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ALTERATIONS OF THE CLIMATE OF A PRIMITIVE EQUATIONS MODEL

PRODUCED BY FILTERING APPROXIMATIONS AND

SUBSEQUENT TUNING AND STOCHASTIC FORCI1G

by

ROSS N. HOFFMAN

Submitted to the Department of Meteorology in January 1980 in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

The simulated climates of nonlinear models based on the primitive
equations (PE), balance equations (BE) and quasigeostrophic (QG)
equations are compared. The models and numerical procedures are iden-
tical in all possible respects. 50 and 26 independen: functions of
time alone represent respectively the solutions of the3 PE model and
of the filtered models. The models are highly truncaj ed spectral
forms of Lorenz's (1960) energy preserving two layer model. It is
assumed that the domain of integration is a doubly pe:riodic f-plane,
that static stability does not vary horizontally and that linear
formulae govern vertical exchanges of heat and momentum. Because of
the models' extreme simplicity very long time integrations (greater
than 50 years in some cases) are easily effected.

Two levels of the thermal forcing are-considered corresponding
to radiatively enforced pole to equator temperature contrasts of
100K and 400K. At low forcing (Ro -' 0.11) internal
gravity waves in the PE solutions are present only as initial transient
disturbances. At high forcing (Ro Ad 0.33) internal gravity waves
are always present in the PE solution. In the time mean sense the
gravity waves obtain their energy from the synoptic scale waves and are
frictionally dissipated

Transports are reasonably well simulated by the QG model at both
forcing levels. At the low level of forcing the QG model and at the
high level of forcing the BE model are successful at simulating the
PE mean states and energy cycles. At high forcing the QG model gives
only a qualitatively correct simulation of the'PE mean state and
energy cycle. The filtered equations always tend to underestimate the
time mean gross static stability, energy flows and kinetic energy.
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At the high level of forcing two attempts are made to get better
simulations of the PE climate within the QG framework - the tuned and
perturbed QG models. Both the tuning procedure and the perturbation
procedure require some knowledge of the short term (5f-1 ,f = Coriolis
parameter) prediction errors caused by the QG assumption. The QG model
is tuned to minimize the av>ragc o ae c Jhort term prediction ero-,s.
The tuned QG model is better than the untuned version at simulating
the PE time mean model state, but the simulated energy cycle and the
budgets maintaining the mean state are not improved at all. In the
perturbed QG modeL randomly generated perturbations are added to the
model state every 5f-1. These perturbations are designed so that
their statistics, other than those involving time lags, are similar
to the statistics of the observed prediction errors. The perturbations
are adjusted to conserve the energy invariants of the system thereby
ensuring bounded solutions. The perturbed QG model is nearly as success-
ful as the BE model at simulating the PE climate.

Thesis Supervisor: Prof. E.N. Lorenz
Title: Head, Depirtment of Meteorology, M.I.T.
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Preface.

The purpose of this preface is to provide background materiaL for

those unfamiliar with the concepts discussed here and to provide orien-

tation for assessing the value of the reported results.

Meteorology is based on the belief that the atmosphere uniformly

obeys certain basic physical laws. These laws together with some

simplifying assumptions allow the deduction of mathematical equations

which govern the time evolution of the atmosphere. If we know the exact

equations, the exact composition of the atmosphere, the exact state of

the boundaries of the atmosphere initially and for all future time and

the exact current state of the atmosphere we would in principle be able

to predict the evolution of the atmosphere for all future time. In

fact our knowledge is an will always be far from exact - consider for

example future readers of this page whose every breath must be involved

in an exact formulation of the boundary conditions. As our knowledge

is inexact our predictions will be inexact. It is expected that as we

improve our knowledge (ard our numerical skill) our predictions will

improve.

It is known that the atmosphere is unstable in the sense that small

differences in the initial states generally result in larger differences

in the future states. Thalt is to say any errors introduced by our

approximations or inadequate observing procedures tend to grow with time.

Eventually the true and forecast future states bear no resemblance to each

other. Therefore there is a time beyond which our predictions are

worthless. However we cain still attempt to predict the future climate.

We identify the climate with the long time period statistics of the

atmosphere. An example of great interest of the various atmospheric

11 1 a __ __ - __" , " " - 4&_ 1 a namg g __ '' .
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statistics making up the climate is the time averaged pole to equator

temperature gradient. This tem'perature gradient is maintained by three

processes - solar heating, infrared cooling to space and the transport

of heat by the atmosphere and oceans. Th1 differentially imposed

heating drives the atmospheric motions. Besides affecting our comfort

directly, the day to day weather transports heat poleward ensuring a

relatively moderate pole to equator temperature gradient. If the trans-

ports were temporarily suppressed the radiative effects would soon

strike a new balance with higher temperatures near the equator and cooler

temperatures near the poles. Such a situation, while possible, would

be unstable and atmospheric motions, which transport heat poleward,

would soon develop.

Since the basic physical laws do not change it is a reasonable guess

that the future and past statistics of the atmospjhere are identical.

This hypothesis will be good to the extent that the boundary conditions

and composition of the atmosphere do not vary and to the extent that

the climate is independent of the initial state of the atmosphere.

Climate theory attenipts to predict the atmospher:c statistics given the

boundary conditions and composition of the atmosphere. If we specify

the boundary conditions and composition of the atmosphere and assume

that the initial conditions are not relevant then the problem as posed

is exact except for our inexact knowledge of the governing equations.

Besides being of theoretical interest, the answers to climate questions

have important consequences for human existence. How would the climate

change if the sun's output decreased slightly? Would an ice age ensue?

Would an increase of atmospheric dust be equivalent to a slight decrease

in the sun's output? Does overgrazing by cattle induce changes in
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&limate? Will the addition of carbon dioxide from burning coal or

the adCition of flurocarbons from spray cans noticeably alter our cli-

mate? These questions and others are under current study. Reliable

answers to thee rplestions will be necessary if society decides toqaintain or

improve the quality of the environment. Meteorological studies of the

large scale circulation always suffer from an inability to perform real

experiments. We are always forced to make do with models, which, no

matter how complex, involve some degree of approximation. We must scru-

tinize our approximations to establish the reliability of our answers.

The advances of modern meteorology are due in large part to syste-

matic approximations based on the introduction of a priori estimates of

the scales of the motions of interest. In particular, the theory known

as quasigeostrophic (QG) scaling has helped explain the processes con-

trolling the large scale atmospheric motions which influence the day to

day weather we experience. Basically it is assumed that the time scale

of the motions of interest is long compared to the time scales of the

other motions. Let C represent the magnitude of the typical velocities

of interest. In a midlatltude storm system C is roughly 50 km/hr.

Let L be a typical leng:h. The radius of a midlatitude storm might be

1000 km. During a period of time T , a particle embedded in the flow

would move roughly a distance equal to C times T . If we choose a

time period equal to L/C the distance traveled will be roughly L

A particle in the center of our typical storm might travel to the edge

of the storm in this length of time - approximately one day. This is

the time scale of the motions of interest. A coAvenient measure of this

time scale is the Rossby number. The Rossby number (denoted Ro )

appears explicitly in the equations which govern all atmospheric motions
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when these equations are put in a certain nondimensional form. (Nondimen-

sional form is a standard form in which no references to units of mea-

surement, such as meters, hours or degrees, are present.) The Rossby

number is simply a constant (which depends on the latitude of interest)

times the ratio of the time of the earth's rotation to the characteristic

time scale. For our midlatitude storm the Rossby number is approximately

one eighth. For motions which are characterized by faster speeds or

shorter lengths the time scale is smaller and the Rossby number is

larger. Two types of motions with small time scales present in the

atmosphere are sound waves and gravity waves. (Ai example of gravity

waves in a different setting is the ripples on the surface of a pond

after a stone is tossed in.) By assuming at the start that the Rossby

number is small the equations can be simplified. These simpler equations

are called the filtered equations because they filter out the motions

with small time scales. There are two commonly used sets of filtered

equations, the QG equations and the balance equations (BE). The BE are

more accurate and much more complicated mathematically than the QG equa-

tions. The original equations, called the primitive equations (PE),

are themselves inexact because a number of assumptions must be made in

deriving them from :he physical laws. However for our purposes they may

be considered exact.

The filtered equations have been the basis cf many studies of the

large scale atmospheric motions. For qualitative understanding of the

day to day weather the acoustic and gravity waves are extraneous. The

filtered equations isolate the relevant motions.. By studying the QG

equations we can understand the processes which control the motions and

development of typical storm systems.
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The filtered equations are also routinely used fo- predictive pur-

poses In numerical weather prediction (NWP) the future state of the

atmosphere is extrapolated from the observed state of the atmosphere

according to the governing equations. To properly describe the motions

the extrapolation takes place by a time marching procedure where the

time step is smaller than the time scale of the motions. Thus a

smaller time step (and hence more computations) are required if the PE

are used since short time scales may be present. If we use the PE it

is also more difficult to initialize the time marching procedure because

small errors in the observations can easily produce large gravity waves

in the numerical solution which would not exist in the atmosphere. It

was originally felt that the difficulties associated with the PE were

insurmountable and the first successful NWP was based on simpler govern-

ing equations. While thE U.S. National Meteorological Center routinely

integrates the PE, the meteorological services of several other nations

use various forms of the filtered equations to produce their primary

product.

We know that assumirg the filtering approximations are correct will

introduce some errors over a prediction interval of a day or so but

this is acceptable if there are other errors of similar or larger magni-

tude caused by the uncertainty of the observations and by computational

limitations. Thus a NWP model may be labeled "good" if it introduces

a negligible error over the short time scale. Such a model may be inap-

propriate for climate studies since these errors may accumulate and

influence the model's statistics over the long time period needed to

simulate the climate.

To solve climate problems a wide array of models have been used;
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while many employ the QG assumption some of the more complex models are

based on the PE. Because of the many differences between t'e various

models and the atmosphere and between the models themselves it is diffi-

cult to assess the effects of the QG assumption alone. Will the er. -rs

introduced by the QG assumption over the short time scale tend to

accumulate or cancel out when we collect statistics? This question is

addressed in the present study. We construct models which are completely

identical in all respects but one - whether or not one of the filtering

assumptions is made. Therefore any differences observed between the

behaviors of the mod.els are due to the filtering assumptions. The models

are integrated numerically and statistics are collected. For the sake

of economy many similifications are incorporated in the models. This is

acceptable since in any comparisons made, both mocels include the same

simplifications. Fcr a low level of the thermal :orcing (i.e., the solar

heating) the climates simulated by the QG and PE iodels are nearly iden-

tical. At a higher level of the thermal forcing -he different models

generate quite diffierent climates; that is, the s'hort term errors tend

to accumulate. For example, compared to the resul'ts of the PE model,

the time averaged pole to equator temperature gradient of the QG model is

23% too low, while that of the BE model is 5% too low. However quali-

tatively the three simulated climates are very similar. Thus the appro-

priateness of the filtering assumptions for climate studies depends on

the values of the external parameters. Generally the filtered equations

are suitable for making qualitative climate predictions. The PE should

be used whenever a quantitative result is required or when the quali-

tative results of a filtered equations experiment are not decisive.
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It is conceivable that m,1ring slight changes to the QG model would

improve its ability to simulate the DE model's climate. Most models of

the atmosphere contain some adjustable parameters which owe their origin

to the parameterization of subgrid scale pr-c-7 es or of physical pro-

cesses not explicitly represented in the model. Tuning is the process

of choosing values for these adjustable parameters. An example of an

adjustable parameter is the drag coefficient C which appears in the
D

equation for horizontal stress / in the skin friction formula,

0CDI CD 0 u 0

where 90 and O are the horizontal velocity and the density at

some reference level. This formula is useful for representing the fric-

tional drag of the earth's surface on the atmosphere. Actually the

exchange of momentum between the surface and the atmosphere is mediated

by molecular collisions so some simplification is necessary. It is possi-

ble to obtain values of CD by measuring the other quantities in the

above formula at a particular point and under particular conditions.

Empirical values obtained in this manner vary considerably and it is

not clear what the single best value is. Further, values valid at parti-

cular points are not necessarily appropriate for diagnostic or predictive

finite grid calculations. As pointed out by Lorenz (1951) the effects

of small hills are not eplicitly present in any model but might be

included in the calculations of 0 by choosing a slightly different
-0

value of CD  . In this study we consider whether or not tuning the

parameters which appear in the QG model would improve its simulation

of the PE climate at the high level of the thermal forcing. In some
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respects tuning the QG model leads to an improved simulation. The time

averaged pole to equator temperature gradient of the tuned t; model is

found to be 7% higher than the PE value. Compared to the error of the

original QG model the sign of the error is >eversed and the magnitud:

of the error is considerably less.

Within the framework of a simplified model the short term errors

caused by the simplifying assumptions are fundamentally unknowable.

However by examining the assumptions it may be possible to estimate the

magnitude of the errors. Suppose the statistics of the short term errors

are known. Can this knowledge be used to improve the model? Along

similar lines, several techniques have been suggested for making use of

the statistics of the errors in the initial conditions for predictive

purposes. The most straightforward of these, Monte Carlo prediction, is

applicable to climate problems. In Monte Carlo prediction the observa-

tions are assumed to be known to a certain accuracy and an ensemble

(i.e., a collection) of equally possible initial ;tates are chosen. From

each of these initial states a prediction is made. The average of the

ensemble of final states is generally a better fo iecast than a prediction

made from just one initial state. Furthermore the variability within

the ensemble of final states gives an indication cf the reliability of

the forecast. Part of this procedure was (and possibly is now) actually

in operation at the New Zealand Meteorological Of1fice (Trenberth and

Neale, 1977). Threa alternate forecasts were prcvided each based on a

different analysis of the available data. (In this case, the initial

state is only poorly known since New Zealand is surrounded by water and

weather ships are expensive to operate.) The difficulty here is that

three times as many computations are needed to produce the three forecasts
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as are needed for a single forecast. Actually one would prefer an ensem-

ble with more than three members. No extra computation is needed in

Monte Carlo climate simulations because we can assume that the climate

of each ensemble member is the same. In applying the method we add a

small perturbation to the current state of the model after each short

term time interval. These perturbations are random but have statistics

similar to those of the short term errors. This method was tested on

the QG model at the high level of the thermal forcing. The resulting

climate agrees much better with that of the PE model. The pole to

equator temperature gradient is still in error - the sign of the error is

reversed as in the case of the tuned model and the magnitude of the error

is now 9%. However nearly perfect knowledge of the short term error

statistics did not in this case lead to perfect agreement between the

climates. It must be added that the QG statistics are constrained in a

way that the PE statistics are not. Therefore perfect agreement is

impossible unless the PE statistics satisfy these constraints.

The result that the perturbed QG model out performs the QG model is

important because it runs counter to intuition. Offhand one would not

expect that a model's response would be improved by adding a random

forcing. This technique suffers from one serious drawback - one must

know the short term error statistics. Error statistics obtained from

comparisons with observations would only be valid undei current climate

conditions. This problem is left unanswered by the present study, but

in cases where the error statistics are known this knowledge should be

used.

~ U-------- -~ ~~ ~;r~l~~~~~~~~;
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1. Introduction.

When studying the climatte one is faced with the problem of describing

the statistics of a system whose time evolution is essentially nonlinear

and which is e-tremely sensitive to iritial conditions. A popular

plan of attack is to develop a numerical model, integrate it in time

and collect statistics. At each time step the current state of the model,

which depends on the past history of the model, may be considered the

initial conditions for the remainder of the model run. Thus any assump-

tions introduced in deriving the model may be thought of as introducing

errors into the initial conditions. As these errors compound their total

effect may be large, although individual errors are small. It has been

envisioned (Lorenz, 1970) that eventually super models may provide a

solid basis for climate research. However any nurmerical model must

involve some approximation and thus introduce some errors. Although the

errors introduced by a particular assumption are unknowable within the

context of the model some knowledge of the statistics of the errors may

be obained by comparing short term predictions of the model to either

a more complex model or the atmosphere itself. I: seems likely to the

writer that such information, properly used, woull improve the fidelity

of the model's simulation of the climate.

Beginning with Phillips (1956) increasingly complex numerical models

have been developed for modeling the atmosphere over long time scales.

Over time the model: have become better at simulating the atmosphere.

However important differences exist between the observed climate and

the model climates. Even the most complex of the current models involve

many assumptions, so it is difficult to determine which assumptions

shou]d be relaxed. One method of evaluating a pa-:ticular assumption is
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to compare the model output to that of another model identic.l in all

respects except that the assumption in question is relaxed. This approach

is exemplified by the work of Manabe and coworkers at GFDL (Manabe et.

al., 1970; Manabe and Terpstra, 1974; Manabe and Wetherald, 1975;

Wetherald and Manabe, 1975). Of course the effects of several assumptions

are not necessarily additive so the appropriateness of any particular

assumption depends upon the "environment" in which it is employed.

In this report we compare the simulated climates of nonlinear models

based on the primitive equations (PE), balance equations (BE) and quasigeo-

strophic (QG) equations. The models and numerical procedures are iden-

tical in all possible respects. 50 and 26 independent functions of time

alone represent respectively the solutions of the PE model and of the

filtered (i.e., QG and BE) models. The models are highly truncated

spectral forms of Lorenz' (1960) energy preserving two layer model. We

assume that the domain of integration is a doubly periodic f-plane, that

static stability does not vary horizontally and that linear formulae

govern vertical exchanges of heat and momentum. Because of the models'

extreme simplicity very long time integrations (greater than 50 years

in some cases) are easily effected. Thus even small differences between

the model climates may be determined with high statistical significance.

Further, we investigate tvo means of making use of the information con-

tained in the (presumed) hnown short term prediction error statistics.

The first technique is to tune the adjustable parameters which appear in

the model. The second technique is to add perturbationv to the model

state at regular intervals; these perturbations have carefully designed

statistical properties. (Reader beware! In this paper, excluding the

portions reviewing previous studies, "perturbation" should connote
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neither linearization nor infinitesimally small.)

The results of these experiments may be viewed from two perspectives.

Fir3t, we may consider the PE model to be the "real" system we wish to

simulate. In this light the results are quantitatively correct and

differences in (model) climates are due solely to the filtering assump-

tions. Second, we may extrapolate our results to more complex models

of the atmosphere. This is risky; the extrapolated results should be

used only as suggestions of the qualitative nature of the errors caused

by the filtering assumptions in more complex systems.

Although most suitable for short prediction intervals the QG assump-

tion has proved extremely useful not only in nume.-ical weather prediction

and linear stability studies but also in diagnostic and simulation

studies and in simple climate models. Surprisincly, until now no direct

comparison of the climates of identical PE and QG models has been made.

When a model is "improved" and the QG assumption is dropped it is gen-

erally easier to reformulate the model from scratch. Then there is a

tendency to go "whol..e hog", relaxing several other assumptions simul-

taneously. The BE have seen limited use in numerical weather prediction.

The long term behavior of BE models has been unknown because the BE are

more difficult to integrate than the PE.

Quasigeostrophic theory has by now a long hi-tory and many authors

have commented on the conditions necessary for its validity. Previous

studies of the baroclinic instability problem rexcal the effects of the

geostrophic assumption on the growth rates and structures of exponentially

growing infinitesimal Rossby waves. Of the several studies noted here

only one (Simmons and Hoskins, 1976) contains a direct comparison of a

PE model and a QG model linearized about the same basic states. A point
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to keep in mind when comparing models differing in more tha. one respect

is that it is difficult to assign portions of the error to the different

assumptions. It is possible that several assumptions, each of which

individually causes a significant error, may together cause only a small

total error; the opposite situation of several assumptions each causing

small errors which together cause an appreciable total error is also

possible. As the principal interest here is in a comparison of nonlinear

systems we consider several topics which bear on the applicability of

the results of linear theory under nonlinear conditions. Following this,

we will review some nonlinear results.

Before reviewing the literature we define two terms. One approach

to determine the adequacy of the QG assumption is to study data from

actual observations or from a model which does not depend on the QG

assumption. Differences from geostrophic balance in the data may then

be attributed to effects not included in QG models. TIese differences

may be termed ageostrophic. A second approach, the approach used here,

is to compare two models, one of which employs the QG assumption. The

total difference between the results of the two models may be partly

in geostrophic balance. This total difference has been termed

non-quasigeostrophic (Gall, 1977). The first approach provides only

a lower bound for the macnitudes of the errors caused by the QG assump-

tion.

