
AN EXPERIMENT IN MULTIVARIATE ERROR ANALYSIS

AND LEAST-SQUARES PRINCIPLES USING

NUMERICALLY GENERATED DATA

by

SHUN DER KO

B.S.E., National Cheng Kung University, 1966

M.S., National Central University, 1969

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

at the

MASSACHUSETTS INSTI7UTTE OF TECHNOLOGY

September, 1977

Signature of Author
Department of Meteorology, August 25, 1977

Certified by
Thesis Supervisor ,

Accepted by
Chairman, Departmental Committee or'Graduate Students

~~__il~~~ _--.-I LIE~X^^~ ~--~---L _ ~ __



AN EXPERIMENT IN MULTIVARIATE ERROR ANALYSIS

AND LEAST-SQUARES PRINCIPLES USING

NUMERICALLY GENERATED DATA

by

Shun Der Ko

Submitted to the Department of Meteorology on 25 August 1977

in partial fulfillment of the requirements for the

degree of Master of Science

ABSTRACT

Least-squares principles applied to prediction and objective

analyses are discussed. In prediction analysis we investigate the

linear, linear weighted and nonlinear methods. Error weights have

been taken into account in the linear weighted method. Numerical

data are generated by a set of nonlinear equations. Averaged

reductions of variance are used to test the advantages of all the

schemes. The goodness of the prediction formula depends on the data

interval involved but is nearly independent of data length ranging

from 1500 to 15000 time steps.

Multivariate and univariate methods for objective analysis are

studied by using data generated from an 8 4-cycle scheme. We find the

former is superior to the latter. A general theory of multivariate

error analysis is also introduced and tested with numerical data.
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i. INTRODUCTION

Weather prediction has, in recent years, been a fundamental

problem of considerable attention. Although many improvements have

been made, weather prediction still fails to attain a satisfactory

accuracy. This failure can be ascribed to some inherent causes

(Lorenz, 1965, 1969). In weather forecasting two basic methods are

usually favored; the statistical and dynamical methods. In the

statistical forecasting problem linear regression methods are often

involved. Lorenz(1962) investigated the linear regression methods

by a set of deterministic nonlinear differential equations. He

suggested that linear regression methods give excellent forecasts

one day ahead, but only mediocre forecasts more than three days in

advance. He(1977) reexamined the linear scheme with real weather data

by introducing suitable nonlinear functions of the original predictors

as additional predictors and found the improvements due to the non-

linearity.

The dynamical methods are based on solving a system of governing

equations. Since the governing equations are nonlinear it is hardly

possible thus far to get exact solutions mathematically. Even if

these equations could be solved strictly, perfect prediction would

not be attainable in pratice because the governing equations are not

perfectly known. One of the dynamical methods called numerical

weather prediction requires solving the governing finite difference

equations on a grid lattice. It is necessary to perform a process

of interpolating observed values from unevenly distributed observation

I_~L_~l___j_______ _I _I ..-~YLI~--I(I-XI~L I~14(111.. -----~Cl~iQI.



points to regularly spaced grid-point values which are, to some

degree, representative of the actual atmospheric state. This process

has been referred to as objective analysis. Many analysis schemes

require a rather subjective pre-specification of weight factors in

the interpolation process.

Cressman(1959) suggested a bell-shaped weighting function which

depends on the distance between the grid and the observation points.

Gandin(1963) and Eddy(1964) indicated that weighting functions for

objective analysis should be obtained through the autocorrelation

procedures. Kruger(1969) found that the best relative results were

obtained when the weight factors were based on the autocovariances

of observed minus trial values. Thiebauxt1973, 1974) treated,

extending the idea of Gandin's optimal interpolation method, the

meteorological parameters as vector-valued variables and proposed

a multivariate procedure by taking into account the covariances of

observed variables. Schlatter(1975, 1976) applied the multivariate

schemes to wind and geopotential height fields. He stated that a

distinct advantage of a multivariate approach is that a height

analysis based upon observed height and wind is significantly better

thanone based upon observed height alone. He(1976) also found

univariate schemes fit the data as well as the multivariate schemes

when the observations are plentiful, but forecasts based on the latter

are consistently better. Therefore it seems that the goodness of

the schemes depends on the amounts of observations and distribution

of data points.

----P-Y- IIIU~_I_______~_ _~~I.----~L-L-C



In this study we attempt to reexamine whether the multivariate

analysis is only by chance better than the univariate one. This

investigation is based on numerical data generated by a set of six

nonlinear equations which are related to larger system of equations

developed by Lorenz(1963c). Since the calculations of weight

factors in both the linear regression and multivariate methods are

based on the same principles - minimization of the error variance -

we shall discuss both schemes under the same title of least-squares

principles.

It is certainly true that errors exit in any observations or

measurements owing to the limiting accuracy of measuring instruments

or some unavoidable conditions. In general, error is defined as the

difference between the observed or calculated value and the true value.

However, in many cases we really do not know what the true value is,

especially in meteorology due to the nonperiodic properties(Lorenz,

1963b) and complicated mechanisms in atmospheric systems. But we often

do know approximately what it should be either from the theoretical

approaches or from the earlier observations. Such approximation can

be used as an indication of whether the result is of the right order

of magnitude. In many meteorological research problems, we usually

forecast or calculate a number of parameters simultaneously from an

equal or different number of observation data through some physical

laws or equations which are not exactly applicable to the complex

behaviors of the atmosphere. In these cases to determine how much

- 1 9~----



confidence we can have in our predictions or calculations we need

some systematic ways to estimate the errors of observations and how

they will be propagated to the final parameters. These ways come

under the heading of multivariate error analysis.

