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ABSTRACT

Incomplete knowledge of the pattern of magnetic linea-

tions and fossil transform faults represented by sea floor

spreading data on two plates generated by the same spreading

center leads to uncertainties in a reconstruction of the

past relative configuration of the plates. Such uncertainties

may be treated mathematically using a finite rotation to de-

scribe one configuration relative to another. Part I of this

paper presents the statistical formulation of the problem of

uncertainty in the finite rotation. The error in a given data

point is assumed to obey a spherical analogue of a truncated

bivariate-normal probability distribution. The method of re-

construction reflects this assumption and the fundamental

tenets of plate tectonics. The construction of a confidence

region for the rotation tensor is considered in detail. The

method of construction is shown to depend upon both the kind



of data set being examined and the assumptions that are

made about uncertainties in the data. Several methods of

construction are given, each of which is appropriate for

a particular kind of data set and a particular set of

assumptions about the uncertainties. The propagation of

errors through a sequence of finite rotations is examined,

and the uncertainty in a reconstruction of the relative

configuration of two plates via reconstructions of inter-

mediate pairs of plates is obtained.

Part II of this paper shows how the theory of Part I

may be used to study the uncertainties of reconstructions

in the South Pacific for the times of anomalies 13 and 18.

Name and Title of Thesis Supervisor: Peter Molnar

Associate Professor
of Earth Sciences
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CHAPTER I: INTRODUCTION

The first comprehensive presentation of the concept

of continental drift was published by Taylor (1910), closely

followed by Wegener (1929) and further elaborated by du Toit

(1937) and others (see du Toit, 1937, pp. 11-36). The hypothe-

sis of plate tectonics grew from the synthesis of this

concept with the ideas of sea-floor spreading and transform

faults (Hess, 1962; Wilson, 1965), and the contributions of

many others (see Le Pichon et al., 1973, Chapter I). This

hypothesis states that the strong outer layer of the earth

is composed of a small number of large rigid plates. It is

the interaction of these rigid plates at their boundaries

that accounts for most of the present-day tectonic activity

(Morgan, 1968; McKenzie and Parker, 1967; Isacks et al.,

1968; see Le Pichon et al., 1973, Chapter II).

Material may be added, conserved, or consumed at a point

on the instantaneous boundary between two rigid plates in

relative motion. Oceanic crust is created at an oceanic

ridge crest, conserved along a transform fault and destroyed

in a trench. The creation of oceanic crust at an oceanic ridge

crest establishes a geologic record of the accreting margin

of the instantaneous boundary between the two plates. This

record can be discerned from the linear magnetic anomalies

which are established simultaneously with the creation of

oceanic crust and thereafter borne away on either side

of this accreting plate margin (Vine, 1966). Some of the

newly-created oceanic crust may be destroyed or altered



during subsequent changes in relative motion. The relative

shear of two sections of oceanic crust on opposite sides

of a transform fault leaves a fossil trace, called a

fracture zone, in the plates. The morphology of a section

of fracture zones depends on the history of relative

motion between the two plates at the succession of

instantaneous plate boundaries since the time that the

oldest part of this section moved beyond the transform

fault. The relation between the transform fault at the

time of interest (the instantaneous conserving plate

boundary) and the segment of fracture zone which developed

from it can thus be deduced only if the history of

relative motion for appropriate times at relevent places

on the plate boundary is known. Trenches are useless

for reconstructions as oceanic crust is destroyed after

it enters them.

The quantitative description of relative motions of

rigid plates on a sphere is based on a well-known theorem

due to Euler (see Bullard et al., 1965; see discussion in

Le Pichon et. al., 1973, pp 28-39):

The general displacement of a rigid body with one

point fixed is a rotation about some axis passing

through the fixed point.

In the case of rigid plates constrained to move on the

surface of a spherical earth, the motions can be described

as rotations about an axis passing through the center.

The points at which this axis intersects the sphere are

~I~



poles of rotation. The instantaneous relative motion of two

rigid plates, represented by an infinitesimal rotation, may

thus be completely described by a vector in the direction

of the rotation axis with magnitude equal to the angular

velocity. This description has several important implica-

tions for the geometry of boundaries between rigid plates

in relative motion.

A transform fault must be a small-circle around the pole

of rotation that describes the instantaneous relative mo-

tion between a pair of rigid plates (see Le Pichon et al.,

1973, p. 29). If the pole of rotation remained fixed with

respect to the pair of plates for a finite time, then the

trend of the transform fault would not change during this

period (see Le Pichon et al., 1973, p.33). The trend of the

fracture zone developed from the transform fault during

this finite time would follow the same small-circle path.

This relation is rarely observed. Further, all plates can-

not rotate through finite angles about instantaneous relative

rotation axes fixed with respect to the pairs of plates

(McKenzie and Morgan, 1969; see Le Pichon et al., 1973,

pp. 20,33,34,108). Although there is no geometric constraint

on the shape of a segment of ridge axis, the ridge is often

observed to be nearly perpendicular to the direction of

spreading (see Le Pichon et al., 1973, pp. 20,21,24,26,27).

These facts establish the kinematic framework within which

the question of uncertainty in a reconstruction
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must be discussed.

The Eulerian description of a finite rotation may

be formulated as a 3x3 orthogonal tensor A which depends upon

the latitude and longitude of the pole of rotation,(6, ),

and the angle of rotation i. Inferences about A are

thus seen to be inferences about (6, ,i). The necessity

for such inferences arises from the important question of

estimation of the relative finite motion of two plates

via estimates of the relative finite motions of several

intermediate pairs of plates. The ultimate goal of

this work is to estimate the parameters and associated

uncertainties of the A., i = 1, 2,..,N-1 which are

necessary to describe uniquely the finite relative motions

of (N-l) plates with respect to one plate taken fixed.

This paper discusses in detail the problem of estimation

of the parameters of a finite rotation from sea-floor

spreading data.



CHAPTER I-I: FORMULATION OF THE PROBLEM

II.1 Uncertainties in Sea-Floor Spreading Data

The linear magnetic anomalies carried away from oceanic

ridge crests are presumed to delineate oceanic crust of

constant age formed at a past accreting plate margin. If

a pair of plates has remained completely rigid since the

lineations of a given age were developed, then the rotation

which restores the original relative positions of these

lineations will also restore the plates to their past relative

position. This rotation may not precisely align the segments

of the formerly active transform faults along corresponding

offsets of the lineations because the morphology of a

fracture zone may evolve during the history of relative

motion between the two plates (see discussion in Chapter I).

A reconstruction, however, may not let a magnetic lineation

cross a fracture zone.

The former plate boundary is defined at a finite number

of discrete points where ship tracks cross the features.

Systematic differences among crossings that are presumed

to represent the same segment of the former plate boundary may

arise in several ways. An unmapped fracture zone may exist

between magnetic anomaly crossings that are assumed to be

part of the same lineation. Crossings of corresponding plate

boundaries that have been assumed to lie on the same

fracture zone may actually lie on different fracture zones.

The part of a magnetic anomaly profile that represents

oceanic crust of a given age is not precisely known. We
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'do not know exactly where the transform fault was within

the fracture zone, and if there has been subsequent defor-

mation we cannot know where it was. Thus there are uncer-

tainties of position, due to ignorance, which may lead to

systematic errors, and another possible error due to de-

formation (see discussion in: Le Pichon et al., 1973,

pp. 65,66,103-114). Further, there are errors of location

associated with the navigational record of the ship. The

basic assumption to be made here is that any systematic

error will be small compared with the uncertainty assigned

to the position of the magnetic lineation or transform

fault.

11.2 Geologic Uncertainty and Statistical Uncertainty

In evaluating the correctness of a reconstruction of

two plates that share an oceanic ridge there are a number

of uncertainties to be considered. The information in the

extant geologic record relevant to the reconstruction may

be insufficient to constrain the reconstruction uniquely

because the geologic record may be incomplete. Thus there

may be a range of reconstructions that are consistent with

the extant geologic record. Even if the geologic record is

complete the geology may have been altered since the time

it was laid down. Moreover, we have only a limited sampling

of the extant geologic record and our interpretation of

this data is strongly influenced by assumptions about the

kinds of geologic processes that have been active in the

11i
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past. It is therefore often difficult to provide a quan- '

titative interpretation of geologic uncertainties.

Not all geologic questions of uncertainty can be

treated by statistical methods. To pose the geologic prob-

lem as a statistical problem we use the following defini-

tions:

(1) The error in a datum is specified by the Cartes-

ian components of the difference between the datum and its

true position.

(2) The error in a rotation tensor is specified by the

components of the difference between the rotation tensor and

the true rotation tensor (in the 9-dimensional Euclidean

space of real 3x3 matrices).

We make the following assumptions:

(1) Geologic information would be sufficient to yield

the correct reconstruction if data were correctly inter-

preted and without uncertainties of location.

(2) The errors in the data are mutually independent

and obey a law of probability that may be described by a

probability density function. The particular form of the

probability distribution for the error in a single data

point is a spherical analogue of a truncated bivariate-

normal probability distribution (Chapter III).

A technique to estimate the rotation tensor that spec-

ifies the reconstruction will be introduced (Chapter III)

based on these two assumptions.

These assumptions and the technique of estimation
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13
provide for a functional relation between the error in the

estimated rotation tensor and both the true positions of

the data and the errors in the data. There will be no error

in the estimated rotation tensor if there are no errors in

the data.

With the given assumptions the methods of statistical

theory will furnish a rational means for expressing the un-

certainty in the reconstruction by means of a confidence

region for the rotation tensor. The method by which a confi-

dence region is obtained is described in part (3) of

section 111.6 of this paper (see, e.g., Kendall and Stuart,

1973, pp. 103-136; Fisher, 1959, pp.37-44; Cramer, 1974,

pp. 507-524 for discussions of confidence intervals and

regions).

II.3 Assumptions About the Geologic Record

The following assumptions will be made about the

geologic record:

(1) A pair of corresponding lineations lies between

the same pair of fracture zones. There is no fracture zone

between the pair of fracture zones that are at the ends of

the lineations.

(2) If lineation data were without error then we could

obtain the exact shapes and positions of the lineations.

The unique correct reconstruction would cause the pairs of

corresponding lineations to overlie precisely.
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(3) Fracture zones may or may not line up precisely 14

in the correct reconstruction, and the position of the

transform fault within the fracture zone may have been

systematically altered. These details depend upon the

history of relative motion between the two plates.

(4) The shape of a lineation between a pair of frac-

ture zones or a segment of transform fault between a pair

of offset lineations can be well-approximated by one or

more great-circle arcs. By well-approximated we mean that

any difference between the actual shape and approximate

shape is small compared to the uncertainties of position

associated with the data.

II.4 Methods of Reconstruction

Consider the simple but relevant problem in Figure I.

We have data s.ijk i=1,2;j=l,2;l<k<n.., for corresponding

lineations on a pair of rigid plates. Here the index i de-

notes the plate, the index j denotes a particular linea-

tion on the plate, and the index k denotes a particular

data point of the n.. points for lineation j on plate i.

If Sijk were without error its position would be sijk.

Assume plate 1 is fixed and that A is the rotation tensor

that restores plate 2 to its past position with respect to

plate 1. Each lineation is assumed to follow an arc of a

great-circle. Each great-circle can be specified by a unit

vector that is normal to the plane that contains the great-

circle. These are denoted by pll1 pl2'P 21'P2 2 , chosen so



that P11=AP 21, 12=AP 22 . The first task is to derive a

good reconstruction from the data. Figure Ib shows such

a reconstruction.

There are two criteria of fit that have been used

in making reconstructions. Bullard et al. (1965) fit to-

gether the digitized contours of continental margins on

opposite sides of the Atlantic Ocean. For a given fitting

pole they computed the angle of rotation that minimized

the sum of squares of angular misfits along small circles

between the two contours. The fitting pole for which this

sum was an absolute minimum was found by search methods.

This criterion is not appropriate to the present problem

for several reasons:

(1) The data consists of a small number of well-

separated points with assigned standard deviations of er-

ror, not a set of contours.

(2) The criterion suffers from two major limitations

pointed out by McKenzie et al. (1970): The criterion does

not perform well if parts of each contour form a small cir-

cle about the fitting pole; further, it weighs misfits near

the fitting pole more heavily than those near the equator

relative to this pole.

(3) The criterion takes no account of the uncertain-

ties in the data. Suppose the likely errors in [s 2k,l1k<3]

were decreased by a factor of 10. The fit of the two lower

lineations ought to be weighted more heavily in making a

reconstruction. Bullard et al.'s criterion does not include



this.

To avoid some of the problems of Bullard et al.'s

method, McKenzie et al. (1970) minimized the misfit area

between two contours. To obtain a good estimate of the

misfit area, McKenzie et al. (1970) and McKenzie and

Sclater (1971) represented each contour by a sequence of

points ai.,i on the unit sphere. The a. are rotated by

trial rotation T to resultant points denoted by yi, where

Yi=Ta.. Taking each yi in turn, the nearest point 8j is

found and a measure of the misfit area is provided by the

triple scalar product yi 8.xj+l. The first and third ob-

jections to Bullard et al.'s criterion are also valid ob-

jections to the use of this criterion for the present prob-

lem.

The method of reconstruction proposed here is as fol-

lows:

(1) We refer to Figure I. A preliminary reconstruction

will be found. Let A denote the rotation tensor for this

reconstruction.

(2) We refer to Figure II. The rotated s2jk are As 2 jk.

The great-circle that fits each of the combined datasets

[s S11112's11 13 As211 As212 ] ,' [S121' s22's23'As221 '

*% AA

As222 ,As2 23] is estimated by least-squares methods (see

section III.4). Let p1 ,P2 denote the unit vectors through

the origin that are normal to the planes of these great-

circles.

The distance of each point in the first combined

I--UI"'~-LYliYIII IY*Ylil*- at- -_kru-_ . ..rUir~~_~p-- -^. -r --n;-ir~



dataset from the plane normal to pl is calculated. Each

of these distances is virtually identical to the distance

of the associated point from the estimated great-circle

A
measured along a meridian through the point and pl when

this distance is small. The distance of each point is then

divided by the standard deviation of error that was assigned

to the point. The sum of squares of the weighted distances

is computed. A similar sum of squares is computed for the

second combined dataset. The sum of the two resultant sums

is taken as the measure of fit of the data.

The angle that minimizes the measure of fit for the

pole of A is found. This is accomplished as follows:
A A

Let 4 be the angle of A. The initial angle is . The
A

measure of fit is computed for each angle i+na, -N<n<N,

where n is an integer, a>O is a chosen increment and Na
A

represents the half-range of search. Let +n0a represent

the angle of this group for which the measure of fit is

a minimum. The measure of fit is then examined for each

angle +n0 a+mb, -M<m<M, b=a/M. Let i+n 0 a+m0 b represent the

angle of this group for which the measure of fit is a mini-

mum. This angle is chosen as the angle that minimizes the

measure of fit.

This task is then repeated for a number of poles of

rotation at a chosen distance from the trial pole. The pole

for which the measure of fit is a minimum is selected as

the new starting point. If no pole is better than the

LU~___m__ __~^ _r~lllll ~~_X__~_I__I _~i..-



initial pole then the chosen distance is decreased by a

multiplicative factor. The process is repeated until a

reconstruction is obtained that minimizes the measure of

fit within an acceptable approximation. This reconstruction

will be chosen as the most acceptable reconstruction.

11.5 Caveats in the Use of the Methods Herein Proposed

The method of reconstruction utilizes a least-squares

analysis of errors. As with all least-squares approaches,

the reconstruction becomes quite sensitive to data that

depart from the assumptions of the method (e.g., misplaced

data points; points that were assigned standard deviations

of error much smaller than the actual standard deviations

of error). The mathematical structure will provide sensi-

ble results if the standard deviations of error assigned to

the data are small and if there are a number of significant

changes in trend among the various sections of data.

Y__I___IU___~IYI~~*_ __~_I i.. ..-1.r-~.-1.^--~114~



CHAPTER III: THE STATISTICS OF FINITE ROTATIONS

III.1 Introduction

We begin with a definition of coordinates. In a right-

handed orthonormal system of coordinates (x,y,z) let a unit

vector s have coordinates (a,b,c), Iclfl , Let the polar

coordinates (e0, 0 ) of s be defined by the relations:

-1 ii -1 ?T
80=sin c, < sin c <

S2 2

0=tan (b/a) + mfr + 2nf for a O, - <tan (b/a)<

0 a>0n= any integer, m ={0 a>0 For a=0, b>0 we have1 a<0O

0=f/2 + 2nT. For a=0, b<O we have 40= -r/2 + 2nff.

Then the Cartesian coordinates of s satisfy the relation

(a,b,c) = (cose0cos40,cose0sinssinsin 0 )

Let ' denote the transpose of a vector. Let the index

i (i=1,2) denote the plate and let j (l<j<J, J>1) denote a

particular segment (lineation or fossil transform section)

for plate i. We possess data (s l<k<n..) for n.. cros-
ijk 13 13

sings of segment ij. The associated points without error

are (s i 1<k<n..). These points satisfy sijkSi. =1 and
ijk 1313k

SijkS. =1 respectively. The Cartesian coordinates of s.ijk

are (XijkYijkzijk) and the polar coordinates are

AA

( ijk 4ijk ). The analogous coordinates for sijk are

(xijk Yijkzijk) and (eij k ijk ) .



111.2 How the Statistical Uncertainty in a Point on the

Unit Sphere Will be Specified

We refer to Figure III. Let s be a reference point on

the unit sphere and let s be an observation of s. Let K de-

note the plane normal to s through the origin. If s is re-

quired to be in the hemisphere centered at s then s is

unambiguously specified by its projection onto K. The pro-

jection of s onto K, rather than s itself, will be used in

analysis of the error in s. The probability that the pro-

jection of s is contained by the portion of K within the

unit sphere is one. The statistical distribution of s can be

represented by a statistical distribution of vectors in K if

the probability assigned to the portion of K within the unit

sphere is one. If nearly all of this probability is concen-

trated near the origin then the probability found in the

vicinity of the intersection of K with the unit sphere will

have little effect upon the analysis. If some of the latter

probability were distributed in a reasonable manner over

the part of K outside the unit sphere then it would still

have little effect upon the analysis. In this case the

distribution of s could be approximately represented by a

statistical distribution of vectors in all of K. This ap-

proximation will be made in the analysis to follow.

m~---r Ir~r~ ~.. ._.iirrra~yy~---*___~_~_~.~



111.3 The Statistical Distribution of Errors in the Data

We refer to Figure III. Let q,r be unit vectors in K

such that [q,r,s] form a right-handed orthonormal basis.

Let s = s + e where e'=(u,v,w) and s's = 1. Then

s = (q'e)q + (r'e)r + s + (s'e)s

As (s+e)'(s+e) = 1 we have e's = -(e'e)/2 and

s = (q'e)q + (r'e)r + s - ((e'e)/2)s

Let r be chosen as a unit vector in the (x,y) plane. Let

q=r x s where 'x' denotes the vector product. If s'3(0,0,1)

then the vectors q and r are determined by s up to sign,

(q,r) = +(q(s),r(s)), where

q'(s) j-ac/(l-c ) 1, -bc/(l-c ) ,1/2 (1-c )

r' (s -) L b/(l-c2 ) 1 / 2 , -a/(l-c2 ) 1 / 2 , 0

In polar coordinates

q' (s) + -cos 0sin 60 -sin0sin0, cose0]

r' (s) sin40, -cos 90, O

Let O(E) represent a quantity d (vector or scalar) such that

Id l<CIci for all E sufficiently small and some finite constant

C. Choose s close to s, e'e<<l, a:0. For u < la /2 we have
A -1

(s)=tan ((b+v)/(a+u)) + m7i + 2nrn

=#(s) + (av-bu)/(a2 +b 2 ) + (u/a) (bu-av)/(a 2 +b 2)

-(b/a) (av-bu) 2/(a2+b2 ) 2 + 0( le 13)/a 2

_I~P_ II



For a=0 we use

-1 -1 r
9(s)=cot (u/(b+v)) + mt + 2nr, -2 <cot (u/(b+v))< ,

m,n are as defined in section III.1

Then for v < b /2 we have

3 5
(s)=4(s) - u/(b+v) + (u/(b+v)) /3 - O((u/b)

For lwl<(1- c )/2 we have

(s)=sin-l(c+w) = 0(s) + w/(1-c2)1/2 + (c/2)w2 /(-c2)3/2

+ O(w 3 ) /(lc 2 ) 5/2

We have

q'e (-acu-bcv+w(l-c 2 ))/(l-c 2 ) 1/2

r'e - (bu-av)/ (l-c 2 ) 1/2

As s'e=au+bv+cw = -(e'e)/2 we have

q'e w/(l-c 2 ) 1 / 2 -(c/2)(e'e)/(l-c2 1 / 2

r'e - (bu-av)/ (l-c 2 ) 1/2

Therefore

1 2 3/2
q'e e(s)-e(s) + O(e'e)/(l-c3/2

r'e -(f(s)-f(s))cos60 + O(e'e)/a

where the terms O(e'e) in this expression can be determined

directly from the expansions for O(s) and P(s) given above.

