ALTERATIONS OF THE CLIMATE OF A PRIMITIVE
EQUATIONS MODEL PRODUCED BY FILTERING APPROXIMATIONS

AND SUBSEQUENT TUNING AND STOCHASTIC FORCING

by

ROSS N. HOFFMAN
Sc.B., Brown University (1971)

M.A., Boston University (1975)

SUBMITTED IN PARTIAL FULFILLMEN? OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
AT THE

MASSACHUSETTS INSTITUTE OF TECH./OLOGY

January, 1980

C) Massachusetts Institute of Technnloqgv 1980

] - . I rd
Signature of Author ............ ... et enetseeace e
Department SF - ﬂeteorology, January, 1980
D> A / 1 / R .
oA SN

Certified DY cuieirnieeivieeeedinneineeieeeeeeaeaeaveonsesesomesscanasssasscanneesons
Fdward M. LOf&ﬁ;, Thesis Supervisor

\;\"\%
Accepted by W%ﬁgﬂm ......

Peter H. Stone, Chairman, Depa




Contents

Preface. . . v i v v o4 v v . . . e e e e e e e s e e e e e e
1. Introduction - o L 0 h b i o s s e e e e e e e e e e e
2. The model. . .« ¢ v v v v v i et e e e e e e e e e e
2a. Governing equations . . . v v . 4 4 e e 4w 4 e e e .
2b. Energy equations. . . . ¢ ¢ ¢ 4 e 4 e b e e e e e .
3. ExperimentsS. . . . . v i i v 4 e v e e e e e e e e e
3a. Numerical procedUre . .« « «v v v v o ¢ v o o o o o 0 .
3b. Truncation and choice of constants. . . . . . . . . .
3c. Initial conditions. . . . v v v v et 4 e ee e e .
3d. Qualitative behavior. . . . . . « . ¢ v v v v v v . .
4. Gravity waves, digital filtering and data sampling . e e
5. Model statistics . ¢« v o v v v v v v 4 . . o e e e e e
5a. Description of the statistical methods B
5b. Invariance properties and the effect of
persistence on the number of independent obqervatlons
5c. Reliability of the statistics . . . . . . . . e .
5d. Statistical 1ntercomparlsons. © + o & o s a s eie a o
6. Model tuning . . . . ¢« ¢ ¢ 4 4 i e e e e e e e e e e
6a. Tuning procedure. . . v v v 4 ¢ ¢ « 4 6 e 4 e e 0 . .
6b. Tuning the QG model and results . . . v « & o o . « .
7. Monte Carlo simulatioa . . . . . . . . . . . .. 0L L.,
7a. Analysis of the short term prediction errors. . . . .
7b. Adjustment to conserve energy invariants. . . . . . .
7c. Perturbing the (G model and results . . . . « « « . .
8. Summary and concludiny remarks . . . . v 4 v 4 4 e e e o .

REfEXeNCES v ¢ & v v v vt 4 e e e e e e e e e e e e e e e e

~Acknowledgements . . . . . . . 4. e e e e e e e e e e e e

Page

15

. 39
. 46
. 46
. 48

55

- 69
- 72

. 77

.116
.116
.121

127
.127
.133
.136
.141
147

.152



Figures

1. Typicalmaps of ¥ . . . . . . . . . . . ..
2. Typical évolutions of energy rvariables . . . .
3. Energy budget of run PE3 decompos~d into

suort and iong time scales . .+ « 4 v 4 e . . .

4. Depiction of short term prediction error . . .
5. Energy budget of POG7. . . ¢ « ¢« ¢ ¢« + & o« .
Tables

1. Wave vector numbering scheme . . . . .

2. List of experiments. . .« . . . + ¢« ¢+ ¢+ . .
3. Variable indexing schemes e e e e e e e e
4. Relative undertainty in 0;2 and 0%2/ 0;2
5. Effect of sampling and filtering on model

' variable statistics. . . . . . . . . o o . .
6. Intercomparison of model variable statistics
7. Intercomparison of energy variable statistice.
8. Intercomparison of maintenance budgets . . .
9. Tuning the QG model. . . . . . . . . . « .« . .
10. Regression analysis results. . . . . . . . . .

Page
58-61

62-63

49

54
70-71

75

82-86
87-94
95-100
108-111

124

. 131



.ALTERATIONS OF THE CLIMATE OF A PRIMITIVE EQUATIONS MODEL
PRODUCED BY FILTERING APPROXIMATIONS AND
SUBSEQUENT TUNING AND STOCHASTIC FORCING

by
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Submitted to the Department of Meteorology in January 1980 in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

The simulated climates of nonlinear models based on the primitive
equations (PE), balance equations (BE) and quasigeostrophic (QG)
equations are compared. The models and numerical proredures are iden-—
tical in all possible respects. 50 and 26 independen: functions of
time alone represent rezpectively the solutions of thz PE model and
of the filtered models. The models are highly trunca‘ed spectral
- forms of Lorenz's (1960) energy preserving two layer model. It is.
assumed that the domain of integration is a doubly periodic f-plane,
that static stability does not vary horizontally and that linear
formulae govern vertical exchanges of heat and momentum. Because of
the models' extreme simplicity very long time integrations (greater
than 50 years in some cases) are easily effected.

Two levels of the thermal for01ng are. considered correspondlng
to radlatlvely enforced pole to equator temperature contrasts of
100K and 400K. At low forcing (Ro~s 0.11) internal
gravity waves in the PE solutions are present only as initial transient
disturbances. At high forcing (Ro ¢ 0.33) internal gravity waves
‘are always present in the PE solution. In the time mean sense the
- gravity waves obtain their energy from the synoptic scale waves and are
frictionally dissipated

Transports are reasonably well simulated by the 0G model at both
forcing levels. At the low level of forcing the 0OG model and at the
high level of forcing the BE model are successful at ¢imulating the
PE mean states and energy cycles. At high forcing the QG model gives
only a gualitatively correct simulation of the PE mean state and
energy cycle. The filtered equations always tend to underestimate the
time mean gross static stability, energy flows and kinetic energy. '



At the high level of Fforcing two attempts are made to get better
simulations of the PE climate within the QG framework - the tuned and
perturbed QG models. Both the tuning procedure and the perturbation
procedure require some knowledge of the short term (5f~1 , f = Coriolis
parameter) prediction errors caused by the QG assumption. The QG model
iz *tuned to mininize the averagc oyaorca short term prediction erirces.
The tuned QG model is better than the untuned version at simulating
the PE time mean model state, but the simulated energy cycle and the
budgets maintaining the mean state are not improved at all. 1In the
perturbed QG model randomly generated perturbations are added to the
model state every 571, These perturbations are designed so that
their statistics, other than those involving time lags, are similar
to the statistics of the observed prediction errors. The perxturbations
are adjusted to conserve the energy invariants of the system thereby
ensuring bounded solutions. The perturbed QG model is nearly as success-
ful as the BE model at simulating the PE climate.

Thesis Supervisor: Prof. E.N. Lorenz
Title: Head, Department of Meteorology, M.I.T.



Preface.

The purpose of thié,preface is to provide background materizl for
‘thosevunfamiliar with the concepts discussed here ana to provide orien-
tation for assessing the §alue of the reported reszults.

Meteorology is based on the belief that ﬁhe atmosphere uniformly
obeys certain basic physical laws. These laws together with some
simplifying assumptions allow the deduction of mathematical eéuations
vwhich govern the time evolution of the atmosphere. If we know the exact
equations, the exact‘composition of the atmesphere, the exact state of -
the boundaries of the atmosphere initially and for all future time and
the exact current state of the atmosphere we would in principle be able
to predict the evolution of the atmosphere for all future time. In
fact our knowledée is and will»always be far from exact - considervfor
example future readers of_this page whose every breaﬁh must be involved
in an exact formulation of the bouhdary conditions. As our knowledge
is inexact our predictions will be inexact. It is expected that as we
improve our knowledge (ard our numerical Skili) our predictions will
improve.

It is known that the atmosphere is unstable in the sense fhat smeil'
differenees in the initial states generally reeult in lerger differences
in the futﬁre states. That is to say any errors introduced by our
appro#imations or inadequate observing érocedures tend to érow with time.
Eventually the true and forecast future states bear no resemblance to each
other, Therefore there is a time beyond which our predietionsvare‘
worthless. However we cai still attempt to'predict the fufure climate.

We identify the climate with the long time period statistics of the.

atmosphere. An example of great interest of the various atmospheric
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statistics making up the climate is the time averaged pole to equator
temperature gxadient. This tenperature gradient is maintained by three
processes - solar heating, infrared cooling to space and the transportv
of heat by the atmosphere and oceans. Tv~» differentially imposed
heating drives the atmospheric motions. Besides affecting our comfort
directly, the day to day weather transports heat poleward ensuring a
relatively moderate pole to equator temperature gradient. If the trans-
ports were temporarily suppressed the radiative effects would soon
strike a new balance with higher temperatures near the equator and cooler
temperatures near the poles. Such a situation, while possible, would

be unstable and atmospheric motions, which transport heat poleward,
would soon develop.

Since the basic physical laws do not change it is a reasonable guess
that the future and past statistics of the atmosphere are identical.
This hypothesis will be good to the extent that the boundary conditions
and composition of the atmosphere do not vary and to the extent that
the climate is independent of the initial state of the atmosphere.
Climate theory attempts to predict the atmospheric statistics given the
boundary conditions and composition of the atmosphere. If we specify
the boundary conditions and composition of the ailmosphere and assume
that the initial conditions are not relevant then the problem as posed
is exact except for our inexact knowledge of the governing equations.
Besides being of tlieoretical interest, the answers to climate questions
have important cons:quences for human existence. How would the climate
change if the sun's output decreased slightly? Would an ice age ensue?
Would an increasc of atmospheric dust be equivalent to a slight decrease

in the sun's output? Does overgrazing by cattle induce changes in



Llimété? Will tﬁe addition of carbon dioxide from burning coal or
the adcition of flurocarbons from spray cans ncticeably alter our cli-
mate?  These questions and others are under current study. Reliable
answers to thea:‘questions will be necessary if soéiety decides to,. maintain or
improve the quality of ﬁhe environment. Meteorological studies of the
large scale circulation always suffer from an inability to perform real
‘experiments. We are.always forced to make do with models, which, no
matter how complek, involve some degree of approximation. We must scru- -
tinize our approximations to establish the reliability of our answers.
The‘advances of modern meteorology are due in large part to syste-—
matic approximations baséd oﬁ the introduction of a priori estimates of
the scales of the motions of interest. In particular, the theory known
as quasigeostrophic (QG) scaling has heiped explain the~processes con-
trolling the large scéleAatmospheric motions which infiuence the day to
day weather we expe¥ience. Basically it is assumed that the time scale
of the motions of interest is long compared to the time scales of the
otherbmotions. Let C represent‘the ﬁagnitude of the typical velocities
of interest. In a midlatitude storm system C is roughlvaO km/hr.
Let ‘L be a typicalvlength. The radius of a midiaﬁitude storm might be
1000 km. During a period of time T , a particle embedded in the flow
would move roughly a distance equal to C times T . .If we choose a
time period equal to L/C the distance traveled wiil be roughlf L .
A particle in the center of our typical storm might travel to the edge
of the storm in this length of time - approximately one day. This is
the time scale of the motions of interestf A coftvenient measure of this
‘time.scale is the Rossby number. The Rossby number (denoted Ro )

appears explicitly in the equations which govern all atmospheric motions



when these equations are put in a certain nondimensional form. (Nondimen-
sional form is a standard form in which no references to units of mea-
surcment, such as meters, hours or degrees, are present.) The Rossby
number is simply a constant (which depends on the latitude of interest)
times the ratio of the time of the earth's rotation to the characteristic
time scale. For our midlatitude storm the Rossby number is approximately
one eighth. For motions which are characterized by faster speeds or
shorter lengths the time scale is smaller and the Rossby number is
larger. Two types of motions with small time scales present in the
atmosphere are sound waves and gravity waves. (Aa example of gravity
waves in a different setting is the ripples on the surface of a pond
after a stone is tossed in.) By assuming at the start that the Rossby
number is small the equations can be simplified. These simpler equations
are called the filtared equations because they filter out the motions
with small time scales. There are two commonly used sets of filtered
equations, the QG eguations and the balance equations (BE). The BE are
more accurate and mich more complicated mathematically than the QG equa-
tions. The original equations, called the primitive equations (PE),

are themselves inexact because a number of assumptions must be made in
deriving them from :he physical laws. However for our purposes they may
be considered exact.

The filtered equations have been the basis ¢f many studies of the
large scale atmospheric motions. For qualitative: understanding of the
day to day weather the acoustic and gravity waves are extraneous. The
filtered equations isolate the relevant motions. By studying the QG
equaticns we can understand the processes which contrel the motions and

development of typical storm systems.
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Thevfiltered equations are also routinely used for predictive pur-
poses. In numerical weathér prediction (NWP) the future state of the
atmoéphere is extrapolated from the observed sﬁate of the atmosphere
according to the governing equations. To properly descfibe the mofions
the extrapolation takes place by a time marching procedure where the
time step is smaller than the time scale of the motions. Thus a
smaller time step (and hence more computations) érekrequired if the PE .
are used since short time scales may be present. If we use the PE it
is also more difficuit to initialize the time marching procedure because
small errors in the observations can easily produce large gravity waves
in the numerical solution which would not exist in the atmosphere. It
was originally felt that the difficulties associated with the PE were
insurmountable and the first successful ﬁWP was based on simpler govern-
ing equations. While thévU.S. National Meteofological Center routinely
integrates the PE, the meteorological services of seveial other nations
ﬁse various forms of the filtered equations to produce their primary
prodéét.

. We know that assumirg the‘filtering épproximations are correct will
introduce some errors over a prediction interval of a day or so but
thisvis acdeptable if there are other exrrors of similar or larger magni-~
tude caused by the uncertainty of the observétions and byvcomputational
limitations. Thus a NWP modelbmay be labeled "good" iZ it introduces
a negiigible error oﬁer the short time scale. Such a model may be inap-
propriate for climate studies since these errors may accumulate and
influence the model's statistics over the long time period needéd té.
simulate the climate.

To solve climate problems a wide array of models have been used;
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while many employ the QG assumption some of the more vomplex models are
based on the PE. Because of the many differences between tie various
models and the atmosphere and between the models themselves it is diffi-
cult to assess the effects of the QG assumption alone. Will the er.~rs
introduced by the QG assumption over the short time scale tend to
accumulate or cancel outvwhen we collect statistics? This question is
addressed in the present study. We construct models which are completely
identical in all respects but one - whether or not one of the filtering
assumptions is made. Therefore any differences observed between the
behaviors of the mod=2ls are due to the filtering assumptions. The models
are integrated numerically and statistics are collected. For the sake

of economy many simp.lifications are incorporated in the models. This is
acceptable since in any comparisons made, both mocels include the same
simplifications. Fcr a low level of the thefmal “orcing (i.e., the solar
heating) the climates simulated by the QG and PE rwodels are nearly iden-
tical. At a higher level of the thermal forcing he different models
generate quite different climates; that is, the siiort term errors tend

to accumulate. For example, compared to the results of the PE model,

the time averaged pole to equator temperature gradient of the QG model is
23% too low, while that of the BE model is 5% too low. However quali-
tatively the three simulated climates are very similar. Thus the appro-
priateness of the filtering assumptions for clima*e studies depends on
the values of the enternal parameters. Generally the filtered equations
are suitable for making qualitative climate predictions. The PE should
be used whenever a quantitative result is required or when the quali-

tative results of a filtered equations experiment are not decisive.
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It is concéivable that maing slight changes to the QG model would
improve its ability to simulate the °E model's climate. Most models of
the atmosphere contain some adjustable parameters which owe their origin
to the parameterization of subgrid scale proesses or of physical pro-

. cesses not explicitly represented in the model. Tuning is the process
of.choosing values for these adjustable par;meters. An example of an
adjustable parametér is the drag coefficient_.CD which appears in the

equation for horizontal stress 'JO in the skin friction formula,

jg =/ Cnlgo, Zo

where ‘yo‘ and /ﬂo are the horizontal velocity and the density at

some reference level. This formula is ﬁseful for representing the fric-
‘tional drag of the earth's surféce on the atmosphere. Actually the
éxchange of momentum betw:en the surface and the atmospheré is mediated
by molecular collisions s> some simpiification is necessary. It is possi~
blevté obtain values of ,CD by measuring the other quantities in thé
above formula at a particular point and under garticular conditions.
Empirical values obtained in this manner vary gonsiderabiy and it is

not clear what the single best value is. Further, valves valid at parti-
cular points are not hecessarily appropriate for diagnostic‘or predictive‘
finite grid calculations. As pointed out by Lorenz.(lSSl) the effects

of small hills are not explicitly pfesent;in any model but might be
included in the calculaticns of 7ﬁ by choosing a slightly diffe;ent

—

value of CD . In this study we consider whethér or not tuning the

parameters which appear in the QG model would improve ‘its simulatipn

of the PE climate at the high level of the thermal forcing. In some
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respects tuning the QG model leads to an improved simulation. The time
averaged pole to equator temperature gradient of the tuned ¢%5 model is
found to be 7% higher than the PE value. Compared to the error »f the
original QG model the sign of the error is ieversed and the magnitud:
of the error is considerably less.

Within the framework of a simplified model the short term errors
caused by the simplifying assumptions are fundamentally unknowable.
However by examining the assumptions it may be possible to estimate the
magnitude of the errors. Suppose the statistics of the short term errors
are known. Can this knowledge be used to improve the model? Along
similar lines, several techniques have been suggested for making use of
the statistics of the errors in the initial conditions for predictive
purposes. ‘The most straightforward of these, Monuve Carlo prediction, is
applicable to climace problems. In Monte Carlo prediction the observa-
tions are assumed to be known to a certain accuracy and an ensemble
(i.e., a collection) of equally possible initial 3:tates are chosen. From
each of these initicl states a prediction is made. The average of the
ensemble of final states is generally a better forecast than a predicticn
made from just one initial state. Furthermore the variability within
the ensemble of final states gives an indication cf the reliability of
the forecast. Part of this procedure was (and possibly is now) actually
in operation at the New Zealand Meteorological Ofiice (Trenberth and
Neale, 1977). Thre> alternate forecasts were prcvided each based on a
different analysis of the available data. (In th’s case, the initial
state is only poorly known since New Zealand is surrounded by water and
weather ships are expensive to operate.) The aifficulty here is that

three times as many computations are needed to produce the three forecasts
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as are needed for a single forecast. Actually one would profer an ensem~
ble with more than three members. No extra computafion is ﬁeéded in
Monte Carlo climate simulations because we cah assume that the climate
of each ensemble merber is the same. In applying the method we add a
small perturbation to the current state of the model after each shoft ‘
tefm time inter&al. These perturbations are random but have statistics
similar to those of the short term errors. This method was tested on
the QG quel atbthé high level of the thermal forcing{ The'resulting
climate agrees much better with that of the PE model. The pole to |
equatbr temperature gradient‘is still in error - the sign of the error is
reversed as in the case of the tuned model and the magnitude of the error
is now 9%. However nearly perfect knowledge of the short term error
statistics did not in this case lead to perfect agreement between the
climates. it must be adcded that the QG statistics are constrained in a
way that tﬁe PEfstatistics>are not. Therefore‘pérfect-agreement is
impossible unless the PE statistics satisfy these constraints.4

i'The result that the pertﬁrbed 0G model out perforﬁs the QG'model is
important because it runs,countér to intuition. . Offhand one would not '
expect that a model's response would be improved by adding a random
forcing. This techniéue suffers froﬁ one seriéus drawback - one must
know the short term error statistics. Error statistics obtained from
comparisons with obéervations would only be valid under current climate
conditions. This problen is left unanswered by the present study, but
in cases where the error statistics are known this knowledge shoula be

used. ’ .
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1. Introduction.

When studying the climate cne is faced with the problem of describing
the statistics of a system whose time evolution is essentially nonlinear
and which is extremely sensitive tc iritial conditions. A popular
plan of attack is to develop a numerical model, integrate it in time
and collect statistics. At each time step the current state of the model,
which depends on the past history of the model, may be considered the
initial conditions for the remainder of the model run. Thus any assump-
tions introduced in deriving the model may be thought of as introducing
errors into the initial conditions. As these errors compound their total
effect may be large, although individual errors are small. It has been
envisioned (Lorenz, 1970) that eventually super models may provide a
solid basis for climate research. However any nurerical model must
involve some approximation and thus introduce som: errors. Although the
errors introduced by a particular assumption are unknowable within the
context of the model some knowledge of the statistics of the errors may
be obained by comparing short term predictions of the model to either
a more complex model or the atmosphere itself, I: seems likely to the
writer that such information, properly used, woull improve the fidelity
of the model's simulation of the climate.

Beginning with Phillips (1956) increasingly complex numerical models
have been developed for medeling the atmosphere over long time scales.
Over time the model.. have become better at simula’ing the atmosphere.
However important differences exist between the observed climate and
the model climates. Even the most complex of the current models involve
many assumptions, so it is difficult to determine which assumptions

should be relaxed. ©One method of evaluating a particular assumption is
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to compare the model output to that of another model identiczl in all
respects except that the assumption in question is relaxed. This »pproach
is exXemplified by the work of Manabe and cowérkers at GFDL (Manabe et.‘
al., 1970;_Manabe and Terpstra, 1974; Manabe and Wetherald, 1975;
Wetherald and Manabe, 1975). Of coursevthe effects of several assumptions
aré not ﬁecessarily additive so the appropriateness of any particular
assumption depends upon the "environment" in which it is employed.