2. BASIC CONCEPTS

The least-squares principles are useful for extracting infor-

mation from a set of observations or data points. The principles

are best in the sense that the parameters are normally distributed

about the true parameters with least possible variance or standard

deviation. If the observations and parameters are linearly related

the least-squares method is the best analytical technique, but for

the majority of problems, which are nonlinear, the method of least-

squares refinement suffers from a number of disadvantages.

Essential to the error analysis are the concepts of variance V,

covariance C, correlation coefficient r and standard deviation o0.

Variance is a measure of the dispersion of the observations about the

mean value. The mean value is usually referred as the true value in

such a case when the latter is not available. Instead of variance

a more convenient measure of the dispersion of observations is the

standard deviation which is defined as the square root of the variance.

In the error analysis the covariance is a measure of the way in which

the errors in two quantities vary together. The covariance is zero

when the two quantities are physically independent. However zero co-

variance does not ensure independence. If the covariance is positive and

~



high, it implies that the factor which is causing one quantity to be

assigned, say, a value higher than the true value is also causing the

other quantity to be assigned too high a value. In such case covariance

is therefore an important factor in error analysis, especially in a

many-parameter problem, which will be incorrect if it is neglected.

The correlation coefficient r between two quantities x. and x. is

defined in terms of covariance C and standard deviations of these two

quantities, i.e.,

r(xi,x ) = C(xi,xj)/ ((xi) ((xj) (1)

The correlation coefficient refers to the extent to which the two errors

are correlated. It greatly affects the way in which errors propagate.

It must lie in the range of -1 to +1. If the measurements are connected

physically in some way, the correlation coefficient may be nonzero.

And it will be zero for two independently measured quantities.

3. LEAST-SQUARES PRINCIPLES

In general the error variations in the measurements are not all

equal because of different observation conditions or requirements.

Thus it seems more reasonable to assume errors in the measurements

of different variables have different weights. However in research

problems many an author usually uses less sophisticated methods by

neglecting the weighting factor. This neglect might causes the analysis

to be incorrect. Therefore in this section some more general principles

will be discussed by taking the error weight into cccount. The

principle of least-squares states that it is the weighted sum of the
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squares of the difference between the observed and the calculated(or

predicted) values that must be minimized to obtain the best estimates

of the parameters. The appropriate weighting method is to divide each

element in the sum by a number proportional to the variance of the

measurement from which it was calculated or predicted. The weight

matrix W for related variables X is reasonably defined as the inverse

of the variance-covariance matrix(hereafter denoted VC matrix), MX,

which can be obtained by using the definitions of variance and

covariance, i.e.,

M= miX' iX ' T = < X' XT> (2)MX i=

ir
or V(xl), C(Xl,X2), ... , C(xl,xn

C(x2 ,xl),

Mx -= ... ()

C(xn,x 1 ) , ... V(xn)

where left-hand subscript i indicates the ith set measurements,

m total number of setsof measurements, superscript T the transpose

of matrix, ( > mean, and

' =X -(X> (4)

X =(x 1 , x 2 , ... , xn)T (5)

(X)= ( (Xl> , (X 2 ) , ... , Xn)T (6)

.X' = .x - .x > (7)" 1 1
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Since C(xi,xj) = C(xj,xi) , Mx is a symmetric matrix. If all the

measurements are independent then MX becomes a diagonal matrix. The

VC matrix can also written in terms of standard deviation and correlation

coefficient by using Eq.(1)

J-C(x), t-(x 1 ) 0-(x 2 ) r(x1 ,x2), ..,t -(x i ) -(xn) r(x ,x )

C(x2) -(x) r(x2 ,x,), .

1X got

07(xn) 6o(xi) r(xxiY) so O(X)

(8)

To simplify the notation we define a diagonal matrix of standard

deviations Sx and a matrix of correlation coefficients Rx , whose

diagonal elements are unity,

((xi ) ,  of ... ... ,o

0, (f(x2 ),

S = .(9)
lot 6(6(x

0, .,, '(xn

1, r(x ,x2)t *..o r(xItxn

r(x2 ,xi), 1,

Rx = "... (io)

r(Xn,X1 ) , see

Then MX = Sx R x (Sx . )



Suppose E is column matrix of the difference between the observed

and calculated values. Then the sum G and weighted sum Gw to be

minimized becomes respectively,

G = E E (12)

G = ET WE (13)

where

E =(e(x1 ), e(x2 ), ... , e(xn))T (14)

e(xi) = X. (observed) - x. (predicted) (15)

and

-1
W= M-1 . (16)

3-1. PREDICTION ANALYSIS

In this section we shall discuss the prediction analysis by

linear and nonlinear methods.

3-1-1. LINEAR METHOD

Suppose there are p different-variable predictands and m predictors.

If the predictands depend linearly on the predictors, and an additional

constant predictor xl whose value is always unity is included(Lorenz,

1973, 1977), then the equations relating each predictand kY to m + 1

predictors can be given by

kY (predicted) = kB X k=1,2, ... , p (17)

where

k Y = (k1' kY2' "'0' kn ) (18)



kB = (kbl kb2' ' .. kbm+l )

1x1' ix2'

2 x1' 2x2'

1.. ixn

"" 2Xn

m+ '1xm+12' ""' m+1xn

1xi = 1,1 i
i= 1, 2, ... , n

n = number of observations

That is, kY  kB and x are 1 x n, 1 x (m+1) and (m+1) x n matrices

respectively. To make best estimate of kB, the mean-squares error

kG = kE kET k=l, 2, ... , p (22)

should be minimized with respect to the elements of kB . From Eqs.