In this case q'e represents the change in latitude to the

first order in lel and r'e represents the component of e

along the parallel of latitude 80 to the first order in je I.

Define wl= q 'e, w2=r'e, w'=(ww 2 ). We assumne w to have

a bivariate-normal distribution with mean 0 and probability

density given by (see Morrison, 1967, Chapter 3; Cramer,



1974, pp. 287-288):

-1/2 -1 1 , -l(det(A)) /2(2)-lexp(-wA w)

where A is a positive definite covariance matrix and det(.)

is the determinant function. Further, we will assume A=o2I

where I is the identity matrix and a is a positive scalar,

a<<l. This distribution, for errors small in relation to

the diameter of the earth, is a close approximation to

distributions often assumed for spherical data such as

those of Fisher and Bingham (Mardia, 1972, Chapters 8,9).

The contours of constant probability density are circles

-1 -2
in K of the form w'A w = a w'w = constant. We can incor-

porate information about the approximate magnitude of error

within this formal structure. To extend to all data, it

will be assumed that the error in sij k is of this form

=2with covariance matrix H. =a. I .
ijk ijk

IYI__1__Y__ __LI^__1IC^--iill. Il~-_W~.- I_~illll3~~-(_XI--U-- ili~ _L-L^
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III.4 Estimation of Great-Circles

Let p..ij be a unit vector. The scalar product p.ij.s.ijk

gives the distance of sijk from the plane perpendicular to

Pij. When this distance is small it is virtually identical
13

to the distance of Sijk from the great-circle associated with

this plane measured along a meridian through sijk and Pij"

The distance weighted by the standard deviation of error

assigned to sijk is Pijsijk/ ijk. The sum of squares of the

weighted distances of the sijk from this plane for l<k<nij is

lI. (Pis 2 2 
l<k<n. (Pijsijk ) /ijk Pij ij ij- 1- 1

where B.. is the 3x3 weighted covariance matrix
33

^2 ^ ^ A A

Xijk XijkYijk Xijk
-2 ^2 ^B. l<k<n ijk ijkxijk Yijk Yijkzijk

n13 .^2

Zijkijk ZijkYijk Zijk

To find the plane that gives the arc segment with best

weighted least-squares fit to the data is equivalent to

finding an eigenvector pij associated with the smallest

eigenvalue of the positive semidefinite symmetric matrix

B.. : B. .p..=T.., T minimal. Let a..,ij ,y. be the

eigenvalues of B... We assume a. .>ij >yij>0. Let qijrij,

p..ij be the respective associated eigenvectors of unit

length (there are two such eigenvectors for each eigenvalue

but they differ only in sign), chosen so that qij x rij=pi j

where 'x' denotes the vector product.
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If S ijk, <k<n.., we define B..=B.., Pij=Pij'

q i=qij r.=rij, i.j=ij, Bij=ij, Yij=ij=0. These

quantities represent the eigenvectors and eigenvalues of

B..ij if there were no errors in the data. Hence pij defines

the great-circle through the true points that correspond

to the actual observations.



111.5 Criterion of Fit

Let A be the rotation tensor associated with a chosen

reconstruction. Let B., l<j<J, be the weighted covariance

matrix (defined in section 111.4) for the combined data

[Sl l<k<nj; As2 k l<k<n ]. Let aj.,.,y. be the eigen-
ljk" j 2jk' 2j 3 1 3

values of B.. We assume a.j>j>y.>0. Let qj,rj,pj be the res-

pective associated eigenvectors, chosen so that q. x r.=p..

Let K. denote the plane normal to p.. Let tlj k denote the

point that is the intersection of a great-circle through

sljk and pj with the great-circle defined by Kj (there are

two such points of intersection but the point of interest

is that point which is closest to Sljk ) . Let t2jk be the

analogous point for As2jk (see Figure II).

In the j th section the sum of squares of the weighted
A A

distances of the fixed and rotated points from K. is yj. The

measure of fit to be used is

( l<j<J

This criterion of fit has an interpretation in terms

of classical statistical theory. Given the statistical as-

sumptions of section 111.3, the likelihood function (Ken-

dall and Stuart, 1973, Chapter 18; Cramer, 1974, pp. 498-

499; Morrison, 1967, p. 14) for the set of observations

[sijk is proportional to

-I Y-I-~-~LIIIP-~ ~._s_ ll~-.1 L13Y^llYX YI~-- i~C_ __IC.I..C1111
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expf(2 sijksijk /aijk )

i,j,k

The points [s , 1<k<n..] satisfy p .s.. =0 (section III.4).
ijk piij 13 ijk

For any rotation tensor A expression (1) equals

1' ^ 2 1 2
HI exp{ .(s s k/C ) 2 T exp{[(As ) As 2 /j ]2

jk { k jk /jk k 2 2jk 2jk 2jkj,k j,k

(2)

The object is to find estimates of the unknowns s ijk,A

such that expression (2) is maximized subject to
I

Pljsljk = (AP2 j)'As 2 jk = 0 and plj=AP2j (or plj= -Ap2 j

if the signs are opposite). Discussions of maximum likeli-

hood estimation can be found in: Kendall and Stuart,

1973, Chapter 18; Cramer, 1974, pp. 498-506; Morrison,

1967, pp. 14-17; Fisher, 1959, Chapter 6). This problem is

equivalent to

% 2 2
max E (sljksljk/ jk ) + Z [(As2jk 'As 2 jk/a 2 jk

j,k j,k

sijkA

(3)

where Sljk lj = (As2jk) 'Plj =0 for all j and k.

The maximum of expression (3) occurs when Sljk=tljklPlj'

S2jk=t2jklPlj. Then Plj' Sljk' tljk are coplanar and

2 ' ^ 2
(tjklj k ) = 1- (Pl sljk

Il__in____lllPLILLl^lil_/Yi~lr .-~ IlliI-_-~~~LICX-- 1LEULX~.
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Similarly (t2jkAs2jk ) = 1 - (PljAs2 jk) . Thus the given

problem is equivalent to

S^ 2 ' ^ 2

Plj1A j ,k k jk 2jk 2jk

(4)

Expression (4) is quadratic in the components of each of

Plj and A. For fixed A the expression is quadratic in plj

and there are 3J unknown components. These 3J components

satisfy the following J quadratic conditions:

ljPlj -l=0, l<j<J (5)

Hence for fixed A we can obtain linear equations in the 3J

unknown components with J Lagrange multipliers. In this

case (4) reduces to J separate eigenvalue equations of the

kind discussed in section 111.4 . The j th equation involves

only plj, A, and the relevant data.

With A unknown (4) is fourth-order in the components

of both plj and A. There are 3J+9 unknown components. Let

11' 2I 3 be the respective column vectors 
of A. The 3J+9

unknown components satisfy the J quadratic conditions of (5)

and also the following 6 quadratic conditions:

I I

i.A . - l = 0 , i=1,2,3 ; i j=0, ifj, l<i,j<3

Therefore we can obtain non-linear equations in the 3J+9

_ILLP__II/III1~/__
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unknown components with J+6 Lagrange multipliers. This

yields a non-linear system with 4J+15 unknown quantities.

The non-linearity of the system necessitates the use of a

numerical method for its solution. In virtually all cases

it will be computationally impractical to obtain an accurate

solution of (4) by a numerical approach because the dimen-

sionality of the system will be quite large.

We consider the accuracy of an approximate solution

of this system as follows:

Let u denote the pole of rotation of the most accept-

able rotation tensor A. Let D be the associated measure of

fit. For a given pole u* in the vicinity of u we calculate

the angle that minimizes the measure of fit by the method

discussed in section 11.4 . This pole and angle specify

a measure of fit denoted by D,. For most datasets there

will be a region of u, in the vicinity of u for which ,

is only slightly different from D. This region will be very

narrow in one direction and very long in the direction

that is normal to the first direction (see, e.g., discus-

sion -in Appendix I). If u, is far from u but u* lies within

the region along the long axis then the system will appear

to have a reasonable solution. If u, is close to u but u,

lies along the short axis then the system will appear to

have a poor solution. This implies that the accuracy of

an approximate solution is hard to judge from the degree

of agreement of the terms in (4); hence an approximate



solution of the system is likely to be unreliable and

we need to know the dimensions of the region to check

the accuracy of an approximate solution.

For the reasons given above the non-linear system

with Lagrange multipliers is not a useful representation

of the problem.

We consider the rate of convergence and reliability

of a numerical method to search for A based on the grad-

ient of D,. Let V, denote the gradient with respect to the

elements of u*. Consider the vector projection of V,, onto

the plane tangent to the unit sphere at u,. This vector can

be decomposed into a component in the direction of the long

axis of the region and a component in the direction nor-

mal to the long axis. The magnitude of the former component

will be very small because , changes very little for u*

along the long axis. The magnitude of the latter component

will be much larger than the magnitude of the former com-

ponent when u, is a small distance from the long axis.

These observations imply that the direction of the gradient

of the measure of fit is not a reliable indicator of the

direction in which the numerical method should iterate and

that the magnitude of the gradient is not a reliable indi-

cator of how far the approximate solution is from the de-

sired solution. Hence the rate of convergence of any such

method will be slow and the accuracy of the approximate

solution obtained after a certain number of iterations will

I_____liLILY~__IILll__jl
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be hard to judge.

The problem will be solved by the procedure outlined

in section II.4 because of the above considerations. The

step-by-step progress of the search can be visually moni-

tored by following the sequence of poles of rotation. This

provides a simple and reliable means to understand the

behavior of the measure of fit as a function of the rota-

tion tensor.



111.6 Construction of an Uncertainty Region

The maximum likelihood estimate of the rotation ten-

sor is almost surely not equal to the true rotation tensor.

We wish to find a region of rotation tensors that includes

the maximum likelihood estimate of the rotation tensor and

other rotation tensors that are acceptable by reasonable

criteria. We want to exclude from this region any rotation

tensor for which the associated reconstruction is not reason-

able in the light of the data and assigned standard devia-

tions of error. It will then be reasonable to believe that

the true rotation tensor is somewhere within the region. This

region will be called an uncertainty region for the unknown

true rotation tensor A. The construction of an uncertainty

region depends upon the conceptual framework within which the

data's uncertainties are treated. We consider three cases:

(1) If no assumptions are made about the errors in the

data beyond upper bounds for the magnitudes of such errors

then the set of acceptable reconstructions is limited only

by the requirement that the reconstructed plate boundary

could have existed within the limits of error for the data.

For example, it may be impossible to locate a previously

active transform fault within its associated fracture zone.

A consequent constraint on an acceptable reconstruction is

that magnetic lineations may not cross this fracture zone

because the previously active transform fault must be com-

mon to the two overlapping sections of fracture zone in the

reconstruction. In this case the section-by-section configur-

^y_~ ~-l I ~IYIYI_~ ._I~LT-~I--I -Y ~LIIL-_II- IUII^LI_._ ~_^ _.ll~i~ -L-- - -Q~. ~CLI. it.



ation of the data with respect to the estimated common 33

great-circle arc must be examined to determine the accept-

ability of the reconstruction.

(2) The assumptions about errors in the data may have

two parts:

a. There are upper bounds for the magnitudes of the

errors.

b. Probability distributions are assumed for the errors.

Of course, the probability distributions must be consistent

with the limits imposed by part a.

Given these assumptions there will be reconstructions

for which the configuration of the data with respect to the

estimated common great-circle arcs seems intuitively accept-

able and other reconstructions that seem unacceptable. A

reasonable quantitative means to distinguish such acceptable

reconstructions from unacceptable reconstructions may re-

quire that the contribution of each section to the measure

of fit for the reconstruction be less than a chosen value

for the section. For example, we may stipulate that the

root-mean-square deviation of the data points from the esti-

mated common great-circle arc for each section of an accept-

able reconstruction may not exceed c., where c. is a positive

S1/2<scalar. This condition is equivalent to (y./(nlj+n2j)) <c

l<j<J (see sections 111.4 and II.4 for definitions of yj,

n .lj and n respectively).
13 2j

I__~j__~_ll__LII____I ~/Y~I~_ C._IJYYII P~IIYII^-C.-



(3) We assume that the error in each data point has

the probability distribution specified in section 111.3 of

this paper. Let nj=nlj+n 2j-2, where nij is defined in sec-

tion II.4 of this paper. By results in Appendix II, if A

is the true rotation tensor then each yj has approximately

2
a X distribution with n. degrees of freedom. The distri-

^ 2
butions of yj., l<j<J, are mutually independent. Let X ;n

be the positive scalar such that the probability that

2
a X random variable with n. degrees of freedom exceeds

2
X;n is a. This number can be obtained from standard
a;n

statistical tables (see, e.g., Morrison, 1967). The region
^ ̂ 2

of rotation tensors A such that the associated y.<

j=l,...,J is then a confidence region for A of

significance level 1-(l-) .



111.7 The Uncertainty in the Resultant of a Sequence

of Finite Rotations

Let AA 2,A 3 be rotation tensors such that A3 =A2 A

Let ul,u 2 ,u 3, 1 ' 2 ,~ 3 denote the respective poles of rota-

tion and angles of rotation associated with AlA 2,A 3 . u3
is an eigenvector of A3 with eigenvalue = 1. There are two

such eigenvectors of unit length but they differ only in

sign. ip3 is determined up to sign by 1+2cos 3 = Trace(A 3),

-< 3 <7 . Let R3 be a rotation tensor such that R 'u 3=

(0,0,1)' . Let T3=R3 'A3R3 Then

T cos3 sin 3 O

T3 = -sin 3 cosI3

S0 0 1

and the sign of 3 is determined.

Let A be a matrix such that (T3 +A)' (T 3 +A) = I and

det(T 3 +A) = 1. Hence T3 +A is a rotation matrix. Let 6..,3 313

l<i,j<3 be the elements of A. Let u3+V 3 be the pole of

rotation and let 3+A3 be the angle of rotation for T3+A.

A is a perturbation of T3 when 16ij <<l and 16 ij I<< I 3 -

In this case v3 <<1. Then the coordinates of R '(u3 +v )

through first order in 6.. are given by (see Appendix III):

1 1
i(6 1 3 + 6 2 3 sin 3 /(l-cos 3) ' (623- 13sin 3/(1-cos 3)), 1

We also have

1 3 = (611+ 22+6 33)/2sin 3

_I__L__IUJPP__IIICIl___ _I__LIILI_ __. _ . I~L



through first order in 6.. (Appendix II). When the _1

conditions l ij <<1 and 16ij I<< 3 1 are not met the relation

between either R3 (u3+ 3) or 13 and 6.. is no longer well-

approximated by a linear relation.

Let A. be a perturbation in Ai, i=1,2. We have

(A.+A.)'(A.+A.) = I and det(A.+A.) = 1. Let the associated

poles and angles be ui+v i.,~ i + i , i=1,2 respectively. From

T3=R 'AR and A3=A 2 A1 we obtain T3=R 3'A 2 A1 3 . Then

T3+A = R '(A+A2 (A2 +A 1)R 3 whence

A = R3 ' (A2 A 1+A2 1 +A2 A1 )R 3

The magnitudes of uncertainties in poles and angles of rota-

tion suggests that the non-linear term A2 1 may be too large

relative to the linear terms to be neglected in the analysis

of propagation of errors in many cases. For example, when

l 2 1<< and u2 is close to the data there can be a very large

uncertainty in u2 and P2 . The reason is that we can find

angle changes 12 for a large range of poles u 2 +V2 such that

u2 +2' 2+X2 provides a reasonable reconstruction. The re-

sult will be I12 >> I-2 for many poles u2 + 2 . This implies

A2A1 is significant compared to A2A1 . Furthermore, this also

suggests that the functional dependence of A2 upon u 2,2,

V2' 2 may have significant non-linearity in v2 and 12. In

this case linear theory is inadequate for the study of

propagation of errors.

III1I__YIIII_~_LL__11___1_11__----.-.
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CHAPTER IV

The Effect of Errors in the Data on

the Estimated Rotation Tensor

IV.1 Introduction

For the purposes of this chapter let D designate *00

Much of the terminology in sections 1-4 of this chapter fol-

lows that in Rudin (1964). Let Rm denote a Euclidean vector

space of dimension m, m>O. We have data s.ij k = sij k + eij k

where

Isijk = 1, Iijkl = , ijk < /2 (1)

A

The condition le ijkl < /2 confines sij k to the hemisphere

centered at sijk . Let

A A A A A
I  

A A

S i = (Sill,..,Siln i l , . . , s i j l. , s i j n i j . . , s i J l , . . , s i J n i

i=1,2; j=l,..,J.

^I AI AI

S = (S1iS 2) (2)

A A

Let S be the vector S when sij k = sij k for all i,j,k.

Let S2 be the unit sphere in R3 S 2 = {sER :s's=l}. Let

2 2 3uES 2 . Let H (u) be the unit hemisphere in R centered at u:

H2(u) = {sES :O<u's<l}. H2(u) is bounded because Is 1=1 if

ssH2(u). Let v,s ER3 . v'v, v's are continuous functions of

v on R3 . Thus H2 (u) is closed in R3



3N 5t
Let N = E n... Let W be the subset of R specified by

ij 13

(1) and (2). For each SEW we have sijkEH (sijk) for all

i,j,k. This implies that W is a closed and bounded subset

of R3N . Hence W is compact in R3N (see Rudin, 1964, Chap-

ter 2).

Let A, be a rotation tensor with elements ij, l<i,j<3.

The true rotation tensor is A. Let LCR 9 be the set of rota-

tion tensors. If I is the identity matrix and det(.) denotes

the determinant function then A, A,=I and det(A,)=l if and

only if AEL. L is bounded because E = 3 for any A *L.
i,j 9

Let A be a real 3x3 matrix. L is closed in R because

A'A and det(A) are continuous functions of A. L is compact

in R9 because L is closed and bounded in R9 (see Rudin, 1964,

Chapter 2).

3N 9We write D=4(S,A,) for SeWCR and A* LcR . We have

^ MD(S=S,A,=A)=O. Let M=3N+9. We have (S,A,)ER . 1 is continuous

on R because y. is continuous on RM . 1 has continuous deriv-

Matives of all orders at any point in R such that yj~.j,

j=l,..,J because yj has continuous derivatives of all orders

Mat any point in R such that yj j (see, e.g., discussion in

Wilkinson, 1965, Chapter 2, pp. 62-68). The continuity of yj

^ M ^ ^ ^
and .j on R implies that yj j. in a neighborhood of (S,A,)

M ^ ^ ^%
in R if y.j/. at (S,A,). Hence y.j has continuous derivatives

^ M
of all orders in a neighborhood of (S,A,) in R if yv j8 at

(S,A,).



IV.2 Existence of Rotation Tensors That Minimize the

Measure of Fit

Let A be the set of scalars d(S,A,) for AcEL and given

S. A is compact in R1 because P is a continuous mapping from

L into R (see Rudin, 1964, p. 77, Thn. 4.14). Hence there

exists at least one AcL such that

D(S,A,) = inf @(S,A,)

A,CL

IV.3 The Equation of Estimation in R9

Assume y.~j, 1<j<J at S,A,. Let A be a real 3x3 matrix

with elements aij, l<i,j<3. Let Nr be a neighborhood of A*

in R of radius r>0O such that y.j/. for AEN . Define the

operator

8/Da k = [P/Dalk,/a2k/a3k] , k=l,2,3

Then V, the gradient operator in R 9 , may be represented by

V' = [a/3al,8/aa2,a/aa3 1

VQ(S,A) exists and is continuous for AcNr (see section IV.1).

