods such as UV-vis, fluorescence, etc. to complement FTIR measurements.  In 

addition, polymerized cyclodextrins are promising alternatives to individual cyclodextrin 

molecules, as their polymeric character is expected to result in more stable film 

constructs.   In fact, studies are underway by Renee Smith for the LbL incorporation of 

dexamethasone using Captisol® (sulfobutyl ether ß-cyclodextrin) and other  

cyclodextrin-based polymers for ophthalmic drug delivery, and additional drug 

candidates such as paclitaxel are also under consideration. 

 

Acknowledgements. 

I would like to thank Nicole Zacharia for her consultation on the FTIR measurements, 
and Kevin Krogman for providing IR-transparent silicon wafers. 



 116

 

References. 
 
(1) Heidel, J. D. Expert Opinion in Drug Delivery, 2006, 3, 641-646 
 
(2) Gavrilin, M. V., Kompantseva, Y. V. and Ushakova, L. S. Khimiko-
Farmatsevticheskii Zhurnal, 1994, 28, 44-46 
 
(3) Gavrillin, M. V., Kompantseva, E. V., Gusova, B. A., Ushakova, L. S., Makarov, V. 
A. and Karpenya, L. I. Pharmaceutical Chemistry Journal, 1999, 33, 45-48 
 
(4) Usayapant, A., Karara, A. H. and Narurkar, M. M. Pharmaceutical Research, 1991, 8, 
1495-1499 
 
(5) Benkirane-Jessel, N., Schwinte, P., Falvey, P., Darcy, R., Haikel, Y., Schaaf, P., 
Voegel, J.-C. and Ogier, J. Advanced Functional Materials, 2004, 14, 174-182 
 
(6) Blanchemain, N., Haulon, S., Martel, B., Traisnel, M., Morcellet, M. and Hildebrand, 
H. F. European Journal of Vascular and Endovascular Surgery, 2005, 29, 628-632 
 
(7) Dhanaraju, M. D., Kumaran, K. S., Baskaran, T. and Moorthy, M. S. R. Drug 
Development and Industrial Pharmacy, 1998, 24, 583-587 
 
(8) G., A., S., M., E., L.-C., T., T. and E., A.-V. Journal of Pharmacy and Pharmacology, 
2003, 55, 291-300 
 
(9) Domingues, Z. R., Cortes, M. E., Gomes, T. A., Diniz, H. F., Freitas, C. S., Gomes, J. 
B., Faria, A. M. C. and Sinisterra, R. D. Biomaterials, 2004, 25, 327-333 
 
(10) Sanghavi, N. M., Choudhari, K. B., Matharu, R. S. and Viswanathan, L. Drug 
Development and Industrial Pharmacy, 1993, 19, 701-712 
 
(11) Jessel, N., Oulad-Abdelghani, M., Meyer, F., Lavalle, P., Haikel, Y., Schaaf, P. and 
Voegel, J. C. PNAS, 2006, 103, 8618-8621 
 
(12) Uekama, K., Shiotami, K., Irie, T., Ishimaru, Y. and Pitha, J. Journal of Pharmacy 
and Pharmacology, 1993, 45, 745-747 
 
(13) Suzuki, I., Sato, K., Koga, M., Chen, Q. and Anzai, J.-i. Materials Science and 
Engineering: C, 2003, 23, 579-583 
 
(14) Yang, X., Johnson, S., Shi, J., Holesinger, T. and Swanson, B. Sensors and 
Actuators B: Chemical, 1997, 45, 87-92 
 



 117

(15) Yang, X., Shi, J., Johnson, S. and Swanson, B. Sensors and Actuators B: Chemical, 
1997, 45, 79-84 
 
(16) Yang, Y., Yang, X., Liu, Y.-L., Liu, Z.-M., Yang, H.-F., Shen, G.-L. and Yu, R.-Q. 
Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 137-144 
 
(17) Sato, K., Suzuki, I. and Anzai, J.-i. Langmuir, 2003, 19, 7406-7412 
 
 
 



 118

Chapter 5.  Polyelectrolyte multilayers for tunable release 

of antibiotics 

5.1 Fabrication and characterization 

Reproduced in part with permission from “Polyelectrolyte Multilayers for Tunable 
Release of Antibiotics” by Helen F. Chuang, Renee C. Smith, and Paula T. Hammod.  
Biomacromolecules, 9 (6), 1660–1668, 2008. 10.1021/bm800185h, © 2008 
American Chemical Society. 
 

5.1.1 Introduction 

Many implanted biomedical devices suffer from infections that develop post-

surgically on the device surface, which not only cause device failure but could 

also spread systemically 121. This problem is critical and escalating, and it should 

be either prevented prophylactically or eradicated remedially.  Of particular 

urgency are infections of orthopedic implants, which require that the patient 

undergo two or more additional surgeries with multi-week gaps in between, 

during which time the patient is left immobile179.  Such revisions are costly and 

inconvenient, and remedial implant products are yet to be developed. 

Most of the antimicrobial orthopedic implant coatings under development, such as 

dip coating of hydroxyapatite 122 or collagen 123, direct incorporation of antibiotics 

into glass implants 124, bone cement 125, PLGA-based coatings 126, or nitric oxide-

releasing sol-gel coatings 127, cannot be easily tuned with regard to drug dosage or 

release rate.  In some cases, residual foreign materials are left behind, which may 

induce long-term immunogenic responses.  A biodegradable coating that can be 
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tuned to deliver the desired dosage of drugs over a specified amount of time, 

while leaving no residual material on the implant surface, would address both 

problems.  Such an antimicrobial coating would also be applicable towards other 

implanted devices such as dental implants 128, catheters 129, 130, shunts 131, and 

guide wires 132.   

 

As bacteria can be introduced either during the surgical process onto the implant 

surface or post-surgically from the patient’s blood, an antimicrobial coating 

should both discourage bacteria attachment and impose antimicrobial action on 

the tissues and fluids immediately surrounding the implant.  Such a dual action 

would effectively prevent biofilm formation, the major source of implant surface 

infection129, 130, 133-136. Due to the widely differing timescales and severities in 

device infections that range from rapid acute infections to longer term chronic 

modes136-138,  antimicrobial coatings with adjustable dosages and release rates are 

needed.  Therefore, a coating with controls over both parameters would be highly 

desirable.  Hence, we seek to develop an antimicrobial coating that can both 

discourage bacteria attachment to the implant surface and be able to release 

antibiotics into the surrounding tissues at a tunable dosage and rate.  This can be 

achieved through a biodegradable coating that controllably sheds from its surface 

to release antibiotics.  Specifically, we wish to construct a hydrolytically 

degradable thin film via the layer-by-layer (LbL) deposition technique 

encapsulating gentamicin, an antibiotic commonly used to treat device 

infections121, 139-141. 
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LbL deposition is a nanoscale polymer thin film technique that can be applied to 

virtually any surface material of any size and geometry.  The technique is based 

on the alternating deposition of polyelectrolytes or other multiply charged species 

52.  LbL deposition results in multilayered films that are ultrathin, conformal, and 

highly tunable in both morphology and functionality.  In addition, the fabrication 

process is simple, low-cost, scalable, and mild, as it only involves aqueous 

solutions at room temperature near physiological pH.  In contrast to the harsh 

organic conditions often used in making polymeric drug depots 180, the mild 

aqueous environment of the LbL process is a distinct feature that proves 

especially beneficial for sensitive biologic drugs such as proteins, antibodies, 

nucleic acids, and peptides.  Such coatings can be used to release a wide range of 

active substances including therapeutic agents.  LbL coatings have been 

successfully applied to a variety of device surfaces, including stainless steel stents 

118, NiTi disks and wires for stent application 103, polyurethane vascular 

prostheses and polystyrene plates 159, silica capillary tubing 181, and PMMA-based 

dental material 182.  Because of its numerous advantages, LbL-based films have 

been studied extensively as therapeutic coatings17, 25, 27, 73, 99, 101, 103, 110-112, 118-120, 

172, 183-186.  Non-degradable LbL films can be used to improve device 

biocompatibility101, 103, 185 and impart surface bioactivity 73, 103, while 

decomposable LbL films, such as salt-induced degradation of LbL hollow 

capsules 17,  have been investigated for drug delivery.  Other forms of LbL-based 

systems for drug release include pH-induced deconstruction of hydrogen-bonded 

LbL films 25 , and pH-induced swelling of LbL films to release drugs27, 99.   
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Despite the variety in mechanisms of therapeutic action, the controlled release of 

drugs under physiological conditions with tunable dosage remains a challenge.  

We have demonstrated controlled erosion 110 and tunable drug release 119 in 

physiological buffers from LbL films made with poly(β-amino esters) 23.  These 

films are degraded via a hydrolytic mechanism that enables continuous elution of 

drugs without the need of enzymic or cellular interaction.  Furthermore, we have 

demonstrated the sequential release of two model drugs, in which the release of 

the second agent was delayed by 20 hours 120.  This approach has also been used 

to deliver DNA, with high transfection efficiency 111, 112. 

 

While LbL systems incorporating antimicrobial agents, such as cetrimide and 

silver142-144, have been developed, there is significant concern over the toxicity of 

some of these agents 145. These agents may also be ineffective against bacterial 

colonization of orthopedic implants 146.  In this paper we will demonstrate 

gentamicin-eluting coatings fabricated from LbL deposition that are efficacious 

against S. aureus and biocompatible towards osteoblasts.  Gentamicin is an 

aminoglycoside antibiotic commonly used to treat osteomyelitis.  Although most 

effective against gram-negative bacteria, gentamicin is also efficacious against 

certain gram-positive species such as Staphylococcus aureus, the most common 

source of osteomyelitis187, 188 and septic arthritis189, 190.  The efficacy of 

gentamicin against S. aureus has been demonstrated both in vitro 191, 192 and in 

vivo 141, 193, 194, and antibacterial coatings on orthopedic implants based on 
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gentamicin have been reported 126, 139.  Gentamicin is also effective against 

methicillin-resistant S. aureus (MRSA)195 and biofilms of several staphylococci 

196.   However, none of the previous gentamicin coatings allow for precise dosage 

or release rate tuning.   

 

One potential difficulty in incorporating gentamicin into an LbL film is its non-

polymeric character, since stable LbL film formation is generally favored by 

polymeric or nanoparticulate constituents with multiple sites for electrostatic 

interactions.  Previously reported LbL films that incorporate small molecules 

needed pre-modifications such as prodrug formation 197, pre-encapsulation 183, 

and treatment with solubilizing compounds 198.  However, through proper film 

architecture design, we were able to incorporate gentamicin into LbL films 

without any pre-modification, rendering the film construction simple and 

efficient.   Encapsulated dosage can be easily and precisely tuned by the number 

of deposited layers.  These films can be applied to any biomedical device surface 

to impart tunable levels of antibacterial action.  An added advantage is that the 

biodegradability of these coatings may offer further protection against bacterial 

adhesion, as the top-down erosion of the film naturally prevents bacterial 

attachment to the surface.  This approach could represent a generalized strategy 

for incorporating charged small molecules into LbL films, expanding the range of 

functionality for these versatile thin films.   
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5.1.2 Materials and Methods 

Materials.  Poly(β-amino esters) (referred to as Poly X, X = 1, 2, and 6A, see 

Figure 5.2) were synthesized as previously described 23.  Silicon wafers (test 

grade n-type) were purchased from Silicon Quest (Santa Clara, CA).  Linear 

poly(ethylenimine) (LPEI, Mn = 25k) was received from Polysciences, Inc.  Poly 

(sodium 4-styrenesulfonate) (PSS, Mn = 1M) and sodium alginate (or alginic acid) 

were purchased from Sigma-Aldrich (St. Louis, MO).  Sodium hyaluronate (or 

hyaluronic acid (HA), Mn = 1.76 MDa) was purchased from Lifecore Biomedical, 

Inc. (Chaska, MN).  Nonradiolabeled gentamicin sulfate (GS) (in Cellgro® 

solution, 50 mg/mL in sterile filtered water) was purchased from Mediatech, Inc. 

(Herndon, VA).  3H-gentamicin sulfate was obtained from American 

Radiolabeled Chemicals, Inc (0.250 mCi total, 1 mCi/mL in ethanol, 0.200 

mCi/mg).  All materials and solvents were used as received without further 

purification.  Staphylococcus aureus, strain 25923 with no antibiotic resistance, 

was provided by the Gregory Stephanopoulos group at MIT and ordered from 

ATCC (Manassas, VA).  Cation-adjusted Mueller Hinton Broth II (CMHB) and 

BactoAgar™ were purchased from Difco™ (BD, Franklin Lakes, NJ).  

Gentamicin standard discs, 10 μg loading, were purchased from BD Biosciences 

(Franklin Lake, NJ) as BBL™ Sensi-Disc™.  MC3T3-E1 Subclone 4 CRL-2593 

was obtained from ATCC (Manassas, VA).  Minimum essential medium alpha 

medium, all media supplements, and alamarBlue™ (BioSource™) were obtained 

from Invitrogen (Carlsbad, CA).   
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Preparation of Polyelectrolyte Solutions.  Dipping solutions containing Poly X 

and HAwere made at a concentration of 10 mM with respect to the polymer repeat 

unit in 100 mM sodium acetate buffer (pH 5.1 by glacial acetic acid).  GS dipping 

solutions were prepared by diluting the 50 mg/mL stock solution with sodium 

acetate buffer and glacial acetic acid to result in a solution of 10 mg/mL GS in 

100 mM sodium acetate at pH 3.0.  Nondegradable base layers were deposited 

from dipping solutions of LPEI and PSS in deionized water pH adjusted to 4.25 

and 4.75, respectively.  Deionized water used to prepare all solutions was 

obtained using a Milli-Q Plus (Bedford, MA) at 18.2 MΩ .  

 

Polyelectrolyte Deposition.  All polyelectrolyte LBL thin films were constructed 

as follows according to the alternate dipping method53.  Silicon wafers were cut 

into rectangular substrates approximately 2.0 cm × 0.5cm each.  The substrates 

were rinsed with methanol and deionized water, dried under nitrogen, and plasma 

etched in oxygen using a Harrick PDC-32G plasma cleaner at high RF power for 

1 min.  Layer-by-layer thin film deposition was performed using a Carl Zeiss 

HMS Series Programmable Slide Stainer.  A nondegradable base film 

((LPEI/PSS)10) was deposited by submerging plasma treated silicon substrates in 

an LPEI dipping solution for 5 minutes, then a cascade rinse cycle consisting of 

three deionized water rinsing baths (15, 30, and 45 seconds, respectively).  

Substrates were then submerged in a PSS dipping solution for 5 minutes followed 

by the same cascade rinsing cycle, and the entire process was repeated ten times.  

Next, degradable films were deposited on the existing polyanion-terminated base 
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layer by repeating the above procedure with the [(Poly X/HA)a(GS/HA)b]n 

architecture, dipping for 10 min in each of the Poly X, HA, and GS solutions and 

repeating the (Poly X/HA)a(GS/HA)b structure as many times (n) as desired.  For 

films intended for drug release assessment, a 3H-labeled GS dipping solution was 

prepared by dissolving 0.060 mL of the stock (1 mCi/mL in ethanol, 0.200 

mCi/mg)  in 40 mL of a typical GS dipping solution (10 mg/mL in 100 mM 

sodium acetate buffer, pH 3.0 by glacial acetic acid), making a radiolabeled 

solution at 1.5 μCi/mL.  An identical LBL deposition procedure was then 

performed.   

 

Measurement of Film Thickness.  Following deposition, films were 

immediately removed from the final rinsing bath and air dried.  Film thickness 

was determined either by ellipsometry at ten different predetermined locations on 

the film surface or by profilometry at three different scratch sites.  All 

measurements were performed in triplicate.  Dry state ellipsometric measurements 

were conducted using a Gaertner Variable Angle Ellipsometer (6328 nm, 70° 

incident angle) and accompanying Gaertner Ellipsometer Measurement Program 

(GEMP) Version 1.2 software interface.  In situ ellipsometric measurements were 

made on a J. A. Woollam Spectroscopic Ellipsometer XLS-100 (70° incident 

angle) with accompanying WVASE32 program Version 3.449, in a quartz cell 

with polished 70° windows for the incident and reflected beams.  Profilometric 

measurements were taken on a KLA-Tencor P-10 Profilometer.    
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Measurement of Drug Release.  Following deposition, 3H-GS labeled films were 

immersed in 25 mL of pre-warmed modified simulated body fluid (m-SBF) 157 in 

a tightly-capped Falcon tube, maintained at 37°C in a water bath.  The 

degradation tubes were tightly capped between sample extractions to prevent 

evaporation of the buffer solution.   A 1 mL sample was extracted at 

predetermined time points (every 1-5 minutes at the beginning, then gradually 

increasing the time intervals) and analyzed by adding 5 mL of ScintiSafe Plus 

50% (Fisher Scientific, Atlanta, GA) prior to measurement.   The resulting 

mixtures were analyzed using a Tri-carb liquid scintillation counter (Model 

U2200).  The amount of radiolabel in each sample vial was measured using a 3H 

counting protocol which was shown to be highly accurate over a broad 

concentration range (30-100,000 DPM/mL) in calibration experiments performed 

prior to drug release.  Raw data (disintegrations per minute, DPM) were converted 

to micrograms (μg) of gentamicin using the conversion factor 2.2 x 106 DPM = 1 

μCi = 1.0 μg 3H-GS.  Finally, the total gentamicin release from a single film was 

calculated according to the following equation: 
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mass in previously extracted samples, and 1334 is equal to the mass ratio of total 

GS to 3H-GS in the dipping solution (i.e., in the degradable film). 

 

Staphylococcus aureus macrodilution assay.  All liquid assays were performed 

in cation-adjusted Mueller Hinton Broth II (CMHB).   Qualitative assays were 

performed following standard macrodilution methods as outlined by the National 

Committee on Clinical Laboratory Standards (NCCLS M26-A, 1999) with a 

challenge of 105 CFU/mL.  For assays involving co-incubation with films 

deposited on silicon, 24-well plates were used, with 0.5 mL of liquid culture per 

well.  Briefly, each square-cut silicon substrate (1.0 cm x 1.0 cm), either bare or 

coated depending on the test group, was placed flat in the center of a well in a 24-

well plate, polished side up.  Each well was then filled with 0.50 mL of S. aureus 

in exponential growth phase at 105 CFU/mL in CMHB, completely immersing the 

substrate.  For quantitative assays, an elution test with modified macrodilution 

assay was adopted to facilitate duplications of tests at various treatment levels.  

Briefly, [(Poly X/HA)1(GS/HA)1]100 films with precisely cut film sizes were 

immersed in a set amount of culture medium at 37°C for 24+ hours for complete 

erosion of films.  Estimated gentamicin concentration ([GS]) within this elution 

buffer can be computed based on the immersed film size and culture volume.  The 

resulting elution medium was then serially diluted 1:2 with fresh medium 15 

times, yielding 16 different concentrations, from the original elution medium 

strength down to a factor of  2-15.  Quantitative assays were done in 96-well plates 

with 150 μL of liquid culture per well, with 135 μL of test media and 15 μL of 
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inoculation culture at 105 CFU/mL in CMHB.  All test media were sterile-filtered 

through 0.2 µm membranes prior to use.  Estimated test media conditions take the 

9:10 dilution into account.  For each set of assays, three wells were filled with 

culture fluid with no bacteria inoculated, while three negative controls were 

subject to the same bacterial challenge without any substrate.   The plate was 

incubated at 37°C under gentle shaking for 16-18 hours.  Cell density was read at 

OD 600 nm in a BioTek® PowerWave™ XS Microplate Spectrophotometer with 

accompanying Gen5 program Version 1.00.14.  All treatments, whether direct 

infusion into culture or co-immersion of film substrates with the culture, were 

administered from the time of seeding to data observation.  Cultures were 

incubated at 37°C for 16-18 hours under gentle shaking before observation. 

 

Staphylococcus aureus Kirby-Bauer disc diffusion assay.  Kirby-Bauer disk 

diffusion assays were performed according to the NCCLS guidelines (M7-A4, 

1997).  Agar plates were formulated with CMHB and BactoAgar™.  Each plate 

was inoculated with S. aureus culture in exponential growth phase at 108 CFU/mL 

in CMHB using a sterile cotton swab.  The test substrate was immediately placed 

on the inoculated plate, coated side down, with gentle pressing by a pair of 

tweezers to ensure conformal contact, exercising particular care not to pierce the 

agar or move the substrate.  All substrates were placed at least 5 cm apart from 

one substrate center to another and 2 cm from the edge of the dish.  The plates 

were inverted and incubated at 37°C without shaking for 16-18 hours before 

observation. 
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Osteoblast toxicity assay through alamarBlue.  MC3T3-E1 Subclone 4 was 

maintained in minimum essential medium alpha medium supplemented with 10% 

fetal bovine serum, 100 U/mL penicillin, and 100 mg/mL streptomycin.  Cells 

were split 1:15 every 3-4 days, with the medium refreshed in between.  Cells were 

examined under the microscope every 1-2 days to assess confluence and 

morphology.  For the toxicity assays, cells were seeded at 104/mL in a 96-well 

plate at 150 μL per well.  Three wells were filled with 150 μL medium without 

cells as blank references.  Cells were monitored daily until they reach 50% 

confluence, at which point the medium in each well was replaced with the test 

medium.  All test media were sterile-filtered through 0.2 µm membranes prior to 

use.  Three wells were left untreated as negative controls.  Cells were incubated 

with the test media for the defined test period.  At the end of the test period, 

medium in each well was replaced with fresh untreated medium, and 15 μL of 

alamarBlue was added to each well.  Cells were incubated at 37°C for 4 hours, 

examined visually for color change then read at 570 nm and 600 nm by a 

microplate spectrophotometer.  Cell metabolic activity was computed from the 

spectrophotomeric readings based on manufacturer’s specifications.  ANOVA and 

other data analyses were performed by Analysis Toolpack in Microsoft Excel. 
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5.1.3 Results and Discussion 

 

Incorporation of unmodified gentamicin through design of film architecture.  

Initially we attempted to directly incorporate gentamicin (GS, see Figure 5.1) into 

an LbL thin film through a standard bilayer structure in which gentamicin was 

alternately deposited with a biologically compatible polyanion, alginic acid (Alg) 

or hyaluronic acid (HA).  Such a bilayer deposition resulted in opaque, uneven 

films with little or no gentamicin incorporation, as inferred from drug release 

assessment through scintillation counting of release buffers from (3H-GS/HA)100 

and (3H-GS/Alg)100 films.  We hypothesize that gentamicin rapidly diffuses out of 

the polyelectrolyte layers during assembly, and hence was not able to function as 

a stable structural component in an LbL film. With a lack of polycationic species 

to form strong interactions with the polyanion 

in the LbL film, such a fabrication scheme did 

not result in stable film growth. 

 

Figure 5.1 - Structure of gentamicin.     

Sites that are protonated under deposition conditions 
are marked with an asterisk. 
 

We also constructed films using a combined solution of Poly X and gentamicin as 

the polycation and a solution of HA as the polyanion.  A film was constructed 

from this combination, but it exhibited no gentamicin release.  In this case, the 

higher molecular weight species, which is the Poly X, was preferentially adsorbed 

*
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into the films over the low molar mass gentamicin molecules, leading to little or 

no gentamicin incorporation.    Finally, direct complexation of gentamicin by HA 

in an HA/GS mixture with an excess of the polyanion did not result in the 

formation of stable colloidal structures that could be directly incorporated into 

multilayer thin films; resulting films generated from these systems did not lead to 

gentamicin incorporation either.  

 

As an alternative, we designed a LbL heterostructure which incorporated an 

additional cationic species, specifically a degradable poly(β-amino ester) 23 

(designated “Poly X”, where X is a number specifying the structure of the repeat 

unit).  Films were assembled with the [(Poly X/HA)a(GS/HA)b]n architecture, 

where a, b, and n could be independently adjusted to tune film architecture.  We 

will refer to films of this architecture, i.e. (a, b) = (1, 1), as tetralayered films, and 

each repeat of (Poly X/HA)(GS/HA) constitutes a tetralayer.  We chose to work 

with hyaluronic acid rather an alginic acid, as the former is an endogenous 

extracellular matrix component found in humans and hence a good candidate as a 

biocompatible inactive component of the film.  Three degradable poly(β-amino 

esters) were studied: Poly 1 (Mn = 15.5k), Poly 2 (Mn = 9.7k), and Poly 6A (Mn 

= 16.7k).  Their structures are shown in Figure 5.2.  Poly X’s are hydrolyzed 

under physiological conditions 23, and hence films containing Poly X’s can erode 

and release encapsulated components when exposed to an aqueous physiological 

environment. 
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Figure 5.2 - Structures of Poly X used in this study.  

 

Growth curve of [(Poly X/HA)a(GS/HA)b]n films.  The [(Poly 

X/HA)a(GS/HA)b]n architecture resulted in reproducible film growth with tunable 

amounts of gentamicin incorporation.  Figure 5.3 shows the growth curve of  

[(Poly 1/HA)1(GS/HA)1]n and [(Poly 2/HA)1(GS/HA)1]n, namely a plot of film 

thickness versus n, the number of tetralayers.    Thicknesses were measured by 

profilometry and averaged over triplicate trials, and error bars represent mean 

RMS roughness from triplicate samples.   This growth curve indicates that [(Poly 

X/HA)a(GS/HA)b]n can grow reproducibly for at least 150 tetralayers, unlike the 

(GS/Alg)n and (GS/HA)n films. As we hypothesized above, the presence of Poly X 

likely helped to form a stable structural basis with HA and allowed for continued 

film growth.   
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Figure 5.3 - Growth curves for [(Poly X/HA)1(GS/HA)1]n..   

Poly 6A film is only shown up to 75 tetralayers to keep y-axis within a reasonable scale range to 
inspect Poly 1 and Poly 2 growth curves. 

 

One feature of these growth curves is their nonlinearity.  This nonlinear growth 

trend, though not exponential, is likely caused by the same “in” and “out” 

diffusion mechanism proposed for exponentially growing LbL films 153.  In 

particular, gentamicin is expected to diffuse within the film, since it is a small tri-

saccharide molecule with a molecular weight of 477Da.  Similar nonlinear growth 

trends have been observed in our group for films made with LPEI (linear 

poly(ethylene imine)) 199 and heparin 119, 120, and in other groups with HA 153, 200-

203.  

 

[(Poly 6/HA)1(GS/HA)1]n grew much faster than the Poly 1 and Poly 2 analogs.  

These films are very thick compared to other hydrolytically degradable 

multilayers constructed with the poly(β-amino esters)110, 119, 120.  We suspect that 
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factors that drive exponential growth account for the high film thickness; both the 

interdiffusion of gentamicin during assembly and increasing surface roughness of 

the film as seen in Figure 5.3 could contribute to rapid film growth. We suspect 

that the higher hydrophobicity of Poly 6A, coupled with its lower charge density, 

resulted in decreased electrostatic interactions with HA; hence, “loopier”, less 

ionically crosslinked films were made with higher permeability to gentamicin 

interdiffusion and higher surface roughness, both of which contribute to faster 

growing films.  Poly 6A films also had lower gentamicin loading per unit film 

thickness, further supporting the hypothesis on its loopier nature and lowered 

retention of GS within the film.  

 

Tunability of gentamicin dosage.  Figure 5.4 presents the dosage vs. layers 

correlation of [(Poly X/HA)(GS/HA)]n films.  Error bars represent standard 

deviations on the dosage value over three samples. Gentamicin dosage were 

assessed by immersing [(Poly X/HA)(3H-GS/HA)]n films in m-SBF at 37°C, 

allowing the released to complete as verified by collected release curve, and 

computing the total released amount based on scintillation counting of release 

buffer (see Kinetics of gentamicin release from films, next section).  The total 

released amount was found to be monotonically increasing with the number of 

tetralayers, n.  For n = 0 – 150, gentamicin dosage could be precisely tuned 

anywhere between 0 and 123 μm/cm2,.  However, 123 μg/cm2 is by no means an 

upper limit, as depositions of additional layers are expected to result in 

progressively higher dosages.   
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Figure 5.4 – Total gentamicin loading vs. number of tetralayers for [(Poly X/HA)1(GS/HA)1]n. 

 

Combining data from Figure 5.3 and Figure 5.4, we could compute the vertical 

loading density of gentamicin within the film, i.e. gentamicin per unit film area, 

divided by film thickness.  The results are presented in Table 1.  We found that 

each type of Poly X film, loading density is highest within the first 5 μm of 

growth, after which the density drops off to a steady-state value.  This trend is 

consistent with a heterogeneous film loading model in which gentamicin is 

partitioned towards the top.  This could be a result of its low molar mass, 

diffusivity, and hydrophilicity, yielding interdiffusion processes which favors GS 

accumulation at the top layers of the film.  As layer thicknesses increase, the films 

become loopier overall with a more pronounced partitioning effect, resulting in an 

overall decrease in gentamicin loading density.  A steady-state loading density is 

reached when the decreasing film structural density balances with increasing 

permeability to gentamicin. 
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The steady-state loading densities are around 1.6, 1.1, and 0.82 μg/cm2/μm for 

Poly 1, Poly 2, and Poly 6A films respectively.  Interestingly, film density ranked 

in order of hydrophilicity and charge density of the Poly X, suggesting that 

stronger electrostatic interactions within the film leads to higher gentamicin 

loading. 

 
Table 1 - Thickness, gentamicin dosage, and vertical gentamicin loading density of 

[(PolyX/HA)(GS/HA)]n films, as a function of the number of tetralayers. 

 Poly 1   Poly 2   Poly 
6A    

N 
Thick-
ness 
(μm) 

Dosage 
(ug/cm2) 

Loading 
density 

(ug/cm2-
μm) 

Thick-
ness 
(μm) 

Dosage 
(ug/cm2) 

Loading 
density 

(ug/cm2-
μm) 

n Thick-ness 
(μm) 

Dosage 
(ug/cm2) 

Loading 
density 

(ug/cm2-
μm) 

0 0.00 0.00  0.00 0.00  0 0.00 0.00  
25 0.68 6.55 9.691 0.59 5.29 8.921 5 0.32 2.03 6.261 
50 7.54 15.54 2.061 3.60 11.81 3.285 15 5.04 5.82 1.154 
75 14.87 24.30 1.634 12.21 18.80 1.539 30 17.92 17.34 0.968 
100 25.60 38.57 1.506 22.41 26.49 1.182 50 43.43 36.43 0.839 
125 46.83 75.89 1.620 38.20 41.22 1.079 75 85.12 72.21 0.848 
150 77.30 122.97 1.591 68.71 65.57 0.954 100 145.92 118.83 0.814 

 

Kinetics of gentamicin release from films.  Coupled with the released dosage 

studies were assessments on the kinetics of drug release from these films as 

exposed to a physiological environment.  The films were immersed in modified 

simulated body fluid (m-SBF) 157, an ionic buffer that closely models conditions 

of the human blood without the biological components, maintained at 37°C in a 

water bath.  Figure 5.5 shows typical gentamicin release curves from [(Poly 

X/HA)(GS/HA)]50 with Poly X = Poly 1, Poly 2, and Poly 6A, with error bars 

representing standard deviations from scintillation counting protocol.  These 

release curves are normalized to the total released dosage to allow for release rate 
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comparison.  While films formulated with Poly 6A completed 95% of its release 

of gentamicin within 4 hours, those with Poly 1 and Poly 2 displayed more 

prolonged release of 10-15 hours for 95% release.  Normalized release profiles at 

n = 25 and 100 gave similar quantitative results. 

 

 
Figure 5.5 - Normalized cumulative gentamicin release from 50-tetralayer films made with 
different Poly X's 

 

As a comparison, Stigter et al.’s hydroxyapatite system 122 released almost 100% 

of its gentamicin in PBS at 37°C in 30 min, with a total dosage of 28 μg released 

from a 45 μm coating on a 2×2 cm Ti6Al4V plate, representing 3.5 μg/cm2 

encapsulation dosage (assuming coating on both sides of the plate).  In contrast, a 

[(Poly 1/HA)1(GS/HA)1]125 film, also 45 μm thick, could encapsulate 71 μg/cm2 

of gentamicin that was released over 15 hours under similar release conditions. 
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To further assess the gentamicin release mechanism, we tracked in situ film 

thickness (i.e. as immersed in the release buffer) during the erosion process.  In 

situ thickness measurements were made with a spectroscopic ellipsometer; error 

bars represent uncertainty values computed by the software.  In order to obtain 

consistent laser beam signal, we used thin n = 10 samples.  Figure 5.6 shows the 

in situ thickness of a [(Poly 2/HA)1(GS/HA)1]10 over 10 hours of incubation, 

normalized to the initial swollen film thickness (500 nm), and the corresponding 

normalized gentamicin release profile which was collected from a separate but 

identical set of films.  Triplicates were run on both the erosion and drug release 

data, and all three trials yielded similar quantitative outcomes.  Figure 5.6 shows 

data from a typical set, with error bars representing measurement uncertainties as 

computed by the equipment software. 

 
Figure 5.6 – Normalized in situ film erosion and gentamicin release from a Poly 2 film.   

In situ film thickness is normalized to initial swollen film thickness (500 nm), while cumulative 
gentamicin released is normalized to the final release amount (4 μg/cm2).   
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The film swelled to about three times its dry state thickness upon initial contact 

with the m-SBF buffer, from 160 nm in dry state to 500 nm in solution, possibly 

due to the HA content within the film.  High degrees of swelling of multilayers 

made with HA have been observed for (PAH/HA)n
204, (PLL/HA)n

205
, and 

(Chitosan/HA)n
206 films.  The degree of film swelling can influence the diffusion 

flux of small molecules 206 and hence has implications towards the release kinetics 

of gentamicin.  Burke and Barrett found that many internal characteristics of the 

film, such as the extent of ionic cross-linking, affect the degree of swelling of 

HA-containing PEMs, and these characteristics can be tuned by a variety of 

factors such as film assembly pH204, 205.  Hence, tuning the assembly conditions 

for [(Poly X/HA)(GS/HA)]n films could impart significant effect over gentamicin 

release, especially for the initial rapid release phase hypothesized to be driven in 

part by gentamicin diffusion.  

 

Following the initial swelling, the film thickness steadily decreased over 8 hours, 

with corresponding drug release from the film.  Beyond 8 hours, the remaining 

20% of gentamicin was gradually released, while in situ film thickness remained 

steady around 115 nm over the next 48 hours (data not shown). Overall, 

approximately 80% of the film thickness was eroded away after extended time 

periods.  The uneroded portion of the film was thought to be composed of a 

combination of HA and Poly 2.  As discussed above, gentamicin is thought to 

partition towards the top of the film.  Hence, as the film was deconstructed and 

eroded down to the polymer-rich and hence more stable bottom layers, the 
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degradation process slowed down.  The apparent non-degradability of the film 

could be due to extensive ionic cross links that are formed between HA and Poly 

2 in the absence of gentamicin, resulting in a dense, stable film that hydrolyzes 

much more slowly.  