(17) and (22) we get

kG = (k - kB X) (k - kB X)T k=1, 2, ... , p

To minimize kG, aG/ 2kBi or JG/ akbi

of i

k = - (kY - B X)T +
k 1 k

= 0

must be zero for all values

(kY - kB X) (-iX )T

k = i, 2, ... , p

i = 1, 2, ... , m + 1

(20)

(21)

(23)

(24)

_~--P Y-P~Y~P~~L--UIL _~-~. .YL_ --XII- -1~-~-.1I1I11*II* I1~ I)~ ~ --~-.. .~.l-~IIPIII~ -- IIi~L~
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where kBi is the ith column of kB, iX is an 1 x n matrix containing

the elements of ith row of X. Since, on the right-hand side of

Eq.(24), the transpose of the first term is equal to the second term,

they are identical and are both equal to zero, i.e.,

(k B X) T = 0 k=1, 2,..., p (25)

i = 1, 2,..., m + 1

Putting the (m + i) terms on the left-hand side of Eq.(25) into a

row matrix and setting it equal to zero, i.e.,

(k- kB X) (1XT 2 xT, .,., m+XT) = 0 (26)

or (k kB X) X = 0 k 1, 2, ... , p (27)

that is,

kB X = X k =1, 2,...., p

or kB = (kY XT ) (X XT-1 k= 1,2, ... , p (28)

Similarly we can put the p's kB into a column matrix we obtain

B = Y XT (X XT) - 1 (29)

where B = (l, 2, ... , B)T 
(30)

Y = (1 Y, 2
Y ' "" p)T (31)

Then Y, B and X are p x n, p x (m+l) and (m+1) x n matrices respectively.

With the help of Eq.(29), the predictands can be predicted by



Y= BX . (32)

On the other hand, we can estimate Y by taking into account the

error weight. In this case we rewrite Eq.(32) as

X= A Y (33)

where A is the inverse of B if p = n. In the estimation we minimize,

with respect to Y, the weighted mean-squares error G given by

G = (X - A T) T W (X - A Y) - (34)

To minimize Gw , we differentiate Gw with respect to the elements of

Y and set it equal to zero. After some manipulation we get

Y = (AT W A)1 ATW X (35)

which will be called weighted linear method in this study.

3-1-2. NONLINEAR METHOD

If the predictands Y depend nonlinearly on the predictors, we

may assume the deviations of predictands and predictors from their

respective means are so small that linear dependence is also valid, that

is,

Y = B'X' (36)

where
Y' = Y -<Y> (37)

x' = x -<X> (38)



X = (1  2X, ..., m+1
X )  

(39)

kX (kXl, kX2 ,' " kxn)  k= 1, 2, ... , m+1 (40)

Y (1Y' 2 ' "" p )T (41)

kY  (kYl' kY2' ... kYn)  k= 1, 2, ..., m+1 (42)

Following the same principles as that described in the above section

we obtain B'

B'= Y' X 'T X'1-1  (43)

3-2. OBJECTIVE ANALYSIS

Univariate and multivariate methods will be investigated for

the linear case in this study. The former is used to estimate the

grid-point individual variable by the same kind of variables obtained at

the nearby observation points. The latter is used to produce grid-

point estimates through the autocovariance and covariance of the

observed variables.

3-2-1. UNIVARIATE METHOD

In this case the equations used are the same as those in prediction

analysis. Suppose there are m observation points around a grid point

and p different variables at each point. If the estimated variables

I I P--



at grid point Y depend linearly on the observed variables, then

Y(estimated) = B X

where

Y = (1y
' 2Y '

kY = (Jk1' kY2

B = ( 1 B, 2 B, ..

kB = (kbl' kb2
'

p Y )

' ** kyn)

B pB)T
p

a . kbm+1)

(p x n)

k-=1, 2, S.0, p

(p x (m + 1))

k = 1, 2, ... , p

1 x2'

2 x2 ,

.
I

m+lXm+lx2'

i = 1, 2,

1Xn

2Xn

m+lxn

... , n

((m + 1) x n) (49)

(50)

n = number of observation

Although the p different variables are combined into a compact

matrix equation, they are treated independently. Following the

arguments given in section 3-3-1, we have

B = Y XT (X XT )-1i

(44)

(45)

(46)

(47)

(48)

2xi'

2 xi

1xi = 1,1i2i

(51)

.._.



3-2-2. MULTIVARIATE METHOD

First we assume the parameters at grid points are linearly

dependent on the nearby observed values. If there are m sets of

observations and p different variables at each observation point,

then the equation relating the grid-point estimates Y to the nearby

observations X is

Y= B x (52)

Y = (1Y, 2Y, ..., pY) (p x n) (53)

kY = (ky1 kY2' "... kYn) k = 1, 2, ..., p (54)

(1 x n)

n = number of observations

B = (B, B, 2B..., B) (p x mp) (55)

kB = kbij i, j = 1i, 2, ... , p (p x p) (56)
k = 1, 2, ... , m

X = (1X
T 

2XT, ... , mXT)T (mp x n) (57)

kX (kl, k kX2  et Xp) T ,  k= 1, 2, ... , m (58)

(p x 1)

kXi = (kxil, kxi2 ... kxin) i = 1, 2, ... , p

(1 x n)

Since the form of Eq.(55) is the same as that of Eq.(17) we can

follow the similar procedures and get

B = Y XT (X T)-I . (59)



4. MULTIVARIATE ERROR ANALYSIS

4-1. ERROR CALCULATION AND PROPAGATION

It is inherent that small deviations from the true value will

be obtained in any observation or measurement. Therefore error

analysis is important in scientific problems. As mention above,

the standard deviation describes the dispersion of observations

and the correlation coefficient affects the way in which errors

propagate. Therefore it is an essential work in error analysis to

investigate the standard deviation and correlation coefficient of

measurements and of parameters.