Let ak =(alk,a 2 k,a 3 k), k=1,2,3. The condition A'A=I defines

nine constraints of the form
I

a.a. = 6 , l<ij<3

where 6.. is the Kronecker 6: 6..=l if i=j, 6..=0 otherwise.1J 3 4 j
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Among the nine are found six independent constraints which

will be denoted by gk, k=1,..,6. We define

gk = akak-  = 0, k=1,2,3

g4 = a l a 2 = 0

g5 = ala3 = 0

g6 = a 2 a 3 = 0

Let Tk, k=1,2,..,6 be scalars. Let T = (T1 ,T 2 .".,T 6 ). For

AeN definer

F(S,A,T) = V4(S,A) - E TkVg kl<k<6

In Nr, A* is a solution of

F(S,A,T) = 0, A'A = I, det(A) = 1 (1)

Other solutions of (1), if any, may represent local minima or

local maxima of D within Nr as well as more complicated be-

havior. The vector T that corresponds to a particular A, is

uniquely defined by

F(S,A,,T) = 0 (2)

The reason that I is unique is as follows: We have

V = (2al' 0, 0)
1 I

V g2 = (0, 2a2 , 0)

V g3 = (0, 0, 2a3) (3)
V g4 = (a2 , al, 0)

V g 5 = (a 3 0, al)

V g6 = (0, a3 , a2)

For A = A, the vectors al,a 2 ,a 3 are orthonormal vectors.

L---~ L*C~-CP ~U-liY--~-i-LIIUL~L---I"P _I ._~XI-~-L-C--LUII(



Then (3) implies that Vgk , k=l,..,6 are mutually orthogonal

vectors in R9 . Hence the components of VD with respect to

the basis (Vgk , k=l,..,6) are unique and these components

are Tk' k=l,..,6.

From (3) we have

Vgm Vgm = 4, m=1,2,3

= 2, m=4,5,6

Vgm Vgn = 0, m3n , l<m,n<6.

Let G be a 6x6 matrix with elements (G)mn. Let

I

(G)mn = Vgm Vgn , l<m,n<6.

Let Y be the column vector whose m th entry is Vgm V ,
I

m=l,..,6. Premultiplying (2) by V gm, m=l,..,6 in succession

we obtain GT = Y. Hence T = G-y.

_I~I~Y~~_______~ _



IV.4 Analysis of the Equation of Estimation in R

To analyze the equation of estimation it is necessary

to represent both the set of rotation tensors and the set of

possible data by open sets. For this purpose it is useful to

express the data in polar coordinates and to represent a ro-

tation tensor by the polar coordinates of a pole of rotation

and an angle of rotation associated with the pole.

Let u be the pole of rotation associated with A. u is

an eigenvector of A with eigenvalue = 1 and Jul = 1. There

are two such eigenvectors but they differ only in sign. Let

*0 be the angle of rotation of A. ~0 is determined up to

sign by

1 + 2cos4 0 = Trace(A) , - 0 < 0.

The sign of 0 for given u can be determined by the procedure

discussed in section 111.7 . Let 80 , 0 be the polar coordin-

ates of u. The parameters o80, 0,0 specify A but they are

determined by A only up to sign.

Let A, be a rotation tensor and let u, be the pole of

rotation for A,. We assume without loss of generality that

U*cH (u) so that u, is in the hemisphere centered at u. If

u, represents the pole of an estimated rotation tensor then

u, is almost certainly in a small neighborhood of u in H2(u)

because the likely errors in the data are very small. If we

restrict u, to this neighborhood then the analysis of the

equation of estimation will not be significantly affected.

-L YYC- rrrYYVi~slllYli~ -~r~---r-r~~,



43

Let 0<c<l. LetH c(u) = {scH2(u):c<s'u<l}. We will assume

1-c << 1 and u*,H c (u). For example, if the maximum great-

circle distance between u and u, is 50 of arc then 1-c
-3

is approximately 4 x 10-3

Let 6, 4 be the polar coordinates of u, . Let

F (u ) = {(8, 4):u*Hc (u)}. e is continuous on S .  is contin-

uous at u*ES except at u, = +(0,0,1), where 4 is not de-

fined, and at those u, for which = -Tr/2 when 4 is restrict-

ed to the range -zI/2<4<3iT/2. Let

ax = sup 6 , ma = sup

uEHc (u) u,H c (u)

0. = inf 0 , 4 = inf 4
mln min

ueHc (u) u,*Hc (u)

We may assume without loss of generality that

-,/2< .min < 0 </2, -/T/2< .in< ax<3,F/2 (1)
min max min max

because these relations will hold for any c, O<c<l, if we

transform the coordinates of u, to a coordinate system where

u lies in the x-y plane and the y-coordinate of u is > 0. As

2 2
H (u) is open in S and 8 is continuous on S there is no

c

ueH c (u) such that 6(u,) = ax when ax < fr/2. Similar con-

clusions hold for min' 4min' )max under the conditions in

2
(1). Thus' F (u) is open in R2

c

Let 9 be the angle of rotation of A, associated with u,.

We will assume that -7<4<7 because a rotation angle of magni-

tude as large as n is excluded by the data. Let

P = (6, 4,i). Let X = {P: (e, )Fc(u), -7<4<T}. Then X is



3open in R . Let P = ( eo,0,0 ). Then P0 EX.

The polar coordinates of sij k are 6ijk,ijk and the

polar coordinates of sijk are 8 jk ij k  sij k is almost

certainly in a small neighborhood of sijk in S2 because the

likely errors are very small. If we restrict sijk to this

neighborhood then the analysis of the equation of estimation

will not be significantly affected. The covariance matrix of

^ 2
the error in sijk is ijk I (see section III.3) where

0<ijk <<. Let kij k be a positive constant such thati ki L k
k.. a. <<l. Let

ik 3k
2Gij k = {scS :cos(kijkijk)<s's ijk<l}.

We assume sijk Gijk (for example, if kij k = 5 then we assume

that sijk is restricted to a spherical cap of approximate

2half-width 5a. ). Gijk is open in S . Let
13k ijk

Fijk = {(8,P):sEGijk}.

If there are any Fijk for which a relation similar to (1)

does not hold then we assume that we can transform the coor-

dinates of the data to a coordinate system where all Fijk

satisfy such a relation. Thus F. is open in R for all

i,j,k. We also assume that relation (1) holds in this coor-

dinate system.

Let Pijk = (ijk' ijk) for all i,j,k. Let

D = (Pill"" p iln ''Pijl""Pijn .. 'PiJl" PiJn.)1i j iJ

i=1,2; j=1,2,..,J

~~_L____I~~
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Let D = (D1 ,D 2 ). Hence DER (see section IV.1 for de-

A A

finition of N). Let D be the vector D when sij k = sij k for

all i,j,k. Let Y = {D: PijkEFijk for all i,j,k}. Then Y is

2N
open in R2 . Let Z = {(D,P): DEY,PEX}. Then Z is open in

R2 N+ 3 We assume y / , j=l,..,J for any (D,P)EZ.
A A

We write 4 = 4(D,P) where Q(D=D,P=PO) = 0 and 4 has

continuous derivatives of all orders in Z (see discussion

in section IV.3). Let

V =

Let
A A

f(P,D) = V4)(D,P)

fER 3 and f has continuous derivatives of all orders in Z.

Let f = (flf 2 1 f 3 ). Let P be that P which minimizes 4 for

given DEY. We assume PEX. P is a solution of

f(P,D) = 0 (2)

Other solutions of (2), if any, may represent local minima

or local maxima of 4)(D,P) as well as more complicated behavi-
A

or. Assume P is the unique solution of (2). Let K be a 3x3

real matrix and let the i th row vector of K be V fi, i=1,2,3.

Let K0 be the value of K when P = P 0 and D = D. If det(K 0 ) $ 0

then the Implicit Function Theorem (see Rudin, 1964, pp. 195-

197, Thm. 9.18) shows that (2) provides for a relation

P = Y(D)

for D in a neighborhood of D, where T is continuously dif-

ferentiable in that neighborhood.

Let ,i' i=1,2,3 be the components of T. Let dj be the
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j th component of D, j=,.. ,2N. Let C be a 3x2N matrix with

elements cij, i=1,2,3; j=1,..,2N. Let

cij = 4i/ dj

Let o(a) denote a quantity such that o(a)/ al + 0 as

la I+ 0. In the neighborhood of D = D we have the expansion

T(D) = W(D) + C(D-D) + o(D-D)

where T(D) = P0.
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IV.5 Perturbation Analysis of the Equation of Estimation

We have data sijk = s.. + eijk where eijk is the errori3k ijk ijk

in sijk' ,  ijk = jSijk = 1 and sijk is effectively restrict-

ed to a small neighborhood of sij k on the unit sphere (see
13k

sections 111.3, IV.4).

Let Bj, be the 3x3 symmetric positive semidefinite

matrix defined by

B, -2 ̂ /' -2 ^
B , = aljksljksljk + (ljk ( *s2jk) (A* 2 jk)

l<k<n lj l<k<n
13 2j

Let B. be the value of Bj, when A = A. Let B. be the value

of Bj, when sijk = sij k for all i,j,k and A, = A. Let ajB ,

y. = 0 be the eigenvalues of B.. We assume a . >yj. Let

qj,r.,pj be the eigenvectors of unit length associated with

aj.,j.,yj respectively. There are two such eigenvectors for

each eigenvalue but they differ .only in sign. As the eigen-

values are distinct qj,rj,p. form an orthonormal basis. We

assume qj x rj = pj where 'x' denotes the vector product.

Let yj, be the minimum eigenvalue of Bj,. We assume yj,

is distinct. Let pj, be an eigenvector of unit length asso-

ciated with yj,. Of the two such eigenvectors choose the one

closest to pj. Then pj, = pj + vj, where Ivj, is small.

Similarly, let pj be the eigenvector of unit length associ-

ated with the distinct minimum eigenvalue y. of B. such that

pj = pj + v. where !vj is small.

The measure of fit for the points sijk and rotation

-L~-~-) *L ~ ----XIY---. .... -~YI r~-a xl*~-~ -- ---~iiUI-r.m~



tensor A, is

~= C yj. (1)

Assume that A is in a neighborhood of A. We have

A - (I+E)A (2)

where E is an antisymmetric perturbation matrix as defined

in Appendix I. Let c,l2,E3 be the independent elements of E.

Let C = (E,1 I 2 E 3 ). Using (2) in (1) we can obtain an ap-

proximate expression for D that depends upon the data sijk' A

and E. Let D denote this approximate expression. We seek a

vector E such that D is minimized. To this s there will cor-

respond a rotation tensor A. We assume that A is in a neigh-

borhood of A. Let

V (3/ l,3/3 2 V 3).

Then e is a solution of

V = 0 (3)

We would like to compare the magnitudes of the terms in (3)

that are linear in E and eijk with the other terms given re-

presentative values of aijk and typical sets of points sijk.

The purpose of this comparison is to see whether the func-

tional relation between c and the s.ij k and eijk is well-

approximated by a relation that is linear in eij k (Of course,

we assume that a functional relation exists; see discussion

in section IV.4). The result will be that the relation be-

tween e and eijk is not well-approximated by a linear rela-



49
tion. This conclusion will be obtained from each of two

different lines of argument.

Let (Cljk'nljk, ljk) be the coordinates of Sljk in the

orthonormal basis (qj,rj,pj). Let (C2jk'T2jk,2jk) be the

coordinates of As2jk in the same basis. We have

t ljk Pjsljk = 0, 2jk = PjAs 2jk = 0

2 2
and ijk + k = 1. We also have

ijk ijk

2 2 2 2
S= i ijk /ijk ik ijk/ijki,k i,k

ik iijkjkij k = 0i,k

(4)

Let the coordinates of eljk in this basis be (uljklvljk

wljk). Let the coordinates of Ae2jk in this basis be

(U2 j kv2jkw 2 j k). Let 6ljk = eljk' 62jk = Ae2 j k +

EA(s2jk+e2jk). Let the coordinates of EAs 2 jk and EAe 2 jk in

this basis be, respectively, (a 2 j kb2jkc 2 j k) and

(f2jk g2jkhjk k). The former components are linear in E and

the latter components are not linear in E and e 2 j k'

We refer to Figure IV. For our representative set of

points we assume a = a, O<a<<l. Then (4) yields
13k

-2 2 -2 2= o 2I 7ijk' = nijk ij ijk
i,k i,k i,k

(5)
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Furthermore, we assume max Ilijk = I0o and Eijk > 0 for

all i,j,k (for example, if a is equivalent to 10 km then

max lnijkl is equivalent to 100 km and the great-circle arc

along which the points lie is approximately 200 km in length).

The relation max hijk I = 10a is equivalent to

2 2 2 2ax n = 100a and min = 1 - 100a . Therefore
ijk ijk

2 22 >> 2 (.6)
'ijk ijk

for all i,j,k (for example, if a is equivalent to 10 km then

-3 2 -4
a = 1.5 x 10 and 100o 2.25 x 10 ). Using (6) in (5)

we obtain

a >> 8 , j=1,..,J (7)

Argument 1: With the results of Appendix II we obtain

2 2
Yj, - c. - a /a b /B

where

-2 2
c. = w [ 2 w + E (w2  + c2j k+ h2jk)2]

l<k<n jk l<k<n
--j13 - 2j

-2
aj = (-ljk + Uljk )ljk +

1<k<n ij
j

E k 2jk + U2jk + a 2jk + C (w2jk + 2jk + h2jk)]
1<k<n2

-2
b = [ (nljk + ljk)wljk

l<k<n1
lj
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E (n2j k + v 2 jk + b2jk + g2jk ) (w2jk +c2jk +h 2 jk)]
l<k<n2j

2j

With these expressions (3) is equivalent to

E Vc. - 2 E a.Va./a. - 2 E b.Vb./8 = 0
lj<J 3l<j<J <jj <J

(8)

We have max In2jkl = 10o and Var(v2jk) = 0 2 where Var(.)

denotes the variance of a scalar random variable. Thus

[Var(v 2 j k)]1/2 is not insignificant compared to 1n2jkl for

any j,k. This implies that b.Vb. has terms O(e e ) that
3 2jk 2jk

are significant compared to terms O(n2jke 2 jk). Moreover

b2jk, which depends only on E and As2jk, is probably signi-

ficant relative to v2. Thus b.Vb. may also have signifi-2jk 3 3

cant terms that are O('e2jk) and O(E'E).

From (5) we have

1/2 2 1/2 2 2

ik( ijkj ) = ik ijk j , ijkijk

Let

U 1/2U' = (ljl,.ljnlj 2jl 2jn2j)/a

Tj l , . n 2 n 2 ) / JI / 2

V'=(ljl,.njnl 2j I Jn2 j

2

Then U'U = V'V = 2 and U'V = 0. Thus U and V are orthogonal

vectors of magnitude a. Let

W' = (wljl ..1 . ljljjw2j.1 .W 2jn2j
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Then

U'W = E ijkijk' V = ijkijk
i,k i,k ijk

We have

-2 1/2 -2 1/2a. = a a U2 'w, b. = a V'W

As lh 2 jkl << Ic2jk we have

1/2Vaj/ t

J 3
3 j

a.Va./aj

bjVbj/8
J j J

-2o E
l<k<n

2j

-2
a k

l<k<n
2j

-4a U'W E
l<k<n

2j

-4a V'W
l<k<n22j

1/2
(2jk j )Vc 2 jk

1/2
(2jk j )c2j k

1/2
2jk/"j )Vc2jk

1/2
(n2jk/8 ) Vc2j k

These relations suggest that both both a.Va./a. and b.Vbj/8j
J J 3 3

are equally significant terms in (8). We have

-2
Vc. = 20 1

S<k<n 2j
--2j

(W2jk + c2jk) c 2 jk (10)

-2
The coefficient of Vc2jk in (10) is 2a (w2jk + c2jk). For

A, in a neighborhood of A we assume that Ic2jk is not large

compared to lw2jk I. We write

I E
1<k<n

2j

(w2 j k + c 2 jk) I k1 W I

Sis moderate (e.g., 10-1where kI is moderate (e.g., 10 <kl<10 ).

Thus

(9)
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/jl/2 is a component of U and U = a. Also n /1/2

2jk u 2jk j

is a component of V and IVI = a. Furthermore V and U are

orthogonal. These results and (9) suggest that

-2 1/2 1/2

02 jU'W E ( /a ) + V'W E (n // ) I = k 2 (W
2j j <k<n2  2jk j 2

l<k<n j l<k<n

where k2 is a constant, 0<k 2<2 and k2 is not close to 0.

The magnitudes of kl and k2 suggest that all terms in (8)

are important. Now, b.Vb. has significant terms that are

not linear in e and eijk . From this argument we suggest

that (8) is not well-approximated by ignoring the terms

that are not linear in E and eij k . By well-approximated

we mean that the solution of the approximate system of

equations (without non-linear terms) is close to the solu-

tion of the full system of equations (with all terms pres-

ent). The suggestion that (8) is not well-approximated by

a linear system is a reflection of the fact that good

agreement of the terms in the linear system does not neces-

sarily imply that the solution of the linear system is close

to the solution of the full system (see discussion in sec-

tion 111.5).
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Argument 2: Another approximate expression for 4 for the

points sijk and A, in a neighborhood of A is

-2 ^ 2 -2 ^ + E)A 2
S= aljk (Pj*sljk) o2jk[Pj*(I + E)s2jk]

j,k j,k

We have
I I I I

p.As2jk = pjslj k = 0, V(p.el k) = V(p. e 2 jk) = 0

We have .ijk
13k

= a. Let

dljk = vj*(slj k + eljk)

I I

d2 jk = [p.EA + vj,(I + E)A](s 2 jk + e2jk)

With the above expression for (3) is then equivalent to

1a (pe + d )Vd +
S pjeljk dljk )dlj k +

jk

-2 '
(pj e2j k + d2jk)Vd2j k = 0

j,k

(11)

The vector vj. is functionally related to the points

{sljkk=l,..,nlj;As 2jkk=l,..,n 2j} and the perturbations

{6ijk,i=1,2; k=l,..,n ij}. When 6sijkl << 1 this relation is

approximately (see Appendix II):

vj, = V.juj* (12)

where

V. = orthogonal matrix whose row-vectors are qj,rj,pj

respectively.

S-1 ' 2u- = 1 . ijk(Pj ) / 2Uj-* -a. Ei,k

- 1 2
- i)'cijkPj ijk) o ]

, (



The components of v, in the basis (qj,rj,pj) are the

components of uj, . Let uj, = (ulj*,u2j*,0). Let u. be the

value of uj, when E = 0 in 62jk k=l,..,n2j . Let

u. = (Ulj,u 2 j , 0). Then (12) and the methods of Appendix II

yield the approximate relations:

Var(ulj) = l/aj, Var(u2j) = 1/Sj, Cov(ulj,u2j) = 0

(13)

Using (7) in (13) we find

Var(u lj) << Var(u2j ) (14)

The relation Cov(ulj,u2j) = 0 in (13) implies that the

direction of greatest variation of v. is either qj or r.

and (14) implies that this direction is r. and that v.

tends strongly to be oriented in the r. direction. When3

E / 0 the expressions for Var(ulj*) and Var(u2j*) will be

different from those in (13) and Cov(ulj,,u 2 j*) will not

necessarily be 0. Hovever, a relation of the form

Var(ulj.) << Var(u2j*)

will still be valid as long as E is small. This information

can be used to compare the magnitudes of the terms in (11).

Let w be a vector or scalar random variable and let

rms(w) denote the positive square root of the mean of w'w.

We have from (14):

rms(ulj) << rms(u2j) (15)

We assume that rms(ulj)/rms(u2j) is a reasonable measure

of the strength with which v. tends to be aligned with the3
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r. axis. Then (15) implies that v. tends strongly to be

aligned with the r. axis. We have

rms(eijk) o, rms(uj) = 1// j.