The baroclinic instability problem may be stated in brief, as fol-

lows. The radiatively enforced or the observed zonally averaged pole

to equator temperature gradient might be geostro hically balanced by

a zonal thermal wind if the earth's surface were homogeneous and if fric-

tional effects were absent. However, if the temperature gradient exceeds

_ -YILI-I-L
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a critical value such a basic state is baroclinically unstable; that is,

small disturbances will grow by releasing some of the avaiL±ble potential

energy of the basic state. Those instabilities with the fastest growth

rates are seen to correspond in certain res,;ects to the observed di?-

turbances. Although the observed atmospheric disturbances are far

from infinitesimal in amplitude, the observed mid-latitude atmospheric

structure is basically zonal with superposed perturbations. It is

argued that this zonally averaged state is always spawning growing baro-

clinic disturbances whose growth is ultimately checked by dissipative

processes or nonlinearities. As they extract energy from the mean flow

these disturbances tend to decrease the pole to equator temperature

gradient. This suggests the average state of the atmosphere should be

close to neutral stability with respect to these disturbances. The

evidence (Stone, 1978) in the extratropical regicrs supports this con-

tention. For this reason and for analytic convenience many studies have

focused on the neutral or nearly neutral case.

To the extent -hat other processes simply limit their amplitudes

the calculated instabilities with the greatest growth rates are valid

for parameterizing eddy fluxes for use in simple climate models. For

this purpose it is still necessary to determine the amplitudes at which

growth stops. Besides this closure problem there are two facts which

make it difficult t- directly apply the results of baroclinic instability

theory. First, the structure of the linear wave! and their growth rate

spectrum - in particular the wavelength of maximum instability - depend

very strongly on the presumed basic state and on-the numerical model.
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Not constrained by the feedbLaks present in a nonlinear system the linear

results are very sensitive to modeling assumptions. Second, and partly

as a consequence of the previous point, as the waves reach finite

amplitude interactions wich the mean flow profoundly affect both growth

rates and structure. Therefore the concept of the "evolutionary"

selection of structures having the greatest linear growth rates must

be abandoned or modified to include second order processes. Thus, if

we wish to extrapolate comparisons of PE and QG linear instabilities

to the nonlinear regime we must choose the "right" basic state and include

second order processes in some way. Simmons and Hoskins (1978) observed

that in some cases the dependence on the presumed basic state becomes

less marked when the wave is allowed to grow to finite amplitude and

interact with the mean flow. An analogous result might hold for the

dependence on the governirg equations. That is, it is possible that

finite amplitude perturbations of PE and QG models allowing wave mean

flow interactions are more alike in structure than the instabilities of

the corresponding strictly linear models.

The earliest studies of baroclinic instability employed the geo-

strophic approximation. (A succinct review is given by Phillips

(1963, Section 3a). A brief historical summary of the problem when

geostrophy is assumed and when the zonal wind profile of the basic

state is simple, is given by Geisler and Garcia in the introduction

to their 1977 paper.) In fact the earliest formal quasigeostrophic

scaling argument was motivated by the baroclinic instability problem

(Charney, 1947, 1948). Mcre recently the study of this problem has

evolved along two paths. One approach is to make enough simplifying

assumptions, usually including that of quasigeostrophy, so that analytic
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solutions are obtained which explicitly display the dependence of the

instabilities on the mean state variables (Saltzman and Tang, 1975;

Stone, 1972; and references in these papers). When these results are

incorporated into simple climate models the fluxes due to the mean meri-

dional circulation forced by the waves should also be included (Stone,

1972). Along the second path of investigation several of the various

assumptions made in the earliest studies have been relaxed and the numeri-

cal calculations have increased in complexity. Derome and Dolph (1970)

studied higher order effects on the disturbances and found slower growth

rates and some differences in the structure of the disturbances. (Accord-

ing to Mak (1978) Derome and Dolph were not careful enough in their

consideration of the boundary conditions - the problem they solved is

ill-posed and their results are therefore questionable.) Hollingsworth

(1975) investigated the differences between the rormal modes of several

variants of Lorenz': (1960) two layer model (the model used in the present

study). On an f-plane channel Hollingsworth found the growth rate spectra

of the short waves in the QG model are highly sersitive to whether or

not the static stab lity is allowed to vary. Cortparing the results of

the QG and BE models with variable static stabil ty he found similar

growth rate spectra but indicated that substantial differences in struc-

ture exist. On a sphere differences between the two QG models are less

pronounced. Warn's (1976) calculated instabilities of two shallow layers

on a sphere are sic ificantly ageostrophic. Simmrons and Hoskins (1976)

compared the normal modes of the PE and QG equations on a sphere for

three simple zonal flows. In their study the models are identical except

for the geostrophic assumption. The modes of the two models are similar;
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growth rates and relative anlitudes agree to OCRo) . However agree-

ment in terms second order in amp±ltude is poorer - when normalized to

a constant value of maximum perturbatic.n stream function the eddy meri-

dional fluxes of heat and zonal momentum differ by as much as 25% and

50% respectively. Also the neglect of vertical transports in the QG

model leads to poor agreement of the second order changes to the mean

state. Gall (1977) calculated the normal modes of an f-plane channel with

an idealized zonal flow symmetric about mid-channel. For this geometry

and basic state the QG perturbation equations decouple into symmetric

and antisymmetric components. Gall used symmetric initial conditions.

Therefore any asymmetries which developed in the solutions of the

linearized PE must be die to non-quasigeostrophic effects. (This proce-

dure will not detect non-quasigeostrophic effects on the symmetric part

of the perturbation.) Gall found that the perturbation fields and meri-

dional heat transports are fairly symmetric but the meridional fluxes of

geopotential and zonal momentum are noticeably antisymmetric. As noted

by Gall, these results are not surprising as these latter fluxes are

covariances of perturbation quantities which are roughly 90" out of phase.

Points relevant to the application of these compa:.isons to the

nonlinear regime are made in several related studies cf FE models b Simmons and

Hoskins and by Gall and his coworkers. There is some controversy over

the wavelength of maximum growth rate in the linear models. Gall (1976a,

1976b, 1976c) found a maximum growth rate for wave numbers 12 through

15 while Simmons and Hoskins (1976, 1977a) found a maximum growth rate

for wave number 5 through 9. Some of the difference is due to the assumed

basic state (Simmons and Hoskins, 1977b; Gall and Blakeslee, 1977;

Staley and Gall, 1977) but the issue is not resolved. It is possible that

_ i~_ __
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details of the model may be crucial. If this is so, application of the

linear results to other models or to the atmosphere must be questioned.

At any rate, linear growth rate spectra are very sensitive to the basic

state. Since the basic state of a nonlinear model or of the atmosphere

is constantly changing it is not clear how to apply the linear results.

A partial explanation of the sensitive dependence of growth rate spectra

on the basic state was noted by Fullmer (1979), using a one dimensional

QG model. He found that small changes in the basic state zonal wind can

lead to very different growth rate spectra if these small changes in the

zonal wind are associated with relatively large changes in the mean

profile of the QG potential vorticity gradient, which is the quantity

appearing in the stability criterion. In their experiments Simmons and

Hoskins found that the meridional flux of zonal n.omentum is sensitive

to the assumed basi; state while the meridional Ieat flux is relatively

insensitive.

Most of the calculated normal modes have maximum amplitude near

the surface; the shorter the wavelength the more the mode is restricted

to lower levels. A3 a consequence most of the fluxes due to the linear

waves are restricte1, to the surface layer. Gall (1976a) compared the

normal modes of the GFDL global circulation model (GCM) to both obser-

vational statistics and statistics obtained from The GCM. In contrast

to the linear case the most energetic wave numbers in the GCM and in

the observations ar. those less than 9 and these eddies have maximum

amplitudes of kinetic energy and momentum transport in the upper

troposphere. By allowing growth to finite amplitude and wave mean flow

interactions both Gall (1976b) and Simmons and Hoskins (1978) found

that the growth of the disturbances ceases at lower levels first allowing
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the growth of maximum amplitude at upper levels, thereby favoring the

select-.on of longer wavelengths. In contrast, Sinmons (1972), who studied

the same problem with a QG model, reported that the finite amplitude

wave kinetic energy profiles agreed with those of linear waves.

In summary, baroclinic instability results indicate significant

differences between PE and QG linear waves. In particular relatively

minor structural differences can result in much larger differences in

eddy fluxes. Also indicated is the importance of wave mean flow inter-

actions when the waves reach finite amplitude. The effects of the wave

mean flow interactions seem to be as or more important than differences

between the PE and QG linear waves. Therefore if a linear theory is

acceptable,. the errors introduced by the additional assumption of quasi-

geostrophy are acceptable. On the other hand it is questionable whether

we can extrapolate the comparison of PE and QG linear waves to a non-

linear regime.

Heck (1979) calculated the eddy flux of zonal momentum directly from

observational data and diagnostically as a residual of the potential

temperature and potential vorticity fluxes. If the atmosphere were

quasigeostrophic the two calculations should agree. Heck found that

the QG assumption causes a relative error of 25% to 60% depending on

latitude and season. This is the same order of magnitude as the linear

results of Simmons and Hoskins (1976). But it should he noted that they

calculated non-quasigeostrophic differences and Heck c.lculated ageo-

strophic differences.

Semtner and Holland (1978) compared several QG models with a PE

model. Their study shares this objective with the present study but

there are major differences in the physical situations considered and in
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the models used. Semtner and Holland model a primarily wind driven

w- stern North Atlantic circulation using QG models having two or three

layers and constant mean stability and a PE model having five layers.

The QG mode~' and PE model differ in the details of bottom tp -nraphy,

friction, heating and in other respects. In all, eight QG experiments

were performed, demonstrating, among other results, the necessity of

including at least simple topography and heating in the QG model to

properly simulate the PE model's climate. Semtner and Holland origi-

nally felt that the basic QG experiment which includes topography and

heating would simulate the PE results best. Qualitatively good agreement

is obtained but the eddies in the QG model are too intense; the QG

energy levels are approximately 35% higher than thie PE energy levels and

the QG kinetic energy conversion is too high. Sentner and Holland then

tuned the QG model ]by changing the upper layer thickness from 500m to

200m. This results in good agreement with the PE results. Thus the QG

equations are sensitive to vertical discretization. (See also Flierl

(1978).) However it is not obvious how good the agreement would be

between a QG model ind a PE model with identical vertical structure.

Inevitably, as noted earlier, in any numerical model small errors

occur at each time ;step; these errors may amplify, limiting the usefulness

of the model for simulation purposes. It seems a reasonable hypothesis

that anything decreasing the magnitude of the shcrt term prediction

errors will improvE the model's ability to simulate the observed climate.

A number of empirical methods for decreasing the magnitude of the pre-

diction errors have been proposed - model tuning, the empirical correction

method and the empirical dynamical method. (See Leith (1978a) for a

review.) These methods are empirical since they require observations
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of the real system. (This limitation is discussed in the co'clusion.)

Although most models have some adjustable coefficients, tunil-rT

is nearly a taboo subject in the meteorological literature. From the

discussions which do appear in the literature it appears that tuning is

accomplished by rough qualitative argument followed by numerical experi-

mentation. The tuning problem may however by put in the form of an

inverse problem if the condition of optimality can be mathematically

defined. The single example of this approach we know of for a dynamical

system is given by Leith (1974b). Leith chooses , a parameter in

the long wave correction of a barotropic model by plotting the ensemble

averaged root mean square height error of the two day forecasts versus

X and choosing the value of 2 corresponding to the minimum error.

In geophysical diagnostic studies the inverse problem apiproach is more

popular; for example Olbers et. al. (1976) determined wave spectra

from moored array data using inverse techniques.

In Section 6 the QG model is tuned using data obtained from a PE

model run to minimize the mean squared short term (5f- ) prediction error.

In some respects the tuned quasigeostrophic (TQG) model is better able

than the untuned model to simulate the PE model's climate.

In Leith's (1974b, 1978a) empirical or climate drift correction

method the model equations are altered by adding constant and linear

terms to the governing equlations. These new terms are statistically

determined by requiring that the ensemble mean first and second order

statistics are preserved. The tuning procedure is equivalent to an

empirical correction method where a special form'of the corrections is

assumed at the start of the analysis if the terms in the governing
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equations containing the adjustable. parameters are coi.stant or linear

(in the parameters). Faller and coworkers (Faller and Lee, 1975; Faller

and Schemm, 1977; Schemm and Faller, 1977) proposed a statistical cor-

rection method whereby an empirically determined correction is addc:&

to the solution after each time step; they found significantly improved

forecasts in experiments with one and two dimensional forms of a modi-

fied Burger's equation. Their technique may be considered a finite

difference approximation of Leith's empirical correction method.

Presently empirical climate models obtained by inverse techniques

are receiving attention from Hasselmann and his coworkers, as outlined

by Hasselmann in a series of lectures delivered at Harvard this spring.

(A number of papers are in preparation.) For climate simulation purposes

Hasselman suggests seeking agreement between the model and the data in

the frequency domain. A technique for accomplishing this was successfully

tested by Hartjenstein and Egger (1979) using data from simple two

layer model experiments. They sought a constant coefficient linear

zonally averaged model which would simulate the u:onally averaged behavior

of the original model. The model coefficients wEre found by demanding

agreement between the low order Fourier coefficients of the original

data and of the solutions generated by the linear model.

The empirical dynamical method uses the results of integrating a

dynamical model as predictors of the forecast quantities in an empirical

linear (in all stucies to date) regression schema based on observations.

This method has been used in creating MOS forecasts (Klein and Glahn,

1974), in studies of a hemispheric barotropic model (Leith, 1974b;

Lorenz, 1977) and in the final step of a Monte Carlo prediction study
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(Leith, 1974a).

It is not expected that the us of empirical methods will yield a

perfect prediction model. Generally a substantial part of the mean

squared error remains. The residuals, i.e., Ch- differences between

the observed prediction errors and the empirical estimates of the predic-

tion errors, may contain important information. We conjecture that the

regular addition to the model state of random perturbations with theore-

tically or empirically determined statistical properties may improve the

model's ability to simulate reality. (In this study the observational

data are actually generated by a model, but for the purpose of discussion

we will refer to this more complex model as "the real system"; the simpler

model involving the additional assumption(s) will be called "the model".)

To illustrate this hypothesis assume that the real system's time

evolution may be described by a point moving through a multi-dimensional

phase space and that the model's time evolution is described by a point

moving on a lower dimensional manifold in the real system's phase space.

For predictive purposes we need an initialization procedure; this may

be thought of as the projection of the system state on the model manifold.

Now consider a point X(O) on the model manifold and the set X

of all points in the phase space which project onto X(0) and which are

in the attractor set of the real system. Then the projection of the sys-

tem state will come arbitrarily close to X(O) as often as desired over

a long enough period of :ime, provided that the set Xj is not empty.

After a short time T the model state will be X(T) and the points

i fX will evolve to the points X . Generally the projection of then n

set X will not be a single point and the average of the projections
J

~ ;'; ;;' Y)~""-""~~"~~x~~-,n"""~"~~"~""~"
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of the X will be dif1erent from X(T) . The statistics of the errors,
n

where the errors are the difterences of the projections of Xf  and
n

X(T) , may be determined empirically or by theoretical consideration

of the short term behavior of the sys m. r'he actual errors are of

course unknowable within the context of the model. If the model is to

give a good simulation of the system the point X(O) should be in the

attractor set of the model. Suppose this is so; then the model state

will come arbitrarily close to X(0) as often as desired for a long

enough simulation. As the real system evolves every time its projection

comes close to X(O) there will be a certain probability that the real

system is close to a particular X . After a time T the projection
n

of the real system will be close to the projection of the corresponding

f
X with the same probability. The unperturbed model evolution on the

n

other hand is completely determined. by X(0O) . The real system's behavior

can be simulated by adding random perturbations to the model state

X(T) , if the statistical properties of the perturbations are chosen to

agree with the statistical properties of the errors. This argument moti-

vates but certainly does not prove our conjecturE

In Section 7 we test our conjecture by perturbing the QG model at

regular intervals. The perturbations contain a deterministic component

corresponding to a least squares estimate of the prediction error, that

is an empirical coriection, and a stochastic component having statistical

properties similar to those of the residuals of the least squares esti-

mates of the prediction errors.

The addition of randomly generated perturbations to the model state

at regular intervals is a finite difference form of adding stochastic

forcing to the governing equations. In meteorolegy, stochastic forcing
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has been used previously in stochastic prediction and in linear and non-

linear climate modeling.

Since the beginning of modern numerical weather prediction there has

been an awareness that predictability is limited by both the uncertainty

in the initial conditions and shortcomings in the model (Thompson, 1957).

Predictability studies have shown that even with.a perfect model the

uncertainty in the initial conditions limits the useful forecast range to

at most two weeks. Stochastic dynamic prediction has been proposed as

an objective way of utilizing our knowledge of the uncertainty in the

initial conditions. (Review papers by Leith (.1975) and Haltiner and

Williams (1975) cover both these topics.) Within the framework of sto-

chastic dynamical prediction it is possible to include stochastic forcing

to take into account the effects of model insufficiencies on the forecast

(Fleming, 1972; Pitcher, 1.977). Because of the nonlinearity of the

governing equations most stochastic dynamical prediction models rely on

some sort of closure scheme for the higher statistical moments. Leith

(1974a) has suggested Monte Carlo methods may be more economical. Besides

sidestepping the closure problem Monte Carlo predictior schemes should

make it easier to include stochastic forcing.

Recently stochastic climate models have recieved considerable atten-

tion. Hasselmann (1976) suggests that the effect of the short time scale

weather phenomena on the long time scale climate system is essentially

that of white noise forcing. If a linearized model is adequate it is

then possible to evaluate the climate system's frequency response for

any given forcing by the weather. This technique has been successfully

applied to the forcing by the atmosphere of observed sea surface tempera-

ture anomalies (Frankignoul and Hasselmann, 1977; Reynolds, 1978) and of

_ ....~_ uw~n~m~ .--------u~-:;;



-31-

a 8-plane ocean (Frankignoul and Muller, 1979) and to the parameteri-

zation of atmospheric eddy heat fluxes in zonally and globally averaged

energy climate models (Lemke (1977) and Fraedrich (1978) respectively).

The effects of stochastic forcing on nonlinear (climate) models can

in general only be evaluated by numerical means. Robock (1978) included

a stochastically forced component in the parameterization of the zonally

averaged poleward heat flux in Seller's (1973) time dependent model.

The time evolution of the model's annually and globally averaged tempera-

ture qualitatively agrees with observations. Williams (1978) incorporated

a stochastic energy source in his barotropic model of the Jovian atmosphere,

and found the model simulated flow is similar to observations. Without

the stochastic forcing both of these models would asymptotically approach

a steady or periodic solution for any initial conAitions. The present

study contains the first report of the response of an aperiodic climate

model to stochastic forcing.
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?. The model.

2a. Coverning equations.

The model presented below is a spectral form of the energy pre-

serving two lacyr model formulated by Lorenz (1960). For horizontally

continuous variables the adiabatic, inviscid governing equations of

this model are

?'el-J<ve~-JccT) el -Crv 1

SP+ + ve'

-F +

V . ce - + 711i)

-SP (vIZv'vT + Viv - t)

where $ + 0 is the potential temperature in the upper layer,

8 - g- is the potential temperature in the lower layer,

+ ' is the stream function in the upper layer,

- 7 is the sLream function in the lower layer,

S is the velocity potential in the lower layer,



-:33 -

f is the Coriolis parameter,

C is the specific heat of air at constant pressure, and
P

b is a constant approximately equal to 0.124.

J is the Jacobian operator defined by

J(A,B) = VA'(7B x k)

where k is the vertical unit vector and

V is the horizontal gradient operator. There are two indi-

cator variables distinguishing the three systems of equations.