 

The release of gentamicin appeared to undergo two phases.  The first phase, 

represented by the first 8 hours, was driven predominantly by destabilization and 

deconstruction of the film, i.e. bulk polymers releasing from the film without 

complete hydrolysis due to loss of film stability as GS diffuses out of the film 

matrix, with a small contribution from hydrolysis of Poly 2.  This phase 

accounted for about 80% of the gentamicin released, and Figure 5.6 shows that 

the release rate roughly scaled with film erosion rate during this phase.  The 

second phase is driven by diffusion of gentamicin out of the uneroded HA 

residue, accounting for the remaining 20% drug release.  During this phase, the in 

situ film thickness held constant while a small amount of gentamicin continued 

releasing at a low rate.  Based on this set of film erosion data and our previous 

work on hydrolytically degradable LbL thin films 119, 120, we propose two 

mechanisms for erosion of the LbL delivery thin films: (1) direct deconstruction 

of the film without polymer degradation driven by a lowered film stability upon 

rapid diffusion of gentamicin out of the film matrix, and (2) hydrolytic 

degradation of the Poly X component.  Each specific film construct experiences a 

different set of contributions from these mechanisms.  For example, Poly 6A 

tetralayered films resulted in the fastest release, and we suspect that the 
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hydrophobicity and lower charge density of Poly 6A led to fewer electrostatic 

interactions. The decreased ionic cross linking had two effects: higher 

susceptibility to film deconstruction, and higher permeability for gentamicin to 

diffuse out of these films.  

 

Release rate tuning through variation in film architecture.  It has been shown 

that by “mixing and matching” several types of Poly X within a given film, one 

could obtain release rates intermediate between the individual polymers 117.  

Coupled with direct dosage tuning by the number of layers, we can potentially 

achieve any dosage and release timescale between 0-123 μg/cm2 and 4-20 hours 

respectively.  As mentioned above, these parameters do not signify the limit of the 

layer-by-layer system but merely the range examined under the present study. 

 

In addition to the mix-and-match approach described above, we can maneuver 

release timescales without changing the Poly X species, through manipulation of 

the film architecture.  In Figure 5.7, the release of gentamicin from our usual 

tetralayer, [(Poly 1/HA)1(GS/HA)1]n, was compared to that from a “hexalayer” 

structure, [(Poly 1/HA)2(GS/HA)1]n, in which the (Poly 1/HA) bilayers were 

repeated twice for each bilayer of (GS/HA).  We saw variations in both the 

release timescale and encapsulation dosage, even though both films had 100 

bilayers of gentamicin.  The 100-hexalayer film ( ) encapsulated 106 μg/cm2 of 

gentamicin, approximately 2.5 times that of the tetralayer equivalent (♦).  

However, the release timescale was much shorter – 3 hours for 95% release as 
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compared to 10 hours of the tetralayer.  By tuning the number of hexalayers down 

from 100 to 70 (▲), we brought the encapsulation dosage down to a similar level 

as a tetralayer at n = 100, around 40 μg/cm2, while maintaining the shorter release 

timescale.  Hence, through architectural design within the same Poly X species, 

the release rate could be adjusted while preserving the total release dosage. 

 
Figure 5.7 – Cumulative amount of gentamicin released from Poly 1 films with variations in film 
architecture and number of deposited layers. 
 

In vitro activity against Staphylococcus aureus.  In vitro assessments focused on 

films formulated with Poly 1 and Poly 2, as these films exhibited more sustained 

released of gentamicin. Therapeutic activities of the films were assessed against 

proliferation of Staphylococcus aureus (ATCC 25923), a common source of 

biomedical implant infections.  Three types of assays were conducted: a 

qualitative liquid culture, quantitative liquid culture, and quantitative agar cultures 

(Kirby-Bauer disk diffusion assay).  The qualitative liquid assays gave a binary 

“yes” or “no” answer as to whether the specific test condition could inhibit the 

growth of S. aureus using standard macrodilution assays performed in accordance 
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to NCCLS M26-A guidelines.   These qualitative assays provided a simple 

frontline assessment of the efficacy of gentamicin-loaded thin films.  Table 2 

summarizes results from these qualitative assays.  In the table, “on silicon” 

denotes films left attached on the silicon substrates, while “free standing” films 

were those peeled off from the silicon substrate.  The films remained intact and 

undistorted in dimensions after lift-off from the substrate, suggesting good 

mechanical stability.   

 
Table 2 –Qualitative assessment of various film substrate in inhibiting growth of S.aureus in 

liquid culture. 

Test Group Film Type Growth inhibition 
1 Bare Si No 
2 (LPEI/PSS)10 on silicon No 
3 GS, 0.125 μg/mL Yes 
4 Poly 1, Poly 2, or HA, up to 512 μg/mL each No 
5 (Poly X/HA)50 or 100 on silicon No 
6 [(Poly X/HA)1(GS/HA)1]50 or 100 on silicon Yes 
7 Free-standing [(Poly X/HA)1(GS/HA)1]100 Yes 
 

As expected, both a bare silicon chip and one with the non-degradable 

(LPEI/PSS)10 base layer as a control resulted in no bacteria growth inhibition.  

Similarly, Poly 1, Poly 2, and HA solutions at concentrations up to 512 μg/mL, or 

released from multilayer thin films in combination from a 50- or 100-bilayer film, 

did not inhibit S. aureus growth.  Direct administration of gentamicin at or above 

0.125 μg/mL resulted in growth inhibition, as expected based on the literature-

reported minimum inhibitory concentration (MIC) of 0.1-1.0 μg/mL against S. 

aureus 207.  Co-incubation of S. aureus with gentamicin-loaded tetralayered films, 

whether on silicon or free standing, resulted in growth inhibition, indicating that 
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sufficient gentamicin was released from the film in its therapeutically active form.  

These quick proof-of-concept assays affirmed that (1) blank substrates had no 

antimicrobial activity, (2) [(Poly X/HA)1(GS/HA)1]n films (n = 50 and 100) are 

active against S. aureus, and (3) the antibacterial action came from the released 

gentamicin and not the other film components or the underlying substrate. 

 

Quantitative liquid assays were performed based on the optical density of the 

liquid cultures at 600 nm (OD600).  S. aureus cultures were exposed to elution 

buffers from [(Poly X/HA)1(GS/HA)1]100 for 16 hours prior to measurement.  A 

condensed set of data is shown in Figure 5.8, which plots the normalized bacteria 

density as a function of estimated gentamicin concentration contained in each 

dilution of the elution medium.  Normalized bacteria density was computed as 

(OD600, sample – OD600, blank)/(OD600, negative control – OD600, blank).  The horizontal axis 

is truncated to the lower concentration range to better display system behavior in 

this regime.   Normalized bacteria density was statistically zero beyond estimated 

[GS] of 0.6 μg/mL. 
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Figure 5.8 – Normalized density of S. aureus liquid cultures after treatment with elution buffers of 
[(Poly X/HA)(GS/HA)]100 .  

Densities are based on OD600 after a 16-hr incubation with buffers eluted from [(Poly 
X/HA)(GS/HA)]100 at various estimated gentamicin concentrations. 

 

We saw that film elution media exhibited similar activity against S. aureus as 

direct addition of gentamicin into liquid cultures, with an observable minimum 

inhibitory concentration (MIC).  However, the observed MICs from film elution 

media were higher than free gentamicin.  MICs were about 0.3 and 0.2 μg/mL for 

Poly 1 and Poly 2 tetralayers (with released [GS] estimated based on n = 100 film 

data), respectively, while MIC of free gentamicin was measured to be around 0.13 

μg/mL.  We verified through scintillation data that 20 hours was sufficient to elute 

all gentamicin in the CMHB medium.  We initially suspected that some of the 

eluted materials, i.e. HA and Poly X, interacted with either gentamicin or the 

bacteria to reduce bacteria uptake of gentamicin.  To assess this hypothesis, we 

administered various combinations of Poly 1 and HA with serial dilutions of 

gentamicin to S. aureus cultures.  Based on the assumption of 1:1 charge 

compensation between the film components, we expected a mass ratio of 

2.14:1.00:4.06 for Poly 1:GS:HA within the film and further assumed that a 
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similar mass ratio was eluted.  We therefore conducted three sets of gentamicin 

serial dilutions, with (1) 0.28 μg/mL Poly 1 and 0.53 μg/mL HA, (2) 10× of (1), 

and (3) 100× of (1).  In all cases we observed inhibition of S. aureus proliferation 

between gentamicin dilutions of 0.125 and 0.0625 μg/mL, suggesting that MIC 

remains around 0.13 μg/mL in the presence of various amounts of Poly 1 and HA.  

Thus, the eluted materials did not appear to interfere with gentamicin activity.   

Another possible explanation is that the estimated [GS] was not entirely accurate 

to the true [GS], due to small variability in film encapsulation dosage, and hence 

the true MIC from film-released gentamicin could be closer to free gentamicin 

than Figure 5.8 would suggest. 

 

Several assays involving direct co-incubation of liquid S. aureus cultures with 

coated film substrates were also conducted, with estimated [GS] of 0.13, 0.25, and 

0.5 μg/mL.  Resulting bacteria densities were similar to those in Figure 5.8 and 

hence not presented.  A wider concentration range was not tested for direct co-

incubation due to difficulty in preparing silicon film substrates with small, precise 

film areas. 

 

Kirby-Bauer assays.  Additional quantitative assessment of the therapeutic 

activity of the antibacterial films was performed using Kirby-Bauer disk diffusion 

assays.  Agar plates were inoculated with exponentially-growing S. aureus culture 

at 108 CFU/mL, with film substrates immediately placed on the plate with 

conformal contact.  The entire assembly was incubated upside-down for 16-18 
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hours to results in a cultured plate covered with S. aureus colonies, except for a 

circular zone around gentamicin-eluting substrates inside which no colonies grew.  

The diameter of a ZOI provides a quantitative measure of the amount of in vitro 

active gentamicin released and diffused into the agar.  Table 3 and Table 4 present 

a sampling of ZOI data for various film substrates.  Note that the tabulated KB 

diameter represents overall ZOI minus the linear dimension of the film, i.e. 0.5 

cm.  Standard deviations were computed from triplicate trials of each test group. 

 

Table 3 – Zone of inhibition (ZOI) of negative controls films and those estimated to contain 10 ug 
of gentamicin.   

Films appeared to release most of its encapsulated gentamicin in a therapeutically active form. 

 

Film Type Gentamicin loading 
(ug) 

KB diameter 

(cm) 
Bare silicon or (LPEI/PSS)10 base layers 0 0.00 
BD standard (round, diameter = 0.5cm) 10 1.71±0.05 
[(Poly 1/HA)1(GS/HA)1]100, on silicon 10±0.5 1.66±0.11 
[(Poly 1/HA)1(GS/HA)1]100, free-standing 10±0.5 1.65±0.13 

[(Poly 2/HA)1(GS/HA)1]125, on silicon 10±0.7 1.67±0.09 
[(Poly 2/HA)1(GS/HA)1]125, free-standing 10±0.7 1.68±0.11 

 
Table 4 - ZOI of Poly 2 tetralayer films on silicon with varying gentamicin dosages.   

Films could release tunable amounts of gentamicin with corresponding levels of in vitro activity. 

Film Type Gentamicin loading 
(ug) 

KB diameter 
(cm) 

[(Poly 2/HA)1(GS/HA)1]50 3.1±0.2 1.05±0.05 

[(Poly 2/HA)1(GS/HA)1]100 6.8±1.1 1.46±0.06 
[(Poly 2/HA)1(GS/HA)1]125 10±0.7 1.67±0.09 
[(Poly 2/HA)1(GS/HA)1]150 15±1.7 1.79±0.12 
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Table 3  presents data on a negative control and a series of films cut down to an 

appropriate size to release an estimated total of 10 μg of gentamicin.  As 

expected, the bare silicon chip control resulted in no visible ZOI.  Commercial 

BD Sensi-Disc™ specified by the manufacturer to release 10 μg of active 

gentamicin was used as a positive control.  We observed that the tetralayered 

films had quantitatively comparable activities against S. aureus growth as positive 

controls.  While Sensi-Disc™ produced an mean net diameter of 1.71 cm 

(consistent with manufacturer’s specification of 1.4-2.2 cm), our films of similar 

dimensions, and estimated to contain the same total dosage of gentamicin, 

produced mean diameters of 1.65-1.68 cm, with standard deviations around 5-8% 

of mean values. There was no clear distinction between free standing films versus 

those remaining on silicon, suggesting that the antibacterial activity was 

independent of the underlying substrate, similar to findings in Table 2. 

 

Table 4 shows the ZOI diameters of several Poly 2 substrates with varying 

gentamicin dosage.  The diameters steadily increased from a mean of 1.05 cm at 

3.1 μg to 1.79 cm at 15 μg.  Poly 1 substrates resulted in a very similar set of data 

and hence were not duplicated in the table.  Hence, we see that the precision in 

tuning released gentamicin dosage, as demonstrated in Figure 5.4, indeed 

translated into tunability of in vitro activity.   

 

Nontoxicity towards MC3T3.  While nontoxicity of several versions of Poly X 

has already been demonstrated towards NIH 3T3 23 and Cos-7 111, 112 (the latter 
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indirectly through cell transfection protocols), we wanted to further confirm the 

nontoxicity of our specific film construct, specifically towards mammalian cells 

relevant to our orthopedic application.  We chose MC3T3 (E1 subclone 4, ATCC 

CRL-2593) as the test cell line, a murine preosteoblast with high osteoblast 

differentiation and mineralization which serves as a model for human bone cells 

with which an orthopedic implant coating would come into contact.  Degree of 

nontoxicity was quantified through the level of cellular metabolic activity, as 

assessed by the reduction of alamarBlue™.  MC3T3 cells were pre-seeded to a 

96-well plate and allowed to adhere and proliferate to 50% confluence prior to 

treatment by test substrate or media. Similar to the quantitative S. aureus liquid 

assays, we prepared culture media eluted from gentamicin films to facilitate 

replicated testing at various concentrations, but direct film-contact incubations 

were also run at 2.5, 5.0, and 10 μg/mL with similar results.  Unlike the S. aureus 

assays, for which the incubation period was standardized to 16-18 hours, 

treatments of MC3T3 with film elution media were extended to 48 hours for 

additional compatibility challenge.  Longer treatments were not possible due to 

the confluence level reached by the cells.  We did, however, run a few assays with 

16-hour treatments for consistency in comparison.   Figure 5.9(A) plots the 

normalized metabolic activity of MC3T3 cultures treated with various dilutions of 

film elution buffers over 48 hours, relative to the activity of a culture under no 

treatment.  Mean values over two sets of triplicate trials were plotted, with error 

bars representing standard deviations over the replicates. 
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(B) 

Figure 5.9 - Combined data on in vitro efficacy and nontoxicity of [(Poly 1, 2/HA)1(GS/HA)1]100. 
(A) metabolic activity of MC3T3 cells after a 48-hour treatment, normalized to negative control, 
(B) Combined results for nontoxicity towards MC3T3 and efficacy against S. aureus of [(Poly 
1/HA)1(GS/HA)1]100 over a 16-hour treatment period. 
 

For these 48-hour treatments, MC3T3 retained similar levels of metabolic activity 

as negative controls for eluted gentamicin concentrations far above the MIC.  10 

μg/mL is by no means an upper limit in nontoxicity, but merely the highest 

concentration tested under the present study.  Two-factor ANOVA analysis 

indicates that the difference in MC3T3 response to Poly 1 vs. Poly 2 films is 
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statistically significant (p-value of 0.040 at α = 0.05).  The potential variation in 

biocompatibility is yet unexplained.  A likely cause is the different chemistries of 

the oligomeric and monomeric degradation products from Poly 1 and Poly 2, 

resulting in different interactions with cellular components.  

 

Figure 5.9(b) presents combined data on efficacy against S. aureus and 

compatibility towards MC3T3 cells, both treated over a 16-hr period, with elution 

buffer from [(Poly 1/HA)1(GS/HA)1]100.  The open bars show normalized MC3T3 

metabolic activity, while the filled bars represent normalized S. aureus density 

under identical treatments.  As the chart indicates, at all strengths effective against 

S. aureus proliferation, the elution buffers remained nontoxic towards MC3T3.  

Between estimated gentamicin concentrations of 1.0 ad 0.1 μg/mL, the 

gentamicin concentration fell below its MIC, and we hence observe S. aureus 

proliferation  The combination of data from Figure 5.9 suggests that film elution 

buffers were nontoxic towards MC3T3 over a contact period of 16 to 48 hours. 

 

5.1.4 Conclusion 

Antimicrobial thin films were fabricated through layer-by-layer deposition of 

gentamicin with two structural polyelectrolyte components, with precisely tunable 

dosage of released gentamicin.  The films were deposited with a heterostructure 

alternating depositions between a hydrolytically-degradable poly(β-amino ester), 

a biocompatible polyanionic hyaluronic acid, and the antibiotic gentamicin, a 

design which allows for direct incorporation of gentamicin without having to pre-
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modify it in any way.  The films released gentamicin through a combination of 

hydrolytic degradation, film deconstruction, and gentamicin diffusion.  

Encapsulation dosage could be easily modified by the number of deposited layers, 

while release rate may be modified by polymer chemistry and film architecture. 

 

These films were demonstrated to have in vitro efficacy against Staphylococcus 

aureus proliferation and nontoxicity towards the murine preosteoblast MC3T3.   

Efficacy level is comparable to positive controls of direct gentamicin 

administration. Even at dosage levels significantly above that necessary to inhibit 

S. aureus growth, the films did not appreciably affect the metabolic activity of 

MC3T3.  Animal studies are currently under way, and will be coupled with 

assessment of the mechanical stability of these films. 

 

In summary, we have designed in vitro active antibiotic-releasing films using the 

highly tunable layer-by-layer deposition technique and retained the ease.  In 

particular, our level of antibiotic dosage and release rate control is significantly 

improved over previously reported antibiotic-eluting systems.  This approach can 

be easily extended to encapsulation of other charged small molecules, resulting in 

a variety of single- and multi-release coatings for numerous biomedical 

applications. 
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5.2 Supplements to investigations on [(Poly 1/HA)(GS/HA)]n  

 

5.2.1 Chitosan substitution of Poly 1 to probe release mechanism 

As a further probe into the mechanism of gentamicin release from [(Poly 

1/HA)(GS/HA)]100 films, I constructed an analogous film using a non-degradable 

polycation as a substitute.  A low-MW chitosan (~50kDa) was ordered from Sigma-

Aldrich for a closest match to the MW of Poly 1 (~10kDa; the five-fold difference was 

within the same order of magnitude and hence not expected to result in significant 

differences stemming from MW alone).  [(Chitosan/HA)(3H-GS/HA)]100 films were 

constructed using an identical protocol as that used for Poly 1 films, and the resulting 

films were assessed for in vitro release using identical buffer and counting protocols as 

well.  The resulting release profile, along with those of [(Poly 1/HA)(GS/HA)]100 for 

comparison, is shown in Figure 5.10. 

 

 
(a) 
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(b) 

Figure 5.10 – Normalized release of gentamicin from [(X/HA)(GS/HA)]100 in m-SBF at 37°C, with X 
being either Poly 1 or chitosan. 

(a) zoomed into the initial 5 hours, and (b) complete release over 50 hours.  Note that X = Chitosan 
released a total of 20 μg/cm2 gentamicin while X = Poly 1 released 36 μg/cm2.  From GS_fall06. 

 

Most intriguingly, the two type of films resulted in essentially identical release profiles 

when normalized to the final release amount.  Even in the initial burst regime (see 

Figure 5.10(a)), the two curves overlap almost perfectly.  This finding suggests that 

gentamicin release from both films could be driven predominantly by gentamicin 

diffusion and bulk film deconstruction, as opposed to hydrolytic degradation of Poly 

1.  Previous results showed that a Poly 6 film released gentamicin faster than a Poly 1 

version, indicating that a Poly 6 released more rapidly than the supposedly non-

degradable [(Chitosan/HA)(GS/HA)]100.  This observation can again be explained by 

the hypothesis that gentamicin release was driven mostly by diffusion and film 

deconstruction, and hence the degree of ionic crosslinking within the film became a 

primary determinant of release rate.  Growth and erosion curves of 

[(Chitosan/HA)(GS/HA)]100 was not collected. 
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In terms of total released dosage, [(Chitosan/HA)(GS/HA)]100 only encapsulated about 

50% the amount of gentamicin of an analogous Poly 1 film.  The dependence of 

gentamicin dosage on polymer chemistry was observed in other experiments as well 

(see section 5.2.2). 

 

Conclusion.  [(Chitosan/HA)(GS/HA)]100 and [(Poly 1/HA)(GS/HA)]100 films had 

nearly identical normalized gentamicin release profiles, suggesting that [(Poly 

1/HA)(GS/HA)]100 films released gentamicin predominantly via diffusion and film 

deconstruction, rather than hydrolytic degradation.  Gentamicin encapsulation dosage 

was about 50% lower in the [(chitosan/HA)(GS/HA)]100 films. 

 

5.2.2 Alternative polyanion and influence of MW 

Gentamicin releases from heterostructures formulated with polyanions other than HA 

were examined for various candidates including poly(styrene sulfonate) (PSS), 

poly(methacrylic acid) (PMA), and poly(acrylic acid) (PAA).  Films made with PSS 

and PMA resulted in very little gentamicin encapsulation, while those of PAA gave 

somewhat promising results.  In particular, PAA of molecular weights 5kDa and 

1MDa were examined, and I found high dependence of release rates on the MW of 

the PAA (see Figure 5.11).  The 200-fold increase in the MW of PAA significantly 

increased the release timescale of gentamicin.  Interestingly, gentamicin dosage 

remained similar between the two films – around 60 μg/cm2 for 100 tetralayers.  This 

was higher than the dosage for equivalently-layered [(Poly 1/HA)(GS/HA)]100 films 

(MW of HA = 1.7 MDa), which was found to be around 36 μg/cm2, suggesting a 



 156

chemistry-dependent loading of gentamicin.  This finding was not surprising, as the 

loading was expected to correlate with the degree and nature of interaction between 

gentamicin and the polyanion.   

 

 
(a) 

 
(b) 

Figure 5.11 – Release of gentamicin from [(Poly 1/PAA)(GS/PAA)]100 in m-SBF at 37°C, with PAA 
of different MWs. 

(a) release curves from 5kDa and 1MDa PAA films in the initial 4 hours, and (b) complete release 
from 1MDa PAA film over 75 hours. 
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Interestingly, the [(Poly 1/PAA)(GS/PAA)]100 films made with MW1MDa PAA had a 

similar release rate as the [(Poly 1/HA)(GS/HA)]100 films made with MW1.7MDa HA, 

suggesting that polyanion MW may be a much more influential factor than specific 

polyanion chemistry or charge density on the rate of gentamicin release.  As a further 

verification on this hypothesis, [(Poly 1/HA)(GS/HA)]100 films with MW64kDa HA 

were made, with resulting gentamicin release shown in Figure 5.12.  Indeed, the 

release rate was much faster when the MW of HA was brought down by several 

orders of magnitude.  Additionally, similar dosage correlation as that observed for 

PAA film was found, namely that given a particular polyanion, the MW did not 

appear to influence encapsulated gentamicin dosage very much.  Both MW1.7MDa HA 

and MW64kDa HA resulted in 100-tetralayered films that released around 36 μg/cm2.  

Hence, drug loading was more dependent on polymer chemistry rather than MW. 

 
Figure 5.12 - Release of gentamicin from [(Poly 1/HA)(GS/HA)]100 in m-SBF at 37°C, with a MW 
64kDa HA. 
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Although PAA appeared promising as an alternative polyanion, and both PAA and 

HA are FDA-approved for transdermal and topical applications, respectively, HA was 

favored due to its higher expected biocompatibility, as HA is an endogenous 

polysaccharide serving mostly as a structural component. 

 

Conclusion.  Molecular weight of the polyanion species, when varied over several 

orders of magnitude, has a significant impact on the release rate of gentamicin from a 

tetralayered film.  However, the molecular weight has little impact on the 

encapsulation dosage.  On the other hand, the polyanion chemistry does affect 

encapsulation dosage, although it does not appear to influence the release rate as 

much.  The findings here may be specific to the release of small, hydrophilic drugs, 

and may not necessarily apply to tetralayers that encapsulate polysaccharides, 

proteins, or peptides.  However, these observations suggest simple approaches to 

independently tuning the dosage and release rate within our film construct. 
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5.3 Physicochemical properties of [(Poly 1/HA)(GS/HA)]n  

5.3.1 Introduction.   
 

In an effort to better understand the film properties, various physicochemical 

characterizations of the gentamicin films were carried out using microscopy, light 

scattering, and calorimetry.  The goal was to identify any potential physicochemical 

trait, e.g. crystallinity, that could be used as control handles on drug release kinetics.  

Three different characterization methods were chosen: differential scanning 

calorimetry (DSC) to study the thermal transitions of the film and its individual 

components, scanning electron microscopy (SEM) to study the surface morphology of 

the film, and x-ray scattering, both small and wide angles (SAXS and WAXS), to 

study the crystallinity of the film and its individual components. 

 

5.3.2 Materials and Methods. 
 

Materials.  All polymers, drugs, and chemicals used in dipping solutions, and 

methods of film sample preparation, were identical to those outlined under Section 

5.1.2. 

Film characterization.  Differential scanning calorimetry (DSC) was done using a 

TA Instruments Q1000 differential scanning calorimeter with a scan range of -90 to 

300°C at a rate of 10 C/min. Scanning electron microscopy (SEM) studies were 

accomplished using a JEOL 6320FV scanning electron microscope at 10 kV.  Small-

angle X-ray scattering (SAXS) experiments were performed in vacuo with a Siemens 
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computer-controlled system with a rotating anode that produced Cu K  radiation (  = 

1.54 Å) at 40 kV and 30 mA on a free-standing film.  Wide-angle X-ray scattering 

(WAXS) was done on a Bruker D8 Multipurpose Diffractometer.  In the case of 

SAXS, film was scattered from a intact, free-standing film, while in the case of 

WAXS, the film had to be scraped into small pieces for loading into the cell.  All the 

individual film components were scattered as a dense collection of solid powders.   

 

5.3.3 Results and Discussion.   
 

5.3.3.1 DSC.  
 

An overlay of DSC spectra from the film and individual components is shown in 

Figure 5.13.  Poly 1 had a distinct thermal transition around 70°C, which is mostly 

likely its melting temperature.  HA and gentamicin had broad peaks around 120°C.  

Gentamicin has a reported melting point of 218-237°Cn and is known to withstand 

steam sterilization208, 209 (121°C at 15 psi under saturated steam).  Hence, the broad 

gentamicin heat absorption in the 100-220°C range likely induced gradual 

structural changes and only caused complete melting at the upper end.  Hyaluronic 

acid does not have a reported melting point, but the DSC data suggest that a 

1.74MDa sample may have a melting point around 120°C.  The width of the peak 

may be a reflection of the polydispersity of the HA sample.  Interesting, HA 

showed positive heat flow around 250°C, which could either be an experimental 

artifact or actual structural rearrangement of HA resulting in heat release.  For each 

                                                 
n The Merck Index, 12th edition, entry 4398. 
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of the four samples, heat ramp back down did not result in any peak, suggesting 

that irreversible degradation or changes had occurred by 300°C, as one would 

expect due to extremity of this high temperature.  Most importantly, the DSC data 

revealed that the major thermal transition of the film (black) very closely matched 

that of HA, suggesting HA might constitute a majority of the film mass.   

 
Figure 5.13 – Overlay of DSC spectra of [(Poly 1/HA)(GS/HA)]100 and individual film components. 

[red = Poly 1, blue = hyaluronic acid, green = gentamicin, and black = film.] 

 

5.3.3.2 SEM.   
 

Figure 5.14 shows representative images from the SEM of the surface of a [(Poly 

1/HA)(GS/HA)]100 film.  No unusual morphological features were observed.  Films 

were generally smooth with small specks of dust or other particulate attachments.  
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The “top” of the film, which would be on the bottom during the dipping process, 

tended to be thicker and rougher as revealed in the image of the bottom right 

corner.  An intentional scratch revealed jagged scratch lines that suggested that the 

film had fairly good tensile strength.   

 

   
 

  
Figure 5.14 – SEM images of the surface of a [(Poly 1/HA)(GS/HA)]100 film.   

Clockwise from top left: (1) 300x zoom, (2) 230x zoom, (3) 65x zoom on the “rough” top portion of 
the film, and (4) 160x zoom with an intentional scratch to reveal film thickness. 

5.3.3.3 X-ray scattering.   
 

Data from SAXS and WAXS of [(Poly 1/HA)(GS/HA)]100 films and individual 

film components are shown in Figure 5.15 and Figure 5.16.  Images from SAXS 

reveal that both Poly 1 and HA had crystalline structures with several spacings as 
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suggested by the distinct rings on the scattering plot.  Gentamicin solid was less 

crystalline, with only one distinct peak, while the intact free-standing film appeared 

more amorphous overall, with two less-defined rings.  Hence, the crystallinity of 

individual polymers appeared to not be preserved within the film, and these 

polymers did not establish new crystalline structures within the film. 

 
Figure 5.15 – SAXS images of [(Poly 1/HA)(GS/HA)]100 and its individual film components.   

Clockwise from top left: (1) Poly 1 (~10 kDa), (2) hyaluronic acid (1.74 MDa), (3) gentamicin sulfate, 
and (4) [(Poly 1/HA)(GS/HA)]100.  
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Data from WAXS support observations made from SAXS.  In Figure 5.16 (a) and (b), 

Poly 1 and HA were again observed to have very distinct scattering peaks, with d-

spacings marked on the plots.   WAXS data on gentamicin and scraped film are 

shown in the composite plot in Figure 5.16 (c), which suggests that the film had a 

dominant contribution from either gentamicin or HA.  Interestingly, the WAXS 

overlay also clearly revealed a unique peak from the film sample not present in any of 

the individual film components, with a d-spacing of approximately 8.5.  This could be 

a unique structural feature of the film, though it is not clear which film components 

interacted in what manner to result in this feature. 

 
(a) Poly 1 
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(b) HA 

 
(c) Composite of film, gentamicin, HA, and Poly 1 

Figure 5.16 – WAXS data on [(Poly 1/HA)(GS/HA)]100 and individual film components. 

(a) Poly 1, (b) hyaluronic acid, and (c) film. 
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5.3.4 Conclusion.   
 
Physicochemical characterizations on [(Poly 1/HA)(GS/HA)]100 and its individual 

components suggested that the film was generally smooth on the surface, 

amorphous in matrix structure, and large composed of HA.  Most of the 

observations were within our expectations, although the unique d-spacing exhibited 

by the film under WAXS may be linked to a distinctive structural feature that can 

be further probed. 

 



 167

5.4 PLGA Encapsulation of Gentamicin 
 

5.4.1 Introduction 

In seeking methods for extending release timescale and allowing for additional 

degrees of control over release rate, I ran proof-of-concept experiments examining 

PLGA (poly(lactic-co-glycolic acid)) nanoencapsulation of gentamicin.  PLGA nano- 

and micro-encapsulation has been well characterized for the delivery of a variety of 

drugs ranging from small molecules to proteins or even cells 20, 126, 180, 210-216.  In fact, 

PLGA has been used for encapsulation and release of gentamicin 126, 215-217 and one of 

the systems was found to be sterilizable by irradiation217.  PLGA spheres are naturally 

negatively charged on their surface, making them suitable for layer-by-layer 

deposition.  With the assistance of Dr. Yoon Yeo, a postdoctoral fellow in the Langer 

group, I constructed PLGA nanospheres encapsulating radiolabeled gentamicin, then 

directly bilayered the nanospheres with Poly 1 and characterized the resulting release 

dosage and kinetics. 

 

5.4.2 Materials and Methods 

Materials.  PLGA with 50/50 lactic:glycolic ratio, inherent viscosity (IV) of 0.67  

(corresponding to MW ~ 44kDa, see Figure 5.18), and carboxylate  end 

functionalization was kindly supplied by Dr. Frank Gu of the Langer group and 

originally ordered from LACTEL Absorbable Polymers (Cupertino, CA).  Methylene 

chloride and poly(vinyl alcohol) (PVA) were supplied by Dr. Yoon Yeo.  
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Figure 5.17 - MW versus IV correlation for a 50:50 PLGA copolymer.   

© DUREC 2007, http://www.absorbables.com/inherentviscosity.htm 

 

Nanoparticle formation.  The encapsulation protocol was adopted from Dr. Yeo’s 

procedure and modified by her for optimal gentamicin loading.  100 mg of PLGA was 

dissolved in 2.5 mL methylene chloride (A). 25 mg of gentamicin, which includes 

18.7 ug of 3H-labeled form, was dissolved in 0.1 mL of 0.5% PVA solution at pH 6.0 

(B).  Solution B was then added to solution A, with resulting mixture sonicated for 1 

min using a Vibracell VC-250 sonicating probe (Sonics & Materials Inc., Dunbury, 

CT) to generate a w/o emulsion.  The emulsion was then directly added to 10 mL of 

1% PVA solution, with resulting mixture sonicated for 3 min to generate a w/o/w 

emulsion. The w/o/w emulsion was then poured into 10 mL of distilled water and 

stirred for 3 hours at room temperature.  Particle sizes were measured by ZetaPALS 

(Phase Analysis Light Scattering, by Brookhaven Instruments Corporation, Holtsville, 

NY).  The resulting solution was directly used for layer-by-layer construction without 

lyophilization or further purification. As a comparison between standard versus 

adopted protocol for PLGA nanoencapsulation, Table 5 summarizes experimental 

parameters for these different protocols. 

Table 5 - PLGA nanoencapsulation 
procedure parameters. 

Comparing between standard Langer lab 
protocol (JAC), Dr. Yoon Yeo’s 
protocol, and the one modified for 
gentamicin encapsulation.  
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 JAC Yeo Gentamicin 
PLGA* 200 mg 500 mg 100 mg 
PLGA solvent* 5 ml ethyl acetate 10 ml MC 2.5 ml MC 
Drug 5-50 mg gentamicin 50 mg albumin 25 mg gentamicin 
Drug solvent 0.2 ml 0.5% PVA 

(pH 6.0) 
2 ml DW 0.1 ml 0.5% PVA 

(pH 6.0) 
W/O Sonication for 1 min Sonication for 1 min Sonication for 1 min 
W/O/W 2 ml 1% PVA 50 ml 1% PVA 10 ml 1% PVA 
W/O/W 
method* 

Sonication Sonication Sonication for 3 min 

W/O/W/W 50 ml 0.2% PVA 250 ml DW 15 ml DW 
Purification 12,000 rpm x 30 min 16,000 rpm x 20 min No purification 

 

Multilayer buildup with nanospheres.  Standard layer-by-layer deposition cycles 

were employed, using 2 mg/mL of Poly 1 in 0.1M sodium acetate as the polycation 

solution and the as-made PLGA nanosphere solution as the polyanion solution.  