As sij k + eijk =1 and sijk = 1 we haveijk i3k ijk

eijksijk = -eijkeije k/2. This implies that eij k is nearly

perpendicular to sij k because rms(e ij k ) << 1. As slj k is

close to qj we find that eljk is nearly perpendicular to

qj. Therefore the angle between eljk and pj varies approx-

imately uniformly between 0 and 27. Let X be a scalar that

is uniformly distributed between 0 and 2w. The probability

density for A is 1/27 over this range. We have

27r 2272
I cos A dA/2n = 1/2
0

Thus rms(p eljk) = o//2.

v. tends strongly to be oriented in the r. direction.
3 3

Thus the magnitude of the cosine of the angle between v.

and slj k tends strongly to be 11iljk I. This implies

rms(v slj k  I /ijk I//j (16)

The angle between elj k and v. is highly likely to be only

slightly different from the angle between eljk and rj be-

cause v. tends strongly to be oriented in the r. direction.
3 3

The angle between elj k and r. is approximately uniformly

distributed between 0 and 2w. Thus

rms(vjelj) - r/2/j (17)

Now, max ITijkl = 10a. Thus (16) and (17) imply that terms
ijk
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of the form vjelj k are not negligible compared to terms of

the form Vj.sljk The term vjeljke is not linear in the eij k .3 1jk j ljk ijk

From this result we infer that terms of the form vj,61ljk

are not negligible compared to terms of the form
I

Vj*sljk in (11). By a similar argument terms of the form

I

vjAe2j k are not negligible compared to terms of the form

I

v.As From this result we infer that terms of the form
3 2jk
I

v j*62j k are not negligible compared to terms of the form

I I

v. j*As2j k in (11). The terms vjiij k are non-linear in the

elements of e and the eij k . Thus (11) is not necessarily

well-approximated by the system of equations we obtain by

ignoring the non-linear terms. The discussion at the close

of Argument 1 is therefore applicable to (11) also.

These arguments suggest that the functional relation

between c and the eijk has sufficient non-linearity to rule

out the use of linear statistical theory to obtain an accu-

rate description of the distribution of E from the s ijk A

and the distributions of eijk.
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CHAPTER V

A Second Measure of Fit

V.1 The Measure of Fit

A is the true rotation tensor. The matrix B. was de-

fined in section 111.5 . Let B. denote the matrix whose en-
3

tries are equal to those of Bj when sij k = sij k and A = A.

Let the eigenvalues of B. be aj,j.,Yj = 0. We assume

a. > Bj > 0. Let qj,rj,pj be eigenvectors of unit length as-

sociated with j.,.j,Yj respectively. There are two such

eigenvectors for each eigenvalue but they differ only in sign.

We choose qj,rj,pj to satisfy the relation qj x rj = pj where

'x' denotes the vector product. Let K. denote the plane nor-
3

mal to pj.
J

The matrices B.. and B.. were defined in section III.4
1A A A A13

The eigenvalues of Bij are a.ij, ij,Yij with associated eigen-

vectors of unit length qij ,rijPj respectively. The eigen-

values of B.. are aij, ij,yij = 0 with associated eigenvectors

of unit length qij',ij'Pij respectively. We choose pj,Plj,

and p2j to satisfy the relation p = plj = Ap2j"

Let

C2j = AB 2jA , C2j = AB2j A

The eigenvalues of C2j are a2j8 2j 2j with respective as-

sociated eigenvectors of unit length Aq2 j,Ar2j,AP2 j . The

eigenvalues of C2j are a2j' 2j = 0 with respective as-

sociated eigenvectors Aq2j,Ar 2 j ',AP2j
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The statistical distribution of (Sljk , k=l,..,nlj)

induces a statistical distribution of the matrix BIj. Hence

the eigenvector associated with the minimum eigenvalue of Blj

has a statistical distribution. Our calculated eigenvector

Plj is a sample from this distribution. Similarly, the statis-

tical distribution of (As2j k ' k=l,..,n 2 j) induces a statis-

tical distribution of C2j. The calculated eigenvector p2j
22

when rotated to Ap2 j is a sample from the distribution of the

eigenvector associated with the minimum eigenvalue of C2j.

When plj = AP2j the random vector plj - AP2j is non-zero in

general due to the statistical distributions of both

(Sljk , k=l,..,nlj) and (As 2 j k , k=l,..,n 2 j). The distribution

of sijk is specified by its mean s.ij k and the positive scalar

aijk(see section 111.3). When both 0 << ij < aij and

aijk << 1, k=l,..,nij (see discussion in Appendix II) the

distribution of pij is concentrated near pij. In this circum-

stance the projection of plj - Ap2j onto Kj is a useful ap-

proximation to plj - 2j Let wj be this projection.

Le DIj be a 2 x 3 matrix with rows equal to qlj and

rlj respectively. Let D2j be a 2 x 3 matrix with rows equal

to (Aq2 j )  and (Ar2j) respectively. Dij .v gives the projection

of a vector v onto K. in terms of the components of the pro-

jection of v with respect to basis vectors (qlj,rlj) or

(Aq2jAr2j) as appropriate. Let w = DljP , w2j = D2j A2 j

Let (qj,r) be the orthonormal basis in which the com-

ponents of w. will be expressed (we note that any two ortho-3
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normal vectors in K. would suffice for this purpose). Though

(qj,rj), (qlj,rlj) and (Aq 2 j,Ar 2 j) are all bases of Kj they

are not identical in general. We obtain the components of w.
3

from the components of w lj and w2j as follows:

Let D. be a 2 x 3 matrix with rows equal to qj and r.

respectively. D.v gives the projection of a vector v onto K.

in terms of the components of the projection of v with respect

to the basis (qj,r). Let Mij be the 2 x 2 matrix of rotation

through an angle .ij defined by

q qlj qj rlj cos ij sin lj

j 1j Ij I jMIj D , ,n w n.w. M
j q 2j r. rlj sin cslj

3j j r 3  2j sin2j cos2j]

Then D. = M 1Dlj = M2 D j and wj = M ljwlj - M2jw2j.13 lj 2j 2j llj - 2j 2j

When both 0 << .ij < aij and ij k << 1, k=l,..,n ij,

the distribution of w.. is approximately bivariate-normal

with mean 0 and covariance matrix A.. defined by (see Appen-

dix II):

Aij / 1/O i
A.. =

0 1)

The distribution of w. is approximately bivariate-normal with

mean 0 and covariance matrix A. defined by
3
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A. M A M +M A M
j lj jAjMj + M2j 2j2j

(see Morrison, 1967, Chapter 3). The matrix A. provides in-

formation about the variation in w. when p2j is rotated to

Ap2 j . To the extent that this approximation is valid the

probability density for the set (wj, j=l,..,J) is propor-

tional to

1 ' -1
H exp{-.w. A. w.) (1)

l<j <J 2 3

Let

-1E w. A.- w.l<j <J 3i 3

4 is proportional to the logarithm of (1). D depends upon

A, sijk, sijk and .ijk through A. and w.. A. depends onlyjk 3 3 3
upon A, sij k and aijk" To the extent that w. is a useful

approximation to plj - A2 j the vector w3 is dependent only

upon A, sijk and aijk . As A and A. are unknown we estimateijk ijk 3
them by the following procedure:

Let A be the rotation tensor for a trial reconstruction.

The points (tijk' i=1,2; k=l,..,n) were defined in section

III.5 for A. Let T.. be the weighted covariance matrix (de-

fined as in section III.4) for the points (tijk , k=l,..,n ij)

and associated (ak, k=l,..,n. ). Let T. be the weighted

covariance matrix for the points (tijk , i=1,2; k=l,..,n ij)
A A ,A

and associated (a , i=1,2; k=l,..,n ij). Let aij ,b ,cij
ijk ij 1J ij j

be the eigenvalues of T... We assume a.. > b.j > c... We have
c Aj A A A

c.. = 0 from the definition of T... Similarly let aj,bj,cj be
1)J

~L-~PB- d I~C_~- -^I*1_I1I ti ..-*~~U~-~-~I~LL~-~ IIIIF-IZ;P I



A A A A A A 62
the eigenvalues of T. where a. > b. > c. = 0. Let g ijh

f.. be eigenvectors of unit length associated with

aij,bij,cij respectively. There are two eigenvectors of unit

length associated with each eigenvalue but they differ only

in sign. We choose gij and h.. such that gij x hij = f...

Similarly, let gj,hj,fj be eigenvectors of unit length as-

sociated with aj,bj,cj respectively, where g. x h. = f..

Let D.. be a 2 x 3 matrix with rows given by, respective-

ly, gij and hij... Let wlj = D ljpl j , w2j = D 2jAp2 j . Let D. be
^I ^I

a 2 x 3 matrix with rows given by, respectively, gj and h..

Let M.. be the 2 x 2 matrix of rotation defined by

g gij gj h..
M.. =

h. gij hj h..

Then D = MIjDj = M2jD2j. Let w M -M2jw2j
j j 2 2 j 2j 2j

Let A.. be defined by

A..ij = /a

L)i i

A A A Ag A A Ag

Let A. = MjAjMlj + M 2jA 2jM 2j. Then the second measure of

fit (the first was i0) is

^ ^-
1

A

S= E w. A. w.
i<j<J 3 3 3

We seek that A for which D 1 is minimized. Though the method

seems reasonable the points tijk presumably do not produce the

exact minimum value of Pl for trial A. Thus the estimates of1



A and sijk that minimize O presumably are not identical to

the A and tijk that minimize 1.

V.2 A Method for Obtaining An Approximate uncertainty Region

for the Rotation Tensor Using _1

Let A be the rotation tensor that minimizes el. Associ-

ated with A and the data s and As are matrices A. and
ljk 2jk j

D., j=l,..,J (see section V.1). Let
^ ^-1^

A. = D.A D.

The non-negative scalar (Plj - AP2j )'A (Pj - AP2j) is the

contribution of the j th section to el"

Let ulj k be a perturbation in slj k such that

Islj k + UljkI = 1 and juljk << 1. Let u2j k be a perturbation

in As2jk due to a perturbation in s2jk' where Iu2jkI << 1

and iAs 2 jk + U2 j k j = 1. Let vlj be the resultant perturbation

in Plj' where Plj + Vlj I = 1 and Ivlj I << 1. Let v2j be the

be the resultant perturbation in Ap2 j caused by the pertur-^ 2

bation in P2j' where IAP2j + v2j I = 1 and Jv2 j I << 1. For

ease of notation let pj = Ap2j.

Let A, be a rotation tensor in a neighborhood of A. We

have

A, = (I + E)A

where E is an antisymmetric perturbation matrix with indepen-

dent elements elIr2,C3 (see Appendix I). Let e' = (F-,E2'3

where 1E < < 1.
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We may define matrices Aij..(), Mij (E), D.ij (E), Aj.()

and D.j() for A, in a neighborhood of A given perturbations

u. and data sij k in the same way that A.ij, Mij, Dij, A.
13k i3k 13

and D. were defined. Let

d (:) = (I + E)(pj + v2j) -(Plj + Vlj)

Aj(s) = [D(E)]'[A ()] Dj.(E)

Then the measure of fit for A, in a neighborhood of A is

approximately

P1( ) = Z [d.(E)]'A.()d.(E)
l<j<J

f. was defined in section V.1 . When IPlj - j is small
3 j

the projection of pj - Pj onto the plane normal to f. is a
j J

good approximation to plj - Pj. This implies that D.(E=0)d.(:)

is a good approximation to D. (c)dj(e) when IE J << 1. We will

use A. as an approximation to A.(E). Then
3 I

01(E) E [d. (E)]'A.d.( ) (1)
l<j<J

We seek an c such that (1) is minimized, where E << 1.

Let 3m denote /3 Em, m=1,2,3. We find e by substituting (1)

in the equations

SD = 0, m=1,2,3.ml

The zero th order equations are

. (p - p )'A '. (E.) = 0, m=1,2,3
l<j<J J j m

-----"8~ I- ~1 ; F~-----C-**~-- L-----r~C i)rlyi-.--rsp



The first-order equations are

E (p. - p )'A. (Ev ) +
l<j<J j 1j J m 2j

+ E (v2
l<jJ 2J3

<j
l<j<J

(Epj) 'A. (Epj)

- v j)'A. (Ep.) = 0, m=1,2,3 (2)

Define

(n)D. = A.3 (Ep.), with components Dn , n=,2,3.jm 3 m j 3,m

^ (n)
C. = A.(p - Pj) , with components C. , n=1,2,3

(n)
Let pn , n=1,2,3 be the components of pj. Let Q be a 3 x 3

matrix with elements (Q)mn given by

(3) (2)(Q) [p D
ml l<j<J ,m

( 2 ) (3)

j j,m

(Q) = [p(3) D ( 1 )  (1) ( 3 )(Q) 2-p D + pj D J
m2 Ifj<J j j,m j j,m

(Q) = [P 2  D 1 )
m3 l<jJ j j,m

0

Y. = C 3 )

-C 2
SJ

Z. =
I

S(1)D
j,1

(1)Dj,2

D
-j,3

( 3 )

0

C

(2)
j,1

(2)
j,2

(2)
j,3

(2)
j
(1)-C

0

(3)D
j,l

(3)
j,2

(3)
j,3J

(1) (2)
j j,m

Let

---*LYPYPI*~ UYIWYLYL~- -*** -rr(---C---



Set all vij = 0 except for v 2 k. Then (2) becomes

(Zk + Yk)v 2 k + QE = 0

Set all v.. = 0 except for vlk. Then (2) becomes

Zkvlk - Q = 0

In a linear approximation the contributions from all v.. are

additive. Thus

-1
S= Q- E [Zv I - (Z. + Y.)v2j ] (3)

l<j<J

We would like to use (3) to obtain some information

about the set of e that produce acceptable reconstructions.

This will be accomplished as follows:

We will treat the v.. as independent random variables.

This implies that we treat e as a random variable. Let T

denote the covariance matrix of E. D..v.. is the projection

of vi onto the plane with basis (gij ,hij) (see section V.1).
.J ij iJ

When Iv.. << 1 D.v.. is a good approximation to v... We
1j 13 13 13

assume that the covariance matrix of D..v.. is A... Then (3)
13 l] ]3

gives T in terms of A... We obtain this relation as follows:
13

The vectors f.. were defined in section V.1 . Let H..
13 ij

be the rotation matrix with rows given by, respectively,

gij h..ij' fij We have

ij ij = D..

We have IPlj Vlj I = 1, jpj =' Ilj i << 1 and flj =Plj

_IIY__^_I__ _L_____LYIIIIIU~ III-1L _L~~-- L~ P~x~ __~
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This implies Ifljvlj << Ilj 1. Similarly f2j = AP2j and

I I !

If 2 jv2j << v2j . With these results and vij = 1..H..v..jj 1 13 13

we have

IA I

v.. = (vij ,v. .h ,0)H (4)13 gij ij ij ij

Let

i.. = 0 (5)

From (4) and (5) we have

Cov(vij) ..ij ..ijij (6)ij 13 13 1

where Cov(.) denotes the covariance matrix of the argument

(see methods in Morrison, 1967, Chapter 2). From (6) and (3)

we obtain

T = Q-1{ Z.'
l<j<J 3 13 13 lj +

(Z. + Y )H' .'F (z. + Y.) 1(Q-)
3 j 2j 2j2j j j

(see methods in Morrison, 1967, Chapter 2).

Let TIT 2 3 be the eigenvalues of T. We assume

>1 > T2 > T 3 > 0. Let tl,t 2 't3 be eigenvectors of unit length

associated with T1,T2 T3 respectively. There are two such

eigenvectors for each eigenvalue but they differ only in sign.

The direction of greatest variation of E is t . If the recon-

struction of A is reasonable in all sections than this direc-

tion will approximately correspond to the direction of least
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increase in 1(E) for JI - = k, where k is a constant.

That is, Dl(kt 1) < 1l(kt 2) < (l(kt 3 ), for Ikl << 1.

Let u denote the pole of rotation for A and let u + t

be the pole of rotation that corresponds to E. A can be

written A = R'AR where R is a rotation matrix (see section

V.3). The projection of u + t into the coordinate frame of

the row vectors of R is approximately (wl,w 2 ,1), where

Iw1l << 1 and 12w << 1. Let w' = (W1,W2). The methods of

section V.3 provide for an approximate relation of the form

w = PE where P is a linear transformation. Let M be the co-

variance matrix of w. Then M = PTP' (see Morrison, 1967,

Chapter 2). Let plP2 be the eigenvalues of M. We assume

PI > P2 > 0. Let m1 and m2 be eigenvectors of unit length

associated with pI and p 2 respectively. The direction of

greatest variation of w is mi. Let I denote the value of D1

for a specified pole of rotation at the angle that minimizes

1 for the pole. If the reconstruction of A is reasonable in

all sections then m will approximately correspond to the

direction of least increase of q1 for IwI = constant. Also

m2 will approximately correspond to the direction of great-

est increase of D1 for I! = constant (and m is normal to

m2 because p1 3 2). Let c be a positive constant. The

relation w'M-1  = c specifies an ellipse of semi-axes

1/2 1/2
(cl 1/2 (c' 2 ) in w-space. The set of poles of rotation

that correspond to the relation w'M-1  < c can provide an

approximate description of an uncertainty region for the pole

___1L_____IX____UL__LIIC~~L ^~n -L~-L
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of rotation if the following conditions are met:

(i) mI and m2 are in approximate correspondence with

the directions of least increase and greatest increase of

(1 respectively.

(ii) /P1 and /1P2 are approximately proportional to the

dimensions of the uncertainty region.

(iii) c is properly chosen.

Conditions (i) and (ii) ought to hold, approximately, if

the reconstruction of A is reasonable in all sections. Condi-

tion (iii) can be satisfied by examination of a small number

of reconstructions.

-- ---~- -- i - i~'~'Y~-~-~---- ^Il~-L~^Crs~- ls~ ~-rri



70
V.3 Relation Between A, and c

Let u be the pole of rotation for A. The rotation A

can be written A = R'AR where R is a rotation matrix with

elements Pij' l<i,j<3, (Ru)' = (0,0,1) and

cos* sinp 01

A = -sin cosi 0

0 0 1i

Here i is the angle of rotation for A and pole u (see also

discussions in section 111.7 and Appendix III). Let A, be

a rotation tensor in a neighborhood of A. We have

A, (I + E)A (1)

Let u + t be the pole for A, where Ju + ti = 1 and It I << 1.

The equation that defines u + t is

A*(u + t) = u + t, lu + tj = 1, It << 1. (2)

The projection of u + t into the coordinate frame of the row

vectors of R is

R(u + t) = (wi,w2,1)

where wll << 1 and 1w2 I << 1. With this relation, (1) and

the relation A = R'AR we obtain a first-order perturbation

equation from (2) (see also discussion of accuracy of approx-

imation in section 111.7):

A(i,r2,0)' + RER'(0,0,l)' = (W lw 2,0)' (3)

The row vectors of R form a right-handed orthonormal basis.

Hence (3) can be simplified to
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1 2 1 -sinp/(cos - 1) P21 1 - 22E2 - 233

2 in/(cos~ - 1) 1 Pllel + P1 2E 2 +13 3

(4)

The angle of rotation for A, is i + 6 where 16 << 1. We have
A%

Trace[ (I + E)A] = 1 + 2cos( + 6) (5)

Let Aij, 1<i,j<3, be the elements of A. From (5) we obtain

(see also discussion in section III.7 about accuracy of ap-

proximation):

6 = -[ 1 (X3 2 - 2 3 ) + C2 (X1 3 - 3 1 ) 3 ( 2 1
- X1 2 )]/2sin

(6)

As E is calculated after the rotation A has been applied to

the relevant dataset, the perturbation pole u + t that is

determined by e and (4) is also rotated by A. Thus the ori-

ginal coordinates of u + t are approximately A'R'(l,,2,1)'
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FIGURE II

Data and Projected Points Along Common Great-Circle

Arc Segments on a Reconstruction Specified by

Rotation Tensor A

A A
All points s2jk have been rotated from s2jk to
AA A

As2 jk. p is the unit vector normal to the jth

great-circle. tlj k is the intersection of the meridian
A

through pj and Slj k with the great-circle normal to
A
pj. t2j k is the intersection of the meridian through

pj and As2j k with the great-circle normal to pj.
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Plane K normal
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FIGURE III
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Pj

FIGURE IV

Representative Data Set

The filled circles represent the points

{Sljkk=l,..,nlj;AS2jk'k=l,..,n2j

The open circles represent the points
4% A

{sljkk=l,..,nlj ;A2jk ,k=1,.,n2j

qj,r.,p. are the eigenvectors of B. (see section IV.5).

p. + v. is an eigenvector of unit length associated

with the minimum eigenvalue of B. (see section IV.5).
3



APPENDIX I 80

The Existence of Reconstructions That Are

Similar to the True Reconstruction

We seek rotation tensors A in a neighborhood of A

for which the points As2j k are closest to As2j k . For A in

a neighborhood of A we have

A = (I+E) A (1)

where I is the identity matrix and E is a 3x3 antisymmetric

perturbation matrix (Goldstein, 1950, pp 125-127):

0

E = - 3

E2

E 3 -E2
3 2

0 el1

-1 0

Let E' = (ci,E2,E3). Then Ew = w x e for any vector w where

'x' denotes the vector product.

