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ABSTRACT

A temperature structure appropriate for maritime areas is employed

to find exact solutions to the non-linear quasi-geostrophic omega and

vorticity equations, using a procedure similar to that used in a quasi-

geostrophic model by Sanders (1971). Results are qualitatively similar

to those found in the latter model, and thus, are consistent with the

traditional baroclinic stability theory. The principal improvement in

this new version is the finding that for intensifying storms, the cold

tropospheric temperature perturbation also intensifies. This temperature

perturbation is crucial to the storm intensification. Thus, we have a

consistent physical mechanism which accounts for observed intensification

of baroclinic waves. A frictional formulation is developed by solving

for the frictionally induced vertical motion, and solving the vorticity

equation, which includes both the effects of divergence and dissipation.

A check on the validity of the frictional expression is made in connec-

tion with a simple thoery of thickness change over low centers. It is
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found that the theory works well for land cases, thus, motivating us

to use the theory for oceanic areas, where the density of data reports

often precludes an accurate thickness analysis over an intense storm.

A large sampling of soundings from areas under the influence of

intense maritime storms yielded little direct evidence of deep convec-

tion in those areas. However, it is speculated that convection may at

times be an important factor in the fast evolution of maritime storms;

the small space and time scales involved in convective processes may-

have precluded us from detecting any deep statically unstable layers.

It is found by applying our sounding sample and diagnostic model to two

cases of rapidly intensifying storms that our present model is not able

to account for the observed rapid intensification.
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Professor Frederick Sanders
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I. Introduction

Intense extratropical oceanic cyclones directly affect the lives

of relatively few of the world's inhabitants. Nevertheless, these

storms form an essential part of such semipermanent meteorological

features as the Aleutian and Icelandic lows, both of which account in

part for the observed wind distribution in mid to high latitudes. They

also play a crucial role, along with continental extratropical distur-

bances, in the necessary vertical and meridional transport of angular

momentum and heat, as has been discussed by Palmen and Newton (1969).

Rapid deepening is also observed to occur more frequently in maritime

storms than in continental cyclones.

In order to examine some of the properties of these disturbances,

we should like to examine the results of a structurally simple diag-

nostic model. Inspiration for such work comes from Sanders (1971).

However, this latter model contains a temperature structure with a hori-

zontal temperature gradient decreasing vertically from its maximum

value at the surface to zero at the simulated tropopause level. Since

we feel this represents an inadequate representation of temperature

for maritime regions, we will use a more appropriate thermal structure.

In addition, a larger range of effective vorticity stability will be

used when we consider the selected properties of the model. Documenta-

tion for such a move will be made from an examination of the vertical

structure of temperature and relative humidity in areas affected by

intense oceanic storms. Due to the apparent importance of friction in

the termination of deepening, a new formulation of surface friction effects

will be discussed. Finally, we shall attempt to document the problem of
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incorrect initial analysis with respect to oceanic cyclone intensifica-

tion by examining two classic cases of explosive maritime storm develop-

ment.
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II. The Diagnostic Model

Ha. Vertical Motion

Following the procedure of Sanders (1971), we will assume that

the flow is specified by the quasi-geostrophic vorticity equation

-4 i-O U a(1)

and by the thermodynamic equation

- (2)

where is the relative vorticity, X0  is a constant value of

the absolute vorticity,J f , is the geopotential, and the

stability parameter 6 9 ~I/)(4 ; ' 4 is a

function of pressure only. The relative vorticity, using the geostrophic

relationship, may be expressed as

where 0 is some constant value of the Coriolis parameter.

Equation (1) now becomes

-"f, ,(3)
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Combining equations (3) and (2) to eliminate - now yields

the V0 -equation.

Using a structurally simple, yet realistic profile of temperature

will allow us to solve equation (4).

We assume the following thermal structure:

where x and y axes are directed eastward and northward, respectively;

a 'is the intensity of the meridional temperature gradient, and T repre-

sents the amplitude of the two-dimensional harmonic variation of temper-

ature. This simplistic temperature profile does not lend itself to

excessive mathematical complexity in the derivation of any forthcoming

equations, and yet is quite realistic for extratropical maritime regions.

Equation (5) indicates that the only variation of temperature in the

vertical (with p as the vertical coordinate) is represented by the pres-

sure dependence on the mean temperature for a given pressure level.

Thus, there is no vertical variation of the horizontal temperature con-

trast. This is approximately true over much of th- troposphere for

oceanic regions. However, this temperature structiLe would extend to

the top of the atmosphere, unless we specified a tropopause level,

above which our temperature profile would be invalid. We shall specify

this level by Pz , and disregard atmospheric processes above this
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level. The price we would have to pay in attempting to realistically

model stratospheric temperature (in the form of excessively complicated

expressions) would presumably not be worth the additional physical

insights to be gained from such an attempt. Indeed, allowing the tem-

perature structure to stray unrealistically above the tropopause, just

for the sake of defining the expression for all p, can prove to be

potentially hazardous, as we shall later see.

The stability value - is assumed to be a function of pressure

only, and thus will be associated with Tr from expression (5).

The definition of 8 AI 6 , and the hydrostatic condition yields

and

with R•

Now, we define another stability parameter

where YZ and YO correspond to isothermal and dry adia-

batic lapse rates, respectively. With 70  now chosen as a constant

value of , and being. assumed independent of pressure,

the expression for 6 becomes

6(? KTOrL (6)
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The distribution of geopotential at P=f' io000 mb is given by

) )S 9 ^ (T4(7)

Here, A represents the phase lag of the 1000 mb geopotential

field with respect to the temperature field. A more complete explana-

tion of % and 0 is given in a discussion of the original model

(Sanders, 1971). Now for our "no-tropopause" case, or the horizontal

temperature variation being independent of height:

where

and p is to be expressed in mb.

In order to construct an appropriate V-equation for this structur-

ally simple model, we will represent the horizontal velocity V

geostrophically, as:

and the absolute vorticity
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Using these relationships and the definitions of 6() and ))

the~J-equation (4) becomes

J T

We will use thej -plane approximation and regard as

a constant. For example, \  . S would

correspond to a latitude of about 450.

Because of this simplified temperature field, expression (9) is

a good deal less complicated than the corresponding equation in the

original model (see Sanders, 1971). However, the physical interpreta-

tion of the functions on the right side of (9) remains the same.

The first term represents the vertical derivative of thermal vorticity

advection due to the perturbed part of the temperature field by the

portion of the thermal wind due to the basic north-south temperature

gradient. The second portion of the first term involves the vertical

derivative of the advection of earth vorticity by that part of the

thermal wind due to the perturbed temperature gradient. The second

term represents two identical effects in this model: the first being
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the advection of the 1000 mb vorticity field by the thermal wind due to

the meridional temperature gradient, and the second is due to the advec-

tion of this temperature field by the 1000 mb wind. The third and final

term is the effect of the advection of the perturbed part of the temper-

ature field by the 1000 mb wind.

The first term vanishes at the x-position of the temperature

perturbation centers, while the second disappears at the x-position of

the 1000 mb geopotential centers. The third term disappears when the.

1000 mb center coincides with cold or warm pool centers (A=-O ),

at any y value corresponding to the latitude of the 1000 mb center

(y = 0), or at the latitude where no 1000 mb meridional wind component

exists (y = Lq. ). Thus, it is evident that the only potential con-

tribution to vertical motion over the 1000 mb center comes from the

first term on the right-hand side of (9).

We shall now divide the solution of (9) into three parts, corres-

ponding to the three forcing functions mentioned above:

LJt=hW, +h Le pJ 3  (10)

with the three parts of (9) as:

_ _~ (la)
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(11b)

and

wUz tu::4
FI , L , (lic)

To find the solution, we require that each component of Whave the

same horizontal structure as its corresponding forcing function.

So

Ua z ( (12)

and I

Now, equation (1la) becomes

(y4 J ] t 7 JnL

(13)

Since equations (9) and (13) are second order equations, two

boundary conditions are needed forJi. We will requirer0, and each of

its three components, to vanish at P = Po, and P = PT. PT, as was

+
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discussed earlier, is -some specified pressure value of the tropopause.

We shall ignore all vertical motion above PT, because our assumed tem-

perature structure makes no attempt to be realistic above this level.