Typical deposition times (10 min in each polyion bath) and rising cycle (15, 30, and 

45 seconds in three separate baths of MilliQ water for each polyion) were used, and 

films were deposited on cleaned silicon chips with (LPEI/PSS)10 base layers. 

 

Measurement of gentamicin release.  Standard gentamicin release measurement via 

scintillation counting was conducted.  Briefly, film substrates were immersed in 25 

mL of m-SBF (modified simulated body fluid) at 37°C, and 1 mL aliquots were taken 

at pre-determined time points.  Each aliquot was then analyzed by adding 5 mL of 

ScintiSafe Plus 50% (Fisher Scientific, Atlanta, GA) prior to reading by Tri-carb 

liquid scintillation counter (Model U2200). 
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5.4.3 Results and Discussion. 

Nanoparticle size and surface charge.  The size and surface charge of the PLGA-

gentamicin nanoparticles were measured by ZetaPALS.  For a fresh suspension taken 

right after the last step of the synthesis procedure, triplicate readings yielded mean 

diameter of 417.3 ± 10.8 nm, with a polydispersity of 0.214 ± 0.012.  ξ-potential was -

7.25 ± 1.21 mV, consistent with our expectation of a negatively-charged surface that 

would arise from the carboxylate groups of PLGA.   

 

As an assessment on the stability of these particles, a fraction of the suspension was 

left at room temperature overnight.  The resulting suspension had a mean diameter of 

348.8 ± 21.7 nm, with polydispersity of 0.0775 ± 0.075.  ξ-potential had reduced to -

4.52 ± 1.20 mV.  Overall there was a 16.4% reduction in diameter accompanied by a 

63.8% reduction in polydispersity, suggesting particle degradation at a modest rate, 

with larger particles degrading faster relative to their sizes.  The concomitant reduction 

in ξ-potential could be due to physical or chemical modification of the surface 

carboxylate groups.  For example, the additionally released gentamicin could adsorb to 

the carboxylate groups to neutralize particle surface charge.  Further ZetaPALS 

assessment of particle suspension at 4°C or -20°C conditions would help to better 

define a storage protocol.  Nevertheless, the stability of the PLGA nanoparticles at 

room temperature appeared sufficient for LbL deposition purposes.  Hence, a fresh 

solution was prepared for LbL assembly of (Poly 1/PLGA particle)50, 75, a process 

which occurred over a period of 24-26 hours.   
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Fabrication of and release from nanoparticle LbL assembly.  The as-made PLGA-

gentamicin suspension was directly used as the dipping solution in the LbL assembly 

process.  One caveat of directly using the PLGA nanosphere emulsion without further 

purification is that it contains a mixture of nanoparticles, free PLGA, free gentamicin, 

and other inactive ingredients such as PVA.  The solution was not under the standard 

0.1M sodium acetate buffer condition that was usually used for our multilayer 

construction.  However, for this proof-of-concept experiment, I believed that using the 

unmodified emulsion was acceptable because: (1) Poly X was still fairly stable at pH 

6.0, (2) methylene chloride, PVA, and gentamicin would not readily adsorb during the 

LbL deposition process due to their lack of polymeric nature or negative charge, and 

(3) though some free PLGA remained, the concentration was assumed to be 

sufficiently low to not compete with adsorption of the nanospheres. 

 

(Poly 1/nanosphere)n films were made with n = 50 and 75.  The resulting films 

underwent gentamicin release assessment using the standard scintillation counting 

protocol.  One concern was that the current release protocol would not distinguish 

between released versus PLGA-encapsulated gentamicin in the release buffer.  

However, Dr. Yeo believed that the PLGA nanospheres would easily deconstruct 

within minutes, as hydrophilic molecules like gentamicin are not favorable for this 

encapsulation process.  Hence, most of the gentamicin in the release buffer should be 

in its free solution form, so that the scintillation reading would be a reasonably 

accurate measurement of in vitro available gentamicin. 
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Figure 5.18 shows the release curves of (Poly 1/nanosphere)n for n = 50 and 75, vs. a 

traditional tetralayered film with 75 tetralayers.  While nanosphere films exhibited 

good drug loading, the associated gentamicin releases were actually faster than a 

[(Poly 1/HA)(GS/HA)]m film, with a more notable burst release at the beginning.  

Hence, pre-encapsulation of gentamicin by PLGA did not result in more sustained 

release.  Again, some of the scintillation-counted gentamicin could be encapsulated 

within PLGA nanospheres that were released from the film but had not degraded to 

release its gentamicin content, and thus the release of free-solution gentamicin could 

be more sustained than observed.  However, this scenario was not likely based on Dr. 

Yeo’s input on the stability of PLGA nanospheres incorporating small hydrophilic 

molecules.   
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(a) 

 
(b) 

Figure 5.18 - Gentamicin release from films made with free or pre-encapsulated gentamicin, in 
comparison to tetralayers incorporating non-modified gentamicin. 

(a) zoomed into the first 5 hours to display initial burst, and (b) complete release over 25 hours. 

 

One method to further probe the release mechanism would be to measure the erosion 

curve of (Poly 1/nanosphere)n films and correlate film erosion rate to that of 

gentamicin release.  Similarly, establishing the growth curve of (Poly 1/nanosphere)n 

films could also further elucidate mechanisms of release, as the shape of the growth 
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curve may suggest degree of diffusivity of the nanoparticles within the film.  

Additionally, ZetaPALS could be run in fresh release fractions to detect the presence 

of undegraded PLGA particles. 

5.4.4 Conclusion. 

Proof-of-concept experiments of LbL incorporation of PLGA-gentamicin 

nanoparticles were conducted with intended goal of achieving more sustained 

gentamicin release.  However, the (Poly 1/nanosphere)n films were found to release 

gentamicin more rapidly than [(Poly 1/HA)(GS/HA)]m films based on scintillation 

counting of radiolabeled species.  Nevertheless, this approach could still be promising 

because (1) the protocol for PLGA encapsulation of gentamicin could likely be 

optimized further, e.g. through PLGA MW, copolymer ratio, solvent choice, and 

sonication parameters, (2) the dipping condition for the PLGA-gentamicin 

nanoparticles was not optimized, and (3) the observed gentamicin release from 

scintillation counting may reflect gentamicin still encapsulated within PLGA particles.  

Additional experiments in growth curve, erosion curve, and light scattering on release 

fractions could further elucidate the release mechanism and aid with optimization of 

the protocol. 

 

Even if optimized PLGA encapsulation does not result in more sustained and 

controllable release of gentamicin, it may still be a promising approach for LbL 

incorporation of other small molecule therapeutics, especially hydrophobic ones.  In 

general, encapsulation approaches involving particles, vesicles, or micelles are all 
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promising methods for more tunable incorporation of small molecule drugs into LbL 

film, and active efforts are under way in our laboratory. 
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5.5 Methods for Film Sterilization 

5.5.1 Introduction 
 

Since the designed drug delivery coatings were to be applied onto medical implants, 

assessment of film robustness under FDA approved methods of sterilization would 

eventually be needed.  Approved methods include autoclave (steam sterilization), 

ethylene oxide, irradiation, dry heat, and gas plasma218, with the former three being the 

most commonly practiced and accepted methods219.   Each sterilization method is 

described further below: 

 

Steam sterilization, or autoclaving, is the most commonly practiced sterilization 

technique for in vitro, in vivo, and clinical settings.  It is fast, effective, simple, and 

leaves no toxic residues.  Through exposure of the substrate to saturated steam at an 

elevated temperature, microorganisms are killed due to denaturation of proteins and 

lipids218.  However, the same temperature and humidity conditions are also expected 

to degrade numerous biopolymers.   

 

As an alternative to steam sterilization, dry heat is also an accepted method for 

sterilizing certain medical deviceso.  To make up for the lack of high pressure and 

humidity necessary to ensure complete killing of microorganisms, dry heat treatment 

requires high temperatures for longer exposure times.   

 

Ethylene oxide (EtO) is a popular alternative to steam sterilization for materials that 

cannot withstand the high temperature.  Processing typically occurs at 30-50°C with 

                                                 
o From CDC website, http://www.cdc.gov/ncidod/dhqp/bp_sterilization_medDevices.html. 
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40-90% humidity, with EtO gas concentration of 0.6-1.2 g/L, from several hours to 2 

days218.   EtO is a reactive molecule that alkylates sulfhydryl, amino, carboxyl, 

phenolic and hydroxyl groups in nucleic acids, causing cell injury or death.  Hence, a 

principal disadvantage of EtO sterilization is the residual toxic gas, and all EtO-treated 

materials require hours or even weeks of aeration before use220.  In addition, EtO may 

not thoroughly penetrate some materials.  While certain subclasses of polyethylene, 

polycarbonate, and poly(L-lactic acid) were found to withstand EtO treatment without 

changes in molecular weight or materials properties221, 222, others were found to be 

significantly modified by EtO, especially polyurethanes223.  Not as much has been 

reported on polyesters or polysaccharides, but given the variety of functional groups 

available on these polymers, it is conceivable that EtO treatment would affect film 

properties through modifying polyelectrolyte backbone structures and hence 

disrupting electrostatic and van der Waals interactions.   

 

In terms of irradiation sterilization, two types of treatments are available: gamma rays 

from 60Co, or accelerated electron beams.  It is an alternative to materials that cannot 

withstand steam sterilization, with several advantages over ethylene oxide including 

excellent penetration, dose uniformity, and lack of toxic residues.  The process 

generates free radicals and causes oxidation to biomolecules.  However, it has 

drawbacks of its own.  Aside from its high capital cost, gamma irradiation is also 

known to degrade many biomaterials.  A broad survey of the literature reveals that 

many natural and synthetic polymers experience a decrease in molecular weight 

and/or viscosity after irradiation224.  The free radicals generated by irradiation could 

modify polymers through such mechanisms as chain scission or cross-linking218.   

Sintzel et al. gives an excellent review of the effect of irradiation on many types of 

polymers including polyesters, polyurethanes, polysaccharides, polypeptides, etc.224.  
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As an example, hyaluronic acid is sensitive to gamma irradiation due to the resulting 

glycosidic cleavage225.  Several classes of polyesters and poly(ortho esters), such as 

PLGA, were found to have a decrease in MW of 30-60% after standard irradiation 

treatment (2.5 million rads for 2 hours).  As a further example of polymer sensitivity 

to sterilization, PLGA (poly(lactic-co-glycolic acid)) microparticles containing 

gentamicin were found to burst release the drug after ethylene oxide or gamma 

irradiation treatments217.  Hence, there was a high probability that [(Poly 

X/HA)(GS/HA)]n films would not survive irradiation sterilization, but as a proof-of-

concept, it would still be investigated. 

 

A 70% v/v ethanol/water solution is commonly used in cell culture studies for 

sterilization.  Ethanol kills bacteria by denaturing their proteins and dissolving their 

lipids and is in fact effective against many fungi and viruses as well226.  A 70% 

mixture with water is found to be optimal in the denaturing action against hydrophilic 

proteins. Due to low penetrability and potentially non-uniform coverage, surface 

treatment with 70% ethanol is not an accepted method for sterilizing medical implants 

and instruments for human patients.   However, it is accepted for sterilizing implanted 

materials used in small animal studies, and hence would be a viable method for in vivo 

experiments involving rabbits.  Due to its mechanism of action, ethanol treatment is 

not suitable for films that contain proteins.  However, ethanol should be safe on 

synthetic and natural polymers without tertiary structures.   

 

Gentamicin and aminoglycosides in general are known to withstand harsh sterilization 

conditions such as autoclaving and dry heat208, 209.  Aside from its primary and 

secondary amine groups, gentamicin does not contain reactive functionalities that can 
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be easily modified by chemical methods such as ethylene oxide.  However, the 

polyelectrolyte components of the film, i.e. poly(β-amino ester) and hyaluronic acid, 

may be highly susceptible to heat, humidity, irradiation, and chemical treatments, 

especially given the reported results summarized above.  In fact, differential scanning 

calorimietry (see Section 5.3.3.1) data suggested that Poly 1 had a melting temperature 

around 70°C, implying that any sterilization that imposes a temperature above that 

may not be suitable for Poly 1-based films.  In addition, biologic drugs such as 

polysaccharides, peptides, and proteins may also be sensitive to standard sterilization 

techniques and will need to be examined on a drug-by-drug case. 

 

As a proof-of-concept assessment of the stability of hydrolytically degradable coatings 

under various sterilization methods, [(Poly 1/HA)(GS/HA)]100 films were subject to 

several treatment methods and evaluated on release dosage and kinetics.  The rate of 

drug release, in comparison to an untreated film, was used as a rough indicator of the 

degree of degradation of the coating.  In defining a final sterilization protocol, 

additional parameters such as film morphology, thermal properties, and surface 

bioactivity will also need to be examined. 
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5.5.2 Materials and Methods 

Materials.  All polymers, drugs, fluids, and substrates used for making multilayer thin 

film samples under this study were from the same sources as other studies under this 

thesis.  Simax glass rods (group 3.3 of clear hard borosilicate glasses) with outer 

diameter of 3 ± 0.10 mm were ordered from Friedrich & Dimmock (Millville, NJ). 

 

Preparation of film samples.  [(Poly 1/HA)(GS/HA)]n film samples on either silicon 

or glass rods were deposited via the layer-by-layer technique by a slide stainer using 

the standard protocols on dipping solution preparations and dipping cycles.  Glass rods 

were cut into 1” long samples using a diamond scribe, and plasma-etched for 5 min (in 

contrast to the 1 min treatment for silicon substrates) prior to (LPEI/PSS)10 base layer 

deposition.  After complete film deposition, the top 1-cm portion of the rod was cut off 

as the actual coated sample.  Teflon holders for glass rods for mounting onto the slide 

stainer were custom made by the MIT Central Machine Shop. 

 

General consideration for sterilization.  Film samples were always placed in 

appropriate closed secondary containers to avoid contamination to the equipment.  For 

example, in the case of steam sterilization, film substrates were placed in autoclavable 

metal boxes.  After sterilization, a wipe test was performed on the interior and exterior 

of the container and surfaces of the equipment around the container.  

 

Steam Sterilization (Autoclave).  Autoclaving of samples were performed in the 

autoclave in the tissue culture area of the ISN on the 4th floor.  Samples were placed in 
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an autoclave-safe box and autoclaved at 121°C at 15 psi under saturated steam for 30 

min with 15 min of drying. 

 

Dry Heat.  Dry heat sterilization of samples was performed by placing samples in a 

160°C oven for 2 hours.  Samples were placed inside a pre-heated closed glass Petri 

dish. 

 

Ethylene oxide.  Ethylene oxide (EtO) sterilization of samples was performed in an 

Anprolene AN74ix system by Andersen Sterilizers (Haw River, NC) using the 12-

hour cycle.  The equipment is located in the E25 animal facility in the basement, and 

sterilization was performed by the veterinary technicians.  Samples were placed in a 

Seal and Peel® waterproof bag.  Sterilized samples were left to degas under ambient 

conditions for at least 24 hours before retrieval for analysis. 

 

Gamma irradiation.  Gamma irradiation of samples was performed in Gammacell 

220 located in 6-107, with assistance and supervision from Chris Tavares of the MIT 

Radiation Protection Office.  Irradiation was administered at 2.5 million rads for 2 

hours to achieve FDA-approved level of sterilization.  Samples were sealed in a water-

tight container and placed in a cup with ice to avoid over-heating by the irradiation 

process.  Dry ice was not used as the irradiation cell could be sealed airtight, and the 

sublimed carbon dioxide could build up dangerous pressure. 
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Ethanol treatment.  Ethanol sterilization of samples was performed by immersing 

samples in 70% v/v ethanol/water mixture for define periods of time.  After treatment, 

samples were air-dried prior to drug release assessment. 

 

5.5.3 Results and Discussion. 

 

Steam Sterilization (Autoclave).  Poly(β-amino esters) were not expected to survive 

steam sterilization due to their water-labile nature.  Nevertheless, a quick test of 

autoclaving on [(Poly 1/HA)(GS/HA)]100 films was performed to assess the degree of 

degradation to these films.  The autoclaved films were visually much smoother than 

the untreated films, suggesting that the films had “melted” and reannealed during the 

sterilization process.  The resulting gentamicin release profiles are shown in Figure 

5.19, which presents cumulative amount of gentamicin released from autoclaved and 

unautoclaved films as a function of time.   
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(a) 

 

 
(b) 

Figure 5.19 - Comparing gentamicin release from untreated versus autoclaved 
[(Poly1/HA)(GS/HA)]100. 

(a) zoomed into the first 2.5 hrs, (b) complete release over 30 hrs. 

 

It is apparent autoclaving significantly degraded the films so that gentamicin was burst 

released.  This result was as expected – that steam sterilization imposed more heat and 
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humidity than the amount that can be tolerated by hydrolytically degrade poly(β-

amino esters). 

 

Dry Heat.  For dry heat sterilization, CDC guidelines specify 160°C for 2 hours in the 

case of a non-circulating oven227, and this is the condition used to dry heat the samples 

under this study.  After dry heat treatment, the three film samples were visibly charred 

and burnt onto the silicon substrate.  While this sterilization method was obviously not 

viable, I assessed gentamicin release from these burnt films out of curiosity.  A 

representative release profile is shown in Figure 5.20, along with comparison to an 

unheated film.   
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(a) 

 
(b) 

Figure 5.20 - Normalized gentamicin release from untreated vs. dry heated [(Poly1/HA)(GS/HA)]100.   

Data were scaled to the final cumulative released amount from each film.   Dry heat treated film 
released a total of 13 ug/cm2 gentamicin, while the control released a total of 36 ug/cm2: (a) zoomed 
into the first 5 hrs, (b) complete release over 150 hours.   

 

As Figure 5.20 (b) suggests, dry heat did indeed “fix” the film and resulted slower 

release of gentamicin, either through retardation of gentamicin diffusion through the 

film matrix, or through slower erosion of the charred film mass.  However, the heat 

fixation did not eliminate the rapid burst release that occurred within the first hour.   
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Another interesting finding was that there was only an average of 13 μg/cm2 of 

gentamicin released from the dry heat treated film, as compared to 36 μg/cm2 of an 

untreated film.   Either some gentamicin was “burnt off” during the treatment process, 

or permanently fixed into chunks of charred film which fell off from the silicon 

substrate but did not release the entrapped gentamicin.  It is also possible, though less 

likely, that the dry heat treatment affected the 3H label either by knocking it off its host 

gentamicin , so the low observed gentamicin release may not necessarily correspond to 

actual decrease in gentamicin delivery.  However, a wipe test throughout the 

secondary container (glass Petri dish) did not reveal an appreciable amount of 

radioactivity, suggesting that gentamicin remained inside the charred film and was 

likely trapped within non-degrading pieces of films. 

 

Ethylene Oxide.   EtO treatments were performed by the E25 animal facility 

personnel in their Anprolene AN74ix system under a 12-hour cycle.  Figure 5.21 

presents results from EtO-treated versus untreated films in normalized gentamicin 

release.   
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(a) 

 
(b) 

Figure 5.21 - Normalized gentamicin release from EtO-treated vs. untreated [(Poly1/HA)(GS/HA)]100.    

Data were scaled to the final cumulative released amount from each film.  The EtO-treated version 
released a total of 20 μg/cm2 of gentamicin, while untreated version released 36 μg/cm2: (a) zoomed 
into the first 2 hrs, (b) complete release over 50 hours.   

 

Figure 5.21 (b) suggests that on a longer timescale of 50 hours, the EtO treatment 

actually did not significantly impact the release kinetics of gentamicin.  However, 

when we examine release first 2 hours (Figure 5.21 (a)), we see that an EtO-treated 
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film burst released a bit more within the first 30 min.  Hence, the EtO treatment did 

affect drug release properties of the film, though the effect was less pronounced than 

most other methods. 

 

Since EtO only affected drug release kinetics within the first hour and preserved most 

of the multi-hour release afterwards, one possibility is that EtO did not penetrate all 

the way through the film, and instead only alkylated film components near the surface.  

Hence, only the release of gentamicin from the top layers was affected.  By 

exponential growth theory, the top layers would contain most of the gentamicin, as 

seen with the 60% release within the first hour.  Another theory is that EtO alkylation 

“loosened up” the film without affecting the polymer degradation rate, and hence the 

hypothesized early-phase diffusion-driven release of gentamicin was accelerated, 

while the late-phase degradation-driven release remained at a similar rate. 

 

One puzzling observation was the decrease in observed gentamicin dosage after EtO 

treatment.  Unlike films treated with dry heat, EtO-treated films were observed to 

degrade completely into the solution without leaving residual film pieces behind, and 

hence we would not expect film-trapped gentamicin.  Even if the gentamicin was 

somehow conjugated to or packaged by either Poly 1 or HA, the released polymer-

gentamicin composites should still give off scintillation signal.  Therefore, the most 

likely scenario was the loss of gentamicin during the EtO treatment process.  Perhaps 

the alkylation of polyelectrolytes caused reduction in electrostatic interaction with 

gentamicin, and some film was rubbed off in the sterilization bag. 
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Overall, EtO treatment is a potentially viable sterilization technique with less 

disruption to the drug release properties than most other methods.  With proper 

optimization on operating parameters such as temperature, humidity, EtO 

concentration, and time, we may minimize any undesirable effect such as drug loss 

and initial burst. 

 

Gamma Irradiation.  As discussed in the introduction, γ-irradiation is known to 

cause degradation of many synthetic polymers.  However, as a proof of concept, I 

proceeded to investigate the effect of this treatment on [(Poly 1/HA)(GS/HA)]100 

films.  The resulting gentamicin release is shown in Figure 5.22. 
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(a) 

 
(b) 

Figure 5.22 - Comparing gentamicin release from γ-irradiated vs. untreated [(Poly1/HA)(GS/HA)]100.    

Data were scaled to the final cumulative released amount from each film.  The gamma irradiated 
version released a total of 16 μg/cm2 of gentamicin, while untreated version released 36 μg/cm2: (a) 
zoomed into the first 2 hrs, (b) complete release over 50 hours.  

 

Similar to steam sterilization, gamma irradiation degraded the film components to the 

extent that all gentamicin was burst released within 30 min.  Interestingly, a decrease 

in gentamicin dosage after irradiation was also observed.  Unlike the case of dry heat 
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treatment, no fragments of film were observed in release buffer that would entrap 

gentamicin.  It is possible that gamma rays interfered with the ability of the 3H labels 

to scintillate.  Having a protocol to quantify gentamicin without the use of radioactive 

labels would help clarify the cause of lower observed gentamicin dosage. 

 

Regardless of the cause of gentamicin loss, gamma irradiation appears to significantly 

damage the film matrix to result in burst release.  Hence, it is not a suitable method for 

sterilization of Poly X-based films. 

 

Ethanol.  Standard ethanol sterilization makes use of a 70% ethanol solution, and the 

30% water content was concerning due to Poly X’s hydrolyzability.  Deionized water 

generally exhibits pH around 5.0-5.5, in which Poly 1 has a half-life of 7-8 hours in 

free solution23.  However, Poly X deposited into a film should have a longer “film 

half-life” due to its less direct contact with the external aqueous environment.  

Coupled with the 70% ethanol content, ethanol sterilization could be sufficiently non-

degrading to a Poly X-based film.  To assess the actual effect, a set of [(Poly 

1/HA)(GS/HA)]100 films were immersed in 5 mL of 70% ethanol for either 30 min or 

24 hours at room temperature.  The used ethanol solutions were saved for assessing 

potential gentamicin leaching from the film.  Figure 5.23 plots gentamicin release data 

from ethanol treatment. 
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(a) 

 
(b) 

Figure 5.23 - Comparing gentamicin release from [(Poly1/HA)(GS/HA)]100 films that are either 
untreated, or immersed in 70% ethanol for 30 min or 24 hrs.    

Data were scaled to the final cumulative released amount from each film.  The 30-min and 24-hr films 
released a total of 25 μg/cm2 and 16 μg/cm2 of gentamicin, while untreated version released 36 μg/cm2: 
(a) zoomed into the first 2 hrs, (b) complete release over 50 hours.  

 

Similar to the result observed under ethylene oxide treatment, the overall release rate 

was not significantly affected by the treatment.  Interestingly, within the initial 30 min 
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(see Figure 5.23(a)), ethanol-treated films actually released gentamicin in a slightly 

more sustained fashion as compared to the untreated ones.  The films might have 

rearranged or re-annealed during the ethanol immersion to result in more stable 

surface layers.  However, over the course of a 24-hour immersion, the 70% ethanol 

treatment appeared to slightly destabilize the bulk and resulted in a faster release over 

a 20-hour timescale (see Figure 5.23(b)).  

 

Another negative effect of the ethanol treatment was leaching of gentamicin during the 

treatment process.  Thickness measurements were not taken before and after the 

treatment to compare overall film mass, though the immersion fluids were scintillation 

counted to assess amount of leached gentamicin.  For the 30-min films, the 

scintillation readings of the three samples gave a mean of 1.9 μg/mL, or 9.5 μg/cm2 

released from each film given film sizes of 1 cm2.  For the 24-hour films, the release 

solutions gave a mean of 3.5 μg/mL, translating to 17.5 μg/cm2 loss.  These numbers 

match well with those from the drug release assessments, which yielded an average of 

10 μg/cm2 and 20 μg/cm2 for the 30-min and 24-hr treatments, respectively.  This 

gentamicin loss should be taken into account for in vivo assessments of 

[(Poly1/HA)(GS/HA)]100 film efficacy.  Despite the confirmed leaching of gentamicin, 

the 70% ethanol treatment was chosen as the sterilization method for in vivo studies 

because it had the least impact on gentamicin release properties, and had less loss of 

gentamicin than EtO treatment.  In addition, the loss of gentamicin was confirmed as 

being leached into the treatment solution, whereas in the case of many other 

techniques, the exact cause of loss is still unknown. 
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5.5.4 Conclusion. 

Several sterilization methods were performed on [(Poly1/HA)(GS/HA)]100 films to 

assess their effects on gentamicin release from these films.  Among the FDA-approved 

methods of sterilizing medical devices, only ethylene oxide was found to not 

significantly degrade the films into a rapid burst release.  However, the EtO treatment 

parameters, such as temperature, pressure, EtO concentration, humidity, and treatment 

time, should be optimized for minimal interference to film integrity.  However, EtO 

may ultimately not be the ideal sterilization method, as it can easily damage 

biomolecules and hence is unsuitable for films delivery proteins, peptide, and nucleic 

acids.  Other sterilization methods were found to either result in burst release within an 

hour, as in the case of autoclaving and gamma irradiation, or in complete alteration of 

film’s physical properties, as in the case of dry heat.  Immersion in 70% ethanol was 

found to be sufficiently gentle on the film, though some gentamicin loss was observed, 

and this method can only be used for small animal experiments.   

 

Several other emerging sterilization methods could be considered for evaluation, 

including electron beam irradiation, H2O2 plasma, UV light228, or pulsed white light229-

231.  In addition, the effect of sterilization on the mechanical or morphological 

properties of the films, as well as the activity and biocompatibility of the resulting 

film, should all be examined.  For example, various sterilization methods have been 

found to affect surface properties of titanium and result in altered bone cell 

expression232.  We hope that as sterilization techniques evolve over time, more options 
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will emerge that provide equivalent antimicrobial action without the negative impact 

on biomaterials. 
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Chapter 6.  Gentamicin-Protein Combination Films 

6.1 Introduction 

Total joint replacement (TJR), particularly of the hip and knee, has become one of the 

most frequent prosthetic surgeries due to its success in restoring mobility to patients 

suffering from various forms of bone degeneration.  An estimated one million joint 

placements are performed worldwide each year32, with half being performed in the U.S..  

Unfortunately, due to surgical and implant-derived complications, about 10% such joint 

replacements eventually fail and require a revision arthroplasty33, in which the patient 

may undergo more than two additional surgeries – a costly and debilitating process.  

Therefore, reductions to primary failures and improvements revision success are of 

utmost importance. 

 

There are many sources to implant failures, the most serious of which is infection at the 

implant site32, 33, 36, 37.  Bacteria could flourish within the microscopic crevices of the 

implant, rendering systemic administration of antibiotics futile.  Thus, an implant that not 

only resists bacterial adhesion but also elutes antibiotics from all accessible surfaces 

would be invaluable.  Other complications include the common aseptic loosening33, 

thromboembolism38-40, ischemia to the lower extremities41, and tumor42, 43 or cyst44 

formations.   On top of these more immediate complications, implant rejection may also 

occur on the longer term, caused by a lack of tissue growth onto the implant to promote 

its integration into the body. 
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Gentamicin is a common choice for osteomyelitis treatment.  Its efficacy against 

Staphylococcus aureus, the most common source of osteomyelitis187, 188 and septic 

arthritis189, 190, has been demonstrated both in vitro 191, 192 and in vivo 141, 193, 194 .  

Gentamicin is also effective against methicillin-resistant S. aureus (MRSA)195 and 

biofilms of several staphylococci196.    On top of reducing implant-associated illnesses, 

we can incorporate growth factors into our multilayers to promote bone regeneration and 

implant integration.  Both the osteoinductive agent BMP-2 (bone morphogenetic protein-

2)76-81 and the angiogenetic agent VEGF (vascular endothelial growth factor)82-85 have 

been well-studied in vitro and in vivo to have positive therapeutic impact on bone 

regeneration.  The incorporation of large biomolecules such as proteins into PEMs is 

well-documented in the literature 58, 70, 86. 

 

Layer-by-layer (LbL) assembly is a thin film fabrication technique based on the 

alternating deposition of polyelectrolytes or other multiply charged species 52.  The 

resulting polyelectrolyte multilayers, or PEMS, are ultrathin, conformal, and highly 

tunable in functionality and morphology.  Since the deposition is frequently performed in 

aqueous solutions under ambient conditions, the process is simple, low-cost, scalable, and 

mild – a sharp contrast to the harsh organic conditions often employed in other drug 

encapsulation techniques 180.  This feature will prove especially beneficial for the 

delivery of biologic drugs such as proteins, antibodies, nucleic acids, and peptides.   

 

As the technique is based on non-specific interactions, LbL coatings can be deposited on 

virtually any surface material.  In fact, they have been successfully applied onto a variety 
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of implant surfaces, including stainless steel118, NiTi103, polyurethane and polystyrene159, 

silica181, and PMMA182.  LbL coatings are also flexible in its functionality, and have been 

demonstrated as coatings on implants that are antimicrobial144, 147, 233, 234, anti-

coagulant159, anti-restenotic197, tissue growth promoting235, and wear-resist74.  While 

gentamicin-incorporated coatings for orthopedic implants have been reported 121, 122, 126, 

139, 141, 236, 237, none of these had precise dosage and rate tunability, high surface 

conformality, or ease and low cost of process.  These necessary features can be addressed 

by LbL coatings because of their process advantages. 

 

We have previously demonstrated controlled erosion110, tunable drug release119, 147, and 

sequential drug release120 under physiological conditions from LbL films made with 

poly(β-amino esters)23.  Specifically, tunable releases of gentamicin147 and bFGF been 

achieved.  In the preset study, we examined the build-up, erosion, and drug release 

kinetics of an LbL construct that incorporated both gentamicin and bFGF.  We 

demonstrated co-release of both therapeutics in a dosage-tunable fashion, with excellent 

in vitro activity of the released gentamicin. 

 

6.2 Materials and Methods 
 
Materials.  Poly(β-amino esters) (referred to as Poly X, X = 1, 2,see Figure 5.2) were 

synthesized as previously described 23.  Silicon wafers (test grade n-type) were purchased 

from Silicon Quest (Santa Clara, CA).  Linear poly(ethylenimine) (LPEI, Mn = 25k) was 

received from Polysciences, Inc.  Poly (sodium 4-styrenesulfonate) (PSS, Mn = 1M) and 

sodium alginate (or alginic acid) were purchased from Sigma-Aldrich (St. Louis, MO).  
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Sodium hyaluronate (or hyaluronic acid (HA), Mn = 1.76 MDa) was purchased from 

Lifecore Biomedical, Inc. (Chaska, MN).  Nonradiolabeled gentamicin sulfate (GS) (in 

Cellgro® solution, 50 mg/mL in sterile filtered water) was purchased from Mediatech, 

Inc. (Herndon, VA).  3H-gentamicin sulfate was obtained from American Radiolabeled 

Chemicals, Inc (0.250 mCi total, 1 mCi/mL in ethanol, 0.200 mCi/mg).  Heparin sodium 

salt was obtained from Celsus Laboratories (Cincinnati, OH), and bFGF was obtained 

from Peprotech (Rocky Hill, NJ).  All materials and solvents were used as received 

without further purification.  

 

Figure 6.1 - Structures of Poly X used in this study.  

 

Staphylococcus aureus, strain 25923 with no antibiotic resistance, was provided by the 

Gregory Stephanopoulos group at MIT and ordered from ATCC (Manassas, VA).  

Cation-adjusted Mueller Hinton Broth II (CMHB) and BactoAgar™ were purchased 

from Difco™ (BD, Franklin Lakes, NJ).  Gentamicin standard discs, 10 μg loading, were 

purchased from BD Biosciences (Franklin Lake, NJ) as BBL™ Sensi-Disc™.  MC3T3-

E1 Subclone 4 CRL-2593 was obtained from ATCC (Manassas, VA).  Alpha Minimum 

essential medium (α-MEM), FBS, Pennicillin, Streptomycin,  and alamarBlue™ 

(BioSource™) were obtained from Invitrogen (Carlsbad, CA).  
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Preparation of Polyelectrolyte Solutions.  Dipping solutions containing Poly X and HA 

were made at a concentration of 10 mM with respect to the polymer repeat unit in 100 

mM sodium acetate buffer (pH 5.1 by glacial acetic acid).  Heparin was used at a 

concentration of 2 mg/mL while bFGF was used at a concentration of 1 ug/mL, both in 

100 mM sodium acetate buffer at pH 5.1 GS dipping solutions were prepared by diluting 

the 50 mg/mL stock solution with sodium acetate buffer and glacial acetic acid to result 

in a solution of 10 mg/mL GS in 100 mM sodium acetate.  Nondegradable base layers 

were deposited from dipping solutions of LPEI and PSS in deionized water pH adjusted 

to 4.25 and 4.75, respectively.  Deionized water used to prepare all solutions was 

obtained using a Milli-Q Plus (Bedford, MA) at 18.2 MΩ .  