In this report we compare the simulated climates of nonlinear models
based on the primitive equations (PE), balance equations (BE) and quasigeo-
strophic (QG) equations. The models and numericél procedures are iden-
tical in all possible respects. 50 and 26 independéht functions of time
alone represent respectively the solutions of ghe PE model and of the
filtered (i.e., OG and BE} modéls. The mﬁdéls are highiy truncated
spectral forms of Lorenz's (1960) energy preservingbtwo layer model. We
assume that the domain of integration is a doubly periodic f-plane, that
static stability does not vary horizontally and that linear formulae
govern vertical exchanges of heat and momentum. Bécausa of thé models'
extreme simplicity very long time integrations (greater than 50 years:
in some cases) are easily effected. Thus even small differences between
the model climates may be determined with high statistical significance.
Further, we investigate tvio means of making use of the information con-
fained in the (presumed) lnown short term prediction error statistics.

The first technique is ﬁo tune the adjustable parameters. which appear in
the model.‘ The second technique is to add perturbations to the model
state at regular intervals; these perturbations have carefully designed
statistical properties. (Reader beware! In this paper, excluding the

portions reviewing previous studies, "perturbation" should connote
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neither linearization nor infinitesimally small.)

The results of these experiments may be viewed from two perspectives.
First, we may consider the PE model to be the "real" system we wish to
simulat=. In this light the results are quantitatively correct and
differences in (model) climates are due solely to the filtering assump-
tions. Second, we may extrapolate our results to more complex models
of the atmosphere. This is risky; the extrapolated results should be
used only as suggestions of the qualitative nature of the errors caused
by the filtering assumptions in more complex systems.

Although most suitable for short prediction intervals the QG assump-
tion has proved extremely useful not only in numerical weather prediction
and linear stability studies but also in diagnostic and simulation
studies and in simple climate models. Surprisincly, until now no direct
comparison of the ciimates of identical PE and QG models has been made.
When a model is "improved" and the QG assumption is dropped it is gen-
erally easier to reformulate the modei from scratch. Then there is a
tendency to go "whole hog", relaxing several other assumptions simul-
taneously. The BE have seen limited use in numerical weather prediction.
The long term behavior of BE models has been unknown because the BE are
more difficult to integrate than the PE.

Quasigeostrophic theory has by now a long history and many authors
have commented on the conditions necessary for its validity. Previous
studies of the baroclinic instability problem reveal the effects of the
geostrophic assumption on the growth rates and structures of exponentially
growing infinitesimal Rossby waves. Of the several studies noted here
only one (Simmons and Hoskins, 1976) contains a direct comparison of a

PE model and a QG mddel linearized about the same basic states. A point
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to keep in,mind,when comparing models differing in more thai one réspect
is that it is difficult to assign portions of the error to the diiferent
assumptions. It is possible that several assumptions, each of which
individually causes a significant error, may together cause only a small
total error; the opposite situation of several assumptions each causing
small errors which together cause an appreciable total error is also
possible. As the principal interest here is in a comparison of nonlinear
systems we consider several topics which bear on the applicability of

the results of linear theory under nonlinear conditions. Following this,
we will review some nonlinear results.

Before reviewing the literature we define two térms.~ One approach
to determine the adequacy'of'the QG assumption is to study data frém
actual observations or from a model which does not depend on the QG
assﬁmption. Differences from geostrophic balanéevin the data may then

be attributed to effects not included in OG models. Ttese differences

may be termed ageostrophic. A second approach, the apprbach used here,
is to compare two models, one of which employs the QG agsumption. ;The
total differénce between tﬁe results of the two modeis may be partly

in ggostrophic balance. This total difference»has been termed

non-quasigeostrophic (Gall, 1977). The first approach provides only

a lower bound for the macnitudes of the errors caused by the QG assump-
tion. |

The baroclinic instability problem méy be stated in brief, as fol-
lows. The radiatively enforced or the observed zonally avéraged pole
to équator temperature gradient might bé geostrophically balanced by
a éonal thermal wind if the earth's surface were'homogengous and if fric~

tional effects were absent. However, if the temperature gradient exceeds -



a critical valﬁe stch a basic state is baroclinically unstable; that is,
small disturbances will grow by releasing some of the avaiicble potential
energy of the basic state. Those instabilities with the fastest: growth
rates are seer. to correspond in certain resgects to the observed di--
turbances. Although the observed atmospheric disturbances are far

from infinitesimal in amplitude, the observed mid--latitude atmospheric
structure is basically zonal with superposed perturbations. It is
argued that this zornally averaged state is always spawning growing baro-
clinic disturbances whose growth is ultimately checked by dissipative
processes or nonlinearities. As they extract energy from the mean flow
these disturbances iend to decrease the pole to equator temperature
gradient. This sugjests the average state of the atmosphere should be
close to neutral stsbility with respect to these disturbances. The
evidence (Stone, 1278) in the extratropical regicns supports this con-
tention. For this reason and for analytic convenience many studies have
focused on the neutral or nearly neutral case.

To the extent +hat other processes simply limit their amplitudes
the calculated instabilities with the greatest growth rates are valid
for parameterizing eddy fluxes for use in simple climate models. For
this purpose it is still necessary to determine the amplitudes at which
growth stops. Besides this closure problem there are two facts which
make it difficult to directly apply the results cf baroclinic instability
theory. First, the structure of the linear waves and their growth rate
spectrum - in particular the wavelength of maximum instability - depend

very strongly on the presumed basic state and on-the numerical model.
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Not constrained by the feedbi.~ks present in a nonlinear systém‘theblineaf
results are very sensitive to modeling assumptions. ‘Second, and partly
as a consequence of the previous point, as the waves réach finite
amplitude interactions with the mean flow profoundly affect both growth
rates and structure. Therefore the concept of the "e&olutionary"
selection of structures having the greatest linear growth rates must
be abandoned or modified to include second order processeé. Thus, if
we wish to extrapolate comparisons of PE and QG linear instabilities
to the nonlinear regime we muét choosebthe "right" basic state and include
second order processes in some way. Simmons aﬁd Hosking (1978) observed
that in some cases the dependencé on the presumed basib state becomes
less marked when the wave is allowed to grow to finite amplitude and
interact with the mean flow. An analogoué result might hold for the
dependence on the governirg equations. That is, it is possible that
finite amplitude perturbationékof PE and QG models allqwing wave mean
flow interactions are more alike in structufe than the instabilities of
the:corresponding strictly linear models.

The earliest stﬁdies of baroclinic instability employed the geo;
étrophic approximation. (A succinct review is given by Phillips
(1963, Sebtibn 3a). A brief historical summarf of the rroblem when
geostrophy is assumed and when the zonal wind profile‘of the basic
state is simple, is given by Geisler and Garcia in the introduction
to their 1977 paper.) In fact the earliest formal quasigeostrophic
scéling argument was motivated by the baroclinic instability préblem
(Charney, 1947, 1948). Mcre recenﬁly the study of this problem has
evolved along two paths. One approach is to make enough simplifying

assumptions,,usually including that of quasigeostrophy, so that analytic



-21-

solutions are obtained which explicitly display the dependence of the
instabilities on the mean state variables (Saltzman and Tang, 1975;

Stone, 1972; and references in thase papers). When these results are
incorporated into simple climate models the fluxes due to the mean meri-
dional circulation forced by the waves should also be included (Stone,
1972). Along the second path of investigation several of the various
assumptions made in the earliest studies have been relaxed and the numeri-
cal calculations have increased in complexity. Derome and Dolph (1970)
studied higher order effects on the disturbances and found slower growth
rates and some differences in the structure of the disturbances. (Accord-
ing to Mak (1978) Derome and Dolph were not careful enough in their
consideration of the boundary conditions - the problem they solved is
ill-posed and their results are therefore questionable.) Hollingsworth
(1975) investigated the differences between the rormal modes of several
variants of Lorenz's (1960) two layer modél (the model used in the‘present
study). On an f-plane channel Hollingsworth found the growth rate spectra
of the short waves in the QG model are highly sersitive to whether or

not the static stab-lity is allowed to vary. Corparing the results of

the OG and BE models with variable static stabil: ty he found similar
growth rate spectra but indicated that substantial differences in struc-
ture exist. On a sphere differences between the two QG models are less
pronounced. Warn's (1976) calculated instabilities of two shallow layers
on a sphere are sicnificantly ageostrophic. Simrmons and Hoskins (1976)
compared the normal modes of the PE and QG equations on a sphere for

three simple zonal flows. In their study the models are identical except

for the geostrophic assumption. The modes of the two models are similar;
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growth rates and relative amplitudes agree to O(Ro) . However agree-

ment in terms second order in amp.itude is poorer - when normalized to

a constant value of maximum perturbaticn stréém functiqn the eddy meri-

dional fluxes of heat and zénal momentum differ by as much as 25%-and

50% respectively. Also the neglect of vertical transports in the QG

model leads to péor agreement of the seéond order changes to the mean

state. Gall (1977) calculated the normal modes of an f-plane channel withv

an idealized zonal flow symmetric about mid-channel. qu this geometry

and basic state the QG perturbation eqﬁations decouple into symmetric

and antisymmetric components. Gall used symmetric initiél conditions.

Therefore any asymmetries which developed in the solutions of the

linearized PE must be die to non—quésigeostrophic effects. (This proce-

dgre will not detect nonFquasigeostrophic effects on the symmetric part

of therperturbation.) .Gell found that the perturbation fieldé and meri-

dional heat transports are fairly symmetric but the meridional fluxeé of

'geopotential and zonal mcmentum are noticeably antisymmetric. As noted

by éall, fhese results are not surprising as‘these latter fluxes are

covariances of perturbatioﬁ quantities which are roughly 90° ocut of phase.
Pointsvrélevant to the application éf these comparisons to the

nonlinear regime are made in several related stﬁdiescfEE models by Simmons and

Hoékins and by Gall and his coworkersfy Therevis some controversy over

the‘wavelength of maximum growth rate in the linear models. Gall (1976a,

1976b, 1976¢) found a méﬁimum growth rate for wave numbers 12 through

15 while Simmons and Hoskins (1976} 1977a) found a maximum growth rate

for wave number 5 through 9. Some of the difference is due to the‘assumed

basic state (Siﬁmons and Hoskins, 1977b; Gall and Blakeslee, 1977;

Staley and Gall, 1977) but the issue is not resolved. It is possible that



details of the model may be crucial. If this is so, application of the
linear results to other models or to the atmosphere must be guestioned.
At eny rate, linear growth rate spectra are very sensitive to the basic
state. Since the basic state of a nonlinear model or of the atmosphere
is constantly changing it is not clear how to apply the linear results.
A partial explanation of the sensitive dependence of growth rate spectra
on the basic state was noted by Fullmer (1979), using a one dimensional
0G model. He found that small changes in the basic state zonal wind can
lead to very different growth rate spectra if these small changes intthe
zonal wind are associated with relatively large changes in the mean
profile of the QG pctential vorticity gradient, wnich is the quantity
appearing in the stability criterion. In their experiments Simmons and
Hoskins found that the meridional flux of zonal nomentum is sensitive
to the assumed basi: state while the meridional trcat flux is relatively
insensitive.

Most of the calculated normal modes have maximum amplitude near
the surface; the shorter the wavelength the more the mode is restricted
to lower levels. A3 a consequence most of the fluxes due to the linear
waves are restrictel to the surface layer. Gall (1976a) compared the
normal modes of the GFDL global circulation model (GCM) to both obser-
vational statistics and statistics obtained from he GCM. 1In contrast
to the linear case the most energetic wave numbers in the GCM and in
the observations ar«~ those less than 9 and these eddies have maximum
amplitudes of kinetic energy and momentum transport in the upper
troposphere. By allowing growth to finite amplitude énd wave mean flow
interactions both Gall (1976hk) and Siwmons and Hoskins (1978) found

that the growth of the disturbances ceases at lowcr levels first allowing



-4

the growth of maximum amplitude at upper levels, thereky favoring the
seleccion of longer wavelengths. In’contrast, Simmons (1972), who studied
the same problem with a‘QG model, reported that the finite amplitudé

wave kinetic energy profiles agreed with those of linear waves.

In summary, baroc;inic instability results indicate significant
differences between PE and QG linear wavés. In particular relatively
minér structﬁral differences can result in much larger différences in -
eddy fluxes. Also indicated is ﬁhe importance of wave mean flow inter-
actions when the waves reach finite amplitude. The effects of the wave
mean flow interactions seem to be as or more important than differenceé~
between the PE and QG linear wavés. Therefore if a linear theory is
iacCeptable,_tﬁe errors introduced by the additional assumption of quasi-
geostrophy are accéptable. kon the cher hand it is questionable whether
we can extrapolate the comparisbn of PE and OG linear waves to a non-
linear regimé. |

Heck (1979) calculated the eddy flux of zonal momentum directly from
obsérvational data and diagnostically as a residual of the potential
temperature and.poténtial vorticity fluxes. If the atmosphere were
quasigeostrophic the two calculations should agree. Heck found that
the QG assumption causes a relative error of 25%‘to'60%’depending on
latitude and season. This is'the same order of magnituvde as the linear
results of Simmons and Hoskins (1976). But it should ke noted thét they
calculated non-quasigeostiyophic differences and Heck calculated ageo~
strophic differenées. |

Semtner and Holland (1978) compared several @G models with a PE
~model. Their study shares this objective’with the present étudy'but

there are major differences in the physical situations considered and in
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the models used. Semtner and Holland model a primarily wind driven
wostern North Atlantic circulation using QG models having two or three
layers and constant mean stability and a PE model having five layers.
The 0G mcic's and PE model differ in the details of botteom tennaraphy,
friction, heating and in other respects. In all, eight QG experiments
were performed, demcnstrating, among other results, the necessity of
including at least simple topography and heating in the QG model to
properly simulate the PE model's climate. Semtner and Holland origi-~
nally felt that the basic QG experiment which includes topography and
heating would simulate the PE results best. Qualitatively good agreement
is obtained but the eddies in the QG model are too intense; the QG
energy levels are approximately 35% higher than the PE energy levels and
the QG kinetic energy conversion is too high. Sewtner and Holland then
tuned the QG model by changing the upper layer thickness from 500m to
ZOOm. This results in good agreement with the PE results. Thus the QG
equations are sensitive to vertical discretization. (See also Flierl
(1978).) However it is not obvious how good the agreement would be
between a QG model znd a PE model with identical vertical structure.
Inevitably, as noted earlier, in any numerical model small errors
occur at each time istep; these errors may amplify., limiting the usefulness
of the model for simulation purposes. It seems & reasonable hypothesis
that anything decreasing the magnitude of the shcrt term prediction
errors will improve the model's ability to simulite the observed climate.
A number of empirical methods for decreasing the magnitude of the pre-
diction errors have been proposed - model tuning, the empirical correction

method and the empirical dynamical method. (See Leith (1978a) for a

review.) These methods are empirical since they require observations
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of the real sysﬁem. (This limitation is discussed in the ccrclusion.)

Although most models have sbme adﬁustable coefficients, tgnihj
is nearly a taboo subjeét in the meteorological liteiature. From the
discussions which do appear‘in thelirerature it appears that tuning is
accomplished by rough quaiitative argument followed by numerical experi-
mentation. ' The -tuning problem may however by put in the form of an
inverse probleﬁ if tﬁe condition of optimality can be mathematically
defined. The single example of this approach»&e know of for a dynamical
system is given by Leith (1974b). Leith chooses ;k ' a>parameter in
the long wave correction cf a ba;otropic model by plotting the ensemblev
averaged root mean square héight error of the two day forecasts versus

pe and choosing the value of CL corresponding to the minimum error.
In geophysical diagnoétic studies the inverse problem avproach is more
popular; for example Olbers et. al. (1976) determined wave séectra
from'mooredyarray data using inverse techniques.

In Section 6 the QG deel is tuned using data obtained from é PE
model run to minimize the mean sqﬁared short term (Sf—l) prediction error.
In some respects the tuned quasigeostrophic (TQG) model is better able
thanAthe unﬁuned model to simulate the PE model's climate.

In Leith's (1974b, 1978a) empirical or élimate drift correction
methéd the modei eéuations are altered by adaing constant and linear
terms to the governing eqnations. These new terms are’statistically
determined by requiring that the ensemble mean first andiseéondvorder
statistics are preserved.k The tuning procedure is equivalent to an
empirical correction'mefhod where a special form 'of the'corrections;is

assumed at the start of the analysis if the terms in the governing



equations containirg the adjustable parameters are co.stant or linear
(in the parameters). Faller and coworkers (Faller and Lee, 1975; Faller
and Schemm, 1977; Schemm and Faller, 1977) proposed a statistical cor-
rection method whereby an empirically deterwined correction is addex

to the solution after each time step; they found significantly improved
forecasts in experiments with one and two dimensional forms of a modi-
fied Burger's equation. Their technique may be considered a finite
difference approximation of Leith's empirical correction method.

Presently empirical climate models obtained by inverse techniqgues
are receiving attention from Hasselmann and his coworkers, as outlined
by Hasselmann in a series of lectures delivered at Harvard this spring.
(A number of papers are in preparation.) For climate simulation purposes
Hasselman suggests seeking agreement between the imodel and the data in
the frequency domain. A technique for accomplishing this was successfully
tested by Hartjenstein and Egger (1979) using data from simple two
layer model experiments. They sought a constant coefficient linear
zonally averaged model which would simulate the :vnally averaged behavior
of the original model. The model coefficients were found by demanding
agreement between the low order Fourier coefficients of the original
data and of the solutions generated by the linear model.

The empirical Jdynamical method uses the resvlts of integrating a
dynamical model as predictors of the forecast quantities in an empirical
linear (in all stucies to date) regression schem: based on observations.
This method has been used in creating MOS forecasts (Klein and Glahn,
1974), in studies of a hemispheric barotropic model (Leith, 1974b;

Lorenz, 1977) and in the final step of a Monte Carlo prediction study
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(Leith, 1974a).

It is not expected that the usc of empirical methods will yield av
perfect prediction-médel. Geneially a substantial part of the mean
squared error remains; The residuvals, i.e., *+re differences bétween
the observéd prediction errors and the empirical estimates of the predic-
tion errors, may contain important information. ' We conjecture that the
regular addition to fhe model state of random perturbations with theore-
tically or empirically determined statistical propertieé may improve the
model's ability to simulate reality. (In this study the observational
data are actually generated by a model, but for the purpose of discussion
we wiil refer to this more complex model as "the real system"; the simpler
model involving the addifional assumption(s) will be called "the model",j

To illustrate this hypothesis assume that the real system's time
evolution may be described by a point moving through a multi-~dimensional
_phasé space and‘that the model's time evolution is described by a point
moyiﬁg‘on a lower dimensionél manifold in the real systém's prhase space.
For predictive purposes we need an initialization procedure; this may
be thought of as the projection of the system state on the model manifold.

'NowAgonsider a point X(0) * on the ﬁodel manifold and the set {Xé%}

‘of all points in the phase spaceuwhich project onto X{0) and which are
in the attractor set of the real system. Then the projection of the sys;'
tem state will come arbitrarily close to X(0) as oftgn as desired over
a long enough period of zime, provided that the set {xig} is not empty.
'After a short time T th2 model stateVWill be X(T)k and the points

Xin will evolve to the pointsi an . Generally the projection of the

set {?fng will not be a single point and the average of the projections
! ;
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of the an will be diiferent from X(T) . The statistics of the errors,
where the errors are the diftcvences of the projections of an and

X(T) , may be determined empiricelly or by theoretical consideration

of the short term behavior of the sys*~m. The actual errors are of

course unknowable within the context of the model. If the model is to
give a good simulation of the system the point X(0) should be in the
attractor set of the model. Suppose this is so; then the model state

will come arbitrarily close to X(0) as often as desired for a long
enough simulation. As the real system evolves every time its projection
comes close to X (0) there will be a certain probability that the real
system is close to a particular Xin . After a time T the projection
of the real system will be close to the projection of the corresponding
an with the same probability. The unperturbed .aodel evolution on the
other hand is compl=tely determined by X (0) . The real system's behavior
can be simulated by adding random perturbations to the model state

X(T) , if the statistical properties of the perturbations are chosen to
agree with the statistical properties of the errcrs. This argument moti-
vates but certainly does not prove our conjecture.

In Section 7 we test our conjecture by pertirbing the QG model at
regular intervals. The perturbaticns contain a deterministic component
corresponding to a least squares estimate of the prediction error, that
is an empirical correction, and a stochastic component having statistical
properties similar to those of the residuals of *he least squares esti-
mates of the prediction errors.

The addition of randomly generated perturbations to the model state

at regular intervals is a finite difference form of adding stochastic

forcing to the governing equations. In meteorolcgy, stochastic forecing
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has’beén used previously in ctochastic prediction and in linear and non-
linear climate modeling.w

Since the beginning of modern numevical weather prediction there has
been an awareness that éredictability is limited by both the uncertainty
in the initial conditions and shortcoﬁings in‘the model (Thompson; 1957).
Predictability studies havé shown that even with a perfect model the
uncertainty in the initial condiﬁions iimits the useful fofecast range to
at most two weeks. Stochastic dynamic prediction has been proposed as
an objective way of utilizing our knowledge of the uncertainty in fhe
initial conditions. (Review papers by Leith (1975) and Haltiner and
Wiiliams (1975) cover both theseAtopics.) Within thevframework of sto-
chastic dynamical piedic@ion it is possible to include stochastic’forcing
to fake into account the effects Qf model insufficiencies on‘the forecast
(Fleming; 1972; Pitéher,’l977). Beéause of the npnlinearity of the
governing equations most}ﬂtocﬁastic dynamical prediction models rely oﬁ
somé sort of closure scheme for the higher statistical moments. Leith
{1974a) has suggested Monte Carlo methods‘may be more economical. Besides
sidestepping the closure problem Monte Cario prediétion schemes should
make it easier to include stochastic forcing.