0 for the QG equations and BE

1 for the PE

0 for the QG equations
B 1 for the BE and PE

For a domain without horizontal boundaries, these equations possess

three independent integral invariants which may be taken to be A+K ,

P+I+K and S-K. P+I , A , K and S are respectively the total

potential energy, tiie available potential energy, the kinetic energy

and the gross static stability all averaged over the mass of the atmosphere.

If the further simplifying assumptions that f is constant and that

0 does not vary h)rizontally, and if rectangular coordinates (x,y) and

the scaling

f-x, y L
,.:f x,y:L

I $ : L 2 f S- : L2 2 (C b)-1

are introduced then the nondimensional governing equations are



-34-

citez~= TOV),%ay
.2  07 z(7YvOlt

(VZT1 + 7XVvT)

V2 T

+5
P ( , v,72x

, - J(UVV7T)0-t

P de

- :T (T , 7 + V%

- 5 ((VPi 7.

- , (f (7~zr('

v~r-TVY) - LV)JI

4r y(%vZ')

e 0
= 0

where the overbar and q, and 90 represent areal averages and all other

variables are deviations from areal averages. With this scaling there

are no dimensionless constants in the equations of motion.

An infinite doubly periodic f-plane is chosen as the horizontal

domain. Each of e, (, 7 and / is expanded in a complex Fourier

series of the form
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(1) I(x,y,t) =

where the sum is over all integer wave vectors I = (Ix ,Iy), excluding

I = 0 and where I is an ordering of the I . (That is, the I(th)

wave vector is I , the J(th) wave vector is J , etc.) In order

that g be real I', where -I is the index of -I , must be equal to

the complex conjugate of I for all I and for all .

F = exp(i(I x+I y))I x y

Consequently

FF 0 if I+J 0

1 if +J = 0

and 72F = (-a )F
I I I

2
where a = I*I is positive. Now substitute expressions like (1) into

I

the nondimensional governing equations, multiply by F and average
-I

horizontally. For linear terms

= F F A
J

S I(t) FI (x,y)
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The quadratic terms all satisfy

F ,Q ( 3 ) F_I Q  Fj f J FK ;K)
J K

Z= J IJK 'K
J K

where the interaction coefficients

qIJK = FIQ (F FK
IJK -I J' K

are constants. The one term requiring special attention is

Tha adiahatic inviscid nondimensional equations of motion in spectral

form are thus

T C-1 7 K K4
+ o (- aO

(2. a)L)
(2.a) d

- 2 Y - Ca.K (-Q. IV, YCI. & % 7

1 0, e / 2)
-a IA J8  1 + 4 - ,

+ P XT C :-( K')%IC

5 T =g
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0

where we have

are

written for
3 h

. The interaction coefficients

CIJK

dIJK

e
IJK

= _I J J(F , FK )-I J K

-= I V (Fj FK)

-I FJ K- F- VFj- VF= F F *V'K

where

b = FF
IJK -I J K

(K x J)b
IJK

2 2 2
= -(I + K - J )b

- - IJK
(2 2 2

= ( + K - I )b
. - - IJK

1 if J + K= I

0 otherwise

These equations conserve the three energy invariaits of the original

two layer equations. The only requirements for this to hold are that

S, 'P , 7 and , are all expressed in terms of the same expansion

functions, and that whenever a wave voctor I is included in the expansion

-137-

C
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so is -I.

Diabatic and viscous processes must now be specified. Of the many

possible parameterizations we choose the simplest. Since the principal

interest here is in the differences between two systems of equations

having identically parameterized friction and heating it is not expected

that these differences will be overly influenced by the choice of para-

meterizations. Second, simplicity is in keeping with the anticipated

severe truncation. Following the approach used by Lorenz (1962, 1963b)

in studying QG models, we add to the model surface friction proportional

to the velocity in the lower layer, a momentum exchange between the layers

proportional to the velocity difference between the layers, a heat

exchange between the layers proportional to the piotential temperature

difference between the layers, heating of the lower layer proportional

to the difference between the temperature in the lower layer and an

imposed temperature field and heating of the upper layer proportional

to the difference between the temperature of the upper layer and an

imposed temperature field. These last two effects may be thought of as

due to radiative heating and/or boundary layer heating. If the propor-

tionality constants, assumed all non-negative, are respectively 2fk0,

f(k -k0L, fh , f(nl+h 2 ) and fhl -h 1 then the scaled spectral equations1 0 1 2 1 2

(2.a). include the additional terms

(2.b)- % -

(2.b) ***''y - &&2: i -

_awl
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where the superscript R refers to the imposed (radiative) temperature

field. The sketch on the next page illustrates the model physics.

2b. Energy equations.

The flow of energy through the system is governed by the usual

energy equations,

d-A
dt

d
-K
dt

d
-A

dt Az

d
-A
dt AE

d
-K
dt KZ

d

= G - C

= C - D

G'z

= GE +

= C -

= C +
E

C - C
A Z

C - C

C - D

C - D
K E

where A, K, G, C and D ;:epresent respectively the available form,

kinetic form, generation, conversion and digsipation of energy averaged

over the mass of the atmosphere. The subscripts Z, E, A and K denote

(3)
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Momentum
Exchange
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--f(k -k ) (V -V
2 1 0 3 1
1
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Heating -f(h l -h 2) (3- R)
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Heat 0. 3 1

Exchange 1
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R
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Surface Friction -2fk V
Surface Friction 0~1

Model physics in dimensional form.
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£espectively zonal, eddy, available and kinetic forms of energy or energy

flow. The division into eddy and zonal forms is in the space domain

(Oort, 1964). Below the diagnostic equations for the energy variables

are presented i,. t-rms of the nondimensional horizontally continue: -

variables. (The scale for energies is L2f 2 .) The notation is more

concise and it is easier to follow the derivation in this form; however

exactly analogous statements may be made directly in terms of the spectral

variables. For example, in terms of the continuous variables the hori-

zontal average of any Jacobian term is zero because of the periodic

boundary conditions while in terms of the spectral variables this holds

because of the symmetry properties of the interaction coefficients;

c JK = -c-J,-IK = -c KJ All calculations reported in the sequel are

performed in the spectral domain.

The forms of energy for the two layer model (Lorelnz, 1960) are kine-

tic energy, available energy, gross static stability and total potential

energy, which are defined respectively by

A C. -6

0.- 0
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where an overbar is again an areal average and the unsubscripted variables

are deviations from such an avrage. a/b is a constant, approximately

equal to 6.424. Cm is the maximnm value of S for any hypothetical

adiabatic rearrangement of the atmosp±7?rv. It is equal to

C o', + O- + - ) since mean potential temperature (i.e., 19 )

and mean squared potential temperature (i.e., + 0 + )

are conserved by the model under adiabatic conditions. Another energy

invariant, that is a quantity conserved by the model in the absence of

dissipation and heating, is the total energy P+I+K . Therefore A+K,

A+S, K-S and P+I-A are also energy invariants. To divide A and K

into zonal and eddy components it is necessary to use the second form

of A which, similar to conventional formulations, is the average of

the variance of potential temperature divided by a stability factor.

Note that the stability factor is a function of time.

Let e -be the zonal average of and let S = 3- 6

be the deviation from the zonal average. Then

K + (F. It

As the static stability does not vary horizontally
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By deriving the evolution equations of K, KZ , KE, A, AZ and AE and

identifying the results with (3) the following relationships are

obtained.

C = - [ve"

Cz = - 17] v' [e]

+L'-VI s~vov rT~7 vo z'r)

+ L-7K (-T(l 1'fl. - J(r T)vVz)

+ EI1 (icS' 6 (V.V T t Vr V -VV

_~

-f- -P i (Y- ) VIX))

I-------

~-----

- J-(-, 1 72 Or ) )

+ 5" V-(,V -YV, Y-)

- V 7 ( V, LV. --)))

f- LXI (-S-P (V,(',T Y)Y-?) J!~, o2,11
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CA O(cFA 2- CZA9 t

I) = ko B~'cv-_L_)2 + I k NO) ( rC, - ,kT(IZ

S: (o (,'-,) +(k- k)f' + ,k,[7X12

'E - kf '- vr') + (k,-uk (v','," z p k, (VX')'

G E~ i'3~ s/-B(deliGrOlt B/mm

+o'(- 1 d)

- IrA+6-A9 C

where I rndicates the diabatic part on'Ly of the heating tendency,
d-

that is terms corresponding to the terms on the right hand side of (2.b).

The derivation of the above equations is long but straightforward,

requiring the repeated use of integration by parts and of the periodic

~YY--------.----------- ; ~;___lillll~L .-~. ... (--i--;iilL1IC~~iiIIY?_IIIII~IIUC~~II_ -i-~_?il.l
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boundary conditions and tile manipulation of the averaging oge-rators.

The following example captures the essence of the calculation. Consider

the evolution of K for the QG equations; for the barotropic component,

a t

= v. (rP T) - FJ t

This argument is also true if 'T replaces ' . Then substitute

from the vorticity evolution equations to obtain, under adiabatic invis-

cid conditions,

d
K = -CK - 7CK - KV

-CK + CZ

since V7'1' = 7r t eqfor the QG equations,
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3. Experiments.

3a. Numerical procedure.

In the integrations reported in the sequel the alternating 4-cycle

tIp ...-rching scheme (Lorenz, 1971) has bern used excl3sively. This

method is essentially fourth order in At; every fourth step the inte-

5
gration error is order (At) . (In the N-cycle scheme At=N it, where

Ft is the small internal time increment.) The computations have

been performed in double precision on the GLAS Amdahl computer.

To ensure the solutions remain convectively stable, at each time

step a check is made for the condition i i 6 and dt 0

ddtwhere 170 is an assigned constant critical! value of mean stability.

When this condition obtains TO is set equal to zero. This is a
dt-

parameterization of convection; we assume that whenever T reaches 0,

convective instability, just enough to offset any further dynamical

destabilization, occurs. Actually, with r =0 , in the experiments

reported here the convective adjustment is never needed once equilibration

has occurred and we may take the view that the governing equations do

not include this process. Unless otherwise stated no adjustment was

made during the model integrations.

For PE integrations all the spectral variables are prognosticr

while for the filtered equations we have ccnsidered 00' 90' ' I and

I to be prognostic. Here and below in the text, without further

qualificatio. denotes the set 6f spectral variables I for all I

under consideration. For the QG equations or the BE ' is evaluated
I

from the balance condition

_ I _~ _I____X_;_/_;il_;_
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+ "'K~ eXK) K

For the BE if e instead of 7 is chosen to be prognostic, then
I I

S is determined by a linear system of equations whose coefficients

depend on I and . I is found by demanding that the time

rate of change of the balance condition holds. The resulting omega

equation is of the form

(D+ A) =b

where is the veztor of the XI spectral variables and where the

diagonal matrix, D , corresponding to the QG terms, dominates the full

matrix, D + A. D depends on a ; A depends on 'I and 7I;
I aI

b depends on 9 , I 7and 9.

In the computations, only variables correspcnding to wave vectors

in one half of the wave vector plane are actualll prognostic since we

require that the solution be real; i.e., m ust be equal to the

complex conjugate of SI for all I and for all I . Another

economization results from noting that all interaction coefficients are

proportional to bJK. All the double sums may therefore be collapsed

as follows:

3 Ic i7 X7KT-z



-48-

3b. Truncation and choice of constants.

In simulation studies one is always faced with a trade off between

the model resolution and the length of the model generated time history.

Truncation errors due to the space and time finite differencing schemes

are proportional to some power of the grid increment. To minimize

truncation error one would like the highest resolution possible, but

the higherthe resolution the higher the computational burden. On the

other hand, the computational burden is also increased by the long time

histories one would like in order to make statistical inferences,

In this study highly truncated models are used so that long time

histories may be easily obtaineei. Highly truncated models have proved

useful in a variety of studies (Lorenz, 1963a). In the comparisons

to follow we may assert that the truncated PE model is the real system

we wish to model. In this context the choice of extreme truncation in

the filtered equations models is appropriate. The 12 wave vectors kept

are represented below by the x's in the I plane.,

y
4

4 8 I
x

; -- ^~~-^~-....-.~XI-~-~--.---rrr;~iir=1 ~.~ ;---r~~rr ------~-



-49-

Table 1. Wave -rector ordering scheme.

Wave nuinber
(I)

0

1

2

3

4

5

6

Wave vector

( Ix Iy)

(0 , )

(0 , 2 )

(0 , 4 )

(-4 , 2 )

(4 , 2)

(4 , 0)

(8 , 0)
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The wave vectors in one half of the i plane are ordered in Table 1,

thereby ordering the spectral variables.

It is known (Lorenz, 1963a) that highly truncated models may exhibit

a variety of tLye< of solution dependinq on the values of the constnts

appearing in the parameterizations of friction.and heating. In preli-

minary experiments the evolution of the energy variables was constant,

periodic or irregular for different choices of the constants and trun-

cation. For the purposes of this study values which yield irregular

solutions exhibiting several time scales are desired. To limit the

number of free parameters we assume that

2k = k
O 1

h = h I  h = h

R R *0 = -10 =10
0 0

6)= if = (0,2) or CO,-2)
0 otherwise

so that'Once the truncation is fixed only k, h and * are free. These

assumptions correspond to no diabatic heating of the upper layer and an

imposed temperature field in the lower layer of

9R(x,y,t) = (11 + 2 cos (2y))

The governing equations might have been written without reference to

R by stbstituting 8 ' + R  for 90 , noting that 0 does
0 0 0 0 0

not vary and then dropping the prime notation. Therefore 0 might

have been chosen quite arbitrarily; it affects only the unavailable
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potential energy of the model. The average of is 8 .

* *

Two values of 0 have beei. considered: = 0.008, which will be

called the low thermal forcing case and 9 = 0.032 , the high thermal

forcing case. If the length scale L is taken to be the radius of

the earth then these values of 0 are dimensionally 25K and lOOK

respectively. In the absence of other effects the constants of propor-

tionality listed in the previous section are reciprocals of e-folding

decay times for the velocity in the lower layer, the velocity difference

between the layers, the potential temperature difference between the

layers and the differences of the temperature from the imposed tempera-

ture in the lower layer and the upper layer respectively. The above

assumptions imply that the parameterized exchanges of heat and momentum

between the surface and the lower layer are four times stronger than the

corresponding exchanges between the two layers. In this study, except

for the tuning experiments in Section 6, k = 0.016 and h = 0.018

-i
For these values and for f = (3 hours) the first four of the above

e-folding times are 7.81, 31.25, 13.89 and 3.47 days. Admittedly these

are not optimal estimates of decay times for the;e processes in the

atmosphere, however choosing values based on atmospheric observations

would not necessarily ensure atmospheric (i.e., irregular) behavior in

this simple model.

To complete the model specification At mLst be chosen. As noted

earlier, in determ:ning the size of At the twD conflicting criteria

of accuracy and economy must be satisfied. For the purpose of comparing

the models, time stepping errors should be insignificant compared to

the difference between the evolutions of the models from the same initial

conditions. For the purpose of computing statistics of an irregularly
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-volving system it is reasonable to choose at as large as is compa-

tible with computational stability, since for any At which is numeri-

cally stable the variables will be positively correlated for lags of

several At . Thus the effective number of independent observations

will always be less than the actual number of observations. Secondly,

when the initial conditions for the problem are arbitrary the statistics

identified with the climate of the model are an average over time and

initial conditions. If the time stepping procedure is accurate for

only M steps then every M Cth) data point may be considered a new

set of initial conditions. With these thoughts in mind we have per-

formed a series of test integrations and Cconservatively) chosen

At = 1.0 and 0.5 for the low and high thermal forcing cases respectively.

These values are appropriate for PE integrations once the model is

equilibrated and these values are used universally so chat the models

are computationally identical. Larger values of At could be used

for the QG and BE models,

3c. Initial conditions.

The initial conditicns for the experiments are zonal steady state

solutions of the. appropriate governing equations. If all the variables

associated with nonzero I are initially zero they remain zero. If
_x

the equations are integrated from the initial conditio:s 0 = 10 0*,

S= 0, all other vari,4bles with I = 0 equal to a small value and
0. x

all variables with Ix 0 equal to zero, then for the first few hun-

dred time units the convective adjustment is on., Subsequently the solu-

tions asymptotically approach steady states which have positive 0.

i ~__n~__ ~__r___l_ .l__1l~iii -~ s~s~-.-._I
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The final states obtained in this manner plus small perturbations are

-he initial conditions for the long time integrations.

It is possible to analytically solve the zonal steady state QG

equatioin Since the Jacobian terms vanish

I I I k I

for all I and

SR 0 R

The evolution equation for each I then reduces to

2k = R
(a 2 0- + h) I : h R
1 2 0 I I

Now restrict I to the positive I axis. For the forced mode
y

- I = F - F cannot be zero; therefore

F

For the other modes two possibilities exist; either I = 0 for all

I X F or I = 0 for all I F, J and i f 0. The second case

leads to a contradiction. For the first case the T0 evolution equa-

tion implies



Table 2. Experiments

Length of
Integration

102500

102500

202500

52500

202500

102500

102500

Consents

h,k altered

Perturbations
added every
5 time units

Run Governing
Equation

Run
Name

PEL

QG2

PE3

BE4

QG5

TQG6

PQG7

PE

QG

PE

BE

QG

Tuned

Perturbed
QG

*9

0.008

0.008

0.032

0.032

0.032

0.032035

0.032
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Since the left hand side is real and positive, if x = / FR , then

x e (0,11 and satisfies

3 2
f(x) x + b(x-l) = 0

where

eF7I ($k) 

As f'(x) > 0 for all real x only a single solution exists. An

asymptotic expression for x is

x = 1 - b-2 + 3b-4 + O(b-6

3d. Qualitative behavior.

The basic expe:-iments performed are listed as runs 1-5 in Table 2.

For a given value of e the qualitative behaviors in these runs are

the same. It is possible to select instantaneous states or short evo-

lutions from the various experiments (with the samne value of *) which

are either very much alike or significantly different. To avoid either

prejudice, typical results from the PE runs only are presented here;

similar results could be chosen from the filtered equations experiments.
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The maps of Y , t'ke midlevel streamfunction (Figure 14 show that

in spite of the severe truncation a variety of situations are possible.

As an aid to visualization slightly more than one wavelength in x is

shown in Figure 1. Figure la depicts Y at a time during run PE1

when the kinetic energy is relatively low while Figure lb shows Y

at a slightly later time immediately after a relatively high peak in

kinetic energy. Figures lc-d are similar plots from run PE3. Note the

change in contour interval. The 9 field in the high thermal forcing

experiments is roughly three times as intense as that in the low thermal

forcing experiments. (Therefore the kinetic energy levels differ by

approximately one order of magnitude.) Because there is no s-effect,

that is since f is constant, the features on the maps tend to intensify

and decay in place.

The time evolutions of the energy variables provide good visuali-

zations of the time behavior of the model. Plotted in Figure 2 are the

time evolutions of K, K-S and A+K for experiments 1 and 3. The time

intervals contain the tin.as of the maps in Figure 1. I:n Figure 2 the

zero point for A+K is different from the zero point of K and K-S

but the scales for the three quantities are identical. Comparing the

plots in Figure 2, the low thermal forcing case has longer time scales

than the high thermal forcing case and the magnitude "of A is several

times the magnitude of K in the low thermal forcing case while A

and K are roughly the same size in the high thermal forcing case. K-S

and A+K are controlled solely by the slowly acting dissipative processes;

compared to K , most of the variance of A+K and K-S is associated

with the longer time scales. (K-S) and K-S tend to be small

compared to dt K and K respectively. In part this behavior is

---L----- -~-i-lll-~~~JOIMCBbj~i~~_~~~L,
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connected with our choice of the parameters h and k . In the tuning

experiment, for another choice of the parameters, K-S still has less

variance and longer time scales than K but does not have a mean close

to zero. A partial explanation of this behavior is that whenever there

is conversion between A and K both K and S increase by a similar

amount; thus K and S should be positively correlated. If K and S

are strongly correlated with similar variances - as observed in this

system - then the variance of K-S will be small compared to the vari-

ance of K.