 

Polyelectrolyte Deposition.  All polyelectrolyte LBL thin films were constructed as 

follows according to the alternate dipping method53.  Silicon wafers were cut into 

rectangular substrates approximately 2.0 cm × 0.5cm each.  The substrates were rinsed 

with methanol and deionized water, dried under nitrogen, and plasma etched in oxygen 

using a Harrick PDC-32G plasma cleaner at high RF power for 1 min.  Layer-by-layer 

thin film deposition was performed using a Carl Zeiss HMS Series Programmable Slide 

Stainer.  A nondegradable base film ((LPEI/PSS)10) was deposited by submerging plasma 

treated silicon substrates in an LPEI dipping solution for 5 minutes, then a cascade rinse 

cycle consisting of three deionized water rinsing baths (15, 30, and 45 seconds, 

respectively).  Substrates were then submerged in a PSS dipping solution for 5 minutes 

followed by the same cascade rinsing cycle, and the entire process was repeated ten 
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times.  Next, degradable films were deposited on the existing polyanion-terminated base 

layer by repeating the above procedure with [(Poly 1/Hep)(bFGF/Hep)]n and [(Poly 

1/HA)(GS/HA)]n architectures, dipping for 10 min in each of the Poly X, bFGF,HA, and 

GS solutions and 7.5 min for heparin solutions with cascading rinses between each step 

and repeating the bracketed structures as many times (n) as desired.   

 

For films intended for drug release assessment, a 3H-labeled GS dipping solution was 

prepared by dissolving 0.060 mL of the stock (1 mCi/mL in ethanol, 0.200 mCi/mg)  in 

40 mL of a typical GS dipping solution (10 mg/mL in 100 mM sodium acetate buffer, pH 

3.0 by glacial acetic acid), making a radiolabeled solution at 1.5 μCi/mL.  An identical 

LBL deposition procedure was then performed.   

 

Measurement of Film Thickness.  Following deposition, films were immediately 

removed from the final rinsing bath and air dried.  Film thickness was determined by 

profilometry at three or more different scratch sites on a KLA-Tencor P-10 Profilometer.  

All measurements were performed in triplicate. 

 

Measurement of FGF release.  Sample substrates were immersesd in 1 mL of filtered 

medium (henceforth called release medium) consisting of 1% FBS, 1% 

penicillin/streptomycin in alpha essential medium.  Samples were placed in an incubator 

at 37°C, and at several timepoints, 0.5 mL samples were obtained and replaced with 0.5 

mL of fresh medium.  Samples were frozen at -70°C until analysis using an ELISA 
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development kit (Peprotech, Rocky Hill NJ) and with proliferation assays described 

below. 

 

Measurement of Gentamicin Release.  Gentamicin release was assessed via 

incorporation of 3H-labeled drug in the film.  Two different types of release assays were 

conducted: (1) films were immersed in 25 mL of pre-warmed modified simulated body 

fluid (m-SBF) 157 in a tightly-capped Falcon tube, maintained at 37°C in a water bath.  

The degradation tubes were tightly capped between sample extractions to prevent 

evaporation of the buffer solution.   A 1 mL sample was extracted at predetermined time 

points, (2) films underwent identical release protocol as that for FGF release as outlined 

above, with each 0.5 mL aliquot diluted with 0.5 mL of m-SBF.  For both release assays, 

the resulting 1-mL aliquots were analyzed by adding 5 mL of ScintiSafe Plus 50% 

(Fisher Scientific, Atlanta, GA) prior to measurement.   The resulting mixtures were 

analyzed using a Tri-carb liquid scintillation counter (Model U2200).  The amount of 

radiolabel in each sample vial was measured using a 3H counting protocol which was 

shown to be highly accurate over a broad concentration range (30-100,000 DPM/mL) in 

calibration experiments performed prior to drug release.  Raw data (disintegrations per 

minute, DPM) were converted to micrograms (μg) of gentamicin using the conversion 

factor 2.2 x 106 DPM = 1 μCi = 1.0 μg 3H-GS.  Finally, the total gentamicin release from 

a single film was calculated according to the following equation: 
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where Mi (μg) is the total cumulative mass released from the film as of measurement i, Ci 

(μg/mL) is the concentration of sample i, Vi (mL) is the total volume of the degradation 

bath prior to measurement i, ∑
−

=

1

1
)1(

i

j
jCmL is the total mass in previously extracted 

samples, and 1334 is equal to the mass ratio of total GS to 3H-GS in the dipping solution 

(i.e., in the degradable film). 

  

Staphylococcus aureus macrodilution assay.  All liquid assays were performed in 

cation-adjusted Mueller Hinton Broth II (CMHB).   Qualitative assays were performed 

following standard macrodilution methods as outlined by the National Committee on 

Clinical Laboratory Standards (NCCLS M26-A, 1999) with a challenge of 105 CFU/mL.  

An elution test with modified macrodilution assay was adopted to facilitate duplications 

of tests at various treatment levels.  Briefly, films with precisely cut sizes were immersed 

in a set amount of culture medium at 37°C for 72+ hours for complete erosion of films.  

Estimated gentamicin concentration ([GS]) within this elution buffer can be computed 

based on the immersed film size and culture volume.  The resulting elution medium was 

then serially diluted 1:2 with fresh medium 15 times, yielding 16 different concentrations, 

from the original elution medium strength down to a factor of  2-15.  Quantitative assays 

were done in 96-well plates with 150 μL of liquid culture per well, with 135 μL of test 

media and 15 μL of inoculation culture at 105 CFU/mL in CMHB.  All test media were 

sterile-filtered through 0.2 µm membranes prior to use.  Estimated test media conditions 

take the 9:10 dilution into account.  For each set of assays, three wells were filled with 

culture fluid with no bacteria inoculated, while three negative controls were subject to the 
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same bacterial challenge without any substrate.   The plate was incubated at 37°C under 

gentle shaking for 16-18 hours.  Cell density was read at OD 600 nm in a BioTek® 

PowerWave™ XS Microplate Spectrophotometer with accompanying Gen5 program 

Version 1.00.14.  All treatments, whether direct infusion into culture or co-immersion of 

film substrates with the culture, were administered from the time of seeding to data 

observation.  Cultures were incubated at 37°C for 16-18 hours under gentle shaking 

before observation. 

 

Staphylococcus aureus Kirby-Bauer disc diffusion assay.  Kirby-Bauer disk diffusion 

assays were performed according to the NCCLS guidelines (M7-A4, 1997).  Agar plates 

were formulated with CMHB and BactoAgar™.  Each plate was inoculated with S. 

aureus culture in exponential growth phase at 108 CFU/mL in CMHB using a sterile 

cotton swab.  The test substrate was immediately placed on the inoculated plate, coated 

side down, with gentle pressing by a pair of tweezers to ensure conformal contact, 

exercising particular care not to pierce the agar or move the substrate.  All substrates 

were placed at least 5 cm apart from one substrate center to another and 2 cm from the 

edge of the dish.  The plates were inverted and incubated at 37°C without shaking for 16-

18 hours before observation. 

 

6.3 Results and Discussion 
 

Growth curve of combination films.  [(Poly 1/HA)(GS/HA)] tetralayers were deposited 

on top of a [(Poly 1/Hep)(FGF/Hep)]50.film.  Figure 6.2 shows the growth curves of both 
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the bFGF bottom layers and the subsequent GS layers.  Within the first ten [(Poly 

1/HA)(GS/HA)] tetralayers, very little growth was observed.  However, significant 

amounts of gentamicin were loaded within the first ten tetralayer deposition, suggesting 

that gentamicin was diffusing into the film during these deposition cycles.  At 25 

tetralayers and above, noticeable film growth was observed, with increasing surface 

roughness.  The overall trend of this growth curve is non-linear, suggesting that 

gentamicin was diffusing throughout the film per the “in and out” mechanism as 

proposed by Picart et al.153.  A similar trend was observed by the authors for a [(Poly 

1/HA)(GS/HA)]n-only film147 and was attributed to the size of the gentamicin molecule. 
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Figure 6.2 – Growth curve (a) [(Poly 1/Hep)(FGF/Hep)]n, and (b) [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 
1/HA)(GS/HA)]n .   

Figure (a) is courtesy of Mara Macdonald. 

 

Gentamicin release dosage and kinetics.  The dosage and kinetics of gentamicin release 

were compared between [(Poly 1/HA)(GS/HA)]n (“GS only”) films and [(Poly 

1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]n (“combination”) films (see Figure 6.3).  

In this set of release assessments, films were immersed in m-SBF (modified simulated 

body fluid) at 37°C with a total initial volume of 25 mL.  As the figure suggests, 
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gentamicin was released at a higher dosage and a slower rate from a combination film 

when compared to a GS-only film with the same number of [(Poly 1/HA)(GS/HA)]n 

tetralayers.  For example, at n = 100, a GS-only film released a total of 45 μg/cm2 of 

gentamicin with 95% completion around 10 hours, while the combination counterpart 

released a total of 510 μg/cm2 of gentamicin with 95% completion around 48 hours.  The 

remarkable increase in gentamicin dosage may be attributed to gentamicin’s diffusion 

into the [(Poly 1/Hep)(FGF/Hep)]50  underlayers, which served as a flexible reservoir for 

gentamicin.   
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(a) 

 
(b) 

Figure 6.3 – Cumulative release of gentamicin in m-SBF, 37°C from (a) [(Poly 1/HA)(GS/HA)]n films, 
and (b) [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]n films.   
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Figure 6.4 replicates data from Figure 6.3, but displayed on a different x-axis scale to 

provide further release rate comparison within the first 2.5 hours.  A combined look at 

both figures show that a combination film not only has a longer overall release, but also a 

more attenuated initial burst.  GS-only films released 50% of its total gentamicin within 

the first 0.5 hour, whereas combination films reached 50% release only beyond 2.5 hours. 

 
(a) 

 
(b) 

Figure 6.4 – Cumulative release of gentamicin in m-SBF, 37°C, zoomed into the initial 2.5 hours, from (a) 
[(Poly 1/HA)(GS/HA)]n films, and (b) [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]n films. 
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Additional release assessments were performed in “release medium” (1% FBS, 1% 

penicillin/streptomycin in alpha essential medium) at 37°C under identical sampling 

protocol and frequency as those used for FGF release assessment.  The resulting 

gentamicin release from combination films is shown in Figure 6.5.  Gentamicin release 

observed under this sampling protocol was more sustained than the previous method in 

25 mL m-SBF (see Figure 6.3(b)), with 50% release in 6 hours and 95% release in 70 

hours, as compared to 2.5 hours and 45 hours respectively for an identical film released 

in m-SBF.  It was not clear which sampling method was a better mimic for in vivo 

conditions, but this set of data highlights the importance in the selection of in vitro 

release protocol when the release kinetics is a primary concern.  In our case, we are most 

concerned with the comparison of gentamicin releases between GS-only and combination 

films (as in Figure 6.3 and Figure 6.4) and between gentamicin and FGF releases from 

identical combination films (see Figure 6.7, to be discussed later).  Hence, as long as we 

maintain an identical sampling protocol within each set of comparison, the qualitative 

assessments should remain valid.   

 
Figure 6.5 - Cumulative release of gentamicin in release medium from [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 
1/HA)(GS/HA)]n films. 
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Gentamicin loading and density within combination films.  Through release 

assessments described above, the total amounts of gentamicin released from each set of 

combination films could be tabulated. In addition, these release amounts could be divided 

by the mean thicknesses of the films to yield a “density” of gentamicin within the film.  

Both of these parameters are displayed as a function of n in Figure 6.6.  The two figures 

are from identical sets of data, with (a) displaying data zoomed into the n = 1 to 10 

region.   

 
(a) 

 
(b) 
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Figure 6.6 – Total loading and loading density of gentamicin into combination films as a function of 
number of [(Poly 1/HA)(GS/HA)] tetralayers deposited on top of [(Poly 1/Hep)(FGF/Hep)]50. 
(a) zoomed into the lower regime of n = 0 to 10, (b) overall representation from n = 0 to 100. 

As the data suggests, there was a steady, monotonic increase in gentamicin loading 

(assumed to be identical in amounts as what was released) as more number of tetralayers 

were deposited.  However, as the combination film had very little growth in thickness 

within the first ten gentamicin tetralayers, the density of gentamicin was increasing at a 

faster pace.  Again, this may be attributed to the diffusion of gentamicin into the [(Poly 

1/Hep)(FGF/Hep)]50 underlayers during the initial depositions.  The density appeared to 

reach a maximum of 17 μg/cm2-μm after 50 tetralayers, suggesting that gentamicin might 

have completely penetrated the [(Poly 1/Hep)(FGF/Hep)]50 underlayers after 50 

deposition cycles, so that additional gentamicin incorporation at n ≥ 50 could be 

attributed mostly to extra film build-up.  This hypothesis is consistent with the 

observation that the [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]n films were 

growing at a faster rate for n ≥ 50 (see Figure 6.2).  

 

Comparison of drug release and film erosion.  Figure 6.7 presents three sets of data 

from a [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]100 film – gentamicin release 

(from Figure 6.5), FGF release (data courtesy of Mara Macdonald), and thickness erosion 

of the film – all conducted under an identical release protocol.  For ease of comparison, 

the release and erosion data are all displayed as % total completion.  The two plots in 

Figure 6.7 are from identical sets of data, with plot (a) zoomed into the initial 2 days for a 

clearer display in this regime. 
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(a) 

 
(b) 

Figure 6.7 - Normalized cumulative releases of gentamicin (GS) and FGF from a [(Poly 
1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]100 film, with accompanying film erosion curve. 

(a) zoomed into the first 2 days, and (b) overall data gathered up to 13 days. 

 

The data suggest that gentamicin release, FGF release, and film erosion all occurred at 

similar rates from the combination film, with FGF release being slightly more sustained 

than that of gentamicin.  Film erosion correlated closely with FGF release, suggesting 

that FGF release was driven primarily by the erosion process, while gentamicin release 
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could be partially driven by diffusion.  Overall, the film behaved more as a “co-release” 

system than a sequential release one. 

 

Activity of [(Poly 1/Hep)(FGF/Hep)]50 films towards S. aureus.  To assess whether the 

[(Poly 1/Hep)(FGF/Hep)]50 underlayers could affect S. aureus proliferation, CMHB 

elution buffers of [(Poly 1/Hep)(FGF/Hep)]50 films were prepared with an estimated 

[FGF] = 50 μg/mL. The buffers were serially diluted 1:2 down to 0.20 μg/mL and 

administered to S. aureus cultures under standard macrodilution protocol.  The S. aureus 

cultures were observed to proliferate to the same extent as negative controls under all 

dilutions of the FGF film buffer, suggesting that none of the components eluted from the 

FGF underlayers exhibited noticeable activity towards S. aureus.  A similar assay on Poly 

1, HA, and combinations of the two was previously performed147 (see Chapter 5) and 

neither proliferative nor inhibitive effect was observed. 

 

Activity of combination films against S. aureus.  CMHB Elution buffers of [(Poly 

1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]100 films were prepared to assess their 

activity against S. aureus proliferation.  S. aureus cultures were treated with several 

dilutions of these elution buffers under standard macrodilution protocol.  The resulting 

culture densities were quantified by OD600 measurement and shown in Figure 6.8.  Each 

of the three film samples were split into triplicate assessments, with error bars 

representing standard deviations of the triplicate trials.  As the data suggest, all three 

films samples were effective against S. aureus proliferation at estimated gentamicin 

concentrations of ~0.15 μg/mL and higher, consistent with reported free-solution 
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gentamicin MIC of 0.125-0.25 μg/mL.  Hence, all of the film-released gentamicin 

appeared to remain in vitro active, with little inhibitory effect experienced from the co-

excipients of the film.  

 

 
Figure 6.8 – Macrodilution assay of [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]100 film against S. 
aureus. 

 

Additional antibacterial activity assessments were performed using the Kirby-Bauer (KB) 

disc diffusion assay, in which the film samples were directly incubated on the surface of 

an inoculated agar plate to assess the activity of the antibiotic as released and diffused 

into the agar.  The first set of KB assays was performed using [(Poly 1/Hep)(FGF/Hep)]50 

+ [(Poly 1/HA)(GS/HA)]25 films trimmed down to sufficiently small squares to result in a 

total release of ~10 μg gentamicin per square sample.  This facilitates comparisons to 

positive controls, which were BD Sensi-Discs® specified to release 10 μg of gentamicin.  

Table 6 reports data from this set of assays.  As the data indicate, the film samples 



 228

produced very similar diameters as those of positive controls, again suggesting that 

gentamicin was released in its active form with little inhibition from co-excipients. 

 

Table 6 – Kirby-Bauer diameters of [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]25 substrates and 
10 μg BD Sensi-Disc® controls.  Substrate sizes were chosen to yield GS loadings of ~10 ug per sample. 

 Area† (cm2) Estimated GS 
dosage‡ (μg) 

Net KB 
diameter (cm) 

Diameter/dosage 
(cm/μg) 

Control 1 0.785 10 1.72 0.172 
Control 2 0.785 10 1.73 0.173 
Control 3 0.785 10 1.72 0.172 
Average   1.72 0.172 
% Std Dev   0.34% 0.34% 
Sample 1 0.053 9.74 1.71 0.176 
Sample 2 0.058 10.6 1.74 0.164 
Sample 3 0.053 9.74 1.73 0.178 
Average    0.172 
% Std Dev    4.24% 
† Controls are BD Sensi-Discs® standardized as 0.5-cm diameter circles; samples were square-shaped. 
‡ Controls are specified by BD as containing 10 μg gentamicin; sample gentamicin dosage were estimated 
by multiplying the sample area by the average loading for the 25-gentamicin-layered film (184 μg/cm2) 
 
 

Additional [(Poly 1/Hep)(FGF/Hep)]50 + [(Poly 1/HA)(GS/HA)]n film samples of various 

gentamicin dosages were assessed by KB, with resulting data displayed in Figure 6.9.  

Two sets of samples were run with films made in different batches.  The data had good 

consistency between different batches, and overlapped well with those of BD Sensi-

Disc® controls.  A saturation in KB diameter was observed at high gentamicin dosages, 

most likely due to the steady state diffusion limits of gentamicin within the CMHB agar.  

A analytical model that couples the mass transport of gentamicin within the agar with the 

growth kinetic of S. aureus could further acertain this diffusion limit, but is beyond the 

scope of the current study. 
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Figure 6.9 –Net Kirby-Bauer diameters of various combination film samples in correlation to the estimated 
total gentamicin within the sample.  Controls were BD Sensi-Disc®. 

 

6.4 Conclusion 
 
A dual-therapy coating was constructed using layer-by-layer deposition, resulting in a 

biodegradable coating that can release both the antibiotic gentamicin and the growth 

factor bFGF in a concurrent fashion.  The combination coating allowed for a 5x 

enhancement in the sustainability of gentamicin release, and a 10x increase in gentamicin 

dosage, as compared to an analogous layer-by-layer coating of only gentamicin without 

the bFGF co-encapsulant.  Release rates of gentamicin and FGF correlated well with that 

of film erosion.  The resulting film exhibited excellent in vitro antimicrobial activity with 

no inhibitory effect from the film co-excipients.  Further assessments on FGF release and 

activity from these combinations films are currently under way to fully characterize the 

therapeutic potential of these films. 
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Chapter 7.  Antimicrobial Peptide (AmP) Delivery 
 

7.1 Introduction. 

Antimicrobial peptides (AmPs) are a novel class of antibiotics that are 12-35 amino acids 

in length, typically isolated from mammalian cells238.   They are active against a broad 

spectrum of bacteria, including strains resistant to traditional antibiotics such as 

vancomycin and tetracycline239.  They are also robust against the development of 

antibiotic resistance due to their mechanism of action, which involves their insertion into 

the bacterial membrane that results in poration and disruption, leading to cell death.   

Christopher Loose from the Gregory Stephaopoulos group, who worked on the rational 

design of AmP sequences240, 241, proposed a research collaboration for the incorporation 

of AmPs into LbL films for tunable, sustained release.  

 

A few AmP-incorporating LbL films have been reported in the literature.  Etienne et al. 

incorporated defensin in a non-degradable PEI-(PSS-PAH)2-PGA-PLL-(PGA-defensin-

PLL)n  architecture with either a PLL or PGA top layer233.  When co-incubated with M. 

luteus or E. coli cultures, only films capped with a PLL top layer were found to inhibit E. 

coli growths, suggesting that attachment of bacteria onto a positively-charged outer 

surface was necessary for these films’ efficacy.  The authors also reported in a separate 

study that (PLL/PGA)n(PLL/PGA-g-PEG)n films inhibit E. coli adhesion234, supporting 

their hypothesis above.  The authors subsequently incorporated an anti-fungal AmP 

chromofungin (Chf) in LbL films of architectures PEI–(PSS/PAH)2–(PGA/Chf/PLL)24 or 

PEI–(PSS/PAH)2–((PGA*Chf)/PLL)24, where PGA*Chf denotes a solution mixture of 
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PGA and Chf (“peptidized polyanion”)182.  The films were found to inhibit growth of the 

yeast C. albicans.  However, the authors noted that no solid evidence was available to 

support actual incorporation of chromofungin into these films, and that the anti-fungal 

activity could conceivably arise from the other components of the film.  In addition, 

neither of the studies above allowed for tunable release of the AmP, and instead the films 

relied upon bacteria attachment onto the surface to exert their antimicrobial actions. 

 

While the aforementioned studies made use of positively charged AmPs that could be 

directly incorporated into electrostatic LbL assemblies, Guyamard et al. reported the 

incorporation of a hydrophobic AmP, gramicidin A, into a multilayer through 

complexation with an anionic amphiphilic polysaccharide242 (a hydrophobically modified 

carboxymethylpullulan).  The negatively charged complex was bilayered with PLL with 

tunable amounts of AmP incorporation.  The film was active against E. faecalis through 

both surface contact and release of gramicidin A into the culture.  However, the release 

was inferred strictly from bacteria culture and not assessed rigorously through a 

quantitative in vitro release assay. 

 

Given the lack of rigorous, quantitative data on AmP dosage and release kinetics from 

LbL films, Chris and I sought to establish such a set of data using several naturally-

occurring AmPs.  There is a wide variety of natural AmPs available with variable lengths, 

conformations, and hence antimicrobial activities. AmPs Dermapsetin, Melittin, 

Cecropin-A-Melittin hybrid, and Ponericin were investigated under this study to 

demonstrate the generality of AmP encapsulation and release using the LbL deposition 
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method.  The eventual focus will be on Ponericins due to their high activity against S. 

aureus and low hemolytic activity.  Ponericins are natural AmPs isolated from the venom 

of an arboreal ponerine ant.  They were discovered and extensively characterized by 

Orivel et al.243  Ponericins are classified into three families – G, W, and L – based on 

their sequences and structures.   The G family is structurally similar to another natural 

AmP, Cecropin, and is further divided into subtypes G1, G3, G4, and G6.  Ponericin G1 

was found to be particularly active against a broad spectrum of gram-positive and gram-

negative organisms.  They were also found to have insecticidal activity, yet exhibited 

little hemolytic activity towards sheep or horse erythrocytes, suggesting a certain degree 

of specificity towards eukaryotic cells. 

 

7.2 Materials and Methods. 

Materials.  Poly(β-amino esters) (referred to as Poly X, X = 1 and 6A, see Figure 5.2) 

were synthesized as previously described 23.  Silicon wafers (test grade n-type) were 

purchased from Silicon Quest (Santa Clara, CA).  Linear poly(ethylenimine) (LPEI, Mn = 

25k) was sreceived from Polysciences, Inc.  Poly (sodium 4-styrenesulfonate) (PSS, Mn = 

1M) was purchased from Sigma-Aldrich (St. Louis, MO).  Sodium hyaluronate (or 

hyaluronic acid (HA), Mn = 1.76 MDa) was purchased from Lifecore Biomedical, Inc. 

(Chaska, MN).  Nonradiolabeled gentamicin sulfate (GS) (in Cellgro® solution, 50 

mg/mL in sterile filtered water) was purchased from Mediatech, Inc. (Herndon, VA).  3H-

gentamicin sulfate was obtained from American Radiolabeled Chemicals, Inc (0.250 mCi 

total, 1 mCi/mL in ethanol, 0.200 mCi/mg).  All antimicrobial peptides (AmPs), both 

fluorescently labeled (denoted as AmP*) and native versions, were courtesy of the Greg 
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Stephanopoulos group and synthesized by the MIT Biopolymers Lab.  Please see Table 7 

for the list of AmPs considered under this study.  All materials and solvents were used as 

received without further purification.  

Table 7 - List of antimicrobial peptides used in this study. 

Name Sequence 

Dermaseptin (Derm) ALWKTLLKKVLKA  

Melittin (Mel) GIGAVLKVLTTGLPALISWIKRKRQQ 

Cecropin A Melittin (CM)  KWKLFKKIGAVLKVL  

Ponericin G1 (“Pon”) GWKDWAKKAGGWLKKKGPGMAKAALKAAMQ 
 

Staphylococcus aureus (ATCC 25923, no antibiotic resistance) and methicillin-resistant 

S. aureus (MRSA, ATCC 700698) were purchased from American Type Culture 

Collection (ATCC, Manassas, VA).  Cation-adjusted Mueller Hinton Broth II (CMHB) 

was purchased from Difco™ (BD, Franklin Lakes, NJ).  Bacto Agar™ was also 

purchased from Difco™.  Gentamicin standard discs, 10 μg loading, were purchased 

from BD Biosciences (Franklin Lake, NJ) as BBL™ Sensi-Disc™.  Alarmar Blue 

(BioSource™) was obtained from Invitrogen (Carlsbad, CA).  Micro BCA Protein Assay 

Kit was obtained from Pierce (Rockford, IL). 

 

Preparation of Polyelectrolyte Solutions.  Dipping solutions containing Poly X, HA, 

and heparin were made at a concentration of 10 mM with respect to the polymer repeat 

unit in 100 mM sodium acetate buffer (pH 5.1 by glacial acetic acid). AmP dipping 

solutions were prepared by dissolving lyophilized samples or diluting liquid stock with 

sodium acetate buffer and glacial acetic acid to result in a solution of 0.5-1 mg/mL AmP 
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in 100 mM sodium acetate at either pH 5.5 or pH 3.0.  Nondegradable base layers were 

deposited from dipping solutions of LPEI and PSS in deionized water pH adjusted to 4.25 

and 4.75, respectively.  Deionized water used to prepare all solutions was obtained using 

a Milli-Q Plus (Bedford, MA) at 18.2 MΩ .  

 

Polyelectrolyte Deposition.  All polyelectrolyte LBL thin films were constructed as 

follows according to the alternate dipping method53.  Silicon wafers were cut into 

rectangular substrates approximately 2.0 cm × 0.5cm each.  The substrates were rinsed 

with methanol and deionized water, dried under nitrogen, and plasma etched in oxygen 

using a Harrick PDC-32G plasma cleaner at high RF power for 1 min.  Layer-by-layer 

thin film deposition was performed using a Carl Zeiss HMS Series Programmable Slide 

Stainer.  A ten-bilayer nondegradable base film ((LPEI/PSS)10) was deposited by 

submerging plasma treated silicon substrates in an LPEI dipping solution for 5 minutes, 

then a cascade rinse cycle consisting of three deionized water rinsing baths (15, 30, and 

45 seconds, respectively).  Substrates were then submerged in a PSS dipping solution for 

5 minutes followed by the same cascade rinsing cycle, and the entire process was 

repeated ten times.  Next, degradable films were deposited on the existing polyanion-

terminated base layer by repeating the above procedure with the [(Poly 

X/HA)a(AmP/HA)b]n architecture, dipping for 10 min in each of the Poly X, HA, and GS 

solutions and repeating the (Poly X/HA)a(AmP/HA)b structure as many times (n) as 

desired.  Poly X and HA dipping solutions were re-made every 24 hours. 
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Measurement of Film Thickness.  Following deposition, films were immediately 

removed from the final rinsing bath and air dried.  Film thickness was determined either 

by ellipsometry at ten different predetermined locations on the film surface or by 

profilometry at three different scratch sites.  All measurements were performed in 

triplicate.  Dry state ellipsometric measurements were conducted using a Gaertner 

Variable Angle Ellipsometer (6328 nm, 70° incident angle) and accompanying Gaertner 

Ellipsometer Measurement Program (GEMP) Version 1.2 software interface.  

Profilometric measurements were taken on a KLA-Tencor P-10 Profilometer.    

 

Measurement of Drug Release.  For release assessments by either fluorescence or BCA, 

calibration curves were established for each specific type of AmP by running a set of 

standards at known concentrations within a range relevant to my observed release 

concentrations, and performing linear regression on the concentration vs. 

fluorescent/colorimetric signal to establish a calibration curve.  For drug release 

assessment by fluorescence measurement, [(Poly X/HA)a(AmP*/HA)b]n films were 

immersed in 1 mL of pre-warmed 37C phosphate buffered saline (PBS) in a tightly 

capped vial wrapped with aluminum foil to block out light.  Vials were kept in cell 

incubators to maintain 37C.  At pre-determined time periods, three samples of 0.100 mL 

release buffer would be withdrawn from the vial and transferred each into the well of a 

black 96-well plate and read in a fluorescence microplate reader (fmax, Molecular 

Devices, Sunnyvale, CA).  After reading, all buffer samples would be returned to the vial 

to maintain 1 mL of total release buffer.  For drug release assessment by BCA assay, a 

[(Poly X/HA)a(AmP/HA)b]n film was trimmed into smaller pieces and immersed in 0.5 



 241

mL of PBS 157 in an Eppendorf tube maintained at 37°C in a water bath.  A 0.150 mL 

sample was extracted at predetermined time points (every 1-5 minutes at the beginning, 

then gradually increasing the time intervals) and replaced with fresh 0.150 mL pre-

warmed PBS.  Aliquots of 0.150 mL release samples were stored at -20C until all 

samples were ready for BCA.  Each 0.150 mL sample was then diluted to 0.300 mL total, 

allowing for triplicate assessment at 0.100 mL each.  BCA assay was run according to 

manufacturer’s product insert, using the microplate method. 

 

Staphyloccocus aureus macrodilution assays.  All liquid assays were performed in 

cation-adjusted Mueller Hinton Broth II (CMHB).   Qualitative assays were performed 

following standard macrodilution methods as outlined by the National Committee on 

Clinical Laboratory Standards (NCCLS M26-A, 1999)244 with a challenge of 105 

CFU/mL.  For assays involving co-incubation with films deposited on silicon, 24-well 

plates were used, with 0.5 mL of liquid culture per well.  Briefly, each square-cut silicon 

substrate (1.0 cm x 1.0 cm), either bare or coated depending on the test group, was placed 

flat in the center of a well in a 24-well plate, polished side up.  Each well was then filled 

with 0.50 mL of S. aureus in exponential growth phase at 105 CFU/mL in CMHB, 

completely immersing the substrate.  Quantitative assays were done in 96-well plates 

with 150 μL of liquid culture per well, with 135 μL of test media and 15 μL of 

inoculation culture at 106 CFU/mL in CMHB.  All test media were sterile-filtered through 

0.2 µm membranes prior to use.  Estimated test media conditions take the 9:10 dilution 

into account.  For each set of assays, three wells were filled with culture fluid with no 

bacteria inoculated, while three negative controls were subject to the same bacterial 
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challenge without any substrate.   The plate was incubated at 37°C under gentle shaking 

for 16-18 hours.  Cell density was read at OD 600 nm in a BioTek® PowerWave™ XS 

Microplate Spectrophotometer with accompanying Gen5 program Version 1.00.14.  All 

treatments, whether direct infusion into culture or co-immersion of film substrates with 

the culture, were administered from the time of seeding to data observation.  Cultures 

were incubated at 37°C for 16-18 hours under gentle shaking before observation. 

 

MC3T3 toxicity assay through alamarBlue.  MC3T3-E1 Subclone 4 was maintained in 

minimum essential medium alpha medium supplemented with 10% fetal bovine serum, 

100 U/mL penicillin, and 100 mg/mL streptomycin.  Cells were split 1:15 every 3-4 days, 

with the medium refreshed in between.  Cells were examined under the microscope every 

1-2 days to assess confluence and morphology.  For the toxicity assays, cells were seeded 

at 104/mL in a 96-well plate at 150 μL per well.  Three wells were filled with 150 μL 

medium without cells as blank references.  Cells were monitored daily until they reach 

50% confluence, at which point the medium in each well was replaced with the test 

medium.  All test media were sterile-filtered through 0.2 µm membranes prior to use.  

Three wells were left untreated as negative controls.  Cells were incubated with the test 

media for the defined test period.  At the end of the test period, medium in each well was 

replaced with fresh untreated medium, and 15 μL of alamarBlue was added to each well.  

Cells were incubated at 37°C for 4 hours, examined visually for color change then read at 

570 nm and 600 nm by a microplate spectrophotometer.  Cell metabolic activity was 

computed from the spectrophotomeric readings based on manufacturer’s specifications. 
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7.3 Results and Discussion. 

Based on my previous work on the incorporation of positively-charged antibiotic 

gentamicin into polyelectrolyte multilayers245 (see Chapter 5), AmPs were incorporated 

through a similar multilayer heterostructure with specific architecture [(Poly 

X/HA)(AmP/HA)]n, in which Poly X  is a degradable poly(β-amino ester) and HA is 

hyaluronic acid.  Each repeat of (Poly X/HA)(GS/HA) constitutes a tetralayer.  Two 

degradable poly(β-amino esters) were studied: Poly 1 (Mn = 15.5k) and Poly 6 (Mn = 

16.7k), with structures shown in Figure 5.2.   

 

 

Figure 7.1 - Structures of Poly X used in this study.  

 

Choice of film architecture.  Proof-of-concept LbL films incorporating AmPs were 

constructed either with or without Poly X, with sodium alginate and hyaluronic acid as 

the polyanionic component.  RNAIII-inhibiting peptide (RIP) and Dermaseptin (Derm) 

were chosen as the AmP candidates as they were found to be synergistic in the killing of 

S. aureus and MRSA246.  I first verified the ability of AmPs to participate in a layer-by-

layer process by bilayering them with a polyanion.  LbL deposition was performed 

manually in small wells due to the small quantities of available AmPs. Visual inspections 

based on yellow hues of the fluorescently-labeled AmPs suggested that a smooth film 
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was building up over many deposition cycles, although no thickness or absorbance data 

were gathered for confirmation.  The films were subsequently exposed to 1x PBS at 37°C 

for release assessment, with measurement through fluorescent signal from the peptides’ 

FITC tags.  Despite the lack of hydrolytically degradable components within the film, 

releases of both RIP and Derm from the bilayer constructs were observed (see Figure 7.2 

and Figure 7.3).  The observed release likely resulted from the oligomeric character of the 

AmPs, which resulted in LbL films less stable than those constructed solely with 

polyelectrolytes.  Release dosage and rate were tunable based on number of deposited 

layers and choice of polyanion.   
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(a) 

 
(b) 

Figure 7.2 – Release of RNAIII-inhibiting peptide (RIP) from a bilayer construct with hyaluronic 
acid: (a) release curves zoomed in to the initial 0.5 day to compare the burst release profiles between 
the two types of films, and (b) overall release curves as assessed over 9 days. 