‘Recently stochastic climate models have récieved considerable atten-~
tion. Hasselmann (1976) suggests that’the>effect of the short time scale
weather phenomena on the iong time scale climate system is essentially
that of white noise forcing. If a linearized model is adequate it is
then possible to evaluate the climate system's frequency response for
any givén forcing by the weather. This technique has béen sﬁccessfully
applied to the forcing by the atmosphere of observed sea surface tempera-

ture anomalies (Frankignoul and Hasselmann, 1977; Reynclds, 1978) and of
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a /?wplane ocean (Frankignoul and Muller, 1979) and to the parameteri-
zation of atmospheric eddy heat fluxes in zonally and globally averaged
enerqy climate models (Lemke (1977) and Fraedrich (1978) respectively).
The effects of stochastic forcing on ncnlinear (climate) models can
in general only be evaluated by numerical means. Robock (1978) included
a stochastically forced component in the parameterization of the zonally
averaged poleward heat flux in Seller's (1973) time dependent model.
The time evolution of the model's annually and glcbhally averaged tempera-
ture qualitatively agrees with observations. Williams (1978) incorporated
a stochastic energy source in his barotropic model of the Jovian atmosphere,
and found the model simulated flow is similar to cbservations. Without
the stochastic forcing both of these models would asymptotically approach
a steady or periodic solution for any initial coniitions. The present
study contains the rirst report of the response ol an aperiodic climate

model to stochastic forcing.
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2. The model.

2a. - Cnverning equations.

The nndel presented below is a spectral form of the energy pre-
serving two laver model formulated by Lorenz (19601. For horizontally
continuous variables the adiabatic, inviscid governing equations of

this model are

2o = -T(¥,0)-TT,0) + V- (cVY)

Zo = -T(T,0)-T(¥,0) + vO-7Y
:%_v“%a ~:f1"(\v,v‘w'{\ - J (T, v*T)
+ 8 (VT - VAVTY + § T(X,7°X)
g,—t—vz'r’ = -v:s‘w,v“r\ -.J"(’T, v‘wf?\ + V-(F7Y)
+ & V~(V“PV"X)’
2 vix= Ve - v-(F7T)

- & (V-(V"i’ vT + VITVY) - v‘(v%vﬂ}

-5, (v (T, 0) - 3'(7(,\7“-!’%\)

'is the potential temperature in the upper layer,

+

where

is the potential temperature in the lower layer,

.

"is the stream function in the upper layer,

<€ € o o
+
1t q9 9

is the stream function in ‘the lower layer,

?( is the velocity potential in the lower layer,
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f 1is the Coriolis parameter,
c is the specific heat of air at constant pressure, and
b 1is a constant approximately equal to 0.124.
J 1is the Jacobian operator defined by
J(,B) = VA-(VB x k)
where k is the vertical unit vector and
V 1is the horizontal gradient operator. There are two indi-

cator variables distinguishing the three systems of equations,

g - { 0 for the QG equations and BE
1 for the PE

S - 0 for the QG eguations
B 1 for the BE and PE

For a domain without horizontal boundaries, these equations possess
three independent integral invariants which may be taken to be A+K ,
P+I+K and S-K. P+I , A , K and S are respectively the total
potential energy, tue available potential energy, the kinetic energy
and the gross static stability all averaged over the mass of the atmosphere.

If the further simplifying assumptions that £ is constant and that
¢ does not vary hoyrizontally, and if rectangular coordinates (x,y) and

the scaling

'3
rh
]

s
=

2f2 1

2 -
. . !
W"TV,’X. L°f 8,0 : L \Cpb)

are introduced then the nondimensional governing equations are
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£o= -J(Y, 6% + gVX

£viy = -J(Y, V) - T(T,VT)

EXAdiads » PYVT) s 5, T(X, v*%)

LT = -T(¥,7'T) - T(T, v2Y) + V'%

.;'SQV-(VWV'/Z\

vy = vie - VT

S} It

- 5 (v(PeVT + vTVY) - VH(TY-VT))

- (PE ) e T, 7))

2. & - 2
20 - -ovZ
3 -

56 = 0

where the overbar and @

v and q, represent areal averages and all other

variables are deviations from areal averages. .With this scaiing there
are no dimensionless constants in the equations of motion.

An infinite doubly periodic f-plane is chosen as the>horizohtal
domain, Each of &, ¥, 7 and ﬁf is eXpanded in a complex Fourier

series of the form
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@ Jey) = 2 Lw PGy
I

where the sum is over all integer wave vectors I (IX,Iy), excluding
I =0 and where I is an ordering of the I . (That is, the I(th)
wave vector is I , the J(th) wave vector is J etc.) 1In order

that § be real ]_I, where -I is the index of -I , must be equal to
the complex conjugate of 'II for all I and for all _{ .

= i +
Fr exp ( (IXX IyY))

Consequently
0 if I+J # 0
FiFs =
1if 43 =0
2 2
and v FI = (.—aI )FI

2 . c s . . . .
where a; = I+I is positive. Now substitute expressions like (1) into

the nondimensional governing equations, multiply by F_I and average

horizontally. For linear terms

F-—I? = ZJ F—IE;!J= !I
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The quédratic terms all satisfy

Fo3.7) = F ol 3 F,1,.5 Fp 79
| Nj K ,
= > 7 J5910x 7 ¢
J K

where the interaction coefficients

drgg = F:g@ (FJ_'FK)' .

are constants. The one term requiring special attention is

vy =Zze<aw - 20, taV

Tha adiabatic inviscid nondimensional equations of motion in spectral

form are thus

~le-

€ = - Z Yoo O ¥ G GV

%(“’1&) Y% = -L Y5 CrzK (-dsg)‘i‘x - Z Iy IJ‘K(QZ}I
(2.a)

*5 (Z(' z) 7 drgk g ¥ 2 (- ZJ‘ dige 1 K) r

+ dp L% Cryx (’sz\? Xy
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o

az(‘qxt) . = -Z%’CITK (‘_akz) TK - Z 1y CIJ"K (’axz) ‘i)K
o)A v & T Eest) ¥y g Ky

v~ ’ Y e L 1 d o
)€z ~(ag )iz - ‘)-5 (Z(“Qsz)(’v:r &.IJ'K x

P dt I
2y o e fn 2 5 /
¥ 2_( QJ’)IJ'JIJK(FK (QI)Z ’:re:r:rKVK)
Sp ( (CLPS DR AP Z_?::r Crzi (o )%
Lo = - Ztate, 1
d¢ 70 K K “K K
d =
% = 0
where we have written Z for _Z' Z . The interaction coefficients
%
are
°rox = For? FyrFy) = Ex Dby
d = F _Y(F_V F) =—1/(12+K2—J2)b
10K ~I J K 2= -~ IJK
- - _,.2 2 2
erox = T VE; Vg 2K - Dby
where
_ l1if g+K=1
Prox = Forfofx -
0 otherwise

These equations con:crve the three energy invariants of the original
two layer equations. The only requirements for this to hold are that
e , v T and X are all expressed in terms of the same expansion

’

functions, and that whenever a wave voector I is included in the expansion
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so is 'j;,

Diébatic and viscous processes must now be specified. Of the many
posaible parameterizations'we choose the simplest. Since the principal
interest here is in the differencés between two systems of equations
having identically parameterized friction and heating it is not expected
that these differences will be overly influenced by the choice of para-
meterizations. Second, simplicity is in keeping with the,anticipated
- severe truncation. Following the approach used by Lorenz (1962, 1963b)
in studying Qé models, we add to the model surface friction proportioﬁal
to the velocity in the lower layer, a momentum exchange between the layers
proportional to the velocity difference between the layers, a heat
exchange between the layers proportional to the potential temperéture
difference between the layers, heating of the lower layer proportional
 to the difference between the temperature in the lower layer and an
V'imposed temperature field and heating of the upper layer proportional
to the difference between the temperature of the upﬁer layer and an
imposed temperature field. These last two’effec;s may be thought of as
due’to radiative heating and/or boundary layer heating. If the propor-
tiénality constants, assumed all non-~negative, are respedtively ‘2fk0,

%f(kl-kol’ %fho, fin +h,) and f(hl—hzl then the scaled spectral equations

1

(2.a). include the‘additional terms

™
&
L}
1}
!
s
~
QD
'
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b
-~

(2.1) %(—a;) LPI = e -ka ("'0-12) (q)z - Tx \
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)T, = ok Cay T o+ k(e ¥,

YEp = et ok CaV .

.0 _hoo.o

L

-, (- 7Y + hy (6,-6,%)

L

-h, (6,-68,%Y + h, (o, - ;")

where the superscript R refers to the imposed (radiative) temperature

field.

2b. Energy equations.

The sketch on the next page illustrates the model physics.

The flow of energy through the system is governed by the usual

energy equations,

(3)

4
at e

G - C
¢ --D
= { - C - C
VA A 7
= + -C
g Ca E
= Cpm STy

where A, X, G, C and D :.epresent respectively the available form,

kinetic form, generation, conversion and disSsipation of energy averaged

over the mass of the atmosphere. The subscripts 2, E, A and K denote
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Model physics in dimensional form.
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respectively zonal, eddy, available and kinetic forms of energy or energy
flow. The division into eddy and zonal forms is in the space domain
(Oort, 1964). Below the diagnostic equations for the energy variables
are presented i.. *orms of the nondimensional horizontally continuer:e
variables. (The scale for energies is L2f2.) The notation is more
concise and it is easier to follow the derivation in this form; however
exactly analogous statements may be made directly in terms of the spectral
variables. For example, in terms of the continuous variables the hori-
zontal average of any Jacobian term is zero because of the periodic
boundary conditions while in terms of the spectral variables this holds
because of the symmetry properties of the interaction coefficients;
Ciyx -C~J,—I,K = ~Crps: All calculations reported irn the sequel are
performed in the spectral domain.

The formsvof enexrgy for the two layer model (Lorenz, 1960) are kine-

tic energy, available energy, gross static stability and total potential

energy, which are defined respectively by

K= 3 (F{"V‘P + VT9T + 8, VXK )
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where an overbar is again an areal average and the unsubscripted variables
are deviations from such an avarage. a/b 1is a constant, approximately
equal to 6.424. ch.is thé maxinim value of S fo; any hypothétical
~adiabatic rearrangement of the atmqspnﬁve. It is equal to

C c’o" + 5;: + @t ),;é since mean potential temperature (i.e., Qa )
and mean squaréd potential temperéture (i.e., -é%z+ ‘bgz + EF -+'8:5 j
are conserved by the model under adiabatic conditions. Anéther energy
iﬁvariant, that is a quantity conserved by the model in the absence of
dissipation and heating, is the total energy P+I+K . VTherefore A+K,
A+S, K-S and P+I-A are also energy invariants. To divide A and K
into zonal and eddy componenﬁs it is necessary to use the secondyfoxm
of. A which, similar to conventional formﬁlations, is ﬁhe average of
the variance of potential temperature divided by a stability factor.
Noté that the stability factor is a function of time.

Let [f] ©be the zonal average of § and let z‘ = g'mlfgj

be the deviation from the zonal average; Then

K, = § (V¥ « Iv71° + 5 (VAT )

Ke = 5 ((ve) + @ + 5, 007 )

As the static stability does not vary horizontally
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and A, = (C; t 07,\”l el

K_, A, n_ and A_ and

By deriving the evolution equations of K, KZ, E v -

identifying the results with (3) the following relationships are

obtained.
C = -xve
¢, = -viel
CE = - Z/ VZ 9'
C, = W (-3wey) - 3(T,v7))

o (6, v (7T s 72VT) + 5, T(x, V')

v 7 (T, Y - T(T, ) ¢ 5 V(e V)

v LU (=S, (v-(vy 7T + TVY) - VH(OY-VT)))

v LT (-85, (VAR + T, 7))
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G = (Gt - GA, v 2 1E1T(Y6))

D= klr¥-vT)P o+ (k-k)@TY + 5k (VAT

D, = k (w¥-[omif (k- k)IVTT + § kIvaT

De = K(VY-9T') « (k-k)\ @7 + &k (WX')

where indicates the diabatic part onity of the heating tendency,

J_
2t p ) a-
that is terms corresponding to the terms on the'right hand side of (2.b).

The derivation of the above equations is long but straightforward,

requiring the repeated use of integration by parts and of the periodic
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boundary conditions and tlie manipulation of the averaging operators.

The following example captures the essence of the calculation. Ccnsider

the evolution of KZ for the OG equations; for the barotropic component,

I Toow PR
iyl = 1vyl Rloyl

)

.2 t = 4 .3_
vyl 5 9¥ VIVI- VY

v- (v ) - YIV&Y

]

]

24
”I‘y]véz‘f/

N

STl 2 VY

This argument is also true if T replaces ¥ . Then substitute

from the vorticity evolution equations to obtain, under adiabatic invis-

cid conditions,

~
|

since  V[T) = v*(6] for the OG equations,



3. Experiments.

3a. Numerical procedure.

In the integratibns reported in the sejuel the alternating 4-cycle
time wovching scheme (Lorenz, 1971) has been used exclusivecly.  This
method is essentially fourth order in At; every fqurfh step the inte-
gration error is order (At)s. (In the N-cycle scheme At=N §it, where

ft is the sinall internal time increment.) The ‘compﬁtations have
been performed in double precision on the GLAS Amdahl cémputer.

’ Té ensure the solutions remain convectively stable, at each time
step a check is made for the condition { 9, £ Op and 'c%:—d'a < 0 }
where Oy is an assigned constant critical value of mean stability.
When this condition obtains E(-i{:— g, is set equal to zero. This is a
paramef:erization of convection; we assume that whenever (35 reaches 0;5
convective instabili%.y, just eﬁough to offeet any further dynamical

'>c.1estabilization, occurs. Actually, with o‘0 =0 , in the experiments
‘reported here the convective adjustment is never needed once equilibration
has occurred aﬁd we may take the view that the gcsverning equations do

not include this procesé. Unless otherwise stated no adjustment was
~made during tne model integrationms.

For PE i’:-'xteg,rations all the spectral variables are prognosti'c,

90,' ‘VI and

| T to be prognostic. Here and below in the text, j T without further

while for the filtered equations we have ccnsidered O o’

qualificatiorn ‘denotes the set 6f spectral variables 5 X for all I

under consideration.‘ For the QG equations or the BE GI is evaluated

from the balance condition
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2 k3
6, = T + 5 ( Z- \P:r ( ?ix drse™ ;‘% diks - exs) 'T")
$ 9

ag

For the BE if e I instead of TI is chosen to be prognostic, then

‘TI’ is determined by a linear system of equations whose coefficients

depend on 9I and Y I X I is found by demanding that the time

rate of change of the balance condition holds. The resulting omega

equation is of the form
@+M X =b

where ]K is the vector of the 7[ spectral variables and where the

I

diagonal matrix, D , corresponding to the QG terms, dominates the full
matrix, D + A. D depends on a, i A depends on ‘VI and 'TI;

o~

J_ and &._.

b depends on ‘VI, I I

In the computations, only variables correspcnding to wave vectors
in one half of the wave vector plane are actually prognostic since we
require that the solution be real; i.e., 5—1 wust be equal to the
complex conjugate of !I for all I and for all ! . Another
economization resul*s from noting that all interaction coefficients are
proportional to b.’,JK' All the double sums may therefore be collapsed

as follows:

“™M

g; 9srk 7 = 21: ‘;J Ur,5,1-3 Zz-3

[4
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3b. Truncation and choice of constants.

In simulation studies one is always faced with a trade‘off between
the model resolution and thé length of the model generated time history.
Truncation errors due to the space and time finite differencing schemes
are proportional to some power of the grid increment. To minimize
truncation error one would like the highest resolution possible, but
the higher the resolution the higher the computational burden. On‘the
,xothervhand, the computational burden is also increased by the long time
histories one would like in order to make statistical infefences.

In this study highly trunceted models are used so that long time
histories may be easily obtained. Highly truncated models have proved
useful in a varietybof studies (Lorenz, 1963a). In the comparisons
to follow we may assert that the trunc&ted PE model is the real system
we wish to modél. In this context the choice of extreme truncation in
the filtered equations models is appropriate. The 12 wave vectors kept

~are represented below by the x's in the I plane,

bl

b
~ K
o ‘
H
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Table 1. Wave vector ordering scheme.

Wave number Wave vector
(1) ¢ Ix ’ Iy)
0 (o , 0)
1 (o , 2)
2 (o , 4)
3 (-4 , 2)
4 (4 , 2)
5 (4 , 0)
6 (8 , 0)
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The wave vectors in one half of the ;Q plane are ordered in Table 1,
thereb, ordering the spectral variables.

It is known (Lorenz, 1963a) that highly truncated models may exhibit
a variety of tygzes of solution depending on the values of the constants
" appearing in the parameterizations of friction,ana heating. In preli-
minary experiments the evolution of the energy variables was constant,
periodic or irregular for different choices of the constants and trun-
" cation. For tﬁe purposes of this study values which yield- irregular
solutions exhibiting several time scales are desired. To limit the

~number of free parameters we assume that

o
i
)
i
]
i
o

R *
- =
0 100, 1086

e
P {9* if I = (0,2) or (0,-2)

il

]

0 otherwise

. *
so that énce the truncation is fixed only k, h and ¢ are free. These
assumptions correspond to no diabatic heating of the upper layer and an

imposed temperature field in the lower layer of
R ‘ * :
07 (x,y,t) = & (11 + 2 cos (2y) )

The governing equations might have been written without reference to

, noting that & R does

QOR by substituting 901 + 0% for g 0

0 0

. . . R .
not vary and then dropping the prime notation. Therefore 90 might

have been chosen quite arbitrarily; it affects only the unavailable
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potential energy of the model. The average of ;ﬁ; is T .
Two values of e have beeln considered: € = 0.008, which will be

called the low thermal forcing caze and 6* = 0.032 , the high thermal
forcing case. If the length scale 1 1is taken to be the radius of

the earth then these values of 9* are dimensionally 25K and 100K
respectively. In the absence of other effects the constants of propor-
tionality listed in the previous section are reciprocals of e-folding
decay times for the velocity in the lower layer, the velocity difference
between the layers, the potential temperature difference between the
layers and the differences of the temperature from the imposed tempera-
ture in the lower layer and the upper layer respectively. The above
assumptions imply that the parameterized exchanges of heat and momentum
between the surface and the lower layer are four times stronger than the
corresponding exchzinges between the two layers. 1In this study, except
for the tuning experiments in Section 6, k = 0.C1l6 and h = 0.018 .
For these values ard for £ = (3rhc>u3rs)-1 the first four of the above
e-folding times are 7.81, 31.25, 13.89 and 3.47 days. Admittedly these
are not optimal estimates of decay times for these processes in the
atmosphere, however choosing values based on atmcspheric observations
would not necessarily ensure atmospheric (i.e., Zrregular) behavior in
this simple model.

To complete the model specification At must be chosen. As noted
earlier, in determining the size of At the tw> conflicting criteria
of accuracy and economy must be satisfied. For the purpose of comparing
the models, time stepping errors should be insignificant compared to
the difference between the evolutions of the models from the same initial

conditions. For the purpose of computing statistics of an irregularly
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?volviﬁg system it is reasonable to chocse At as large as is compa=
tible with computational stability, since‘fOr,any‘ At whiéh.is numezri-
cally stable the Variables'will be positively correlated for lags of
several At . Thus the effective number of independent observations
will always be less than the actual number of observations. Seconaly,
when the initial conditions for the problem are arbitrary the statistics
identified with the climate of the model are an average over time and
- initial conditions. If the time stepping procedure is accurate for
only M steps then every M(th) data pdint may be considered a new
set of initial conditions. With these thoughts in mind we ha§e fer-

. ’
formed a series of test integrations and (conservatively) chosen
At = 1.0 and 0.5 for the low and high thermal forcing cases respectively,
These values are appropriate for PE integrations once the model is
equilibrated and these vzlues are used universally so that the4models
‘are computationally identical. Larger values of At could be used

for the QG and BE models,

3c. Initial conditions.

The initial conditicns for the experiments. are zonal steady state
solutioné of the appropriate governing equations. .If all the variables
associated with nonzero ;X are initially zero they remain zero. If
the equations are integrated from the initial conditions 90 = 10 6f,
'GOI= 0, all other wvariubles with Ix = 0 equal to a:small value and
all variables with Ix # 0 ‘equal to zero, then for the first few hun-

dred time units the convective adjustment is on.: Subsequently the solu-

tions asymptotically approach steady states which have positive 06.
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The final states obtained in this manner plus sm«ll perturbations are
“he initial conditions for the long time integrations.
It is possible to analytically solve the zonal steady state QG

equation:. Since the Jacobian terms vanish

for all I and

R R
”~ = CT -
90 90 0] Ob

The evolution equation for each 91 then reduces to

N
R

(a

Now restrict I to the positive Iy axis. For the forced mode

-I=F - 7}, cannst be zero; therefore

R
o - B (% 1)
ap k VT,

For the other modes two possibilities exist; either ’TI = 0 for all
~ ~
I#F or lI =0 for all I #F, J and IJ # 0. The second case

leads to a contradiction. For the first case the Gb evolution equa-

tion implies



~Governing

Equation

PE
0G
PE
BE
0G

Tuned

0G

Perturbed

0G

Table 2.

- Run

Name

PEL
0G2
PE3
BE4
QG5
TOG6

POG7

Experiments
e Length of  Comments
b - . Integration o
0.008 102500
0.008 102500
$0.032 202500
0.032 52500
0.032 202500
0.032035 102500 " h,k altered
0.032 102500 Per:zurbations

added every-
-5 time units

..pg...
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Since the left hand side is real and positive, if x = 'TF/ QFR, then

x € (0,1) and satisfies

where

As f'(x) ) 0 for all real x only a single solution exists. An

asymptotic expression for x is

-4

x=1-b2+3 %+ 00"

3d. OQualitative behavior.