The sign of K-S is a convenient indicator of the two regimes

evident in longer plots like Figure 2. When K-S is positive K tends

to be high - roughly 15% above the overall average - and the variances

d
of K and dK are larger than when K-S is negative. Usually the

dt

transition to the high K regime occurs during a rapid conversion of

A into K following a buildup of A (e.g. near time 5800 in Figure 2a).

The transition to the low K regime is generally preceded by a decay

in A+K (e.g. near time 56100 in Figure 2b). These regimes tend to

persist for long periods of time as can be seen in Figure 2.

Figure 2 suggests and longer plots show that the system is boundecd

r:nd in particular that (0 is bounded away from zero. While we can

prove that the system in bounded we cannot prove that 0" must be

positive. Physically we expect the system to be bounded as long as the

drag coefficients - h and k - are positive. That is, both friction and

heating tend to drive the system towards finite states - the states

of no motion and radiative equilibrium respectively. We expect the

system to remain in the neighborhood of these states. Budget constraints
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0 .0.25 X/7r 0.50

Figure la. Map of Y (x 103) at time 5670. Run PE1.
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Figure lb. Map of ( (x 103 ) at t:me 5795. Run PE1.

0.625



-60-

0.50

0.25

YY 0.0
70.25

-0.25

-0.,50 1 I I II
0 0.25 0.50

X/w .5

Figure Ic. Map of (x 1031 at time 56135. Run PE3.
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Figure Id. Map of ' Cx 103 at time 56425. Run PE3.
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Figure 2a. Time evolution of K ( ), A+K (------) and

K-S (-.-*--). Run PEI. Scale for A+K is on right.
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Figure 2b. Time evolution if K ( ), A+K (-----) and
K-S (-.-..-.). Run PE3. Scale for A+K is on right.
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(see section 5) imply that the time average of iO is puritive but

do not ensure that O is always positive.

To prove that the system is bounded we seek a quadratic positive

2
definite quantity, Q , which is conserved in the absence of friction

d 2and heating. If the friction and heating are linear then Q will

be constant on (generalized) conic sections in phase space. For this

system an appropriate choice is

Q-9 abK + o eL + (Q'-8,-" (b-bA

S+ (0+ + 6)

where 0 0 0 , a is an arbitrary constant and b is an

arbitrary constant greater than zero. Since ( ' + + ),

9 ' and (K- O-) are c)nserved in the absence of friction and heating

2 2
so is 0 . The evolution of Q is governed by

h-

S(o_ I+ c)

* d 2
where c = b-a- dtQ = 0 defines an ellipsoid, E, in phase space,where the phase space is dtefined by the real and imag

where the phase space is defined by the real and imaginary parts of the



-65-

spectral variables, excluding XI in the QG and BE cases. Within E,

d 2 d 2 2d-Q > 0, while outside of E -Q < 0. Once transients Uie out Q
dt dt

2
is bounded by the maximum of Q on E. Thus the system is bouxied.

Note that one poiiiL on E is

-.-' = -- 8 0 = = =0IE 0 0 .2

and

S( ( +~ + ('I < 0

Thus this analysis fails to show that C0 is bounded away from zero.
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4. Gravity waves, digital filtering and data sampling.

The prescribed boundary conditions - the vanishing of the vertical

velocity in pressure coordinates at thu top and bottom of the model

domain - prohibit external gravity waves. The adiabatic inviscid equa-

tions possess a solution of no motion in which -O and 80 are
0 0

constants and all other variables are zero. Linearizing about this

-iv t
basic state and assuming a time dependence of the form e two

solutions are found. The first, the geostrophic mode with 7= 0,

is found for the QG, balance and primitive equations. The second solution

represents (internal) gravity waves and is present only in the PE case;

the frequency dispersion relationship is

(4) a2 a1
2 +1

.For O0 positive the g:ravity wave modes are neutrally stable.

For the low thermal forcing case, estimating the size of 0-
0

-3
as 10 gives i/ in the interval 1.0 to 1.064 for the retained wave

vectors. Discrete Fourie? transforms of some time ser..es of the I

evolving according to the PE were calculated. Using initial conditions

obtained from the final state of a PE model integration no evidence of

gravity waves was found. Using the same initial conditions but setting

the dissipative constants k and h equal to zero, gravity waves

developed almost immediately. Using initial conditions obtained from

the final state of a QG model run and integrating the PE, gravity waves

which dissipated with a time scale of 100 were present. We conclude

gravity waves are not present in the PE model once transients die out

when the thermal forcing is low.
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When the therilal forcing is high gravity waves are always present

in the PE solution. Frequency spectra of the nonlinear QG nodel solutions

are flat and have little amplitude for 3/ greater than about 0.35,

while the nonlinear PE model solutions of I and /r exhibi,

peaks in the frequency range 0.62 to 1.96, corresponding to periods from

3.2 to 10.0. Most of the power is concentrated in periods from 5.5 to

-2
8.2. Estimating 0 as 10 , (4) gives / in the interval 1.0 to

0

1.64. Another family of linear gravity waves develops during the growth

of disturbances from the zonal steady state solutions. During these

experiments the PE model XI exhibit spectral peaks for V/ = 0.57

to 0.79, corresponding to periods from 8.0 to 11.0.

In making the QG or balance assumption the possibility of gravity

wave behavior is el.iminated. Therefore we evaluLte the success or fail-

ure of the QG model in terms of how well it simulates the behavior of

the PE model on time scales longer than the grav:ity wave time scale.

For the low thermal forcing case this presents no problem; gravity waves

are not present, The statistics presented in the next section are cal-

culated from the model output sampled every 5 tire units. For the high

thermal forcing case the time series of the PE spectral variables are

filtered to eliminate the gravity waves. The digital filter used is

one of Kaiser's (1974) I -sinh window nonrecursive (i.e., moving average)

filters. It is a "ow pass filter with a total length of 128 time units

and a transition band, in terms of period, from 9.0 to 11.0 time units.

A small correction is added to each filter coefffcient to force a unit

response at zero frequency. The maximum response error outside the

transition band is 0.5%. The filter uses data every time unit as input

and is applied to the original time series every 5 time units. Since the
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tilter removes frequencies higher than the Nyquist frequency of this

samplin rate, an adequate representation is obtained. The effects of

the digital filter on the output of the filtered equations models are

small (crder 1I =-~ the effects on the filteed equations modelsl

statistics are small compared to sampling errors. However to avoid any

possible bias the filter is used to sample the spectral variables of all

the runs excluding the low thermal forcing runs.

Gravity waves affect the model statistics directly and indirectly.

Second moment and higher moment statistics, as for example variances,

are directly affected by the presence of gravity waves. Mean values

will not be directly affected except possibly through sampling errors.

Indirectly, through nonlinear interactions, the presence of gravity

waves may affect any of the statistics. Comparing the statistics

obtained from filtered and unfiltered PE model time series isolates

the direct effect of the gravity waves. Comparing the statistics of

the filtered PE model time series with the BE model statistics isolates

the indirect effect of the gravity waves. This last comparison is only

approximate since besides. eliminating the gravity waves, the BE neglect

some of the dynamics. A final motivation for filtering is to eliminate

the high frequencies before evaluating the short term error statistics.

When verifying QG model predictions it seems reasonable to use the

filtered PE time series as the true initial and final conditions.
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5. Model statistics.

We describe and compare the climates simulated by the models

governed by (2) primarily through the sample means and variances of the

model ai. .nergy variables. Covariances or equivalently cor-rlations

are also of interest and some of these are discussed below when the

budgets which maintain the mean state are considered. However the

invariance properties (see Section 5b) and the dynamics of the system

constrain the statistics so that it: is not desirable (and in any case

it is certainly not possible) to consider every possible statistic.

In the remainder of this paper we find it convenient to refer to

the variables appearing in the governing equations in several ways.

To avoid confusion the conventions followed are cetailed here. As before

the "continuous variables" refer to the variableE appearing in the non-

dimensional horizontally continuous governing equations and the "spectral

variables" refer to the variables appearing in (2), the spectral governing

equations. "Model variables" will mean the set of real and imaginary

parts of the spectral variables. The " I variables" will denote the

set of real and imaginary parts of the corresponding spectral variables

for all I in the truncation not equal to 0. The " n variables",

where n is a particular integer will denote Re n and Im n-

For convenience in constructing tables the r.odel and energy vari-

ables have been numbered. (See Table 3.) Although the model state is

most appropriately described by a vector of the 50 or the first 26 model

variables, each of the model variables will be ccnsidered a scalar

function of (discrete) time in most of the statiStical comparisons

reported here. Tables 5-7 display some of the sample statistics. The
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Table 3a. Model variables indexing scheme.

Index of
Real part Imagjinary part

Variable

V
3

W4
Y5

V6

12

?3
94

16

%3
X4
94

05
06
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Table 3b. Energ; variables indexing scheme.

Variable Tndex

A 1

AE 2

Kz 3

KE 4

Cz  5

CE  6

Gz  7

GE  8

DZ  9

DE 10

CA 11

CK 12

Ad AZ 13

dt

d A 14

dtK Z  15
dt

d KE  16
dt
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time interval between oLqervations is 5. All samples begin with time

2000; by time 2000 any transient behavior associated with the initial

conditions has died out. The statistics are calculated from the fil-

tered data except for runs PEl and QG'2 nd in those cases when an asterisk

is appended to the name of a run (e.g. QG5*). In each of these tables

the numerical entries in the first column, identifying the rows, are the

energy or model variable indices. The row labeled D.F. is the number of

degrees of freedom of the sample. Exponentiation is denoted by ** and

subscripts are not lowered but are enclosed in parentheses.

5a. Description of the statistical methods.

A brief description of the sample statistics used is now presented.

Suppose there are N observations of a scalar q aantity x The sample

mean is x , where the averaging operator is defined by

- 1 x
X = 

- X.
N 1
x I

Here and below the overbar will be used to denotez both time and sample

averages; all time averages are in fact calculated as sample averages.

The sample variance is

2 2 -2
s = x - x
x

and s is the standard deviation of x N ' , the effective number
x x

of observations, i.e., the number of degrees of freedom, is defined by

S(2x) = 2 0 /N
x x
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2 2
where 0' is the population variance and 0 (x) is the variance

of the sample mean determined from N observations. Laurmann and Gates
x

(1977) show that

N N -1
(5) x 2 r

N' mx
x m=l

where

N =m

(6) rX (X 1i+m - (x 2

'qx' the population mean, is generally unknown.

Under the assumption that the true population has certain ideal fea-

tures and in the limit of large N ',x

X '- NCqxSq /Nx' )
x x x

2
S x

N' -(N ') -,X( N(N ',2N ')
x cO2 x x x

where the symbols A-%. N(4 , 2) means that A is a normally distri-

buted random variable with mean , and variance C2 , and B- 2(1)

means that B is a chi-squared random variable with V degrees of

freedom. The above relationships imply
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S=x(l + )
x -- t

2 2 [ 2
= s 1+ (--

where
_ sx _

t = xx N '
x

is a statistic similar to Student's t-statistic. (Selected values of

2
( ) are presented in Table 4a.) Here and below "+ " will indicateN

x
a 0.68 (or 68%) confidence interval. If "+" is replaced with "+C"

for any 4 > 0 , then the confidence level is one minus twice the pro-

bability that z > , where z-N N(0,1).

Suppose there is also a control sample of N observations of an

independent quantity y , which has population mean and variance equal

2
to k and C . Let

y y

y
txy = (x-y) +

x y

and

2 2
F =s /s
xy x y

For ideal populations and in the limit of large N ' and N '
x y
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Table 4a. Relative uncertainty in ' 2
x

percentage.

N

250

500

1000

2000

expressed as a

2 )100( )
x

8.9

6.3

4.5

3.2

Table 4b. Relative uncertainty
percentage.

N
X

250

500

1000

250

500

1000

2000

N
y

1000

1000

1000

2000

2000

2000

2000

2 .2
in 0' /o' expressed as a

x y

N ' N'

10.0

7.7

6.3

9.5

7.1

5.5

4.5
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N(,x -,,
x y

s
x

N '
x

2(N ' + N ')

N ' N '
x y

(A{ -4 )
x y

2 2
x y

1
= (x-y)(1+

t
xy

F (1 +
xy

2(N ' + N ')
( x y ) )

N ' N '
x y

(Selected values of
2(N ' + N ')

( x y )

N ' N '
x y

are presented in Table 4b.)

The difference in means may be written in terms of a percentage of the

observed control sample mean, i.e.,

1 10 100 1 1O ( -( A ) = 00 (x-y) (1+ -- p( + )
S-x y - -- t
Y Y xY xy

thus defining the statistic p . Comparing two :model runs yields a

series of M t
xy

and F statistics: t m
xy xy

mF , m=l,.. .M.xy
Convenient summary statistics are

M
T2  L

1

(t m)2
xy

and

(x-y) ^

2
s

+ Y
N
y

a-
2

xy '2
x

Thus
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N ' N ' M
2 x Ny M m 2F = (F -1)

2N' + N ') 1
x y

For large N ' and N ' , under the null hypothesis that the two
x y

m m
simulated climates are identical and that the t and F statis-

xy xy

tics are independent, T2 and F2 have 2(M) distributions.

5b. Invariance properties and the effect of persistence on the number

of independent observations.

In the specific problem considered here the population mean, ,

is zero for most model variables. Since the model is invariant with

respect to a change in x origin, each solution is a member of a family

of solutions diffexing only in x origin. If we identify the model

climate with an average over initial conditions it is proper to average

over such families of solutions. In particular, given any one solution

we may average it with the solution having x shifted by 1T/I ,

before averaging over the entire family. Therefcre A = 0 for all

model variables associated with nonzero values of I . This shows
x

that the ensemble mean state is zonal. Since the model is also invariant

with respect to a rotation of 1800 the same argument implies that the

ensemble zonal mean state is symmetric about y = 0 . Therefore ,q = 0

for the imaginary parts of the model variables a3sociated with zero

values of Ix

For those model variables for which the invariance properties imply

,4= 0, Nx/N x' has been calculated using (5) and (6) with yx =0 .
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The time between independent observations, T , is -qual to N /N '0 xx

times the time interval between observations. T varies fiom variable
0

to variable and from sample to sample. The most persistent model vari-

ables are those associated with I = (8,0). The evolution of these

variables as well as those associated with I = (0,4) is primarily

controlled by dissipative processes as there are only limited interactions

with variables associated with other wave vectors. The model variables

associated with I = (0,4) or I = (8,0) will be called corner variables

because these I are at the corners of the truncation. T is typically

100 to 200 for the corner variables, but may be an order of magnitude

larger. Excluding the corner variables the average of the values of

TO calculated is approximately 40 for the high thermal forcing case and

60 for the low thermal forcing case. Since the evolution equations

couple all variables (strongly, except the corner variables and energy

invariants) and since there is essentially one scale of motion, we expect

there to be a single value of TO characterizing the entire system. For

the purpose of discussion we will take To  100 as a conservative esti-

mate applicable to all variables and models. Thus N' is simply thex

sample length divided by 100.

5c. Reliability of the statistics.

The statistical methods assume ideal populations which are normally

distributed and an unbiased sampling procedure which yields independent

observations. These assumptions present difficulties when these methods

are applied. Variables such as energies which are non-negative cannot

be normally distributed since there is zero probability of a value

being less than zero. In fact since all the variables are bounded, once
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transients die out, none of the variables can be norm,1ly distributed.

It is observed that while many of the model variables are a~kroximately

normally distributed an equal number are distinctly not normally dis-

tributed. Typically members of this second group have distribution,.

which are too highly peaked; a few of these distributions are noticeably

skewed. The statistical tests are fairly robust with respect to

non-normality, especially for large samples. Of greater importance is the

non-independence of the observations. Assuming the sample size is N 'x

instead of Nx is an attempt to bypass this difficulty. Neither nor-

mality nor independence is necessary to assure the validity of the point

- 2
estimates x and s , but if these assumptions do not hold then

x

the levels of signi:ficance and confidence intervals reported will differ

from the true levels of significance and the true confidence intervals.

The estimates of error we give will all be approximate. Strictly TO

should be different for each variable and model ran. Choosing T0

larger than necessary avoids making unexpected Type I errors, e.g., con-

cluding the means of two samples are different when in fact they are the

same. However the larger TO is chosen the larger will be the confi-

dence intervals for a given significance level, so there is a greater

risk of making Type II errors, e.g., concluding the means of two samples

are the same when in fact they are different. Since the present concern

is to identify the mnost significant differences between model statistics

this approach is adequate. Another sort of difficulty arises when com-

paring several statistics at once. If 4x = 0 at the 90% confidence

level and also if 4y = 0 at the 90% confidence -level then the compound

statement that .4 = A = 0 will usually be associated with a lower
x y

confidence level. Finally, although we generally ignore the fact that
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the variables are coupled dynamically, this is a powerful tool, as is

t7vident in the discussion of the budgets below.

To illustrate the effects of the invariance properties and of sampling

and filteri5g the model variable statistics of run QG5 are diplaved for

different samples and before and after digital filtering. Tables 5a-e

display respectively the sample means, standard deviations and the

t , t and F statistics. In the latter two tables the control

sample is the filtered sample of length 200000. Unless otherwise noted

the results discussed below apply equally to all the runs.

Because all samples begin with time 2000, the samples used in Table 5

are not independent and the uncertainties of (,q -y ) and of
x y

0 / 2 are smaller than indicated by the previous discussion. Pro-
x y

vided T is chosen properly, the t and F statistics comparing
0 xy xy

different samples mist show the population means and variances are the

same. These statistics are useful for comparing the relative effects

of filtering and sampling.

The means and t statistics (Table 5a and Table 5c) show that all
x

the model variable means which should be zero because of the invariance

properties are in fact not significantly different from zero. Of these

variables, the corner variables tend to have t statistics with the
x

largest absolute magnitudes implying that the corner variables have the

longest persistence times. There is a circular argument here since TO

is chosen to insure the first result. The magnitudes of the t sta-
x

tistics are a check showing that the choice of TO is appropriate.

Changes in means due to changing the sample'length are, as expected,

small compared to their respective standard deviations (Table 5d). The

corner variables exhibit the comparatively largest changes. The means



-81-

of the energy variables (excluding 13-16, which are effectively zero)

typically change by 1% for the low thermal forcing experiments when the

sample length is doubled from 500CO to 100000 and by 2% for the high

thermal forcing experiments when the :mnle length is doubled from

100000 to 200000. The variances of the model variables typically change

2 to 4% when the sample length is doubled from 50000 to 100000 or from

100000 to 200000. (See Table 5b and Table 5d.) Variances of the energy

variables change even less under these conditions.

The columns in Table 5 labeled QG5* contain statistics obtained from

the unfiltered data of run QG5. Similar results are expected to hold

for all the runs excluding PE3 because none of these runs .have signifi-

cant amplitude in the high frequency part of their discrete Fourier

transforms. Comparing the differences in statistics between samples of

the same length of iltered and unfiltered data to the differences in

statistics between samples of different lengths, it is clear that the

effect of filtering is negligible compared to the effect of sampling.

-6
Changes to the meani due to filtering are 0(10-6 ) for both model and

energy variables. Variances of model variables are always decreased by

filtering but the changes are small compared to sampling changes.

Changes to the variances of the energy variables due to filtering are the

same size or smaller than changes due to sampling.

5d. Statistical intercomparisons.