 

As Figure 7.2 shows, RIP release from a (RIP/HA)n construct can be sustained over 8 

days, with approximately 50% burst released within the first 1-2 hours.  Based on 

calibration from FITC-RIP standards, a total of 80 and 100 ug/cm2 of RIP was released 
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from n=20 and 40, respectively.  While this trend was not linear with the number of 

layers, it did indicate dosage tunability. 

 

A note of caution here is that I eventually found the FITC quantification method to be 

unreliable due to batch-to-batch variability in the FITC labeling density and general 

sensitivity of RF signals to experimental conditions.  Hence, all the release dosages 

reported under fluorescence detection should be taken with a grain of salt.  This will be 

further discussed later in this chapter. 

 

For Dermaseptin, I examined the effect of polyanion choice on film release properties.  

(Derm/Polyanion)10 films were constructed using alginic acid (Alg) and hyaluronic acid 

(HA)  as the polyanions.  As Figure 7.3 indicates, a (Derm/Alg)10 film was able to 

incorporate significantly more Dermaseptin than a (Derm/HA)10 film (35 vs. 10 ug/cm2), 

though a more pronounced burst behavior was observed for the former.  Both types of 

films were able to sustain the release of Dermaseptin over 3 days, with (Derm/Alg)10 

displaying a two-phase release curve characterized by a rapid 50% release within the first 

2.5 hours followed by a slow-release regime over the subsequent 3 days.   
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(a) 

 
(b) 

 

Figure 7.3 - Release of Dermaseptin (Derm) from a bilayer construct with alginate and hyaluronic 
acid/ 

(left) release curves zoomed in to the first day to compare the burst release profiles between the two 
types of films, and (right) overall release curves as assessed over 3 days. 

 

Hyaluronic acid (HA) was subsequently chosen as the polyanion due to separate 

experiments demonstrating that alginic acid in combination with Poly X could have 
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independent antimicrobial activities.  Additional experiments focused on Dermaseptin 

due to its ready availability from the Stephanopoulos group.   

 

While the bilayered films gave sustained, dosage-tunable release of RIP and Derm, I 

wanted to examine films incorporating Poly X to allow for an additioal degree of release 

control based on Poly X chemistry.  Hence, [(Poly X/HA)(AmP/HA)]n were constructed, 

similar to those for gentamicin incorporation.  Releases of Dermaseptin from 

(Derm/HA)50 and [(Poly 1/HA)(Derm/HA)]50 are shown in Figure 7.4.   
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(a) 

 
(b) 

Figure 7.4 - Release of Dermaseptin (Derm) from a 50-bilayer versus 50-tetralayer constructs with 
Poly 1 and hyaluronic acid. 

(a) release curves zoomed in to the first day to compare the burst release profiles between the two 
types of films, and (b) overall release curves as assessed over 10 days. 

 

The tetralayer construct resulted in more sustained release of Dermaseptin.  While 50% 

total release of Dermaseptin was achieved within 2-4 hours for both types of films, the 
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tetralayers were able to sustain the slow regime for 8 days as compared to 3 days of the 

bilayers.  Overall, the tetralayered architecture displayed more desirable release 

properties, and given its additional degree of control through choice of Poly X, it was a  

more appropriate construct to pursue further. 

 
Evaluation of different Poly X’s in tetralayer structure.  To demonstrate control over 

AmP release rate through the choice of Poly X, tetralayered films formulated with 

different Poly 1 vs. Poly 6 (see Figure 5.2) were compared.  Dermaseptin was used in this 

study, along with Melittin which had a higher activity against S. aureus.  Figure 5.3 

shows the growth curves of [(Poly 1/HA)(Mel/HA)]n, [(Poly 1/HA)(Derm/HA)]n, and 

[(Poly 6/HA)(Derm/HA)]n.    Thicknesses were measured by ellipsometry, and error bars 

represent standard deviations among multiple sampling locations on each substrate.  Data 

range was limited to the early regime at lower n, where films were sufficiently thin and 

transparent for measurement by ellipsometry.   

 
Figure 7.5 - Growth Curves for [(Poly X/HA)(AmP/HA)]n at the early regime with various Poly Xs 
and AmPs. 
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The growth curves suggest that [(Poly X/HA)(AmP/HA)]n generally grew in a linear 

fashion.  This indicates that there was not as much “in and out” diffusion of film 

components as compared to gentamicin films (see Chapter 5).  The higher linearity of 

[(Poly X/HA)(AmP/HA)]n in comparison to [(Poly X/HA)(GS/HA)]n was expected, as 

AmPs are much larger than gentamicin and hence less likely to diffuse.   

 

For Dermaseptin, a Poly 6 film was found to grow faster than a Poly 1 counterpart, which 

might arise from Poly 6’s higher hydrophobicity that resulted in thicker and loopier films.  

For Poly 1-based films, a Melittin construct grew faster than the Dermaseptin 

counterpart.  This could be due to Melittin’s higher MW and lower charge density: 

Melittin was double the length of Dermaseptin (27 amino acids as compared to 

Dermaseptin’s 13) and at the same time only has 5 positively charged residues (counting 

Lysine (K) and Arginine (R)) as compared to 4 for Dermaseptin, yielding a sequence 

charge density of 18% for Melittin as compared to Dermaseptin’s 31%.  Hence, higher 

hydrophobicity on either the Poly X or AmP component was found to result in thicker 

films. 

 

Release of Dermaseptin from [(Poly X/HA)(Derm/HA)]20 films was assessed at both 

25°C and 37°C.  The resulting release profiles are plotted in Figure 7.6.  For both types of 

films, releases at 37°C were expectedly faster than those at 25°C, although the difference 

was much more pronounced for Poly 6 films.  For Poly 1, there was essentially no 

difference between the two temperatures especially in consideration of the error bars.  A 

possible explanation for the observed differences in temperature dependence was that 
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Poly 6’s hydrophobicity effectively discouraged approach by water molecules to attack 

its ester bonds, whereas Poly 1 was not hydrophobic enough to deter rapid seepage of 

water molecules into its films.  Hence, the kinetic enhancement by temperature elevation 

would be more noticeable for a Poly 6 film.  The hydrophobic effect could also explain 

the more sustained releases seen from Poly 6 films. 

 
Figure 7.6 – Cumulative release of Dermaseptin from [(Poly X/HA)(Derm/HA)]n films formulated with 
various Poly Xs, each assessed at both room temperature (25°C) and physiological temperature (37°C). 

 

Strangely, subsequent experiments could not reproduce the release profiles of [(Poly 

6/HA)(Derm/HA)]20 films as those in Figure 7.6.  Instead, release from a Poly 6 film was 

repeatedly found to follow that of Figure 5.5, with a much more pronounced burst.  

Consequently, subsequent studies were focused on films formulated with Poly 1, which 

were found to yield more reproducible results. 
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Figure 7.7 – Cumulative Dermaseptin release from 20-tetralayer films made with different Poly X's.   

 

AmP quantification by BCA.  All experiments up to this point were performed with 

fluorescence assessment of AmP quantity.  However, significant deviations in release 

quantities from identical films made with different batches of FITC-Dermaseptin (as 

made by the MIT Biopolymers Lab) were observed.  In addition, the RF signals could 

fluctuate from one measurement to another due to their sensitivity to ambient light 

(despite careful controls in foil wrapping and keeping the room dark) and possible decay 

over time.  I suspected that the FTIC labeling density varied from batch to batch, and 

made a simultaneous comparison of calibration curves constructed from different batches 

of FTIC-Dermaseptin.  As Figure 7.8 suggests, the labeling density varied by as much as 

50% between three randomly chosen batches, and could vary by a higher percentage 

between the two most disparate batches on hand.  

 



 254

 
Figure 7.8 – Calibration of RF signals from FTIC-Derm samples synthesized in different batches. 

 

The high variability in FITC labeling density would require that a new calibration be 

constructed for every batch of Dermaseptin received, involving significant time and 

money expenditure, especially given the fact that only 1-2 g could be made per batch.  In 

addition, I found that the FITC labels were not very stable over time (see Figure 7.9), 

despite several attempts at improved tag selection by the synthesis lab.  Hence, I decided 

that a new AmP quantification protocol needed to be defined. 

 

Figure 7.9 – Evolution of RF signal from FTIC-Derm standards at 20 ug/mL. 
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A promising method was the BCA (bicinchoninic acid) protein assay, an assay based on 

the reduction of Cu2+ to Cu1+ by protein in an alkaline medium followed by colorimetric 

detection of Cu1+ by bicinchoninic acid.  It is a common method for quantifying proteins 

and peptides, and was already used extensively by Mara Macdonald.  To verify the 

feasibility of using the BCA assay to measure AmP concentrations, I constructed a 

calibration curve using the fluorescently labeled Dermapsetin on hand, and found a 

decent linear trend (see Figure 7.10). 

 

Figure 7.10 – BCA calibration curve for FITC-Derm. 

  

BCA calibrations for both Dermaeptin and Melittin were then constructed, and releases 

of both AmPs from [(Poly 1/HA)(AmP/HA)]100 films were assessed by BCA.  Thicker 

films were used to ensure adequate BCA signal for accuracy.  As Figure 7.11 shows, 

BCA assessment yielded similar release profiles as those produced through fluorescence 

quantification.  However, the dosages were markedly lower under BCA measurements.  

For example, [(Poly 1/HA)(Dermaseptin/HA)]50 under fluorescence assessment gave 250 

ug/cm2 (see Figure 7.4), whereas a 100-tetralayer film assessed by BCA gave 150 
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ug/cm2.  The fluorescence data was thought to be less accurate due to its batch-to-batch 

variability and lack of stability.  As seen in Figure 7.6 and Figure 5.5, a 20-tetralayer film 

only released 2.5 ug/cm2 of Dermaseptin under fluorescence detection, which again 

might be an inaccurate figure due to the method of quantification. 

 

 
Figure 7.11 - Cumulative Dermaseptin and Melittin releases from (Poly 1/HA)(AmP/HA)]100.  
Release assessment was based on BCA rather than FITC signal. 

 

Construction at a milder pH.  All experiments thus far were conducted on films made 

with AmP dipping solution at pH 3.0; the low pH was meant to maximize protonation of 

the AmPs to facility LbL deposition.  However, such low pH values may both disrupt 

AmP activity and cause acid hydrolysis of Poly X.  Hence, the dipping condition was 

modified to straight 0.1M sodium acetate without any pH adjustment (~pH 5.1).  Growth 

curves for [(Poly 1/HA)(Derm/HA)]n under the both pH conditions are compared in 

Figure 7.12. 
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Figure 7.12 - Growth curves of [(Poly 1/HA)(Derm/HA)]n at different pHs. 
 

[(Poly 1/HA)(Derm/HA)]n constructed at pH 5.1 gave similar thicknesses as one at pH 3 

in the range examined.  However, deposition at pH 5.1 gave somewhat thinner films with 

a less linear growth trend, suggesting that Dermaseptin may diffuse more easily when it 

was less protonated.  The decreased charge density at pH 5.1 may result in less ionic 

crosslinking that led to greater freedom of AmP interdiffusion within the film matrix.  

Overall, deposition at the milder pH appeared feasible, so additional experiments were 

performed with AmP dipping solutions in 0.1M sodium acetate without pH adjustment. 

 

Co-release with bFGF.  It was previously found that a film composed of [(Poly 

X/heparin)(protein/heparin)]n (where “protein” can be any positively-charged protein, e.g. 

lysozyme, bFGF) followed by [(Poly X/HA)(gentamicin/HA)]m on top can released 

gentamicin in a much more sustained fashion that a stand-alone [(Poly 

X/HA)(gentamicin/HA)]m film (see Chapter 6).  A similar effect could occur for AmP 

film constructs.  Hence, in collaboration with Mara Macdonald, I constructed 

combination drug films composed of [(Poly 2/heparin)(bFGF/heparin)]n + [(Poly 
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X/HA)(Dermaseptin/HA)]m.   The resulting Dermaseptin release is shown in Figure 7.13, 

in which the (a) and (b) parts exhibit the same set of data displayed on different time 

scales.  As plots show, the [(Poly 2/heparin)(bFGF/heparin)]n underlayers could indeed 

extend the release of Dermaseptin from 4 days (see Figure 7.11) to about 2 weeks.   In 

addition, the dosage of Dermaseptin was noticeably increased from 150 ug/cm2 to 325 

ug/cm2.  This increase was most likely due to the diffusion of Dermapsetin into the bFGF 

underlayer, a similar effect as that observed for gentamicin films (see Chapter 6).  

 
(a) 

 
(b) 

Figure 7.13 – Release of Dermaseptin from [(Poly 2/Hep)(FGF/Hep)]20 + [(Poly 1/HA)(Derm/HA)]100.  

(a) release curve zoomed in to the first day, and (b) overall release curve as assessed over 20 days. 
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A significant amount of burst release was observed in the first hour.  As part (a) shows, 

about 50% of the total release (325 μg/cm2 total) occurred within the first 2.5 hours.  

However, the remaining 50% was released in a steady, pseudo-linear fashion over the 

subsequent 2 weeks.  This release profile may be particularly suitable for remedial 

treatment of device infections.  These complications generally need an immediate burst 

release of a large dose of antibiotics to kill the infection in place, followed by a sustained, 

lower dose release to ensure complete eradication.  Hence, the profile achieved a protein 

co-release film would be appropriate for such needs. 

 

Ponericin encapsulation and release.  Recent efforts on AmP encapsulation shifted 

towards the AmP Ponericin G1, which as stated in the Introduction is particularly active 

against S. aureus and a variety of other gram-positive and gram-negative 

microorganisms, with potentially higher biocompatibility given its low hemolytic 

activity.  Preliminary assessments on Ponericin release are shown in Figure 7.15. 

 

 
Figure 7.14 – BCA calibration curve for Ponericin.  
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(a) 

 
(b) 

Figure 7.15 - Release of Ponericin (Pon) from [(Poly 1/HA)(Pon/HA)]25. 

(a) release curve zoomed in to the first 2days to display the 80% release profile, and (b) overall 
release curve as assessed over 13 days. 

 

Ponericin-incorporating films are currently under active pursuit by Anita Shukla and 

Tanguy Chau, and further data will become available on this system. 

 

Activity of polymer co-excipients towards S. aureus.  To investigate whether the 

structural components to the film, i.e. Poly X and the polyanion, could have independent 

effects on S. aureus proliferation, I ran several assays with direct administrations of 
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single and combinations of polymers to exponentially-growing S. aureus cultures and 

observed their proliferation in comparison to negative controls.  These assays were 

similar to the Poly 1 + HA assessment performed for gentamicin in Chapter 5, but the 

present study was more extensive with Poly 2, heparin, and chondroitin sulfate added.  

Polymers were administered at various increments of charge ratios to the model AmP 

Ponericin.  For example, a “1x” concentration of Poly 1 was a concentration necessary to 

have a 1:1 charge ratio with Ponericin at its MIC of 4 μg/mL.  Hence, for each polymer 

species, the 1x value would represent a different level of absolute concentration in 

μg/mL, depending its charge density.  The effects of various levels and combinations of 

polymer treatments on S. aureus proliferation are shown in Figure 7.16.  Note that in part 

(b), a polycation + polyanion pair at 1x concentration would mean that each of the two 

polymers was administered at 1x charge ratio, and hence the overall polymer content of 

the culture was essentially 2x.   
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(a) 

 
(b) 

Figure 7.16 – Activity of various levels and combinations of polymers on proliferation of S. aureus, 
normalized to negative controls. 

(a) single polymers at various concentrations, (b) combinations of polycations and polyanions at 
various concentrations.  HA stands for hyaluronic acid, and CS stands for chondroitin sulfate, 
another model biocompatible polyanion. 

 

Poly 1 appeared to have little effect on S. aureus even at 8x charge ratio to Ponericin, 

while the other three polymers (Poly 2, HA, and chondroitin sulfate (CS)) may have some 

effect especially at higher concentrations.  Among the polymer pairs, Poly 1 + HA was 

least inhibitory to S. aureus proliferation, while most of the other combinations resulted 

in 10-40% reduction in S. aureus density over the range of 1-8x concentrations.  Hence, 

for in vitro assessment purposes, Poly 1 and HA appeared to be the best polymer pair 
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among those examined, as they would not complicate the interpretation of antimicrobial 

activity from the films.  For application purposes, however, the potential antimicrobial 

effects of other polymer pairs could be beneficial, assuming that they do not interfere 

with the AmP’s activity.  The potential inhibitory effect of film co-excipients on AmP 

activity was subsequently investigated. 

 

Effect of polymer co-excipients on AmP activity.  Ponericin G1 continued serving as 

the model AmP.  For investigation into the potential inhibitory effect of polymers on 

AmP activity, various charge ratios of single and combinations of polymers were co-

administered with Ponericin at ~2x MIC (9 μg/mL).  The results are shown in Figure 

7.17. 

 

 
(a) 
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(b) 

Figure 7.17 – Effect of various levels and combinations of polymers on activity of Ponericin at 2x MIC 
towards S. aureus, normalized to positive and negative controls:  

(a) single polymers at various concentrations, (b) combinations of polycations and polyanions at various 
concentrations.  HA stands for hyaluronic acid, and CS stands for chondroitin sulfate. 

 

The data showed that heparin had a striking inhibitory effect on Ponericin activity.  Even 

at 0.5x charge ratio to Ponericin, heparin essentially took away all of Ponericin’s 

antimicrobial activity, with the resulting S. aureus culture proliferating to 70% of the 

negative control.  As a consequence, any polymer pair containing heparin was also 

inhibitory, though the effect appeared to be attenuated by the presence of the polycation 

possibly due to the removal of heparin through complexation.   

 

The mechanism of heparin’s inhibitory activity was unknown.  Heparin could either 

interact directly with Ponericin to interfere with the latter’s binding and penetration into 

S. aureus membranes, or it could interact with S. aureus and somehow “toughen” the 

microorganism against Ponericin.  In either case, heparin was clearly not a good 
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candidate for LbL films for AmP delivery.  While HA by itself showed a slight amount of 

inhibitory effect, its combinations with Poly 1 and Poly 2 was non-interfering. 

 

Antimicrobial activity of Ponericin as released from LbL assemblies.  In vitro activity 

of Ponericin, both in dipping solution and as released from films, were assessed against S. 

aureus.  Serial dilutions of free Ponericin in 0.1M sodium acetate and elution buffers 

from [(Poly 1/HA)(Pon/HA)]100 films were administered to S. aureus cultures under 

standard macrodilution protocol.  The results are shown in Figure 7.18. 

 
(a) 

 
(b) 

Figure 7.18 – Activity of Ponericin against S. aureus proliferation as administered in two forms. 

(a) in a free solution of 0.1M sodium acetate, mimicking dipping solution condition, (b) from an elution 
buffer of [(Poly 1/HA)(Pon/HA)]100. 
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As suggested by Figure 7.18, a concentration of ~11-22 μg/mL of both dipping solution 

or film-released Ponericin was needed to inhibit S. aureus proliferation.  This range was 

higher than the reported MIC of 4-8 μg/mL for free Ponericin.  Given the similarity of 

results between dipping solution and film-released Ponericin, the most likely explanation 

for the higher MIC was that the 0.1M sodium acetate dipping condition was sufficiently 

harsh to remove some of the Ponericin activity.  However, once incorporated into the 

film, the active fraction retained its activity, and the co-excipients Poly 1 and HA did not 

appear to interfere with Ponericin action (echoing results from Figure 7.17).  Hence, a 

necessary investigation on this project would be to optimize the dipping protocol preserve 

AmP activity while maintaining Poly 1 integrity and film build-up. 

 

Compatibility of AmPs towards MC3T3.  MC3T3, a murine pre-osteoblast, served as 

the model mammalian cell line for biocompatibility assessment due to previous 

experience from gentamicin studies (see Chapters 5 and 6).  Compatibility was 

interpreted from the level of metabolic activity of the cell cultures.  Various dilutions of 

Melittin, Cecropin-A-Melittin, and Ponericin were administered to MC3T3 cultures over 

periods of 2-4 days.  The results are shown in Figure 7.19.   
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(a) 

 
(b) 

 
(c) 

 
Figure 7.19 - Effect of various AmP treatments on MC3T3 metabolic activity level at various 
concentrations: (a) Melittin, (b) Cecropin-A-Melittin, and (c) Ponericin. 
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For the three AmPs, toxicity towards MC3T3 over a 2-day treatment appeared in the 

ranges of 63-125 μg/mL for Melittin and 8-16 μg/mL for Cecropin-A-Melittin and 

Ponericin.  Over 4 days, the compatibility limit lowered to beneath 4 μg/mL for Melittin 

(lowest dilution tested).  For Cecropin-A-Melittin and Ponericin, the MC3T3 cells 

appeared to recover a little and displayed sufficient metabolic activity up to 16-32 

μg/mL.  In comparison, the HC50 values, or the maximum concentration at which < 50% 

of human red blood cells were hemolysed over a 1-hr treatment period, were 8, 64, and > 

512 μg/mL for Melittin, Cecropin-A-Melittin, and Ponericin, respectively (data from 

Tanguy Chau).  There appeared to be a slight correlation between HC50 values and 4-day 

treatments on MC3T3, although more assessments towards additional mammalian cell 

lines are needed, especially on system relevant to the applications identified for AmP-

release films, e.g. wound dressing.  Given the data so far, the biocompatibility of AmPs 

could be a concern, as the toxicity limits were close to or even lower than the 

concentrations necessary for AmP action against S. aureus. 

 

7.4 Conclusion. 

Hydrolytically degradable LbL assemblies for encapsulation and release of antimicrobial 

peptides (AmPs) were successfully constructed using the familiar heterostructure, [(Poly 

X/HA)(AmP/HA)]n, that was used for gentamicin incorporation.  High dosage and multi-

day release were achieved for several AmPs of various lengths and charge densities.  

Release rate could be tuned by the choice of Poly X and the use of [(Poly 

X/heparin)(protein/heparin)]n underlayers.  The films were found to be in vitro active 
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against the proliferation of S. aureus.  Compatibility towards mammalian cells needs 

further assessment. 

 

In the course of this study, several critical findings were made regarding the design of 

AmP films.  Heparin was found to be highly inhibitory on Ponericin’s in vitro activity 

against S. aureus, highlighting the importance in selecting appropriate polymers as 

“inactive” co-excipients of the film.  In addition, the standard LbL dipping solution, 0.1M 

sodium acetate, was found to have a mild effect on AmP activity as well, indicating the 

need to define a new dipping protocol.  Difficulties encountered in batch-to-batch 

variability in custom-synthesized AmPs and instability of their fluorescent tags pointed 

out the need to develop a reproducible quantification method for any new therapeutic 

before extensive film release studies could be undertaken. 

 

Future investigations will focus on one or two specific AmPs, to be selected based on 

their activity against S. aureus and other device-related microorganisms, and on their 

compatibility towards mammalian cells through hemolysis and other toxicity 

assessments.  In particular, Ponericin G1 is an attractive candidate due to its low MIC 

against S. aureus and low hemolytic action on human erythrocytes.  Specific applications 

for AmP-releasing films will be defined so that the appropriate toxicity assays can be 

established.  UV-vis detection will be developed to quantify the amount of Ponericin 

encapsulation and release, and will be used in supplement or substitute to the BCA assay. 
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Chapter 8.  In vivo evaluation: design and development of 
model 

 

8.1 Introduction. 

Given positive in vitro data on efficacy against S. aureus and nontoxicity towards 

MC3T3, we believed that in vivo evaluation should be initiated to advance the 

development of [(Poly 1/HA)(GS/HA)]n coatings towards device infection controls.  The 

objective of the in vivo study is to evaluate the safety and efficacy of the gentamicin 

coatings in treating a clinically relevant osteomyelitis model.   

 

Osteomyelitis can be broadly classified into two types: acute and chronic.  Acute 

osteomyelitis is commonly associated with bone fraction as introduced during a joint 

replacement procedure and typically manifest itself within 1-4 weeks after surgery247.  If 

left untreated, the osteomyelitis may evolve into a chronic one, resulting in sequestra 

(necrotic bone tissues) and formation of involucrum (new bone) around the infected site.   

 

The first step in planning an in vivo study is selection of the animal model, since most 

other design parameters hinge upon this choice.  Under Drs. Hu-Ping Hsu’s and Myron 

Spector’s advice, we chose rabbits as our pilot model as they constituted the smallest 

system available without causing difficulty in manipulating the bones.  If we were to 

observe positive results in rabbits, we would then further our study in goats, which is one 

of the most accurate animal models in mimicking human bone physiology248-250. 

 



 273

After the decision was made on a rabbit model, I surveyed the literature on rabbit 

osteomyelitis models and found two distinct types: one-step versus two-step procedures.  

In a one-step procedure, the bacteria inoculum was introduced at the same time as the test 

material, e.g. control or antimicrobial material, and animals were sacrificed after a 

defined time period for comparison between different test groups.  In a two-step 

procedure, the bacteria inoculum was introduced in a first procedure, usually along with 

an implant mimic, e.g. a cement rod, that simulates the presence of a foreign material.  

The infection was allowed to develop for a certain amount of time, after which a second 

procedure was performed to insert the test substrate.  While there was consensus that a 

two-step procedure resulted in a more realistic model for chronic osteomyelitis, there was 

debate as to whether a one-step or two-step would be a better model for acute implant-

related osteomyelitis.  A summary of example models from the literature, specific to 

rabbits, demonstrates the variation in number of procedures, infection site, bacteria 

burden, and incubation periods: 

  

 ONE STEP: 

 

Alt et al.141 evaluated their gentamicin-coated steel K-wires through a one-step 

procedure.   Osteomyelitis induction and wire insertion were performed in a 

single procedure in the intramedullary cavity, in which the tibial tuberosity was 

perforated and 2 mm-diameter K-wire was driven through the cavity to the distal 

part of the intramedullary canal.  20 μL of S. aureus with 107 total CFUs was then 

injected into the midshaft area of the canal.  Simultaneous osteomyelitis 
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development and wire treatment proceeded for four weeks, and an infection rate 

of 88% (7 of 8 animals) was observed for the uncoated K-wire.  In all infected 

animals there was approximately 5×108 CFUs/g bone as determined by 

microbiological evaluation 

 

Gursel et al.251 used a one-step procedure with osteomyelitis created in an 

intramedullary aperture in the proximal cortex of the right tibia of albino rabbits 

(1.5-3kg).  An aperture 1.0 cm long was created in the proximal cortex of the right 

tibia, and stainless steel rods were implanted into the intramedullary area through 

this aperture.  0.5 mL of S. aureus inoculum (hemolytic strain obtained from a 

chronic osteomyelitis patient) at 5×106 CFU/mL (2.5×106 CFU total) was 

introduced into the medullar cavity at the same time.  Osteomyelitis was 

incubated for three weeks, and subsequent treatment by antibiotic-loaded rods 

was allowed to run for six weeks.  The authors noted that among fifty-five 

animals, five died due to pathological fracture at infection site (1) or diarrhea (4). 

 

Craig et al.252 used a one-step procedure with osteomyelitis created in the lateral 

femoral condyle in NZW rabbits, 4.2 kg on average.  Notably, methicillin-

resistant S. aureus (MRSA, clinical isolate) was used to induce osteomyelitis, and 

each rabbit received two defects, one on each leg.  Defects 4 mm in diameter were 

drilled transversely into the lateral femoral condyle, anterior to the LCL. This 

resulted in an intra-articular defect in the nonweightbearing, non-articulating 

aspect of the lateral femoral condyle.  Approximately 0.1 mL of bone cement was 
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injected into each defect, followed by insertion of a stainless-steel cannulated 

screw (4.0 mm diameter x 15  mm long) and UHMWPE washer.  The defect site 

was then injected with 100 μL of either saline or inoculum.  One group of animals 

received sterile saline in one knee and 104 CFUs of MRSA in the contralateral 

knee. A second group of animals received 102 CFU MRSA in one knee and 

103 CFU MRSA in the contralateral knee.  Osteomyelitis was developed for seven 

days. 

 

Darouiche et al.253 used a one-step procedure in which infection was induced in a 

tibia fracture model in NZW rabbits (4-5 kg).  The tibia fracture was made 0.5 cm 

distal with a fracture-fixation nail in the intramedullary canal. 0.1 mL of S. aureus 

Newman254 at 107 CFU/mL (106 CFU total) was then injected into the 

intramedullary canal adjacent to the fracture-fixation device.  Infection was 

allowed to develop for six weeks. 

 

TWO STEP: 

 

Nelson et al.255 employed a two-step procedure with osteomyelitis created in the 

radius (bone of the forearm that extends from the outside of the limb to the 

phlangx (lateral) of the elbow to the thumb side of the wrist).  A 1 cm segment of 

the radius was removed and injected with 10 μL of suspended Staphylococcus 

aureus (ATCC 49230) at 106 CFUs total.  The segment was then replaced, the 

osteomyelitis was allowed to develop for four weeks.   In the second procedure, 
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the infection site was debrided, and tobramycin-loaded pellets were placed in the 

defect.  The treatment proceeded for four weeks prior to sacrifice. 

 

Nijhof et al.256 used a two-step procedure with osteomyelitis created in the 

medullary canal of the tibia of NZW rabbits, 3-3.5 kg.  The medullary canal was 

reamed with drills and fraises up to a length of at least 25 mm and a width of 3.9 

mm, and 0.1 mL of S. aureus inoculums at a dose of either 105 CFU was injected 

into the tibial canal prior to press-fitting the implant (preformed cement on a 

central metal wire, 25 mm in length, 3.9 mm in diameter).  After four weeks of 

osteomyelitis development, the site was debrided, rinsed, and filled with test 

material.  Treatment was allowed to proceed for two weeks.  The authors noted 

that inoculation at 106 CFU caused too many incidences of sepsis and 

subsequently reduced the burden down to 105 CFU. 

 

Koort et al.257 claimed to establish a stage IIIA osteomyelitis in the medullary 

cavity of NZW rabbits (2.5-3.5 kg) using a two-step procedure.  A cortical bone 

window (6 x 2.7 mm) was drilled into the proximal medial metaphysis of the right 

tibia, and a defect created in the medullary cavity was filled with a small block of 

polymerized bone cement.  The periosteal and fascial layers were closed first prior 

to injection of 0.1 mL of S. aureus (strain 52/52A/80) at 105 CFU/mL (104 CFU 

total) was injected into the medullary space surrounding the bone cement.  

Infection was allowed to develop for 2 weeks, after which the animals had the 
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infected medullary space was filled with a composite with or without antibiotic.  

Treatment proceeded for six weeks. 

 

Some observations from the literature were: 

 Intramedullary canal of the tibia appeared to be the most common model site, 

though other locations such as the lateral femoral condyle or radial canal were 

also used.   

 Bacteria burden varied between 103-107 CFU, with a typical injection volume of 

0.1 mL.   

 Osteomyelitis was allowed to develop between 3-6 weeks, with the exception of 

Craig et al.’s at one week.   

 In two-step models, treatment during the second stage varied between two to six 

weeks. 

 

Based on Dr. Larry Madoff’s input, we chose the two-step model as it was thought to be 

a more accurate model of treating clinical osteomyelitis that resulted from orthopedic 

implants.  Craig et al.252’s procedure was adopted for our first stage, with a modification 

to create osteomyelitis in the medial femoral condyle rather than lateral.  The femoral 

condyle site was chosen over the intramedullary cavity model for the ease of operation.  

We wanted to keep our pilot study at a low bacteria burden to minimize distress to the 

animal and not over-challenge the antimicrobial coating to be tested.  Hence, we selected 

a 104 CFU total burden with a three-week infection development, followed by a two-

week treatment period.   
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8.2 Materials and Methods 

Materials.  All medications, including Ketamine, Xylazine, Buprenex, Meloxicam, and 

Fentanyl, and standard anesthesia supplies such as syringes, catheters, endotrachael tube, 

and sterilizing agents, were supplied by the E25 animal facility.  Surgical supplies such as 

drill, saw, blades, scalpels, scissors, and clips, were supplied by Dr. Hu-Ping Hsu.  Bio-

Gide® was purchased from Luitpold Pharmaceuticals, Inc, (Shirley, NY).  Small bone 

cement rods were made by Dr. Hsu via extrusion using Palacos® by Zimmer (Warsaw, 

IN), while PMMA rods were custom made by the MIT Machine Shop.  New Zealand 

White rabbits (male, 2-3 kg, generally 3 months old) were ordered from Covance 

(Princeton, NJ) and allowed to acclimatize for at least one week at the facility before any 

procedure was performed. 

 

General logistics.  All procedures, including animal housing, pre-surgical care, surgical 

preparation, surgery, radiography, post-surgical care, and tissue harvest, were performed 

in the E25 facility under supervision of veterinarian Dr. Alison Hayward and veterinary 

technicians Katie Madden, Chris Autieri, and Sylvia Lesnikowski.  All surgeries, survival 

or sacrifice, were performed in operation room 1 which was approved for BL2 materials, 

by Dr. Hu-Ping Hsu.  Preparations of S. aureus samples, including liquid inoculums and 

colonized PMMA rods, were done at the BL2 culture facility at the ISN.  Microbiological 

evaluations of harvested tissues were done by the diagnostic lab in MIT Department of 

Comparative Medicine.  For histological evaluations, the tissue fixing and bone 

decalcification were done at the Veterans Affairs (VA) Hospital in Jamaica Plain, while 

slicing, staining, and slide preparation were done at both VA and MIT diagnostic lab. 
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Surgical methods.  Please refer to Table 8 for a summary of operating parameters 

specific to each animal, e.g. defect size, bacteria burden, sealing procedure, and timeline.  

Complete surgical protocol is included in Appendix B and summarized below. 

 

Anesthesia was induced by subcutaneous (SC) doses of  35 mg/kg ketamine and  5 mg/kg 

xylazine,.  The left thigh and leg of the rabbit were shaved, and each lower extremity will 

be prepared with several 7.5% Povidone Iodine scrubs and final 70% alcohol rinse. 

Anesthesia was maintained using 1-3% isoflurane gas with oxygen at 1–1.5 L/min 

through an endotrachael tube.   Endotracheal tubes were lubcricated with Xylocaine 

ViscousR solution prior to insertion.  Throughout each procedure, animal’s heart rate, 

respiratory rate, and oxygen level were monitored and recorded every 5 min.  Lactated 

Ringer’s solution was administered through a catheter inserted into a cephalic vein, at an 

intial rate of 10 mL/kg-hr then tapered according to observed hemodynamic parameters.   

The left lower extremity of each animal was draped with sterile adhesive surgical drapes.  

All surgical procedures were performed under sterile conditions.   To minimize 

variability and ensure a standardized surgical procedure, all operations were performed 

by Dr. Hu-Ping Hsu.  A straight medial side incision, approximately 3.5-4.0 cm, was 

made, the midpoint of which was centered to the knee joint line.  The skin and soft tissue 

were dissected to the deep investing fascia.  A small longitudinal incision was made at 

the front portion of the superior attachment of MCL, approximately 10 mm above a 

branch of popliteal artery, to release the periosteum to exposue the medial femoral 

condylar surface.  Using a sterile drill bit, a defect of specified dimensions was drilled at 
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the level of the posterior portion of the anterior edge of medial femur about 10 mm.  The 

entire surgical procedure was kept wet by sterile saline sponges, and irrigation was used 

and maintained during the drills. 