The basic experiments performed are listed as runs 1-5 in Table 2.
For a given value oi 9* the qualitative behaviors in these runs are
the same. It is possible to select instantaneous states or short evo-
lutions from the various experiments (with the same value of 9*) which
are either very much alike or significantly different. To avoid either
prejudice, typical results from the PE runs only are presented here;

similar results could be chosen from the filtered equations experiments.
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The maps of ‘F , the midlevel streamfunction (Figure 1) show that
in spite of the severe truncation a variety of situations are poszible.
As én aid to visualizationﬁslightly more fhan one wavelength in x is
shown in Figure 1. Figure la depicts Y at a time during run PE1l
when the kinetic energy is relatively low while Figure 1b shows Y
at a slightly léter time immediately after a relatively high peak in
kinetic energy. Figures le-d are similar plots from iun PE3. Note the
change in contour interval. The Y field in the high thermal forcing
experiﬁenté is roﬁghly three times as intense as that in the low thefmal
forcing éxperiments. (Therefore the kinetic energy levels differ by
approximateiy one order of magnitude.) Because there is no B—éffect,
that is since f 1is constant, the features on the maps tend to intensify
and decay in place.

The timeievolutions of the energy variables provide good'visuaii—
'zations of the time behavior of the model. Plotted in Figure 2 are the
time evolutions of K, K-S and A+K for experiments 1 and 3. The time
intervals contain the tines of the maps in Figqure 1. In Figure 2 the
zero point for A+K is different from the zero point of K and K-S
but the scales for the three quantities are identical. Comparing thé
plots in Figure 2, the low thermal forcing case has longér time scales
than the high thermal for:ing casé and the magnitude of A is seveial
times the magnitude of K in the low thermal forcing case while A
and K are roughly the same size in the high thermal forcing case. K-S.
and A+K are controlled solely by the slowly acting dissipative processes;
compared to K , most of the variance of A+K and K~S is éssociatéd

d ¥
with the longer time scales. IEE-(K—S)‘ and ‘K—Sl, tend to be small

compared. to and |K! respectively. 1In part this behavior is

ET
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connected with our choice of the parameters h and k . In the tuning
experiment, for another choice of the parameters, K-S still has less
variance and longer time scales than K but does not have a mean close
to zero. A partidal explanation of this behavior is that whenever there
is conversion between A and K both K and S increase by a similar
amount; thus K and S should be positively correlated. If K and S
are strongly correlated with similar variances -~ as observed in this
system - then the variance of K-S will be smail compared to the vari-
ance of K.

‘'The sign of K~S 1is a convenient indicator of the two regimes
evident in longer plots like Figure 2. When K-S 1is positive K tends
to be high - roughly 15% above the overall average - and the variances
of K and ;g;K are larger than when K-S 1is negative. Usually the
transition to the high K regime occurs during a rapid conversion of
A into K following a buildup of A (e.g. near time 5800 in Figure 2a).
The transition to the low K regime is generally preceded by a decay
in A+K (e.g. near time 56100 in Figure 2b). These regimes tend to
persist for long periods of time as can be seen in Figure 2.

Figure 2 suggests and longer plots show that the system is bounded
er.d in particular that Gb is bounded away from zers>. While we can
prove that the system in bounded we cannot prove that Ub must be
positive. Physically we expect the system to be bounded as long as the
drag coefficients — h and k -~ are positive. That is, both friction and
heating tend to drive the system towards finite states - the states

of no motion and radiative equilibrium respectively. We expect the

system to remain in the neighborhood of these states. Budget constraints .
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(see Section 5) imply thet the time average of qu,is pusitive but

"

do not ensure that Ub is always positive.

To prove that the system is bounded we seek a quadratic positive
. . 2 . . . : . .
definite quantity, Q  which is conserved in the absence of friction
R . . . . a .
and heating. If the friction and heating are linear then ag&f will

be constant on (generalized) conic sections in phase space. For this

system an appropriate choice is

Q" = 2K + ;!erll + (Ool-a.)l + (o;—],}z'

N

2 (K- )+ (6, + o + Z 1)

-.a{leol - (a.2+ ‘QZ)

R . ' . . .
‘where 905 = GO:- 90 ;, @& is an arbitrary constant and b is an
arbitrary constant greater than zero. Since ( Q;z + o;z + & ),
9C; and (K- ab) are conserved in the absence of friction and heating

. 2 '
so is QZ. The evolution of @ is governed by

s |

4q - -h ;Iel-ef/zl - bD - h(g' -+ EY
, wd bz ® c

“h (g - kY +k(*f—+"4*9*a\)

* - d . . . i )
where ¢ = b-a- @ . Eﬁ;Qz = 0 defines an ellipsoid, E, in phase space,

 where the phase spacé is defined by the real and imaginary parts of the
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spectral variables, excluding ;KI in the QG and BE ccoses. Within E,

2 da 2 . Coa 2
a(-ié-Q > 0, while outside of E -a-t-:-Q <{ 0. Once transients c¢ie out Q
is bounded by the maximum of Q2 on E. Thus the system is bounded.

Note that one point on E is

! <
9‘,: = 'r = xr = 9: - % = 9 - o'o' +-5 = 0

and
b L% o™ eyt %
a‘a = 3 - ( (;\) + —2— +(e+;)) < O
Thus this analysis fails to show that Ub is hounded away from zero.



-66—

4. Gravity waves, digital {iltering and data sampling,

The prescribed boundary conditions - the vanishing of the vertical
velocity in pressure coordinates at the top and bottdm of the model
domaig ~ prohibit external gravit? waves. The adiabatic inviscid equa-
~tions possess a solution of no motion in which _ Gb and 90 are
constants and all other variables are zero. Linearizing about this
basic state and assuming a time dependence of the form e-iy’t two
solutiqns are found. The first, the geostrophic mode with "= d,
is found for the QG, balance and primitive equations. Thé second solution

represents {(internal) gravity waves and is present only in the PE case;

the frequency dispersion relationship is

0

2 2
(4) Y = +
: - Grp 1
For Ob positive the gravity wave modes are neutrally stable.
For the low thermal forcing case, estimating the size of ag

as 10—3 gives 3 in the interval 1.0 to 1.064 for the retained wave
vectors. Discrete Fourier transforms of some time series of the ;(I
evolving according to the PE were calculated. Using initial conditibﬁs
ébtained ffom the final state of a PE model integration no evidence of
gravity waves was found. Using the same initial conditions but setting
the dissipative constants k énd h equal to zero, gravity waves
developed almost immediately. Using initial conditions obtained from:
the final state of a QG mndel run and integrating the PE, gravity wavés
which dissipated with a time scale of 100 were present. We conclude

gravity waves are not present in the PE model once transients die out

when the thermal forcing is low.
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When the themnal forcing is high gravity waves are always present
in the PE solution. Frequency spectra of the nonlinear QG model solutions
are flat and have little amplitude for 7/ greater than about 0.35,
while the nonlinear PE model solutions of ;(I and ir; exhibi.
peaks in the frequency range 0.62 to 1.96, corresponding to periods from
3.2 to 10.0. Most of the power is concentrated in periods from 5.5 to
8.2. Estimating g, as 10-2, (4) gives V' in the interval 1.0 to
1.64. Another family of linear gravity waves develops during the growth
of disturbances from the zonal steady state solutions. During these
experiments the PE model :KI exhibit spectral peaks for 7Y = 0.57
to 0.79, corresponding to periods from 8.0 to 11.,0.

In making the QG or balance assumption the possibility of gravity
wave behavior is eliminated. Therefore we evaluzte the success or fail-
ure of the QG mode’ in terms of how well it simulates the behavior of
the PE model on time scales longer than the grav.ty wave time scale.

For the low thermal forcing case this presents no problem; gravity waves
are not present, %“he statistics presented in th2 next section are cal-
culated from the model output sampled every 5 time units. For the high
thermal forcing case the time series of the PE spectral variables are
filtered to eliminate the gravity waves. The digital filter used is

one of Kaiser's (1974) Io—sinh window nonrecursive (i.e., moving average)
filters. It is a low pass filter with a total length of 128 time units
and a transition band, in terms of period, from 9.0 to 11.0 time units.
A small correction is added to each filter coefficient to force a unit
response at zero frequency. The maximum response error outside the
transition band is 0.5%. The filter uses data every time unit as input

and is applied to the original time series every 5 time units. Since the
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tilter removes frequencies higher than the Nyquist frequency of this
sampling rate, an adequate representation is obtained. The effects of
the digital filter on the outpﬁr of the filteréd equations models are
small forder 1%) 2.3 the effects on the filtered equatiohs'ibaéis?
statistics are small compared to sampling errors; However to avoid anf
possible bias the filter is used to sample'the séectral variables of all
the runs excluding the low thermal forcing runs.

Gravity waves affect the model statistics directly~and‘indirectly.
Second moment aﬁd higher moment statistics, as for example variances,
are directly affected by the presénce of gravity waves. Mean values
will not be directly affected except possibly'through,sampling errors.
Indirectly, through nonlinéar interactions, the presencé of gravity
waves may affect any of the statistics. Comparing £he statistics
obtained from filtéré@ ard unfiltered PE model time series isolates
the direct effect of the yravity waves. Compéring the statistics of
the filtered PE model time series with the BE model stétistics isolates
the indirect effect of tke gravity waves. This last comparison is only
aéproximate since besides eliminating the gravity waves, the BE neglect
some of the dynamics. A final motivation for filtering is to eliminate
the high frequencies before evaluating the short term error statistics.
When verifying QG model predictions it seems reasonabla to use the

filtered PE time series as the true initial and fiﬁal conditions.
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5. Model statistics.

We describe and compare the climates simulated by the models
governed by (2) primarily through the sample means and variances of the
model anl energy variables. Covariances or equivalently corvelations
are also of interest and some of these are discussed below when the
budgets which maintain the mean state are considered. However the
invariance properties (see Section 5b) and the dynamics of the system
constrain the statistics so that it is not desirable (and in any case
it is certainly not possible) to consider every possible statistic.

In the remainder of this paper we find it coavenient to refer to
the variables appearing in the governing equations in several ways.

To avoid confusion the conventions followed are cetailed here. As before
the "continuous variables" refer to the variables appearing in the non-
dimensional horizontally continuous governing eguations and the "spectral
variables" refer to the variables appearing in (2), the spectral governing
equations. '"Model variables" will mean the set of real and imaginary
parts of the spectral variables. The " ~;I variables" will denote the
set of real and imeginary parts of the corresponding spectral variables
ZI for all I in the truncation not equal to 0. The "-;n variables",
where n is a particular integer will denote Re 55 and Im 5;.

For convenience in constructing tables the riodel and energy vari-
ables have been numbered. (See Table 3.) Although the model state is
most appropriately described by a vector of the 30 or the first 26 model
variables, each of the model variables will be ccnsidered a scalar
function of (discrete) time in most of the statistical comparisons

reported here. Tables 5-7 display some of the sample statistics. The
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Table 3a. Model variables indexing scheme.

_ , Index of
Variable Real part - Imaginary part
A 1
2
eO
3
¥1
5 6
W2
7
w3
9 - 10
v, |
11 12
yS ;
p6 | 13 14
T 15 16
1 .
T, 17 18

. 19 20
.73 , ; : }
7z 21 , 22
7 » 23 24

5 ' ,
i . 25 26
7% ; :

1, I | o
xz | 29 30
2 31 32
s 33 34
% | o k 35 : , 36

o 37 38

6

’ 39 40
0, | |
62 41 : . 42

43 44
g3

a5 46
5, -
0. 47 ' 48
06 . 49 ’ - . 50
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Table 3b. Energ, variables indexing scheme.

Variable Tndex
AZ 1
AE 2
KZ 3
KE 4
CZ 5
CE 6
GZ 7
GE 8
DZ 9
DE 10
CA _ 11
CK 12

d A 13

& 2

d A 14

ac =

d K 15

at z

d K 16
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3

time interval between orLservations is 5. Ail samples begin with time
2000; by time 2000 any transicnt behavior associated with the initial
conditions has died out. The statistics are calculated from the fil-
tered data except for runs PEl and QG2 and in those cases when aﬂ asterisk
is appended to the name of a run (e.g. QG5*). In each of these tables
vthe numerical entries in the first coiumn, identifjiﬁg*the rows, are the
energy or model variable indices. The row labeled D.F; is the number of
degrees of ffeedom of the sample. Exponentiation is denoted by ** and

subscripts are not lowered but are enclosed in parentheses,

5a. Description of the statistical methods.

A brief description of the sample statistics used is now presented.
Suppose there are Nx observations of a scalar quantity x . - The sample

mean is x  where the averaging operator is defined by
N v
= 1 X
,X—E Z_ Xi
X I

Here and below the overbar will be used to denote: both time and sample
averages; all time averages are in fact calculated as sample averages.

The sample variance is

and. sx is the standard deviation of x . Nx"' the effeétive'number,

~of observations, i.e., the number of degrees of freedom, is defined by

2 2, -,
0" (x) = c)‘x/Nx



-73-

2 . . 2 - . .
where Jg is the population variance and 0" (x) 1is the variance

of the sample mean determined from Nx observations. Laurmann and Gates

(1977) show that

Nx N -1
(5) = = =
Nt 1+ 2 Lo
X =1
where
N =m N
. 2
(6) rmx B Zl (xi- "(x) (xi+m - "{x) i; (xi— /{x)

Myt the population mean, is generally unknown.

Under the assumnption that the true population has certain ideal fea-

tures and in the limit of large NX' ’

- 2
-~ 1
x ~~ N(g_,s /N ")

X 2
L} t L 1
N 3 f\/x (N ') A N(N_',2N_ '}

where the symbols A~ N( « , 0'2) means that A 1is a normally distri-

buted random variable with mean 4 and variance 0'2 , and Bﬂxz(‘t/)

means that B is e chi-squared random variable with % degrees of

freedom. The above relationships imply
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where

is a statistic similar to Student's t-statistic. (Selected values of
2
N 1
X

a 0.68 (or 68%) confidence interval. If "+ " is replaced with A

(

%
)? are presented in Table 4a.) Here and below "+ will‘indicate

for any ¢ > 0 , then the confidence level is one minus twice the pro-
bability that 2z >& , where z~N(0,1).
Suppose there is also a control sample of Nv‘ observations of an

independent quantity y ', which has population mean and variance equal

to 4 and O 2 . Let
v Yy Yy :
L sz SyZ L
txY'= xy) |\ §grtEc
A - v
~and
2, 2
ny =s /s

For idealkpopulations and in the limit of large Nx' and Ny'

-
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. . 2
Table 4a. Relative uncertainty in a;. expressed as a

percentage.
P
N ' 100¢( _2, )2
X Iy
X
250 8.9
500 6.3
1000 4.5
2000 3.2

. . . 2,.2
Table 4b. Relative uncertainty in o; /a& expressed as a

percentage.
2{N '+ N 'M»
] ]
Nx Ny 100 (- : ?
NNy
250 1000 10.0
500 1000 , 7.7
1000 1000 6.3
250 2000 9.5
500 2000 7.1
1000 2000 5.5

2000 2000 4.5
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2 2
o S, s,
(x~y) ~ N(/(X‘/( r Tt N )
v < y
0 2 ZIN' + N )
™ _.L A N (1, . ;E, )
XY g2 N' N

VThus

L )
(M = 4 = 9) @z g=)

Xy
20N " + N ')
2 2 X - Y %
/ot =r )% )

N'N"
x 'y

2(Nx'+N');
(Selected values of (- —x Y )? are presented in Table. 4b.)
. NlNl .
X Yy
The difference in means may be written in terms of a percentage of the

observed control sauple mean, i.e.,

100 , ., 100 - - 1 !
-:—- (a«x "/(y) = (X—Y) (1 i'_ £ ) = p(l i‘t )
y Yy Xy xy

thus defining the statistic p . Comparing two model runs yields a
. . : m m '

series of M t and F statistics: t , F 1, m=1l,...M.
‘ v Xy Xy Xy Xy ;

Convenient summary statistics are

and
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2 Nx' ' M m 2
F° = 4 > ® T -1)
20" + N ') 1 4

For large Nx' and Ny' , under the null hypothesis that the two
simulated climates are identical and that the txym and nym statis-

tics are independent, T2 and F2 have X?(M) distributions.

5b. Invariance properties and the effect of persistence on the number

of independent observations.

In the specific problem considered here the population mean, .« ,
is zero for most model variables. Since the model is invariant with
respect to a change in x origin, each solution is a member of a family
of solutions differing only in x origin. If we identify the model
climate with an average over initial conditions it is proper to average
over such families of solutions. In particular, given any one solution
we may averadge it with the solution having x slifted by TT/Ix ’

0 for all

before averaging over the entire family. Theref?re M
model variables associated with nonzero values of Ix . This shows
that the ensemble mean state is zonal. Since the model is also invariant
with regéect to a r&ﬁation of 180° the same argument implies that the
ensemble zonal mean state is symmetric about y = 0 . Therefore « =0
for the imaginary parts of the model variables associated with zero
values of Ix'

For those model variables for which the invariance properties imply

M= 0, Nx/Nx' has been calculated using (5) and (6) with ,qx =0 .
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The time between independent observations, T0 . is =qual to Nx/Nxf

times the time interval between observations. TO' varies fiom variable

to variable and from samplevto sample. The most persistent model‘vari—
ables are those associated with I = (8,0)3 The evolution of these
variables as wéLl as those associated with I = (0,4) is primarily
controlled by diésipative processes as there are only limited intefactions
with variables éssociated with other wave vectors. The model variables

- associated with T = (0,4) or I =>(8,0) will be called éorner’Variables
because these I are af the corners of the truncation. TO is typically
100 to 200 for the corner variables, but may be an order of magnitude
larger. Excluding the cérner variables the average‘of the values of

TO calculated is approximately 40 for the high thermal forcing case and

60 for the low thermal forcing case. Since the evolution equations
couple all variables (strongly, except the corner variables and energy
invariants) and since there is essentially one scale of motion, we‘expect

there to be a single value of T characterizing the entire system. For ;

0

the purpose of discussion we will take To = 100 ‘as a conservative esti-
mate applicable to all variables and models. Thus Nk' is simply the

sample length divided by 100.

5¢. Reliability of the statistics.

The statistical methods assume ideal populations which are normally
distributed and an unbiased sampling procedure wlhich yiélds independent
observations. These assumptions present difficulties when these methods
are applied. Variables such as enérgies which are non~ﬁegative cannot
be normally disﬁributed since there is zero probability of a value

‘being. less than zero. In fact since all the variables are bounded, once
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transients die out, none of the variables can be normally distributed.

It is observed that while many of the model variables are apnroximately
"normally distributed an equal number are distinctly not normally dis-
tributed. Typically members of this second group have distribution.

which are too highly peaked; a few of these distributions are noticeably
skewed. The statistical tests are fairly robust with respect to
non-normality, especially for large samples. Of greater iﬁportance is the
non-independence of the observations. Assuming the sample size is Nx'
instead of Nx is an attempt to bypass this difficulty. Neither nor-
mality nor independence is necessary to assure the validity of the point
estimates x and sz , but if these assumptions do not hold then

the levels of significance and confidence intervals reported will differ
from the true levels of significance and the true confidence intervals.
The estimates of error we give will all be approximate. Strictly TO
should be different for each variable and model ran. Choosing TO
larger than necessary avoids making unexpected Type I errors, e.g., con-
cluding the means o. two samples are different when in fact they are the
same. However the larger TO' is chosen the larjer will be the confi-
dence intervals for a given significance level, so there is a greater
risk of making Type II erroré, e.g., concluding the means of two samples
are the same when in fact they are different. Since‘the present concern
is to identify the most significant differences batween model statistics
this approach is adequate. BAnother sort of difficulty arises when com-
paring several statistics at once. If ,4& =0 a? the 90% confidence
level and also if Ayy = 0 at the 90% confidence *level then the compound

statement that /4x = ,4& = 0 will usually be associated with a lower

confidence level. Finally, although we generally ignore the fact that
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the variables are coupled dynamically, this is a powerful tool, as is
evident in the discussion of the budgets below.

To illustrate the effects qf the invariance vroperties and of sampiing
and filteri=a the model variable statiS£ics of run QG5 AIe”d4°played for
different samples and before and after digital filtering. Tables 5a-e
display respectively the sample means, standard deviations and the
tx; txy énd ny statistics. 'In the latter two tables the control
‘sample is the filtered sample of length 200000. Unless otherwise noted
the results discussed below apply equally to all the runs.

Because all samples begin With time‘QOOO, the samples used in Table 5
are not independent and the undert;inties of '(/qg —,ﬁy) and of

0;2/ U&z ‘are smaller than indicated by the previous discussion. Pro—
vided TO. is chosen properly, thé 'txy énd ny: statistics compa;ing
: diffetent‘samples mist show the populafion means and variances.are the
same. These statisfics'are uséful.for comparing the relative effects
of filtering and sampling.

The means and tx Statistics (Table 5a and ‘Table 5¢) éhow that all -
fﬁe model variablé means which should'be'zero because of. the invariancé
properties are in fact not significantly diffe;ent from zero.r of theée
variables, the cornar variables tend torhave tx statisticsyWith the
largest:absolute magnitudes implying that the corner variables have the
longest persistence times. ‘There is a circular argumént here sinée TO

is chosen to insure;the first result. The magnitudes of the tx sta- .

is appropriate.

tistics are a check showing that the choice of TO

Changes in means due to changing the sample ‘length are, as expected,
.smali.compared to their respective standard deviations (Table 5d). The

corner variables exhibit the comparatively largest changes. ‘The means



-8] -

of the energy variables (excluding 13-16, which are effectively zero)
typically change by 1% for thce low thermal forcing experiments when the
sample length is doubled from 500C0 to 100000 and by 2% for the high
thermal forcing experiments when the .-mple length is doubled from
100000 to 200000. The variances of the model variables typically change
2 to 4% when the sample length is doubled from 50000 to 100000 or from
100000 to 200000. ({See Table 5b and Table 5d.) Variances of the energy
variables change even less under these conditions.