Assume that there are measurements of n different variables and

p parameters. The errors of measurement X and of parameters Y are

defined as the deviation of any measurement x. and of any parameter
1

yj from their corresponding mean <xi> and <yj> , that is

x ' = x. - xi i =1, 2, ... , n (60)

y. yj - y , j = 1, 2, ... , p (61)

From Taylor expansion, neglecting the highorder terms (linear

assumption), the above expressions can be written as follows:

P
x' = ; ( a / y j ) y  , i = 1, 2, ... , n (62)

i j --



n

3 i= a l axi) xi
j = 1, 2, ... , p

The linear assumption is based on the validity of Taylor expansion of

each parameter around the mean values of the measurements and moreover

on the fact that the linear terms in the expansions are the most signi-

ficant in the error region. To simplify the notation and manipulation

we use the matrix forms,

X' = A'Y' (64)

Y' = B' X' (65)

where

X' = X -(X >

Y'= Y -Y>

'= (x, x, ... , x)

Y , = ( , 2 ' . , ) T

X = (X1 , X2 , ... , xn) T

Y = (y 1 Y2 ... , y)T

(X>= ((<x1 , <x2), ... ,

<Y)= (<(y1 ' Y2 ' "'"

;Yl Y2 a Yp

-- 2' a a

8a Y
A! ya

ax

- n , ... ax n
yYA

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)
T

(74)

(63)
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ax1 9O2 ?Xn

B (75)

ay aY
a , V X..1 n

From Eqs.(64) and (65) it can easily be shown that B'is equal to the

inverse of A' if p = n. If either the measurements or the parameters

are not all independent, then, A' or B', of the sets of derivatives will

not be defined. When the parameters are overdetermined (n)p) by a

greater number of measurements, matrix A'is used. When there are the

same numbers of parameter and observation, either A or B'may be used.

For propagation errors in observations A must be used, but for error

propagation to non-independent parameter, B'must be used.

The problems of errors propagation lie in the calculation of

VC matrix for the parameters. The VC matrix for Y, MY, can be deduced

from MX . From the definitions of variance and covariance, My is

given by

My= (Y' y'T)= L i Y' Y'T (76)

Assuming that Y' and X' are linearly related over the range of errors,

Y' can be expressed by an equation of the form of Eq.(35)

Y = (T W A')-i AT w x'

...........

(77)



Substituting Eq.(77) into Eq.(76)

M = ( ( W A)-1 XT W X' X ' T WT A ((, T W >)-I)T > (78)

Since W and (AT W A)- are symmetric,

WT = w (79)

and

((A~ w A)-)T = (AT W A)-1 . (80)

Thus

= (T w ) T W<' x'T A' (1 w )-i

S(AT W A')-I1T W MX W A (A W )-1
= (WT W A)-1AT W A( T W /)-1

W(T X)

= (T Mx1 A)- (81)

where we have used the relation W Mx = I. Then the propagation of

erro rs from n measurements to p parameters may be expressed as

6-(yi) = ((M)ii) (82)

r(yi, yj) ()j (83)
6(y) 0(yj) "

4-2. ERROR ELLIPSOID

We recall that the correlation coefficient was a measure of the

extent to which errors in two quantities are correlated. Therefore it

is directly related to the probability distribution of errors in

particular pairs. A typical distribution with fairly general significance

.- .I.~'-yll~-llll~l~ _YL-. -_X ~ I I_
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is the normal distribution. Thus throughout this section'we will

assume the distribution of errors is normal. In this case the probability

of a measurement has a value between x. and xi + dx. is given by
1 (x)2

P(x1 ) dxi = (27R)- -(xi) exp( )2 dxi 1 2,.,., n
2 -(i)

If X are all measured independently, then the probability of having values

between X and X + X' is given by the product of individual probabilities,

n - (xi2 (x'n)2
P(X) = (27Jr) ((x) ... -(xn)) exp( -

n 2 2 2() 2 6- (xn)
n i (xi2

= TT (2)f) cy(xi) exp(- ) (84)
1i=1 2 .(xi

Eq.(84) can also be written as

P(X) = (2f)-  S1 exp(-4 XT(S )-I X'). (85)Isxl

wherelSxl is the determinant of SX . Eq.(84) or (85) is usually called

multivariate normal density function (Morrison, 1976). To make a

geometric interpretation of probability we define error ellipsoid as

n (x?)2
2xi = 1 (86)

i=1 2-(xi)

Such a ellipsoid represents the probability of e-2 times the maximum

probability 1/((2)n/2S,). All points outside.this ellipsoid have

a smaller probability than this and all points inside a larger

probability. The covariance and coefficient are both zero on the axes

of the ellipsoid.

goo,



5. NUMERICAL EXPERIMENTS

5-1. EQUATIONS OF SPECIFIC MODEL

In order to test the schemes that are developed in previous

sections we use numerical data which are generated by a set of nonlinear

equations

dU-=- a (V2+ W2)  c (y2+ Z2 ) - U + H (87)

dV
d_ = a U V - b U W - e X Z - V (88)dt

dW(
dt = bU V + aU W + eX Y -W (89)

d =(e - f) (V Z -W Y) - X (90)
dt

d -=c U Y - d U Z - f X W -Y (91)
dt

S= dU Y+c UZ + fXV -Z (92)
dt

where U, V, W, X, Y and-Z are six variables, a, b, c, d, e, and f are

constant coefficient, H is external forcing. This set of equations is

deduced from a larger system of equations suggested by Lorenz(1963c).