The computations performed in this paper will assume PT = 250 mb, which

is a bit below the traditional vertical motion vanishing level of 200

mb. This lower level is chosen to mitigate somewhat the effect of strong

forcing aloft. The solution to equation (13) is, with these boundary

conditions:
N A

O W % (14)

The values of the constants shown in the previous expressions are:where no ' 1) _jkT

T^ sI
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and

Proceeding in a similar manner to find 
the solutions to

Equations (llb) and (llc), we have
and

Subject to the same boundary conditions 
mentioned before, the

A A

expressions for and are

t (15)
5 bT
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where

and

where

and

Each of the three components of corresponds to the appropriate

forcing function on the right side of equation (9). Thus, the same

physical processes are involved in the vertical motion components as are

those processes described earlier involved with the forcing.

As a comparison to the vertical profile of j , , and VJZ

found in "case C" of the original model (see figure 5 of Sanders, 1971),

figure 1 shows these case C profiles for the revised model. A 250 mb

tropopause was also simulated in the earlier model.



A *
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1. Contributions to vertical motion for

)~o= 0. 9 2 x 10 - 4 sec- 1 , T o == 250 0 K ,

"case C". The values of vafious parameters are / = . 114,
L = 2900 km , = L/4.
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The general character of the profiles is preserved in both versions

of the model. However, the maximum values of each of theW components

is a good deal larger and occurs at higher levels than in the earlier

version. The reason is that the temperature gradient does not damp out

with height. Maximum values of '4 are located in the region of 500 to

650 mb in this model. It is interesting to see here how UJ (denoted

S" in the earlier version) is now the largest component,

whereas U had the largest maximum value in the original model. The

reason can be readily identified from the previous discussion of the

physical factors involved in producing Wit and Ql . is

dependent upon both the magnitude of the basic north-south temperature

gradient and the temperature perturbation, while OJ is dependent only

on the 1000 mb wind field and the meridional temperature gradient (not

on the temperature perturbation).

As in the earlier model, k\ gives tropospheric ascent from the

cold trough to the downstream ridge, when kl > ; yields

ascent from the 1000 mb low to the mb high center, while WL shows

ascent north of the temperature perturbation center and descent to the

south, when . We shall later see that the dominance of Wi

over \Pq, is crucial for the intensification of the low center.

While the action of vertical motion tends to be concentrated too

much in the lower troposphere in the original model, our model probably

tends to concentrate the vertical motion at levels too high in the

troposphere for this continental storm case. However, because our

temperature structure is likely to be more accurate for maritime cases,

we should expect these higher maximum values of vertical motion for

oceanic cases.
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IIb. Geopotential Tendency

Suitable expressions for the geopotential tendency

may be found by solving the vorticity equation (3). This may be

accomplished by finding the vorticity advection using equation (8),

and evaluating the divergence term by differentiating the expression

forlJ, equation (10).

The vorticity equation now becomes

(17)

where fl, f2, and f3 are simply pressure dependent functions found as

coefficients of the appropriate harmonic term when deriving the above

equation.

We shall divide the solution into three parts, just as the solu-

tion to the W-equation was divided

(18)

with

and

vX Ia ) v~w
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As before, we assume that each 
component of the solution have 

the

same horizontal structure as its 
corresponding forcing function, 

so

that

14

where

and

The evaluation of the f(p) 
terms yields

\wher

where

,IZ\\~R~

(19)

h

s-3,

LZ ' QM ILI

~oS ZI

"xa,
/1 (I - ()

fcP~ia,
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P+

and

where 4 '

PT( b 'L -

(20)

where

%z QA4- Q{ c j
and

and

(21)

N

\ ivlj

Ila

+ +f~P+
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where ---- 4 LO

An examination of the structure of the previous terms indicates

that and lA are both directly due to vorticity advection

with the remaining components resulting directly from horizontal

divergence. Of course, the horizontal divergence due toW 1 is

indirectly forced by vorticity advection. Since vorticity advection

effects are generally negligible at 1000 mb, the divergence represents

the critical mechanism for the deepening of a 1000 mb center. Since

the only vertical motion found over a geopotential center in this

model is that due toVJ , negative divergence in the lower tropopause

associated with this quantity deepens the low. Thus, when a low is

located between a cold trough and the downstream warm ridge, ascent in

this region due to- I intensifies the low (ignoring frictional effects).

As was discussed earlier, W\k (the ascent term downstream of the

cold trough to the warm ridge) dominates rk\ (descent in the same

region) to effect this deepening.
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lIc. Intensification of the 1000 mb Low

If we consider the deepening rate of the 1000 mb low, where

, O , , equation (18) becomes

Thus, as with the previous model, maximum deepening occurs when )C/ ,

and the deepening vanishes when the low is located at either the cold

or warm perturbation centers.

In our model,

(23)

A "case C" calculation made with equation (23) was found to be

-- , 6 - o XL or a deepening rate for sea-level

pressure of about -12.0 mb (12 hr)-1. This compares with an observed

deepening of -8 mb, but we have not yet considered frictional filling.

Our value for is slightly greater in magnitude than the

number which would be found in the original model, even when we amplify

Ck and t each by a factor of 4/3 to account for the original model



27.

temperature structure in the 100 - 500 mb layer. No such amplification

factor is needed in the present model, because we have assumed no varia-

tion of horizontal temperature gradient with height. The reason is,

of course, the enhanced forcing in the form of the temperature gradients

in the upper troposphere. The physical interpretation of each of the

terms in equation (23) is the same as the terms found in equation (29)

of Sanders' work (1971). Both terms arise from the divergence due to

U i . The first term on the right side of (23) arises from relative

vorticity advection, while the second acts as a result of the advection

of earth vorticity. The first term is the active deepening mechanism

for a 1000 mb low placed between a cold trough and a downstream warm

ridge, for it produces ascent in this region; while the second term

acts as a brake on the deepening process by causing descent in this

same area.

Why does the active deepening mechanism have a greater effect with

respect to the brake in this version of the model than in the first

version? The answer is that the first term is much more dependent

on the temperature gradient magnitudes (both meridional and pertubed)

than is the second term, which depends only on the perturbed temperature

gradient strength (the value ). However, there is still the same

superficial exponent dependence on L, as in the earlier version, such

that the braking action of the second term will increase more rapidly

than the increase of the first term with higher values of L. Thus, we

should expect a limiting value of wavelength, beyond which no net

intensification will occur. The importance of such L-dependent parame-

ters as bl and . 1 in (23) remains obscure, but is likely to be
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small. Thus, discounting this latter consideration, we should expect

generally higher wavelengths of maximum deepening, due to the lessened

effectiveness of the braking term. We can also perceive this fact with

the knowledge that since the vertical scale of the baroclinicity is

larger in this model, the preferred horizontal scale is also larger

in this model. Equation (23) also shows that a meridional temperature

gradient is required for deepening, while (o) is directly propor-

tional to the magnitudes of T and the vorticity-stability parameter.

Figure 2 confirms and summarizes the previous statements. It

also indicates that the wavelength of maximum deepening range from

1500 to 5000 km. The wavelength of maximum instability (assuming \

is an indication of the instability of the baroclinic system) decreases

with increasing values of the vorticity-stability value, corresponding

with the observationally inspired notion that smaller stability favors

intensification of smaller storms.