The columns in Table 5 labeled QG5* contain statistics obtained from
the unfiltered data of run QG5. Similar results are expected to hold
for all the runs excluding PE3 because none of these runs have signifi-
cant amplitude in the high frequency part of their discrete Fourier
transforms. Comparing the differences in statistics between samples of
the same length of filtered and unfiltered data to the differences in
statistics between sam?les of different lengths, it is clear that the
effect of filtering is negligible compared to the effect of sampling.
Changes to the means due to filtering are 0(10_6) for both model and
energy variables. Variances of model variables ere always decreased by
filtering but the changes are small compared to sampling changes.
Changes to the variances of the energy variables due to filtering are the

same size or smaller than changes due to sampling.

5d. Statistical intercomparisons.

The statistics of the model variables are compared in Tables 6a-f

which display respectively the means, standard deviations and tx' txy'

ny and p statistics. 1In these tables, the control run for the low

thermal forcing experiments is PEl; the control run for all other
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TABLE 5Ae

QG5

200¢

601767

358017.59

1006485
~58625
- 21e82

‘9.51
602
-75.00
116673
_‘34671
15.28
43039
=11.69
-4026
36%4.04
'3025
2le06
~8¢86
=~3¢78
-0e99
28+66
1139
6.91
5856

'11089_

=400
=-38692
101
0e.l1l6
-0e06
3.21
%685
=2e72

“4487

~1le67
2¢85

QG5
1060

5970483

35797139

842407
=220621
=-8e51
=35¢61
91.96
«107.50
272488
-183.37
28604
97.68
4614
'51-29
366394
4047
=3.08
=34626
18.00
~3009

36406

171
'2013
10539
408
=5180
~40e07
3673
=0ell
-0e22
4448
14456
=-2e44
-6e05
-4470
4.09

_82,

@GS

500

5905.68
357907.78

951809
=215.77
=136+70

670
=106+64
=423¢67

24768
27863

4359
50610
19.90
54623

3653643

-80.71
~137.51

Y.85

~19.48

-41456

33.82
~37e27

-83.00

21617
15033
53¢86

‘45014
~2e¢34
-1e12

019
4426
755
“8.47
~7e31
=12¢35
11.60

Q65
250

5884.01

357886611

89277

=171.12

~3094
2688
65431
-482e22
19824
-312.70
128408
=43e84%
~46e76

. 70e36
367471

~-134e47
'60?9
34473
-18.69
«3099
58.52
~31e22
~32¢58
19990
‘Q9.56
5830
-52028
-12.82
6.03
0e52
-20e97
1015
‘m8091
=4 690
-[3e24%
13.16

MEANS OF MODEL VARIABLES (X10%x*p?

QG5+
260

601769

35801759

1006¢86
‘58;25
21le82
“9051
6601
7901
116473
=34.73
- 1527
4338
=11.69
‘Q026
369404
~3e25
21.05
~8e¢86
-3.77
=-1.00
2864
11.40
691
58457
-11.89
-4400
~38.91
1.01
Bel6
-0e05
3620

- Je85
-2.71.
-4 486
-1e68
2485
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TABLE 5B

1813.52

96728
555084
6406485

85575

749453
6516462
6408e77
6496419
6468403
6256497
6034485

601.02

584473
3191.18
2959427
2319439
2236402
2629495
2581.92
2622496
2584412
3007.41
2924.8¢S

2200e7¢

2160480
59101
563482
395424
398437
651.50
657418
653402
652421
581.10
572638
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(x11**6)

QG5 GG5
ioo0 500
1797.49 1801.67
940.62 959.41
552034 5513456
633839 6286473
824 .68 824496
T6leT4 771.99
647734 632170
6369409 621619
6462.68 6492.45
6440485 6510.08
6206400 6025489
6092402 6180437
584429 572480
586.06 598.06
3203662 3261e47
296237 2350486
2300443 230693
2209.12 222317
2621457 256773
2581474 257656
2593495 2583443
2584 417 2597 .67
2587420 3000.72
2931486 2960443
218368 2134490
216161 2155.81
586473 592467
560485 561459
392617 352400
390.52 390.68
645436 £42421
650.36 65066
644458 631e63
645458 633450
57303 561.83
565424 57208

GG5
250

1808478
974619
5520449
6220417
817.60
76720
6352434
6194435
6491.35
643015
606650
610374
552430
593435
3283475
2993498
230315
2424612
25648436
2595447
261734
2532434
3C41.89
3007449
2:50e22
2103.96
597e64
L6356
09226
292469
622418
65203
63353
€22.84
563425
172605

STANDARD DEVIATIONS OF MODEL VARIABLES

QGS5=
2000

1816408
567459
5552435
6407845
85587
749465
6520.20
6412426
6499469
647158
6258499
6096462
601.11
584482
319169
295981
2320615
2237.06
263079
25824595
262391
2585.04
3008466
2926410
2201603
2161415
591.20
564010
396455
39965
652406
657.81
653469
652675
58l.29
572459
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-TABLE 5Ce - T(X)=-STATISTICS OF MODEL VARIABLES

RUN

o4

r
e

W00 NN UT SR e

Q6%
2000

148.396
16552613
86112
~0s407
. lel40
=0e567
0.041
-0e551
0804
‘00240
06109
06318
‘0.870
=0.325
51769
~0:049
0406
'00177
~-0.064
~0017
0489
0157
0.103
0895
=0e242
-0.083
=2e94E
04080
0018
“00007
0.220
0.670
-0e1886

=0e334

‘0.129
0e223

QG5
‘1000

- 105.043

120344725

5397
-16099
~0e326
-10478

0.449
~0e534

1,335

-0900

06143

0507

0e224
"20767

366167

0048
-0.125

“00490‘

0217

" =0a038
0e440
0.021
=0023
16137
0.059
=0e758
~2e¢160
© 06210
-0.008
‘0.018
0.219
D.708
=0.120
=06296

‘0.259,

0e229

QG5

360

73296
8341616
36723
-0e767
~3705

0e194

‘00377
=-1.524

0853
=0.957

0162

0.181
0777
20028

252048 -

-0efl2
" =1e333
0099
~0s170
=0ed61
06293
‘00321
~0+619
14633
0el61
0559
1703
=0.093
~0.064
0.011
0s148
06259
-0e300
~0e258
~0e492
0e453

Q65

250

51435
5808.572

2557

-00435
-0.076

0554

06163
=1e231
0483
-0« 769
0334
~0elld
'10339
1875
176634
~0e710
-0.048
06247
-60116
-0.189
06354
'00195
~0.169
1,051

 —0e364

0513
'10383
‘0.360

0e001:

6.021
-06533
0¢246
~0e222
~0el24
~0e372
0e364

QG5 *
2000

1484187
165474312
- 86110
-0e407
1140
“00567
0041
=0e551
0.803
~0e240
0109
0318
-0e869
~0325
51760
~0e049
0.406
-0e177
-0.064
-0.017
0«488
0.197
0e103
0.895
~0e242
-0.083
-2¢944
0.080
0.018
-0.005
0e220
0670
~-0.185
0333
‘0.129
06223
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TABLE 5De T(XsY)-STATISTICS OF MODEL VARIABLES

RUN @GS @G5 QG5 QG5 GGS5~*
-F. 2000 1000 SRR 250 2000
1 0.0 ~0.671 =1.242 -1.101 0.000
2 000 "10256 '2.285 ’20013 '00000
3 0«0 -0e302 ~0e322 -0e308 0.000
4 0.0 ~0.657 -0.499 -0.270 ~0.000
5 0.0 ~0e338 ~3.814 -0e467 -0.000
6 0s0 ~04890 Je422 34709 -04000
7 00 06342 ~0e354 06139 -0.000
8 U0 -0.115 -1es102 ~0e967 -0.000
9 0.0 0.623 0403 0.187 -0.000
10 0.0 -0595 ~0e750 ~Je644 -0.000
11 0e0 06053 0.093 De276 -0.000
12 0.0 0.230 0e022 ~0e213 -0.000
13 00 0593 1.052 ~06937 0.000
14 O0e0 -2.074 1.965 1878 0.000
15 0.0 ~0e243 ~0e250 -0.088 ~0.,000
16 0e0 0e067 ~0e525 “0e654 -0.000
17 0.0 -0.337 -1.373 ~-0.181 -0.000
18 000 ’0.296 00168 00292 '00000
19 0.0 0e214 -0e122 -0.087 0.000
20 0e0 -0.021 -0e315 -0e172 ~-0.000
21 00 0e073 0.040 00170 ~0.000
22 0.0 -0.097 -0e375 ~0.250 0.000
23 0.0 -0.078 ~0+599 -0.194 ~0.000
24 0.0 0413 le067 0703 0.000
25 0.0 0.188 0253 -0.260 ~0.000
26 0.0 -~0e571 06537 0e511 0.000
27 0e0 -0.051 ~0e210 -0e6334 0.000
28 0.0 0125 -0.119 ~0«366 ~0.000
29 0«0 ~0017 ~0e065 -06005 0.000.
30 0.0 ~0.010 0.013 0.022 0.001
31 0.0 0051 0033 "00576 ~-0e.000
32 Oe0 0.186 -0.071 Je 007 0.000
33 0.0 0.011 -0.181 -0e145 0.000
34 0.0 ~0.047 0077 -0.001 0.000
35 0.0 -0e136 -0e377 -Ne305 ~-0.000
36 Ge0

0.056 0e306 le269 0.000

Txx2 Oe 11. 34, 14, Qe
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TABLE 5Ee F(XeY)~STATISTICS OF MODEL VARIABLES

1.000
1.000
1.000
1.000
1.000
1000
14000
1.000
1,000
1.000
1.000
1.000
1.000
1.000
1,000
1.000
1.000
1.000
1.000
1.000
1.000
1000
1.000
1.000
1.000
1.000
1.0060
1.000
1.000
1.000
1,000
1000
1.000
1.000

1.000

1000

Oe

-

@GS

100n
avvw

0.982
0946
0.989
06979
0.929
1033
0.988
0,988
0996
0992
0.984
0.999
0e945
1.005
1.008
1.002
0.984
0.976
00994
1.000
0.978
1.000
0,987
1,005
0.985
1.001
0.986
0,989
0.985
0.961
0.981
0.979
0.974
0.980
0.972
04975

Te

065

0.987
0984
0987
0.963
0,929
16061
0e941
0eS41
04999
1,013
0,927
1.028
0908
1s046
1045
0.994
0.989
0.989
0953
0.996
0970
1,011
0996
1e024
0.941
0.995
1.006
0992
0.984
0e962
06972
0980
0.936
00943
0935
0999

12,

QG5

250

0.995
1014
0389
0943
0913
1.048
0950
0eS34
0999
0988
0940

1003

0844
1,030
1059

1e024

0.986
0989
0939
1.011
0e996
04960
1.023
14057
04955
0948
1.023
04999
0985
34972
0.912
0,984
0.941
0.912
04940
74999

10

G65=*

2000

1.003
1001
1001
l.000
1.000
1.000
1001
1.001
1.001
1.001
1.001
1.001
1.000
1.000
1.000
1.000
1.001

- 14001

1001
1.001
1.001
1.001
1.001
1.001
1.000
1.000
1001
l1.001
1.007

-1«006

l.002
1.002
1.002
1.002
1.001

- 1.001

Oe
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DeFe

ClLN N s

15
17
27
29
39
41

TABLE 6A.

PE1
1000

1010.43
8%0il.28
824479
366634
2399.66
10.79
28011
4422
2327430
47 .86

QG2
1000

95767
85257485
457457
-15485
2376460
~16e44%
29,437
=-0.15
2376460
"16044

PE3
2000

9479+66
361479.63
1575494
1598420
608279
121476
153.19
-16.08
4781638
128407

BE4
500

8211433
360208.61
1829.19
175872
4966408
30723
91425
~18.77
4547435
305435

MEANS OF MODEL VARIABLES (X10%x6)

G8GS

2000

6017.67
358017459
1006485
21.82
3694.04
21406
-38.92
016
3694.04
21.06

TQG6 PRG7
1000 1000
900049 8029.66
36138460 36005740
907497 1642630
47652 1648452
5114.10 5195440
48452 207489
143447 16.0¢
1.03 ~443¢
5114.10 5195« 4(
48452 207489

PE3*
2000

9480490
361479.63
1575452
1598.04
6082.13
11146
163e44
'14.67
4781454
129479

_LS_



TABLE 6B. STANDARD DEVIATIONS OF MODEL VARIABLES (X10*%6)

RUN

DeFe

DO NOT S NN

DR RO PO N N b3 b bt b b 3 3 b b b

PE1

1000

292460
155473
1909.03
2421.96
457490
445,44
241648
2401433
2347.94
2309475
2267443
2361483
688466
663017
1105+14
1028401
834063
757407
979456
1019.04
1080493
1092485

1247455

126376
1004008

1024.49

QG2
1000
300.46

109.01
1632.53

- 2335.24

392458
27917

2370443

2422.28
2381.02
246910
230106
2161.14
339.83
34026
1151.24
1096.13
720,99
704413
1034622
994.64

~1031.88

98340
1283.51
1233468

972492

1038.04

PE3
2000

2691426
1809,03
7264426
7945094
2668441
2941.98
6792408
6889413
6735487
6753482
6803458
6741422

2764063

2838+22
4825625
420015

3i%8e iU

3161605
3257038
325433
3292676
326587
307505
3082482
2021466
2020471

BE4
500

2408632

1485272

679546
7449,03
2880478
3079.42
694783
693773
6793090
6886462
652352
6585480
3008677
289709
401995
3597.83
3063660
3043470
3232488
3221.92
3123600
3219617
3176617
3198.92
2067425
207537

QG5
2000
1813.52

2E7.28
555084

640685

85575

749.53
6516062
6408677
6496619
6468603
6256097
6094085

601.02

584473
3191.18
29594.27
2319,39
2236603
2629695
2581692
2622656
2584412
3007041
2924489
2200679
2160480

TQG6
1000

1827.59

ST3.97
4599,.12
5449.50
1052465

90712
580595
578740
5746028
5826417
5625.59
1064.18
110810
3323633
2859413
2114.84%
1985487
2975015
2929.61
3020093
293430
3440619
3401426
1992.73
2008618

PQRGT
1000

1933.78
1070e5%
T457.57
820047
2454 .85
275765
6596432
65660093
62%6094
6288.8¢2
6642903
683150
2884.02
2841425
3675463
3405679
279743
2754.38
2727132
2691.38
2967.94

2983.94
316107

3092682
2024020
2018451

PE3*

2000

2711.48
1809.41
7270466
7952.88
2674452
2946490
6796409
6895.12
6741032
6756439
6807473
6746016
2768 .36
2841488
5256470
4615.33
3298401

326306
- 3340692

3332430
3382.76
336221
318524
3192.29
2049.52
2053620



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 -

48
49
50

TABLE 6B

93e47
93404
59402
62429
133.86
125.87
13772
135%.09
127.18
12621
68+26
67403
1074475
978469
802425
739499
983483
1027444
1039.83
1054418
123923
1257.,50
983490
1003.07

97.68

88493

47426

54454
127.14
128.57
130409
12040
112.81
107404

60.71

66634
1151424
109613
720499
704413
1034422
994 .64
1031.88
983440
1233451
1233468
972492
1038404

103794
99030
630459
626454

1179.10

i124.08

1256490

1243637

1266421 -

1253622
390602
391432

3229426

277120

2434484

2406012

2626416

2615466

2451455

2455422

2875.55

2882457

1829.09

1825426

822464
801435
572482
575440
1141452
114741
1170499
1187485
1132.50
1092452
397.09
405435
3263413
2922460
2439430
2401465
277978
2746459
2550612
2591 .86
3032657
3081472
1981,95
1962.81

591401
563.82
395424
398437
651450
657.18
653402
652421
581.10
57238
343638
34le54
3191,.,18
2959427
2319.39
2236403
2629495
2581.92
2622496
2584412
S06Tedl
2924.89
2200479
2160480

STANDARD DEVIATIONS OF MODEL VARIABLES (X10=*%6)

658417
61148
325486
325420
597433

584473

59736
595499
724486
71512
26032
260493
3323633
2859413
2114484
1985.87
2975415
2929.61
3020493
2934430
34460619
3401426
1992.73
2008.18

663625
630e1:
465401
46674
895e444
89289
89041
87923
907.86
903.24
343.89
342617
3675463
340547C
279743
2754438
27274135
269138
2967494
2983494
3161.07
3092483
2024420
2018451

(CONT.)

2233402
216154
1049.30
1050426
1424496
14295438
1546464
1531.12
1580.76
1570.14

565469

572462
3232442
2775414
2442485
2413453
263654
2628430
2466424
2468444
2883.23
2891.14
1847.01
1841.18

_68_



DeFe

WON - -
VC~NNU WP

TABLE 6C. T(X)-STATISTICS OF MODEL VARIABLES

- PE1
1000 1000

109,203 1004794
176222233 166444321
"13¢662 84863
. 250299 -1.277
686665 654281
. 06409 -0.721
9.511 9¢507
«2,264 -0s102
68e4T77 65281
-0.721

1.887

Q62

PE3

2000

157.526

189364210

" 94702
264785
56376
1.703
6600
~lel41
666216

24352

BE4
500

76240
5439.576
6.019
134651
27.624
26242
2480
F0.733
3lel61l
2799

Q65
12000

1484396
16552613
o 8e112

14140
514769
0406
-24945
0.018
51769
0.406

TQGE

- 1000

1554736
11979.455
6e243
le428
484663

- 0725
7+.181
0.100
484663
0.725

PQRG7
1009

T 131.307
106354795
6e964
21236
444698
24350

0a764

~0+298
‘444638
2350

PE3*

2000

156.372
29344317
9.691
264721
51744

1l.511

3.273
~0+625
66154

2.376

_06-



TABLE 6De T(XeY)~-STATISTICS OF MODEL VARIABLES

PE1 @62 PE3 BE4 QG5 TQGs6 PQGt PE3»
1000 1000 2000 500 2000 1000 1000 2000
0.0 ~34978 0.0 ~104280 ~47.708 “5.743 =16+901 0015
0e.C 7,123 0.0 -16.3¢E0 -75.474 -1.883 ~26963 0.000
0.0 44623 0.0 0«735 =2784 ~34064 f0e232 -0.002
00 -20.038 0«0 14131 =254157 -22 696 0e514 -0.002
0.0 -0.457 0.0 ~54326 -18.466 ~6e431 =54595 =0.004
0.0 -0.781 0.0 l1.200 ~1l.140 -0.748 0.757 -0.100
0.0 0294 0.0 =le424 ~7193 -0.119 ~44385 0.186
0.0 1.703 0.0 -0092 0976 0«980 0e574 0.052
0.0 0.990 0.0 ~14437 -10.711 2.609 3.026 0.002
0.0 -1.885 0.0 le454 ~1.423 -0e922 0e768 0.022

Oe 498 0. 412. 9125, 612. 1074 Oe

_'[6._



 TABLE 6Es F(XyY)-STATISTICS OF MODEL VARIABLES

RUN

N -
[
m
»

VONOU BN

PE1

1000

1.000
1,900
1,000

.1.000

1.000

le000

1.000
1.000
1.000
l1.000
l1.000
1.000
1000
l1.000
1.000
1.000
1000
1,000
1.000
1.000
1.000

1000

l1.000

1.000
1000
1000

QG2
1000

1.054

1-129
06731

04930
0735 .

0393
0.962
1.018
l1e028

1.143

1.030
0837

“0e244
0248

1085
14137
0aT746
0«865
16115

- 04953

0.911
0+810

1,058

04953
0939
14027

PE3

2000

. 1.000

14000
1000
1.000
1.000
1,000
1.000
1,000
1.000

1,000
14000
1.000

1.000
1.000
1.000

1.000

1.000
1.000
1.000
1.000

14000

1000
1.000
1,000
1.000
1.000

‘BE4

500

0.801
0:£70

- 0e875
lelbb

14096
l1.046

1014

1.017

1e040
04919

0954

1lel84 .
1042
- 0ea694

0e734

0.518

0.927

04985

0.980
0.900
0.972
l1.067
1077
le046

1.055

QG5
2000

0.454
0.286
0.584
0.650
0.103
0065
0.921
0865

0917

0.846

0817
0047

0042

. 0e437

0496

. L«526

0500

04652
04629
04635

0626
0.956

- 0.900

1.185

. 1e143

TQ66

1000

0e.461
0278
0e401
04470
0.156

04095

0.731
0.706

0.728

Oe744
0.684
0e665

0148

8e.152
0e474
0e463

037

0+395
0834
0.810
0e842
0.807
le252

16217

0.972

 0.988

. PQGT

1000

0.516

035D
1054

l.065

De846

0879
0eS43
0.908
De874
0eB67
04953

1.027

1.088
l.002
0.580
0658
0765

0,759
0701

0.684
0,812
04835

1.057

1.007
1,003

0998

PE3«

2000

l1e015
1002

1.002

14005

14003
1.001

l1.002

1.002
1001
1.001
1.001
1003
1.003

-1e187

14207
1.063
1.066
1.052
1.048
1.055
1.060
1.073
1.072
1.028
14032

26—



27
28
29
30
31
32

34
35
36
37
38
39
40
41
42
43
44
45
46

47 .

48
49
50

Fas2

TABLE 6E.

1,000
1.000

1,000
1.000
1.000
1.000
1.000
. 14000
1.000
1,000
1.000
1.000
1.000
1,000
1.000
1.000
1.000
1.000
1.000
1.000
1-000
1{000
"1.000
1000

O.