Although the equations used in this study do not closely approximate

the so-called governing equations of the atmosphere, they are similar

----------



in mathematical form to the latter. The linear terms in these

equations correspond to friction, quadratic terms nonlinear

contributions of various scales. The behaviors of the variables

in the equations depend on their initial conditions, the constant

coefficients and the forcing constant. The numerical values of

these factors used in this study are shown in Tables 1 and 2.

These values are not totally arbitrary, most of them had been tested

by Hoffman(1977). Some initial conditions lead to symmetric vacillation

and some to unsymmetric vacillation after a quite large number of time

steps. To avoid computational instability we reexamined these initial

conditions. They are stable at least up to 30000 time steps.

For the objective analysis we use additionally the following three

equations

S= T2 (U cos y + X cos 2y) + (V sin y + Y sin 2y) cos 2x

+ (W sin y + Z sin 2y) sin 2x (93)

u = r U sin y - (V cos 2x + W sin 2x) cos y + 2 J2 X sin 2y

- 2 (Y cos 2x + Z sin 2x) cos 2y (94)

v = 2 ((W cos 2x - V sin 2x) sin y + (Z cos 2x - Y sin 2x) sin 2y)

(95)

where T represents stream function, u and v flow field and where we

have used the relations

u= - (96)
ay

ax
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Table 1. Constant coefficients.

Coefficient a b c d e f

Value 2.0 4.0 1.0 3.0 4.0 1.0

Table 2. Initial conditions of six variables and H

Data
set

1

2

3

4

5

6

7

8

H

2.020

2.024

2.020

2.020

2.020

2.020

2.000

2.000

U

0.55

0.58

0.01

0.01

1.01

1.01

0.01

0.01

V

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

W

0.01

0.01

0.01

1.01

0.01

1.01

0.01

0.01

X

0.01

0.01

0.01

0.01

1.01

1.01

0.01

0.01

Y

0.01

0.01

1.01

0.01

0.01

0.01

0.01

0.01

Z

0.10

0.10

0.01

0.01

0.01

0.01

1.01

0.10

Table 3. Dependence of averaged reductions of variance

on the data length for data generated by the

4 4-cycle scheme. All the prediction steps

are up to 1500.

Data length
Data
set 1500 3000 4500 6000 7500 9000 10500 15000

1 0.8910 0.8896 0.8892 0.8887 0.8887 0.8883 0.8883 0.8880

7 0.8890 0.8889 0.8888 0.8888 0.8887 0.8887 0.8886 0.8886

--



Table 4. Same as Table 3 except all the prediction

steps are the same as the data length

Data Data length

set 1500 3000 4500 6000 7500 9000 10500 15000

1 .8910 .8871 .8862 .8856 .8853 .8852 .8850 .8848

7 .8890 .8803 .8775 .8759 .8750 .8744 .8740 .8732

Table 5. Averaged reductions of variance in linear prediction

by present predictors for data generated by 4 4-cycle

and 8 4-cycle schemes, with indicated time steps of

predictands.

Scheme 4 4-cycle 8 8-cycle
Time steps of predictands

Data 1 2 3 4 1 2 - 3 4

set

1 .891 .637 .351 .123 .973 .895 .779 .638

2 .895 .650 .379 .163 .973 .897 .783 .646

3 .896 .649 .372 .142 .968 .879 .745 .582

4 .888 .620 .315 .053 .968 .879 .745 .584

5 .893 .642 .362 .144 .968 .880 .749 .592

6 .888 .621 .316 .063 .965 .867 .721 .546

7 .889 .627 .334 .092 .969 .880 .748 .586

8 .890 .629 .338 .089 .965 .869 .725 .554
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By Eqs.(93) - (95) combined with Eqs.(87) - (92), we can generate

three different variables,which are function of time and space, at

each point.

5-2. PREDICTION ANALYSIS

Three basic problems usually exit in the statistical prediction

analysis; (1) whether the data length is long enough, (2) whether

the data interval is proper and (3) whether the prediction formula

fits the data well. From the theoretical point of view, it seems that

the longer the data length involved the better the prediction. However,

in practice it is important to make good forecasts by a method involving

recent past or present data only. Therefore in our study we first

investigate the dependence of the prediction errors on the length of

data points. For simplicity only the present predictors are involved

in this study and the averaged reductions of variance are calculated.

Here we define the averaged reduction of variance(ARV) as

ARV variance - mean-squared prediction error
variance

As shown in Tables 3 and 4, the data lengths range from 1500 to

15000. Two data sets are used in this test. In Table 3 the averaged

reductions of variance are obtained by the prediction up to 1500 steps for

all data length involved. In Table 4 the results are obtained by the

prediction up to the same steps as the data length involved. It is noted

that the averaged reductions of variance are nearly independent of

the data length. Due to this fact,hereafter, we shall use the data



Table 6. Averaged reductions of variance in linear weighted

prediction by present predictors for data generated

by the 4 4-cycle and the 8 4-cycle schemes, with

indicated time steps of predictands.