The range of both a and the vorticity-stability value are exten-

ded in this and forthcoming charts from the ranges used in the reported

results of the earlier version of the model (see Sanders, 1971). The

upward limit of a is extended to 3.00C/100 km, because the values found

in experiments conducted in a synoptic lab class at M.I.T. go beyond

the previous upper limit of 20C/100. km. A maximum value of the

vorticity-stability parameter of 11.2 x 10C 1 sec is chosen on the

basis of a high value of N~: = (area averaged), T = 250,4'4 YZ.[+4

This latter value is taken from the least stable saturated sounding

(with respect to the moist adiabat) of a sample of radiosonde obser-

vations (mainly weather ships and island stations) in regions under the
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Edeg C(IOOkm)-I )
3.00-1:1:1 rl t -

I 2 3 4 5 6 7 8 - 9 10 II
L (103 km)

A j\ A
Fig. 2a. The deepening rate X1  for T = 10C as a function of the wave-
length and the meridional temperature gradient. The units are 10-1"m
sec - . The heavy solid, heavy dashed, and dotted lines in Fig. A in-
dicate values of the vorticity-stability parameter of 1.4,2.8, and
5.6 x 10-6 sec-' oK - . Part B shows for vorticity-stability values
of 5.6,8.4, and 11.2 x 10 - 6 sec-' OK-' for the dotted, lightly dashed,
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Fig. 2,. and lightly solid lines, respectively. The extra heavy

dashed lines connecting the troughs of the isopleths are the loci

of the wavelength of maximum deepening,
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influence of intense oceanic storms. Due to our previous assumption of

Y being independent of height, this stability value necessarily is
based on a deep layer. Temperature differences between 850 and 500 mb

are used in determining Y . Thus, boundary layer effects and vertical

temperature differences above 500 mb are not considered. Latent heat

of condensation can be taken into account in saturated layers, if the

vertical temperature difference is compared to the vertical temperature

difference along the appropriate moist adiabat. Therefore, the extension

of the vorticity-stability parameter to higher values represents an

attempt to consider the effectively lowered static stabilities when the

air is saturated. This consideration will hopefully lead the model to

capture some of the explosive development which is so frequent over

maritime regions. A more complete discussion of the stability sampling

is contained in a later section of this paper.

One further note concerning the notion of a longwave cutoff is

added here. An original attempt to define a temperature field of the

form

(24)

was used to specify still another set of model equations. Equation (24)

shows that the magnitude of the temperature gradients do not damp out as

much with height in the troposphere as do the gradients in the original

model. However, the price paid for such a benefit was an even more

unrealistic stratospheric temperature profile in the form of excessively

large horizontal temperature gradients. The upper boundary condition

to the. -equation was VJ = 0 at p = 0, as in the original version of the
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model; these latter two effects brought on an unrealisticUI 1 profile

(especially in the stratosphere), and, thus, potentially spurious \

values. This latter event manifested itself at 1000 mb, and was readily

seen when a chart of the form of figure 2 was constructed. We found that

for increasing values of the vorticity-stability parameter, contamination

from excessive forcing from the region of the atmosphere above the tropo-

pause increased so that a longwave cutoff for deepening no longer

existed. At./ ) values high enough (say, at -=

2.8 x 10 60C-1 sec- ), the deepening rate actually increased with wave-

length, apparently without limit.

This trend is even evident in Sanders' figure 13 (1971), but not

nearly so much because the excessive forcing is not as great. Contamin-

ation appears at wavelengths greater than 6000 km by virtue of the slope

of the lines decreasing with increasing values of ( . Pre-

sumably, if the values of were computed for much higher (and

beyond the range observed in the real atmosphre) values of the vorticity-

stability parameter, no preferred wavelength for instability would appear,

as in the situation described above.
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IId. Motion of the Features

It is of interest to examine the motion of the geopotential

features. We need simply use Petterssen's (1956) formulas to evaluate

the motion. The eastward speed may be written as

)x ) (25)

The position of the trough axis, XT, may be found by looking for

the minimum value of geopotential (x, y, p), along the y = 0 axis.

The solution is

where XT is between x = 0 and x = (L/t ) - , the position of the

1000 mb low. We may now find an expression for dXo , with a knowledge

of) T by differentiating our expression for once and the one for

(x, y, p) twice, so that

L7

For the motion of the 1000 mb low center, equation (27) may be

expressed as

,: (p') :: + ~(28)
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where '\ and 6 represent the effects of , and

respectively:

(29)

and

I (30)

0

For our sample case, the values of L and | in this

version of the model are 17.4 m/sec and 9.3 m/sec, respectively. This

compares with 14L = 13.7 m/sec and kl = 4.7 m/sec in the old

version. The observed 12 hour displacement rate was 11 m/sec, showing

the new calculations as being too fast. The parameter Qj is still

smaller than ty , but represents a relatively greater significance

with respect to tp than in the old formulation. The reason is the

new temperature profile enhances ] more than . has

no effect if the low is located so that = L/$y , as happens in our

sample case C. The physical effect of !4d is the same in this model

version; it will retard eastward speed for warm lows and enhance it

for L/ <L/ . Since 4I has a potentially significant

effect in the model, accurate placement of the low (to determine X ) is

crucial in determining this effect.

Figure 3 shows the eastward speed of the 1000 mb center as a

function of wavelength and meridional temperature gradient. The maximum
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a )-I
Edeg C(100km) I

I 2 3 4 5 6 7 8 9 10 II

L (10 3 km)

Fig. 3a. The zonal velocity component, Cx2, for the 1000mb center as a

function of wavelength, and meridional temperature gradient for selected

values of vorticity-stability. The isotachs indicate units of meters per

second and are positive values for eastward displacement. The corres-

pondence of the solid, dashed, and dotted lines in each part of the fig-

ure are as explained in figure 2.
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L (103 km)

Fig. 3b. Same as for part A, xcept for vorticity-stability values

of 5. 6 , 8. 4, and 11.2 sec 1K.

a
Edeg C(100 km)- I
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values of this motion are found in the wavelength range from 2500 km to

8000 km - somewhat higher than the wavelengths found in Sanders' figure

10 (1971). Also, generally higher westerly values for a given vorticity-

stability parameter, wavelength, and a value are observed in this formu-

lation. Increasing magnitudes of eastward movement are found with

increasing vorticity-stability numbers and increasing a values. The wave-

length of maximum speed decreases with increasing values of vorticity-

stability , juist as the wavelength of maximum deepening decreases with

higher magnitudes of vorticity-stability. The reader should be cautioned

to watch out for the effect of Nt , particularly when the temperature

perturbation is intense; because the magnitude of Ox| is direclty

proportional to T

The meridional component of motion may be obtained by using

Petterssen's formula:

Cl z (t4.-x~) ~ (31)

so that

(32)

where is due to and

J1% P.I (4 1'i I~- ~iia-L?

t j~ti
\Lj " -C94,
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Since tl3 is generally a positive term, geopotential centers

have a northward component of motion when located between the cold

trough and its downstream warm ridge. The case C value of Il is

10.2 m/sec, compared with the earlier model value of 9.1 m/sec, and an

observed 12 hour displacement rate of 7.5 m/sec.

Figure 4 shows values of.61 for i = 1C as a function of

vorticity-stability and wavelength. The magnitude of Cy3  is pro-

portional to the magnitude of T ,and independent of the basic meridi-

onal temperature gradient. The main difference between this figure and

Sanders' figure 11 (1971) is that values for larger values of vorticity-

stability are given here. There is a slight increase of 3 over

corresponding values in the earlier version, for given values of L and

A comparison of the motion of the low center with the flow aloft

at 500 mb is appropriate. We have seen that the zonal motion of the 1000

mb low ( CXL ) is due to the divergence of Wf , which is forced by

the meridional temperature gradient; while the meridional displacement

of the feature is due to the divergence of aJ , which is forced by

the temperature perturbation gradient. Although the contours of the

500 mb pattern are associated hydrostatically with the above temperature

patterns in the 1000 - 500 mb layer, a direct steering relationship

between the flows at 500 mb and the 1000 mb low is not clear.

The components of the 500 mb flow over the low center are
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Fig. 4. Values of the northward speed C,3 as a function of vorticity-
stabil;ity value and the wavelength for = 1 oC. The isotach labels
are in units of meters per second.
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From our definition of f (x, y, p), equation (8), and for \-Z

t(33)

V if ~I (34)

For case C, we find values of U5  = 24.1 m/sec and V =

33.8 m/sec. The values of C and C are 17.4 m/sec and
x2 Y3

10.2 m/sec, respectively. Thus, the low is moving at a speed of

20.2 m/sec toward 0600 while the 500 mb flow is 41.5 m/sec toward

0350. When a comparison is made with the earlier version of the model,

we see that the low is moving somewhat more to the right of this 500 mb

flow in this version. The speeds of both the 500 mb flow and the low

are greater in this model (20.2 m/sec versus 16 m/sec for the low, and

41.5 m/sec versus 31.2 m/sec at 500 mb), due primarily to the enhanced

temperature gradients aloft.