FCXeY)=STATISTICS OF MODEL VARIABLES

1.092
0.914
0e641
0.767
0.902
0.806
0.892
0.79¢
0787
G719
0.791
0.979
l1e147
1.254
0.808
0.905
1.105
0.937
04985
0.870
14073
0.962
0978
14071

636

l.000
1.000
1.000
1000
1.000
1.000
1.000
1.000
1.000
1.0060
1000
l1.000
1.000
1.000
1.000
le.000
1.000
1.000
1.000
1.000
l.00n
l1.000
1.000
1.000

Oe

0.628
0.655
0e825
0.855
0937
0-939
0e868
0.913
0800
Ge760
1.037
1073
1021
lell2
1.004
0996
le120
14103
l1.082
lell4
1-115
le143
1.174
1.180

214.

0.324
0324
0393
0.404
0.305
0.308
0e.270
0275
0.211
0,205
0798
0762
0977
le140
0.907
0.864
1.003
0974
1.145
1.108
1094
1.030
1.448
14401

5900.

0.402
0.381
0e267
0269
0.257
0244
0.226
0230
0.328
0e326
0e445
0.445
1.359
l1e064
0754
0.681
1.283
1.254
1.518
1.428
1,431
1.392
1.187
1210

4420

0.408
0.405
0e544
0555
0577
0.563
0502
D500
0.514
06519
0e777
0e76%
le29¢

1511
14320
1310
1.078
1.0559
le466
1.477
le208
l.151
1.225
la223

1711.

(CONTe?

44629
4.764

2769
2.810
lo461
1.457
1.514
1516
1.559
1.570
20104
20141
1.002
1003
l1.007
1.006
1.008
1.010
l1.012
le011
1.005
1.006
l1.020
le01¢

1891,

€G-



 TABLE 6Fe P-STATISTICS OF MODEL VARIABLES

_RUN PEL @62  PE3  BE4 Q65  TQG6  PQGT  PE3x

"DeFe ' ‘1000 1000 2000 500 2000 - 1000 1006 2000
1 0.0 - =5422 0e0 =13.38 -36e¢52 =505 =1530 00

2 0.0 -0.05 0.0 -8.35 ~0496 00 ~0e39 040
3 0«0 =444,52 0.0 00 ~36.11 -42.39 0.0 P 0e0
5 0e0 ~104433 0e0 040 ~98463 =97403 0e0 00
15 0.0 0.0 Oe0 . =18436 =39.,27 =15e93 - =14459 0e0
171 i 0.0 0.0 000 yﬁ.r 0-0 ) 000 ’ 0.0 R : 000 0-0
27 0«0 00 0.0 .00 125440 00 -89¢54% . 0e0
29 000 OQO 0.0 00 . 0.0 . 000 Oe0 00
41 0.0 a0 0«0 "0e0

0«0 000 "0e0 “000‘»

...vs_



TABLE 7A.

PE1L
1000

2388.87
2612:.99
102.11
953.49
1.53
16.66
101.56
"83038
2400
16019
100.01
~0e47
0e.02
-0003
0.00
-0.00

@62
1000

2510.24
2604.69
86400
901.66
1.63
15.61
99.52
-82+28
l1.74
15.50
97.91
-0.11
-0es02
0.02
-0.00
0.00

PE3
2000

3836441
36£99.69
1423.39
8034403
1583
155467
27%.70
=107.74
2952
13110
263471
-16e27
0el5
.29
2458
Be31

BE4
500

4012.21
4380.15
1269.26
7993.84
8475
139443
276479
~128.44
24479
122671
267495
-16425
Cel0
0.07
0«20
048

MEANS OF ENERGY VARIABLES (X10%%6)

QG5
2000

3915.15
5010.22
60865
6051.00
10.68
97«64
2554 34
~146492
1255
95%e69
244451
~1e87
0el6
-0.05
-0.01
0409

TQ66
1000

3905.27
488R.14
553482
5414.61
24424
154485
409472
-190.48
27416
191.85
385.29
“2.93
0«19
-0e03
0.01
0.07

PQRG7
1000

508069
456079
1219453
7305665
Gebl
186663
283498
~133.85
23e12
11987
395,38
~3488
=-117e8..
T448¢
'12083
62488

PEZ >

2000

3841.01
3729.90
1531.06
8235483
15,67
154,29
279,28
-10%.58
5295
137.29
264..54%
-17.99
~0.89
le67
0«66
=098

-G6~



RUN

‘DeFe

- s e
PN L LW =

OO~ U D 6N

PEL
1000

1337.96
9220#3
45671
340494
2¢94
27463
32470
2171

~1e.02

6e79
98404
2.96

89410,

77.82

3620

26456

462
1000

1403499

992.08

43470

349097'

2.67
28403
3532
2223

0«58

7014“
102.56

3617
9386

: - 78627

339
- 27«38

PE3
2000
2432460

0O n 9
1648.51

694453

268091

96470
34734
18026

49452

17«02
50661

481e39 -
96070'

404494
35718
113.61

354442

BE4

500

2531420
1036 ,74
63794
2861497

89415

341418
198497
5582
14456
4734
551.91

95.16
" 465671

425471
105450
353411

Q65

2000

2518414
1683.84

335432
2083.92
50630

30475 -

236463
5236
8622
38498

515495
59454

429,90
358464
65457
316438

TABLE 7Be STANDARD DEVIATIONS OF ENERGY VARIABLES (X10%%6)

TQG6
1000

273376
1594,31
292458
172754
47.08
275420
23517

. 5377
15,64
77456
495.20
>46007
 406.81
321.56
44414
254489

PaG7

1000

2811425

1847.08

588.66

2249489

68e 82
302.9¢

219424

52486
12.6¢S
42(51

618.2¢
65482%

- 51623

430444
81.28

296.65'

PE3*
2000

2435403
1654.90
780«42
280851
175.58
438602
180-.38
45«89
19499
5440
486.72
143439
431.20
431.82
233413
454425

_96_
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TABLE 7C.

PE1
1000

56.461
8c.818
70650
88.439
166457
19.066
984223
~121.471
61904
754398
326260
-5007
04007
’0.010
0003
-0.001

QG2
1000

56539
83.025
624229
8l.472
19.247
17.613
89.089
-117.055
55.980
68684
30190
-1.077
-0.006
0.007
-0.001
0.005

PE3
2000

70529
100,405
91654
1344019
Te323
204043
694390
'97-297
77556
115851
24499
‘70523
0s017
0037
16017
1048

BE4
500

35.444
53- 225
444489
62456
2194
9.138
31.106
=-51e449
384079
57957
10856
-3.818
0.005
0.004
0e042
0030

T(X)=STATISTICS OF ENERGY VARIABLES

@65
2000

69.532
133.067
81.174
129.855
9.492
14.329
484,257
-1254474
68270
109.780
21.193
-1.401
0.017
~0.007
-0.007
0.012

TQG6
1000

454174
96.955
59.859
99.115
16279
224390
55.094
-112.015
54.921
780221
24.604
-2.011
06015
-0.003
0.008
0.009

PQG’

1000

57151
78.083
654513
102.683
2962
19479
404962
-80.076
57603
89167
206222
-1+865
‘7.216
5502
-44592
6e7053

PE3*
2000

706543
100.796
874736
131.143
34980
154753
69242
-57.339
73701
112.872
244,307
‘50610
‘0-093
0173
0.127
-04097

_L6...



TABLE 7De T(XsY)-STATISTICS OF ENERGY VARIABLES

RUN PEL @62 PES  BE4 Q65 Ta66 PQGT PE3*

DeF e 1000 1000 2000 ) 500 . ' 2000 1000 1000 2000
1 0e0 1.979 0.0 1.400 1,006 D674 11.939 0«.060
2 Cel = =04357 n.0 7.558 244869 1e.02% 12464 0573
3 000 "80060 000 ‘40745 ‘470244 -48.103 : "'8.‘?09 '40609
4 0.0 . =3e355 0.0 =0a284 =264117 =-32.297 ~Te829 2324
5 0e0 ) 0791 0es0 ~-1.562 -2e116 36201 -34081 =-0e04¢
6 ) B0 ~0e843 0.0 ~0.948 -54616 34359 24510 -0.1%0
7 0.0 =-14343 00 ~-0e297 =3e661 15,372 0534 -0.0573

-8 1] le117 0.0 =7«579 -24+308 -40770 ~13.02C ~0e534
9. ; 0.0 =-5.833 0.0 ~6el264 ~40e141 "3-784 "'11.56? 5848
10 " 00 -24230 0.0 ~3e493 -24,789 22.491 ~64389 3.729
11 0e0 =04469 0.0 0e157 -1217 60398 589¢ 0«054
12 0e0 2.631 00 - - 04005 56672 5116 4412¢ ~0eb44
13 0.0 -0.009 0.0 -0.002 0.001 0003 ~6ed31% -0s079
14 0e0 04012 0.0 -0e011 ~0s031 -0.025 4,727 0.109
15 00 ~0.003 000 -0e445 ‘00884 ~0e887 ~4 4265 ~04331
le6 0e0 00 “0e443 - “0e774 ~(e729 G4eb44 -0e721

04005

T**2  0e 131e D 194, 6435, 6228, 942, T6e

_86—



RUN

o
m
.

VNSO -

TABLE 7E.

PE1
1000

1.000
ied0ND
1.000
l.000
1.000
1000
1.000
1.000
1000
1.000
1000
1.000
1.000
1.000
1.000
l1.000

Oe

F(XeY)=STATISTICS OF ENERGY VARIABLES

Q62
1000

l.101
1157
0.%14
1.054
0.829
1.029
lel67
1.049
0.924
1.104
l.094
le145
1.110
1.012
lel21
1.063

46

PE3
2000

1.000

~ o

10050

1.000
1.000
1.000
l1.000
1.000
l1.000
1000
1.000
l.000
1.000
1.000
l1.000
1000
1.000

O

BE4
500

1.083

echl
0.844
1.140
0e850
06565
1.218
1271
0e732
0.875
1.314
0«968
1323
le421
0862
04953

148.

QG5
2000

1.072
1044
0.233
0.604
0e271
0.770
1.723
1.118
0.233
0.593
1.149
0279
le127
1.008

 0e333

0.727

1769.

TQG6
1000

l.263
0930
0e177
0.415
0237
0e628
l1e702
14179
0«844
20349
1.058
0e227
1.009
0.811
0151
0517

1924,

PRG7
1000

1.336
1e25%
0«718
0Oe704
0501
De76
14479
le13¢
0556
0e70¢
165
Del€ 0
le62%
le452
0e512
0701

935«

PE3x*
2000

1.002
l1.008
1263
le.097
329"
1.5%0
l.401
1015
1380
1.155
1.022
20199
1.134
le462
44211
leb643

9132.

_66_



TABLE 7F. P=STATISTICS OF ENERGY VARIABLES

 RUN  PEL @62 PE3  BE4 Q65 TQGs PQGT

" DeFe 1000 1000 2000 500 2000 1000 1001
1 0e0 0e0 0e0 040 0.0 0e0 32443
2 Ne0 0.0 0.0 18:38  35.41 32411 23.27
3 0e0 - =15.78 00 ~10.83 ~57e24 -61.09 ‘14432
4 " 0e0 ~5e44 0e0 040 =24468 32460 ~9407
5’ 000 0«0 0.0 0e0 “'32057 . 53.08 =59452
6] 0e0 0.0 0e0 0.0 =37.28 = 25417 19.89

7} 0«0 000 000‘ 0.0~ "8071 46649 000
8 0.0  -040 00 19621 36036 76479 24423
9 0e0 . =13.07 0e0 - =16400  -57.48 -8.00 -21.67
10 . 00 -4 429 0e0 =640 27401 46434 -8456
11 0e0 0e0 040 040 0e0 4610 49493
B ¥ 040 ~76497 0.0 0.0 -88453 8199  =76.13
13 0s0 0.0 040 0.0 0.0 0e0 =T77492427
14 060 . 040 0e0 00 0e0 0e0 25300670
15 0.0 0.0 0.0 00 0e0 0e0 ~596468

16 0e0 0.0 0e0 0.0 0e0 0.0

656499

~00T~-
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experiﬁents is PE3. The means of the model variables .hich the invariance
arguments show should be zero are not displayed. Neither arc the corre-
sponding tx’ txy and p statistics, which depend on the means. Entries
in the table of p statistics =ve zero if the difference in mean< s
judged to be insignificant at the 95% confidence level (that is, if

txy2 £ 4)., Of the variables associated with wave vector (0,4) only

Re ﬁi; is definitely different from :zéro and only for runs PEl, PE3

and BE4. (See Table 6c.)

At low thermal forcing, the QG mean model state differs signifi-

cantly from that of the PE. The QG Ob is low by 5.2 + 1.3% while 1

is low by 45 + 9.6% (relative to the PE results). The variances are
similar except that those of the corner variables and the ‘xI variables
are significantly low. At high thermal forcing differences between

OG and PE model statistics present at the lower forcing become more
pronounced and other differences become evident. There are significant
differences for all variables associated with the forced mode as well as
a 37 + 0.76 decrease in _BZ: Most of the variances are different;
relative to the PE variances the QG variances of the 7;' and é%
variables are higher while the variances of the other model variables
especially the %I and P6 variables are lower. Relative to run QG5,
run BE4 is a'much batter simulation of run PE3. Comparing the.mean
states, only 7?;3 —EE' and 771' are significantly different from the
PE results and these differences are all smaller by a factor of two

than the differences between the PE and QG mean model states. Although

the ny statistics are significantly different from unity, the vari-

ances of runs BE4 and PE3 are in relatively good agreement.
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The statistics of the energy variables are compar=d in Tables 7a-f.
The residuals of the energy budgets (energy variables 13-16; are all
very small except in the case of the filtered PE (which is discussed

below). The major time averaced flow of enerqy in all the models is

—

The time mean conversion of zonal to eddy kinetic energy, CK . is-
significantly negaiive in the PE and BE runs indicating barotropic sta-
bility. FE; is negative, but not significantly =o, for the QG model runs.

The comparisons of the kinetic energies below also apply. in a rough sense

 to the dissipations since the ratios of the means and standard deviations -

cfftotal, zonal or eddy kinetic energy to thewcorresponding s£atistic'
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of the same component o1 dissipation are always in the range 39 to 65.

Although not listed as separai~ variables in the tables, G, C and D
agree to within 10-6 for each of runs 1 through 5, excluding D calculated
from the filtered data of run PE3. Tic <*+andard deviations of G and C

for the same run always agree to within a factor of 2, but sC is

*
greater than S by factors of 3 and 7 for & = 0.008 and 0.032
respectively.
*
At 6 = 0.008 the QG simulation is energetically in agreement with

the PE climate. The most important differences are that the QG E;

and KE are low by 16 + 2.0% and 5.4 + 1.6% respectively. At the

higher thermal forcing it is again found that the differences present
at low thermal forcing become magnified. Comparing the QG to PE results,

E; and E;. are low by 57 + 1.2% and 25 + 0.95% respectively. Signifi-

cant differences also exist for the conversions; CE and E;- are both

low by about a third. X; is high by 35 + 1.4%. The variances of the

energy variables are substantially different and generally lower,

especially those of KZ’ Cz, DZ and CK'
It seems that the key to the differences of the time mean energy
*
variables at © = 0.032 is that the QG model is less efficient at

converting A into K . Consider the major flow of energy through the

J—— *
system illustrated earlier. Gz is principally controlled by (h O /,Oh)'

For the sake of argument assume G? is fixed by external conditions.

41

—— ——

If Gz is fixed then so are AZ and EZ . The initial effect of
decreasing the effi:iency of CE is to increase K;- and to decrease

E;' and E;'. To balance the budgets 5;- should then decrease and

(—GE) increase. This arqument properly predicts the signs of the observed
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, changes. Inrsimpler 0G models havihg constant % this complicated kehavior
¢ould not occur - in particular, because of the thermal wind relationship,
a small changevin the mean model State associated with a decrease in K
would be ¢zr°cted to be associated with a decrease in A . Tn our model
K and Gb are correlated and CB. éppears in the denominator bf the
definition of A , so a decrease in K may’actually be‘assoéiéted with
an increase in A.

4Comparing the BE to PE energetics, the maﬁdr differences are that
E;' is high by 18 + 2.4%, »E;' is low by 11 + 2.3% and the magnitude §f
E;- is too large by 19 i_2;5%f"The differences between the energetics
of the BE and PE models are much smaller than the differences between the
QG and PE models. In terms of the metric defined by .T2 the QG simulated
energies and energy flows are 33 times’farther than are those of»the BE
from those of the P,

The direct effects of gravity wavés on the PE model climéﬁe'are iso-
lated by comparing the statisticé obtained from filtered and uﬂfiltered
model variabies.v In the tables, results from thé unfiltered data are

~labeled PE3*. As‘expected the means are unaffected. Filtering cannot
éause an increase 'in the wvariance of the model‘variables and 505mus£
introduce a bias. The greatest decrease in variance is 75% for the X

“1

- variables. . However except for the T. and ';(I variables the changes

1
in variances are the same size or smaller than ths sampling uncertainty
of the variances. Since the energy variables aresnot actually filtered
but rather calculated from the filtered model variables, the mean

"filtered" kinetic energies and dissipations are equal to weighted sums

©of the'variances of the filtered model variables and are therefore smaller
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G K D,
172 9457 161
° ! C of 11
170 7 7571 LS
Cs Ks Dy .
-1.5 309 9.6

Figure 3. Energy budget (x106) of run PE3 decomposed into short (S)
and long (L) time scales. Sample length is 200000
time units.
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than the mean "unfilterei" kinetic energies and dissipations. As dissi-’
pation is underestimated by filtering the "filtered" energy budgets do
not exactly balance. To separate the direct effects of the gravity waves

on C, K and I, note that for a perfu:-*+ low pass filter (AJ)

— o AR
Xy = Xy + Xy
A . L, s
where x , the high frequency component of x is x - X and where x.
and y are continuous functions of time on a finite interval of time.
This relationship is easily verified by expanding each of x and 'y ‘

in Fourier series. Thus any quadratic quantity may be resolved into long

(L) and short (S) period components. Formally
—K =C_ =-D_~-C
= - +
C DS CLS

is the conversion from long to short period energy. Although
a. d ‘
a3 ’s

whgre CLS

and CLS are unknown, C may

explicit formulae for s

be obtained as a residual. The results are summarized in Figure 3;

E;; = 1;, i.e., the gravity waves obtain their energy from the longerv 
' period waves. In the time méan sense the gravity waveé act as an adai—
tional energy dissipation mechanismvin the PE model, but havevno net -

effect 0n~thekc6nversion.of‘available’into kinetic energy. -

‘The budgets maintaining the time mean: model state are'qbtained byk



-107-

averaging the evolution equations in time. The invariance arguments
apply to each term of the budgets, so only the budgets for the real parts
of the zonal modes of the spectral variables are considered here. To

the extent that the invariance arguments hold, the time mean continuous

variables are of the form

.; = igg'+ 2(Re__;l cos 2y + Re j; cos 4y)

It is observed that Re :?;' and the components of the budget of Reigg
are all approximately zero excluding the case j’== ¥ for the PE and
BE model runs.

The budget calculation results for the maintenance of Re (Pl'

Re T and Re ﬂf

1 are displayed in Table 8. These values are calcu-

1
lated directly from the first and second moment statistics. The same
calculations were also performed for shorter samples; comparisons show
the results are known to lx].O-.6 for the low thermal forcing experiments.
At high thermal forcing the uncertainty is larger; some of the PE sta-
tistics change by 10% when the sample length is doubled from 100000 to
200000. In Table 8 the fluxes are divided into transient eddy (TE) and

mean meridional circulation (MMC) components. The decomposition of a

typical nonlinear term of the evolution equations is

Z quIJK 7K = ZqIJK -;JI 7ZK’ + Z qIJK—?;?I;
J,K J,K

J,K
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PEL

1 s D )
Budget Terms in 3-D Terms in two : ) 1000
for continuous PE layer equations TE
-T(¥, 7 Sod 43 :
v s J(¥,v¥) 2433 0.02
Advection '3'(’J trj 10.58 0.0Q
oz | (r2vr) | ez -oas
‘ . p~ . o " L
Rel) | tuisting T, vXY |  -0.04  -0.00
AR 71 . R i
Ad}rectlon VX V(Vur)j . -4.58 -0.07]
-4V : h Ll TR
Divergence viT vxX 6.07 . 0.15
Friction -k, (7'¢-9*T) " 12.60
Y ’ ' ' v
Divefrgé{nce VK 28.11
~3(T, 7 ¥) 458,30 0.12
N.Yz..vz ’ » : L v
o Advection ~3’('~P,V‘ ‘T) ~ =-453.83 . ..—0.10} o
Re [ ".Y‘V; . : Moy
! Advection v V(Vz ¥y . 6.52°  .0.30
-; V.~V 2 ‘ P :. ‘V . i .
Divergence V'Y v 7( ~7.54 -0.11
Friction -k T+ k, Vz? f3l,80
~3V’Z Ve . 2327.30
-v(fkxY) - T  -2399.66
(-7 (v29vT+ 7 TP¥)]  19.95  -7.10
Re;(l Ny vi(vy-9T) 18.69  7.09
-V-( y.v)_x{) 1 S S B
-3K, v YY) 43.96  0.00
| =7 1) | -9.718 o0.00
Friction -k, 7K  -0.4s|

Table 8.

lStandaurd meteorological variables where V_
and V. is the irrotational wind.