Scheme 4 4-cycle

Data
set

.890

.894

.895

.886

.892

.887

.888

.889

Time steps of
2 3 4

.628

.642

.642

.609

.635

.610

.619

.623

.327

.357

.352

.283

.341

.284

.310

.318

.077

.122

.104

.006

.105
.006

.046

.050

8 8-cycle
predictands

1 2

.973 .8

.973 .8

.968 .8

.968 .8

.968 .8

.965 .8

.968 .8

.965 .8

95
96

78

78

79

66

79

67

Averaged reductions of variance in

linear weighted (LW) prediction of

linear (L) and

every 2-time-step

in advance for data generated by the 4 4-cycle scheme.

1 2 3 4 5 6 7 8

.411 .441

-.341 -. 257

.405 ..436

.439
-.263

.435

.374
-.450

.367

.431
-.254

.427

.384
-.424

.377

.407 .415

-.335 -.302

.402 .411

Table 8. Averaged reductions of variance in nonlinear prediction

one time step ahead, for data generated by the 4 4-cycle

scheme.

Data set 1

.891

2 3 4 5 6 7 8

.895 .896 .888 .893 .888

3 4

.777

.780

.742

.742

.746

.718

.745

.721

.635

.641

.577

.578

.586

.540

.580

.544

Table 7.

Data set

Time
step

1

2

1

--

.889 .890



points up to 1500 time steps only unless specified.

Next we shall examine whether the goodness of the prediction

schemes depends on the data interval or not. In this case we use

two different groups of data; one is generated by a 4 4-cycle

numerical scheme and the other an 8 4-cycle scheme whose general

principles are discussed by Lorenz(1971). The time-step interval

in the 4 4-cycle scheme is twice as much as in the 8 4-cycle scheme.

From Tables 5 and 6 we see that the averaged reductions of variance

using the data produced by the 8 4-cycle scheme are much larger

than those using the data generated by the 4 4-cycle scheme. This

means that to predict one day ahead by using one-day interval data

is much better than to predict two days ahead by using two-day

interval data. However, it seems that to predict two daysin advance

by using one-day interval data is slightly worse than that by using

two-day interval data. For the 8 4-cycle data, prediction one time

step ahead is nearly perfect, prediction two time steps ahead is

fair and predictions three and four time steps in advance are far

from perfection. These results are almost agree well with those

obtained by Lorenz(1962). However, for the 4 4-cycle data, the

prediction one time step ahead is only mediocre. Therefore the

dependence of prediction error on the data interval is quite evident.

We also forecast every 2-time-step in advance by using 1-time-step

data. The results are shown in Table 7. It is rather obvious that

the averaged reductions of variance are very low and become negative
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for the prediction 2 2-time-step in advance. These facts imply that

if we want to predict one day ahead by linear regression method or

near weighted method using present predictors it is better to use

only the one-day-interval data during the calculation of B in Eq.(29)

than to use 12-hr-interval data at the same time.

Finally we compare three prediction methods- linear, linear

weighted and nonlinear methods - described in section 3. Their

averaged reductions of variance are presented in Tables 5, 6 and 8

respectively. From these Tables, it is easy to. find that the averaged

reductions of variance obtained by all three methods are almost the

same. This means the nonlinear method based on the data deviated

from the mean does not improve the prediction error.

5-3. OBJECTIVE ANALYSIS

In order to test the univariate and multivariate methods for

objective analysis, we use differently dispersed positions of grid

and observation points which are shown in Figs. 1 and 2. In Fig.2,

the distances between grid points and observation points are relatively

longer than that in Fig. 1. In stead of changing the distribution

of the observation points we change the grid point in six different

ways, denoted as G1 , G2 , ... , G6 , for different distributions of

observation points. The averaged reductions of variance for these

methods are given in Table 9 for different grid-point positions in

Figs. 1 and 2.
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79/8

39/4 , R1  . G5 R3

5 7r8 G 4

/2 G6  G R5

3)/8 - G 2  G3

7/4 - R4
28 

- R2

0 I I 1 I 1 I

0 A/4 -/2 3 7/4 7 5 X /4 3 7/2 7 A/4

Fig. 1. The domain of grid points and observation points

7 R/8

31/4 . G5

5 I8 G4

l/2 G6 G . R:

37/8 - G2 G3

0/4 R 4

S/8 .R2

0 1 i I I I

0o x/4 /2 3 X/4 W 5 1/4 31/2 74v 2p7

Fig. 2. The domain of grid points and observation points
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Table 9. Averaged reductions of variance calculated by

univariate (UM) and multivariate (MM) methods for

data generated by the 8 4-cycle scheme, with indicated

grid-point positions in Figs. 1 and 2.

Figure scheme

Fig.1 UM
MM

Fig.2 UM
MM

Grid-point position

1 2 3 4 5

.911 .899 .911 .886 .917

1.000 1.000 1.000 1.000 1.000

.958 .838 .931 .893 .976

1.000 1.000 1.000 1.000 1.000

Table 10. Total prediction errors by univariate (UM) and

multivariate (MM) methods for data generated by

the 8 4-cycle scheme, with indicated grid-point

positions in Figs. 1 and 2.