The relationship between the 500 mb flow and the 1000 mb system

movement is shown in Figures 5 and 6. The ratio Cx2/U 5  has

maximum values at wavelengths between 2500 km and 8000 km for a given

value of a , and for the indicated vorticity-stability range. Also,

for given values of a, '~ , and L, Cx2/U 5  tends to be

slightly higher than in the previous model. Values of Cy3/V5

which is independent of both a and T , are found in figure 6. Aside
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a
[deg C(IOOkm)13

I 2 3 4 5 6
L (10 3 km)

7 8 9 10 II

Fig. 5a. Ratio of Cx 2 to the zonal component of the 500mb wind as a
function of meridional temperature gradient and wavelength. The sol-
id, dashed, and dotted lines in each part are as indicated in Fig. 2.
The heavy dashed lines indicate the loci of wavelength, beyond which
the 1000mb low pnoves to the left of the upper level flow.
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I 2 3 4 5 6 7 8 9 10 11
L(10 3 km)

Fig. 5b. Same as for 5a, except for vorticity-stability values of
5.6,8.4, and 11.2 sec- 1 OK-1.
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meridional component of the 500mb wind as a function of wavelength andFig. 6. Ratio of Cy 3 to the
vorticity-stability value.
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from the extension of the range of vorticity-stability values, little

change from Sanders' figure 12 (1971) is indicated. We see in figure

5 that the conditions under which lows move to the right of the 500 mb

flow are those under which most storms are observed to occur (for

A- L/q , the low moves to the right of the 500 mb contour when

SV ). Indeed, a somewhat wider range of conditions

under which this movement occurs is found in this model. As in the

earlier model, both the 500 mb flow and the motion of the low approach

the zonal direction when the surface feature is located at either of

the temperature perturbation centers.

Since the 1000 - 500 mb thickness pattern is shaped in a similar

fashion to the 500 mb pattern, the theoretical and observed motions of

surface lows generally moving to the right of the 500 mb flow indicate

that they also move toward warmer air. However, this does not mean

that the low is warming, because the adiabatic ascent over the cyclone

acts to oppose the warm air ingestion of the storm. The topic of

thickness change following the low center will be discussed in a later

section.

We shall now examine a possible clue as to the extent that

occlusion takes place in the model. If the 250 mb trough were over-

taking the surface low, the cold perturbation would presumably be doing

likewise; thus, occlusion would be occurring. Since the zonal speed of

250 mb trough is a complicated function of all the model parameters

(see equations 26 and 27), figure 7 shows the results of calculations

OW- & 32 -2for - = 50C, Q = 10 m sec-, and with b/Y,

-6 -1s -1 an 6o -1 -1
2.8 x se and V = 11.2 x 10 oC-  sec . Part A2,8 10 C s0
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Fig. 7a. The eastward speed of the 250mb trough is indicated by the
solid lines, while the dashed lines indicate the overtaking rate,
Cx (250) - Cx2, as a function of meridional temperature gradient and
wavelength. Part A of the fig. is for o/To = 2.8 x 10- 6 sec - 1 oK-l
T --5 OC, and = L/4.
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Fig. 7b.
11.2

Part b
x 10- 6
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of figure 7 may be compared directly with figure 16 of Sanders' work

(1971). We see that, although the overtaking rates are much higher in

this model for certain high a values and small wavelengths, that an

overtaking rate of about 5 m/sec is indicated for the wavelengths of

maximum deepening (see figure 2). This is quite similar to the results

found in the earlier model. A look at part B of figure 7 shows for this

larger vorticity-stability value that for the maximum deepening wave-

lengths, the overtaking rate for a large nuaber of a values is only about

2 - 3 m/sec. The fact that significant deepening of the storm can occur

without the tendency to occlude (see figures 2 and 7), along with the

trend of the less overtaking by the 250 mb trough with increasing values

of vorticity-stability, points to the likelihood that some other process

cuts off the storm intensification. A sampling of rapidly deepening

storms found in a synoptic lab class at M.I.T. showed no clear trend to

occlude. Thus, friction, which has yet to be considered, might be

expected to cut off the deepening of a storm, rather than the process of

occlusion.
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lie. Temperature Perturbation Tendency

Now, we wish to consider the rate of intensification (or lack of

it) of the temperature perturbation. The tendency of the thickness of

the 1000 - 250 mb layer at the cold trough (x = 0, y = 0) is

-~ ~ [ ( )(35)

From our expression for , we have

41 j (36)

Equation (36) indicates a different wavelength dependence in each

of the two terms on the right side, so that a critical wavelength is

indicated, below which no intensification will occur. Because this

dependence appears similar to the expression in Sanders' equation 40

(1971), we. should expect a similar pattern of thickness tendency in our

calculations to those of Sanders' version. Figure 8 shows these patterns,

but we also see a major improvement over the earlier formulation. That

is, for each vorticity-stability value and for (0 4 X4 L- ), the

wavelength of maximum deepening is also a wavelength at which the tem-

perature perturbation is intensifying. The opposite situation exists in
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1.00 . o ..l

.75- 5 .j*"
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L (103 kin)
= A

Fig. 8.a. The difference 2 at 250mb and / 2 at 1000mb, for A
L/4 as a function of wavelength and meridional temperature gradient
for the same selection of vorticity-stability values as explained in
figure 2. The isopleth units are in 10" 2 m 2 sec - 2 . The mean temper-
ature tendency in the troposphere is indicated by this difference.
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the first version of the model. By examining figures 2 and 8, we see

5 1 AL0-10-1
that for a = 2.0 x 10-5Cm andA~ = 2.8 x 10 - 6 sec- K , the

temperature perturbations are intensifying at around 2.0 *C/12 hours for

the preferred wavelength of deepening. As the vorticity-stability

parameter increases, there appears to be a tendency for this intensifi-

cation rate to increase for the wavelength of maximum deepening. Thus,

with this version of the model, which tends to be especially realistic for

maritime cases, the intensification of the storm actually occurs simul-

taneously with the intensification of the temperature perturbation. That

is, zonal available potential energy is converted to eddy available poten-

tial energy in this model, as deepening occurs.
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IIf. Frictional Effects

A calculation of the filling rate of a storm due to friction

necessitates an understanding of what the frictional force is at the

ground, and also how it acts above the surface. Rather than specifying

a cross-isobaric flow and a lower boundary value of (due to friction)

at the top of the surface friction layer (see, for example, Sanders,

1971), we shall make an attempt to find an analytic solution to the

equation with frictional forcing

Cr7) w VX (37)6

where is the vertical motion due to frictional convergence or div-

ergence, and is the frictional force vector per unit mass. The

solution to (37) depends, of course, on how we specify F ; and if we

define F to be linearly proportional to the 1000 mb geostrophic

velocity vector, analytic solutions may be found. Haltiner (1971) finds

the vertical motion at the top of the boundary layer using both a linear

relationship, and a (velocity)2 dependence. Of course, the latter depen-

dence would be preferable, but solving the W-equation would become much

less manageable. If we further assume that the frictional force acts

in an opposite direction from this wind vector, then

1-1 &Voo (38)

Now, equation (37) becomes
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Further, it is physically reasonable to parameterize the frictional

force such that it is a maximum at the ground, and damps off exponentially

with height, so that it becomes '(|/i ) times its 1000 mb value at the top

of the surface boundary layer (say, at 900 mb) and vanishes at p = 0.