3

Budget calculations for the real part of the mode 1
spectral variables (x 106). L .

is the nOndivergehi: wind
(See Lorenz (1960) for details:.)
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0G2 PE3 BE4
1000 2700 500
i TE MMC TE MMC TE MMC
-28.69 0.00] -48.31 0.6l -49.45 0.80
13.37 0.00 15.42  -0.03 22.34  -0.19
-27.65  -1.71 -23.55  -1.71
-0.06 0.00
28.14  -0.14 9.56 0.31
-2.49 1.20 16.33 0.84
) 15.35 36.05 25.10
)
29.37 153.19 91.25
457.47 0.04] 2265.62 0.64] 2241.31 4.49
-452,49 -0.¢3| -2276.34  -0.62| 2220.55 = -4.62
273.36 7.75 213.17 5.41
-335.07  -3.67| -262.64  -2.74
i -34.36 -84.72 -68.82
2376.60 4781.38 4547.35
2376.60 -6082.79 -4966.08
274.42 -79.35 192.10 -74.82
292.22  79.31 227.58  74.03
957.78 0.07
-209.30  -0.02
-2.45

Table 8 (cont.)
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0G5 TOG6 PQG7

2000 1000 1000
TE MMC TE MMC TE MMC

__{

-74.84 0.03 -165.44 -.09 -44.06 0.15
53.36 -0.01 83.72 0.01 12.33 -0.01
21.50 81.85 28.42
-38.92 149.47 16.02
2341:49 0.27 2941.75 0.23 2411.10 " 0.63
-2251.71 -0.23] -2909.67 -0.22] -2410.97 -0.71
-51.05 -181.37 -69.99
3694.04 5114.10 5195.40
-3694.04 -5114.10 -5195.40

Table 8 (cont.)
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On the right hand side, the first term is the TE component and the second
i2rm is the sum of the standing eddy (SE) and thevMMC components. In

the table the columns headed MMC are actually this‘second term. ‘The'SE
component ~*~uld be close to zero if the averaging time is sufficiently
‘long since the ensemble mean state is zonal. In Table 8 the rows are
identified in the second and third columns by the terms in the original
‘three dimensional PE and by the terms in the nondimensional two layér
equations corresponding to the terms in the spectral eqﬁationskwhose time

averages are displayed. v—#ﬁ\\

In the budget of Re T ; each of the two Jacobian terms are large

1
in magnitude but they very nearly cancel. At low thermal forcing what
remains is basically a balance between destruction of-the vorticity of the
time mean wind shear by friction and production by divergence.b At high
‘thermal forcing the net effect of the divergence term is negative for
all three models. ‘This effect plus friction balance: the positive’con—
tributions from net advection.

‘The momentum lost by the baroclinic component due to friction between
V5?the two layers is gained by the barotropic componént. Thus the frictional
contribution to the budget of  Re Wl may  be positive, as is observed.

2~

The advection of "thermal" vorticity by the "thermal wind" - J( T,V 7 ) -
also provides’a positive contribution to the budget of  Re ?l. Theée two
effects are offset vy the advectioh of mean vorticity by the mean wind -
J(Y¥Y, V¥ ). The additional terms in the PE and BE budgets giVe only a
'é small net contribufion but individually all three‘of the terms in§olving.

~

‘7 and X are important in the time mean budget. The budget for

Re PZ (not shown) is less interesting since the Jacobian terms must be -
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zero. For the PE and Bt runs, the budget of Re Wz is balanced by
positive contributions from th~ twisting and divergence terms and by nega-
tive contributions from the advection term involving the divergent wind
and the frictional term.

The budgets for Re 2:1 describe how far the mean model state is
from geostrophic balance. The mean PE model state at 9* = 0.008 is
very nearly geostrophic while at 9* = 0.032 the mean state is con-
siderably ageostrophic. The sum of the first four terms in the MMC
column is the residual of the mean model state from the nonlinear balance
condition. Of these four terms the two nonlinear terms must exactly
cancel if the model state is zonal.

0

The & budget states that the net radiation must have zero average,

yielding the constraint

.

The Gb budget states that radiation must balance conversion, that is

C=h Ub

Combining these constraints with those obtained from the budgets of

2 2 ,
90 * J0  and 90 06 yields

—_— 2
' [ = ' >
%" & % Z 0
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where the prime indicates a deviation from the time average. The first

of the three above equations may be written as

1> 2.0y = (8,"% ayt?)

1
2

;O

where //9(x,y) is the correlation of x and y . The constraint on

Ob'c' is fairly strong; it implies that

’ 12 |2% -1 12 12% >
2( 06» / C'7) 2 h ‘/9( Gb,C) 2 ( Gb / CctYys 2.0

and therefore

————

c? > nto? .

In the budget calculations for Re 91 it is observed that the

horizontal eddy heat flux - J( ¥ , € ) - balances”radiation. The other

terms are negligible; the vertical eddy heat flux is alWays less than

10-6 and the magnitude of the MMC term (- 47§;Re 2&) is approximately

. *
1% the magnitude-of the Jacobian term. Therefore since @ > Re,691

—
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for all the runs the time averaged contribution of the Tacobian term
*
must be approximately equal to -h o . Thus the horizonta. eddy

heat flux is roughly the same for all model runs having the same values

*
of h and B . ..
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6. Model tuning;

A rational method of tuning numerical models is proposed. The best
. choice of parameters is defined as that which minimizes the averaged
equared forecast error. The QG mcdel is tuned to the data fruuw run

PE3, and the climate of the tuned QG (TQG) model is examined.

6a. Tuning procedure.

Suppose a model of a real system is

7) L3 = rezm

where the model state vector X contains observables of the real system
and the vector K contains adjustable parameters, We wish to minimize

. ’ T.
the sum of the squared short term prediction errors S = :E.Q_E P

where the sum is over the available observations and where the error is

(Superscript T indicates matrix transposition.) Assume there isba
setbof pairs of observations (gi,gf) in which éach. gi ‘precedes the
éorresponding ‘gf by a time-lag T . X(T;K) 1is obtained by integrating
(7)‘from'initial conditions ~§? for a time interval T . We assume

that observatioﬁal efrors afe negligible and thafflgé mayvbe uéed as
vinitial.conditions without any special initialization.‘ Let §;= KO'
be a fifst gueés of the optimal value of X . This defines a’basic'

solution X, = X(t;K.)) for ¢t e(0,T) and a sum of squaréd errors,
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associaAted with the basic solution,

Let Y(t; 5;15) = g(_(t; + §K) - 25(1:7‘150) . For small 2-15, Y is approxi-

“O —~

mately governed by the linear equation

The matrices A and B depend on the basic solution.

2
Aij(t) = ng Fi(t,§,§)
K
-}w(o'a-vo
B,.(t) = J F, (t,X:K)
ijr o QKj i T=s
20'%0

Consider any explicit time marching scheme approx.mating (8). If
}V(n At; 2_15) is a linear combination of the SKj , then according to
(8) Y((n+l) At; JK) will be also. The initial conditions for (8) -

<

Y(0; §X) = Q0 - are 2 linear combination of the eKj . By induction

and taking the limit as At—> 0 , we see that, to first order,

(9) ¥(r: §¥) = ¢ 8

———
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where the matrix C deponds on the basic solution. Now

(10) E(K+ $K) = E(X)) - X(T; §X) = E(

K) - S IK.

e

The condition for an extremum of S may be written

(Z@T.@ ) ¥ - Sy

Let  § be the value of S corresponding to ﬁ = go + {g , the optimal

N\
value of X . Then the relative reduction of S due to <§5 is

.
- A A A
2o 00 W3 Mo & 2 vm %N &
S S T
0 0 S ER®,) EX,)
3 3 - 'A
which is positive, implying that the extremum is z minimum. If £§

' is not small, then the linearizatidn‘is not strictly valid and go
should be repiaced by ‘gof ég and the process repeated. Convergence is
not assured. Neither is it assured that the minimﬁm found is the abso-
vlute minimum. As in all nonlinear least squares problems a good initial
guesé is' desirable and hélps to avoid these problems.

To calculate ¢ note thatv (9) is valid for any small §_.I_§ , and
(7)’may be used to calculate X and therefore Y for-any' igy .
If IK = eigi , where €i. is a small number and gf’ is a vector
having all zero entrieé e#cluding‘the i(th) entry which is equalbtobone,
fhen the calculated Y is (to first ofder) équal tg €i’ times the
i(th) column of C . The procedure is thus to pefturb each adjustable

: v S P, i
parameter in turn by a small amount, integrate (7) and obtain Y(T; éiZV)
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by subtracting the basi~ solution. Then

Y(r; €.27) ... ei'lng; eig') .

Note that it is only necessary to integrate the original model equation
(7) with altered values of the adjustable parameters - the evolution

of Y , governed by (8), need not be explicitly calculated. The
numerical burden can be kept down by carefully choosing a representative
ensemble of data, and using only a subset of this ensemble until the
final iteration.

The choice of T 1is somewhat arbitrary and it is not necessary
that T be the same for all pairs of observations. In general slightly
different values of i} will be obtained when the model is tuned for
different prediction times, T . T should be short enough so the
linearized equations are valid, yet long enough to average over the
time scales of the parameterized and/or subgrid scale processes. As
T—3> 0 the procedure becomes one for minimizing the sum of squared
tendency errors. This is not recommended since the observational errors
of tendencies are generally greater than those of initial and final
states and if the tendencies are correctly obsérved they may contain
contributions from processes omitted in the model. For example, in our
particular case the preéence of gravity waves in the PE solution makes
it undesirable to ninimize the tendency errors.

There are several possible extentions of the tuning method. The
definition of S may include a constant symmetric weight matrix, EL

Then the extremum condition becomes
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Other definitions of E are possible. Suppose

(11) E® =DE) - DE(TK))

- — -

where D is analytic; then (10) is replaced by

where
| D,
c' =
13 g ky 9%,
-30

D might transform the model variables into energy variables, for example.

The extremum condition is as before with (' replacing Cc . €' may

-~

be obtained in a manner analogous to that described for ¢C by rewritting

-

(11) as

— —~

€' IK = DX(T;K)) - D(X(T;K))

The model climate itself may be tuned if it can be assumed that small‘
changes in K produce small changes in the model climate. (This must

in fact be assumed if any form of the tuning procedure is applied to é .

simulation, as opposed to a prediction, model.) Then letﬁing~«§(§)

———
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be the difference between the statistics of the observations and of the
model data an equation like (i1) holds but it is no longer possible to

write an explicit formula for C' . Now S = E?E ; the summation

o
symbol no longer appears but the rest ~f the argument is unchanged.

When tuning a prediction model it is reasonable to assume that the
ensemble of initial conditions is stationary. It may be necessary to
remove diurnal and seasonal trends first (see Leith (1974b) for an exam-
ple) or replace the adjustable parameters by new adjustable parameters
multiplying functions of time. For example, to take into account sea-
sonal surface changes =~ snow cover, deciduous trees, etc. - we might
assume the drag coefficient in the skin friction formula, . CD , is

of the form

CD'(l + a. sin 2Tt + b1 cos 2Tt)

where t 1is measured in years, and then tune the constants CD' ’

a, and bl. On the other hand when tuning a simulation~model small
changes in X may result in a very different climate. It is well

known that simple models may have surfaces in the space of their adjusta-
ble parameters separating different regimes of model behavior. There-

fore the results of tuning a simulation model by the above procedure

must be carefully cliecked.

6b. Tuning the QG model and results.

We have tuned the QG equations using the observations of run PE3,
* T
identifying K as (k,h, 6 ) and X as the vector of prognostic

model variables (i.e., model variables 1-26). The low pass filtered
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Figure 4. Schematic description of short term prediction error. The line zi—gf
represents the PE model evolutign. Thg line Zi_Zf is the low.pass
filtered PE model evolution. Z! and Zf are projected onto X1 ang

&f in the QG manifold, represented by the ruled surface. The oG
prediction from the initial conditions gi is X(T). The short term
prediction error is Ef-§(T). ' »
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PE observations are used i1~ eliminate the presence of gravity waves
which the QG model cannot simulcte. (See Figure 4.) Hopefully this
avoids initialization problems which might be caused by using only the
piognostic model variables to initialire .l OG forecast. An equally
unsophisticated but perhaps better approach would be to initialize the
QG model 7 and O fields to the average of the PE observed T
and & fields and to evaluate the forecast error analogously.

W is chosen tc be the identity matrix so the squared error is

equal to
(5612 + (502 + 5(s¢)2 + 3(sT)H”°

In this expression, the overbar is an areal average and SZ is the

error made in predicting ; . 4000 pairs of observation vectors are
. f . .

used. T = 5 and successive X 's are separated by 50 time units. The

first choice of _50 is naturally the vector of parameters used in PE3.

Two iterations of the tuning procedure are needed. The results are sum-

Sk
marized in Table 9. The statistic F is defined by

where N' is the effective number of sample pairs and P is the number

of tuned parameters. If the model were truly linear and the errors
*
were ideally distributed then F  has an F distribution with P and

A
N'-P degrees of freedom under the hypothesis that K = K . Note that

0

the value of § for the first iteration is apprcximately equal to the
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Table 9. Tuning the QG model to the observatlons of run °E3
Refer to text (Section 6) for definitions.

Iteration 1: : So = 0.1790 R2 = 0.053
" v
S = 0.1695 F* = 37.5
J K.. ; €, , fk.
e N o3 —3
1 0.0160 0.0004 0.0218
2 0.0180 0.0005 0.0063
3 0.0320 0.0010 0.0005
. 2
Iteration 2: S0 = 0.1715 R = 0.012
S = 0.1694 F¥ =-8.3
~ X A
j . €, ' 3K,
1 __ﬁzL_“ -3 —_—
1 0.0380 0.0010 ‘ 0.200922
‘2 0.0240 0;0010 0.000342
3

0.0325 0.0010 ~0.C00465
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value of SO for the second iteration. They would be equal if the
linearization were exact.

In run TQG6 the parameter values k = 0.03892, h = 0.02434 and

9* = 0.032035 are used. (The TQG model is not a distinct model; it

is simply the QG model with different constants.) The tuned values

of k and h represent a marked increase in the strength of the dissi-
pative processes. Qualitatively the solutions are similar to those of
the high forcing experiments. However (EZE) is negative (= —3032x10_6)
and the distinctive high and low K regimes identified in the other
runs are not evident.

The tuning resulted in a much better simulation of the PE model
mean state. (See Table 6.) There are significant differences between
the TQG and PE mean model states but these differences are considerably
smaller than the differences between the QG and PE results. Relative to

is 5.1 + 0.9% low, Re ‘Ti

is 16 + 2.5% low and Re 6%_ is 7.0 + 2.7% high. 1In the quasigeostrophic

the PE mean model state the TQG Ob
models 7fi must be equal to 691 for all I # 0. If the PE mean model
state is not in geostrophic balance then a QG model can do no better than
to simulate a value of Re 7 and Re é& in the interval between the

values of Re 71 and Re 6& observed in the PE experiment.
The simulation of the energy cycle is not improved by the tuning.
This is not surprising. Neglecting the kinetic energy of the divergent
flow, if the same parameters are used, the governing equations for the
conserved quantities -~ S-K, A+K and 90 — are the same in the QG and PE

models, The same holds for the dissipation and generation terms in the

energy budgets. Tuning the model must change the relationships between
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statistical quantities constrained by the_budgeté;j‘Fdr_examplé;ﬁsince:;_flf

the TQRG value of <Tb is approximately correct but h is-iargér than‘\'i'

the value used in the PE model the budgets force the TQG valueS”of4=E,j=7“""‘”

G and D to be larger than the PE values. (See Table 73;)' A1thoﬁgh',

o

The ratios kE;VB;- apd ki%?ﬁg- are appro#imételyvthélSamé a$iiﬁfth§f'
‘other modéls. *

Budget considerations -also imply thaﬁ the'ﬁ;iﬁteﬁéﬁce,bf“thé meank;jh
fields Qillybe different in the TQG model. The dissipative férﬁs‘ihi  
the budgets are all larger in magnitude. This fotCeéytheifiﬁies £§ bé>
different. 1In particular the real part of fhe mode i‘compoﬁén£ ¢f £ﬁe
_J(q;,Q ) term is —650#10f6 for run TQG6,‘mﬁch.largef in m;jnitﬁdénthénx_f FL

the value of -'485}:10”6 observed in run PE3.

is larger, kinetic energies in TQG6 are even lower than thosevin QG5.;;,jf’
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7. Monte Carlo simulation.

This sec*ion describes a Monte Carlo simulation experiment at the
high level of the thermal forcing in which random perturbations are
added to the QG mode . Llnte every Sf_l. These pnerturbations are gene-
rated so that their statistics, other than those involving time lags,
agree to a large extent with the statistics of the observed short term
prediction errors. The perturbations are then adjusted so that the
erergy invariants of the system are conserved. The perturbed QG (PQG)
model simulates the observed PE model climate nearly as well as does the

BE model.

7a. Analysis of the short term prediction errors.

The short term prediction errors are calculated by the same procedure
used in the tuning experiment. That is the initial and true final states
are takgn to be the low pass filtered observations of the PE prognostic
model variables. The prediction interval is 5 time units and the 40000
siach intervals in run PE3 from time 2000 to 202000 have Leen used. The
f.rst three columns of Table 1( display for model variables 1-26 the
standard deviations of the PE model variables, of the short term (Sf_l)
changes in the PE model variablas and of the short term (5f~l) prediction
errors. The prediction‘errors of Ob , the ‘7} variables and the %’
corner variables are relatively large while the prediction errors of

‘60 and the other (}}I va-iables are relatively small.

First, some of the prediction error may be accounted for by a regres-

sion analysis in which the QG model variables are predictors. This part

of the analysis could be used as the basis of a statistical correction

procedure like those employed by Faller and coworkers (Faller and Lee,
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1975; Falier and Schemn, 1977{ Schemm énd‘Faller, 1977)5 Good discus-
sfons of the problem of the statistical eétimation of predi@tion errors
can be found in their papers. A regression equation is found separately
for each Ez r the prediction error of the i(th) prognostic modei
variable. The predictors in the regression are chosen froﬁ elements of
the vector §(T) ; the current QG model state ana the vector - EXT)j§(O),
which is proportional to the average tendency over the prediction inter-
val. Here X is extended from the definition of the previous section
to include the quasigeostrophically determined 2{1 .variables, which

are expected to be dynamically significant. The least squares estimate

of E. |is
i

3 |
a2y By = by ¢ 21: by X, (D) Z o ’T)-X (0))

where J is ih this éase_38. The stepwise regression'pr0ceduré of
Efroymson (1960) is used to limit the number of~predictors.(and thus
ensure £he significance of the nénzero bji' and cji.) In this proce-
~dure the predictors entering the final regression equétion are chosen by
considering the partial F statistics (F'm) at each step and either
adding or deleting a predictor. For large samplec, if there are currently

M predictors in the regression equation then

F' =N'( “ -1

S om (r" )
where r2' 1s the additional reductlon in variance caused by the m(th)
predlctor, given that the other M-1 predictors are in the regre551on

equation. Under the hypothesis that the true coefficient of the m(th)f
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_ preafctor is zero F'm has an F distribution with 1 and ™N' degrees
of freedom During each step removal of the predictor currently in

the regression =quation associated with the smallest F'm is considered
first. This predictor is deleted if the smallest F'm is less than

Fdel (a prespecified constant) and the next step begins. Otherwise
adding the predictor currently not in the regression equation which would
cause the largest reduction in variance is considered. This predictor

is added if its value of F'm is greater than Fa (another prespeci-

dd

fied constant which must be at least as large as ) and the next

P

del
step begins. Otherwise the stepwise procedure is complete. We have chosen
F = 2.0 and F = 1.5. These values are smaller than normally

add del :

chosen and take into account the fact that N' has been underestimated.

The reduction in variance due to the regression ranges from 1 to
53%. The bOi are all small. Notably the terms involving the 7(I
variables are important in several of the regression equations. The
residuals, Ei—ﬁi , are not noirmally distributed; compared to a normal
distribution the distributions »f the residuals are too highly peaked
ar.d have longer tails. It is found that the variances of the residuals
. . 2

and and prediction errors are proportional to K , the square of the
kinetic energy of the current QC model state. This is not unexpected;

2 . 2 . .
K is proportional to Ro and we expect the QG approximation to

cause larger prediction errors as Ro increases. In general, when the
r~sidual variance is not constant the least squares estimators of the
regression coefficients are no longer minimum variance estimators. A
snitable transformation which normalizes the residual variances is to

divide everything by K . Allowing a constant term, the normalized

regression equations are , .
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J : J
A! = -l : v t - T :
(13) £', = b K + }:l: by X' (T) + §1: oy K (T =X'(0)) +

{esPS

where X'j = Xj/K .. Now ihe_least séuares estimate of E is
K@'. If (13) is multiplied through by K (12) is recovered with the
additional term‘ diK . The stepwise procedure is now constfainedvto
always include . X as a predictot of Ei but the constant te;m bOi
may be zero. The normalized residuals, (Ei—ﬁi)/K , are found to beb
approximately normally distributed with Zero mean and uniform variance.
In those cases when-the di are small, the actual regression equations
are similar to the original equations obtained from (12). »Ihe .di
areknotbsmall for i =1, 5 and 15' and the constant term’ié nonzero
only for i =5 . The reduction in variance ranges from 1 to 52% in
terms of the normal:zed variables and from 1 to 55% in terms of the ori-
ginal variables. (Seé‘TﬁbleflO for'details;) The numbé} of nonzero
conétants in the regression eqﬁations excluding di ranges from 3 to 14.
The normalized residuals have a complicated ovariance structure,
i.e., the matrix C , equal to the average over the sample of
K-z(gjﬁ)(g—ﬁ)T , has many off diagonal terms which are substantially:
nonzeré. To generave pérturbations with these statistics it is neces;
sary to essentially perform an empirical orthogor.al function analysis
of the normalized residuals. Let 1} be the‘diagOnal matrix of the

square‘roots of the eigenvalues of C and let P be the matrix of the

-

. . . T 2.
corresponding normalized eigenvectors of C .. Then P Cp = A7 and

-— A . ‘ ; .
=P  If K l(E—-E) = PAW , then the average of _WT is the

-~ - -—



Standard deviations (x106) of terms associated with regression equation (13). Column

Table 10.
headed Jn is the number of nonzero coefficients, excluding di in the n(th) regression
equation. Refer to text (Section 7) for other definitions. Sample length is 200000.
f £ i A A
_2 X n n " n En n n En/K (En”En)/K Jn
1 2691.26 148197 1250490 96630 92518426 82516458 9
2 1809403 174.58 53¢56 4338 4113467 373517 10
3 7264426 3168e27 89061 6317 88247624 78928417 7
4 7945494 346689 1046056 836083 91206e44 8306877 7
5 2668441 702.74 692460 640475 62424496 58440.,71 9
6 2941.98 705.21 695482 62843 634314290 58287461 8
i ©7%2e00 4780.64 1288618 iUfde40 107694498 934959447 10
8 6889.13 4825.06 1278.58 1066025 10797441 93395.45 12
9 6735487 4843.56 126384 1082+.48 10424200 92379483 8
10 6753682 4831466 1239.29 1066494 103261602 91849427 8
11 680358 4536.21 963672 82957 82876462 72554495 12
12 6741.22 4417646 95257 81938 B215028 72078462 12
13 2764463 656664 65139 648,71 6074560 60513.30 3
14 2838422 658e44 653417 65042 60512462 60246481 3
15 4825425 3368675 238192 222935 21931326 2088472438 11
16 4200415 3209477 206028 1983,77 130155456 183357428 7
17 3198410 27039605 1406451 1343413 13349145 128948.12 7
18 3161.05 26396427 1409.20 134122 13400583 129208,.,10 6
19 3257438 2924 443 1851481 125577 16330199 11381054 14
20 3254433 2902445 1860631 1254 .96 16356244 113868467 14
21 3292476 2879480 1218.62 1093468 110181405 100724455 7
s 3265487 2855456 1205439 1074463 16977526 99973416 10
23 3075405 2099.43 1380611 56133 120711e14 92436431 13
24 3082.82 205163 1387463 970413 122617.89 93487.15 12
25 2021.66 1415435 1155.78 926e7E 102314492 8€497.21 4
26 2020471 1416642 1188495 220054 101675806 86180433 4

~-TE€T~



T -132-

i@entity matrix and each Wi has zero mean. The Wi are found to be
approximately normally distributed. The eigénvalues of C are all of
the same order of magnitude, except for the sﬁallest, whose asséciated
eigenvento.. nakes an insignificant contribution to the totalmvariance.‘
Using standard pseudo-random number generators, identically independently
normally distributéd'numbers ﬁi with zero mean and unit variance can

be obtained. Then perturbations may be generated of the form

, N )
(14) E =KE' +KP A

=

wherev é’ is obtained from thé normalized regression equation (13).