Let

v2jk = As2jk

d2 jk = As2jk - v 2 j k

P1k 2jk2 2 22
2jk d2jk 2jk 2jk 2jk /2jk

S= E P2jk
j,k

Using (1) we obtain

' 2
P2jk = V2jk 'Ev2jk/ 2jk

(2)

We have jEv2j k 2 Iv2j k x E 12 = 2C - (CV23k 2

tution of this relation into (2) yields

. Substi-

r~i e i ~ ~ ~ ~ him-
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p E E'E E: E'V )2 2 (3)P2jk [s' - (.V 2 j k) 2 ]/2jk (3)

Let the 3x3 positive semidefinite symmetric matrix B be

defined by

-2
B = a 2 v vjk 2jk 2jk 2jk

Let

-2
jrk2jk

Then

S = K 's + E'Bs

Expression (3) implies that the minimum S = 0 is attained

only when e = 0 unless all v2j k are co-axial, in which case

E = cv2j k is the solution where c is any real constant,

Ic <<l.

We therefore seek those E for which S is a minimum

subject to the constraint

E's - c 2 = 0

where c is a real constant, 0< Ic <<l. The vectors E of mag-

nitude 'Ic that minimize S are among the solutions of

VS - yV(E'E-c 2 ) = 0, E'E=C2

where y is a scalar and V denotes gradient. This equation is

equivalent to (B+KI)E = yE so that E'(B+KI)E = yc ; hence

the desired S is an eigenvector associated with the minimum

2 2
eigenvalue y of B+KI. As KE's = Kc we have E'Be = TC

where T = y-K, T>0. For fixed K, T is a minimum when y is
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a minimum; hence the desired e is an eigenvector associated

with the minimum eigenvalue T of B. Let T1 be the minimum

eigenvalue of B. We assume T1 is distinct. Let tl be an

associated eigenvector of unit length. There are two such

eigenvectors but they differ only in sign. The desired solu-

tion is

s = Ct I

~~YII~~_~ ____/_ __IILYCL1_Iil- _



APPENDIX II

Let sk'=(xk,k,zk) , 1<k<n, be points on the unit sphere

and let ok' l<k<n, be positive scalars. The distance of sk

from the plane normal to the unit vector w is w'sk and this

distance weighted by ak is w'sk/k. Define the 3x3 posi-

tive semidefinite symmetric matrix B:-2
XkYk Xkzk

B = E a k-2 ykzk  Yk 2  Ykzk

LZkxk ZkYk z k

The sum of squares of the weighted distances of s k , l<k<n,

from the plane normal to w is

2Z (w'sk/Ok) = w'Bw
l<k<n

The unit vectors w that minimize this sum are among the solu-

tions of

Vw'Bw - yV(w'w-l) = 0, w'w=l,

where y is a scalar and V denotes gradient. This equation is

equivalent to Bw = yw so that w'Bw = y; hence the desired w

is an eigenvector associated with the minimum eigenvalue y

of B. Let a,B,y be the eigenvalues of B. We assume a>a>y>0.

Let u,v,w be the respective associated eigenvectors of unit

length. Then the two unit vectors r that minimize r'Br are

r=+w. Let [ele 2 ,e 3 ] be the standard basis vectors in R3 and

and let Q be a rotation matrix such that el=Qu, e 2 =Qv, e 3 =Qw.

The vector Qsk=(k,'~kk)' represents the coordinates of sk

in a coordinate system where B is diagonalized. In this



system B is given by

B = 8 0 , >B>PY>0. (1)

0 0 Y.

and Be 3 =e 3 . For the remainder of this appendix we work in

this particular coordinate system. Let

611 612 613

A = 21 622 623 where A'=A.
21 22 231
31 32 63 3

The eigenvalues and eigenvectors of B+A are perturbations

of the eigenvalues and eigenvectors of B when A is a per-

turbation of B. Let T.i+i , i=1,2,3 be the eigenvalues of

B+A where T1=a, T 2 =,T 3 =y. Let (ei+vi), i=1,2,3 be the as-

sociated eigenvectors, where (ei+vi)'(ei+v.) = 1, Iv 1<<1

and v.'=(c1 ,E 2 ,E ). We have

2 2 1 2 2 2 2 2 3Ell = -(£E +3)/2 - 4[(E:21 +E31) + O[(E +E )
11 21 31 4 21 31 21 31

2 2 1 2 2 2 2 2 3
C22 = 12 (l 32)/2 4 [(12 32) + 0[(12 32)

2 2 1 2 22 2+ O 2 2 3
33 1 3  2 3 )/2 - 1 3  2 3  13 23

The equation for X.,v. is
1 1

(B+A)(ei+vi ) = (Ti+Xi ) (ei+vi ) (2)

The eigenvalues of B+A are the solutions of

det[B+A-(T.i+ i )I] = 0 (3)

where I is the identity matrix and det[.] is the deter-

minant function. From (3) we find

^--CP-n~-ur;--s~ ~---- I -YI~ I1IL~F-^l^-rr~.~ II~ PP-- UYJL~_



1 = 611-6 1 2 62 1 /(B-) - 613 31/(y-)

2 22 12621/(X- ) - 632 623/(-) (4)

3 = 6 33-6 13 31/(-y) - 632 23

through second order in the elements of A. To solve for

vi,i=1,2,3 we demonstrate the approach for v 3 and then repeat

it for vl and v 2 "

If (y+6 3 3 ) (e 3 + 3 ) is subtracted from both sides of (2)

then the first two rows of the equation are writ-ten

(a-Y)E3 + 612 23 + 613 = 613E33 + (X3-6 11)13

621 13 + (O-y)E23 +623 = 623 33 + (X3-622) 23

2 2
As E33  -(13 +E23 )/2 and 13 =633 the first and second33 -13 233 33

order perturbations are provided by the solution of the

system

(a-y)E3 + 61223 + 13 = (633-611)£13

621 13 + ( -Y)E23+623 = (633-622) 23

Whence we conclude

13 -6 13/(c-Y) + 6216 2 3 /(a-Y)(-Y) +613(611-633)/(-Y)
13 13 21 23 11 33

E23 -6 2 3/(-) + 61 2 61 3 /(a-y) (B-y) + 623 (622-633)/(-)

(5)

This is correct through second order in the elements of A.

With (5) and

2 /(-)2 32 233 [613 + 623 /(6-)2]/2



the perturbed eigenvector (cl3,E 2 3 , 1+6 3 3 ) is correct through

second order in 6... With an analogous approach we find

21 -62/(S- +) + 6 3 /(8-a)(Y-a) + 6 21(6 22-6 )/(8-a)

E31 -6 3 1 /(y-) + 62 3 62 1 /( -) (y-c) + 631 (633 )/(-)

and

E12 -12/(a-8) + 631 3 2 /(a-8) (y-8) + 612 (6 1 1 6 2 2 )/(a-)2

E32 32+ 1 3 1 2 / ) ( +  32 Y33 -6 2 2 )/(Y-) 2

These relations and relations (5) and (4) can also be ob-

tained by methods discussed in Wilkinson (1965, Chapter 2,

pp. 68-70) or Courant and Hilbert (1953, pp. 42-44).

Let the coordinates of sk be expressed in the basis

u,v,w so that Sk '=(jk k' k). Assume that the sk are all in

the plane normal to w, so that y=0 and Sk'=( k' k,0),

k=l,...,n . From (1) we have

2 2 2 2 2
S k/ok = a, Skk/ k = 0, nk/ k = (6)

l<k<n l<k<n l<k<n

Let sk = Sk +k where Isk l=l, I k l<<l and pk =(lk'2k2' 3k)

in u,v,w. Let

B = E sks k/ = B + ASSkSk  k B+
l<k<n

Then

A= (V (ksk'+sk k '+kk')/ok
l<k<n
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Let y be the smallest eigenvalue of B. Then by (4) we have

2 2 2 2 2
y= E P3k/ak k( 3k/Ok) /a- ( nkP3k/a k/

1<k<n l<k<n l<k<n

+0( 1 3) where li 12 = k I k
l<k<n

Suppose the p3k are independent normal random variables

2
with mean 0,and variance ak. Let Gk = P3k/k Then Gk are

independent standard normal variables. Let G'=(G1,...,G n )

Then

2 2
G'G = 2 2/

l<k<n

Let

v ( 1) = (V 2,...,v n)

(2)
v. = (wl' 2 ''' = (W1 ,W2 ,... Wn)

where v. = 5i/,a i=1l,..,n
I i 1 =l, ,n

S= j/j81/2

Then by (6), v ( 1 ) and v(2) are orthogonal unit vectors in

Rn, where Rn denotes n-dimensional Euclidean space. We can

construct vectors v ( 3 )  (n) v such that v(),.. (n) is

an orthonormal basis of Rn by a method such as the Gram-

Schmidt orthogonalization procedure (see, e.g., Hildebrand,

1965, pp. 34-36). The quantity G'G is the squared magnitude

of G; hence G'G is invariant with respect to an orthogonal

transformation of the basis vectors of Rn. Thus

G'G = E (G'v(k) 2

l<k<n
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and y = E (G'v (k)
3<k<n

The scalar G'v(k) is a standard normal random variable and

the G'v(k), k=l,...,n are mutually independent because G

has a multivariate-normal distribution with mean 0 and

covariance matrix I where I is the identity matrix. There-

fore y is the sum of squares of n-2 independent normal var-

iables, each with mean 0 and variance 1, i.e., a X2 variable

with n-2 degrees of freedom (see Morrison, 1967, p. 10 for

definition of a X2 random variable).

We also have

(613,623) =

through first ord

we find

Var ( 1 ) =

Var(E 2 3) =

Cov(s 1 3 ,E 2 3 )

2
1 (<n k 3k' k 3k)/o k

l<k<n

er in perturbation theory. Then, using (5)

-2 2 2C 5 k/Ok l/c
l<k<n

-2 2 2
C k/ok 1/8

l<k<n

= (a ) - 1 E l //o = 0
l<k<n

Hence the covariance matrix of (E 1 3 , 2 3 ) becomes

[1/ 0]
0 1/6 .
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APPENDIX III

Let u' = (0,0,1)

cos sin 0

T -sinP cos 0, -rr< <

0 0 10

We have T'T = I and det(T) = 1; hence T is a rotation matrix.

u is a unit vector. u is an eigenvector of T with eigenvalue

= 1 because Tu = u. The unit vector -u is also an eigenvector

of T with eigenvalue = 1. ' is determined up to sign by

Trace(T) = 1+2cos, -<rr<r . The sign of 4 is determined

by the sign of sin.

Let A be a matrix such that (T+A)' (T+A) = I and

det(T+A) = 1. Hence T+A is a rotation matrix. Let 6.

l<i,j<3, be the elements of A. Let u+v be the pole of rota-

tion and let i+X be the angle of rotation for T+A. Let

V' = (EE,2,E 3 ) and e' = (E1 ,E 2 ). From (u+v)'(u+v) = 1

we obtain

1e 1 2 )3
S e'e -(e'e) + O[(e'e)

3 2 4

A is a perturbation of T when 16ij i<<1 and 16ij I<< I. Then

v v<<i and s3 = -e'e/2. We seek u+v in a neighborhood of u

for which

(T+A) (u+v) = u+v (1)

Let
cos-l1 sin,

-sin cos-l

Using E3 -e'e/2 in the first two rows of (1) we obtain
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the relation

Ae = 3J 62 12 e + - e 'e 3 (2)23 21 22 23

The terms of (2) involving e'e are of third order in 6...13

The components of e through second order in 6.. are ob-

tained directly from the remaining terms of (2). These

components are given by

-- 1 13 + A-1 11  812 -1 13e = -A + Al1

23 21 22 23

where

A- -1 cosP-l -sini

2(cos-l) sinp cosi-ll

We have Trace(T+A) = 1+2cos (p+X)

With I I<<1 we find

cos(P+X) = cosi - Xsin - (12/2)cos + O(X3)

With Trace(T+A) = 1+2cos +611+622+633 we obtain

-2Xsin* - A cos +6 22+33 (3)11 22 33

From (3) we obtain

1 6 +6 +6 2
1 11 22 33

X = -(6 11+6 +6 )/2sin - -cot

through second order in 6... When the conditions 1ij I<<1 and
13 ij

16 ij I < j are not met the relation between either e or 1

and 6.. is not well-approximated by a linear relation.
13
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THE STATISTICS OF FINITE ROTATIONS

IN PLATE TECTONICS

PART II

An Application to the Evolution of the South Pacific
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Preface

The data and reconstructions of Molnar et al. (1975)

for the times of anomalies 13 and 18 in the South Pacific

are re-examined with the statistical tools of the preceding

paper. The use of the statistical tools for this kind of

data is carefully explained. Uncertainty regions for the

poles of rotation are obtained and compared to the sub-

jective uncertainty regions of Molnar et al. (1975).

---r~--~- rrrrrr-LI-rY-rrY-~ rrr~a^.-r-



A. Introduction 93

The methods of the preceding paper will be used to

re-examine the reconstructions obtained by Molnar et al.

(1975) for the times of anomalies 13 and 18 in the South

Pacific. The available fracture zone crossings and magnetic

anomaly identifications were sparsely .distributed. A recon-

struction obtained from such data is tightly constrained if

the uncertainty of each data point is tightly constrained.

The location and width of each of the fracture zones in this

dataset is not strongly constrained by the magnetics because

the magnetic anomaly identifications are rarely in the vicin-

ity of the fracture zones. Hence the probable location and

probable width of a fracture zone must be inferred from the

bathymetry.

As the data is sparse, a particular section of the re-

constructed plate boundary will often have two points from

one side of the present ridge axis but only one point from

the other side. Thus criterion 40 (see previous paper, sec-

tion III.5) is directly applicable to this kind of data. For

the sake of comparison of results, criterion i1 (see previous

paper, Chapter V) was also used with this data. As Di re-

quires at least two points from each side of the present

ridge axis, a dummy point was chosen to augment the single

known datum where necessary when 41 was used. A large stan-

dard deviation of error was assigned to the dummy point to

ensure that it would have little influence upon the recon-

struction. The results of this comparison are discussed in



section B.10 of this paper.

The construction of an uncertainty region for the pole

and angle was based upon an examination of the distances of

the fixed and rotated points from the estimated common great-

circle arcs that defined the reconstructed plate boundary for

a large number of poles at the angle that minimized the mea-

sure of fit for each of the poles.

B. Procedure

1. Preliminary Work

The available sources of data (e.g., published magnetics

and bathymetric profiles, bathymetric chart) were examined to

ascertain the quality of the data and to obtain estimates of

uncertainty for the points. The poles and angles listed in

Table 2 of Molnar et al. (1975) were then used to obtain pre-

liminary reconstructions for the times of anomalies 13 and

18. The overall quality of the reconstructions was judged in

the light of the above information. Individual data points

that seemed inconsistent with the preliminary reconstructions

were identified. Their sources were re-examined to see if the

quality of this data has been misjudged. In several cases the

re-examination showed that the data was of poorer quality

than originally thought. The uncertainties associated with

these data were increased. Some of the latter points were

simply eliminated because they were too uncertain. The re-

maining re-examined points, if any, were retained in the data

sets for the reconstructions. The information gained from re-
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examination of the inconsistent points was then used to re-

evaluate the quality of the points that originally had

seemed consistent with the preliminary reconstruction.

2. Selection of Position of Block Boundary from Magnetic

Anomalies and Assignment of Uncertainty

The positions of block boundaries are those of

Molnar et al (1975). The place along a given anomaly profile

that represents the block boundary of interest is uncertain,

and the shape of the anomaly is often quite variable from

profile to profile. The factors that affected the estimation

of uncertainties are the following:

a. The closeness with which the actual anomaly follows

the shape of an anomaly derived from theoretical block models.

b. The clarity of neighboring anomalies along the profile.

c. The presence of a seamount or fracture zone in the

vicinity of the anomaly.

A region of uncertainty (along the profile) was assigned

to a magnetic anomaly point. The standard deviation of error

for this point was set equal to one-half of the width of this

region. The weight assigned to the deviation of an actual

data point from its hypothetical location was determined by

this relation over the range of uncertainty.

3. Selection of Position of Previously Active Transform Fault

and Estimation of Uncertainty

The positions of previously active transform faults are

~_I_ ^YrJ~_1_I1_L___IIII_111 Y__-~__iW CLIXI-T~IL~1^Y



those of Molnar et al. (1975). The place along the bathy-

metric profile that represents the previously active trans-

form fault is uncertain but the fossil transform fault is

constrained to lie within the fracture zone. The width of a

fracture zone at a crossing was estimated from the bathy-

metric profile (or bathymetric chart if the profile was un-

available). It was occasionally difficult to see the limits

of a fracture zone in a profile; in this event a large width

was assigned. The standard deviation of error was set equal

to one-fourth of the assigned width.

4. Systematic Uncertainties Among Fracture Zone Crossings

If a pole of relative motion between two plates remains

fixed with respect to the pair of plates for a long period

then transform faults will follow small-circles around the

pole (see previous paper, Chapter I). The fossil transform

faults that are created during this period will also follow

small-circles (whether or not the fracture zones associated

with the fossil transform faults have a similar shape depends

upon the history of relative motion since that period). Thus

the difference between the shape of a fossil transform fault

and that of a great-circle arc over some length of arc may

be caused by the curvature of a small-circle arc.

The maximum value of any such difference for a given

length of arc was evaluated with the method of Appendix I.

For the data of the present study the maximum length of any

one section of fossil transform fault data was approximately



150 km (some fossil transform fault data along each of the

Tharp and Heezen fracture zones between offset lineations

was separated into two sections; see C and D of this paper

for details). We refer to Appendix I. Let d represent the

distance (in radians) along a small-circle arc subtended

by angle 2w. Then d=2w sinp where p= colatitude of the small-

circle with respect to the pole. For the data of this study
0

we used p=30 . Then w=-d. If d=150 km (in radians) then

6=0.75 km (in radians) where 6 represents the maximum differ-

ence between a small-circle arc and a great-circle arc over

a distance of 150 km when the small-circle arc is approxi-
0

mately 30 away from the pole. For the data of this study 6

is negligible compared to the 20-35 km width of the fracture

zone. Thus any difference in shape between a small-circle arc

and a great-circle arc for the sections of data in this study

is negligible compared to the width of the relevant fracture

zones. Furthermore, this also implies that any significant

curvature of the fracture zones between offset lineations for

the sections of data of this study is not caused by small-

circle curvature.

It was occasionally necessary to increase the estimated

width of a fracture zone at a crossing to compensate for sig-

nificant curvature and/or local irregularities among sparsely

distributed fracture zone crossings from opposite sides of

the ridge axis. This increased the width of the region in

which the fossil transform fault was constrained to lie. On
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a major fracture zone, along a section of little overall

curvature, the increase in width was usually taken to be

less than 10% of the linear distance between two crossings.