Thus,

(w' - .(39)

where Cd is the surface drag coefficient, Vo is a specified value of

the 1000 mb wind (independent of horizontal position), and 6. is the

depth of the boundary layer (usually about 1 km and corresponding to the

pressure scale height of 900 mb). Thus, at 1000 mb, the frictional force

per unit mass is

We see that & is proportional to the square of the velocity,

at least superficially. The limitations here are that V will be a

rather large overestimate of the 1000 mb wind in a cyclone, while V is

a constant value defined for the region at 1000 mb under the influence of

frictional convergence of divergence. Although the specified value of

V appears to be the most serious limitation of our formulation,

somewhat less ad-hoc decisions must be made for the values of d

z7. , and , .
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Mindful of these foregoing liabilities, 
we shall proceed now

with the business of finding a solution 
to (37). The 1000 mb vorticity

may be expressed geostrophically 
as o , where, as before

kU

so that

11 #: L M(

Now, equation (37) becomes

If we assume that W4, has the same horizontal structure

forcing, set the boundary conditions 
as W = 0 at p = p and p

solve analytically for the homogeneous 
solution, and approximate

the particular solution by 
a Taylor's series, then the 

solution to

is

___ F ±L

xQ&'~hih~a
where

(40)

is its

= 0,

(40)

(41)
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and

The reader might reasonably ask why we did not set the upper

boundary condition of W* = 0 at p = PT , as was done with the other

components of WJ . The answer is that the frictional forcing is

parameterized to be small enough at higher levels, so that Jis

virtually negligible at the tropopause level anyway. This fact is

quantitatively shown in figure 9, where a vertical profile of U . over

the surface low is shown for the parameter of our sample case C. A
-3

drag coefficient of 2.0 x 10-3 (a typical land value, see Cressman, 1960),

V = 10 m/sec, and 1R, = 1 km were used in the computations. We see

that the maximum value of Wt is found at about 850 mb, with an expo-

nential-like decrease above this level. The values are somewhat less

than the largest components of vertical motion found in figure 1, but

still will be important when we consider the effect of convergence and

divergence in the height tendency. The W -profile shown in figure 9

shows what we would qualitatively expect from quasi-geostrophic theory

with the convergence confined to the lower troposphere and the divergence

above (in this case, 850 mb).
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Fig. 9. The frictional vertical velocity over the 1000mb center

with units in 10- 4rnb sec - 1 case C.
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The 1000 mb height should be rising, because the larger dissipative

effect of friction exceeds the tendency of the convergence in the lower

layers to cause the heights to fall. We need to look at the height

tendency equation to verify this fact.

The -equation due to the forcing by frictional dissipation and

divergence may be expressed as

-O (42)

where < is the height tendency due to the frictional effects on the

right side of (42). If we regard t as having the same x and y

dependence as its forcing functions, then

Nu-.~~"l~~m (43)