The statistics of the model variables are compared in Tables 6a-f

which display respectively the means, standard deviations and tx, txy'

F and p statistics. In these tables, the control run for the low
xy

thermal forcing experiments is PEI; the control run for all other



TABLE 5A. MEANS OF MODEL VARIABLES (XlO**6

RUN QG5

10oD.eF.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

QG5

500

QG5

2000

6017.67
358017.59

1006,85
-58.25
21 .82
-9.51
6.02

-79.00
116.73
-34.71

15.28
43.39

-11.69
-4.26

3694.04
-3.25
21.06
-8,86
-3.78
-0.99
28.66
11.39
6.91

58.56
-11.89

-4*00
-38.92

1.01
0.16

-0.06
3.21
9.85

-2.72
-4.87
-1.67
2.85

QG5

250

5970.83
357971.39

942,07
-220.21

-8.51
-35.61
91.96

-107.50
272.88
-183.37

28.04
97.68
4.14

-51.29
3663.94

4.47
-9.08

-34.26
18.00
-3.09
36.06

1.71
-2.13
105.39

4.08
-51.80
-40.07

3.73
-0.11
-0.22
4.48

14.56
-2.44
-6.05
-4.70
4.09

QG *

5905.68
357907.78

918.09
-215.77
-136.70

6.70
-106.64
-423.67
247.68

-278.63
43.59
50.10
19.90
54,23

3653.43
-80.71

-137.51
9.85

-19.48
-41.56
33.82

-37.27
-83.00
216.1.7
15.33
53.86

-45.14
-2.34
-1.12

0.19
4.26
7.55

-8.47
-7.31

-12.35
11.60

5884.01
357886.11

892.77
-171.12

-3.94
26.88
65.31

-482.22
198.24

-312.70
128.08
-43.84
-46.76
70.36

3674.71
-134.47

-6.99
34.73

-18.69
-30.99
58.52

-31.22
-32.58
199.90
-49.56
68.30

-52.28
-12.82

0.03
0.52

-20.97
10.15
-8.91
-4.90
-13.24
13.16

6017.69
358017.59

1006.86
-58.25
21.82
-9.51
6.01

-79.01
116.73
-34.73
15.27
43.38

-11,69
-4.26

3694.04
-3.25
21.05
-8.86
-3.77
-100
28.64
11.40
6.91

58.57
-11.89

-4.00
-38.91

1.01
0.16

-0.05
3.20
9.85

-2.71
-4.86
-1.68
2.85

_;____ ~,.~.~~~i-~.~~..~~~..;.~1._~___~;-~,,~,-
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TABLE 5B. STANDARM DEVIATIONS OF MODEL VARIABLES

(xll)**6)

QG5

1000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1813.52
967.28

5550.84
6406.85
855.75
749.53

6516.62
6408.77
6496.19
6468.03
6256.97
6094.85
601.02
584.73

3191.18
2959.27
2319.39
2236.0 0
2629.95
2581.92
2622.96
2584.12
3007.42
2924.8E
2200.7C.
2160.80
591.01
563.82
395.24
398.37
651.50
657.18
653.02
652.21
581.10
572.38

QG5*

2000

1797.49
940.62

5520.34
6338.39
824.68
761.74

6477.34
6369.09
6462.68
6440.85
6206.00
6092.02
584.29
586.06

3203.62
2962.37
2300.43
2209.12
2621.57
2581.74
2593.95
2584.17
2987.20
2931.86
2183.68
2161.61
586.73
560.85
392.17
390.52
645.36
650.36
644.58
645.58
573.03
565.24

QG5

500

RUN

U . r

1801.67
959.41

55135.56
6286.73
824.96
771.99

6321.70
6216.19
6492.45
6510.08
6025.89
6180.37
572.80
598.06

3261.47
2950.86
2306.93
2223.17
2567.73
2576.56
2583.43
2597.67
3000.72
2960.43
2134.90
2155.81
592.67
561.59
392.00
390.68
642.21
650.66
631.63
633.50
561.83
572.08

QG20

2000

1808.78
974.19

5520.49
6220.17
817.60
767.20

6352.34
6194.35
6491.35
6430.15
6066.50
6103.74
552.30
593.35

3283.75
2T93.98
2 03.15
2224.12
2548.36
2595.47
2617.34
2532.34
30C41.89
3007.49
2'.50.22
2103.96

'597.64
63 . 56

392.26
392.69
622.18
652.03
633.53
C22.84
563.25
572 .05

005

250

1816.08
967.59

5552.35
6407.45

855.87
749.65

6520.20
6412.26
6499.69
6471.58
6258.99
6096.62
601.11
584.82

3191.69
2959.81
2320.15
2237.06
2630.79
2582.95
2623.91
2585.04
3008.66
2926.10
2201.03
2161.15
591.20
564.10
396.55
399.65
652.06
657.81
653.69
652.75
581.29
572.59
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TABLE 5C.

QG5

2000

T(X)-STATISTICS OF MODEL VARIABLES

QG5 QG5

1000

QG5

250

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

148.396
16552.613

8.112
-0.407
1.140

-0.567
0.041

-0.551
0.804

-0.240
0.109
0.318

-0.870
-0.325
51.769
-0,049
0.406

-0.177
-0.064
-0.017
0.489
0.197
0.103
0.895

-0.242
-0.083
-2.945
0.080
0.018

-0.007
0.220
0.670

-0.186
-0.334
-0.129
0.223

105.043
12034.725

5.397
-1,099
-0,326
-1.478
0.449

-0,534
1.335

-0.900
0*143
0.507
0.224

-2.767
36.167
0.048

-0.125
-0.490
0,217

-0,038
0.440
0.021

-0.023
1.137
0.059

-0.758
-2.160
0.210

-0.008
-0.018
0.219
0.708

-0.120
-0,296
-0.259
0.229

73.296
8341.61.6

3.723
-0.767
-3.705
0.194

-0.377
-1.524
0.853

-0.957
0.162
0,181
0,777
2.028

25.048
-0.612
-1.333
0.099

-0.170
-0.361
0.293

-0.321
-0.619
1.633
0.161
0.559

-1.703
-0.093
-0.064
0.011
0.148
0.259

-0,300
-0.258
-0.492
0.453

51.435
5808.572

2.557
-0.435
-0.076
0.554
0.163

-1.231
0.483

-0.769
0.334

-0.114
-1.,339
1.875

17.694
-0.710
-70.048
0.247

-0.116
-0.189
0.354

-0.195
-0.169
1.051

-0,364
0.513

-1.383
-0.360
0.001
0.021

-0.533
0.246

-0.222
-0. 124
-0.372
0.364

RUN

D i i ,

QG5*

2000

148.187
16547.312

8.110
-0.407
1.140

-0.567
0.041

-0.551
0.803

-0.240
0.109
0.318

-0.869
-0.325
51.760
-0.049
0.406

-0.177
-0,064
-0.017
0.488
0.197
0.103
0.895

-0.242
-0.083
-2.944
0.080
0.018

-0.005
0.220
0.670

-0.185
-0.333
-0.129
0.223

-- -- -------- ----------- -*-~~-~-~-Y~cl--I-~ ~~~'~"- ~~'~ o'"=-;D
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TABLE 5D. T(XY)-STATISTICS OF

Ri N

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

QG5

2000

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00.0
0.0

QG5

1000

-0.671
-1.256
-0.302
-0.657
-0.938
-0.890
0.342

-0. 115
0.623

-0.595
0.053
0.230
0.693

-2.074
-0.243

0.067
-0.337
-0.296
0.214

-0.021
0.073

-0.097
-0.078
0.413
0.188

-0.571
-0.051
0.125

-0.017
-0.010
0.051
0.186
0.011

-0.047
-0.136
0.056

QG5

500

-1.242
-2.285
-0.322
-0.499
-3.814
0.422

-0.354
-1.102
0.403

-0.750
0.093
0.022
1.092
1.965

-0.250
-0.525
-1.373
0.168

-0.122
-0.315
0.040

-0.375
-0.599
1.067
0.253
0.537

-0.210
-0.119
-0.065
0.013
0.033

-0.071
-0.181
-0.077
-0.377
0.306

MODEL VARIABLES

QG5

250

-1. 101
-2.013
-0.308
-0.270
-0.467
0.709
0.139

-0.967
0.187

-0.644
0.276

-0.213
-0.937
1.878

-0.088
-0.654
-0.181
0.292

-0.087
-0.172
0.170

-0.250
-0.194
0.703

-0.260
0.511

-0.334
-0.366
-0.005
0.022

-0.576
3.007

-0.145
-0.001
-0.305
0.269

QG5*

2000

0.000
-0.000
0.000

-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
0,000
0.000

-0.000
-0.000
-0.000
-0.000
0.000

-0.000
-0.000

0.000
-0.000

0.000
-0.000
0.000
0.000

-0.000
0.000
0.001

-0.000
0.000
0.000
0.000

-0.000
0.000

11. 34.T**2 0. 14. O.
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RUN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

F(XeY)- TATISTICS OFTABLE 5E.

QG5

2000

1.000
1 00 0
1,000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

QG5

0.982
0.946
0.989
0.979
0.929
1.033
0.988
0.988
0.990
0.992
0.984
0.999
0.945
1.005
1.008
1.002
0.984
0.976
0.994
1.000
0.978
1.000
0.987
1.005
0.985
1.001
0.986
0.989
0.985
0,961
0.981
0.979
0.974
0.980
0.972
0.975

MODEL VARIABLES

QG5

0.987
0.984
0.987
0.963
0.929
1.061
0.941
0.941
0.999
1.013
0.927
1.028
0.908
1.046
1.045
0,994
0.989
0.989
0.953
0.996
0.970
1.011
0.996
1.024
0.941
0.995
1.006
0.992
0.984
0.962
0.972
0.980
0.936
0.943
0.935
0.999

QG5

250

0.995
1.014
0.989
0.943
0.913
1.048
0.950
0.934
0.999
0.988
0.940
1.003
0.844
1.030
1.059
1.024
0.986
0.989
0.939
1.011
0.996
0.960
1.023
1.057
0.955
0.948
1.023
0.999
0.985
0.972
0.912
0*984
0.941
0.912
0,940
.999

7. 12. 10.

OG5*

2000

1.003
1.001
1.001
1.000
1.000
1,000
1.001
1.001
1.001
1.001
1.001
1.001
1.000
1.000
1.000
1.000

1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.0011.000
1.000
1.001
1.001
1.007
1.006
1.002
1.002
1.002
1.002
1.001
1.001

I I ~~ ___I___Yl___i3Y__I~

F**2 1 0
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TABLE 6A.

PE1

1000

MEANS OF MODEL

QG2

1000

VARIABLES (X10**6)

PE3

2000

BE4

500

1010.43
89010.28

824.79
366.34

2399.66
10.79
28.11
-4.22

2327.30
47.86

957.67
86957.85

457.57
-15.85

2376.60
-16.44
29.37
-0.15

2376.60
-16.44

9479.66
361479.63

1575.94
1598.20
6082.79
121.76
153.19
-16.08

4781.38
128.07

8211.33
360208.6i

1829.19
1758.72
4966.08
307.23
91.25
-18.77

4547.35
305.35

6017.67
358017.39

1006.85
21.82

3694.04
21.06

-38.92
0.16

3694.04
21.06

9000.49
361384.60

907.97
47.52

5114.10
48.52
149.47

1.03
5114.10

48.52

8029.66
360057.4J

1642 30
1648.52
5195.40
207.89
16.0
-4,3c

5195.41
207.8c)

9480.90
361479.63

1575.52
1598.04
6082.13
111.46
163.44
-14.67

4781.54
129.79

RUN

D.F.

1
2
3
5

15
17
27
29
39
41

QG5

2000

TQG6

1000

PQG7

1000

PE3*

2000



TABLE 6B. STANDARD DEVIATIONS

PE1

1000

292.60
15'9.73

1909.03
2421.96
457.90
445.44

2416.48
2401.33
2347.94
2309.75
2267.43
2361.83
688.66
683.17
1105.14
1028.01
834.63
757.07
979.56

1019.04
1080.93
1092.85
1247.55
1263.76
1004.08
1024.49

RUN QG2

1000

300.46
159.01

1632.53
2335.24

392.58
279.17

2370.43
2422.28
2381.02
2469.10
2301.06
2161.14
339.83
340.26
1151.24
1096.13
720299
704.13

1034.22
994.64

1031.88
983.40

1283.51
1233.68
972.92

1038.04

PE3

2000

2691.26
1809.03
7264.26
7945.94
2668.41
2941.98
6792.08
6889.13
6735.87
6753.82
6803.58
6741.22
2764.63-
2838.22
4825.25
4200.15
31;58. 0
3161.05
3257.38
3254.33
3292.76
3265.87
3075.05
3082.82
2021.66
2020.71

BE4

500

2408.32
1480 72
6795.46
7449.03
2880.78
3079.42
6947.83
6937.73
6793.90
6886.62
6523.52
6585.80
3008.77
2897.09
4019.95
3597.83
3063.6 0
3043.70
3232.88
3221.92
3123.00
3219.17
3176.17
3198.92
2067.25
2075.37

QG5

2000

181352
.67a28

5550°84
6406.85
855.75
749.53

6516.62
6408.77
6496.19
6468.03
6256.97
6094.85
601.02
584.73

3191.18
2959.27
2319.39
2236.03
2629.95
2581.92
2622.96
2584.12
3007.41
2924,89
2200.79
2160.80

TQG6

1000

1827.59
953r97

4599.12
5449.50
1052.65
907.12

5805.95
5787.40
5746.28
5826.17
5625,59
5495.62
1064.18
1108.10
3323.33
2859.13
2114.84
1985.87
2975.15
2929.61
3020.93
2934.30
3440.19
3401.26
1992.73
2008.18

D.F.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

PQG7

1000

1933.78
1070 .5
7457.57
8200.47
2454.85
2757.65
6596.33
6566,09
6296.94
6288.82
6642.03
6831.50
2884.02
2841.25
3675.63
3405.79
2797.43
2754.38
2727.13
2691.38
2967.94
2983.94
3161.07
3092.82
2024.20
2018.51

PE3*

2000

2711.48
1809.41
7270.66
7952.88
2674.52
2946.90
6796.09
6895.12
6741.32
6756.39
6807.73
6746.16
2768.36
2841.88
5256.70
4615.33
3298.01
3263.06
3340.92
3332.3P
3382.76
3362 21
3185.24
3192.29
2049.52
2053.20

OF MODEL VARIABLES (X10**6)

~IBR



OF MODEL VARIABLES (X10**6)

93.47
93.04
59.02
62.29

133.86
13 -87
137.72
135.09
127.18
126.21
68.26
67.03

1074.75
978.69
802.25
739.99
983.83

1027*44
1039.83
1054.18
123 23
1257.50
983.90

1003.07

97.68
88.93
47.26
54.54

127.14
125.57
130.09
120.40
112.81
107.04
60.71
66*34

1151.24
1096.13
720.99
704.13

1034.22
994.64

1031.88
983.40

i233.51
1233.68
972.92
1038.04

1037.94
990.30
630.59
626.54

1179.10
11 4. 08
1256.90
1243.37
1266.21
1253.22
390.02
391.32

3229.26
2771.20
2434.84
2406.12
2626.16
2615.66
2451.55
2455.22
2875.65
2882.57
1829.09
1825.26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

591.01
563.82
395.24
398.37
651.50
657.18
653.02
652.21
581.10
572.38
348.38
341.54

3191.18
2959.27
2319.39
2236.03
2629*95
2581.92
2622.96
2584.12

0GG7. 41
2924.89
2200.79
2160.80

658.17
611.48
325.86
325.20
597.33
584.73
597.36
595*99
724.86
715.12
260.32
260.93

3323.33
2859.13
2114.84
1985.87
2975.15
2929.61
3020.93
2934.30
3440.19
3401.26
1992.73
2008.18

822.64
801.35
572.82
579.40

1141.52
1147.18
1170.99
1187.85
1132.50
1092.52
397.09
405.35

3263.13
2922.60
2439.30
2401.85
2779.78
2746.99
2550.12
2591.86
303.5. 7
3081 .72
1981.95
1982.81

TABLE 68.

663.2 :
630.1
465.01.
466.74
895.44
892.89
890.41
879.23
907.86
903.24
343.89
342.17

3675.63
3405.79
2797.43
2754.38
2727.13
2691.38
2967.94
2983.9&~
3161. 0/
3092.83
2024.20
2018.51

STANDARD DEVIATIONS (CONT,)

2233.02
2161.54
1049.30
1050.26
1424.96
1429.38
1546.64
1531.12
1580.76
1570.14
565.69
572.62

3232.42
2775.14
2442.85
2413.53
2636.54
2628.30
2466.24
2468.44
2883.23
2891.14
1847.01
1841.18



TABLE 6C.

PE1

1000

T(X)-STATISTICS OF MODEL VARIABLES

QG2

1000

PE3

2000

BE4

500

109.203
17622t233

13o662
25.299
68.665
0.409
9.511

-2.264
68.477
1.887

100.794
16644.321

8.863
-1.277
65.281
-0.721
9.507

-0.102
65.281
-0.721

157.526
8936.210

9.702
26.785
56.376
1.703
6.600

-1.141
66.216
2.352

76.240
5439,576

6.019
13.651
27.624
2.242
2.480

-0.733
31.161
2.799

148.396
16552.613,3

8.112
1.140

51.769
0.406

-2.945
0.018

51.769
0.406

155.736
11979.455

6.243
1.428

48.663
0.725
7.181
0.100

48.663
0.725

131.307
10635.79t

6.964
21.236
44.698
2.350
0.764

-0.298
44.698
2.350

156.372
3934.317

9.691
26.721
51.744
1.511
3.273

-0.625
66.154
2.376

RUN

D.F.

QG5

2000

1
2
3
5

15
17
27
29
39-
41

TQG6

1000

PQG7

1000

PE3*

2000



* 4

TABLE 6D. T(X,Y)-STATISTICS OF MODEL VARIABLES

RUN

D.F.

1
2
3
5

15
17
27
29
39
41

PE1

1000

0.0
0.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

QG2

1000

-3.978
-7.12)9
-4.623

-20.038
-0.457
-0.781

0.294
1.703
0.990

-1.885

PE3

2000

0.0
0. C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

BE4

500

-10.280
-16.360

0.735
1.131

-5.326
1.200

-1.424
-0.092
-1.437
1.454

QG5

2000

-47.708
-75.474
-2*784

-25.157
-18.466
-1.140
-7.193
0.976

-10.711
-1.423

9125.

TQG6

1000

-5.743
-1.883
-3.064

-22.696
-6.431
-0.748
-0.119
0.980
2.609

-0.922

PQG','

1000

-16.901
-26.963

0.232
0.514

-5.595
0.757

-4.385
0.574
3.026
0.768

PE3*

2000

0.015
0.000

-0.002
-0.002
-0.004
-0.100
0.186
0.052
0.002
0.022

T**2 0. 498. 0. 412. 612. 1074. 0.



TABLE 6E. F(XY)-STATISTICS OF

RUN PE1 QG2 PE3 BE4 QG5 TQG6 PQGI PE3*

DF 1000 1000 2000 500 2000 1000 1000 2000

1 1.000 1.054 1.000 0.801 0.454 0.461 0.516 1.015
2 1.000 1 120 1.000 0 670 0.286 0.278 0.350 1.000
3 1.000 0.731 1.000 0.875 0.584 0.401 1.054 1.002
4 1.000 0.930 1.000 0.879 0.650 0.470 1.065 1.002
5 1.000 0.735 1.000 1.166 0.103 0.156 0.846 1.005
6 1.000 0.393 1.000 1.096 0.065 0,095 0*879 1.003
7 1.000 0.962 1.000 1.046 0.921 0.731 0.943 1,001
8 1.000 1.018 1.000 1.014 0.865 0.706 0.908 1.002
9 1.000 1.028 1.000 1.017 0.930 0.728 0.874 1.002

10 1.000 1.143 1.000 1.040 0.917 0.744 0.867 1.001
11 1.000 1.030 1.000 0.919 0.846 0.684 0.953 1.001
12 1.000 0 837 1.000 0.954 0.817 0.665 1.027 1.001
13 1.000 0.244 1.000 1.184 0.047 01148 1.088 1*003
14 1.000 0248 1.000 1.042 0.042 0.152 1.002 1.003
15 1.000 1.085 1.000 0.694 0.437 0.474 0.580 1.187
16 1.000 1 137 1.000 0.734 0.496 0 463 0.658 1.207
17 1t000 0 746 1.000 0-918 0.526 0.437 0.765 1.063
18 1,000 0.865 1.000 0.927 0.500 0.395 0.759 1.066
19 1.000 1.115 1.000 0.985 0.652 0.834 0,701 1.052
20 1.000 0.953 1.000 0.980 0.629 0.810 0.684 1.048
21 1.000 0,911 1.000 0 900 0.635 0.842 0.812 1.055
22 1000 0.810 1.000 0.972 0.626 0.807 0.835 1.060
23 1.000 1,058 1.000 1 067 0.956 1.252 1.057 1.073
24 1.000 0.953 1.000 1.077 0.900 1.217 1.007 1.07225 1 000 0.939 1.000 1 046 1.185 0.972 1.00 1.028
26 1.000 1.027 1.000 1.055 1.143 0.988 0.998 1.032

MODEL VARIABLES



4 4

TABLE 6E. F(XY)-STATISTICS OF MODEL VARIABLES (CONT.)