In other areas the increase in width was more subjectively

chosen. The standard deviation of error for this crossing

was set equal to one-fourth of the increased total width.
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5. Correlated Errors

The statistical methodology assumes that uncertainties

among the data are mutually independent. This is unlikely

to be true for transform fault assignations (at fracture zone

crossings) or magnetic anomaly identifications along closely-

spaced track lines, for the tectonic histories of adjacent

places are highly correlated. For example, there are two

crossings of the (transform fault within the) Tharp fracture

zone near 1400 W. There is an Eltanin 19 crossing at (-52.42,

-140.17) and an Eltanin 17 crossing at (-52.55,-139.75). The

distance between these crossings is only 32 km. If both cros-

sings were utilized by the statistical methodology in obtain-

ing a reconstruction then the section which contained these

points would carry a disproportionately large weight. This

problem was eliminated by using the information in both cros-

sings to constrain the Eltanin 19 crossing. The Eltanin 17

crossing was not included in the data set. The bathymetric

signatures of the two crossings were similar (Figures 1 & 5,

Molnar et al, 1975). The width of uncertainty for the chosen

crossing was determined from the Eltanin 19 profile (Figure 5,

Molnar et al, 1975) because the Eltanin 17 profile was not

immediately available. Neither cruise had satellite naviga-

tion. Since the bathymetric chart (Figure 1, Molnar et al,

1975) indicated that the two profiles were consistent in lo-

cation it seemed reasonable to reduce the navigational uncer-

tainty for the Eltanin 19 crossing.
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A similar problem existed elsewhere on the Tharp frac-

ture zone. The Eltanin 23 crossings at (-57.85,-115.32) and

(-57.58,-116.0) were 50 km apart. The position of the trans-

form fault was assigned to be midway between the two. The

widths associated with the crossings were averaged and the

result assigned to be the uncertainty of the midpoint. Since

the crossings were made sequentially on Eltanin 23, which

had satellite navigation, the navigational error was taken to

be the error usually assigned to a single crossing on a

satellite-navigated cruise.

6. Navigational Errors

A navigational error with a standard deviation of 1 km

was assigned to data which had been gathered on cruises with

satellite navigation. Other data were assigned a navigation-

al error with a standard deviation of 9 km. This figure is

derived from a discussion by Pitman et al (1968, p 2071).

7. Total Error

Let s = standard deviation of error due to uncertainty
p

in the selection of the previous plate boundary from the mag-

netic anomaly profile or bathymetric profile. For a fracture

zone crossing s includes any systematic uncertainties. Let

s = standard deviation of navigational error and let st=

standard deviation of (total) error due to these sources.

2 2 2Then st is computed from the relation st sp + sn
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8. Further Comments on Treatment of the Data

The weight assigned to the deviation of a data point

from its hypothetical location is determined by the standard

deviation of the statistical error that is assigned to the

hypothetical location. If this standard deviation is suf-

ficiently large (compared to the size of the subjective

uncertainty region for the point) then the effective range

of the Gaussian error will exceed the limits of the sub-

jective uncertainty region. This limitation is unavoidable

within the Gaussian framework. It is not a significant limi-

tation for estimation of the best-fit reconstruction if

there is a best-fit reconstruction that is consistent with

all of the data.

If this limitation exists for the data in a sparse data

set (and, as a practical matter, it often will) then method

(1) of section 111.6 of the previous paper must be used to

construct an uncertainty region for the pole of rotation and

angle of rotation. When the data are numerous, when there are

many bends in the reconstructed plate boundary, and when all

or nearly all of the data are strongly constrained to lie

within their associated regions of uncertainty then methods

(2) or (3) of section 111.6 of the previous paper may be

used to construct an uncertainty region for the pole and

angle.
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9. Use of the Computer Program

The poles and angles in Table 2 of Molnar et al. (1975)

were used as initial estimates of the reconstruction para-

meters. The measure of fit was computed for each preliminary

reconstruction. A section-by-section decomposition of the

measure of fit was obtained. The measure for each section was

examined in the light of the reconstruction for the section:

fixed points, rotated points, assigned standard deviations

of error and estimated common great-circle arc.

A number of poles were chosen in the vicinity of the

preliminary pole. The angle of rotation that minimized the

measure of fit was obtained for each of these poles and for

the preliminary pole by the procedure outlined in section

11.4 of the previous paper. The half-range of search for

the angle was 1 of rotation. The coarse-scale increment and

fine-scale increment for the search (a,b respectively in the

notation of section 11.4 of the previous paper) were 0.1

and 0.01 respectively. A decomposition of the measure of fit

at the computed angle was studied. The distances of fixed and

rotated points from the estimated common great-circle arc for

each section were examined in the light of the assigned stan-

dard deviations of error. Several angles near the computed

angle were specified for each of the poles and the associated

reconstructions were examined in the same way as the other

reconstructions were. examined. The results shed light upon

whether the angle that minimized the measure of fit (for a

given pole) produced a good reconstruction. Moreover, the

-. -Li .Y~L~
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effect of a change in pole and angle on the fit of each

section of data could be observed.

Next, the program was permitted to search for the pole

and angle that minimized the measure of fit. The search rou-

tine was given the pole and angle of the preliminary recon-

struction as initial estimates. The angle that minimized the

measure of fit for the initial pole was found. This task was

repeated for eight poles of rotation that lay on a rectangle

centered at the initial pole (Figure 1). The latitude incre-

ment A6 and longitude increment A4 were chosen to make the

rectangle nearly square. The initial rectangle was roughly

25 km on each side. The pole for which the measure of fit

was a minimum was selected as the new starting point. If no

pole on the rectangle was better than the initial estimate

then the latitude increment and longitude increment were de-

creased by a multiplicative factor (=0.5 for this study).

The search was continued until the latitude increment and

longitude increment became smaller than minimum values which

were given to the program. The final rectangle was approxi-

mately 2 km on each side.
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B.10 Comparison of Criterion 0 with Criterion (1

There were three important results from this compari-

son. First, for the data of this study the angle that mini-

mized P0 for a given pole was virtually identical to the an-

gle that minimized 1 for the pole. Second, for the data of

this study the best-fit pole and angle obtained with D0 were

virtually identical to the best-fit pole and angle obtained

with *. By virtually identical we mean that any difference

between a quantity computed using 0 and the same quantity

computed with 41 was smaller than the search increment or

search grid used in this study. Third, the computation as-

sociated with D1 was far in excess of the computation associ-

ated with D0. Because of these results the use of 0 is pre-

ferable to the use of ~1"
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C. Data and Reconstruction for Anomaly 13 Time

1. Introduction

Figure 2 shows the location of the data. Appendix 2

shows data and estimated uncertainties that were used to ob-

tain the anomaly 13 reconstruction. It was always difficult

to translate a qualitative judgement of the magnetic anomaly

signature into a quantitative estimate of uncertainty. As a

consequence, the poorer signatures usually received large

standard deviations of error (see discussion in section B.8

of this paper). The treatment of fracture zone crossings fol-

lowed section B.3 of this paper.

The data for each of the Tharp and Heezen fracture zones

was separated into two groups because the systematic curva-

ture of each fracture zone between its offset lineations was

significant compared to the width of the fracture zone. This

was detected by careful inspection of the data as it was

nearly impossible to detect this problem by eye. For example,

the Heezen crossing at (-58.49,-107.23) is 18 km from the

great-circle through Heezen crossings (-59.08,-104.88) and

(-59.95,-101.75). The width of the Heezen fracture zone in

this region is probably less than 35 km. It is very likely

that the 18 km difference reflects curvature of the fracture

zone rather than navigational errors in the crossings because

the crossings were taken from cruises that had satellite nav-

igation. The lineation between the Tharp and Udintsev frac-

ture zones was also separated into two parts because of the

likelihood of systematic curvature.

I .1--- -x D~- r r --- --- 1- ___ -k.~r~



106
As sections 7 and 8 on the Antarctic plate share a

fossil transform point and its associated uncertainties (see

Appendix 2), there will be some correlation between the mea-

sures of fit for these sections. This correlation will not

significantly affect the reconstruction because there is much

other data. Regardless of this difficulty, section 8 will car-

ry no weight in the reconstruction because more serious prob-

lems exist in the data for this section of the reconstruction.

These problems are discussed in detail in the next section.

2. Analysis

Molnar et al.'s (1975) reconstruction has a pole at

(74.7,-57.0) and a rotation angle of 27.9 . The measure of

fit for this reconstruction is shown in Table 1. The dis-

tances of the fixed and rotated points from the estimated

common great-circles for this reconstruction are given in

Table 1 (distances are given in units of the assigned stan-

dard deviation of error). All sections fit well except sec-

tion 8.

The Heezen crossing at (-51.45,-140.10) on the Pacific

plate is rotated to (-58.20,-109.21) by Molnar et al.'s (1975)

reconstruction. This is roughly 35 km from the Heezen cros-

sing at (-57.89,-109.35) on the Antarctic plate. The dis-

tances of the fixed and rotated point from the estimated

common great-circle for this section are 6.5 km and 19.7 km

respectively (Table 1). The standard deviation of error as-
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signed to these points were 8.6 km and 12.7 km respective-

ly (Appendix 2). The measure of fit for this section (see

Table 1) is poor because the distances of these points from

the estimated common great-circle are large relative to the

standard deviations of error assigned to the points. The

extent of the Heezen fracture zone along each of the two

tracks was not well-determined because the bathymetric pro-

files (see Appendix 2 for reference) were hard to interpret.

Hence the standard deviations of error assigned to the two

crossings may be inaccurate. The crossing at (-51.45,-140.10)

was obtained from an Eltanin 19 track. This cruise did not

have satellite navigation. Thus it is possible that there was

a large navigational error at this crossing. It is also pos-

sible that there was some systematic alteration of the Heezen

fracture zone near the crossing at (-57.89,-109.35) because

there is a major change in trend of this fracture zone in the

vicinity of 110 W (see Molnar et al., 1975, Figure 2). These

considerations indicated that the poor fit of section 8 was

probably not due to a significant error in Molnar et al.'s

(1975) reconstruction; rather it was a reflection of the

quality of the data.

Further light was shed upon the influence of this data

on the reconstruction when the computer program was directed

to find both the angle that minimized the measure of fit

(i.e., best-fit angle) for the preliminary pole and the most-

acceptable (i.e., best-fit) pole and angle. The former was

28.0 and the latter were (74.638,-58.25) , 27.79. The measure
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of fit for each of these reconstructions is given in

Table 1. The distances of the fixed and rotated points from

the estimated common great-circles for these reconstructions

are also given in Table 1. It is apparent from the results

in Table 1 that the contribution of section 8 to the measure

of fit has a substantial influence on the reconstruction. For

example, the measure of fit for the best-fit pole and angle

is 3.09 and the contribution of section 8 to this measure is

1.41 . Thus 45% of the measure of fit at the best-fit pole

and angle is due to this section alone. This influence was

judged excessive in proportion to the amount and quality of

the data for this section. As a consequence, the measure of

fit was not weighted by the data for section 8 in further

analysis.

The best-fit angle for the preliminary pole became 27.96

and the best-fit pole and angle became (74.827,-56.865) and

28.01 . The best-fit pole is plotted in Figure 3a. The recon-

struction is shown in Figure 4a. The measure of fit for each

of these results is given in Table 1. The contribution of

section 8 to the measure of fit (see Table 1) was evaluated

after these results had been obtained. The distances of the

fixed and rotated points from the estimated common great-

circles for these reconstructions are also given in Table 1.

An uncertainty region that follows part (1), section

III.6 of the previous paper was constructed for the pole of

rotation. This was accomplished by inspection of the distances

_I .... -- -~L ~~ll"-~-~ili~P--II~--L-*-- C-- I



109
of fixed and rotated points from the estimated common

great-circles for numerous poles at the angle that minimized

the measure of fit for each of the poles. Over 250 poles of

rotation were examined. Section 8 was not used to weight the

reconstruction but it was used to prevent crossing of the

Heezen fracture zone in the vicinity of 110 W. The boundary

of this region is delineated by the diamond-shaped points in

Fig. 3a . The poles and associated angles for these points

are given in Table 2. The distances of the fixed and rotated

points from the estimated common great-circles are given in

Appendix 3 for some reconstructions whose poles lie along the

long axis of the uncertainty region. Some of these recon-

structions are shown in Figures 4b-4g. The deviations of the

fixed and rotated points from the estimated common great-

circles are also given for some reconstructions whose poles

lie along longitude -57.0 in Appendix 3. Two of these recon-

structions are shown in Figures 4h and 4i.

As the pole is moved away from the best-fit pole along

the long axis of the region, the fit of some of the magnetic

anomaly points at the angle that minimizes the measure of fit

for the pole becomes increasingly worse (see Appendix 3). As

the pole reaches either (70.6,-73.0) or (77.1,-38.0), the

distances of some of the magnetic anomaly points from their

estimated common great-circles becomes approximately 1 stan-

dard deviation. The standard deviation of error for a magnetic

anomaly point was set equal to one-half of the width of the

uncertainty region for the point (see B.2). The remaining mag-
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netic anomaly points in these sections are less than one

standard deviation from the estimated common great-circles

for the reconstructions at these two poles; hence there is

some freedom to move the common great-circles closer to those

points which are more than one standard deviation away. The

amount of freedom depends upon both the standard deviations

of error that were assigned to the points and the configura-

tion of the points. Thus there are reconstructions for poles

along the long axis up to and including (70.6,-73.0) and

(77.1,-38.0) that are consistent with the uncertainties as-

signed to the magnetic anomaly points. As the pole moves be-

yond (77.1,-38.0) to (77.3,-34.0), the distances of some of

the magnetic anomaly points from the estimated common great-

circles become a bit larger than one standard deviation. It

is barely possible to remove this excess by slight changes

in the positions of the common great-circles (compare results

in Appendix 3 and Figure 4d). Thus the pole at (77.3,-34.0)

marks a limit of acceptable poles along the long axis of the

region based on the misfit of magnetic anomaly points alone.

With the exception of the fracture zone V point

(-56.97,-104.60) in the reconstruction whose pole is at

(70.6,-73.0), all of the fossil transform points for the

reconstructions whose poles lie along the long axis are

within two standard deviations of the estimated common great-

circles (The standard deviation of error for a fossil trans-

form fault was set equal to 1/4 of the width of the fracture
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zone - see B.3). The point that is an exception is 2.08

standard deviations from the common great-circle. The extra

0.08 standard deviations is easily eliminated by moving the

estimated common great-circle slightly closer to this point

and slightly further from the two rotated points. This is

possible because the estimated common great-circle is quite

close to the two rotated points (see Appendix 3). Hence all

of the fossil transform points for the reconstructions whose

poles lie along the long axis up to and including

(70.6,-73.0) and (77.3,-34.0) (at the angle that minimizes

the measure of fit for each of the poles) are within 2 stan-

dard deviations of common great-circles. Thus each of these

reconstructions is also consistent with the fracture zone

information. As the pole moves beyond (70.6,-73.0) to

(70.25,-74.0) and then (69.35,-76.0), the distance of one

of the magnetic anomaly points from its common great-circle

becomes quite a bit larger than one standard deviation. The

distances of some fossil transform points from their common

great-circles are larger than 2 standard deviations for the

reconstruction whose pole is (69.35,-76.0). The distance of

the fracture zone V point (-56.97,-104.60) from the estimated

common great-circle is 2.48 standard deviations for this re-

construction. This distance cannot be reduced to less than

2 standard deviations without causing the distance of one of

the other fracture zone V points to exceed 2 standard devia-

tions. Thus there is no acceptable reconstruction for the

--~ I II_
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pole at (69.35,-76.0).

As the pole is moved away from the best-fit pole along

longitude -57.0, the fit of some of the fossil transform

points at the angle that minimizes the measure of fit for the

pole becomes rapidly worse. The fit of the magnetic anomaly

points does not change very much (see Figures 4h and 4i for

comparison). The reconstruction whose pole is (75.4,-57.0)

is unacceptable because one of the fossil transform points

in section 9 is too far from the estimated common great-

circle (see Appendix 3 and Figure 4h). The point is 2.5 stan-

dard deviations away. The excess distance (0.5 standard devi-

ations) is 3 km. This excess distance is too large to be

eliminated by changing the position of the common great-

circle because the rotated point nearby permits at most 2 km

of shift. The reconstruction whose pole is (75.3,-57.0) is

acceptable because the excess distance of the point in sec-

tion 9 has been reduced to an amount that can be eliminated

by slightly changing the position of the common great-circle

without forcing the other points in the section beyond their

limits of uncertainty.

The reconstruction whose pole is (74.2,-57.0) is un-

acceptable because there is a fossil transform point in sec-

tion 8 that is too far from the common great-circle (see

Appendix 3 and Figure 4i). The excess distance is too large

to be eliminated by changing the position of the common

great-circle because the fixed point nearby would be forced

beyond its limit of uncertainty. There is also a fossil
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transform point in section 9 that is more than 2 standard

deviations away from the estimated common great-circle for

the section. However, the excess distance can be eliminated

by a slight change in the position of the common great-circle

without forcing the nearby rotated point beyond its limit of

uncertainty.

If the pole is moved to (74.3,-57.0) then the excess

distance of the fossil transform point in section 8 that is

beyond its limit of uncertainty is reduced to 0.5 standard

deviations. This excess represents 6 km. The distance of the

nearby fixed fossil transform point from the common great-

circle in 6 km less than its maximum permitted distance.

Thus the position of the common great-circle can be altered

to allow each of these fossil transform points to be 2 stan-

dard deviations from a common great-circle. The reconstruc-

tion for this pole is therefore at the limit of acceptabili-

ty.

In Appendix 3 and in Table 2 the angle shown for a given

pole is that angle which minimized the measure of fit. If

there is an angle of rotation that yields a good reconstruc-

tion for a given pole then this criterion will find it. How-

ever, this criterion can be questioned when there are not any

good reconstructions for a given pole. Each of the poles that

were chosen to delineate the boundary of the uncertainty re-

gion was selected because the reconstruction specified by the

angle that minimized the measure of fit for the pole was not

___
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good. Hence it is possible that a slightly different angle

of rotation for any one of these poles would produce a better

reconstruction for the pole. This possibility was investigated

for a number of poles by examination of the measure of fit

and associated reconstruction for each of several angles in

the neighborhood of the angle that minimized the measure of

fit for each pole. The reconstructions for some of these poles

may have been slightly improved at some of the other angles

in the neighborhood of the angle that minimized the measure

of fit for each pole. The amount of improvement depends upon

the extent to which the better reconstructions of a set of

poor reconstructions can be judged. Certainly there was no

significant improvement in any reconstruction.

Molnar et al. (1975)- did not explain how their subjective

uncertainty region was obtained or how it was to be inter-

preted. The poles (75.5,-53.0) and (73.85,-62.0) are just out-

side Molnar et al.'s (1975) subjective uncertainty region

along the long axis of the region defined by the diamond-

shaped points in Fig. 3a . The reconstructions for these poles

are shown in Figures 4b and 4e. The angle for each pole is the

angle that minimized the measure of fit for the pole. The

best-fit reconstruction of this study is shown in Figure 4a.

The distances of the fixed and rotated points from the esti-

mated common great-circles for these reconstructions and the

best-fit reconstruction of Molnar et al. (1975) are given in,

respectively, Appendix 3 and Table 1. A close examination of
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this information yields two conclusions. First, the dif-

ferences between the reconstruction of Molnar et al. (1975)

and the best-fit reconstruction of this study are negligible.

Second, the differences between either of the two reconstruc-

tions whose poles lie just outside Molnar et al.'s (1975)

subjective uncertainty region and the best-fit reconstruc-

tion of this study are very small compared to the standard

deviations of error assigned to the data points.

Ellipses of variation for the pole of rotation were

constructed according to Chapter V of the previous paper.

These ellipses are shown in Fig. 3a . The results that pro-

duced these ellipses are given in Appendix 4. The orienta-

tion of the ellipses is in reasonable agreement with the

orientation of the uncertainty region of this study.
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D. Data and Reconstruction for Anomaly 18 Time 116

1. Introduction

Figure 2 shows the location of the data. Appendix 5

shows data and assigned uncertainties used to obtain the anom-

aly 18 reconstruction. The fracture zone V crossings on the

Antarctic plate at (-58.00,-99.00) and (-57.92,-99.57), which

were shown by Molnar et al. (1975), were not used in the recon-

struction because their quality was believed to be poor. There

are several reasons for this judgement. The location and trend

of fracture zone V implied by these two points is grossly in-

consistent with both the location inferred from fracture zone

V on the Pacific plate (which was determined from magnetics

data on a satellite-navigated cruise) and the location and

trend of each of the Heezen, Tharp and Udintsev fracture zones

on the Antarctic plate. There are no usable magnetics data

within 100 km of these fracture zone V crossings. The bathy-

metric chart of Molnar et al. (1975, Figure 1) shows that

there is no distinctive bathymetric signature at either of

these two locations. There is a feature several hundred km

to the east which looks like a seamount. The 2400 fm and 2600

fm contours for this feature have been extended several hun-

dred km further east to meet an Eltanin 21 track and an un-

identified track. The two fracture zone V crossings appear to

line up with these contours. The extension of these contours

is a questionable interpretation. The quality of these two

crossings was judged to be poor for these reasons.