where

4z 4
htc (X

~~~kl)

R71

The last term above represents the effects of frictional dissipation,

while the other terms are the result of the divergence of LW, . At the low

_plll__llllll_____yL__lll^-~(lblil._\lD
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center, x = , y = 0, and the signs of each of the terms in the

4 expression are reversed so that we can see physically that the

dissipation term represents a height rise, as expected. Using the same

numbers as above for A , ,and L ,we find the 4 value

-4 2 3
over the low for case C at 1000 mb is 61 x 10 m /sec , which corresponds

to a filling rate of +3.6 mb/12 hours. This, when combined with our fric-

tionless deepening of the case C storm (-12.0 mb/12 hours), yields a net

intensification of -8.4 mb/12 hours - quite close to the observed rate of

-8 mb/12 hours. Our computed value of ( '\ ) is much closer to the

observed number than the figure found in the original model version.
A A

Whether this is due to a better formulation for o , or\ is not

clear; the magnitudes of both numbers are larger in this model, and it is

exceedingly difficult to successfully "observe" the frictional filling

rate in the real atmosphere.

The parameter q1 1  increases with decreasing wavelength with

all the other input values being held constant. However, it is not

immediately clear from (43) how S behaves as L decreases. Indeed,

as in the previous model, the filling rate does increase with decreasing

L, providing for a shortwave cutoff, assuming 0 40 . We also have

a limiting intensity established because is independent of 0 ,

while is directly proportional to it. Using 010 = 1020 m (sec)- 2 for

the sample case C, the limiting intensity may be expressed as

a IbU%
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3 2 -2
For our sample case C, this value is 3.43 x 10 m sec , The

range of sea-level pressures that this value corresponds to is about 93

mb. This increased value over the earlier results is due to generally

greater increased values of 1\ than U .

~ll---l----------rurrrr;urur~ ____~_-L~~1I1 "^~-UI- -- CI-C I~Lil __
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III. Experiments with the Frictional Expression

As a check on the reliability of the aforementioned frictional

formulation, we examined some cases of rapidly deepening cyclones over

the North American continent, where surface analyses indicating the

deepening rates and evolution of the cyclone structure are more reliable

than over the sea. The 1000 - 250 mb thickness analysis is presumably

accurate in land areas, where upper air observations are sufficiently

dense to achieve this accuracy. Specifically, an experiment was under-

taken to check on whether our frictional formulation is sufficient to

account for the observed thickness change over the center.

Reference is made to the discussion given by Sanders (1976). The

quasi-geostrophic vorticity equation for flow at sea-level is

S tV S

where the subscript SL refers to sea-l1vel,1j o is a constant value of

absolute vorticity for the appropriate domain, and is the frictional

force per unit mass as previously defined. The advection term disappears

at the center of the cyclone. The relative vorticity is given as

where pL_ and t are both regarded as constant values of the

sea-level density and the Coriolis force. The harmonic variation of

VSL with respect to x and y yields
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where b is the semi-amplitude of a , and L is its wavelength.

Now, our vorticity equation becomes an expression for the central pres-

sure tendency, SLi t  , and by assuming a linear structure of

with height from a zero value at 1000 mb to its maximum at 600 mb, we

have

4t -Q r-)- (44)

This latter assumption may not be too accurate if the storm is

quite intense, and the components of the frictionally induced vertical

motion becomes larger, resulting in a maximum Wk below 600 mb. Thus,

in this, the sea-level divergence would be assumed to be larger by de-

creasing the denominator above (the pressure difference through which

W increases to its maximum).

Defining ' , we will use as a typical

domain averaged value of the sea-level wind velocity, and use the

-2
same numerical value as before: Cd = 2.0 x 10 , V = 10 m/sec, and

6L. = 1000 m. The equation for the local rate of change of thickness

(in the 1000 - 500 mb layer) a y , ignoring diabatic effects and

differences in the surface boundary layer (where W\ is small, anyway),

may be expressed, according to Sanders (1976) as
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(45)

Equation (45) represents adiabatic effects due to vertical motion on the

thickness change, (s ) indicates the average of this value in the

layer and will be taken as a constant value 92 . Now, we proceed to

eliminate WJ between equations (44) and (45), by expressing P).

in terms of S and from the ideal gas law, and assigning

-4 -1
typical values to the following parameters: f 0 o = 10 sec-

TSL = 2730K, = 1000 mb. Thus, expressing L in thousands of km,

we have

(46)

If the layer under consideration is saturated, then we should

take into account latent heat release by expressing the stability in

terms of the moist adiabatic lapse rate. Thus (- - ) would be

replaced by )[( ) - (- )A ]. So, in this case, we have

(47)

LC
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Equation (47) shows that the static stability is effectively

reduced for the moist case. The physical significance of both equations

(46) and (47) is that convergence at the surface, which increases the

vorticity and causes central pressure falls, also adiabatically cools

the layer above through upward motion, when the atmosphere is stable.

There is an additional frictional effect, which implies that the thickness

decreases locally with cyclonic vorticity due to frictional covergence and

the resulting upward motion.

The first and second terms of (46) and (47) were isolated and

evaluated for the various cases to determine /a+ . However, we

must also take into account the movement of the storm toward warmer or

colder air. Thus, if the storm is moving with a velocity vector ,

the local thickness change following the center may be

expressed as

\FT11(48)

Generally, the surface cyclone moves to the right of the upper

level flow and thus toward warmer air (see Sanders, 1971). So the local

change of thickness over the center is usually due to the opposing effects

of movement to higher thickness values and cooling due to adiabatic ascent.

A balance in equation (48) is sought in the sampling of land cases,

using the frictional term in (46) or (47). First, however, we should

make this procedure more applicable 'to the standard 12-hour time interval.

found between map times. A similar procedure is discussed in Sanders (1976).

From equations (48) and (46) or (47), depending upon whether we wish to use

a dry or moist process, we integrate (48) over a twelve hour period and
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find that -~

where

for moist processes, and

for dry (unsaturated) air, where 6 is the local 12-hour thickness

change over the cyclone center in a coordinate system fixed on the earth's

surface (which can be obtained from the 12-hour change of the central

pressure and from an appropriate static stability value), and ( Af )

is the 12-hour thickness change following the center in a coordinate

system moving with the center, which is what we would like to determine.

The integrated value of 6*9 over the 12-hour period may be approxim-

ately expressed as . = 6/ ,where is the length

of the 12-hour displacement vector with a speed C. Thus,

where and .( are the times at the beginning and end of the

12-hour period, respectively. Now, we can approximate h by taking

the average of the thickness differences between the upstream and

downstream ends of the displacement vector for the cyclone, at the begin-

ning and end of the twelve-hour period. Thus
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'(49)

so that now equation (48) becomes

(50)

As has been pointed out by Sanders (1976), since we need know only

the thickness values at the ( ) and ( 4( ) points, any errors in the
thickness values near the low center will not contaminate the thickness

analysis significantly at these latter mentioned points. In practice,

the analyst would know from the surface and upper level analysis 12-hour

earlier, iy , , and ; . These current analyses would

indicate E and . Now, taking

= ~PS ' =--, L , appropriate value of

the static stability, and using the appropriate values of Q , V o  ,

and 4, , we can estimate a value of ( 4 ), and therefore of ,

the desired value of thickness over the low center at the current time.

This procedure has been formulated for oceanic areas where there is

likely to be a problem in knowing the value of the thickness, over the

center, due to the likely small number of aircraft observations and

satellite soundings, which will disclose only the large scale upper level

patterns. Thus, if a ship's observations disclose the presence of a small

intense cyclone near the surface, a likely overestimate of the thickness

over the low center will result.
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Using the procedure described above, we did some calculations of

( b ) for rather intense cases over land, where the thickness analysis

is likely to be fairly reliable. Thus, we have somewhat of a check on

our procedure before we attempt to use it over oceanic areas. These cases

were chosen in mainly the north central part of the United States, where

6 values are likely to be around 2.0 x 10- 3 (Cressman, 1960). Thus,

-3 =1 /e4 was evaluated at 2.0 x 10 - 3  i = 1000 m, and Vo = 10 m/sec

for these cases. Four calculations were made for each of the time periods

used in these cases: those of dry processes with and without friction

and those of moist processes with and without friction. By "with and

without friction", we mean including and not including the second term on

the right-hand side of (50) . The values of k , or equivalently, the

static stability, were deduced from mean temperatures near the surface

center at 850 and 500 mb. The numbers are summarized case by case in

Table 1.

The time periods with an asterisk next to then indicate that the

moist process was judged to be the relevant process taking place by virtue

of the air being near saturation at both 850 and 500 mb. In the other

cases, the air over the low was generally saturated at 850 mb, but at

500 mb, some drying out had taken place; so, unsaturated air was evident

due to the dew point depression being at least 40 K.

Thus, in the latter instance, we should expect that an observed

thickness change over the center would be predicted by a value somewhere

between our moist and dry with friction calculations. We see that for

the moist cases, our moist with friction predictions are generally closer

to the observed value than those predictions without friction. We note
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Table 1

Calculated Thickness Changes over the Low Center

(Case of October 24-25, 1975)

* 00Z, Oct. 25 -
12Z, Oct. 25

* 12Z, Oct. 25 -
00Z, Oct. 26

* OOZ, April 3 -
12Z, April 3

* 12Z, April 3 -
00Z, April 4

00Z, March 4 -
12Z, March 4

* 12Z,
00Z,

Jan. 13 -
Jan. 14

OOZ, Jan. 14 -
12Z, Jan. 14

0 -133 39 + 28 +122

+ 60 - 70 +210 +130 +250

(Case of April 3-4, 1975)

- 60 -475 - 22 -158 +100

0 -332 + 38 -108 +100

(Case of March 3-5, 1974)

-240 -400 - 18 - 36 + 44

(Case of January 13-14, 1976)

- 40 -224 - 58 - 46 + 12

-110 -204 + 28 - 60 + 54
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generally that since the low moves tcward warmer air, the manner in which

the air is cooled over the low is due to intensification and to friction-

ally induced upward motion.

On the basis of our results in Table 1, we feel that our frictional

parameterization does a reasonably good job of helping to account for

observed thickness changes over the low. Without this frictional effect,

a calculation of thickness tendency would likely not cool the low suffi-

ciently to correspond with the observed change.
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IV. The Sounding Sample

In order to find typical values of potential temperature differ-

ences in the above expressions for intense oceanic cyclones, and also to

look at the vertical structure of relative humidity, we collected a sam--