27 1.000 1.092 1.000 0.628 0.324 0.402 0.408 4.629
28 1.000 0.914 1.000 0.655 0.324 0.381 0.405 4.76429 1.000 0.641 1.000 0.825 0.393 0.267 0*544 2.769
30 1.000 0.767 1*000 0.855 0.404 0.269 0.555 2.81031 1.000 0.902 1.000 0.937 0.305 0.257 0.577 1.461
32 1.000 0.806 1.000 0-939 0.308 0.244 0.569 1.457
33 1.000 0.892 1.000 0.868 0.270 0.226 0.502 1.514
34 .1.000 0.794 1.000 0.913 0.275 0.230 0.500 1.516
35 1.000 0.787 1.000 0.800 0.211 0.328 0.514 1.559
36 1.000 0.719 1.000 0.760 0.209 0.326 0.519 1.570
37 1.000 0.791 1.000 1.037 0.798 0.445 0.77' 2.104
38 1.000 0.979 1.000 1.073 0.762 0.445 0.76E 2.141
39 1.000 1.147 1.000 1.021 0.977 1.059 1.29 1.002
40 1.000 1.254 1.000 1.112 1.140 1.064 1.51( 1.003
41 1.000 0.808 1.000 1.004 0.907 0.754 1.320 1.007
42 1.000 0.905 1.000 0.996 0.864 0.681 1.310 1.006
43 1.000 1.105 1.000 1.120 1.003 1.283 1.078 1.008
44 1.000 0.937 1.000 1.103 0.974 1.254 1.059 1.010
45 1.000 0.985 1.000 1,082 1.145 1.518 1.466 1.012
46 1.000 0.870 1.000 1.114 1.108 1.428 1.477 1.011
47. 3 000 1.073 1.nnn 1_115 3.094 1,43! 1.208 1.005
48 1000 0.962 1.000 1.143 1.030 1.392 1.151 1.006
49 1.000 0.978 1.000 1.174 1.448 1.187 1.225 1.020
50 1.000 1.071 1.000 1.180 1.401 1.210 1.223 1.01P

0. 214. 5900. 4420.F**2 0. 636. 1711o 1891,



TABLE 6F. P-STATISTICS

D.F.

1
2
3
5

15
171
27
29
39
41

PE1

1000

0.0
u 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

QG2

1000

-5.22
-0Q.05

-44.52
-104.33

0.0
0.0
0.0
0.0
0.0
0.0

OF MODEL VARIABLES

PE3

2000

0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

BE4

500

-13.38
-0.35
0.0
0.0

-18.36
0.0
0.0
0.0
0.0
0.0

RUN QG5

2000

-36.52
-0.96

-36.11
-98.63
-39.27

0.0
-125.40

0.0
-22.74

0.0

TQG6

1000

-5.05
0.0

-42.39
-97.03
-15.93

0.0
0.0
0.0
6.96
0.0

PQG 7

1000

-15.30
-0*39

0.0
0.0

-14.59
0.0

-89.54
0.0
8.66
0.0

PE3*

2000

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



S 4 4

TABLE 7A. MEANS OF ENERGY VARIABLES (X10**6)

RUN PE1 QG2 PE3 BE4 QG5 TQG6 PQG7 PE3*

D.F. 1000 1000 2000 500 2000 1000 1000 2000

1 2388.87 2510.24 3836.41 4012.21 3915.15 3905.27 5080.69 3841.01
2 2619;99 2604.69 369q9,- 438n-15 5010.22 4888.14 4560.79 3729.90
3 102.11 86.00 1423.39 1269.26 608.65 553.82 1219.53 1531.06
4 953.49 901.66 8034.03 7993.84 6051.00 5414.61 7305.65 8235.83
5 1.53 1.63 15.83 8.75 10.68 24.24 6.4. 15.6.
6 16.66 15.61 155.67 139.43 97.64 194.85 186.63 154.29
7 101.56 99.52 279.70 276.79 255.34 409.72 283.98 279,28
8 -83.38 -82.28 -107.74 -128.44 -146.92 -190.48 -133.85 -10).58
9 2.00 1.74 29.52 24.79 12.55 27.16 23.12 52.95

10 16.19 15.50 131.10 122.71 95.69 191.85 119.87 137.29
11 100.01 97.91 263.71 267.95 244.51 385.29 395.3k- 264.54
12 -0.47 -0011 -16.27 -16.25 -1.87 -2.93 -3.884 -17.99
13 0.02 -0.02 0.15 0.10 0.16 0.19 -117.8:. -0.89
14 -0.03 0.02 0.29 0.07 -0.05 -0.03 74.85 1.67
15 0.00 -0.00 2.58 0.20 -0.01 0.01 -12.83 0.66
16 -0000 0.00 8.31 0.48 0009 0.07 62.88 -0098

i cr a 6



TABLE 7B. STANDARD DEVIATIONS OF ENERGY VARIABLES (X10**6)

RUN

D.F.

1
2
3
4
5
6)
7
8
9

10
11
12
13
14
15
16

PE1

1000

1337.96
922. 43

45.71
340.94

2.94
27.63
32.70
21.71
1.02
6.79

98.04
2.96

89.10
77.82
3.20

26.56

QG2

1000

1403.99
992.08

43.70
349.97

2.67
28.03
35.32
22.23

0.98
7.14

102.56
3.17

93.86
78.27
3.39

27.38

PE3

2000

2432.60

694 .53
2680.91

96.70
347.34
180.26
49.52
17.02
50.61

481.39
96.70

404.94
357.18
113.61
354.42

BE4

500

2531.20
1836.74
637.94

2861.97
89.15

341.18
198.97
55.82
14.56
47.34

551.91
95.16

465.71
425.71
105.50
353.11

QG5

2000

2518.14
1683.84

335.32
2083.92

50.30
304.75
236.63
52.36
8.22

38.98
515.95
59.54

429.90
358.64
65.57

316.38

TQG6

1000

2733.76
1594.31
292.58
1727.54

47.08
275.20
235.17

53.77
15.64
77.56

495.20
46.07

406.81
321.56
44.14

254.89

PQG7

1000

2811.25
1847.08
588.66

2249.89
68 * 42',

302.99
219.24

52.86
12.6 .
42.51

618 29
65.82

516. 23
430.44
81.28

296.65

PE3*

2000

2435.03
1654.90
780.42

2808.51
175.58
438.02
180 38
4'.89
19.99
54.40

486.72
143.39
431.20
431.82
233.13
454.25



4 4 ,4

TABLE 7C. T(X)-STATISTICS OF ENERGY

PE1

1000

QG2

1000

PE3

2000

VARIABLES

BE4

500

56.461
80.818
70.650
88.439
16.457
19.066
98.223

-121.471
61.904
75 .398
32.260
-5*007
0.007

-0.010
0.003

-0.001

56.539
83.025
62.229
81.472
19.247
17.613
89.089

-117.055
55.980
68.684
30.190
-1.077
-0.006
0.007

-0.001
0.005

70.529
100.405
91.654

134.019
7.323

20.043
69.390

-97.297
77.556

115.85 1
24.499
-7.523

0.017
0.037
1.017
1.048

35.444
53 .25
44.489
62.456
2.194
9.138

31.106
-51.449

38.079
57.957
10.856
-3.818
0.005
0.004
0.042
0.030

69.532
133.067
81.174

129.855
9.492

14.329
48.257

-125.474
68.270

109.780
21.193
-1.401

0.017
-0.007
-0.007
0.012

45.174
96.955
59.859
99.115
16.279
22.390
55.094

-112.015
54.921
78.221
24.604
-2.011

0.015
-0.003

0.008
0.009

RUN

D,F.

QG5

2000

TOG6

1000

PQG

1000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

PE3*

2000

57.151
78.083
65.513

102.683
2.962

19.479
40.962

-80.076
57.60 S
89.167
20.222
-1.865
-7.216

5.502
-4.992

6.703

70.543
100.796
87.736

131.143
3.980

15.753
69.242

-97.339
73.701

112.872
24.5307
-5.610
-0.093
0.173
0.127

-0,097



T(XY)-STATISTICS OF ENERGY VARIABLES

RUN

D.F.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

PE1

1000

QG2

1000

1.979
-0.357
-8.060
-3.355
0.791

-0.843
-1.343
1.117

-5,833
-2.230
-0.469
2.631

-0.009
0.012

-0.003
0.005

PE3

2000

0.0

0.0
0.0

0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00.0

BE4

500

1.400
7.555

-4.745
-0.284
-1.562
-0.948
-0.297
-7.579
-6.264
-3.493
0.157
0.005

-0.002
-0.011
-0.445
-0.443

QG5

2000

1.006
24.869

-47.244
-26.117
-2.116
-5,616
-3.661

-24.308
-40.141
-24.789
-1.217
5.672
0.001

-0.031
-0.884
-0.774

TQG6

1000

0.674
19w026

-48.103
-32.297

3.201
3.359

15.372
-40.770
-3.784
22.491
6.398
5.116
0.003

-0.025
-0.887
-0.729

PQG7

1000

11.939
12 464
-8.409
-7.829
-3.081
2.510
0.534

-13.020
-11.56b:
-6. 38
5.89S
4.12C

-6*315
4,727

-4.265
4.444

PE3*

2000

0.060
0.573
4.609
2.324

-0 046,
-0 *.110
-0 .73
-C.534
5.848
3.729
0.054

-0.444
-0.079
0.109

-0.331
-0.721

0. 194. 6435. 6228.

TABLE 70.D

T**2 1.O 1310 942. )76.
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TABLE 7E.

RUN PE1

D.F. 1000

1 1.000
2 I.n0
3 1.000
4 1.000
5 1.000
6 1.000
7 1.000
8 1.000
9 1.000

10 1.000
11 1.000
12 1.000
13 1.000
14 1.000
15 1.000
16 1.000

F(XY)-STATISTICS OF

QG2

1000

1.101
1.157
0.914
1.054
0.829
1.029
1.167
1.049
0.924
1.104
1.094
1.145
1.110
1.012
1.121
1.063

PE3

2000

1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

ENERGY VARIABLES

BE4

500

1.083

0.844
1.140
0.850
0.965
1.218
1.271
0.732
0.875
1.314
0.968
1.323
1.421
0.862
0.993

QG5

2000

1.072
1.044
0.233
0.604
0.271
0.770
1.723
1.118
0.233
0.593
1.149
0.379
1.127
1.008
0.333
0.797

0* 148. 1769. 1924. 939. 9132.

TQG6

1000

1.263
0O.936
0.177
0.415
0.237
0.628
1.702
1.179
0.844
2.349
1.058
0.227
1.009
0.811
0.151
0.517

PQG7

1000

1.336
1.255
0.718
0.704
0.501,
0 76 !
1.479
1 .139
0 556,
0.70(
1.65
0.46"o
1.625
1.452
0.512
0.701

PE3*

2000

.002

.008

.263

.097
,29-
.590.
.01
.015
.380
.155
.022
.199
.134
.462
.211
.643

O8

F**2 0. 46.



TABLE 7F. P-STATISTICS OF ENERGY VARIABLES

RUN PE1 QG2 PE3 BE4 QG5 TQG6 PQG7 PE3*

D.F. 1000 1000 2000 500 2000 1000 100U 2000

1 0.0 0.0 0.0 0.0 0.0 00 00 32.43 0.0
2 . 0 0.0 0.0 18 -38 35.41 32.11 23.27 0.0
3 0.0 -15.78 0.0 -10.83 -57.24 -61.09 -14.32 7.56
4 0.0 -5.44 0.0 0.0 -24.68 -32.60 -9.07 2.51
5 0.0 0.0 0.0 0.0 -32.57 53.08 -59.52 0.0
6 0.0 0.0 0.0 0.0 -37.28 25.17 19.89 0.0
7 0.0 0.0 0.0 0.0 -8.71 46.49 0.0 0.0
8 0.0 0.0 0.0 19.21 36.36 76.79 24.23 0.0
9 0.0 -13.07 0.0 -16.00 -57.48 -8.00 -21.67 11.63 

10 0.0 -4.29 0.0 -6.40 -27.01 46.34 -8.56 4.73 o
11 0.0 0.0 0.0 0.0 0.0 46.10 49.,93 0.0
12 0.0 -76.97 0.0 0.0 -88.53 -81.99 -76.13 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 -77492.27 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 25300.70 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 -596.68 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 656.99 0.0
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experiments is PE3. The means of the model variables .:hich the invariance

arguments show should be zero are not displayed. Neither art the corre-

sponding t , t and p statistics, which depend on the means. Entries
x xy

in the table of p statistics --P zero if the difference in mean- ,S

judged to be insignificant at the 95% confidence level (that is, if

t 2 < 4). Of the variables associated with wave vector (0,4) only
xy

Re Y( 2  is definitely different from :zero and only for runs PE1, PE3

and BE4. (See Table 6c.)

At low thermal forcing, the QG mean model state differs signifi-

cantly from that of the PE. The QG C0 is low by 5.2 + 1.3% while fi

is low by 45 + 9.6% (relative to the PE results). The variances are

similar except that those of the corner variables and the ZI variables

are significantly low. At high thermal forcing differences between

QG and PE model statistics present at the lower forcing become more

pronounced and other differences become evident. There are significant

differences for all variables associated with the forced mode as well as

a 37 + 0.76 decrease in 0 . Most of the variances are different;

relative to the PE variances the QG variances of the I and '

variables are higher while the variances of the other model variables

especially the XI and Y6 variables are lower. Relative to run QG5,

run BE4 is a much better simulation of run PE3. Comparing the mean

states, only 0~0' 0 and T are significantly different from the

PE results and these differences are all smaller by a factor of two

than the differences between the PE and QG mean model states. Although

the F statistics are significantly different'from unity, the vari-
xy

ances of runs BE4 and PE3 are in relatively good agreement.
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The statistics of the energy variables are compaired in Tables 7a-f.

The residuals of the energy budgets Cenergy variables 13-16; are all

very small except in the case of the filtered PE (which is discussed

below). The major time averaad flow of energy in all the models i6

CA

GE DE

The time mean conversion of zonal to eddy kinetic energy, C , is
K

significantly negative in the PE and BE runs indicating barotropic sta-

bility. C is negative, but not significantly so, for the QG model runs.

The comparisons of the kinetic energies below aldo apply in a rough sense

to the dissipations since the ratios of the means and standard deviations

of total, zonal or eddy kinetic energy to the corresponding statistic

I = - - - " .aaa - - - - .. . . . . . --. - £/ . .
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of the same component ol dissipation are always in the range 39 to 65.

Although not listed as separatL variables in the tables, G, C and D

agree to within 10- 6 for each of runs 1 through 5, excluding D calculated

from the filtered data of run PE3. Ti, -4-andard deviations of G and C

for the same run always agree to within a factor of 2, but sC  is

greater than sD by factors of 3 and 7 for 9 = 0.008 and 0.032

respectively.

At 0 = 0.008 the QG simulation is energetically in agreement with

the PE climate. The most important differences are that the QG Kz

and KE are low by 16 + 2.0% and 5.4 + 1.6% respectively. At the

higher thermal forcing it is again found that the differences present

at low thermal forcing become magnified. Comparing the QG to PE results,

Kz and KE are low by 57 + 1.2% and 25 + 0.95% respectively. Signifi-

cant differences also exist for the conversions; C and C are both
E Z

low by about a third. AE  is high by 35 + 1.4%. The variances of the

energy variables are substantially different and generally lower,

especially those of KZ, CZ, DZ and CK'

It seems that the key to the differences of the time mean energy

variables at = 0.032 is that the QG model is less efficient at

converting A into K . Consider the major fl.ow of energy through the

system illustrated earlier. G is principally controlled by (h 0 / CT).
Z m

For the sake of arglument assume G 7 is fixed by external conditions.

If G is fixed then so are A and C . The initial effect of
Z Z A

decreasing the efficiency of CE is to increase AE and to decrease

KE and CE . To balance the budgets DE should then decrease and

(-GE) increase. This argument properly predicts the signs of the observed
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changes. In simpler QG models having constant q this complicated behavior

Lculd not occur - in particular, because of the thermal wind relationship,

a small change in the mean model state associated with a decrease in K

would be s--cted to be associated with a decrease in A . Tr our model

K and 60 are correlated and cY appears in the denominator of the

definition of A , so a decrease in K may actually be associated with

an increase in A.

Comparing the BE to PE energetics, the major differences are that

is high by 18 + 2.4%, KZ is low by 11 + 2.3% and the magnitude of

GE  is too large byl9 + 2.5%. The differences between the energetics

of the BE and PE models are much smaller than the differences between the

2
QG and PE models. In terms of the metric defined by T the QG simulated

energies and energy flows are 33 times farther than are those of the BE

from those of the PE.

The direct effects of gravity waves on the PE model climate are iso-

lated by comparing the statistics obtained from filtered and unfiltered

model variables. In the tables, results from the unfiltered data are

labeled PE3*. As expected the means are unaffected. Filtering cannot

cause an increase iin the variance of the model variables and so must

introduce a bias. The greatest decrease in variance is 75% for the

variables. However except for the i and 1 variables the changes

in variances are the same size or smaller than the sampling uncertainty

of the variances. Since the energy variables are:snot actually filtered

but rather calculated from the filtered model variables, the mean

"filtered" kinetic energies and dissipations are'equal to weighted sums

of the variances of the filtered model variables and are therefore smaller
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Figure 3. Energy budget (x106) of run PE3 decomposed into short (S)
and long (L) time sbales. Sample length is 200000
time units.
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than the mean "unfilterEa" kinetic energies and dissipations. As dissi-

pation is underestimated by filtering the "filtered" energy budgets do

not exactly balance. To separate the direct effects of the gravity waves

on C, K and D, note that for a perf:-- low pass filter C)

J A A

xy = xy + xy

where x , the high frequency component of x is x - x and where x

and y are continuous functions of time on a finite interval of time.

This relationship is easily verified by expanding each of x and y

in Fourier series. Thus any quadratic quantity may be resolved into long

(L) and short (SY period components. Formally

d
--- K = C - D - C

d
-KS = C - D + C
dt S S S LS

where CLS is the conversion from long to short period energy. Although
LS

explicit formulae for K K and CLS are unknown CLS maydt L dt SLS

be obtained as a residual. The results are summarized in Figure 3;

C = 11, i.e., the gravity waves obtain their energy from the longer
LS

period waves. In the time mean sense the gravity waves act as an addi-

tional energy dissipation mechanism in the PE model, but have no net

effect on the conversion of available into kinetic energy.

The budgets maintaining the time mean model state are obtained by
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averaging the evolution equations in time. The invariance arguments

apply to each term of the budgets, so only the budgets for the real parts

of the zonal modes of the spectral variables are considered here. To

the extent that the invariance arguments hold, the time mean continuous

variables are of the form

= 0 + 2(Re 5I cos 2y + Re j2 cos 4y)

It is observed that Re 72 and the components of the budget of Re7 2

are all approximately zero excluding the case 3= $ for the PE and

BE model runs.

The budget calculation results for the maintenance of Re q.,

Re 1 and Re i are displayed in Table 8. These values are calcu-

lated directly from the first and second moment statistics. The same

calculations were also performed for shorter samples; comparisons show

-6
the results are known to 1x10 for the low thermal forcing experiments.