After saline joint lavage and hemostasis, the defect was either injected with a liquid live 

inoculum of Staphylococcus aureus at a specified CFU/mL and volume or press-fit with a 

colonized PMMA (poly(methyl methacrylate) rod (2.8mm diameter and 8.5mm length, 

with a 3.0mm diameter cap at the top to seal the defect), prepared by immersing sterilized 

rods in a 106 CFU/mL exponentially-growing culture of S. aureus overnight.  In the case 

of liquid inoculums, a sterile PMMA rod (1.5 mm diameter and 6.5 mm length) was 

loosely inserted into the defect after bacteria injection.  The defect site might be further 

sealed with bone wax and a bioresorbable membrane if specified by the protocol.   The 

surgical site was closed in layers using 3-0 interrupted sutures for the investing fascia, 3-

0 sutures for the superficial fascia and subcutaneous tissue, followed by reapproximation 

of the skin with a subcuticular stitch using a non-absorbable 3-0 monofilament nylon 

suture.  

Postoperatively, AP and lateral radiographs were taken on each animal’s surgical site, at 

a setting of 56 kV and 3.2 mA s s−1.  Each animal was monitored closely until full 

recovery from anesthesia was observed.  Once in their individual cages, each animal was 

allowed free access to water and antibiotic-free food. Animals were monitored daily for 

food intake, stool and urine output, body temperature and behavior.  

After a specified time period, rabbits designated for osteomyelitis evaluation were 

sacrified.  7-10 cc of blood was drawn from the heart after anesthesia but prior to 
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euthanasia, and stored in Vacutainers for CBC and microbiological evaluation.  Under 

sterile conditions, the skin of each knee was sharply incised and the joint capsule 

exposed. Fluid was aspirated from each knee joint. The joint capsule was sharply incised, 

and biopsies from the joint capsule and synovial tissue and fluid surrounding the rod were 

obtained. The medial femur was cut out and split in half along the implant site, each 

stored sterilely, one for microbiological evaluation and another for histology in 10% 

formaline.  The implant was retrieved after bone splitting and stored sterilely for 

microbiological assay.  All harvested tissues were placed in 1 mL of sterile freeze 

medium and sample tare weights were determined. Each rod was sonicated for 30 min in 

a 4 °C water bath to detach bacteria.  Tissue samples were homogenized under sterile 

conditions using a Polytron generator (Brinkman Instruments Inc., Westbury, NY) in a 

BL2 hood.  Each homogenate was kept at 4 °C before and after homogenization.  All 

tissue processing was performed in instruments approved for BL2 bacteria use and 

confined within a BL2 hood if possible.  Any sample to be taken out of the BL2 hood 

was tightly sealed in a leak-proof containing device.   

Animals designated for implant evaluation received a second survival surgery after a 

specified period of recovery and osteomyelitis development.  Radiographs of the left 

femurs were taken prior to the second survival surgery, and the surgical sites of the 

animals were reopened, following the same sterile surgical procedure and monitoring 

regimen as described above, and treated with focal debridement followed by saline 

lavage.  The PMMA rod (either sterile or colonized versions) were retrieved and stored 

sterilely in a vial for microbiological assay.  The appropriate implant, according to the 

test group assignment, was press-fit into the defect .  After hemostatsis and saline lavage, 
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the wound was closed in layers using the same procedure as described above.  AP and 

lateral radiographs were taken on each animal’s surgical site prior to recovery from 

anesthesia.  Each animal received identical postoperative care as described under the first 

survival surgery.  

Animals receiving a second survival surgery were euthanized after a specified time 

period after second surgery, according to the approved protocol.  An x-ray of the left 

femur was taken prior to the surgery to confirm position of the implant.  7-10 cc of blood 

was drawn from the heart after anesthesia but prior to euthanasia for CBC and 

microbiological evaluation.  The PMMA rod, bone around the implant site, synovial 

tissue, synovial fluid, and joint capsule were harvested under identical procedures as 

those performed on rabbits for osteomyelitis evaluation. 

Round-specific designs.  A total of four rounds were conducted, each with a different 

osteomyelitis model.  The specifics for each round are described below. 

 

1st round: animals 07-170 to 07-175 

For this initial round, we wanted proof-of-concept results without sacrificing too 

many animals under our newly proposed protocol.  Hence, instead of 3+ animals 

per group for sufficient statistical significance, we assigned two animals per test 

group.  We proposed three test groups: (1) for osteomyelitis model evaluation – 

these two animals would be sacrificed without receiving an implant, in order to 

fully evaluate the degree of infection developed by our model, (2) for negative 

control – these two animals would receive uncoated implants during second 
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surgery, and (3) for coating evaluation – these two animals would receive [(Poly 

1/HA)(GS/HA)]100-coated implants during the second surgery.   Ideally we would 

have several more test groups, e.g. one for positive control, in which the animals 

would receive an established antimicrobial treatment such as Palacos® R+G bone 

cement with gentamicin (Zimmer Inc., Warsaw, IN), and one group for negative 

control on osteomyelitis model, in which the animal would receive a sterile saline 

instead of S. aureus inoculum injection.  However, as stated above, in order to 

streamline the pilot study and minimize the use of animals before establishing 

confidence in our model, we decided to waive the positive control for this pilot 

round. 

 

Based on surveyed literature, we decided that a total burden of 104 CFU S. aureus 

should be sufficient.  Dr. Hsu suggested defect dimensions of 8 mm long by 1.9 

mm diameter for a sufficiently large reservoir to hold the inoculum while 

minimizing disruption to the animal’s mobility.  The defect also had to be 

sufficiently large so that the localized osteomyelitis to be developed would not be 

completely drilled away when the defect site was enlarged to 3 mm diameter in 

the second procedure. 

 

With the defect dimensions of 1.9 mm diameter × 8 mm length, the void space 

should be about 0.023 cm3.  To mimic an implant-induced osteomyelitis, we 

decided to insert a loose-fit bone cement rod into the defect at the first procedure 

to simulate the presence of a surface-colonizable foreign object.  We proposed a 
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dimension of 1.5 mm diameter by 6.5 mm length, occupying 0.011 cm2 of volume 

within the defect (50%).  The proposed defect site, size, and bone cement rod 

dimensions are shown in Figure 8.1.  We assumed the bone to be fairly porous 

and be able to uptake significantly more than the void space.  Hence, 100 µL was 

proposed as the inoculums volume, with inoculums prepared in the exponential 

growth phase at 105 CFU/mL and kept at -80ºC until ready for injection.  The 

defect was to be sealed externally by bone wax to prevent inoculum leakage into 

surrounding tissues. 

 

       
Figure 8.1 - Model femur bone showing: (left) defect site at the medial femoral condyle, along with wired 
bone cement rods and 8mm drill bit, (right) bone cement rod placed into the model defect to check fit. 

 

In terms of timeline, we decided to allow for three weeks of osteomyelitis 

development , and two weeks for treatment by coated implant.  The chosen 

amounts of time were meant to balance between sufficiency for model 

development and while not allowing for the animal’s self-recovery. 

 

For post-surgery pain management, we only prescribed the pain killer Buprenex.  

Other commonly prescribed post-surgical medications included anti-inflammatory 
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and antibiotics, but we could not allow for antibiotics due to the nature of our 

model, and anti-inflammatory was eliminated out of precaution that it may 

interfere with osteomyelitis development as well.  

 

2nd round: animals 07-179 to 07-182 

Clinical observations from the first round made obvious the excess of the 100 µL 

volume of bacteria inoculum.  Hence, for our second round, we decided to both 

enlarge the defect to 3 mm diameter × 10 mm length and reduce the inoculum 

volume to 10 µL.  The defect dimensions were chosen to match that of the 

implant to be inserted during the second survival surgery, so that additional 

drilling would not be necessary, though extensive debridement may be needed to 

remove bone tissue growth within the defect.  The defect now had a total volume 

of 70.7 µL, which should comfortably accommodate the 10 µL inoculum and the 

bone cement rod, while allowing some room for blood backflow.  The inoculum 

would be prepared at 106 CFU/mL to maintain our proposed 104 CFU burden.  

We kept external bone wax as the sealing procedure, as we believed that the 

modified defect and inoculum volume should prevent spillage.  In addition, since 

we observed no definitive osteomyelitis in the first round, the osteomyelitis 

induction period was extended from three to four weeks.  Pain management was 

modified from Q8hr Buprenex shots to Fentanyl patches, a drug delivery form 

expected to provide a more consistent dosage. 
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We wanted to conduct a more comprehensive set of studies involving better 

controls, and hence proposed 20 animals to be divided into seven groups: (1) 

osteomyelitis evaluation at 104 CFU S. aureus inoculum, i.e. inoculum at 106 

CFU/mL, (2) osteomyelitis evaluation at 105 CFU S. aureus inoculum, (3) 

positive control with treatment of established osteomyelitis by Palacos® R+G, a 

gentamicin-impregnated bone cement, (4) negative control with treatment of 

establish--hed osteomyelitis by uncoate titanium rod, (5) sample group with 

gentamicin-coated titanium rod, (6) sample group with lysostaphin-coated 

titanium rod, and (6) sample group with gentamicin and lysostaphin-coated 

titanium rod.  Two animals were to be assigned to each of groups (1)-(4), while 

four animals would be assigned to each of groups (5)-(7).  Due to high morbidity 

rate observed in the previous round, osteomyelitis evaluations on groups (1) and 

(2) would be completed before initiating the remaining groups. 

 

 3rd Round: animals 07-222 and 07-223 

As we continued observing extensive soft tissue and even joint infections from the 

second round, coupled with a lack of osteomyelitis development, we believed that 

it was necessary to improve the method for sealing the defect.  Instead of a 

loosely applied patch of bone wax on top of the defect, we proposed to pack bone 

wax into the defect and additionally seal the wax-packed defect with a small piece 

of Bio-Gide®, a collagen-based resorbable membrane used in orthopedic 

surgeries to prevent soft tissue growth into bony defects.  In our case, it would 
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function as a barrier to the S. aureus inoculum.  We also shortened the bone 

cement rod by 1.5 mm to 5 mm in length, to allow room for bone wax. 

 

Another major modification was the addition of anti-inflammatory shots to post-

surgical pain management, specifically meloxicam, a non-steroidal anti-

inflammatory drug (NSAID).  Dr. Hayward believed that adding meloxicam 

would significantly reduce pain to the animals and hence morbidity rate, 

improving reproducibility of our model.  An NSAID was not expected to interfere 

with the development of bone infection, so as long as we administer a consistent 

amount of meloxicam to all rabbits, the osteomyelitis model should remain viable 

and reproducible.   

 

An identical set as the 2nd round involving twenty animals divided into seven 

groups was proposed.  We would again begin within only groups (1) and (2) for 

osteomyelitis model evaluation before proceeding to implant evaluation models. 

 

4th Round: animals 08-042 to 08-045 

Despite several rounds of modifications on the inoculums injection and defect 

sealing methods, we frequently observed infection of surrounding soft tissues and 

knee joint, without significant infection within the bone itself.  This was attributed 

to the spillage of S. aureus inoculum out from the defect, despite the thorough 

double-sealing procedure.  In addition, animals exhibited greater signs of distress 

than anticipated, often requiring sacrifice before study endpoint.  Among the 
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twelve rabbits investigated thus far, osteomyelitis was observed in a few animals, 

but the results were inconsistent and high morbidity rate was an unresolved 

problem. 

 

To reduce incidences of soft tissue infections, improve reproducibility of the 

osteomyelitis model, we proposed a major modification that eliminated the use of 

liquid inoculums.  Instead, a surface-colonized PMMA rod would serve as the 

source of infection.  The rods were custom-

made by the MIT Machine Shop (see Figure 

8.2 and Figure 8.3) and designed to have a 

loose fit within the defect with a press-fit cap 

at the top.  A small metal wire was attached 

through a hole to facilitate rod retrieval at 

sacrifice. 

Figure 8.2 - Schematic of the custom-made PMMA rods for Round 4 studies. 

 

 

Figure 8.3 – Photograph of PMMA rods used to simulate foreign implant object. 

(Left) custom-made PMMA rod with threaded wire and matching 3 mm drill bit, and (right) 
insertion into a model 3 mm x 10 mm defect demonstrating good fit. 
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Surface colonization assays were performed on the PMMA rods to ascertain 

ability of S. aureus to attach and proliferate on this material.  

 

A similar set of seven test groups involving twenty animals as the previous two 

rounds was proposed, with modified descriptions for groups (1) and (2): (1) 

osteomyelitis evaluation with PMMA rod colonized in 106 CFU/mL culture, (2) 

osteomyelitis evaluation with PMMA rod colonized in 108 CFU/mL culture.   

 

Table 8 summarizes the round-specific operating parameters for each animal. 

Table 8 - Summary of schedule and operating parameters 

Rabbit 1st surgery 
date 

Defect size 
(diameter x 
length in 
mm) 

Inoculum 
volume (μL), 
concentration 
(CFU/mL) 

Sealing 
method 

2nd surgery (date, 
days since last 
procedure, new 
defect/implant 
size) 

Sacrifice date 
(days since 
last 
procedure) 

07-
170 

06/05/2007 1.9 × 8 20, 105 Loose 
bone wax 

N/A – soft 
tissue 
infection 

06/13/2007 
(8) 

07-
171 

06/06/2007 2.75 × 8 40, 105 Loose 
bone wax 

06/27/2007 
(21), 3 × 10 

07/11/2007 
(14) 

07-
172 

06/06/2007 2.75 × 9 50, 105 Loose 
bone wax 

N/A – model 
evaluation 

06/27/2007 
(21) 

07-
174 

06/20/2007 2.75 × 9 40, 105 Loose 
bone wax 

N/A – too 
much 
inflammatory 
response 

06/26/2007 
(6) 

07-
175 

06/20/2007 2.75 × 10 40, 105 Loose 
bone wax 

07/11/2007 
(21), 3 × 10 

07/25/2007 
(14) 

07-
179 

07/17/2007 3 × 10 10, 106 Loose 
bone wax 

N/A –model 
evaluation 

07/30/2007 
(13) 

07-
180 

07/17/2007 3 × 10 10, 106 Loose 
bone wax 

N/A –model 
evaluation 

07/30/2007 
(13) 

07-
181 

07/18/2007 3 × 10 12†, 107 Loose 
bone wax 

N/A –model 
evaluation 

07/25/2007 
(7) 
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07-
182 

07/18/2007 3 × 10 10, 107 Loose 
bone wax 

N/A –model 
evaluation 

08/15/2007 
(28) 

Rabbit 1st surgery 
date 

Defect size 
(diameter x 
length in 
mm) 

Inoculum 
volume (μL), 
concentration 
(CFU/mL) 

Sealing 
method 

2nd surgery (date, 
days since last 
procedure, new 
defect/implant 
size) 

Sacrifice date 
(days since 
last 
procedure) 

07-
222 

11/20/2007 3 × 10 10, 106 Stuffed 
bone wax 
+ Bio-
Gide®  

N/A –model 
evaluation 

12/04/2007 
(14) 

07-
223 

11/20/2007 3 × 10 10, 106 Stuffed 
bone wax 
+ Bio-
Gide®  

N/A –model 
evaluation 

12/04/2007 
(14) 

08-
042 

03/19/2008 3 × 10 PMMA rod 
seeded at 106 
CFU/mL 

None N/A –model 
evaluation 

04/01/2008 
(13) 

08-
043 

03/19/2008 3 × 10 PMMA rod 
seeded at 106 
CFU/mL 

None N/A –model 
evaluation 

04/01/2008 
(13) 

08-
044 

03/26/2008 3 × 10 PMMA rod 
seeded at 106 
CFU/mL 

None N/A –model 
evaluation 

04/23/2008 
(28) 

08-
045 

03/26/2008 3 × 10 PMMA rod 
seeded at 106 
CFU/mL 

None N/A‡ – model 
evaluation 

04/23/2008 
(28) 

† an unintentional extra 2 µL was injected. 
‡ Underwent a minor surgery on 04/01/08 to debride incision site and re-sutured. 
 

Bone cement and PMMA rod colonization assessment (non-quantitative).  Sterilized 

rods were immersed into an exponentially-growing culture of S. aureus at 105 CFU/mL 

and incubated overnight.  The rods were then thoroughly rinsed with sterile PBS to 

remove loosely attached bacteria, and placed in a fresh media to incubate overnight.  The 

resulting liquid culture was read at 600 nm for bacteria count. 

 

Clinical observations.  Osteomyelitis is indicated by various clinical, radiographic, and 

surgical observations.  However, such signs are merely suggestive and cannot confirm the 

presence of bone infection without supporting microbiology and histology.  Clinical signs 
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can include fever and local external findings of redness, swelling, and lack of motion or 

weight bearing.  These signs would be monitored on a daily basis after the surgery. 

 

Radiographs.  In terms of radiographic evaluation, the telltale sign of osteomyelitis is 

radiolucency (i.e. higher transparency on the x-ray) at the infected site.  Radiolucency 

suggests bone resorption, which is caused by the lytic enzymes releaed by leukocytes as 

they attempt to engulf the infectious species.  A trained radiologist can also identify 

necrotic bone tissues and periosteal new bone formation, all suggesting osteomyelitis.  

Necrotic tissues (“sequestra”) and newly formed bone (“involucrum”) can both be easily 

observed during the tissue harvest surgery.  Necrotic bone tissues are discolored, spongy, 

and sometimes fluid-like.  Other surgical signs include the presence of brownish 

granulated soft tissues around the osteomyelitis site247, as well as the presence of 

pseudomembranes within the infected cavity.  Pseudomembranes are layers of coagulated 

fibrin, leukocytes and bacteria overlying a badly damaged mucous membrane and giving 

the appearance of being a viable tissue.   

 

Microbiological evaluation.  This was performed by the MIT Diagnostic Lab in the 

Department of Comparative Medicine.  Standard agar plating procedure was used.   

Briefly, tissue and pre-ground bone samples were weighed, placed in 1 mL sterile freeze 

medium (Brucella broth with 20% glycerol), and homogenized by a probe until sample 

was observed to be completely homogeneous. Implant and joint samples were sonicated 

in 1 mL sterile PBS.  The resulting PBS fluids were diluted (1:1, 1:10; 1:100) and 10 μl 

of each dilution was streaked on agar plates and cultivated at 37 °C for 24 h.  Blood and 
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urine samples were directly diluted and streaked without processing.  Remaining PBS 

fluids were stored at -20°C, except for blood samples which were discarded after 

streaking.  The number of CFUs was then counted for each agar plate.  If the CFU count 

was too large, the sample was reassessed at 1:1000 dilution.  The number of CFUs/g or 

CFU/mL for each sample was determined by division of the number of CFUs by the 

initially total weight or volume of the samples. The average of all three dilutions was 

calculated. 

 

Histology.  The remainder of each specimen was fixed in 10% buffered formalin and 

decalcified in 5% aqueous formic acid solution until total calcium removal was 

determined by an ammonium oxalate test then processed into paraffin. Paraffin blocks 

were sectioned at six microns and stained with both standard H&E (hematoxylin and 

eosin) as well as the Brown-Hopps258 staining method who has been found to be highly 

selective between gram-positive and gram-negative species259.  Briefly, in the Brown-

Hopps method, the sample slides undergo deparaffiization, crystal violet staining, 

fixation in iodine-potassium iodide solution, differentiation in acetone, additional staining 

in 0.5% basic fuchsin solution, differentiation and fixation in Gellego’s solution, staining 

in Tartrazine solution, differentiation in acetone then picric acid-acetone, and finally 

xylene to fix and mount.  
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8.3 Results and Discussion. 
 

Table 9 - Complete blood count (CBC) results for all rabbits 

Rabbit Neutr 
(%) 

Lymphs 
(%) 

Monos 
(%) 

WBC 
(/mm3) 

RBC 
(106/ 
mm3) 

HCT (%) Hgb 
(g/dl) 

Plat Ct 
(/mm3) 

RBC 
Indices 
MCV 
(fl) 

07-170 Blood not collected 
07-171 Blood not collected 
07-172 23 75 2 7.10 6.28 38.1 11.9 238 60.7 
07-174 38 60 2 6.30 6.33 36.7 11.8 988 58.0 
07-175 58 33 3 5.58 6.6 36.9 11.9 31 55.9 
 39 59 2 7.02 6.71 41.0 11.4 524 61.1 
07-179 48 48 4 9.22 7.84 47.5 11.8 400 60.6 
07-180 51 44 4 9.52 5.91 30.6 8.6 1108 51.7 
 57 40 3 14.02 5.23 25.4 7.4 990 48.5 
07-181 70 27 3 6.60 6.43 39.0 10.6 194 60.6 
 51 47 2 3.88 5.61 35.6 9.0 1041 63.5 
07-182 78 21 1 9.50 4.38 23.7 6.6 1082 54.1 
07-222 Unable to collect blood 
07-223 72 28 N/A 3.54 5.03 27.5 9.1 1199 54.6 
08-042 79 18 3 8.38 6.98 38.5 10.7 1159 55.1 
08-043 69 29 2 18.50 5.18 29.3 8.5 1153 56.5 
08-044 Blood sample coagulated 
08-045 28 69.00 2 5.8 7.2 40.5 11.7 656.0 56.0 

 
Table 10 - Microbiology results for blood, bone tissues, and implants 

 
Rabbit Blood 

(CFU/mL) 
Trabecular 
bone (CFU/g) 

Bone around 
defect (CFU/g) 

Materials within 
defect† (CFU/g) 

Implant‡ (CFU) 

07-170 N/A 9.24 ×105 N/A N/A 0 
07-171 N/A 0 N/A N/A 0 
07-172 
(2nd 
surg.) 

0 0 N/A N/A 0 

07-172 
(sacrifice) 

0 0 N/A N/A 0 

07-174 0 40 N/A N/A 0 
07-175 
(2nd 
surg.) 

0 N/A N/A N/A 0 

07-175 
(sacrifice) 

0 0 N/A N/A 0 
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Rabbit Blood 
(CFU/mL) 

Trabecular 
bone (CFU/g) 

Bone around 
defect (CFU/g) 

Materials within 
defect† (CFU/g) 

Implant‡ (CFU) 

07-179 0 7.72 ×105 N/A 4.20 ×108 1.60 ×107 
07-180 0 4.47 ×106 N/A N/A 3.63 ×106 
07-181 0 1.61 ×108 2.07 ×108 3.65 ×109 3.62 ×107 
07-182 0 7.94 ×106 N/A 2.13 ×108 1.86 ×108 
07-222 N/A N/A 1000 1.76 ×107 4.00 ×103 
07-223 0 N/A 1.5 ×104, 3.3 

×104, 150 
2.74 ×107 2.90 ×104 

08-042 0 8.70 ×106 N/A N/A 4.80 ×107 
08-043 0 5.93 ×105 N/A N/A 5.90 ×104 
08-044 N/A; N/A N/A; N/A 0, 526.7, 0;  

0, 317, 0 
Necrotic tissue: 0; 
0, pus: 9.76 ×103; 
1.50 ×104 

0; 0 

08-045 0; 0 N/A; N/A 0, 2.04 ×104; 
0, 1.98 ×104 

Pseudomembrane: 
3.16 ×107; 3.85 
×107 

0; 20 

† Could be either bone wax or bone tissue – it was difficult to identify based on visual inspection. 
‡ Implant was sonicated in 1 mL of sterile saline, with resulting saline counted. 
 

Table 11 - Microbiology results for soft tissues and other materials exterior to defect site 
 

Rabbit Superficial 
soft tissue 
(CFU/g) 

Superficial 
soft tissue 
swab (CFU) 

Deep soft 
tissue 
(CFU/g) 

Periosteum 
(CFU/g) 

Joint 
Capsule‡ 
(CFU) 

Others (CFU/g 
for tissues, 
CFU/mL for 
liquids) 

07-170 1.56 ×105 20, 0 1.17 ×105 2.28 ×106 4.10 ×102  
07-171 N/A 0 N/A N/A N/A  
07-172 (2nd 
surg.) 

0 0, 0 0 N/A N/A  

07-172 
(sacrifice) 

0 N/A 0 N/A N/A Synovial 
tissue = 0, 

07-174 0 N/A N/A N/A N/A  
07-175 (2nd 
surg.) 

N/A 0 0 N/A N/A  

07-175 
(sacrifice) 

0 0, 0 7.75 ×103 N/A N/A Tendon = 0,  

07-179 8.88 ×102 0, 0 2.56 ×102 8.02 ×106 1.12 ×102  
07-180 8.16 ×105, 

1.50 ×108 
TNTC* 2.37 ×106 N/A 6.71 ×105  

07-181 9.93 ×104 TNTC*, 
127 

0 6.22 ×109 N/A Joint swab = 
0,  

07-182 1.80 ×103 8 1.02 ×103 N/A N/A Synovial 
tissue = 4.57 
×106, Joint 
swab = 26,  
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Rabbit Superficial 
soft tissue 
(CFU/g) 

Superficial 
soft tissue 
swab (CFU) 

Deep soft 
tissue 
(CFU/g) 

Periosteum 
(CFU/g) 

Joint 
Capsule‡ 
(CFU) 

Others (CFU/g 
for tissues, 
CFU/mL for 
liquids) 

07-222 9.17 ×108, 
1.41 ×104 

9, TNTC* 3.58 ×105 N/A N/A Abscess = 
4.56 ×108, 

07-223 9.43 ×104 60 1.10 ×105 N/A N/A Abscess = 
1.47 ×103, 
urine = 600 
(Strep sp., 
not S. 
aureus) 

08-042 1.23 ×108 TNTC 6.93 ×107 N/A N/A  
08-043 7.96 ×106 TNTC 1.60 ×107 N/A N/A  
08-044 0; 0 0; 0 Granulated

: 0; 0 
N/A; N/A 0; 0  

08-045 0; 0 0; 0 Granulated
: 0; 0 

N/A; N/A 0; 0  

* TNTC = too numerous to count 
‡ Joint capsule was sonicated in 1 mL of sterile saline, with resulting saline counted. 
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1st Round 

Bone cement rod colonization assessment.  To ensure that the bone cement rod can be 

surface-colonized by S. aureus to simulate an implant infection, an in vitro surface 

colonization assay was performed.  However, it was later pointed out by Dr. Lee that the 

colonization assay used here was not quantitative, so results here should only be taken as 

a qualitative indication of the surface colonizability of the rods, rather than a quantitative 

indication of degree of colonizability.  Figure 8.4 shows the result from the colonization 

assay, with five replicates of rods assessed.  The mean colony count among the five rods 

is 1.78 x 108 CFU/mL, with a standard deviation of 0.118 CFU/mL (6.65%).  The data 

indicate that these rods can indeed be surface colonized in a fairly consistent manner. 

 
Figure 8.4 - Result of the assessment on surface colonization of bone cement rods by S. aureus.   

Error bars represent standard deviations over triplicate sampling of each culture (values are very small). 

 

Clinical observations.  Rabbit 07-173 unfortunately died from anesthesia before the first 

survival surgery was performed, and hence reduced our pilot study down to five rabbits.  

For the remaining animals, the cylindrical defects were consistently established in the 

medial femoral condyle site.  However, after the performing the initial surgery on the first 
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rabbit 07-170, it was immediately obvious that the proposed defect could not 

accommodate 100 µL of inoculums, especially given the amount of blood backflow out 

from the defect.  With only 20 µL inoculum injected, we already observed spillage out of 

the defect.  Hence, we immediately modified our protocol to enlarge the defect to 2.75 

mm diameter × 8 mm length (47.5 µL of volume), while scaling down the inoculum to 40 

µL at the same concentration of 105 CFU/mL.  Hence, rabbits 07-171 through 07-175 

only received 4.0 × 103 CFU S. aureus each, but overflow was still observed in some 

cases.  Throughout the next few procedures, the defect was gradually lengthened from 

one animal to the next, until we reached 10 mm which allowed for complete 

accommodation of the 40 µL inoculum.  For the most part, this modified model appears 

to work (see Figure 8.5 and Figure 8.6).   

 
Figure 8.5 – Images from 07-174’s 1st survival surgery. 

(Left) the 2.75 mm × 9 mm defect, and (right) placement of bone cement rod into the defect after 40 µL 
inoculum injection. 

 
Figure 8.6 – Lateral (left) and AP (anterior-posterior, right) radiographs of rabbit 07-174 after 1st survival 
surgery, showing drilled defect and inserted bone cement rod. 
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Another problem we observed was that the defect sealing by bone wax was unsuccessful.  

Due to a combination of blood and inoculum spillage, bone wax placed on top of the 

defect would easily fall off even before the skin layers were closed over the defect.  All 

five rabbits likely experienced leakage of most of the inoculum into surrounding soft 

tissues. 

 

Post operation, rabbits displayed more tissue reactions and signs of distress than 

anticipated, and many had to be sacrificed before specified study end point due to 

excessive weight loss or presence of abscess.  Instead of the planned three-week 

osteomyelitis development prior to tissue harvest, 07-170 was sacrificed eight days after 

first surgery.  Indeed, during its sacrifice, we observed extensive infections within the 

soft tissues (see Figure 8.7), but unfortunately no definitive sign of infection within the 

defect.  A successful bone infection should display a loose, spongy, fluid, and discolored 

bone material.  For a severe infections, visible pus could also be observed141. 

 

 
Figure 8.7 – Images from 07-170’s tissue harvest, showing (left) visible soft tissue infection but (middle) 
no definitive sign of bone infection.   

A successful bone infection showing yellow pus formation in the intramedullary cavity (from Alt et al.141) 
is shown on the right as a reference. 

 



 299

07-174 was also sacrificed early at six days post-surgery due to inflammatory response 

observed by Dr. Hayward.  However, its tissue harvest indicated neither soft tissue 

infection nor visible sign of bone infection.  07-171, 172, and 175 fared better and were 

allowed to survive until defined study endpoints.  07-172 was sacrificed after three weeks 

for osteomyelitis evaluation.  Even after three weeks, we saw no definitive sign of bone 

infection, and instead observed significant bone re-growth into the defect (see Figure 

8.8). 

 

Figure 8.8 – Images from 07-172’s sacrifice. 
(Left) no sign of soft tissue infection, and (right) bone tissue growth around bone cement rod but no 
definitive sign of infection. 
  

07-171 and 07-175 were designated to receive a second survival surgery in which coated 

implants were inserted into an enlarged defect.  Since we only had two rabbits for implant 

evaluation, both rabbits received [(Poly 1/HA)(GS/HA)]100-coated implants in order to 

obtain proof-of-concept results on in vivo efficacy and biocompatibility of these coatings.  

However, in both rabbits’ second procedures, there was some difficulty in pulling the 

bone cement rod out of the defect, suggesting bone tissue growth within the defect.  This 

observation implies that little or no osteomyelitis developed, or we would expect looser 

bone materials within an infected defect.  During the debridement process, Dr. Hsu also 
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observed that the bone tissues felt dense and uninfected.  These tissues were sterilely 

stored for microbiological evaluation. 

 

Despite the lack of clinical signs for osteomyelitis, second survival surgeries proceeded 

and the coated glass implants were found to fit well into the defect now enlarged to 3 mm 

× 10 mm (see Figure 8.9 and Figure 8.10). 

 
Figure 8.9 - Images from 07-175's 2nd survival surgery. 

(Left) re-opened defect site with bone cement rod still in place, (middle) newly drilled defect at 3 mm × 10 
mm, (right) new defect press-fit with a coated glass rod implant. 

 

 
Figure 8.10 – Later (left) and AP (right) radiographs of rabbit 07-175 after 2nd survival surgery, showing 
enlarged defect with a form-fitting implant in place. 

 

After the two-week treatment period, rabbits 07-171 and 175 were sacrificed for tissue 

harvest.  In both rabbits, we observed loose, fluid tissue immediately around the glass 

implant, and the implant pulled out very easily (see Figure 8.11).  We suspected that the 

combination of film degradation and smoothness of the glass surface discouraged bone 
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tissue growth onto the implant.  Based on this hypothesis, we decided that upcoming 

studies should use either bone cement or titanium as the implant to be coated to result in a 

more regenerative surface. 

 
Figure 8.11 – Images of split bone from tissue harvests of 07-171 (left) and 07-175 (right), both of which 
received a coated implant at 2nd survival surgery.   

There were signs of bone resorption suggesting that bone tissues could not grow onto the glass surface. 

 

Neither 07-171 nor 175 was thought to have osteomyelitis based on visual observations 

during the second survival surgery and results from microbiology (see Table 10).  Hence, 

no conclusion could be drawn on the efficacy of the [(Poly 1/HA)(GS/HA)]100 coatings.   

 

Microbiological evaluation.  Table 10 and Table 11 summarize results from quantitative 

microbiological evaluations on the tissue and implant samples from all rabbits.  One 

immediate observation was that little to no bacteria was found in any of the bone or 

implant samples of rabbits from Round I, with the exception of 07-170 which had 9.24 x 

105 CFU/g of S. aureus in its trabecular bone sample.   This finding suggests that none of 

the rabbits from the first round developed clinically relevant osteomyelitis.  On the other 

hand, two of the rabbits, 07-170 and 07-175, experienced a significant amount of soft 

tissue infection, with 07-170 having high S. aureus counts in all its superficial and deep 
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soft tissue samples.   The microbiological results on 07-170 were consistent with the 

visual observations made during its tissue harvest (see Figure 8.7).   Given these results, 

we believed that our pilot osteomyelitis model was suboptimal, as there was a lack of 

both osteomyelitis development and reproducibility between animals. 

As to be seen throughout this animal study, none of any rabbit blood sample returned any 

bacteria count.  This was the desirable outcome, as the model was not intended to cause 

bacteremia or sepsis in the animals. 

 

Histology.  Brown-Hopps staining was used to stain for S. aureus in the tissues.  In a 

Brown-Hopps stained specimen, gram-positive microorganisms such as S. aureus would 

show up as dark blue or purple spots.  As a reference, infected tissue samples from Alt et 

al.141 are reproduced in Figure 8.12 to demonstrate histological signs of S. aureus in 

histopathology.   

 
Figure 8.12 – Reference samples from Alt et al.141 to demonstrate signs of osteomyelitis under histology. 

(Left, objective 100x)  presence of S. aureus (arrow) as indicated by purple-blue color under gram stain, 
and bone necrosis (arrowhead), and (right, objective 1.5x) signs of cortical lysis (arrow) and abscess 
formation (arrowhead), both indicative of bone infection.   