ple of radiosonde observations taken under the influence of strong mari-

time storms (with at least 12 mb/12 hour deepening at some point in its

life history) over a period from 1971 to 1974 (Northern Hemisphere Data

Tabulations). The observations were used at either the time before

which the above mentioned deepening occurred or just after such a period.

Aside from this temporal stratification, the domain of the observations

was divided into four quadrants, separated by boundaries being defined

by the lines along and normal to the path of the storm. The outer limit

of the quadrant is defined by the crossover points for the change from

cyclonic to anticyclonic curvature of the sea-level isobars. Just over

seventy soundings have been collected for each time period. The spatial

distribution of the sounding locations within a normalized square con-

taining the four quadrants is shown in figure 10 for each time period.

Composite soundings are shown in figures 11 and 12 stratified by

time, quadrant, and case. This latter separation is done only for the

convenience of being able to discern individual plots. Solid lines

indicate relative humidity 75% and dashed lines indicate values

C 75%. According to the quadrants presented in figure 11, the mean

stability for before deepening cases (4~- ,Z ) is generally similar

and about 220 K, except in the left rear quadrant where somewhat less

stable air is present, mainly in lower levels, for a value of about 170K.

Values of [( - . ) - ( ) ] for saturated air range
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0 I0 20 -40 -30 -20 -10 0
T (*C) --- T ('G) -----

Fig. 11a. Composite soundings from areas under the influence of
intense oceanic storms for the "before deepening" regimes. Solid
lines indicate approximately levels at which the air has relative
humidity 7 75% , simulating saturated conditions. Dashed lines
are for unsaturated conditions
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from 7 - 10*K in all the quadrants except the left forward, where the

stability value is higher at 130K. The mean stability values, averaged

over all the quadrants are about 200K and 100K, for dry and moist pro-

cesses, respectively. Values of the factor, K, in either equation (46)

or (47)

are found in Table 2 for both prior and after deepening cases.

The values of K are included for the after deepening cases to

show any possible differences in stability between the two time periods.

These differences are more easily seen in figure 13, which shows

the mean vertical structure of temperature and relative humidity for each

quadrant and time period. We are almost immediately struck with the

fact that the stability in all quadrants, except for the left rear,

decreased from the time before maximum deepening to the time after this

deepening occurred. The stability (based on the 850 - 500 mb layer) in

the left rear quadrant remained the same for this sampling of cases. We

are most confident on the basis of traditional sampling theory (the

student t-test) of the stability changes in the two forward quadrants.

We can only speculate here as to the possible causes of this apparent

destabilization. A warming trend is found in the left forward quadrant

at 850 mb during the life of the cyclone, while an average drop of 1.0° ,

takes place at 500 mb. The right forward quadrant, where we are the

most confident of a stability decrease, shows cooling at both levels,

with a greater temperature decrease at 500 mb than at 850 mb. The fact

that cooling at 500 mb occurs in all the quadrants where the stability
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Table 2

Values of the factor K (m/mb)

Wavelength (km)

2000

3000

4000

2000

3000

4000

PRIOR to Deepening

Left Right Left Right
Grand Mean Forward Forward Rear Rear

dry moist d m d m d m d m

17 8 17 11 18 8 14 7 17 6

7 4 8 5 8 4 6 3 8 3

4 2 4 3 5 2 3 2 4 1

AFTER Deepening

14 8 16 9 14 7 14 9 13 6

6 3 7 4 6 3 6 4 6 3

4 2 4 2 3 2 3 2 3 1
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decreases, while slight warming at 850 mb is only observed in one of these

quadrants, seems to preclude sensible heat transfer from the ocean as

being the only process involved. Indeed, heating from the ocean would

likely be most important to the rear of the storm where the colder air is

heated strongly from below by the relatively warm ocean waters. The

movement of the storm toward warmer, less stable air in its later stages

might be a factor. The fact that the air itself cools with time is most

likely due to increased upward motion ahead of the storm. The component

of upward motion from the low center eastward to the downstream high

increases with increasing cyclonic vorticity of the low. Thus, since the

magnitude of this component of W(41is generally greater at 500 mb than

at 850 mb in this model (see figure 1), the WJa increase would tend to

stretch and destabilize the lower troposphere. Since extratropical cy-

clones are generally observed to move in a northeastward direction, this

destabilizing effect would occur in the three quadrants mentioned above.

The right forward quadrant, where we have the most confidence in the

reality of a stability decrease, is also the quadrant where the U)L

effect is the greatest (assuming the storm moves toward the northeast).

Of course, the other effects mentioned above probably also play a role

in the destabilization of the layer.

Figure 13 further indicates a drying trend in the two forward

quadrants at both 850 mb and 700 mb. We have particularly good statis-

tical confidence (better than the Vio significance level) of this on the

basis of our sample at 850 mb. This effect appears to be the result of

dryer air intruding around to the eastern side of the storm in its

later stages of life, as is indicated by standard cyclone development

models (see Pettersson, 1956).
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V. Analysis Problem

We now wish to proceed with documentation of the analysis problem

inherent in maritime areas, via two explosive oceanic cyclone cases. As

discussed by Sanders (1976), independent analysis of the surface and upper

levels are mainly carried out with the aid of weather ship observations

for the former areas, and aircraft readings for the latter region. Thus,

a discovery of a small, relatively intense low over the ocean combined

with an unrealistically smooth upper-level height contour pattern

(because the density of the aircraft observation is not sufficient to

discern the small-scale features associated with the surface cyclone)

will generally imply the thickness pattern showing an excessively intense

warm ridge near the surface storm. As we have seen from our diagnostic

model, very little deepening would be predicted initially with the analy-

sis. This same error may also be a reason that the NMC Primitive

Equation (PE) model often falls short of predicting instances of explo-

sive deepening found in maritime areas.

The problem could be eased if a more accurate thickness value over

the surface low center could be found. Assuming that at some early time

in the storm's life, we know the correct thickness over the low, we can

find the thickness change over the center by using the expressions de-

rived in the previous section for dry and moist processes, each with and

without the frictional dissipation effect included.

The two cases involved are those of January 9-11, 1974, and

February 4-5, 1975. Each of these North Atlantic Ocean Cases were

marked by rapid intensification within a brief time period. In order to

achieve the most accurate analysis possible at the surface and upper
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levels, soundings from island stations, weather ships, and satellite

observations obtained from the National Center for Atmospheric Research

were utilized. Ships' logs were obtained from the National Climatic

Center in Asheville, North Carolina so as to improve the surface data

coverage in the surface analyses. Aircraft reports were utilized for

wind data at upper levels. The Northern Hemisphere data tabulations

were also used to supplement the coverage at the surface and aloft.

Thus, with the additional aid of satellite photographs, surface analyses

were obtained every six hours during the major portion of each of the

storm's lives.

Once these analyses were completed, 1000 - 250 mb thermal winds

were calculated and plotted along with the 1000 - 250 mb thickness values.

The 250 mb level was chosen as a basis for these calculations, because

this is the mandatory pressure level closest to the mean level of the air-

craft observations. The procedure used for calculating the thermal

winds involved assuming the aircraft winds (at approximately 250 mb) were

geostrophic and finding the 1000 mb geostrophic wind at the corresponding

location from the analyzed 1000 mb geopotential field.

Specific values of the 1000 - 250 mb thickness were obtained

from our soundings, and were supplemented in sparse data coverage re-

gions by satellites (NOAA II, SIRS-B) measurements of the 1000 - 250 mb

thickness. The measurements were used at times within plus or minus

three hours of the map observation. The technique for deriving the

geopotential fields from the satellite derived vertical temperature pro-

file involves statistical correlations between geopotential and tempera-

ture, and is explained in detail in Smith and Fritz (1969) and Smith

et al (1970). Thickness values are simply taken from the geopotential
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differences. Corrections are employed to account for the presence

of clouds, high terrain, and strongly heated ground. These corrections

are needed because perturbations due to variations in nongaseous absorbers

(such as clouds) are not accounted for in the regression relations, the

surface of the earth is assumed to be at a fixed pressure level (1000 mb)

and the ground and shelter temperatures are assumed equal. It is also

noted in Smith et al (1970) that the transmission functions on which the

derived temperature profile is based, vary significantly with water

vapor content, but this variation is generally explained as a function

of temperature due to the high correlation of water vapor content with

temperature.

Hayden (1971) has compared the relative accuracy of the SIRS

geopotential data with traditional radiosonde observations, and has

found that in situations where high clouds are not prevalent, geopoten-

tial heights given by SIRS are just as accurate as the radiosonde

observation. Even in cases of no high clouds and intensive low tropo-

spheric cloudiness, a reasonable value of the temperature (and thus, geo-

potential) can be obtained. This is because some of the best troposphe-

ric temperature predictors in the regression equations are the lower

stratospheric temperatures, which are generally quite accurate because

of the lack of clouds in this area.

From Hayden's (1971) results, we would estimate that the satellite

thickness values have an uncertainty ranging from 2 dm in clear situa-

tions to 10-12 dm in high cloud regimes. Regardless, we feel that the

satellite data was of some value in supplementing our thermal winds and

traditional radiosonde values.
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Using the above data, we performed a thickness analysis every

twelve hours during the times of these intense storms. We used these

analyses as a check on our thickness change formulae, used in the previous

section, except that now we are dealing with the 1000 - 250 mb thickness.

Thus, we used similar arguments in deriving the thickness tendency

equation similar to (50), except that we.are assuming most of the adia-

batic temperature changes to be taking place between 850 and 4000 mb

by using our sounding samples to find (60-9 ) or (g-o ~O ) -

(A-%t A whichever is appropriate. The value of 7)9 was

also assumed to be a constant of .85 in the 1000 - 250 mb layer. The

values are summarized in Table 3.

We note fairly good agreement between the thickness change over

the low center predicted by the moist process with friction for the

January case, although observed thickness change values over the center

tend to be a bit more positive or less negative than our moist frictional

process would predict. However, all four of our methods for the February

case yield consistently "cooler" thickness changes over the center than

is actually observed. We know that in the February case (contrary to