At high thermal forcing the uncertainty is larger; some of the PE sta-

tistics change by 10% when the sample length is doubled from 100000 to

200000. In Table 8 the fluxes are divided into transient eddy (TE) and

mean meridional circulation (MMC) components. The decomposition of a

typical nonlinear term of the evolution equations is

= JK s + IJJK
J,K J,K J,K
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Budget
for

Re Y,

-- ,

Re/ 1

Re

Terms in 3-D
continuous PE

Advection

Twisting

Advection

Divergence

Friction

-f V-y
Divergence

-Y,.v'i
Advection

Advection

Divergence

Friction

- 97 Z -

-Vkx V)

V_((V_ ) V

Friction

Run

D.F.
Terms in two

layer equations

• . v ~Z C-"V z 7' V17T

( -VIX')

VX. V(Va24Vq

k.i 97

VZ or) VZ

-r ', V'2 )

vkz v( f/-k,'7 v'Z

-- Vot

- V (vz V7 V"7 )

-k, V

PE1

1000

MMC

-24.33

10.58

-0.23

-0.04

-4.58

6.07

458.34

-453.83

6.52

-7.54

19.9

18.6

43.9

-9.7

0.02

0.00

-0.16

-0.00

-0.07

0.15

12.60

28.11

0.12

-0.10

0.30

-0.11

-31.80

2327.30

-2399.66

)5 -7.10

9 7.09

6 0.00

'8 0.00

-0.45

Table 8. Budget calculations for the real part of the mode 1

spectral variables (x 106).

1Standard meteorological variables where V is the nondivergent wind

and -3 is the irrotational wind. (See Lorenz (1960) for details.)

- ,- -, ~ . .., .. . . . .-- -- - ------ --

- i -r- L- ;_r ----- j,~--r

1 - --- -- -. . .. . . . . I I r.- ----~ :-
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MMC

0.00

0.00

15.35

PE3

,00

-48.31

15.42

-27.65

-0.06

28.14

-2.49

0.16

-0.03

-1.71

0.00

-0.14

1.20

36.05

BE4

500

TE MMC I

-49.45

22.34

-23.55

9.56

16.33

0.80

-0.19

-1.71

0.31

0.84

25.10

29.37 153.19 91.25

457.47 0.04 2265.62 0.64 2241.31 4.49

-452.49 -0.C3 -2276.34 -0.62 2220.55 -4.62

273.36 7.75 213.17 5.41

-335.07 -3.67 -262.64 -2.74

-34.36 -84.72 -68.82

2376. 0

2376.60

274.42

292.22

957.78

-209.30

4781.38

-6082.79

-79.35

79.31

0.07

-0.02

-2.45

192.10

227.58

4547.35

-4966.08

-74.82

74.03

Table 8 (cont.)

QG2

1000

TE

-28.69

13.37

-- MMC

TE 
MMC
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QG5

2000

MMC

-74.84

53.36

0.03

-0.01

21.50

TQG6

1000

TE MMC

-165.44

83.72

-,091

0.01

81.85

PQG7

1000

TE MMC

-44.06 0.15

12.33 -0.01

28.42

-38.92 149.47 16.02

2341.49 0.27 2941.75 0.23 2411.10 0.63

-2251.71 -0.23 -2909.67 -0.22 -2410.97 -0.71

-51.05 -181.37 -69.99

3694.04

-3694.04

5114.10

-5114.10

5195.40

-5195.40

Table 8 (cont.)

_ __ __ _r .I- --- _-C~
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On the right hand side, the first term is the TE component and the second

Lerm is the sum of the standing eddy (SE) and the MMC components. In

the table the columns headed MMC are actually this second term. The SE

component c7u-nld be close to zero if the averaging time is sufficiently

long since the ensemble mean state is zonal. In Table 8 the rows are

identified in the second and third columns by the terms in the original

three dimensional PE and by the terms in the nondimensional two layer

equations corresponding to the terms in the spectral equations whose time

averages are displayed.

In the budget of Re ' each of the two Jacobian terms are large

in magnitude but they very nearly cancel. At low thermal forcing what

remains is basically a balance between destruction of the vorticity of the

time mean wind shear by friction and production by divergence. At high

thermal forcing the net effect of the divergence term is negative for

all three models. This effect plus friction balance the positive con-

tributions from net advection.

The momentum lost by the baroclinic component due to friction between

the two layers is gained by the barotropic component. Thus the frictional

contribution to the budget of Re 'l may be positive, as is observed.

The advection of "thermal" vorticity by the "thermal wind" - J( 7, V17 ) -

also provides a positive contribution to the budget of Re PY1. These two

effects are offset by the advection of mean vorticity by the mean wind -

J( , V9 1. The additional terms in the PE and BE budgets give only :

a small net contribution but individually all three of the terms involving

7 and 7 are important in the time mean budget. The budget for

Re Y2 (not shown) is less interesting since the Jacobian terms must be2

; ~ ~=L=~ES~I~I~SP~PY~V~'E~- ._____;_; ;-l-.~lr----~yp~~_____i__lp(---_I~=~_~:_
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zero. For the PE and Bh runs, the budget of Re Y2 is balanced by

positive contributions from tt,± twisting and divergence terms and by nega-

tive contributions from the advection term involving the divergent wind

and the frictional term.

The budgets for Re i describe how far the mean model state is

from geostrophic balance. The mean PE model state at 9 = 0.008 is

very nearly geostrophic while at 0 = 0.032 the mean state is con-

siderably ageostrophic. The sum of the first four terms in the MMC

column is the residual of the mean model state from the nonlinear balance

condition. Of these four terms the two nonlinear terms must exactly

cancel if the model state is zonal.

The B0 budget states that the net radiation must have zero average,

yielding the constraint

R --- R

The 0-0 budget states that radiation must balance conversion, that is

C =h 0-0

Combining these conctraints with those obtained from the budgets of

2 2
90 ' c0 and 1 yields

0 0

%'% = °O' >



2
80'C' = h(26)0

2 2 2
C' = h(2' - ' ) = h(r +

where the prime indicates a deviation from the

of the three above equations may be written as

2
0 0

time average. The first

/

1 * (% ,60 = 0,2 ,2 0
1Z ~ps,,B,=(B 0

where /I(x,y) is the correlation of x and y . The constraint on

0 'C' is fairly strong; it implies that
0

2( Cr' 2/C' 2 > h-1 / ,C) > a- 2/ ,21 2 o

and therefore

C' 2  > h2 0 12
0

In the budget calculations for Re 1 it 4s observed that the

horizontal eddy heat flux - J( Y , e ) - balances radiation. The other

terms are negligible; the vertical eddy heat flux is always less than

10 - 6 and the magnitude of the MMC term (- 4- Rt ) is approximately
0 1

1% the magnitude of the Jacobian term. Therefore since 0 > Re,6)
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and

- 2)
0
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for all the runs the time averaged contribution of the Tacobian term

must be approximately equal to -h 9 . Thus the horizontal eddy

heat flux is roughly the same for all model runs having the same values

of h and .
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6. Model tuning.

A rational method of tuning numerical models is proposed. The best

choice of parameters is defined as that which minimnizes the averaged

squared forncast error. The QG model is tuned to the data f~o, run

PE3, and the climate of the tuned QG (TQG) model is examined.

6a. Tuning procedure.

Suppose a model of a real system is

d
(7) X (t;K) =F(t,X;rK)

where the model state vector X contains observables of the real system

and the vector K contains adjustable parameters. We wish to minimize

the sum of the squared short term prediction errors S = FTE ,

where the sum is over the available observations and where the error is

f
(K) = X - X(T;K)

(Superscript T indicates matrix transposition.) Assume there is a

set of pairs of observations (X ,X ) in which each X precedes the

f
corresponding X by a time lag T . X(T;K) is obtained by integrating

(7) from initial conditions Xi for a time interval T . We assume

that observational errors are negligible and that; X may be used as

initial conditions without any special initialization. Let K K
-0

be a first guess of the optimal value of K . This defines a basic

solution X= X(t; 0) for t e (0,T) and a sum of squared errors,0 O

::: ; i -SS~L~U~P1IY-YILY;~TI-=" n~lDIP~ ~.~~~~_
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associated with the basic solution,

S = E(K) TE(K)

Let Y(t; SK) = X(t;K 0 + K) - X(t;K ) . For small SK, Y is approxi-

mately governed by the linear equation

(8) d Y(t; K) = A(t)Y(t; 9K) + B(t) YK
dt

The matrices A and B depend on the basic solution.

A..(t) - X. F.(t,X;K)

XJ 

K

-- 0

Consider any explicit time marching scheme approximating (8). If

Y(n At; K) is a linear combination of the SK. , then according to

(8) Y((n+l) &t; -K) will be also. The initial conditions for (8) -

Y(O; SK) = 0 - are a linear combination of the e K . By induction

and taking the limit as At---* , we see that, to first order,

(9) Y(T; 9K) = C SK
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where the matrix C deprends on the basic solution. Now

(10) E(K + SK) E(K ) - Y(T; K) E(K ) - C K.

The condition for an extremum of S may be written

( TC)) SK CTE

Let S be the value of S corresponding to K = K + K , the optimal
-O -0

value of K . Then the relative reduction of S due to SK is

-2 AO- T T (T; K) X(T; L;)2 _ 0 - Rj( = K Y (T. _- )
s o o ECK)TE(K)

which is positive, implying that the extremum is a minimum. If 9K

is not small, then the linearization is not strictly valid and K
-Q

should be replaced by 0 + SK and the process repeated., Convergence is

not assured. Neither is it assured that the minimum found is the abso-

lute minimum. As in all nonlinear least squares problems a good initial

guess is desirable and helps to avoid these problems.

To calculate C note that (9) is valid for any small SK , and

(7) may be used to calculate X and therefore Y for any K .

If FK = E.Z , where E is a small number and Z is a vector

having all zero entries excluding the i(th) entry which is equal to one,

then the calculated Y is (to first order) equal to E. times the

i(th) column of C . The procedure is thus to perturb each adjustable

parameter in turn by a small amount, integrate (7) and obtain Y(T; a .Zi )
-
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by subtracting the basi- solution. Then

-1 1 -1 i
C e Y(T; ) ... G. Y(T; e.Z )  ... )

1 1- ) - 3-

Note that it is only necessary to integrate the original model equation

(7) with altered values of the adjustable parameters - the evolution

of Y , governed by (8), need not be explicitly calculated. The

numerical burden can be kept down by carefully choosing a representative

ensemble of data, and using only a subset of this ensemble until the

final iteration.

The choice of T is somewhat arbitrary and it is not necessary

that T be the same for all pairs of observations. In general slightly

different values of SK will be obtained when the model is tuned for

different predictio-n times, T . T should be short enough so the

linearized equations are valid, yet long enough to average over the

time scales of the parameterized and/or subgrid scale processes. As

T--- O the procedure becomes one for minimizin, the sum of squared

tendency errors. This is not recommended since the observational errors

of tendencies are generally greater than those oi initial and final

states and if the tendencies are correctly observed they may contain

contributions from processes omitted in the model. For example, in our

particular case the presence of gravity waves in the PE solution makes

it undesirable to ninimize the tendency errors.

There are several possible extentions of the tuning method. The

definition of S may include a constant symmetric weight matrix, W

Then the extremum condition becomes



-120-

(Z CTWC K = CT K)- o)

Other definitions of E are possible. Suppose

E(K) = D(X ) - D(X(T;K))

where D is analytic; then (10) is replaced by

E(K + K) = EK ) - C' SK--- --- -O

where

13
k

,Di

Ckj DXk

--0

D might transform the model variables into energy variables, for example.

The extremum condition is as before with C' replacing C . C' may

be obtained in a manner analogous to that described for C by rewritting

(11) as

C' SK = D(X(T;K)) - D(X(T;K ))

The model climate itself may be tuned if it can be assumed that small

changes in K produce small changes in the model climate. (This must

in fact be assumed if any form of the tuning procedure is applied to a

simulation, as opposed to a prediction, model.) Then letting E(K)

(11)

i I -~----(~-l-~'li -------r^l--x - -u-^- rxol~
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be the difference betwet- the statistics of the observations and of the

model data an equation like (i!) holds but it is no longer possible to

write an explicit formula for C' . Now S = ETE ; the summation

symbol no loncer appears but the rest 7f the argument is unchanged.

When tuning a prediction model it is reasonable to assume that the

ensemble of initial conditions is stationary. It may be necessary to

remove diurnal and seasonal trends first (see Leith (1974b) for an exam-

ple) or replace the adjustable parameters by new adjustable parameters

multiplying functions of time. For example, to take into account sea-

sonal surface changes - snow cover, deciduous trees, etc. - we might

assume the drag coefficient in the skin friction formula, CD , is

of the form

CD '(1 + a.. sin 21rt + bl cos 2T1rt)

where t is measured in years, and then tune the constants CD '

al and bl. On the other hand when tuning a simalation model small

changes in K may result in a very different climate. It is well

known that simple models may have surfaces in the space of their adjusta-

ble parameters separating different regimes of model behavior. There-

fore the results of tuning a simulation model by the above procedure

must be carefully checked.

6b. Tuning the QG model and results.

We have tuned the QG equations using the observations of run PE3,

*T
identifying K as (k,h, 9 ) and X as the vector of prognostic

model variables (i.e., model variables 1-26). The low pass filtered



Figure 4. Schematic description of short term prediction error. The line Zi-Zf
represents the PE model evolution. The line '-zf is the low pass
filtered PE model evolution. Z aud f are projected onto Xi and
Xf in the QG manifold, represented by the ruled surface. The QG
prediction from the initial conditions Xi is X(T). The short term
prediction error is Xf-X(T).

!/
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PE observations are used Li eliminate the presence of gravity waves

which the QG model cannot simul.te. (See Figure 4.) Hopefully this

avoids initialization problems whic>1 might be caused by using only the

.nL~".stic model variables to i itl i - QG forecast. An equally

unsophisticated but perhaps better approach would be to initialize the

QG model 7 and B fields to the average of the PE observed I

and 9 fields and to evaluate the forecast error analogously.

W iS chosen to be the identity matrix so the squared error is

equal to

2 + (Sc) 2  2 2

In this expression, the overbar is an areal average and S is the

error made in predicting 3 . 4000 pairs of ob3ervation vectors are

used. T = 5 and successive X 's are separated by 50 time units. The

first choice of K is naturally the vector of parameters used in PE3.

Two iterations of the tuning procedure are needed. The results are sum-

marized in Table 9. The statistic F is ddfined by

* N'-P O S
F -

P

where N' is the effective number of sample pairs and P is the number

of tuned parameters. If the model were truly linear and the errors

were ideally distributed then F has an F distribution with P and

A

N'-P degrees of freedom under the hypothesis that K = K . Note that

A
the value of S for the first iteration is approximately equal to the



-124-

Table 9. Tuning the QG model to the observations of run PE3.
Refer to text (Section 6) for definitions.

Iteration 1: S = 0.1790
0

A
S = 0.1695

Kj

0.0160

0.0180

0.0320

Iteration 2:

3

0.0004

0.0005

0.0010

SO = 0.1715

A
S = 0.1694

1 0.0380

2 0.0240

3 0.0325

0.0010

0.0010

R2 = 0.053

F* = 37.5

0.0218

0.0063

0.0005

2
R = 0.012

F* = 8.3

3

0.000922

0.000342

0.0010 -0.C00465

; I i

j: g
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value of S O  for the second iteration. They would be equal if the

linearization were exact.

In run TQG6 the parameter values k = 0.03892, h = 0.02434 and

S= 0.032035 are used. (The TQG model is not a distinct model; it

is simply the QG model with different constants.) The tuned values

of k and h represent a marked increase in the strength of the dissi-

pative processes. Qualitatively the. solutions are similar to those of

the high forcing experiments. However (K-S) is negative (= -3032x10-6 )

and the distinctive high and low K regimes identified in the other

runs are not evident.

The tuning resulted in a much better simulation of the PE model

mean state. (See Table 6.) There are significant differences between

the TQG and PE mean model states but these differences are considerably

smaller than the differences between the QG and PE results. Relative to

the PE mean model state the TQG 0 is 5.1 + 0.9% low, Re '7

is 16 + 2.5% low and Re 81 is 7.0 + 2.7% high. In the quasigeostrophic
-- 1

models 7 must be equal to 9I for all I 0. If the PE mean model

state is not in geostrophic balance then a QG model can do no better than

to simulate a value of Re 7 and Re &1 in the interval between the

values of Re 71 and Re 1 observed in the PE experiment.

The simulation of the energy cycle is not improved by the tuning.

This is not surprising. Neglecting the kinetic energy of the divergent

flow, if the same parameters are used, the governing equations for the

conserved quantities - S-K, A+K and 60 - are the same in the QG and PE

models, The same holds for the dissipation and generation terms in the

energy budgets. Tuning the model must change the relationships between
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statistical quantities constrained by the budgets. For example, since

the TQG value of c is approximately correct but h is larger than0

the value used in the PE model the budgets force the TQG values of C,

G and D to be larger than the PE values. (See Table 7a.) Although

D is larger, kinetic energies in TQG6 are even lower than those in QG5.

The ratios kK /D and kKE/DE are approximately the same as in the

other models.

Budget considerations also imply that the maintenance of the mean

fields will be different in the TQG model. The dissipative terms in

the budgets are all larger in magnitude. This forces the fluxes to be

different. In particular the real part of the mode 1 component of the

-6
-J(4 , ) term is -650x10-6 for run TQG6, much. larger in magnitude than

-6
the value of -485xi0 observed in run PE3.

;__i_~____~_~~_~~___;~____._II_~~.. ._~~.. ~ur ;~r~~i--F;i-;;:Siill-l~~lii--X---
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7. Mon'e Carlo simulation.

This sect.ion describes a Monte Carlo simulation experiment at the

high level of the thermal forcing in which random perturbations are

-i
ar'ded to the OG m~L zi ts every 5f . These perturbations are gene-

rated so that their statistics, other than those involving time lags,

agree to a large extent with the statistics of the observed short term

prediction errors. The perturbations are then adjusted so that the

energy invariants of the system are conserved. The perturbed QG (PQG)

model simulates the observed PE model climate nearly as well as does the

BE model.

7a. Analysis of the short term prediction errors.

The short term prediction errors are calculated by the same procedure

used in the tuning experiment. That is the initial and true final states

are taken to be the low pass filtered observations of the PE prognostic

model variables. The prediction interval is 5 time units and the 40000

s.ch intervals in run PE3 from time 2000 to 202000 have been used. The

f-irst three columns of Table IC display for model variables 1-26 the
-I

standard deviations of the PE model variables, of the short term (5f-1
-I

changes in the PE model variables and of the short term (5f-1 ) prediction

e,,rors. The prediction errors of b , the I variables and the y

corner variables are relatively large while the prediction errors of

0 and the other fI vaiables are relatively small.

First, some of the prediction error may be accounted for by a regres-

sion analysis in which the QG model variables are predictors. This part

of the analysis could be used as the basis of a statistical correction

p.rocedure like those employed by Faller and coworkers (Faller and Lee,
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1975; Faller and Schemm, 1977; Schemm and Faller, 1977). Good discus-

s~ons of the problem of the statistical estimation of prediction errors

can be found in their papers. A regression equation is found separately

for each ' , the prediction error of the i(th) prognostic todel

variable. The predictors in the regression are chosen from elements of

the vector X(T) , the current QG model state and the vector X(T)-X(0),

which is proportional to the average tendency over the prediction inter-

val. Here X is extended from the definition of the previous section

to include the quasigeostrophically determined 2I variables, which

are expected to be dynamically significant. The least squares estimate

of E. is1

J J
(12 = b 0  + b..X (T) + c ji (X (T)-X (0))

1 1

where J is in this case 38. The stepwise regression procedure of

Efroymson (1960) is used to limit the number of predictors (and thus

ensure the significance of the nonzero b.. and c...) In this proce-

dure the predictors entering the final regression equation are chosen by

considering the partial F statistics (F' ) at each step and either
m

adding or deleting a predictor. For large samples, if there.are currently

M predictors in the regression equation then

-2
F' N' (r - 1)

m

where r is the additional reduction in variance caused by the m(th)

predictor, given that the other M-1 predictors are in the regression

equation. Under the hypothesis that the true coefficient of the m(th)
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pred'ctor is zero F' has an F distribution with 1 and 1' degrees

of freedon, During each step removal of the predictor currently in

the regression equation associated with the smallest F' is considered

first. This predictor is deleted if the smallest F' is less thanm

Fdel (a prespecified constant) and the next step begins. Otherwise

adding the predictor currently not in the regression equation which would

cause the largest reduction in variance is considered. This predictor

is added if its value of F'm is greater than Fadd (another prespeci-

fied constant which must be at least as large as F de) and the next

step begins. Otherwise the stepwise procedure is complete. We have chosen

F = 2.0 and F = 1.5. These values are smaller than normally
add del

chosen and take into account the fact that N' has been underestimated.