 
Joint capsule and soft tissue samples from rabbits 07-170 to 175 showed apparent signs 

of S. aureus in the form of dense dark-purple spots (see Figure 8.13 and Figure 8.14).  
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However, upon consultation with clinical pathologist Dr. Daniel Milner, we were 

instructed that the dark spots were artifacts arising from the staining process.  Dr. Milner 

made this assessment based on the streaky morphology of each spot.  Hence, the 

histology did not positively affirm the presence of bacteria in the tissue samples. 

 

 
Figure 8.13 – Sample histology on 07-170’s joint capsule slices. 

(Left) a low-magnification image showing apparent proliferation of purple colonies, and (right) a high-
magnification image showing the purple colonies in greater detail. 

 
Figure 8.14 – Sample histology on 07-172’s deep soft tissue (left) and 07-174’s superficial soft tissue 
(right), both of which displaying dense presence of dark colonies similar to those observed in 07-170’s joint 
capsule staining (Figure 8.13). 

 

2nd Round 

Clinical observations.  In this round, the defect was enlarged and S. aureus inoculum 

volume was reduced to minimize spillage into surrounding tissues.  While no visible 
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leakage was observed during the first surgery of every animal within this around, we 

suspected that leakge could occur after suturing due to the looseness of the bone wax 

sealing.    

 

Because of the significant illnesses observed among rabbits in the previous round, weight 

loss and temperature of the rabbits were diligently monitored post operation (see Figure 

8.15).  Steady and significant weight loss was observed among all four rabbits, consistent 

with our observation of the lack of appetite.  Temperatures fluctuated but were generally 

within the acceptable range after 1-2 days of post-op fever. 

    

 

Figure 8.15 - Post-op health stats of rabbits 07-179 to 07-182 



 305

 

Based on the 15% weight loss limit, most rabbits were sacrificed within 7-15 days post 

operation.  Force-feeding was attempted on rabbit 07-182 through syringe injection of a 

combination of Nutra-Cal™, ground rabbit feed, and water into the rabbit mouth once or 

twice per day.  While its weight appeared to maintain under the force-feeding regimen, 

the method was not encouraged for the long term.  Therefore, even if the present model 

was efficacious in establishing osteomyelitis, it would not eliminate the problem of 

animal morbidity and hence irreproducibility stemming from unpredictability of study 

endpoint. 

 

All four animals were sacrificed for osteomyelitis model evaluation, some before the 

study endpoint.  Radiographs were taken prior to tissue harvest, and we looked for signs 

of infections  such as radiolucency, periosteal elevation, architectural deformation, bone 

shaft widening, new bone formation (“involucrum”) and soft tissue deformation251.  As an 

example, 07-179’s radiograph (Figure 8.16) displayed radiolucency around the defect 

site, suggesting that osteomyelitis did occur to cause alterations in tissue density. 

 

 

Figure 8.16 – Lateral radiograph of 07-179 prior to sacrifice. 
Radiolucent lines are evident around the implant, suggesting osteomyelitis development. 
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Clinical observations during all four animals’ tissue harvests suggested that while soft 

tissue infection still occurred, osteomyelitis was established as well (see Figure 8.17 and 

Figure 8.18).  In particular, significant discoloration was seen, and tissue around the 

defect felt spongy.  The observed tissue texture was consistent with the radiographic 

finding.  The strong clinical findings of osteomyelitis were later confirmed by 

microbiological evaluations. 

 

 
Figure 8.17 – Images from 07-181’s sacrifice. 
Soft tissue infection still developed (left), though bone infection appeared to be established as well (right) 
based on the softness and discoloration. 
 

 
Figure 8.18 – Images from 07-179, 07-180, and 07-182’s sacrifices (from left to right), showing split 
femur bones revealing the defect site (circled).   

All three bone samples, along with 07-181’s as shown in Figure 8.17, display signs of softness and 
discoloration indicative of infection. 

 

Microbiology.  As data from Table 10 and Table 11 suggest, significant S. aureus counts 

were found in bone tissue samples from all four rabbits in this round.  In addition, all the 
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retrieved implants had high levels of surface colonization.  However, at the same time, all 

four animals displayed high bacteria counts in the soft tissue samples as well, confirming 

our visual observation of soft tissue infection around the defect (see Figure 8.17).  Dr. 

Hayward indicated that infection of the periosteum (fourth sample column of Table 11), a 

membrane that lines the outer surfaces of bones, would be particularly painful and result 

in higher morbidity.  For animals with periosteum samples available (07-179 and 07-

181), the S. aureus counts were indeed high (8 x 106 and 6 x 109 CFU/mL, respectively), 

and this periosteal infection may explain the significantly weight loss we observed among 

these animals.  We continued to see no bacteria count in blood, indicating that none of the 

rabbits developed bacteremia.   

 

As the microbiological evaluation suggests, using smaller inoculum at higher 

concentration did increase the chances for osteomyelitis development.  However, it did 

not resolve the problem of inoculum spillage into the surrounding tissues that caused 

undesirable soft tissue reactions. 

 

3rd Round 

In the third round, we went beyond mere reduction in inoculum volume and implemented 

a modified defect sealing procedure.  Instead of loosely sealing the inoculated defect with 

a piece of bone wax, the wax was to be packed into the defect followed by coverage of 

the plugged defect with a bioresorbable membrane.  Similar to the previous rounds, the 

osteomyelitis model needed to be verified prior to an actual sample evaluation, so two 

rabbits were investigated on this new design.  Observations during the surgery suggest 
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that this modified procedure did contain the liquid inoculum better but not perfectly.  

Small amounts of leakage were still seen.  Post-surgical radiographs (see Figure 8.19, 

left) showed the positioning of the PMMA rod within the drilled defect.  Radiographic 

evaluation on the same animal two weeks after the inoculation (Figure 8.19, right) 

displayed radiolucent lines suggestive of osteomyelitis. 

 
Figure 8.19 – Lateral radiographs of 07-223. 
(Left) right after 1st survival surgery, showing 3 mm defect with inserted bone cement rod, (right) two 
weeks after 1st surgery, showing radiolucent lines. 
 

Visual evaluations of rabbits 07-222 and 07-223 yielded very similar results as those seen 

for Round II.  While signs of osteomyelitis such as discoloration and sponginess of the 

bone were present, there was also a significant degree of soft tissue infections.  During 

the two-week incubation period, the two animals experienced about 10% weight loss 

each – not as severe as the previous round, although their health conditions were not ideal 

either. 

 

Microbiology.  Similar to the previous round (animals 07-179 to 07-182), the two 

animals from this round had high S. aureus counts in both bone and soft tissue samples.  

Hence, while the desirable osteomyelitis was achieved, the new sealing procedure did not 
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eliminate the problem of soft tissue infections.  In fact, in comparing the S. aureus counts 

between the 2nd and 3rd rounds of animals, the latter had a higher mean count of S. aureus 

in soft tissues.  In addition, noticeable abscess was observed on both 07-222 and 07-223. 

 

4th Round 

PMMA rod colonization assessment.  Similar colonization assessments as those done 

on bone cement rods were performed on the custom-made PMMA rods, but with higher 

CFU count in the seeding culture to further promote denser colonization and possibly 

biofilm formation.  We also wanted to ascertain that the adhered bacteria can survive -

80°C storage.  Figure 8.20 shows data from these assays.  As stated previously, this assay 

was later found to be non-quantitative based on Dr. Lee’s input, so that the results in 

Figure 8.20 should only be taken as a qualitative indication of bacteria survivability. 

 
Figure 8.20 - Result of the assessment on surface colonization of bone PMMA rods by S. aureus.   

Error bars represent standard deviations over triplicate rod samples. 

 

Similar to the bone cement rods, we observed colonization of all PMMA rods, and at 

least a fraction of the colonizing bacteria remained viable after -80°C storage.  Ideally we 

would also assess degree of biofilm formation through a count under the microscope, a 
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procedure which would involve fixing the adhered bacteria, staining them using an agent 

like crystal violet, then visualizing them under oil-immersion microscopy.  However, 

there were difficulties in locating all the necessary resources, so these assays were not 

performed for the time being.   

 

In the study protocol, we proposed osteomyelitis model evaluation with PMMA rods 

colonized at 106 and 108 CFU/mL for two separate test groups.  However, after the 

colonization assay, we decided to use 106 CFU/mL as the seeding concentration for all 

four test animals, since it was observed to be sufficient to result in an infectious rod.  We 

wanted to focus on establishing consistency and confidence with this one model. 

 

Surgical and post-op observations.  Observations from the first survival surgery were 

positive: the custom-made implants fit snugly into the defect, with the top of the implant 

flush against the bone (see Figure 8.21).  A lateral radiograph taken immediately after 

surgery confirmed the placement the implant (see Figure 8.22). 

    
Figure 8.21 - 3mm x 10mm defect at the medial femoral condyle before (left) and after (right) colonized 
rod insertion, showing good fit of the model.   

Pictures are from the first survival surgery of rabbit 08-042. 
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Figure 8.22 - Post-op lateral radiograph of the defect site from rabbit 08-042, showing placement of the 
implant with the small wire at the top. 
 

Animals 08-042 and 08-043 exhibited non-weight bearing lameness on the left femur, but 

both animals showed better activity and appetite than animals from previous rounds.  

However, eight days after surgery, 08-042’s incision was found to be slightly 

concertinaed, moist, and necrotic at the margins (see Figure 8.23, left).  There was a pea 

sized swelling and the skin around the site was warm and erythematous.  The observed 

symptom was suspected to be an abscess stemming from either the colonized implant, 

contamination of the site at surgery, or the exposed suture.  At sacrifice, significant 

superficial soft tissue infection was observed.  Both radiographic and visual observations 

of the bone around defect site (see Figure 8.23, middle and right) suggest presence of 

osteomyelitis.  In addition, the PMMA implant was very easily pulled out, again 

suggesting the presence of bone infection which resulted in tissue necrosis.  Similar 

visual and radiographic observations were made on 08-043, although this animal 

experienced deep soft tissue infection rather than superficial, and its implant was more 

difficult to pull out, suggesting better bone tissue growth within the defect. 
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Figure 8.23 – Images from 08-042’s tissue harvest, 13 days after first surgery. 

(Left) abscess and tissue necrosis at incision site, (middle) radiograph prior to tissue harvest, and (right) 
trabecular bone around defect site; significant vasculature was observed, suggesting osteomyelitis. 

 

In contrast to 08-042 and 08-043, 08-044 and 08-045 showed good weight bearing on the 

operated leg almost immediately upon recovery from anesthesia.  08-045 exhibited 

almost no sign of lameness.  Dr. Hayward believed that better suturing on these two 

animals helped with their recovery.  Both rabbits fared well based on behavioral signs, 

although 08-045 was observed to have significant skin necrosis around the incision on 

Day 6, and the animal underwent a minor surgery to debride and resuture.  08-044 had an 

excellent incision recovery – clean, dry, intact, and no redness or bruising.  However, a 

marble-sized swelling was found starting from Day 6, which subsided after a few days.  

Similar type of temporary swelling was found on 08-045 at the incision site.  Neither 

rabbit required additional medication beyond those prescribed for the first 24 hours post 

surgery.  

 

Both rabbits survived to their study end point at 4 weeks without weight loss or health 

issues.  Rabbits were bright, alert, and responsive throughout the 4 weeks, with normal 

outputs.  At sacrifice, 08-044 was 2.44 kg (6.2% loss from pre-surgical weight) and 08-

045 was 2.76 kg (0% loss).  Hence, the morbidity issue appeared to be lessened in this 

new model. 
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Radiographic and visual observations at the tissue harvest suggest significant bone 

infection without any infection of the deep and soft tissues (see Figure 8.24 and Figure 

8.25).  Both rabbits exhibited radiolucency around defect site on their lateral x-rays, 

suggesting bone resorption resulting from infection.  Visual inspections during the tissue 

harvests indicated that the degree of bone infection was higher than all previous animals, 

as the bone surrounding defect was significantly discolored and spongy.  For the first 

time, we observed the presence of involucrum (new bone growth) over the defect, 

suggesting the bone’s attempt to recover from the necrosis caused by the infection.  We 

also saw brownish soft tissues suggesting the presence of granulytes, another sign of 

possible infection.  More importantly, a layer of pseudomembrane was found coating the 

interior of both rabbits’ defects.  While visual inspection could not confirm that the 

loosely-adhered white films were indeed pseudomembranes, these were our very first 

observations of such white films.  Based on the degree and extent of infection, Dr. Hsu 

hypothesized that the rabbits actually progressed to chronic osteomyelitis. 
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Figure 8.24 – Images from 08-044’s tissue harvest.   

Clockwise from the top left: (1) lateral radiograph taken prior to tissue harvest displaying radiolucency, (2) 
skin incision at tissue harvest revealing no soft tissue infection, (3) new bone growth over the defect area, 
(4) after debridement of the newly formed bone, the implant could be easily pulled out, and (5) white 
pseudomembrane found coating the defect interior, further suggesting infection. 

 
Figure 8.25 - Images from 08-045’s tissue harvest.   

Clockwise from the top left: (1) lateral radiograph taken prior to tissue harvest displaying radiolucency, (2) 
new bone growth over the defect area, (3) after debridement, the implant could be easily pulled out, (4) 
white pseudomembrane found coating the defect interior, and (5) bone split across the defect site revealing 
significant discoloration and sponginess. 
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Microbiological evaluation.  For rabbits 08-042 and 043, we expectedly saw high counts 

of S. aureus in bone and implant samples.  However, superficial and deep soft tissues also 

had high counts, suggesting the same tissue infection problem that we saw in previous 

models.  Nevertheless, given the more promising clinical osteomyelitis signs observed 

during the tissue harvest (Figure 8.24 and Figure 8.25), we believed that the model under 

this round was an improvement over the previous. 

 

Clinical signs of gross infection as observed for 08-044 and 08-045 strongly suggested 

that these two animals developed severe and possibly chronic osteomyelitis.  The 

pseudomembrane, pus within defect, and extensive discoloration & decalcification of the 

bone found in these two animals were not previously observed.  Most surprisingly, 

however, microbiological evaluations revealed little S. aureus count in the bone samples 

of these animals.  Several sequestra and other necrotic bone samples from within the 

defect gave no bacteria count, and neither of the implant yielded any surface-attached 

bacteria after sonication.  However, the pus from 08-044 and a sequestrum and 

pseudomembrane samples from 08-045 did give relatively high bacteria count, indicating 

that some live S. aureus was present, but not nearly as extensive as expected.   

 

There were several potential explanations for this anomaly: (1) that the animals did 

experience severe osteomyelitis at some point, but have begun recovering and clearing 

out the bacteria, (2) that the clinical signs were actually other tissue complications not 

strictly caused by infection, and (3) that the microbiological evaluation by the Diagnostic 

Lab was not properly performed this time.  Given the consistency and severity of clinical 
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signs suggestive of osteomyelitis, hypothesis (2) did not seem likely.  However, Dr. 

Spector and Dr. Hsu did not find hypothesis (1) likely given the robustness of S. aureus.  

Several conversations with Kim Dufour at the Diagnostic Lab did not reveal any 

deviation in evaluation protocol from the previous.   

 

To further troubleshoot, I obtained additional inputs from our new infectious diseases 

consultant Dr. Jean Lee, an associate microbiologist at Brigham and Women’s Hospital.  

She also found the inconsistency between observed gross infections and lack of 

microbiology evidence to be confusing, and indicated that while it was possible for 

osteomyelitis to have developed but then subsided, such a scenario was unlikely given S. 

aureus’ ability to proliferate within essentially any tissue, necrotic or not.  Dr. Lee made 

the following recommendations: 

 

1. Change the strain of S. aureus used. 

Thus far we had used ATCC 25923®, a clinical isolate that was an accepted 

standard for in vitro testing of antibiotic activity.  This was not necessarily the 

most representative candidate for human osteomyelitis.  Instead, strain UAMS-1 

(ATCC 49230), another clinical isolate of a different genotype, should be used.  

UAMS-1 carried the gene (cna) encoding the collagen binding protein, a protein 

associated with strains that cause arthritis or infect bone.  The culturing 

techniques would remain the same as that used for strain 25923. 

 

2. Characterize PMMA rod colonization in a more quantitative manner. 
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The previous method used to assess surface colonization of PMMA rods was not 

quantitative: whether the inoculum on the rod surface was 102 or 107, the 

overnight culture would grow up to 109 CFU/mL regardless.  Instead, the 

following kinds of assays should be undertaken to quantify degree of surface 

colonization: 

a. Sonication in sterile PBS in a polypropylene tube (not 

polystyrene, as S. aureus could easily adhere to this material), 

followed by quantitative plating at serial dilutions of the PBS.  

Sonication should be done on ice in 20-second spurts to avoid killing 

S. aureus by the heat generated during sonication.   

b. Rolling of sonicated rod on blood agar plate and leaving it 

there to verify removal of adherent bacteria by sonication. 

 

With the procedures performed so far, I had assumed that storage of a colonized rod at -

80C should maintain the viability of the adherent bacteria.  Hence, both batches of rabbits 

received rods that were colonized at the same time, with 08-044 and 08-045 receiving 

rods that had been stored for additional two weeks.   However, Dr. Lee indicated that 

bacteria in the dry state, i.e. not in a glycerol-based freeze medium, could lose viability in 

-80C storage, and a quantitative assessment at various storage time periods was needed. 

 

3. Verify methods of microbiology evaluation at the MIT Diagnostic Lab 

Check with the technician to see if small colonies were observed after at least 48 

hours of incubation.  Chronic infection could result in internalization of S. aureus 
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by eukaryotic cells or the production of S. aureus “small colony variants.”  These 

variants would form small, atypical colonies on blood agar plates, and the 

colonies would only be seen after 48 hours of incubation.  The colonies would be 

tiny and nonhemolytic, and hence would bear no resemblance to typical S. aureus 

colonines.  However, they could also easily revert in vitro, and so the culture 

might look mixed.  Thorough homogenization of the tissue samples should have 

released intracellular S. aureus and eliminated the occurrence of small colony 

variants.  For future evaluations, I should consider asking the Diagnostic Lab to 

adding a detergent like 1-2% Triton X-100 to facilitate lysing of the bone cells 

and hence release of intracellular S. aureus.   

 

The Diagnostic Lab technician Kim Dufour indicated that all cultures were grown 

for at least 48 hours, since no colonies were observed after 24 hours.  She stated 

that no colony of any size was seen, and that all samples were homogenized 

thoroughly under the method that had been used on our previous samples.  Hence, 

the occurrence of small colony variants may not explain the results seen for 08-

044 and 08-045. 

 

Given these recommendations, I obtained S. aureus UAMS-1 from Dr. Lee for the 

quantitative evaluation of PMMA surface colonization as described above.  Colonization 

was performed in an identical fashion as previous round, i.e. by immersing the PMMA 

rods in an exponentially growing culture of S. aureus UAMS-1 overnight.  Quantitative 

evaluation was done by the MIT Diagnostic Lab.  As a reference and retrospective 
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assessment, the previous strain (S. aureus 25923) was underwent an identical set of 

assays.  The results are summarized in Table 12 and Figure 8.26. 

Table 12 – Summary of quantitative PMMA rod colonization evaluation. 

Rods were colonized by immersion in 105 CFU/mL of exponentially growing S. aureus overnight.  Rods 
were stored in a dry, sterile state at -80°C. 

S. aureus UAMS-1 Average surface count 
(CFU/mL) 

Rolling assay result 

Fresh culture 2.30 × 105 ± 60.3% TNTC† 
2-day storage 7.90 × 105 ± 35.7% TNTC 
1-week storage 4.10 × 104 ± 14.6% TNTC 
2-week storage 4.13 × 104 ± 26.5% TNTC 
S. aureus 25923 Average surface count 

(CFU/mL) 
Rolling assay result 

Fresh culture 7.20 × 104 ± 41.4% TNTC 
2-day storage 8.33 × 104 ± 28.8% TNTC 
1-week storage 1.35 × 105 ± 76.5% TNTC 
2-week storage 1.24 × 105 ± 8.06% TNTC 
† Too numerous to count. 

 

Figure 8.26 – Average saline count of S. aureus as sonicated off surfaces of colonized PMMA rods after 
various lengths of storage at -80°C.   
 

Overall, it appears that both strains were able to survive dry storage at -80°C for at least 

two weeks.  Strain 23923 was more consistent among triplicates in terms of sonicated 
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saline count and exhibited a decline in viability over time.  Strain UAMS-1 had higher 

saline counts but also with larger variability among triplicates, suggesting that this strain 

may be more proliferative.  However, all 24 rod samples resulted in numerous colony 

growths when rolled onto a blood agar plate after extensive sonication (several minutes 

done in spurts), indicating that the saline count may not be reflective of the actual degree 

of surface colonization, but rather the amount of more loosely attached bacteria.  It 

appears that both strains were able to colonize PMMA surface with very tight adhesion, 

resulting in colonies that remain attached on the surface even after sonication.  The 

variability in each set of saline counts, as shown by the error bars in Figure 8.26, did not 

necessarily reflect variations in the viability of the S. aureus on the surface, but rather 

variations in the amount that could be sonicated off the surface.  Hence, changes in both 

viability and adhesion capability were reflected in the saline count.  Regardless of the 

exact characteristics represented by the data, the results presented in Figure 8.26 and 

Table 12 suggest that S. aureus 25923 and UAMS-1 remain sufficiently viable in a dry 

state on PMMA surface at -80°C over at least two weeks.   Therefore, a stored implant 

should be able to induce osteomyelitis.   

 

Looking back at observations made for rabbits 08-044 and 08-045, it now appears more 

likely that osteomyelitis did develop in these animals, as we would expect the 25923-

colonized PMMA implants to have adequate numbers of viable bacteria on the surface 

upon insertion.  The rabbits’ immune systems could be sufficiently robust to clear away 

the S. aureus within four weeks.  This hypothesis would suggest that a 2-3 week 
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incubation period may be optimal for our osteomyelitis model.  Further assessment of this 

osteomyelitis model should be undertaken. 

 

8.4 Conclusion. 

In vivo evaluation to evaluate the efficacy and biocompatibility of [(Poly 

1/HA)(GS/HA)]n coatings was proposed, but the actual coating evaluation had not been 

performed due to the unforeseen challenge in establishing a reproducible osteomyelitis 

model.  The initial model adopted from the literature, which involved injection of a liquid 

S. aureus inoculum into a bone defect, was problematic due to inoculum leakage, causing 

soft tissue infections, lack of sufficient osteomyelitis development, and high animal 

morbidity.  Several modifications to the injection model, such as reduction in inoculum 

volume and an improvement on defect sealing procedure, were not successful in 

achieving a reproducible osteomylitis model.  Only a major update to the procedure, 

eliminating liquid inoculums in favor of a colonized implant, resulted in the desired 

clinical signs for osteomyelitis without the undesired morbidity.  However, this new 

model was inconsistent in its microbiology evaluations, and another modification to the 

model – switching the inoculating S. aureus from strain 25923 to UAMS-1, was 

evaluated.  UAMS-1 was observed to survive -80°C storage better, although its surface 

count was also less consistent among triplicates, suggesting that UAMS-1 might have a 

higher proliferative ability which would result in both robustness and variability.  

Compiling all the observations made throughout the four rounds of model, I believe that 

induction by a colonized rod followed by a 2-3 week incubation would be the optimal 

osteomyelitis model. 
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Overall, a major lesson learned is that as laboratory assessments progress into clinical 

evaluations, one should anticipate higher variability and hence greater challenge in 

establishing the desired set of results.  A “take it from the literature” approach may not 

work at the in vivo level, and significant amounts of human .  I believe that we are close 

to establishing a working model of osteomyelitis, and I look forward to seeing 

evaluations of [(Poly 1/HA)(GS/HA)]n and other antimicrobial LbL coatings to be 

developed. 
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Chapter 9.  Incorporation of siRNAs 
 

9.1 Introduction 

Layer-by-layer assemblies incorporating poly(β-amino esters) for tunable release of 

DNAs have been extensively characterized by Lynn et al.111-115, 117, 118, 260  They have 

demonstrated applicability to a variety of plasmids, tunability of release dosage and rate, 

and high efficiency in in vitro transfection.  However, as of early 2006, no work had been 

reported on the delivery of siRNAs from an LbL assembly, whether hydrolytically 

degradable or not.  Given the successes with DNAs, such a was anticipated to also work 

with RNAs.  Early contemplations on the incorporation of siRNAs did not materialize 

due to cost and resource considerations.   

 

In late 2005, James Quattrochi of Harvard Medical School approached us for a potential 

collaborative project on the incorporation of siRNA and carbachol into LbL assemblies 

for the sequential release of the two substances from the surface of a nanosphere.  The 

purpose of the dual release was to study the mechanism of potential sleep aid medication.  

The following is a brief background on Quattrochi et al.’s research: 

Pons Genicualte Occipital (PGO) waves are phasic electrical bursts of neural 

activity that occur right before the onset of rapid eye movement (REM) sleep in 

areas of the brain responsible for eye movements, visual information and visual 

processing of that information.  PGO waves are thought to be responsible for the 

vivid visual experience of dreams and the rapid eye movements typical of REM 

stage.   
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Through carbachol injection into the parabrachial nuclei (PBN) area of the feline 

brain stem, Quattorchi et al. was able to enhance pontogeniculooccipital (PGO) 

wave without altering any activities within the brain associated with sleep, e.g. 

REM or sleep stages.  Hence, they demonstrated that PGO waves could be 

separated from REM and sleep in general. 

 

Quattrochi et al. subsequently designed an siRNA that targets against c-fos, an 

IEG (immediate early gene) that is hypothesized by them to be one of the 

switches that initiate and/or maintain PGO wave enhancement following 

carbachol stimulation.  The siRNA therapy should not affect sleep itself, but 

instead disrupts the initiation and maintenance of PGO waves, hence nullifying 

the effect of carbachol.  Up to this point in discussion, Quattrochi et al. were not 

sure what siRNA would do by itself, because they had always co-administered it 

with carbachol to the feline brain stem.  

 

Instead of direct injection of carbachol and siRNA in free solution in the feline brain, 

Quattrochi et al. desired to have a sequential release of carbachol followed by siRNA 

inside a neuron, with a 6+ hr time gap between the two releases.  Hence, they envisioned 

a nanobead capable of uptake by neurons, followed by a retrograde travel up the neuronal 

dendrite into the central intracellular space to sequentially release carbachol and siRNA.  

Specifically, the nanobead would be LumaFluor’s Retrobead™, which were 100-nm 

polystyrene beads with carboxylated surface and fluorescent tags impregnated throughout 

the bead body that have been shown to be consistently uptaken by neurons.   
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The target system would be degradable PEMs deposited onto Retrobeads that would 

sequentially release carbachol then siRNA with the correct dosage and timing, though we 

were not sure what the “correct” dosages would be.  As a proof-of-concept, we wanted to 

show PEM encapsulation of siRNA on macroscale planar substrates with tunable release.  

Concurrent with this effort, we also studied PEM deposition onto Retrobeads and pursued 

strategies for incorporating small-molecule drugs like carbachol. 

 

While abundant literature exists on polymer-based delivery vehicles for siRNA, very few 

have reported on PEM incorporation of siRNA as of spring 2008.  Recksiedler et al.’s 

work on (PABA/RNA) multilayers with electrochemically triggered release is the only 

publication that we have found so far261, although several conference proceedings on the 

subject have begun to appear.  They include Kidambi et al.’s (PLL/siRNA) that 

deconstructs under physiological salt condition of 0.25M NaCl with in vitro uptake by 

fibroblasts and primary hepatocytes262, and Soto et al.’s yeast cell wall particle system263.  

While all of the above are promising PEM systems for siRNA, there is plenty of room for 

additional developments towards higher tunability in dosage, release rate, and pendant 

functionalities. 

 

9.2 Materials and Methods 

 

Materials.  Poly(β-amino esters) (referred to as Poly X, X = 1 and 6) were synthesized as 

previously described 23.  Silicon wafers (test grade n-type) were purchased from Silicon 
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Quest (Santa Clara, CA).  Linear poly(ethylenimine) (LPEI, Mn = 25k) was sreceived 

from Polysciences, Inc.  Poly (sodium 4-styrenesulfonate) (PSS, Mn = 1M) and sodium 

alginate (or alginic acid) were purchased from Sigma-Aldrich (St. Louis, MO).  Sodium 

hyaluronate (or hyaluronic acid (HA), Mn = 1.76 MDa) was purchased from Lifecore 

Biomedical, Inc. (Chaska, MN).  FITC- and Cy5-labeled siRNA (sequence 

GGAGACAGAUCAACUAGAAdTdT, 13.8kDa) was custom ordered by Quattrochi et 

al. from Dharmacon (Lafayette, CO) with in vivo purity, preserved in 0.9% saline at a 

concentration of 0.2 μmol/mL (2.76 mg/mL).  RNAseZap, RNAse-free water, and other 

RNAase-free disposable supplies (e.g. pipette tips) were ordered from Ambion.  All 

materials and solvents were used as received without further purification.   

 

General considerations.  Silicon wafers and quartz slides were cut into rectangular 

substrates approximately 1.0 cm × 1.0 cm each.  The substrates were rinsed with 

methanol and deionized water, dried under nitrogen, and plasma etched in oxygen using a 

Harrick PDC-32G plasma cleaner at high RF power for 1 min.  Layer-by-layer thin film 

deposition for the (LPEI/PSS)10 base layers was performed using a Carl Zeiss HMS 

Series Programmable Slide Stainer, while films containing siRNA were made and 

handled in a biosafety cabinet that had been wiped down by RNAseZap.  Dry state 

ellipsometric measurements were conducted using a Gaertner Variable Angle 

Ellipsometer (6328 nm, 70° incident angle) and accompanying Gaertner Ellipsometer 

Measurement Program (GEMP) Version 1.2 software interface.  UV-vis readings, both of 

films deposited onto a quartz substrate or of free-solution siRNA in a quartz cell, were 

taken on a Cary 500 UV-Vis Spectrophotometer at 260 nm.  Any glassware, tweezers, 
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other tools, and equipment parts that would come in contact with the substrate was wiped 

with RNAseZap prior to use. 

 

Preparation of Polyelectrolyte Solutions.  Dipping solutions containing Poly X and 

siRNA were made at a concentration of 10 mM with respect to the polymer repeat unit in 

100 mM sodium acetate buffer (pH 5.1 by glacial acetic acid) prepared with RNAse-free 

water in a biosafety cabinet. Nondegradable base layers were deposited from dipping 

solutions of LPEI and PSS in deionized water pH adjusted to 4.25 and 4.75, respectively.  

Deionized water used to prepare LPEI and PSS solutions was obtained using a Milli-Q 

Plus (Bedford, MA) at 18.2 MΩ .  

 

Polyelectrolyte Deposition.  LBL thin films were constructed on a slide stainer for the 

base layers and  manually in a biosafety cabinet for the degradable layers.  A ten-bilayer 

nondegradable base film ((LPEI/PSS)10) was deposited by submerging plasma treated 

silicon substrates in an LPEI dipping solution for 5 minutes, then a cascade rinse cycle 

consisting of three deionized water rinsing baths (15, 30, and 45 seconds, respectively).  

Substrates were then submerged in a PSS dipping solution for 5 minutes followed by the 

same cascade rinsing cycle, and the entire process was repeated ten times.  The substrate 

with base layers was then thoroughly but gently wiped with ethanol to remove as much 

RNAse as possible without disturbing the base layers.  Next, degradable films were 

deposited on the existing polyanion-terminated base layer by repeating the above 

procedure manually in a biosafety cabinet wiped down with RNAseZap, with the (Poly 

X/siRNA)n architecture, dipping for 10 min in each of the Poly X and siRNA solutions, 
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with thorough rinsing in between by a gentle stream of RNAase-free water from a 

squirter.  Poly X solutions were re-made every 24 hours, and siRNA dipping solution and 

unfinished films were stored in RNAse-free vials wrapped in foil in the freezer.  Films 

were air dried inside the biosafety cabinet before storage.  Silicon substrate film buildup 

was monitored by ellipsometry at ten different predetermined locations on the film 

surface, while quartz substrate film buildup was monitored by Abs260 of the coated 

substrate.  All measurements were performed in triplicate.   

 

Measurement of Drug Release.  Abs260 calibration curve for siRNA in 1x PBS was 

established for by running a set of standards at known concentrations within a range 

relevant to our observed release concentrations, and performing linear regression on the 

concentration vs. Abs260 reading to establish a calibration curve.  For drug release 

assessment, (Poly X/siRNA)n films were immersed in 1 mL of 37C nuclease-free 1x PBS 

in a tightly capped, nuclease-free vial wrapped with aluminum foil to block out light.  

Vials were kept in cell incubators to maintain 37C.  At pre-determined time periods, 0.10 

mL of the release buffer would be withdrawn from the vial and transferred into a quartz 

microcuvette, and the cuvette would be capped with a fitted plastic cap then taken to a 

Cary50 UV-vis spectrophotometer to collect Abs260.  If the substrate was quartz, the 

substrate itself would be dried and mounted onto a nuclease-free support to be read in the 

UV-Vis spectrophotometer.  Pure 1x PBS buffer and quartz substrate with (LPEI/PSS)10 

base layer were used as the blanks.  All procedures requiring opening of the vial were 

performed in nuclease-free biosafety cabinets.  After reading, all buffer samples would be 

returned to the vial to maintain 1 mL of total release buffer.  If the buffer Abs260 reading 
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was beyond the linear range of the calibration curve, the entire release buffer would be 

diluted two-, four-, or eight-fold until a value within the linear range was obtained.  If the 

substrate was silicon, thickness reading would be taken on an ellipsometer, with a 

nuclease-free platform, at each release time point to establish the erosion profile.  Blanks 

were used for all measurements; these were either quartz cuvette filled with blank PBS, 

or quartz substrate with (LPEI/PSS)10 base layer. 

 

Microscopy.  Atomic force microscope (AFM) images were collected on a Dimension 

3100 model from Digital Instruments in tapping mode at an amplitude set point of 0.8 V 

under dry conditions. Height and phase images were taken at scanning rates of 

approximately 1.5 Hz.  Optical microscope images were collected on a Leica Leitz 

DMRX microscope with images taken by a Nikon Digital Camerica DMX1200F.   

 

9.3 Results and Discussion 

 

Quantification of siRNA.  Initial experiments were performed with FITC-labeled 

siRNA, as supplied by Quattrochi et al.  Instead of using fluorescent signal from FITC, 

quantity of siRNA was determined based on UV absorption at 260 nm, a signature for 

nucleic acids.  Figure 9.1 shows the UV-vis calibration curve.  For a better fit within the 

working range, only the portion lying in within Abs260 = 0.15-0.40 was used for the 

calibration equation.  PBS solutions of Poly 1 and Poly 6 up to 1 mg/mL were verified to 

not have detectable absorption at 260 nm.  
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Figure 9.1 - siRNA calibration by UV absorbance. 