The data for each of the Heezen and Tharp fracture zones
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was separated into two groups because of the likelihood

of systematic curvature of each fracture zone between the

respective offset lineations (see discussion in section C.2

of this paper).

2. Analysis

The pole and angle of Molnar et al.'s reconstruction

were (75.3,-48.5) and 33.0 . The measure of fit- for this

reconstruction and the contributions of sections 5 - 8

to the measure of fit are given in Table 3. The distances

of the fixed and rotated points from the estimated common

great-circles for this reconstruction are also given in

Table 3. The magnetics data fits quite well. The fit of

the Heezen data and some of the Tharp data do not look good.

The program computed the angle that minimized the measure

of fit for this pole. This angle was 33.23 . The measure of

fit for this reconstruction and the contributions of sec-

tions 5 - 8 to the measure of fit are given in Table 3. The

distances of the fixed and rotated points from the estimated

common great-circles for this reconstruction are also given

in Table 3. There is a slightly worse fit of the magnetics

and a slightly better fit of the fossil transform points

within the fracture zones for this angle compared to the fit

for 33.0 . The angle for this pole that minimized the measure

of fit of the magnetics alone was computed to be 33.08 . The

measure of fit for this reconstruction and the contributions
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of sections 5 - 8 to the measure of fit are presented in

Table 3. The fit of the magnetics data is slightly better

at 33.08 than at either 33.0 or 33.23 . In view of this

result, the difference between the reconstructions of 33.0

and 33.23 seems due mainly to differences in the weighting

of the fossil transform points.

The pole and angle that minimized the measure of fit

were (75.081,-51.25) and 32.56 . This pole is plotted in

Fig. 3b . The reconstruction is shown in Figure 5a. The

measure of fit and the contributions of sections 5 - 8 to

the measure of fit are presented in Table 3. The distances

of the fixed and rotated points from the estimated common

great-circles are also given in Table 3. There is a slight

overall improvement of the fit of the magnetic anomaly

points compared to the preliminary reconstruction. There

is a moderate worsening of the fit of the Tharp data which

is offset by a large improvement in the fit of the Heezen

data. Neither section 6 nor section 7 seems to fit well.

Each of sections 5 - 8 contains data from cruises that were

not navigated by satellite; hence it is possible that the

navigational errors in some of these data are larger than

estimated. Some other possible sources of misfit are system-

atic alteration of the fossil transform fault and misread-

ing of the bathymetric profiles.

An uncertainty region for the pole of rotation was

constructed in accordance with part (1), section 111.6 of
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the previous paper. This was accomplished by inspection

of the distances of the fixed and rotated points from the

estimated common great-circles for numerous poles at the

angle that minimized the measure of fit for each of the

poles. More than 100 poles of rotation were examined. The

boundary of this region is delineated by the open circles

with central dots in Fig. 3b . The poles and associated

angles for these poles are given in Appendix 6 along with

the distances of the fixed and rotated points from the esti-

mated common great-circles for each of the reconstructions.

The angle shown for each pole in Appendix 6 is that

angle which minimized the measure of fit for the pole. This

choice of angle could be questioned for poles on the bound-

ary of the uncertainty region for the anomaly 13 reconstruc-

tion because there were not any good reconstructions for

those poles. As none of the anomaly 18 reconstructions are

particularly good with respect to the fossil transform data,

this choice of angle can be questioned for all poles that

were examined in the construction of the present uncertainty

region. As in the anomaly 13 analysis, the reconstructions

for a number of poles were investigated by examination of

the measure of fit and reconstructed data points for each of

several angles in the neighborhood of the angle that mini-

mized the measure of fit for each pole. For some of the poles

there was a slight improvement in the poorly-fit sections at

the expense of the other sections; hence the reconstructions

^ _~~~_i _ /ii*~l~ _ __~
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for these poles may have been slightly improved at some of

the other angles. However, as in the anomaly 13 analysis,

there was no significant improvement in the fit of any of

the poorly-fit sections.

Let ~O be the measure of fit for a given pole at the

angle that minimizes the measure of fit for the pole. For

each pole in a neighborhood of the best-fit pole we have a

value of 40. This defines a surface of 4 0 for poles in a

neighborhood of the best-fit pole. The results in Table 4

(compare to Figure 3) indicate that this surface has the

shape of a trough. The long axis of the trough represents

the direction in which D0 increases most slowly as the pole

is moved away from the best-fit pole. Now, D0 equals the sum

of contributions from all sections. Thus it is possible for

the contribution to D0 from one section to increase rapidly

but 0 to increase only moderately as the pole is moved away

from the best-fit pole if the increase in the contribution

of the one section is offset by a decrease in the total

contribution of the remaining sections. The shape of the un-

certainty region is determined by the requirement that no

data point exceed its maximum error with respect to a common

great-circle arc. Thus a reconstruction for which the measure

of fit is only moderately greater than the measure of fit for

the best-fit reconstruction can have an unacceptable fit of

the data in one section. This happened in the construction

of the uncertainty region for the anomaly 18 reconstruction.
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The reason that it happened is that the poor fit of the

fossil transform data in sections 5 - 8 makes it difficult

to find reconstructions that are consistent with either the

fossil transform data or the magnetic anomaly data or both.

That the range of acceptable anomaly 18 reconstructions is

far smaller than the range of acceptable anomaly 13 recon-

structions is due to this reason rather than greater pre-

cision in the data for the anomaly 18 reconstruction as

compared to the data for the anomaly 13 reconstruction.

Ellipses of variation for the pole of rotation were

constructed according to Chapter V of the previous paper.

These ellipses are shown in Fig. 3b . The results that pro-

duced these ellipses are given in Appendix 7. The orienta-

tion of the ellipses is not in reasonable agreement with

the orientation of the uncertainty region of this study.

This is because the long axis of each ellipse is closely

aligned with the long axis of the trough discussed above.
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APPENDIX I

The Difference Between a Small-Circle

Arc and a Great-Circle Arc

Consider the figure in this Appendix. Let

p=colatitude of small-circle with respect to pole at

N (equal to arc-length of meridian from N to small-

circle). We assume O<p<r.

w=half-angle subtended by small-circle segment AB (there

are two such half-angles but we want the smaller of

the two).

I=point of intersection of meridian bisecting small-

circle segment AB with great-circle through points

A and B.

From the Law of Cosines for spherical triangle NBA we have

cos(AB) = cos(NA)cos(NB) + sin(NA)sin(NB)cos(ANB)

From spherical triangles NBA and NBI, respectively, we obtain

the relations

sin(NBA) _ sin(ANB)

sin (NA) sin(AB)

sin(NI) sin(BI)

sin(NBI) sin(BNI)

With the relations NA=NB=p, ANB=2w, BI=AB/2, BNI=w, and

NBI=NBA for these spherical triangles, the three relations
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co 2 2
os(AB) = cos p + sin pcos(2w) (1)

sin(NBA) = sinpsin(2w)/sin(AB) (2)

sin(NI) = sin(NBA)sin(AB/2)/sin(w) (3)

From (2) and (3) we have:

sin(NI) = sinpsin(AB/2)sin(2w)/[sin(AB)sin(w)] (4).

We also have:

-1sinCAB/2)/sin(AB) = [2cos(AB/2)]

sin(2w)/sin(w) = 2cos(w)

Thus (4) becomes

sin(CNI) = sinpcos(w)/cos(AB/2) (5)

/'0 1/2Using cos(AB/2) = [(l+cos(AB))/2] 2 with (1) in (5) we

obtain:

2 2 -1/2sin(NI) = sinpcos(w)[(l+cos 2p+sin pcos(2w))/2] (6)

Let O(e) denote a quantity d such that Id IC le for all e

sufficiently small and some finite constant C. Let NI=p-6

We have 6=0 when p=ff/2 . Assume 16 I<<, Iw<<l . Then

sin(NI) = sinp-6cosp-(6/2)sinp+0(6)

cos(w) = 1-(w2/2)+(w4/4!)+O(w 6 )

cos(2w) = 1-2w2+(2w4/3)+0(w 6 )

and (6) becomes

2 3 2 26cosp+(6 /2)sinp+0(6 ) = (w /2)sinpcos p

-w 4[(1/4!)sinp-(5/12)sin3p+

5 6
(3/8)sin p] + O(w )

(7)

For wl << Icosp I, I6sinp j<< Icosp we obtain from (7):
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6 - sin(2p)

O O

For given w, 16 I is a maximum when p=45 , 135 . If 6,w are

measured in degrees then the above relation is equivalent to

6 = (0.436 x 10-2 )w 2sin(2p)

For p=7r/2 we set p=ta+/2 where I jl<<1. Then

cosp = -a + a 3/3! + O(a 5)

sinp = 1 - a2/2 + a 4 /4! + O(a6)

and we obtain from (7) the relation

2 2 2
-6a + 6 /2 w a /2

From this relation we find

6 = -aw2/2
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small-circle

great-circi

Figure for Appendix I
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APPENDIX 2

Usable data: Anomaly 13 reconstruction

Section Feature

1 Lineation between fracture zones IV and V

2,3 Lineation between fracture zones Tharp and Udintsev:

sections 1,2

4 Lineation between fracture zones Udintsev and VIII

5 Fracture zone V

6 Udintsev fracture zone

7,8 Heezen fracture zone: sections 1,2

9,10 Tharp fracture zone: sections 1,2

Tracks are Eltanin (EL), Vema (V), Conrad (CON), Hudson (HUD).

Sources (in parentheses) that were used to obtain estimates

of uncertainty refer to profile number, figure number or

bathymetric chart from Molnar et al (1975) unless otherwise

noted. References to other sources are given by Molnar et al

(1975). Section 8 carried no weight in the reconstruction

(see discussion in text, part (C) ). Dummy points were used

for criterion Q1 (see section A of this paper).
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Appendix 2 (continued)

East of Rise (fixed plate)

Section Coordinates

1 -55.59,-100.38

-56.39,-100.97

2 -57.61,-119.37

-58.84,-121.16

3 -59.28,-121.98

-60.18,-123.74

4 -59.95,-130.56

-59.25,-130.00

5 -56.97,-104.60

-56.63,-107.00

6 -60.24,-125.60

-59,76,-127.50

7 -59.08,-104.88

-58.49,-107.23

8 -57.89,-109.35

-58.49,-107.23

9 -59.01,-110.17

-57.71,-115.66

10 -59.01,-110.17

-57.85,-115.32

s. d. error (km)

loc bias

20.

15.

30.

15.

15.

15.

12.5

15.

3.

3.

8.

10.5

7.5

10.5

6.

7.5

0.

0.

0.

0.

1.

0.

1.

1.5

nav tot

1. 20.

1. 15.

1. 30.

1. 15.

9. 17.5

1. 15.

1. 12.5

50.

1. 15.

75.

1. 3.2

1. 3.2

1. 8.1

1. 10.5

1. 8.6

1. 10.5

99.9

1. 7.1

9. 12.7

99.9

Track (Source)

CON 12-12 (41)

HUD '70

EL 23 (42)

HUD '7-0

V16-7

EL 20 (44)

EL 20 (45)

Dummy

EL 20 1

Dummy

EL 20 (44,45)

EL 25 (chart)

EL 20 (chart)

EL 23 (chart)

EL 43 (19)

EL 23 (chart)

Dummy

See note 2 below

EL 19 (Figure 5)

Dummy
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Appendix 2 (continued)

West of Rise (rotated plate)

Section Coordinates s. d. error (km)

loc bias nav tot

Track (Source)

1 -51.19,-133.64

-49.70,-132.50

2 -51.67,-150.00

-50.39,-148.40

3 -51.90,-150.59

-52.57,-151.89

4 -53.23,-159.05

-54.37,-160.64

5 -50.10,-137.00

-50.95,-134.70

6 -53.77,-151.82

-52.10,-156.00

7 -52.48,-137.00

-51,45,-140.10

8 -51.45,-140.10

-52,48,-137.00

9 -50.30,-146.85

-50.90,-145.00

10 -52.42,-140.17

20.

15.

15.

15.

12.5

12.5

4.

6.

5.5

9,

9.

6.

6.

4.5

1. 20. CON 12-12 (33)

75. Dummy

1. 15. HUD '70

75. Dummy

1. 15. EL 23 (34)

1. 15. EL 33 (35)

9. 15.4 EL 19 (36)

1. 12.5 EL 25 (37)

0. 1. 4.1 See note 3 below

0. 1. 6.1 CON 12-12 (33)

4. 1. 9.6 EL 33 (35)

99.9 Dummy

0.5 9. 13.1 EL 17 (chart)

99.9 Dummy

0. 9. 12.7 EL 19 (Figure 5)

99.9 Dummy

0. 9. 10.8 EL 17 (chart)

0. 1. 6.1 EL 20 (Figure 5)

0. 6. 7.5 EL 19 (Figure 5);

See note 4 below

0. 9. 10.3 EL 17 (chart)
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Appendix 2 (continued)

notes:

1 Constrained by magnetics (HUD '70) in south. Bathymetric

chart and inference from trend of fracture zone on Pacific

plate to establish limit in north (HUD '70,EL 20).

2 Defined from EL 23 crossings at (-57.85,-115.32) ,

(-57.58,-116.00) to avoid correlated errors (see text,

section B.5). Widths at these crossings are, respectively,

28 km and 20 km. Source: bathymetric chart of Molnar et al

(1975).

3 Inference from positions of anomaly 18 and anomaly 20

in south. EL 19 track at 1400 W to limit trend in north.

4 Navigational error reduced because EL 17 crossing

nearby (-52.55,-139.75) indicated that both EL 19 and EL 17

tracks were consistent in location (see text, section B.5).

_I__Ujii____l___ll_~I_--- ~- _ i_~ -LI- I~~IIIIPIIY._



Appendix 3

This Appendix shows distances of fixed and rotated points
from the common great-circles for some anomaly 13 reconstruc-
tions. Each reconstruction is specified by the latitude and
longitude of the pole and the associated angle. The four lines
following the pole and angle show the distances of the points
for the 10 sections of data. Sections 1-5 are the first two
lines, sections 6-10 are the remaining two lines. Section num-
ber increases to right. Lines 1 and 3 are fixed points, lines
2 and 4 are rotated points. Order of points is same as in
Appendix 2. Dummy points are not included. Sign (+ or -) in-
dicates on which side of the great-circle the point lies. The
distance of a point is given relative to the standard devia-
tion of error assigned to the point. Each distance is given in
units of 0.01 standard deviations. Thus 113 = 1.13 standard
deviations.

Poles Along Axis of Uncertainty Region

69.35,-76.00 (24.02)
010 001 014 000 000

-001 -011 000 019
061 084 -020 009 -037

-207 023 014

70.25,-74.00 (24.50)
009 -004 013 002 002
004 -009 -004 016
063 070 -020 008 -020

-191 024 013

70.60,-73.00 (24.71)
008 -007 011 003 003
007 -007 -004 014
059 060 -028 008 -029

-172 035 014

72.05,-69.00 (25.61)
005 -015 011 008 008
015 -004 -013 005
053 037 -031 004 002

-134 043 008

72.95,-66.00 (26.24)
002 -018 014 014 014
019 -003 -023 -005
044 024 -036 001 021

-102 053 002

-009

021

-008

007

-007

014

-004

-008

-001

-021

248
-018 -080
206

-105 -022

228
-020 -069
194

-096 -025

208
-020 -061
177

-086 -024

168
-021 -042
153

-071 -027

138
-020 -031
135

-060 -026

-060
-076
-153

185

-048
-066
-131
159

-043
-059
-130
158

-025
-037
-092
113

-015
-023
-067
082

129

090

108

077

097

077

061

055

038

040

131



73.40,-64.00 (26.63)
-008 022 000 -024 010 014 016 102
-012 025 000 -022 -009 000 -017 -021
-066 039 030 012 -048 -003 006 104

081 -065 075 005 -010 -045 -021

73.85,-62.00 (27.02)
-002 010 -002 -026 011 016 021 076
-005 028 001 -027 -016 002 -014 -014
-057 019 005 -055 -007 007 085

070 -038 090 004 -009 -036 -018

74.25,-60.00 (27.41)
005 -004 -005 -031 009 01.7 024 049
003 033 003 -028 -022 003 -011 -008

-050 030 006 -002 -062 -012 004 063
061 -009 106 004 -007 -026 -014

75.20,-55.00 (28.39)
020 -030 -012 -035 013 023 037 010
016 040 006 -041 -041 007 -005 000

-010 007 -018 -007 -064 -023 040 040
012 035 122 -015 -028 -016 -010

75.50,-53.00 (28.77)
026 -040 -015 -037 013 025 042 -010
020 043 008 -045 -049 008 -001 003
000 001 -030 -008 -067 -029 046 025

-001 057 134 -020 -029 -010 -007

75.90,-50.00 (29.35)
036 -055 -022 -043 010 026 049 -038
025 052 012 -047 -058 009 004 006
017 -008 -050 -008 -070 -040 055 004

-021 087 151 -028 -032 -002 -001

76.40,-46.00 (30.1i3)
049 -071 -032 -047 011 028 062 -057
031 060 016 -054 -074 010 009 007
051 -027 -068 -003 -065 -051 091 -005

-064 111 156 -056 -048 002 001

76.80,-42.00 (30.94)
063 -089 -047 -055 003 029 073 -073
035 076 022 -053 -085 008 014 006
083 -046 -088 005 -058 -064 121 -015

-103 132 161 -087 -056 005 004

77.10,-38.00 (31.76)
077 -104 -066 -063 -008 029 085 -093
036 093 028 -050 -095 005 021 004
110 -062 -112 017 -051 -080 139 -030

-135 156 171 -116 -056 009 011

132



-093 119
-035
128 -074

-155

77.30,-34.00 (32.62)
-091 -074 -026 029 092
116 033 -040 -098 000

-143 036 -043 -104 142
181 187 -136 -046

Poles Along Longitude -57.00

133

-118
031 000

-054
014 023

75.40,-57.00 (28.14)
-001 -005 056 030 049
006 001 -078 -057
055 019 009 006 250

-112 -018 -094

75.30,-57.00 (28.12)
-004 -010 047 029 044
013 001 -070 -051
044 014 -004 002 210

-089 006 -080

-005
75.20,-57.00 (28.09)
-014 040 028

001 -064
-018 -002
030

018
033 009

-065

042
-048

169
-064

74.40,-57.00 (27.89)
-004 -057 -025 003
057 019 -001 -

-063 -018 -117 -045 -
119 225

74.30,-57.00 (27.86)
-001 -061 -031 -002
059 022 006 -

-075 -020 -129 -052 -
142 250

74.20,-57.00 (27.85)
001 -070 -042 -010
065 029 017 -

-088 -020 -138 -061 -
162 275

022
017
152

008

-164

008

-137

008

-111

002

074 089

020
015
192
093

017
009
230

002

113

000

115 134

008
006
091

-114

009
008
070

-088

010
008
049

-061

019
013

-119
146

020
013

-140
171

022
014

-161
196

-010

-051

-013

-039

-014

-027

-026

071

-027

083

-030

095

162
-030
200

-080

138
-026

172
-069

113
-022
145

-058

-086
013

-072
026

-111
018

-099
036

-135
023

-126
046

-027

-053

-022

-046

-018

-039

014

025

017

033

020

042



Appendix 4 134

Ellipse of Variation of Pole of Rotation:

Anomaly 13 Reconstruction

Let T be the covariance matrix of the independent ele-

ments (E1 ,E 2 'E 3 ) of the infinitesimal rotation that describes

the perturbations in the best-fit pole and angle (see Chap-

ter V of the previous paper) with criterion 0. Let t.ij,

l<i,j<3, be the elements of T. The distinct elements of T

were:

tl = 0.1069460292D-03, t12 = 0.2217938544D-03

t22 = 0.5213991841D-03, t1 3 = 0.4442915940D-03

t23 = 0.1021764362D-02, t 3 3 = 0.2078700759D-02

Here the symbol 'D' indicates that the decimal number to the

left of 'D' is to be multiplied by 10 (ten) raised to the

power of the number to the right of 'D'.