Figure Scheme

Fig.1 UM
MM

Fig.2 UM
MM

Grid-point position

1 2 3 4 5 6

414.87 445.16 404.82 567.88 371.58 420.06

.001 .001 .003 .001 .000 .001

196.83 715.04 315.32 533.10 107.95 523.44

.035 .039 .001 .015 .035 .026

.991
1.000

.888

1 .000
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It is remarkable that the results obtained by the multivariate

method are perfect and almost independent of the distributions of

the nearby points. For the univariate method, however, good results

are obtained when the grid points are at point 6 in Fig. 1 and ponits

1 and 5 in Fig. 2. These points are likely located around the centroid

of the observation points. The squared prediction errors for these

two methods are compared in Table 10. The prediction errors by

multivariate analysis can hardly be detected, while those by the

univariate method are relatively large. We do hot claim that our cases

are the general one. It is, however, reliable to say that the multi-

variate scheme developed in this study is much better than the uni-

variate one. That is, for objective analysis to estimate the grid-

point values from those at unevenly distributed observation points,

it is much better to take into account the covariance between the

variables than to involve only one variable.

5-4. MULTIVARIATE ERROR ANALYSIS

As mention above the central work of multivariate error analysis

lies in the calculation of the standard deviation and correlation

coefficient of both observations and parameters. In this study we

take U, V, W, X, Y, Z in Eqs.(87) - (92) as observations and their

respective derivatives U, V, W, X, Y, Z as parameters. Here we shall

investigate how the standard deviation and correlation coefficient

of observations change and how they propagate to those of parameters

_



Table 11. Average (A) and standard deviation (6) of six variables

for data generated by the 4 4-cycle scheme.

Variables

U V W X

0.8020 -0.0311 -0.0140 -0.1498

0.2817 0.4844 0.4717 0.3307

Y

0.0040

0.3722

Z

0.0031

0.3672

Table 12. Correlation coefficient of six vari

U V W X

0.068 0.053

1 0.017

-0.024

-0.036
-0.040

ables.

Y Z

0.017 -0.016

0.401 -0.142

0.143 0.383

0.117 0.035
1 -0.009

1

_~_______La_ _ ~ 11111- -~._



Standard deviations of six variables after increasing

1 percent of initial condition of a variable.

Standard deviation of variables

Table 13.

Variable
changed

U

V

W

X

Y

Z

Table 14.

Variable
changed

.4894

.5254

.4685

.5138

.4868

.4905

.4934

.5288

.4716

.5135

.4889

.4895

.3593

.3285

.3588

.3340

.3580

.3582

.3486

.2832

.3798

.3105

.3560

.3550

.3532

.2852

.3809

.3097

.3580

.3549

The same as Table 13 except for 5 percent.

Standard deviation of variables

.2754

.2805

.2852

.2789

.2800

.2766

.4734

.5130

.4908

.4816

.4986

.5276

.4759

.5199

.4957

.4862

.5072

.5224

.3657

.3305

.3456

.3305

.3477

.3312

.3766

.3064

.3466

.3596

.3304

.2889

.3758

.3059

.3483

.3638

.3322

.2852

The same as Table 13 except for 10 percent.

Standard deviation of variables

.2657

.2922

.2637

.2829

.2764

.2782

.4766

.4775

.4820

.5053

.4857

.4916

.4847

.4763

.4759

.5027

.4861

.4883

.3724

.3469

.3570

.3374

.3335

.3576

.3730

.3732

.3729

.3289

.3606

.3529

.3665

.3707

.3722

.3260

.3607

.3518

U

.2708

.2794

.2826

.2839

.2669

.2616

Table 15.

Variable
changed
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by changing the initial conditions of the observations.

Tables 11 and 12 give the standard deviations and correlation

coefficients of six variables before the initial conditions are not

changed. Tables 13-15 indicate the standard deviations of six variables

after increasing respectively 1, 5 and 10 percents of the initial

values of each variable. We see, from these Tables, when the initial

condition of V or X increases one percent the standard deviations of

V, W, Y and Z change obviously. However when the initial condition

increases 5 and 10 percent the standard deviation of six variables

almost keeps constant.

To calculate the error propagation we use Eqs.(82) and (83)

1

(YYi) = (( My )ii )

( My)ij
r(Yi'YJ) = 1  (j

where

My= (=A MX A)-

My= B'M (98)

A and B'are given in Eqs.(74) and (75). According to Eq.(75), B'

can be obtained by differentiating the parameters with respect to

the observations in Eqs.(87)-(92), then



Table 16.

Variable
changed

U

V

w

X

Y

Z

Table 17.

Variable
changed

U

V

w

X

Y

Z

Table 18.

Variable
changed

U

V

w

X

Y

Z

Standard deviation of six parameters after increasing

1 percent of initial condition of a variable.

Standard deviation of parameters

iT

1.4378

1.6128

1.3597

1.5470

1.4326

1.4459

V

1.9201

1.8737

1.9277

1.8846

1.8941

1.8733

W

1.8837

1.8589

1.9084

1.8839

1.8781

1.8735

X

1.0949

0.9573

1.1177

1.0077

1.0890

1.0848

y

0.9637

0.7549

1.0711

0.8304

0.9728

0.9560

Z

0.9516

0.7501

1.0676

0.8325

0.9678

0.9563

The same as Table 16 except for 5 percent.

U

1.3650

1.5679

1.4533

1.4672

1.4926

1.6016

Standard deviation of

V W X

1.9276 1.9246 1.1328

1.8709 1.8623 0.9910

1.9104 1.9059 1.0775

1.8466 1.8248 1.0316

1.9097 1.8890 1.0575

1.8498 1.8758 0.9625

parameters

Y

1.0509
0.8122

0.9553

0.9805

0.9009

0.7554

z

1 .0521

0.8119

0.9509

0.9699

0.8953

0.7639

The same as Table 16 except for 10 percent.