 

(Poly X/siRNA)n film buildup.  Initial attempts at constructing (Poly X/siRNA)n films 

were made with Poly X dipping solution in 0.1M sodium acetate and siRNA dipping 

solution in deionized nuclease-free water.  However, no noticeable film growth was 

observed by ellipsometry or UV absorption after twenty deposition cycles.  The siRNA 

dipping solution was then switched to 0.1M sodium acetate, and film growth began to 

occur (see Figure 9.2).  This influence of siRNA dipping condition on film build-up was 

consistent with what Zhang et al. reported for (Poly 1/pGFP)n film buildup 111, and the 

authors hypothesized that the reduced pH in the pGFP dipping solution helped to 

maintain higher cationic charge on Poly 1 molecules residing on the topmost layer of the 

film, hence facilitating pGFP deposition.  The authors believed that the effect was not due 

to a higher ionic strength, as they demonstrated with equivalent strengths of NaCl. 
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(a) 

 
(b) 

 
(c) 

Figure 9.2 - (Poly X/siRNA)n growth curves in thickness and Abs260. 

(a) (Poly 1/siRNA)n, (b) (Poly 6/siRNA)n, (c) combining thickess growth curves from (a) and (b). 
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Both Poly X’s were able to bilayer with the siRNA with steady monotonic growth.  

Figure 9.2(c) reveals that Poly 6 films grew in thickness at a faster growth rate than the 

Poly 1 equivalents.  The higher growth rate of Poly 6 film had been observed for the 

encapsulation of other therapeutics, especially highly charged species, and was expected 

due to Poly 6’s higher hydrophobicity and lower charge density.  These properties 

resulted in looser ionic crosslinking with the highly charged siRNA, causing loopier films 

that grew faster in observed thickness but could be less dense within the film mass. 

 

In contrast to the thickness growth behavior, Poly 6 films grew slower in siRNA 

absorption signal than Poly 1 films.  However, as revealed later by the siRNA release 

data, (Poly 6/siRNA)40 actually contained more siRNA per unit area than the Poly 1 

equivalent.  It is unclear why the (Poly 6/siRNA)40 film exhibited lower Abs260 given 

identical quartz substrate as the Poly 1 film.  This observation suggests that if Abs260 was 

to be used to quantify amount of siRNA buildup within the film, separate calibration 

parameters would need to be established for different Poly X species. 

 

Both films exhibited an apparent asymptote in growth.  Due to the labor-intensive nature 

of film construction (manually done and had to remain in RNAse-free biosafety cabinet), 

film growths beyond 40 bilayers were not examined.  One hypothesis for this asymptotic 

phenomenon was that the rinsing method in the manual dipping process, in which the 

substrate was gently rinsed with a stream of water from a squirt bottle, produced 

mechanical stress that discouraged film growth beyond a certain thickness.  However, 
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under this hypothesis we would expect that Poly 1 and Poly 6 films would saturate to 

similar thicknesses, yet the data suggest that (Poly 1/siRNA)n would saturate around 400 

nm and (Poly 6/siRNA)n around 1000 nm.  Another potential explanation was that each 

Poly X or siRNA layer only adsorbed very little beyond charge neutralization, 

discouraging further film growth.  This lack of adsorption could arise from Poly X and 

siRNA’s conformations and orientations within the film that might somehow result in 

fewer non-ionic interactions such as van der Waals. 

 

Film morphology.  (Poly X/siRNA)n films were inspected under an optical microscope 

during their build-up process.  A distinct island formation build-up process was observed 

from (Poly 1/siRNA)n films (see Figure 9.3(a)), while (Poly 6/siRNA)n films built up in a 

smooth, conformal fashion (see Figure 9.3(b)).  The μm-scale islands of (Poly 1/siRNA)n 

were different from the kind of nanostructures observed by Fredin et al. during the 

erosion of (Poly X/p-GFP)n films 115 due to the differences in size scales.  Such islands 

were most likely caused by unfavorable interactions between the substrate surface and the 

deposited polyelectrolytes.  One hypothesis was that the (LPEI/PSS)10 base layer, despite 

being nondegradable, might not be able to withstand the mechanical stress imposed by 

the process of wiping the substrate with Kimwipe.  Hence, the surface became less 

hydrophilic, and Poly 6’s more hydrophobic nature might actually promote non-

electrostatic interaction with the silicon surface to result in more uniform deposition.  

Interestingly, erosions of (Poly 1/siRNA)n and (Poly 6/siRNA)n films followed similar 

morphological progressions as the buildup in reverse. 
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(a)                                                                  (b) 

Figure 9.3 - Reflection optical image of (Poly X/siRNA)40 deposited on silicon. 

(a) (Poly 1/siRNA)40 - each “island” is approximate 100-200 μm in size, (b) (Poly 6/siRNA)40 

 

Since Lynn et al. observed nanoscale rearrangements of (Poly 1/DNA)n films over a 

course of incubation in PBS buffer112, 115, I investigated whether a similar phenomenon 

took place with (Poly 1/siRNA)n films.  AFM images of a (Poly 1/siRNA)40 film 

incubated for various amounts of time in RNAse-free PBS at 37°C are presented in 

Figure 9.4.  Since (Poly 1/siRNA)40 films were observed to coalesce and degrade in 

islands on a micrometer scale, all the AFM images were collected towards the middle of 

an island.  As the evolution of images in Figure 9.4 suggests, no nanoscale rearrangement 

with nanoparticle formation was observed in the course of (Poly 1/siRNA)40 film erosion.  

The film did become increasingly rougher and more pitted, but no regular or distinctive 

feature emerged.  I suspect that due to the less polymeric nature of siRNAs as compared 

to DNAs, Poly 1 was not able to complex the former as well, and hence was not able to 

form nanoparticles budding off from film surface. 
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9 hr 

Figure 9.4 – AFM images of (Poly 1/siRNA)40 (on island portions of the film) over a course of incubation 
in nuclease-free PBS buffer at 37°C.   

Incubation times are indicated right beneath each image.  Within each image, the left represents height 
image and the right phase contrast.  The last image is a 3D representation of 9 hr incubation. 

 

Assessment of siRNA release.  The dosage and kinetics of siRNA release were assessed 

on all four types of films (Poly 1 vs. Poly 6, and silicon vs. quartz substrates) through 

immersion in nuclease-free PBS at 37°C.  Film erosion was monitored via ellipsometric 

thickness on silicon or Abs260 on quartz substrate, while siRNA release was monitored by 

Abs260 of release buffer.  If the release buffer had Abs260 readings beyond the linear range 

of the calibration curve, the entire sample was diluted 1:2x to the desired reading range. 

 

Figure 9.5 show the film erosion and siRNA release curves of (Poly 1/siRNA)40 films 

from silicon and quartz substrates.  A total of 80 μg/cm2 of siRNA was released from 

(Poly 1/siRNA)40 on silicon over the course of 10 hours, with 50% of content released 

within 30 min.  The concomitant film erosion was more sustained, with 50% erosion 
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observed around 1 hour.  The mismatch between siRNA release and film erosion rates 

could be due to the partitioning of siRNA to the top of the film that arose from 

differential interactions with Poly 1 versus the solvent.  A residual film approximately 50 

nm in thickness would not erode away even after 100 hours of incubation.  The material 

make-up of this residual film was unknown. 

 
(a) 

 
(b) 

Figure 9.5 – (Poly 1/siRNA)40 film erosion and siRNA release. 

(a) from a film deposited on silicon substrate, with film erosion measured by ellipsometric thickness, and 
(b) from a film deposited on quartz substrate, with film erosion measured by Abs260 of the film. 



 341

 

A smaller but comparable amount of siRNA was released from the quartz substrate (60 

μg/cm2), but in a more sustained fashion with matching rates of siRNA loss from the film 

and that of siRNA released into the buffer.  It was surprising to see the difference in 

release behaviors from hypothetically identical films deposited on different substrate 

materials.  One potential explanation was that (Poly 1/siRNA)40 had a more favorable 

interaction with the quartz surface due to a more intact (LPEI/PSS)10 base layer that was 

more robust against the wiping; the robustness could stem from the longer plasma etch 

time on the quartz substrate, as quartz could withstand longer etch time than silicon.   

Unfortunately the examination of quartz substrates under transmission microscopy did 

not produce observable images that could identify island vs. uniform film formation.     

 

Figure 9.6 presents data from Figure 9.5 in a different format, presenting both erosion 

and release as % of total progress to facilitate rate comparisons.  As the figure shows, 

quartz substrates resulted in (Poly 1/siRNA)40 films with less burst release within the first 

several hours.  Interestingly, film erosion from a silicon substrate was the most sustained 

overall (see Figure 9.6 (b)), extending long beyond complete release of siRNA.  This 

observation suggested that siRNA release was partially driven by diffusion out of the 

film, and that some siRNA-free film mass was left in the end – possibly composed of 

Poly 1 held in place with some counteranions from the buffer. 
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(a) 

 
(b) 

Figure 9.6 - Comparing erosion and release of (Poly 1/siRNA)40 films on silicon vs. quartz substrates. 

(a) zoomed into the first 10 hours, and (b) displayed over the entire sampling period. 
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Figure 9.7 presents analogous data for (Poly 6/siRNA)40 films.  In contrast to (Poly 

1/siRNA)40, both silicon- and quartz-based (Poly 6/siRNA)40 films completed their 

siRNA release within half an hour.  Faster release from Poly 6-based film was expected 

based on the same reasoning as that for its faster growth rate: the higher hydrophobicity 

and lower charge density resulted in looser ionic crosslinks.  Based on this observation, I 

hypothesized that the release of siRNA from these Poly X films was dominated by bulk 

deconstruction of the film, as opposed to being driven by hydrolysis of Poly X.  If 

hydrolysis was predominantly at play, we would expect the hydrophobicity of Poly 6 to 

retard its hydrolysis and hence result in slower release of siRNA in comparison to Poly 1. 

 
(a) 
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(b) 

Figure 9.7 – (Poly 6/siRNA)40 film erosion and siRNA release. 

(a) from a film deposited on silicon substrate, with film erosion measured by ellipsometric thickness, and 
(b) from a film deposited on quartz substrate, with film erosion measured by Abs260 of the film. 

 

siRNA loading of Poly 6 was higher at 40 bilayers – 140 μg/cm2 for the silicon substrate 

and 80 μg/cm2 for the quartz substrate, as compared to 80 μg/cm2 and 60 μg/cm2 

respectively for Poly 1.  The discrepancy between silicon and quartz substrate loadings 

was also larger for the (Poly 6/siRNA)40 films, suggesting a sensitivity of drug dosage to 

the base substrate.  The cause of such a discrepancy was unknown, but likely due to the 

balance between polyeletrolyte-substrate and polyelectrolyte-polyelectrolyte interactions.  

As hypothesized previously, the quartz substrate might have a more intact base layer to 

promote better adhesion of the Poly X.  This in turn would compete with ionic interaction 

with Poly X and siRNA, leading to less encapsulation of siRNA overall. 
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Similar to Figure 9.6, Figure 9.8 presents an identical set of data as those from Figure 9.7 

but in a % total progress format.  For (Poly 6/siRNA)40, less difference was seen between 

the two substrates, as the films all deconstructed rather quickly.  In the first 0.5 hour, 

siRNA release from silicon was observed to occur more quickly than film thickness 

erosion, suggesting that the burst release was partially driven by siRNA diffusion out of 

the film.  A similar conclusion for (Poly 1/siRNA)40 was drawn.  However, in Poly 1’s 

case, film erosion was observed to sustain far beyond completion of siRNA release, 

whereas in Poly 6 film’s case, both siRNA release and film thickness erosion were found 

to complete in about 1.5 hours.  It appears that (Poly 6/siRNA)40 deconstructed so rapidly 

that no residual Poly 6 was left behind to slowly erode by hydrolysis. 

 

(a) 
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(b) 

Figure 9.8 - Comparing erosion and release of (Poly 6/siRNA)40 films on silicon vs. quartz substrates.  

(a) zoomed into the first 10 hours, and (b) displayed over the entire sampling period. 

 
 

9.4 Conclusion. 

Naked siRNAs were incorporated into LbL assemblies through simple bilayering with a 

poly(β-amino ester).  By tracking both film thickness and Abs260 of the films, I observed 

a steady and sigmoidal growth of (Poly X/siRNA)n films up to n = 40.  Subsequent 

release of siRNAs from these films under model physiological conditions was also 

monitored by both film thickness and Abs260, and indicated good correlation between 

rates of siRNA release into the buffer and of film erosion.  Both the thickness growth rate 

and the subsequent rate of siRNA release from these films were highly dependent on Poly 

X, with Poly 6 films growing notably faster than Poly 1 films and releasing their siRNAs 

in a much less sustained fashion.  Both observations could be attributed to Poly 6’s higher 

hydrophobicity and lower charge density, which would result in looser ionic crosslinking 

with the siRNAs.  Release appeared to be driven by a variety of mechanisms – siRNA 
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diffusion, Poly X hydrolysis, and bulk delamination of polymers.  In the case of Poly 6, 

bulk delamination was thought to be most dominant. 

 

This study provided proof-of-concept support for the ability of hydrolytically-degradable 

LbL assemblies to deliver siRNAs in a tunable fashion.  While dosage tunability was not 

directly demonstrated at various numbers of layers, the smooth Abs260 growth curves 

suggest that these films can be easily tuned on the amount of encapsulated siRNAs.  A 

major next step for this project would be to assess the in vitro activity of the siRNAs 

released from these films through some kind of knockdown assay.  In designing in vitro 

and in vivo studies on siRNA activity, one must include all necessary controls to 

distinguish between immunostimulatory versus gene silencing effect of the siRNA264.   
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Chapter 10.  Appendices 
 

Appendix A. Acronyms 
 

Acronym Full Name Description 
AmP Antimicrobial peptide A family of short peptides with broad 

spectrum bacteriocidal activity. 
BCA Bicinchoninic acid An agent used for colometric quantitation of 

proteins and peptides. 
bFGF Basic fibroblast growth 

factor 
A class of growth factors that promotes 
fibroblastic cell proliferation. 

BMP Bone morphogenetic 
protein 

A class of growth factors especially useful for 
therapeutic osteogenesis 

BSA Bovine serum albumin A model protein often used in polymer matrix 
release studies. 

Chi Chitosan A biocompatible polysaccharide; found to 
freely diffuse among layers. 

Dex Dexamethasone A non-steroidal anti-inflammatory drug. 
DS Dextran sulfate An anionic polysaccharide. 
FGF See bFGF  
FITC Fluorescein 

isothiocyanate 
A fluorescent tag often used for particle 
release studies. 

FTIR Fourier Transform 
Infrared Spectroscopy 

An analytical technique that measures the 
absorption of various infrared light 
wavelengths by the material of interest. 

GS Gentamicin sulfate An aminoglycosidic antibiotic. 
HA Hyaluronan An anionic polysaccharide. 
Hep Heparin An anionic polysaccharide with anti-

coagulant function. 
IOL Intraocular lens An implant replacing natural lens of the eye 

after surgical cataract removal 
LB Langmuir-Blodgett A technique to make multilayered thin films 

via transfer of preassembled monolayers from 
a solution interface to the substrate. 

LbL Layer-by-layer Construction of multilayered films by 
sequential adsorptions of polyelectrolytes. 

MW Molecular Weight  
PAA Poly(acrylic acid) Weak polyanion. 
PB Prussian blue A transition metal hexacyanoferrate complex; 

potential candidate for electrochemically-
degradable drug delivery device 

PDADMAC Poly(diallyldimethyl-
ammonium chloride) 

A polycation. 

PEI Poly(ethylene imine) Commonly used for DNA delivery; has been 
found to be mildly cytotoxic. 

PEL Polyelectrolytes Polymers consisting of charged subunits. 
PEM Polyelectrolyte An LbL-assembled thin film of polyelectrolytes
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multilayers 
PGA Poly(glycolic acid) See description for PLA. 
PLA Poly(lactic acid) A polyester which is a natural metabolite and 

highly biocompatible. 
PLGA Poly(lactic-co-glycolic 

acid) 
A copolymer commonly used to make 
micro/nanospheres which can encapsulate a 
wide range of drugs. 

PLL Poly(L-lysine) Polypeptide commonly used in LbL assembly. 
Poly 1 A poly(β-amino ester) A degradable, biocompatible polymer created 

by Lynn et al.23;  see Figure 1. 
PSS Poly(styrene sulfonate) Strong polyanion commonly used for LbL 

assembly. 
QCM Quartz Crystal 

Microbalance 
A mechanical, surface-specific technique that 
measures the mechanical properties of an 
adsorbate, includind viscosity, elasticity, 
density and thickness. 

VEGF Vascular endothelial 
growth factor 

A class of growth factors especially useful for 
therapeutic angiogenesis 
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Appendix B. CAC Protocol on surgical procedures. 

 
 Surgical Procedures 

This form may be submitted in support of a protocol application or separately, as an 
addendum.  If this is an addendum, please also provide a cover letter that includes 
the following:  PI Name/Department; Protocol Number/Title; Contact Person/Contact 
Details; and PI Signature (required).  If submitting a request to add additional 
surgical procedures to the use of animals that have had, or been approved for, prior 
surgery, please first review the last section of this form. 
 
Indicate which type(s) of surgery will you be performing: 

Single Terminal Surgery Single Survival Surgery Multiple Surgeries on
Objectives Explain your objectives. If more than one surgical procedure is proposed for 

individual animals, provide scientific justification. Considerations of reducing the 
number of animals used or cost are not sufficient justification.  

To evaluate biocompatibility and efficacy of polymer-based antibiotic-
eluting films on implant surfaces in-vivo, for the specific application of 
delivery from the surfaces of prostheses for revision arthroplasty.  This aim will 
include the determination of compatibility and toxicity in a typical implant
environment, and will also involve collaborations with Dr. Myron Spector and his
associate, Dr. Hu Ping Hsu, who will perform the animal studies.  Infection
studies using a rabbit model will be used to determine the remediation of bone
infection from implants coated with a single antibacterial agent at doses
determined to be efficacious based on in vitro studies.  The results of these 
studies will be addressed in consultation with Drs. Larry Madoff and Mitch Harris.

 
Animal Species  
to be Used 

Animal species (indicate strain and/or genetic modification) and quantities per year: 
> 20 New Zealand white rabbits, male, 2-3 kg, 3 months old 

Details of Surgery Describe details of surgery including preparation of animal such as fasting (if 
applicable), surgical approach, intraoperative manipulations, and methods of closure 
(type of suture or wound clip to close each tissue layer as applicable - muscle wall, 
subcutaneous tissue and skin).  If multiple surgeries on individual animals are part 
of the experimental design, describe each separate surgery, the intended number 
per animal over its experimental use, and the time interval between procedures. 
 
> All surgical procedures and follow-up care will be done with especial attention to 
avoid S. aureus contamination of the facilities, following the guidelines established in 
Section 5 of Supplement I of the original application. 
 
Rabbits will be divided into seven groups: (1) osteomyelitis evaluation with PMMA rod 
colonized in 106 CFU/mL culture, (2) osteomyelitis evaluation with PMMA rod 
colonized in 108 CFU/mL culture, (3) positive control with treatment of established 
osteomyelitis by Palacos® R+G, a gentamicin-impregnated bone cement, (4) 
negative control with treatment of established osteomyelitis by uncoate titanium rod, 
(5) sample group with gentamicin-coated titanium rod, (6) sample group with 
lysostaphin-coated titanium rod, and (6) sample group with gentamicin and 
lysostaphin-coated titanium rod.  Two animals will be assigned to each of groups (1)-
(4), while four animals will be assigned to each of groups (5)-(7), and evaluations on 
groups (1) and (2) will be completed before initiating the remaining groups.  
Anesthesia will be induced by by SC doses of  35 mg/kg ketamine and  5 mg/kg 
xylazine,.  The rabbits will also be administered a SQ dose of 0.01-0.05 mg/kg 
Buprenex and 0.2 mg/kg Meloxicam SC/OP.  The back of the rabbit will be shaved 
and prepared with alternating Betadine scrub and 70% IPA, and 10 mg lidocaine will 
be administered into the lumbosacral space.  The left thigh and leg will be shaved, 
and each lower extremity will be prepared with several 7.5% Povidone Iodine scrubs 
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and final 70% alcohol rinse. Anesthesia will be maintained using 1-3% isoflurane gas 
with oxygen at 1–1.5 L/min through an endotrachael tube.   Endotracheal tubes will 
be lubcricated with Xylocaine ViscousR solution prior to insertion.  Throughout each 
procedure, animal’s heart rate, respiratory rate, and oxygen level will be monitored.  
Lactated Ringer’s solution will be administered through a catheter inserted into a 
cephalic vein, at an intial rate of 10 mL/kg-hr then tapered according to observed 
hemodynamic parameters.   

The left lower extremity of each animal will be draped with sterile adhesive surgical 
drapesAll surgical procedures will be performed under sterile conditions .   To 
minimize variability and ensure a standardized surgical procedure, all operations will 
be performed by Dr. Ho-Ping Hsu.  A straight medial side incision, approximately 3.5-
4.0 cm, will be made, the midpoint of which will be centered to the knee joint line.  
The skin and soft tissue will be dissected to the deep investing fascia. An SC dose of 
2 mg/kg Lidocaine at the surgical site after opening. A small longitudinal incision will 
be made at the front portion of the superior attachment of MCL, approximately 10 mm 
above a branch of popliteal artery, to release the periosteum to exposue the medial 
femoral condylar surface.  Using a 3.00 mm sterile drill bit, a defect 10 mm in length 
will be drilled at the level of the posterior portion of the anterior edge of medial femur 
about 10 mm.  Blood loss will be monitored, and animals will receive three times the 
estimated loss throughout the procedure.  The entire surgical procedure will be kept 
wet by sterile saline sponges, and irrigation is used and maintained during the drills. 

After saline joint lavage and hemostasis, a colonized PMMA (poly(methyl 
methacrylate) rod (2.8mm diameter and 8.5mm length, with a 3.0mm diameter cap at 
the top to seal the defect), prepared by immersing sterilized rods in a 108 CFU/mL 
exponentially-growing culture of S. aureus overnight, will be press-fit into the defect. 
The surgical site will be close in layers using 3-0 interrupted sutures for the investing 
fascia, 3-0 sutures for the superficial fascia and subcutaneous tissue, followed by 
reapproximation of the skin with a subcuticular stitch using a non-absorbable 3-0 
monofilament nylon suture. Postoperatively, AP and lateral radiographs will be taken 
on each animal’s surgical site, and each animal will be monitored closely until full 
recovery from anesthesia was observed.  Once in their individual cages, each animal 
will be allowed free access to water and antibiotic-free food. Animals will be 
monitored daily for food intake, stool and urine output, body temperature and 
behavior.  

After four weeks, rabbits from groups (1) and (2) will be sacrificed.  The PMMA rod, 
bone around the implant site, synovial tissue, synovial fluid, and joint capsule will be 
harvested for histological and microbiological evaluations.  7-10 cc of blood will be 
drawn from the heart after anesthesia but prior to euthanasia for CBC and 
microbiological evaluation.  We will begin with only one animal for each of groups (1) 
and (2) to evaluate morbidity, and modify CFU burden, defect size, and/or pain 
management regime for the second pair of animals accordingly.   Based on 
evaluations on groups (1) and (2), the more appropriate amount of S. aureus 
inoculum will be determined, and this will be the amount use on groups (3) and (4). 

Groups (3)-(7) will undergo identical survival proceure as outlined for groups (1) and 
(2) above.  However, these animals will receive a second survival surgery after the 
two-week recovery. X-rays of the left femurs will be taken prior to the second survival 
surgery, and the surgical sites of the animals will be reopened, following the same 
sterile surgical procedure and monitoring regimen as described above, and treated 
with focal debridement followed by saline lavage.  The PMMA rod will be retrieved 
and stored sterilely in a vial for microbiological assay..  The appropriate implant, 
according to the test group assignment, will be press-fit into the defect .  After 
hemostatsis and saline lavage, the wound will be closed in layers using the same 
procedure as described aboveAP and lateral radiographs will be taken on each 
animal’s surgical site prior to recovery from anesthesia.  Each animal will receive 
identical postoperative care as described in the previous paragraph.  
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Each animal will be euthanized two weeks after second surgery, according to the 
approved protocol.  An x-ray of the left femur will be taken prior to the surgery to 
confirm position of the implant.  7-10 cc of blood will be drawn from the heart after 
anesthesia but prior to euthanasia and stored in Vacutainers for CBC and 
microbiological evaluation.  Under sterile conditions, the skin of each knee will be 
sharply incised and the joint capsule will be exposed. Fluid will be aspirated from 
each knee joint. The joint capsule will then be sharply incised and the inflammatory 
reaction of each knee will be graded.  Biopsies from the joint capsule and synovial 
tissue and fluid surrounding the rod, will be obtained. The medial femur will be cut out 
and split in half along the implant site, each stored sterilely, one for microbiological 
evaluation and another for histology in 10% formaline.  The titanium rod implant will 
be retrieved after bone splitting and stored sterilely for microbiological assay.  All 
harvested tissues will be placed in 1 mL of sterile freeze medium and sample tare 
weights will be determined. Each rod will be sonicated for 30 min in a 4 °C water bath 
to detach bacteria.  Tissue samples will be homogenized under sterile conditions 
using a Polytron generator (Brinkman Instruments Inc., Westbury, NY) in a BL2 hood. 
Each homogenate will be kept at 4 °C before and after homogenization.  All tissue 
processing will be performed in instruments approved for BL2 bacteria use and 
confined within a BL2 hood if possible.  Any sample to be taken out of the BL2 hood 
will be tightly sealed in a leak-proof containing device.   

 
Personnel Name of surgeon:  Lab and home phone 

numbers: 
> Hu-Ping Hsu, M.D. > Lab: (857) 364-5343 

Cell: (978)987-1591 
If survival surgery, 
these name(s) of 
surgeon(s) should 
match survival 
surgery column in 
Section 8 of main 
protocol 

Name of anesthetist if different: 
> Alison Hayward, or Helen Chuang under 
supervision. 

 Lab and home phone 
numbers: 
> x2-3629, or x8-7038 

 Personnel responsible for postoperative care if 
different: 

 Lab and home phone 
numbers: 

 > Monitoring: Helen Chuang 
 
    
Veterinary care: Alison Hayward, DVM 

> Lab: x8-7038 
Home: x7-5696 
Cell: (617)905-3898 
Lab: (617) 253-3050 
Home: on file with DCM 

 Building and Room address where surgery will be performed (investigator’s lab or 
DCM facility with room number): 

 > E25 OR 1 (approved for BL2 procedure) 
 
Premedication (include doses in mg/kg, volume of injection(s), and route of 
administration): 
> SQ dose of 0.01-0.05 mg/kg Buprenex and an SC dose of 2 mg/kg Lidocaine at the 
surgical site right before surgery 
 
Anesthesia drug and starting dose. For injectables, provide dose in mg/kg, volume of 
injection(s), and route of administration. For inhalants, indicate delivery mechanism 
and scavenging method. 
> Anesthesia will be induced by SC doses of 35 mg/kg ketamine and 5 mg/kg 
xylazine and maintained by 1-3% isoflurane with oxygen at 1-1.5 L/min through an 
endotrachael tube.  No vaporizer or bell jar will be used, and the anesthetic circuit will 
be adapted with a scavenging hose that vents into the non-circulating facility exhaust.
 

Anesthesia   

How will depth of anesthesia be monitored? 
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> Depth of anesthesia will be monitored by: 
 
- Reflexes: including pinnae reflex, palperbral reflex, toe pinch reflex, and 
corneal reflex. 
- Cardiopulmonary function: including heart rate, blood pressure, and 
respiration. 
- Body temperature 
 
Throughout the surgery, the respiration, oxygen, pulse, EKG, and blink 
response of the animal will be observed and the animal closely examined for 
signs of distress including flinching. 
 

Use of paralytics under 
general anesthesia 

If you will be using paralytics, provide rationale, drug name, dose in mg/kg, volume of 
injection(s), route of administration and how anesthesia will be monitored and 
adjusted. 
> N/A 

Verification of Aseptic 
Technique 

It is required that aseptic technique be used in all survival surgical procedures. All 
the aspects of aseptic technique listed below must be addressed. Give 
rationale if you wish to be exempt from any of these. 

 Indicate which methods will be used for instrument sterilization:  
 

Autoclave    Autoclave with use of Glass Bead Sterilizer between animals  
 

Other (describe along with rationale): EtO, for the surgical marker which is heat 
sensitive. 

 Indicate which methods will be used for implant sterilization:  
 

Autoclave    Ethylene Oxide    Commercially-supplied Sterile Implants 
 

Other (describe along with rationale): immersion in 70% ethanol for 24 hours. 

 Verify that aseptic preparation of the surgery site will include: 
 

 Clipping hair (if present) with #40 blade or using a depilatory agent followed by 
cleaning the incision site with several cycles of povidine iodine (Betadine scrub), or 
chlorhexidine scrub, followed by alcohol rinse.  Final application of Betadine or 
chlorhexidine solution is considered optional. 
 

Other (describe along with rationale): 
 Indicate which methods will be used for maintaining the aseptic/sterile field* 

(check all that apply): 
 

Sterile Drapes     Sterile Gloves     Face Mask     Sterile Surgical Gown     
Surgeon’s Bonnet    

 
Other (describe in detail): goggles and shoe covers. 

 
*Due to visibility problems related to small body size and relative risk of 
contamination, the use of drapes, gowns, and bonnets may not be practical for 
some forms of rodent surgery. NIH Guidelines for Aseptic Surgery on Rodents 
are posted on the CAC website at https://web.mit.edu/comp-
med/Restrict/CAC/sptop11.htm [CAC Policies/Special Topics]. 
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Procedures known to cause postoperative pain in humans should be considered 
painful to animals. Analgesia should be routinely administered before anesthetic 
recovery and continued postoperatively based on the relative invasiveness of the 
procedure and evaluation of each animal for signs of pain (for example, a 
thoracotomy is considered sufficiently painful that analgesia should be given for 
several days irrespective of what appears to be a comfortable postoperative animal).  
Drugs of choice include buprenorphine, morphine, fentanyl (available as patch for 
larger species), carprofen, and ketoprofen (injectable drugs with systemic effects); 
and lidocaine or bupivicaine (longer acting lidocaine) for regional analgesia, such as 
for a thoracotomy.  Consult the Laboratory Animal Users’ Handbook and the 
veterinarian for your animal colony for advice on drug selection, dosage, potential 
side effects, and duration of pre-emptive analgesia.  If analgesia will interfere with 
your research objectives, you must provide scientific justification. 
 
Describe the postop care plan including how often animals will be monitored and 
how potential complications such as pain, inflammation or infection will be treated.  
All drugs (analgesics, anti-inflammatories, antibiotics, others) to be used must be 
named along with the starting dose in mg/kg and route and timing of administration 
(supply details even if described elsewhere in the protocol).  Pre-emptive dosing 
with analgesics during surgery prep is optimal to achieve adequate blood levels 
before anesthesia wears off.  Continued dosing should be based on assessment of 
each animal for signs of pain.  Antibitoics should be chosen based on risk 
assessment in combination with advice from the veterinary staff.  
The rabbits will also be administered a SQ dose of 0.01-0.05 mg/kg Buprenex and an 
SC dose of 2 mg/kg Lidocaine at the surgical site right before surgery.  0.01-0.05 
mg/kg Buprenex SQ Q6-12hr will be given in the first 24 hrs then more as necessary.  
Animals will be monitored for signs of pain, distress, or sepsis based on food and 
water consumption, breathing and heart rate, stool and urine output, redness or 
swelling at surgical site, body temperature, abnormal posture and behaviors, 
respiration, physical movements (including twitching and tremor), response to stimuli, 
and vocalization.  Additional pain management will include 0.2 mg/kg Meloxicam 
SC/PO Q24hr as necessary..  
 
List any additional follow-up care until healing is judged complete including when you 
expect to remove skin sutures or wound clips: 

Postoperative Procedures, 
Analgesia Plan, and 
Maintenance of Medical 
Records 

> Animals will be monitored daily for signs of pain,distress, or sepsis as described 
above.  In addition, animal weight will be monitored for excessive loss.  Animals that 
appear to be in discomfort will receive 0.01-0.05 mg/kg Buprenex SQ Q6-12hr and 
0.2 mg/kg Meloxicam SC/PO Q24hr as necessary.  .  Animals displaying signs of 
poor condition postoperatively will be euthanized by IV injection with 120 mg/kg 
Pentobarbital.  These signs of moribund condition include: sepsis (as indicated by 
signs of septic shock, including fever, rapid breathing, increased heart rate, 
decreased urine output, and lateral recumbeny), excessive weight loss (>15% initial 
weight within two weeks), lack of responsiveness to stimuli and persistent non-weight 
bearing lameness.  If the animal is experiencing excessive weight loss and an 
euthanasia is scheduled within 2 days, the animal may be force-fed with wet feed 
(combination of powdered pellet, Nutracal, and water) for temporary weight 
maintenance.  No suture or clip removal is necessary. 
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Rodents, birds, amphibians, reptiles and similar species should have DCM-issued 
white surgery cards posted on their cage with clear documentation to alert the 
veterinary staff to the date and type of surgery performed. These cage cards should 
also indicate preemptive analgesia and list ensuing postoperative monitoring entries 
as needed until healing is complete (7-14 days on average). DCM postoperative 
care forms for rabbits, ferrets, livestock, nonhuman primates, cats, and dogs must 
be completed at the time of surgery, with monitoring forms kept in the animal room. 
Surgery cage cards or DCM-issued surgery forms must remain with the animal until 
sutures or wound clips are removed and postoperative complications have been 
resolved. Note that the drug regimens (drug name, dose, route and timing of 
administration) must be documented on the DCM-issued white surgery cards or in 
the animal’s medical record on the same schedule as approved by the CAC unless 
veterinary consultation changes the treatment plan. 

 STOP:  The remainder of this supplement is to be filled out only in the case 
where one needs to request additional, major survival surgical procedures in 
individual animals beyond the quantity that has been previously approved by 
the CAC.  

Request for Additional Major 
Survival Surgical Procedures 
Beyond Previously Approved 
Number 

If this is a request for additional surgical procedures on individual animals beyond 
the quantity that has been previously approved by the CAC, and the surgical 
procedures you will perform have been previously described and approved by the 
CAC for this protocol, please fill out (just) the information below. If the additional 
surgical procedures and personnel are not identical to descriptions already in your 
approved protocol, please also fill out the appropriate sections above to indicate 
changes. 

Animal Species and ID (common name, ear tag, tattoo etc.): 
> 
 
Describe objectives and scientific justification: 
> 
 
Provide brief description of additional surgical procedure(s): 
> 
 
Describe surgical history of each animal or, if more appropriate, each experimental 
group (such as rodents). List major procedures, dates performed, any morbidity 
encountered, and its resolution.  

 

> 

  
 
 
 Date: 

DCM Veterinarian 
Endorsement 

Signature of DCM veterinary staff confirming that clinical condition of animal(s) is 
(are) good to excellent and that additional surgery is expected to be routine. 
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