In the notation of section V.2 of the previous paper,

a perturbation in the pole is represented by w. The covar-

iance matrix of w is M. The eigenvalues of M are pl and p2"

The associated eigenvectors of unit length are m and m2 .

An ellipse of variation for the pole is of the form

w'M-1 w = c, where c is a positive constant. Two ellipses

were defined. One ellipse had c = 4.6, the other had c = 6.0.

Each ellipse is specified by the four poles of rotation that

lie at the ends of the axes of the ellipse.

The four poles of rotation associated with c = 4.6 were:
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Appendix 4 (continued)

(74.138,-55.02), (75.499,-58.877), (77.816,-23.946)

and (68.917,-75.458)

The four poles of rotation associated with c = 6.0 were:

(74.041,-54.776), (75.592,-59.173), (77.852,-18.592)

and (67.992,-77.219)
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APPENDIX 5 136

Usable data: Anomaly 18 reconstruction

Feature

Lineation between fracture zones Menard and IV

Lineation between fracture zones Tharp and Udintsev

Lineation between fracture zones Udintsev and VIII

Lineation between fracture zones IX and X

Heezen fracture zone: sections 1,2

Tharp fracture zone: sections 1,2

Tracks are Eltanin (EL),Vema (V),Conrad (CON),SouthTow (SOTOW),

Monsoon (MON). Sources are same format as in Appendix 2.

East of

Section Coordinates

Rise (fixed plate)

s. d. error (km) Track (Source)

1 -55.52,-98.60
-54.00,-97.25

2 -59.28,-118.68
-60.50,-120.90

3 -60.05,-127.82
-61.02,-129.10

4 -66.04,-140.84
-67.00,-143.00

5 -59.95,-101.75
-59.08,-104.88

6 -58.49,-107.23
-57,89,-109.35

7 -59,94,-107.95
-59.01,-110.17

loc bias

20.

15.
15.

15.

15.

6. 1.5
8. 0.5

10.5 0.
7.5 0.

6. 0.
7.5 1.

nav tot

1. 20.
99.9

9. 17.5
1. 15.

1. 15.
99.9

1. 15.
99.9

1. 7.6
1. 8.6

1. 10.5
1. 7.6

1. 6.1
9. 12.4

CON 12-12 (41)
Dummy

V16-7
EL 20 (44)

EL 20 (45)
Dummy

EL 42 (47)
Dummy

EL 23 (chart)
EL 23 (chart)

EL 23 (chart)
EL 43 (19)

EL 23 (chart)
EL 19 (Figure 5)

Section

2

3

4

5,6

7,8

~ __ I_



Appendix 5 (continued)
137

8 -57.71,-115.66 6.0 4.0 i. 10. See note 2, App. 2
-58.25,-113.00 99.9 Dummy

West of Rise (rotated plate)

Section Coordinates s. d. error (km) Track (Source)

loc bias nav tot

1 -46.52,-133.28
-47.33,-133.92

2 -51.52,-152.15
-51.58,-152.29
-50.10,-150.38

3 . -52.64,-160.28
-53.90,-161.86

4 -58.01,-168.34
-58.84,-172.95
-59.08,-175.01

5 -52.48,-137.00
-51.45,-140.10

6 -50.44,-143.00
-51.45,-140.10

7 -51.70,-142.83
-50.90,-145.00

8 -48.42,-151.00
-50.30,-146.85

10.
12.5

30.
15.

20.,
14.

15.
40.
20.

9. 0.
9. 0.

10. SOTOW 2 (31)
15.4 EL 19 (32)

30. EL 23
15. EL 33
99.9 Dummy

21.9 EL 19
14. EL 25

15. EL 43
41. MON 6
20. EL 33

12.7 EL 17
12.7 EL 19

5. 3.5 9. 12.4 EL 17
99.9 Dummy

5. 0.
6. 0.

10.3 EL 17
6.1 EL 20

10.3 EL 17
10.8 EL 17

(34)
(35)

(36)
(37)

(38)
(39)

(chart)
(Figure 5)

(chart)

(chart)
(Figure 5)

(chart)
(chart)
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This Appendix shows distances of fixed and rotated points
from the common great-circles for some anomaly 18 reconstruc-
tions. The poles shown were at the limit of acceptability.
The format is similar to that of Appendix 3. Sections 1-4
are the first two lines. sections 5-8 are the remaining two
lines.

019
007
070

-097

-038
-012
-062
049

002
000
052

-071

-069
-020
-093

073

-018
-008
024

-034

-097
-027
-133
100

-105
-031
-129
098

005 -011

-107

021 -009

023

-030
-018
006

049
-091

189

75.40,-51.25 (32.48)
062 026 029 029

-023 -065 -078 019 -035
-022 -021 131 -010 175
061 -266 032 -076

74.70,-51.25 (32.62)
-048 -046 004 -110

041 067 -015 004 100
-145 -044 039 -195 -036
242 -053 088 019

75.80,-48.50 (33.07)
067 024 035 097

-024 -068 -088 020 -098
-022 -017 131 003 212
055 -266 025 -095

75.10,-48.50 (33.27)
-056 -047 005 -053
045 073 -016 004 043

-154 -033 031 -188 -003
236 -044 088 002

75.90,-47.00 (33.43)
048 017 032 111

-015 -049 -082 018 -112
-037 -022 124 -014 204
080 -237 024 -095

75.20,-47.00 (33.65)
-074 -061 002 -041
056 096 -009 002 031

-181 -024 002 -213 -015
252 -005 106 009

75.55,-45.00 (34.09)
-065 -044 007 024

047 077 -020 005 -032
-161 -021 023 -176 045
225 -037 085 -025

006 -009

-019

-004 -016

-129

015 -008

005

-006 -016

-119

013 -008

011

-003
-022
017

089
-088
211

026
-037
049

124
-088
252

138
-080

235

~_W____Cqyyql_^llL_~~ P~LI



-084
-027 113
-080 -069

066 169

030
012 -047
078 -017

-110 004

-005
-003 006
-007 -075
-003 126

045
021 -074
098 -005

-142 -014

030
Oil -046
054 -046

-075 052

054
025 -090
094 -017

-137 005

139
75-.90,-44.00 (34.23)

-024 -013 018 100
021 024 -048 011 -103 -004 -014

-109 -026 074 -101 134
170 -118 045 -072 -067

75.10,-53.00 (32.09)
058 027 026 -016

-022 -063 -072 018 007 011 -008
-024 -026 128 -025 144

071 -261 038 -062 -089

74.60,-53.00 (32.19)
-023 -023 009 -115
024 033 -026 007 104 022 -008

-103 -049 075 -148 -001
202 -118 067 001 004

74.80,-55.00 (31.63)
066 033 026 -053

-028 -072 -072 019 042 015 -006
-018 -025 130 -024 130
062 -273 043 -054 -083

74.50,-55.00 (31.68)
016 007 015 -111

-001 -0i8 -045 012 099 021 -006
-056 -047 108 -092 047
142 -195 053 -021 -026

74.30,-57.00 (31.17)
050 029 021 -118

-021 -058 -060 017 i06 022 -006
-029 -040 122 -062 069
099 -243 053 -029 -043
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APPENDIX 7

Ellipse of Variation of Pole of Rotation:

Anomaly 18 Reconstruction

The notation follows that in Appendix 4. The distinct

elements of T were:

tl = 0.2223989906D-04, t1 2 = 0.3721979597D-04

t22 = 0.1021334760D-03, t13 = 0.1000441201D-03

t23 = 0.2408426093D-03, t3 3 = 0.6180925248D-03

The four poles of rotation associated with c = 4.6 were:

(74.643,-50.104), (75.513,-52.463), (76.675,-39.618),

and (73.018,-60.405).

The four poles of rotation associated with c = 6.0 were:

(74.581,-49.949), (75.573,-52.638), (76.850,-37.792),

and (72.703,-61.507).
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Table 1 141

This Table shows distances of fixed and rotated points
from the common great-circles for some anomaly 13 reconstruc-
tions. Each reconstruction is specified by the latitude and
longitude of the pole and the associated angle. The four
lines following the pole and angle show the distances of the
points for the 10 sections of data. Sections 1-5 are the
first two lines, sections 6-10 are the remaining two lines.
Section number increases to right. Lines 1 and 3 are fixed
points, lines 2 and 4 are rotated points. Order of points
is same as in Appendix 2. Dummy points are not included.
Sign (+ or -) indicates on which side of the great-circle
the point lies. The distance of a point is given relative
to the standard deviation of error assigned to the point.
Each distance is given in units of 0.01 standard deviations.
Thus 113 = 1.13 standard deviations.

74.70,-57.00 (27.90)
011 -014 -004 -027 016 024 035 -016
008 028 002 -040 -040 009 000 004

-057 034 -027 -013 -087 -023 -036 009
071 056 155 018 019 -004 000

74.70,-57.00 (28.00)
019 -027 -011 -049 -009 012 024 -009
014 053 012 -016 -020 003 -001 003

-056 034 -025 -009 -079 -029 -031 009
069 049 149 019 015 -004 000

74.638,-58.25 (27.79)
012 -016 -009 -036 006 018 026 044
009 040 006 -029 -024 003 -010 -006

-030 018 002 -003 -057 -015 030 063
036 -002 103 -008 -022 -025 -015

74.70,-57.00 (27.96)
016 -022 -008 -040 001 017 029 -012
012 043 008 -026 -028 005 -001 003

-057 034 -026 -011 -082 -026 -033 009
070 052 152 019 017 -004 000

74.827,-56. 865 t28.01)
015 -021 -008 -034 010 021 032 012
011 038 005 -035 -033 006 -005 -001

-034 021 -014 -007 -070 -021 009 036
042 030 127 001 -009 -015 -008



142Table 1 (continued)

Shown below are the measure of fit (O0) and the

contribution of section 8 to the measure of fit

for the five reconstructions in this Table.

Pole
Lat - Long

74.70,-57.0

74.70,-57.0

74.638,-58.25

74.70,-57.0

74.827,-56.865

Angle

27.90

28.00

27.79

27.96

28.01

40

5.52

5.14

3.09

5.24

3.57

Contribution of
section 8 to D0

3.21

2.93

1.41

3.05

2.15



Table 2

Given below are the poles of rotation that are re-

presented by the diamond-shaped points in Figure 2.

The angle shown for a given pole is the angle that

minimized the measure of fit (00) for the pole.

Pole
Lat - Long

75.30,-57.0
74.30,-57.0
75.55,-55.0
74.65,-55.0
75.80,-53.0
75.00,-53.0
76.15,-50.0
75.50,-50.0
76.55,-46.0
76.15,-46.0
76.75,-44.0
76.40,-44.0
76.90,-42.0
76.65,-42.0
77.00,-40.0
76.85,-40.0
77.15,-38.0

Angle

28.12
27.86
28.49
28.26
28.85
28.67
29.41
29.28
30.17
30.09
30.58
30.49
30.96
30.91
31.35
31.32
31.78

Pole
Lat - Long

77.05,-38.0
77.20,-36.0
77.15,-36.0
77.30,-34.0
74.70,-60.0
73.80,-60.0
74.30,-62.0
73.45,-62.0
73.85,-64.0
73.00,-64.0
73.25,-66.0
72.55,-66.0
72.25,-69.0
71.80,-69.0
71.05,- 72 .0
70.90,-72.0
70.60,-73.0

143

Angle

31.75
32.18
32.17
32.62
27.53
27.29
27.15
26.90
26.75
26.51
26.32
26.12
25.66
25.54
24.96
24.91
24.71



Table 3 144

This Table shows distances of fixed and rotated points
from the common great-circles for some anomaly 18 recon-
structions. The format is similar to that of Table 1.
Sections 1-4 are the first two lines, sections 5-8 are
the remaining two lines.

75.30,-48.50 (33.00)
009 022 016

-020 -064 017 -025
-056 060 -152 039

-089 067 -019

75.30,-48.50 (33.23)
-022 011
035 -033 008

-036 071 -129
-112 059 -

75.30,-48.50 (33.08)
-002 019
-001 -053 014 -
-049 064 -144

-097 065

014
004
061
032

006
015
047
023

-018
-006
-052

053

-048
-016
-047

037

-029
-009
-051

048

-005
-003

015
-026

007 -008

-020

010 -008

-030

017
-001
-106

215

-029
026

-111
189

001
008

-108
206

003
007

-071
148

Given below are the measure of fit (10) and the contri-
butions of each of sections 5 - 8 to the measure of fit
for the four reconstructions in this Table.

Pole Angle D0 Contribution of section no.
Lat - Long 5 6 7 8

75.30,-48.50
75.30,-48.50
75.30,-48.50
75.081,-51.25

33.00 15.07 4.12 6.06 3.91 0.23
33.23 13.69 3.26 4.94 3.'77 0.56
33.08 14.26 3.82 5.65 3.85 0.33
32.56 10.60 1.14 2.84 5.10 1.00

75.081,-51.25 (32.56)
-002 016 -039
-003 -045 012 028
-039 101 -089 081

-175 047 -039

023
-090

166

064
-075

153

038
-084

162

008
-057

085

008 -008

-023

013 -007

-044

-
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Table 4

Given below is the measure of fit ((0) for each of

the reconstructions in Appendix 6. The poles of these recon-

structions delineate the uncertainty region in Figure 3.

Pole Angle p0
Lat - Long

75.40,-51.25 32.48 17.63
74.70,-51.25 32.62 22.15
75.80,-48.50 33.07 21.04
75.10,-48.50 33.27 22.38
75.90,-47.00 33.43 19.04
75.20,-47.00 33.65 30.29
75.55,-45.00 34.09 25.55
75.90,-44.00 34.23 19.07
75.10,-53.00 32.09 16.23
74.60,-53.00 32.19 14.95
74.80,-55.00 31.63 18.56
74.50,-55.00 31.68 13.19
74.30,-57.00 31.17 17.45



146

increment Ae

k - initial pole at

I- I ,----
latitude 0,

longitude <

increment AO

FIGURE 1

~-~--~LP1 ~CYillllCIIY^ ~~ --~_L~C~-~ - X -CI(YI~~-QYI

---- ---- (



150E a oa -'
30 /60

30

60 60

Figure 2: Present configuration of continental fragments, plate boundaries,
fracture zones and magnetic anomalies 13 and 18 in South Pacific. Differentsymbols show position of anomalies 13 (circle) and 18 (square). Black dots
show earthquake epicenters, x's are central anomalies. Earthquakes and grey-lines show presently active plate boundaries. Fracture zones are shown by
heavy lines (figure after Molnar et al., 1975).
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Figure 3a

POLES OF ROTATION -ANOMALY 13 RECONSTRUCTION
SBEST FIT POLE, MOLNAR ET AL (1975)

A BESTFIT POLE, THIS STUDY

- SUBJECTIVE UNCERTAINTY REGION, MOLNAR ET AL (1975)

* POLES USED TO DEFINE UNCERTAINTY REGION, THIS STUDY
U POLES TO DEFINE ELLIPSE OF VARIATION, c'4 6

* POLES TO DEFINE ELLIPSE OF VARIATION, c-6.0
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Figure 3b

POLES OF ROTATION- ANOMALY 18 RECONSTRUCTION
* BEST-FIT POLE, MOLNAR ET AL (1975)

A BEST-FIT POLE, THIS STUDY

- SUBJECTIVE UNCERTAINTY REGION, MOLNAR ET AL(1975)

0 POLES USED TO DEFINE UNCERTAINTY REGION, THIS STUDY

0 POLES FOR ELLIPSE OF VARIATION, c-4.6

* POLES FOR ELLIPSE OF VARIATION, c'6.0
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Figure 4a

Anomaly 13 Reconstruction: 74.827,-56.865 (28.01)

Squares are fixed points, triangles are rotated points.
Filled symbols are fossil transform fault identifica-
tions, open symbols are magnetic anomaly identifications.

II--~IXIULlli^ IIIII~LIII~L~~-~-~--.IlliiU
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Figure 4b

Anomaly 13 Reconstruction: 75.50,-53.00 (28.77)

Symbols and conventions same as Figure 4a.

I ^--*I II--II1CXI -~~-. irYl___~iY- ~~~ ---ly~L I_ I___IIYI
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Figure 4c

Anomaly 13 Reconstruction: 76.40, -46.00 (30.13)

Symbols and conventions same as Figure 4a.

_ __I IW
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Figure 4d

Anomaly 13 Reconstruction: 77.30,-34.00 (32.62)

Symbols and conventions same as Figure 4a.

XZY--~~ -IrWI~C.-.~POYI~LYUrrs~I~UU- ----ls~-1Pi-
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13

D,,

Figure 4e

Anomaly 13 Reconstruction: 73.85,-62.00 
(27.02)

Symbols and conventions same as Figure 
4a.
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Figure 4f

Anomaly 13 Reconstruction: 72.95,-66.00 (26.24)

Symbols and conventions same as Figure 4a.

I__II__LLIYI*I_____I 1I11~-_---~~__~ ----LL.LIC~L)I~-~L~Lt LI _
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Figure 4g

Anomaly 13 Reconstruction: 70.60,-73.00 (24.71)

Symbols and conventions same as Figure 4a.

~IILI~-Llllli~YLLIIIIllllllillYI~ ~.-~-. __.__.^..~__i- _.*.~1~U~lltflli L9~-
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Figure 4h

Anomaly 13 Reconstruction: 75.40,-57.00 (28.14)

Symbols and conventions same as Figure 4a.

----- - - ,, i iIYww jwA
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Figure 4i

Anomaly 13 Reconstruction: 74.20,-57.00 (27.85)

Symbols and conventions same as Figure 4a.

~~^~_ ._1Lni..L-t-X___(___L.^YI -LII YII~L~-.I..
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Figure 5a

Anomaly 18 Reconstruction: 75.081,-51.25 (32.56)

Symbols and conventions same as Figure 4a.
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Figure 5b

Anomaly 18 Reconstruction: 75.40,-51.25 (32.48)

Symbols and conventions same as Figure 4a.
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.~ U'M o m 1.

Figure 5c

Anomaly 18 Reconstruction: 74.70,-51.25 (32.62)

Symbols and conventions same as Figure 4a.
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Figure 5d

Anomaly 18 Reconstruction: 75.80,-48.50 (33.07)

Symbols and conventions same as Figure 4a.

_1__11_____ ~_
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Figure 5e

Anomaly 18 Reconstruction: 75.10,-48.50 (33.27)

Symbols and conventions same as Figure 4a.
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Figure 5f

Anomaly 18 Reconstruction: 75.90,-47.00 (33.43)

Symbols and conventions same as Figure 4a.

_ -.__I*---YI~IIXI ~...--^i tL. ^li~l~ _-II_~~- -l~C~--LIYYLIII
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Figure 5g

Anomaly 18 Reconstruction: 75.20,-47.00 (33.65)

Symbols and conventions same as Figure 4a.
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Figure 5h

Anomaly 18 Reconstruction: 75.55,-45.00 (34.09)

Symbols and conventions same as Figure 4a.
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Figure 5i

Anomaly 18 Reconstruction: 75.90,-44.00 (34.23)

Symbols and conventions same as Figure 4a.
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Figure 5j

Anomaly 18 Reconstruction: 75.10,-53.00 (32.09)

Symbols and conventions same as Figure 4a.

_ ̂ _~~~ _~~I Lil~~
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Figure 5k

Anomaly 18 Reconstruction: 74.60,-53.00 (32.19)

Symbols and conventions same as Figure 4a.

_IYU______I1I__Yi__L__i..- -51iU-~-ll _r^l~lyr_ .. ---~-~. . i _U
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Figure 5L

Anomaly 18 Reconstruction: 74.80,-55.00 (31.63)

Symbols and conventions same as Figure 4a.
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Figure 5m

Anomaly 18 Reconstruction: 74.50,-55.00 (31.68)

Symbols and conventions same as Figure 4a.

_1/ 1~~10 ____^~ __1_1__1_1__1IXI_~
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V/

Figure 5n

Anomaly 18 Reconstruction: 74.30,-57.00 (31.17)

Symbols and conventions same as Figure 4a.