1.3907

1.3944

1.5021

1.4667

1.4310

1.3854

1.91

1.9

1.9

1.8

1.9

1.8

Standard deviation of parameters

.17 1.9287 1.1290 1.0146

042 1.9278 1.0988 1.0394

)22 1.9169 1.0406 G.8905

380 1.8415 1.0398 0.9703

)86 1.9189 1.0950 0.9678

349 1.9172 1.1220 1.0730

1.0290

1.0456

0.8974

0.9706

0.9711

1.0792
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Table 19. Correlation coefficient of six parameters

increasing 1, 5 and 10 percent of initial

condition of U variable.

Percent Parameters U V W X

-.023

1

-.006

1

1 -. 001

1

-. 021

.018

1

-. 018

-.006

1

-.005

-,044

1

-.050

-. 003

-. 010

1

-. 020

.003

-.004

1

-. 016

-. 015

.012

1

after

-.001

-. 018

-.034

.011

.005

.011

-.011

.019

1

-.005

-. 015

.004

.003

1

5%

10%o

-.009

-.002

-.040

-.009

.009

1

- .002

.002

-.030
-. 019

-.002

1

.019

.010

-,.012

-.005
-.022



Table 20. The same as Table 19 except for V variable.

Percent Parameters

U -.019 -.014 -.000 -.003

1 .002 -.008 .007

.004

-.002

.006 -.008 .015

1 .016 -. 007

1 .004

-.005 -.002 -.100

1 -. 018

.010 -. 001

.014 -.111 .028

.002 -.018 -.120

.001 .103

-. 016

10%

-.020

1

.004

.006 .147

.009 .030
1 -.020

1

.009

-.003
-. 014

1

.003

.004

.133

.009

-.002

..IIX.i .i_-_-I_



Table 21. The same as

Percent Parameters U

Table 19 except for

Sw

.029

1

.010

1

.007

1

10%

-. 014

.006

1

.010

-. 014

1

-. 007

.007
1

W variable.

XY

-. 110

-. 008

-. 021

1

-. 076

.006

.004

1

.165

,002

-. 000

1

.001

-. 105

-. 019

.038

.005.oo5
-. 089

-. 024

.021

1

.002

.177

.025

.016

1

z

-. 007

.024

-. 128

.001

.007

-. 002

.010

-. 065

-. 019

-. 009
1

-. 006

-. 040

.175

.003

.008



Table 22. The same as Table 19 except for X variable.

Percent Parameters

U -. 013 .001 .055 -. 012 -. 000

.003 -. 016 .065 -. 014

-. 002 .010 .066

1 -. 020 .003

1 .002

.020 -. 011 .237 -. 004

.001 -. 002 .277 -.030

.024 .069

1 .019

1 -. 000

1

1 -. 019 .034 -. 054 -. 001

-. 004 .oo000 -. 064

.003 -. 015 -. 087

.013 .005
.000

.005

.263

.008

10%o

.001

.002



Table 23. The same as Table 19 except for Y variable.

Percent Parameters

U

1% w

1 -.031 -.007 -.097 -.004 .006

.008 -.000 .127

.006 .020

-.002

-. 009

.124

.001

.010

.029 .026 .038

1 -.012 -.000

.003 -.003

.049 -.020

.005 -.002 .027

.013 .011

1 -.004 .001 -. 221

1 -.005

1

-.009 -.004

1 -.004 -. 015 -. 254 .037

1 -.009 -.054 -.241

1 -. 010 .003

1 .005

10%

ill -^-LI-X----_III-_--^ II ~



Table 24. The same as Table 19 except for Z variable.

Percent Parameters

U .031 .007 -. 135 -.012

.005 -. 014 -. 132

.028

.028

.018 -. 034 -. 128

1 .021 -.006

1 .005

1

-. 031 -. 002 .018 -.009

-. 006 -. 013

1 .019

.031

.014

.004

.007 .032

1 -. 001

1 -.004

1
10%o

.027 .029 -.004 -.001

.004 -.008 .0027 .003

-.005 .015

-.001

1

.037

.008

.010

-. 012

.000

1



-1 -2aV -2aW 0 -2cY -2cZ

aV-bW aU- 1 -bU -eZ 0 -eX

bV+aW bU aU-1 eY eX 0

B= (99)
o (e-f)Z -(e-f)Y -1 -(e-f)W (e-f)V

cY-dZ 0 -fX -fW cU-1 -dU

dY+cZ fX 0 fV dU cU-1

The propagation of errorsis shown in Tables 18 through 24. We find

from Table 18 when the V variable increases 1 percent of its initial

condition the standard deviations of most parameter change apparently.

No regular variation of standard deviations of parameters is observed

in this study. Since the correlation coefficient between parameters

is very small , the error popagations are nearly independent of

each other. From the standard deviations of observations and of

parameters we can estimate the error ellipsoids.

6. CONCLUDING REMARKS

In this study we applied least-squares principles to both

prediction and objective analyses and got similar forms in the

weighting function, B, of the prediction formula. We also found

that the averaged reductions of variance depend on the data interval

used but are nearly independent of the data lengths ranging from

1500 to 15000 time steps. The goodness of linear, linear weighted



and nonlinear methods decribed in this paper are almost the same.

Both linear weighted and nonlinear techniques do not improve the

prediction error.

In objective analysis we got an exciting result. To make grid-

point estimates from the nearby irregularly distributed observation

points, the multivariate scheme is superior to the univariate one.

As for the multivariate error analysis, we did not get obvious

results. In our cases, the correlation coefficients between the

observations and between the parameters are very small.

Further investigation using the real weather data seems necessary

to make a more affirmative conclusion.
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