Aithough we do not take it intb account wher genérating thé pertur-
bations the Wi have some nonzero time légged correlations. The magni-
tudes of the éprrelations of Wi(t) and Wj(t+nT) are all less than
0.3 for n=i and all less than 0.2 for n=2 . Thevlargest correlations
are found for n=1 and iéj ; therefqre most of.the strucﬁure of. the
second order time lagged statistics could be taken into accéunt by
modeling each 'Wi as a first order Markov process.

-Excluding time lagged statistics, the §*>kére expected to have
statistics similar to the observed error statistics. By construction
each ﬁi‘ is approximately normally distributed. :Each .Wi is observed
‘to be approximately normally distributed. Agreement in means and cova-
" riances implies agreemént in All'cbhtemporaneoﬁs;statistics for two -
?opulations whiéh are normally distributed. Since PAW and FAﬁ
are linear combinations of W and ﬁ the statistics of the ncﬁmalized

residuals and the random part of the normalized perturbations are

i
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approxim~tely the same. The regression procedure implies that the nor-
malized residuals and the E‘ are virtually uncorrelated. (If the same

3 . 3 3 A
predictors were used in each recgression equation then PAW and E'

LED>

wonld be uncorrelaten_) pf and é' are uncorrelated by construction,
therefore E/K and g%/K have the same means and covariances, if the
sample is unchanged. Since the X‘j are not all normally distributed

it is not necessary that E/K and E*/K agree in all statistics. 1In
any case, when the g* are used in a Monte Carlo simulation the sample
will generally be altered. The above discussion suggests but given no
assurance that the E and g* will have similar statistical properties.
If no normalization were used the first and second moment statistics

of E and the perturbations would agree but the variances of the
perturbations would be independent of K . We feel the dependence of the

variances of the Ei on K is an important property which should be

mirnicked by the perturbations.

7b. Adjustment to conserve energy invariants.

. *
Straighforward use of the wbove E  yields unbounded solutions,

since higher values of K are associated with larger perturbations and
the perturbations may be a source of energy. In the experiments described
below the perturbation procedure is forced to conserve the en2rgy in-
variants. Besides yielding bounded solutions this is desirab.e since

both PE and QG models nearly conserve the energy invariants for short
prediction times. However, the error in predicting the energy invariants
is not small because with the simple projection brocedure used here,

the path of the projection on the QG manifold of an adiabatic inviscid

PE integration in general does not conserve the energy invariants.
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However the error iﬁ predicting the changes in the encorgy invariants

is relatively small and if a different projection procedure were used the
error in predicting the energy invariants might also be small. Moreover,
forcing the perturbations to conserve  the eﬁergy invariants assureg

the correct qualitative behavior in the adiabatic inviscid limit.

. In order to conserve the energy invariants it is sufficient to
conserve th:ee of them - in this case, K-S, 0&2 and 96’ . First,»
the initial wvalues (K--S)i , Gﬁz)i and ( Gé)i are calculated;
Then fhe model sﬁate is perturbed by adding g* to the model state
vector. Now we seek the model state closest to ﬁheAperturbed model state
which has values of K-S ,- 0'2 and 9 identical to (K—S)i P

m 0

2 , . |
( 6& )i .and (,90)i respectively. 6% is set equ;l to ( 90)1,

that is, 3] is not perturbed. We assume the perturbed value of O

0 0

is correct and seek small adjustments, 54& and 57; , to the
perturbed variables, VJI and 7Ev . That is, the adjusted model
» . . e o~ T
state prognostic vector is ( o’o, ( Qo)i, ‘HI+ S‘P[ ’ /I+ S/ I ) .

“'Now to minimize

b2 = :;: \59}|”2> + \57;{2

subject to the constraints

@
i

- L - ;
X L. aIZ( l,‘{’I+ SS“I |2 + [TI+ 5T !2) - 0. - (K—S)i= 0
T B

fas}

m
HYY1
=
FT% '
X

+
s
N

1

"~

qQ
N

il

o
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introduce the Lagrangian multipliers .21 and ;B and minimize

,
D” + 71G + ;\2H . The conditions for an extremum are
2
2 + + =
S?; ﬂlaI (VI SVI) 0

5 2, Lo ~ L _
2 S/I + Qqa (T J,I) 2, (T 57T )y =0

Thus
21 2. -3 1l 2 2
por SY = Yrar ——a ) = Y- o= a oA M)
) A 1 A2 2 2
e ~ — o7 = - — el I _
T4 8T, = Tor Sra e AT = 70 5 a - drot 45, A A AT

If the adjustments, S?& and 57} , are small relative to (VI

2
and ffI then llaI /2 and ,12 must be small and the expressions

for G and H may be linearized. This yields

I
(K-8) - (K-S)
2 2 l— ]2 _ 2 2
A, 2 a; ’71 +212£I! I’ = (o), = (9

where ( o"mz)p and (K-S)p are the values of 0&2 and K-S for the

perturbed model state. Solving these two linear equations gives an
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approximate solution fof P and qz "+~ Then (15) gives the adjusted

1

model state. If A. and A

1 2 are small but not very small the pro-

. cedure can be'iterated replacing the perturbed model state by the adjusted
moGel state Just calculated. This will assure conservation of the energv
invariants to any degree of accuraéy-and the final adjusted model state
will be close (but not necessarily as close as’possible) to the original
perturbed model state. Since the perturbations are randomly generated

anyway, this final adjusted model state is acceptable if the values of

A. and A

1 obtained during the first iteration are small. If 2

2 1

and 22 are not small we conclude no model state having the correct
energy invariants is close to the perturbed model state, discard the

original perturbation as being dynamically improbable, generate a new

perturbation and begin. the adjustment procedure again.

7c. Perturbing the QG model and results.

In rﬁn POG7 perturbations»of the form (l4) are added to the model
state every Sf-l; the perturbed model state is then adjusted according
to the above procédure. The perturbed model state is accepted if

|22| £ 0.2 and the final adjusted model state is acceptéd if

lﬂQ‘ £ 0.002. The size of A is not checked since in test cases

1

it is always smallexr than ,12 by an order of magnitude or more. Of
the perturbed model states generated during run PQG7 aboutv80% are
“acceptable; an average of 2.5 iterations é?& required to conserve thev o
energy invariants. (There were never as meny as 8 iterations of the

adjustment process. 10—6 is the typical magnitude of the change in

. ‘energy invariants caused by the perturbation procedure; very occésionally
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changes of 0(10-5) are observed.) A “est of the adiabatic inviscid
form of the PQG model shows that this mode. conserves the energy invari-
ants as well as does the PE model.

After tho rerturbations are adjusted the adius.cZ é}i may be
obtained by solving (14) with the adjusted perturbation replacing E* .
It is found that the adjustment process does not appreciably alter the
statistics of the ﬁi , except for ﬁl and ﬁ26 , associated with
the largest and smallest eigenvalues respectively. Changes in the statis-
tics of %26 are presumably unimportant. The mean of the adjusted

Ql is slightly negative and its variance is reduced by about 50%.
The eigenvector associated with the largest eigenvalue is very nearly
perallel to the Re 7; axis. Since the regression equation for the
prediction error of Re 71 includes the term +0.107K, a plausible
explanation of this phenomenon is that the adjustment process tends to
cancel this additional forcing tefm.

Run PQG7 is actually divid:d into 6 segments. At the start of each
segment the initial conditions are obtained from the final model state
of the previous segment; the pscudo-random number generator is initialized
with a number constructed from the time of day and the date. One segment
ended abnormally when too many (15 in this case) perturbatiors were
rcjected for a single model state. The last part (approximately 2000
time units long) of this segment was discarded. The final model state
of the retained part of this segment was used as the initial conditions
fcr the next segment. No further difficulties occurred. As in the other
runs, before statistics are collected the digital filter is applied to
the data. At the times during the model run when perturbations are

added, the model state is not uniquely defined. For the purpose of
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continuing the integration the model state must be defined as the final
adjusted model state. Throughout the calculations reported here this
definition has been used. However,.for thevpurpose of calculafing;time
averages this is not the be:z* choice and introdu?es errors in the aver-
ages of those quantities which on thé average are increased or decreased
substantially by the perturbation procedure.

- On the basis of the T? and F2 statistics the PQG model climaté
is much closer than the QG and TQG model climates to the PE modél climate.
~'The PQG model is nearly as successful as the BE model at simulating the
PE climate. Comparing the statistics of run PQG7 to the statistics of
run PE3,kthe most significant differences between the mean model states
are that 0. and 6_ are low by 15 + 0.9% and 0.39 + 0.014% respszc-

0 0

tively. Variances of OB ' 50 ana the X& variables are too
small roughly by a factor of two. The variances of the otﬁér model
variables are in good aéreement with the PE observations, considering
that in the QG models & and 7 are identical.

The agreement between the.meén enexrgy variables of.;uns ?QG? and
PE3 is mﬁch better than the agreement qf runs QG5 and PE3. However,
there are still sighificaﬁt‘differenceQ'in theqeans of all thevenergy
variables. Compared to thé résults of run PE3, the worst defects of
the energetics of run PQG7 are that X;' and K;~ are too high by
32 + 2.7% and 23 i_l}9%Arespectively. As in the other éomparisons
this is @xincipally because _?f;' is tono low and also beéause the
variances of the 91 variables are too high. The“variances of the
eﬁefgy'variables are somewhat improved relative to the,unpertufbed model.

For any budget calculation using PQG7 data the time aVeragéd

 residual is (-Sf—l) times the average perturbation of the quantity for
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which tﬁe budget is being caléulated, negiocting the effects of sampling,
filtering and the end points. By construction Lhe perturbations do not
affect A+K ; therefore D should be equal to G and the effects

of the perfurbatioﬁg may be thought of as conversions becwcen the

various forms of energy. The energy ﬁudget is displayed in Figure 5;

the arrows in the,centef of the diagram represent the energy convérsions
:due to the perturbations. In the mean the perturbations act to convert
eddy to zonal and kinetic to available forms of energy. Presumably‘

the net residual occurs because’the averaged dissipation hasvbeen under—
eétimated due to thé‘way the model state has been defined at times

during the model run when perturbations are added. If we force D
to be ejual to G the net residual is 0(10—6);'

»Fér'the POG model most of the budget constraints of Séction 5 do’
not hold.. In the budget for Re 691 ﬁhe radiation component is correct
to within 2% of the PE value but tﬁe mean Jacobian term is 9% larger  in
magnitude than the PE valuef The difference between thesg two tefmsr
balances the forcing by the perturﬁations. In the budgets for vRe qjl

) B
and Re /l

the frictional terms are roughly 20% smaller in magnitude
than the corresponding terms in the PE budgets. The transport terwms

are correct to roughly 10% of the PE values but the divergence term in

the | Re 71 budget 1is too small by ar order of magnitude.
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8. Summary and concluding remairks.

We have examined the properties of several simple numerical models
of the atmosphere, based on Lorenz's (1960) energy preservinc model.
The basic model is a two layer spectral PF mndel. The BE model is
identical in all respects to the PE model except that the nonlinear
balance assumption is made. The QG model is also identical to the PE
model except that the linear balance assumption is made. Because
the models are otherwise identical the effects of the balance assump-
tions are isolated.

For the sake of efficiency several compromises were made in deve-
loping these models. These compromises or approximations must be
regarded as model deficiencies which inhibit the appliéation of the
results of this study to more cromplex systems. The model deficiencies
are the simplified geometry, the low vertical resolution, the low
horizontal resolution, the unrealistic vertical boundary conditions,
the simplified friction and simplified zonal heating, the absence of
horizontal variations of static stability and (in runs 3-7) the high
taiermal forcing. It is not claimed that these simple models are ade-
quate representations of the real atmosphere; they are only prototypes
for study. However the approximations are well motivated and inter-
nally consistent. Considering the model geometry, there are three
prausible choices - a sphere, an infinite plane and a channel. We
vere unable to formulate (and co not believe there exists) a single set
of energy preserving boundary conditions for all three systems of equa-
tions; therefore using any bounded domain would require differences in
boundary conditions as well as differences in governing equations. More

importantly the real atmosphere is unbounded. Spherical geometry is
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rejected since the QG model is not valid at the equator. Thus tﬁe appro-
priate choice of geometry for comparing the different governing equations
without extraneous influences is an infinite f-plane. Since Phillips'
(1956)_earlybexperiment,it has heen known that_two layer models can
reproduce the basic features of thé general circulation. If a two

layer model is acceptable fhen a low order spectral model is sufficient
because it is known that two layer modelé misrepresent the short waves.
Given the low resolution the simplest physics seems reaéonable. To
Ca firstbapproximation the real atmosphere is zonally heated. The use
of a single independent vafiable to represent the static stability is
a compromise between using a cornstant static stability and allowing
the statié stability to vary horizontally.b A constant static stability
would greatly change the system's energetics. Use of a temporally and
horizontally varying static stability would require a parameterizafion
of coﬁvection.A In a few test cases where horizontal variatidns of
static stability are allowed the model invariably develops a convectively
unstablﬂ region near ﬁhé equat§r (i.e., near y = 0 ). The high forcing
yields a Rossby number which is not small, but this allows differences
between the models to be more easily detected. On the one hand it is
possible that the éimplifications act to constfain the models' behavior
so  that their climates are»necessarily similar. On the other hand it
is possible that more complicated mod:ls with more degrees of freedom
might beaffee to evolve to the same s@atistical state. That is, thiere

is no doubt the simplifications constrain the models, but it is debatable
whether the simplifications constrain the models :to be more or less alike.
The models' evolutions are good prototypes of atmospheric behavior;

The..solutions are complex and aperiodic for appropriate choices of the
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constants. For the nominal parameter values, two regimes which dilfer
energetically may be identified. This is a type of almost intransitivit,
since these regimes have long persistence times. As energies are -
integral quantities this behavior may be ir4enendent of horizontal
resolution.

At low forcing (69* = 0,008, Ro ~ 0.11 ) internal gravity waves
in the PE solutions are present only as initial transient disturbances.
At high forcing (9* = 0.032, Ro ~~ 0.33 ) internal gravity waves are
always present in the PE soluticns. (The Rossby number for this model
may be defined by Ro = 3.6 K% , where the typical wave number is taken
to be 4.) Gravity waves cannot be forced by topography, by fronts, or
by cumulus or meso scale processes, as these phenomena do not exist
in the model. In the time mean sense the gravity waves obtain their
erergy from the synoptic scale waves and are frictionally dissipated.

We compared the climates of the models in terms of the first and
second order statistics. Transports are reascnably well simuiated by
the QG model at both forcing levels. At the low level of for:-ing the
QG model and at the high level of forcing the BE model are successful
at simulating the PE mean states and energy cycles. At high forcing
the QG model gives only a qualitatively correct simulation of the PE
mean state and energy cycle. The filtered equations always tnnd to
underestimate the time mean grous static stability observed in the PE
mdel runs. The time mean enerjy flows are also underestimated as must
be the case since for any given model run the energy flows are all con-
strained to be (approximately) proportional to thHe gross static stability.

Since kinetic energy is observed tc be roughly proportional to dissipation

the time mean kinetic energy is also underestimated.
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It is soméwhat'surprising that the QG model is so successful at -
‘the low level of forcing (which corresponds approximately to the level
of forcing found in the earth's atmosphere). This may be due to one or
more of the model deficiencies listed earlier. The othe. nnssibility is
that the QG assumptionvis actually édequate.fof climate research but
other effects limit current 0G models>in their ability to simulate the
climate. Perhaps a QG model with comparable physiés and resolution may
give as good a simulation of the climate as current global circulation
médels. If for some purpose, low resolution and simplified'physics are
not objectionable serious consideration should be given to QG mbdels.

At the high level of forcing we made two atﬁempts to get better
simulations of the PE climate within the QG framework - the tuned and
perturbed quasigeostrophié models. These models are both more successful
than the.original QG model at simulating the PE climate.

Both the tuning procedure and the perturbation procedure require some
knowledge of the short term (Sf—l) prediction: errors éaused by the QG
assumptlon, One might argue that tuning‘mbdels‘for the pﬁrpose of
-simulation studies is a futile exercise since any procedure baséd cn
. observations is strictly walid only for present‘"external" conditions.
However, current obseivations, especially considering seasonal variationé,
span different "external™ conditions. Second "external" is nearly
equivalent in méaning to "having a large scale separation#k(léith, 1978b);
if the process causing errors has shoﬁ; time or space scales current
observations do embrace a vériety of external conditions. Third, objec-
tive comparisons of different models must be based on their ability to
vreproduce curfent‘conditions. To be fair, the models should first bé

_optimally tuned. The first two points also apply to perturbing models.
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As far as the perturbation procedure ‘s concerned we may in some situa-
tions have theoretical knowledge of the order of the magnitudes of the
errors involved over the short *ime scale. These theoretical estimates
will in gene=2l depend on the external parametexrc an’ r2 may use this
knowledge for other than current conditions.

In the experiments reported here although the observing system is
perfect the initialization and forecast verification procedures used in
determining the prediction errors are open to question. In brief, gravity
waves are eliminated by low pass filtering and then each PE observation
is projected onto the QG solution space by replacing the values of o
ard ?i by their geostrophically determined diagnostic values. Fil-
tering is justified since the QG and BE models cannot simulate gravity
waves. The projection procedur~ is arbitrary.

The tuning procedure described in Section 6 is quite gereral; it is
actually a particular form of l:ast squares estimation. We have tuned
the QG model to minimize the average squared short term (Sf-l) prediction
errors. (This criterion is somewhat arbitrary; other criteria defining
the optimal QG model might be considered.) The tuned QG model is better
than the untuned version at simulating the PE time mean model state, but
the simulated energy cycle and the budgets maintaining the me¢an state
are not improved at all.

In the perturbed QG model randomly generated perturbations are added
to the model state every 5f-1. ~These perturbations are desimed so that
their statistics, other than those involving time lags, are very similar
to the statistics of the observed prediction errors. An important statis-
tical feature of both perturbations and prediction errors is that their

variances are proportional to the square of the model's kinetic energy.
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The perturbations are adjusted to conserve the energy invariants of the
system thereby ensuving bounded solutions. The perturbed QG model is
nearly as successful as the‘BE model at simulating the PE climate.

This procedure is economical; once the statistics of the errors are
known the additional computer time ﬁeeded tc generate the perturbétions
is small relative to the computer time necessary for the time marching
procedure.

Although we are concerned here with climate simulation models the
tuning and perturbation procedures can be applied to numerical weather
prediction models. The tuning procedure offers an objective‘way of
choosing empirical constants once a scoring rule is defined. Tuning
of operational models is probably possible with currently avéilable '
data. If one chooses just a subset‘of the observations which érthruly
independent then the cémputations shOuld not be too’burdensoﬁe and would
only have to be done once for each model (modification). The major
stumbling block is that current initialization procedures depend on the
previous forecast so that several forecast analysis cycl;s would be
needed prior to'each "initial" condition. The perturbation technique
can easily be incorporated into a Monte Carlo stochastic dynamical pre-
diction model. (Fleming (1972) and Pitcher (1977) have already accom-
plished the more difficult task of incorporating stochastic forcing
into stochastic dynamic%l prediction models which directly forecast the
statist;@al‘moments.) It seems'howevar that as computer‘resources increase
the complexity of nﬁmeridal modeié,increases apace, so -that operaticnal

Monto Carlo prediction models may never be economical.
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