the January case, and to what is normally observed), the storm moved

toward colder air (as indicated by the 1000 - 250 mb thickness pattern).

Thus, we would expect (and the theory predicts) large thickness decrea-

ses over the center.

Thus, especially in the February case, there must be some warming

mechanism which the theory ignores. The most probable item is convection,

perhaps initiated by strong sensible heat transfer from the ocean to the

adjacent atmosphere. Checks of the ships' logs for those vessels loca-

ted near the storm center for both cases, reveals warmer sea surface
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Table 3

Calculated thickness change over the low center

12Z, Jan. 9 -
00Z, Jan. 10

OOZ, Jan. 10 -
12Z, Jan. 10

12Z, Jan. 10 -
00Z, Jan. 11

00Z, Feb. 4 -
12Z, Feb. 4

12Z, Feb.
00Z, Feb.

4-
5

OOZ, Feb. 5 -
12Z, Feb. 5

(Case of January 9-11, 1974)

- 70 -306 - 45 -119 + 22

+ 80 -133 +141 + 31 +178

- 10 -125 +168 - 14 +157

(Case of February 4-5, 1975)

-190 -594 -439 -439 -356

-130 -603 -329 -308 -255

+ 60 -296 - 56 -211 - 70
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temperatures than air temperature (on the order of 5*C). Yet, there is

no indication of this difference being any larger for the February case

than for the January case. Of course, the data coverage for February,

1975 at both the surface and aloft was not as good as for the January

case, so the analysis of the thickness patterns, especially in the

February case, was likely not as accurate as we would have liked.
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VI. A Further Look at the Sounding Samples

Although we found no deep layers of conditional instability through-

out our sampling of 140 soundings, we did look for individual cases of

potential instability. Potential instability represents the "potential"

for an atmospheric layer, if lifted as a whole, to become statically

unstable. Although no mean potential instability for the entire sample

in the before cases exists, an examination of individual cases showed a

decrease of aO4 (or equivalently, Cg ) in the surface -850 mb layer in

6 of 39 cases in the two forward quadrants, where large scale ascent is

likely to make any potentially unstable situations a reality. The two

rear quadrants showed a larger percentage of potentially unstable surface

-850 mb layer (9 or 25 cases). However, large scale ascent presumably

does not occur in this region, so we do not believe any deep convection

activity would break out here.

Only one case showed potential instability in the forward quadrants

for the 850 - 700 mb layer. This case, incidentally, was potentially

stable in the surface -850 mb layer. However, even though our soundings

do not indicate any deep layers of conditional or potential instability,

the possibility does exist for this to occur through processes on a

shorter time scale than we are seeing. About twenty-four hours generally

separates the "before" soundings from the "after" soundings.

Simpson (1969) has found evidence that deep convection plays a

decisive role in the explosive deepening of oceanic cyclones. One pos-

sible reason for our sampling not indicating any deep layers of condi-

tional instability is that the sample was taken mainly from cyclones out

in the open waters of the Atlantic and Pacific oceans, and away from the
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eastern coastlines of Asia and North America, where there are particularly

good possibilities for strong sensible and latent heat transfer (see, for

example, Manabe, 1957 or Bunker and Worthington, 1976) as a result of

cold, dry continental air masses moving out over the relatively warm

ocean waters. Simpson's (1969) study was based on data collected in the

Gulf of Alaska, again just off the Alaskan and Canadian coasts.
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VII. Application of the Model to the Two Oceanic Storm Cases

Finally, from our surface and 1000 - 250 mb thickness analyses,

we obtained model parameters for each of the cases. So that we could

employ an objective means by which the basic meridional temperature

gradient a, and the temperature perturbation T could be evaluated,

we replaced the thickness analysis via a simple space averaging tech-

nique to achieve a "filtered" field of thickness, h , where h

represents the thickness. Thus, this latter h field, when subtracted

from our original thickness field h, tells us the (h - h) field, and

thus, the temperature perturbation values for the individual case.

These model parameters and the calculated tendencies are summarized in

Table 4.

As we can see from the results, our calculations of geopotential

tendency fall far short of the observed values, and we did not even

consider the frictional filling effect. Values of the speeds are too

high and the likely cause of this appears to be a liability of all

quasi-geostrophic models, that is the intensity rf vertical motion cen-

ters is generally too concentrated, thus resc/: 4 in greater divergence

effects, and overestimates of the horizontal gradient of geopotential

tendency and thus the speed. Krishnamurti (1968) has found in a

balance model that divergence and deformation effects are the likely

cause of this problem.

The underestimate of the observed explosive deepening is likely to

be caused, among other things, by an underestimate of the actual tempera-

ture gradients. Our model would likely predict more deepening if we had

accurate estimates of the thickness gradients in the lower troposphere
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Table 4

Calculations of Model Parameters

Quantity

L

a

Units

km

OC/100 km

January, 1974 February, 1975
-- __ T ..

1/9
12Z

2908

1.50

1/10
00Z

3260

0.96

1/10
12Z

2954

0.65

2/4
00Z

3400

1.37

2/4
12Z

2222

1.29

2/5
00Z

2554

1.05

T OC 2.35 2.35 2.60 1.05 2.50 3.46

f 10-5sec-1 10.8 11.0 11.5 9.0 9.6 10.7
0o105 -

10-5sec 3.1 3.1 4.3 1.6 6.7 6.8

S10-5sec1 13.9 14.1 15.8 10.6 16.3 17.5

/L - .12 .095 .094 .07 .10 .095

(moist - .063 .063 .057 .063 .063 .057

from our
sounding

sample)

S 10-6 sec-lK-1 8.8 8.9 11.1 6.7 10.3 12.2

central p mb 973 949 934 999 965 935

model mb/12 hr -6.4 -3.1 -2.7 -1.3 -5.5 -5.7

central

model kts 59 39 26 53 47 42

speed I

observed kts 29 26 14 33 36 25

speed

actual - mb/12 hr -24 -15 +6 -34 -30

central

1-~ - ----
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(say, from 1000-500 mb), as we examine the 1000-250 mb thickness patterns,

we are likely seeing the effects of the temperature gradient damping off

rapidly in a thin layer above 500 mb. If we had used the original version

of the model, a simple amplification of the tropospheric thickness patterns

to conform to the (1 - F- ) vertical dependence would have helped.

Yet, we are faced with the fact that the vertical structure of the hori-

zontal temperature gradients over the ocean likely looks more like our

pressure independent structure at least in the lower half of the tropo-

sphere with rapid damping of the gradient occurring in the upper tropo-

sphere, or perhaps, even an entirely different temperature configuration

in the upper troposphere.

We have also looked into the possiblity that our model underesti-

mates the effects of the thermal vorticity advection aloft. We calculated

this effect directly from our mean thermal wind field and our (h - h) field

and compared this with a corresponding expression in the model for PTVA,

and found that any discrepancies are small enough to produce a negligible

effect on the deepening calculations.

We have already mentioned the possibility of convection playing a

role in the development of the storm. Our model also takes no account of

the sensible heat transfer, although the former effect of latent heat

transfer due to convection has the potential to be far more important.

We must also question the applicability of quasi-geostrophic theory

to those intense maritime storms. Perhaps an exhaustive effort to gather

significantly more data over the ocean for a finite period of time could

be used to perform a study similar to that of Krishnamarti (1968) to par-

tition the various geostrophic and non-geostrophic effects on the vertical
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motion. A study of this kind might enable us to understand better the

physical processes in these storms.
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VIII. Summary and Conclusions

A new quasi-geostrophic diagnostic model has been developed to

conform to a postulated temperature structure over extratropical mari-

time regions. We have found that vertical motions tend to reach maxi-

mum values at higher levels than was found in the earlier (Sanders,

1971) model. We also found that preferred wavelengths for deepening

were a bit higher in the new version, due to the increase in vertical

extent of strong baroclinicity. Perhaps the major advantage of this

model over the original one is that we have a diagnostic calculation of

temperature perturbation intensification for deepening cyclones. This

is especially important since it is the temperature perturbation which

is necessary for storm intensification to occur. In addition, a more

physically appealing frictional formulation ahs been derived, which

contains the physical effects of frictional dissipation and divergence

throughout the troposphere. Also, the desirable effects of the fric-

tional parameterization used in Sanders' model have been retained (i.e.,

the short-wave cutoff, and the limiting intensity beyond which3

dominates ~ ). We feel that perhaps, friction is an important

mechanism for cutting off cyclone growth in maritime regions because of

the very strong observed circulations which, according to our theory,

become so intense that the friction will cause a cessation of deepening.

Rather good success has been achieved in predicting thickness changes

over storm centers over land (where this data sample is quite adequate)

by combining Sanders' (1975) formulae and our frictional expressions.

More modest success was found in attempting to use these formulae over

the oceans, possibly because of poor data coverage, and an ignorance of
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just what the value of 4 is over maritime areas.

An extensive sounding sample has been taken over regions under

the influence of intense oceanic storms. Though we found no direct

evidence for convection occurring, ruling out this possibility was de-

termined to be an error, for potential instability was found to exist in

some cases, and the time intervals between map times might be inadequate

to fully support the contention that convection does not occur at some

timd during the explosive deepening of oceanic storms.

As noted above, in reference to thickness changes experiments.

two cases of explosive cyclogenesis over the North Atlantic were

examined. Our sounding sample was used as a basis for evaluating

model parameters, and to find deepening tendencies. It was found that

these two cases that even without friction, observed deepening rates

vastly exceeded those tendencies computed with the aid of the model.

The reasons for this failure, as has been discussed earlier, may have

been due to a neglect of non-geostrophic effects, sensible heat

transfer or convective activity, lack of an adequate representation of

the temperature structure, or lack of data causing analysis errors.

We feel that we have achieved a degree of success in capturing

some of the synoptic scale physical effects of large-scale temperature

and vorticity advections in the development of oceanic cyclones.

Although our sounding sample reveals generally very small static stabil-

ity of air in the vicinity of these waves (when we refer to a saturated

atmosphere), even this small stability is not sufficient to account for

the explosive deepening of these storms. Lack of adequate data and

an essential ignorance of the physical processes of these storms is a
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likely factor slowing our progress in being able to predict such large

deepening tendencies. The above factors are inevitably tied together.

Once a network has been set up to evaluate the three-dimensional struc-

ture of temperature, moisture, and winds in maritime areas, adequate

tests of the physical processes mentioned above may be made.
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