The reduction in variance due to the regression ranges from 1 to

53%. The b0i are all small. Notably the terms involving the I

variables are important in several of the regression equations. The

A

residuals, E.-E. , are not normally distributed; compared to a normal
1 1

distribution the distributions of the residuals are too highly peaked

and have longer tails. It is found that the variances of the residuals

ani and prediction errors are proportional to K2  , the square of the

kinetic energy of the current QG model state. This is not unexpected;

2 2
K is proportional to Ro and we expect the QG approximation to

cause larger prediction errors as Ro increases. In general, when the

residual variance is not constant the least squares estimators of the

regression coefficients are no longer minimum variance estimators. A

suitable transformation which normalizes the residual variances is to

divide everything by K . Allowing a constant term, the normalized

regression equations are
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(13) E'i b 0K b+ b.X' (T) + c.(X'.(T)-X'(0)) + d
1 1 3 J

where X'. = X./K . Now the least squares estimate of E is E =

KE'. If (13) is multiplied through by K (12) is recovered with the

additional term d.K . The stepwise procedure is now constrained to

always include K as a predictor of E. but the constant term b0 i

A

may be zero. The normalized residuals, (Ei-Ei)/K , are found to be

approximately normally distributed with zero mean and uniform variance.

In those cases when-the d. are small, the actual regression equations
1

are similar to the original equations obtained from (12). The d.

are not small for = 1, 5 and 15 and the constant term is nonzero

only for i = 5 . The reduction in variance ranges from 1 to 52% in

terms of the normal'ized variables and from 1 to 55% in terms of the ori-

ginal variables. (2ee Table 10 for details.) The number of nonzero

constants in the recfression equations excluding d. ranges from 3 to 14.
1

The normalized residuals have a complicated covariance structure,

i.e., the matrix C , equal to the average over the sample of

-2 A AT
K (E-E)_(E-) , has many off diagonal terms which are substantially

nonzero. To generate perturbations with these statistics it is neces-

sary to essentially perform an empirical orthogonal function analysis

of the normalized residuals. Let A be the diagonal matrix of the

square roots of the eigenvalues of C and let P be the matrix of the

corresponding normalized eigenvectors of C . Then P TCP = 2 and

-1 T - A T
P P If K (E-E) = PAW , then the average of WW is the

; ------- ---- --;---- ---- -~--
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Standard deviations (xl06) of terms associated with regression equation (13). Column

headed J is the number of nonzero coefficients, excluding d. in the n(th) regression
n 1

equation. Refer to text (Section 7) for other definitions. Sample length is 200000.

E /K

92518.26
4113.67

88247.24
91206.44
62424.96
63431.90
107694.98
107974.41
104242.00
103261.02
82876.62
82150.98
60745.60
60512.62

219913.26
190 155.56
133491.45
134005.83
163301.99
163562.44
110181.05
109775.26
120711.14
122617.89
102314.92
101675.86

(E -E )/K

82516.58
3735 17

78928.17
83068.77
58440.71
58287.61
93459.47
93395.45
92379.83
91849.27
72554.95
72078.62
60513.30
60246.81

208849.38
183357.28
128948.12
129208.10
113810 54
113868.67
100724.55
99973.16
92436.31
93487.15
86497.21
86180.33

Table 10.

n

1
2
3
4
5
6
i
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

J
n

9
10

7
7
9
8
10

f
X

n

2691.26
1809.03
7264.26
7945.94
2668.41
2941.98
679 2.0
6889.13
6735.87
6753.82
6803.58
6741.22
2764.63
2838.22
4825.25
4200.15
3198.10
3161.05
3257.38
3254.33
3292.76
3265.87
3075.05
3082.82
2021.66
2020.71

f i
X -_X

n n

1481.97
174.58

3168.27
3466.89
702.74
705.21

4730 .64
4825.06
4843.56
4831.66
4536.21
4417.46
656.64
658.44

3368.75
3209 77
2709.05
2696.27
2924.43
2902.45
2879.80
285b.56
2099.43
2091.63
1415.35
1416.42

E
n

1250.90
53.56

990.61
1046.56
692.60
695.82

1288.18
1278.58

1263.84
1239.29
963.72
952.57
651.39
653.17

2381.92
2060.28
1406.51
1409.20
1851.81
1860.31
1218.62
1205.39
1380.11
1387.63
1195.78
1188.95

E -E
n n

966.30
43.58

863.17
936.83
640.75
628.43

1i / 4. C
1066.25
1082.48
1066.94
829.97
819.38

648,71
650.42

2229.35
1983.77

1343.13
1341.22
1255.77
1254.96
1093.68
1074.635
961.93
970.13
926.76
920.54
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identity matrix and each W. has zero mean. The W. are found to be
1 1

approximately normally distributed. The eigenvalues of C are all of

the same order of magnitude, except for the smallest, whose associated

ei nveto,. makes an insignificant contribution to the total variance.

Using standard pseudo-random number generators, identically independently

normally distributed numbers W. with zero mean and unit variance can
1

be obtained. Then perturbations may be generated of the form

* A
(14) E =KE' + KPA W

where E' is obtained from the normalized regression equation (13).

Although we do not take it into account wher generating the pertur-

bations the W. have some nonzero time lagged correlations. The magni-

tudes of the correlations of W. (t) and W.(t+n') are all less than

0.3 for n=l and all less than 0.2 for n=2 . The largest correlations

are found for n=l and i=j ; therefore most of the structure of the

second order time lagged statistics could be taken into account by

modeling each W. as a first order Markov process.

Excluding time lagged statistics, the E are expected to have

statistics similar to the observed error statistics. By construction

each W. is approximately normally distributed. Each W. is observed
1 1

to be approximately normally distributed. Agreement in means and cova-

riances implies agreement in all contemporaneous statistics for two_

populations which are normally distributed. Since P AW and P W

A

are linear combinations of W and W the statistics of the normalized

residuals and the random part of the normalized perturbations are

------~ ---- I~--~~~~--~~~ :
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approxiiLntely the same. The regression procedure implies that the nor-

malized residLuals and the E' are virtually uncorrelated. (If the same

A

predictors were used in each regression equation then PAW and E'

would be uncorr-la--. PA W and E' are uncorrelated by construction,

therefore E/K and E /K have the same means and covariances, if the

sample is unchanged. Since the X'. are not all normally distributed
3

it is not necessary that E/K and E /K agree in all statistics. In

any case, when the E are used in a Monte Carlo simulation the sample

will generally be altered. The above discussion suggests but given no

assurance that the E and E will have similar statistical properties.

If no normalization were used the first and second moment statistics

of E and the perturbations would agree but the variances of the

pe.rturbations would be independent of K We feel the depenidence of the

variances of the E. on K is an important property which s.-iould be

mi:nicked by the perturbations.

7b. Adjustment to conserve energy invariants.

Straighforward use of the atbove E yields unbounded solutions,

since higher values of K are associated with larger perturbations and

the perturbations may be a source of energy. In the experiments described

below the perturbation procedure is forced to conserve the energy in-

variants. Besides yielding bounded solutions this is desirable since

both PE and QG models nearly coiserve the energy invariants f short

prtediction times. However, the error in predicting the energy invariants

is not small because with the simple projection procedure used here,

the path of the projection on the QG manifold of an adiabatic inviscid

PE integration in general does not conserve the energy invariants.
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However the error in predicting the changes in the energy invariants

is relatively small and if a different projection procedure were used the

error in predicting the energy invariants might also be small. Moreover,

forcing the perturbations to conserve the energy invariants assureL

the correct qualitative behavior in the adiabatic inviscid limit.

In order to conserve the energy invariants it is sufficient to

conserve three of them - in this case, K-S, 2  and . First,
m 0

2
the initial values (K-S) ( and ( ) are calculated.

Then the model state is perturbed by adding E to the model state

vector. Now we seek the model state closest to the perturbed model state

2
which has values of K-S , 2 and 60 identical to (K-S)

m 0 1

( m)i and (0 )i respectively. 8 is set equal to (6 )im 0 1 0 0 i

that is, 0 is i..ot perturbed. We assume the perturbed value of 0-0 0

is correct and seelk small adjustments, SfT and , to the

perturbed variables, yI and 7 . That is, the adjusted modelI I

state prognostic vector is ( 0 0 ( 0 i' I +  7 ' 1 +I + i I )T

Now to minimize

2 y +2  
+2

subject to the constraints

G 2 a 2) - - (K-S)= OII O i

H 2  + 2 m2) = 0
BC~7r0 Mi
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introduce the Lagrangian multipliers

2 + G +

1 and /2 and minimize1/ 2

2 H . The conditions for an extremum are

2 Y + 2 a ( + SY ) = 0
1I I ]"

27 + ,1ai ( +7 ) + 222( I+ %) = 0

Thus

I I

/1 2- 1 a2+( 2 2

I(1+ 2 I I 2 1

1 21 I2 -1 1 2 2+a(I12 2+0 1 22

If the adjustments, EI and /I , are small relative to

and then 2 la 2/2 and A2 must be small and the expressions

for G and H may be linearized. This yields

1I12 +  12 ) + A2  1 a2 /2
I

(K-S) - (K-S)
P

I  a 2 i 2 2 ~2 1 2
I I m p m 1

where (0 2)m p

2
and (K-S) are the values of c2

p m
and K-S for the

perturbed model state. Solving these two linear equations gives an

(15)

I (a 2I



-136-

approximate solution for 21 and 2 . Then (15) gives the adjusted

model state. If A, and 2 are small but not very small the pro-

cedure can be iterated replacing the perturbed model state by the adjusted

mode.? state just calculated. This will assure conservation of the energy

invariants to any degree of accuracy and the final adjusted model state

will be close (but not necessarily as close as possible) to the original

perturbed model state. Since the perturbations are randomly generated

anyway, this final adjusted model state is acceptable if the values of

)1 and 22 obtained during the first iteration are small. If
1 2

and 22 are not small we conclude no model state having the correct

energy invariants is close to the perturbed model state, discard the

original perturbation as being dynamically improbable, generate a new

perturbation and begin the adjustment procedure again.

7c. Perturbing the QG model and results.

In run PQG7 perturbations of the form (14) are added to the model

-1
state every 5f ; the perturbed model state is then adjusted according

to the above procedure. The perturbed model state is accepted if

I221 0.2 and the final adjusted model state is accepted if

I 2I 0.002. The size of 2I is not checked since in test cases

it is always smaller than 12 by an orde:: of magnitude or more. Of

the perturbed model states generated during run PQG7 about 80% are

acceptable; an average of 2.5 iterations are required to conserve the :a

energy invariants. (There were never as many as 8 iterations of the

-6
adjustment process. 10 is the typical magnituae of the change in

energy invariants caused by the perturbation procedure; very occasionally
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-5
changes of 0(105 ) are observed.) A 'est of the adiabatic inviscid

form of the PQG model shows that this model conserves the energy invari-

ants as well as does the PE model.

A

After t1, p-rturbations are adjusted the a~~usuL W. may be

obtained by solving (14) with the adjusted perturbation replacing E

It is found that the adjustment process does not appreciably alter the

statistics of the W. , except for W 1 and W , associated with

the largest and smallest eigenvalues respectively. Changes in the statis-

A

tics of W26 are presumably unimportant. The mean of the adjusted

W1 is slightly negative and its variance is reduced by about 50%.

The eigenvector associated with the largest eigenvalue is very nearly

pErallel to the Re 1 axis. Since the regression equation for the
1

prediction error of Re 7' includes the term +0.107K, a plausible

e:planation of this phenomenon :is that the adjustment process tends to

cancel this additional forcing term.

Run PQG7 is actually divided into 6 segments. At the start of each

segment the initial conditions ire obtained from the final model state

of the previous segment; the pseudo-random number generator is initialized

with a number constructed from the time of day and the date. One segment

ended abnormally when too many (15 in this case) perturbations were

rerjected for a single model sta'e. The last part (approximately 2000

time units long) of this segment was discarded. The final model state

of the retained part of this segment was used as the initial conditio:s

for the next segment. No further difficulties occurred. As in the other

runs, before statistics are collected the digital filter is applied to

the data. At the times during the model run when perturbations are

added, the model state is not uniquely defined. For the purpose of
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continuing the integration the model state must be defined as the final

adjusted model state. Throughout the calculations reported here this

definition has been used. However, for the purpose of calculating time

averages this is not the beot choice and introduces errors in the aver-

ages of those quantities which on the average are increased or decreased

substantially by the perturbation procedure.

2 2
On the basis of the T and F statistics the PQG model climate

is much closer than the QG and TQG model climates to the PE model climate.

The PQG model is nearly as successful as the BE model at simulating the

PE climate. Comparing the statistics of run PQG7 to the statistics of

run PE3, the most significant differences between the mean model states

are that 0 and 0 are low by 15 + 0.9% and 0.39 + 0.014% respac-0 0

tively. Variances of CF , 0 and the XI variables are too0 0 I

small roughly by a factor of two. The variances of the other model

variables are in good agreement with the PE observations, considering

that in the QG models and 7 are identical.

The agreement between the mean energy variables of runs PQG7 and

PE3 is much better than the agreement of runs QG5 and PE3. However,

there are still significant differences in themeans of all the energy

variables. Compared to the results of run PE3, the worst defects of

the energetics of run PQG7 are that AZ  and A are too high by
E

32 + 2.7% and 23 + 1.9% respectively. As in the other comparisons

this is principally because 0 is too low and also because the
0

variances of the GI variables are too high. The variances of the

energy variables are somewhat improved relative to the unperturbed model.

For any budget calculation using PQG7 data the time averaged

residua is (-5f-1 times the average perturbation of the quntity for
residual is (-5f ) times the average perturbation of the quantity for
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Pi'ure 5. Energy budget (xl06 bf -rn PQG7. Sample length
is 100000 time units.
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which the budget is being calculated, neglecting the effects of sampling,

filtering and the end points. By construction the perturbations do not

affect A+K ; therefore D should be equal to G and the effects

of the perturbations may be thought of as conversions be~t.Jen the

various forms of energy. The energy budget is displayed in Figure 5;

the arrows in the center of the diagram represent the energy conversions

due to the perturbations. In the mean the perturbations act to convert

eddy to zonal and kinetic to available forms of energy. Presumably

the net residual occurs because the averaged dissipation has been under-

estimated due to the way the model state has been defined at times

during the model run when perturbations are added. If we force D

-6to be equal to G the net residual is 0(10 6) .

Fo.: the PQG model most of the budget constraints of Section 5 do

not hold. In the budget for Re 01 the radiation component is co:crect

to within 2% of the PE value but the mean Jacobian term is 9% larger in

magnitude than the PE value. The difference between these two terms

balances the forcing by the perturbations. In the budgets for Re
1

and Re 7 the frictional terms are roughly 20% smaller in magnitude

than the corresponding terms in the PE budgets. The transport terLLs

are correct to roughly 10% of the PE values but the divergence teria in

the Re i budget is too small by an order of magnitude.

- ------------ -l.--Xx~~~r*~*-.r~.-^ i^- ~-- --.sr. -..--- .-- --.- .-. --..I.-. - -;;
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8. Summary and concluding remaLks.

We have examined the properties of several simple numerical models

of the atmosphere, based on Lorenz's (1960) energy preserving model.

The basic model is a two layer spectral PF m~el. The BE model is

identical in all respects to the PE model except that the nonlinear

balance assumption is made. The QG model is also identical to the PE

model except that the linear balance assumption is made. Because

the models are otherwise identical the effects of the balance assump-

tions are isolated.

For the sake of efficiency several compromises were made in deve-

loping these models. These compromises or approximations must be

regarded as model deficiencies Prhich inhibit the application of the

results of this study to more complex systems. The model deficiencies

are the simplified geometry, the low vertical resolution, the low

horizontal resolution, the unrealistic vertical boundary conditions,

the simplified friction and simplified zonal heating, the absence of

horizontal variations of static stability and (in runs 3-7) the high

tliermal forcing. It is not claimed that these simple models are ade-

quate representations of the real atmosphere; they are only prototypes

for study. However the approximations are well motivated and inter-

nally consistent. Considering the model geometry, there are three

plausible choices - a sphere, an infinite plane and a channel. We

vere unable to formulate (and co not believe there exists) a single set

of energy preserving boundary conditions for all three systems of equa-

tions; therefore using any bounded domain would require differences in

boundary conditions as well as differences in governing equations. More

importantly the real atmosphere is unbounded. Spherical geometry is
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rejected since the QG model is not valid at the equator. Thus the appro-

priate choice of geometry for comparing the different governing equations

without extraneous influences is an infinite f-plane. Since Phillips'

(1956) early experiment it has been known that two layer models can

reproduce the basic features of the general circulation. If a two

layer model is acceptable then a low order spectral model is sufficient

because it is known that two layer models misrepresent the short waves.

Given the low resolution the simplest physics seems reasonable. To

a first approximation the real atmosphere is zonally heated. The use

of a single independent variable to represent the static stability is

a compromise between using a constant static stability and allowing

the static stability to vary horizontally. A constant static stability

would greatly change the system's energetics. Use of a temporally and

horizontally varying static stability would require a parameterization

of convection. In a few test cases where horizontal variations of

static stability are allowed the model invariably develops a convectively

unstable region near the equator (i.e., near y = 0). The high forcing

yields a Rossby number which is not small, but this allows differences

between the models to be more easily detected. On the one hand it is

possible that the simplifications act to constrain the models' behavior

so that their climates are necessarily similar. On the other hand it

is possible that more complicated models with more degrees of freedom

might b.e free to evolve to the same statistical state. That is, there

is no doubt the simplifications constrain the models, but it is debatable

whether the simplifications constrain the models -to be more or less alike.

The models' evolutions are good prototypes of atmospheric behavior.

The solutions are complex and aperiodic for appropriate choices of the

-- ;---- ~a iru ~ i~~~~b;a*~*F?~:~~~~~~
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constants. For the nominal parameter values, two regimes which differ

energetically may be identified. This is a type of almost intransitivit;

since these regimes have long persistence times. As energies are

integral quantities this behavior may be ji-~npendent of horizontal

resolution.

At low forcing (0 = 0.008, Ro ' 0.11 ) internal gravity waves

in the PE solutions are present only as initial transient disturbances.

At high forcing ( 0 = 0.032, Ro --- 0.33 ) internal gravity waves are

always present in the PE solutions. (The Rossby number for this model

may be defined by Ro = 3.6 K , where the typical wave number is taken

to be 4.) Gravity waves cannot be forced by topography, by fronts, or

by cumulus or meso scale procesues, as these phenomena do not exist

in the model. In the time mean sense the gravity waves obtain. their

erergy from the synoptic scale waves and are frictionally dis;ipated.

We compared the climates of the models in terms of the f-irst and

second order statistics. Transports are reasonably well simulated by

the QG model at both forcing levels. At the low level of forcing the

QG model and at the high level of forcing the BE model are successful

at simulating the PE mean states and energy cycles. At high forcing

the QG model gives only a qualitatively correct simulation of the PE

mean state and energy cycle. The filtered equations always tornd to

underestimate the time mean gros:s static stability observed in. the PE

model runs. The time mean energy flows are also underestimated as must

be the case since for any given model run the energy flows arE all con-

strained to be (approximately) proportional to the gross static stability.

Since kinetic energy is observed to be roughly proportional to dissipation

the time mean kinetic energy is also underestimated.
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It is somewhat surprising that the QG model is so successful at

the low level of forcing (which corresponds approximately to the level

of forcing found in the earth's atmosphere). This may be due to one or

more of the model deficiencies listed earlier. The oth= prssibility is

that the QG assumption.is actually adequate for climate research but

other effects limit current QG models in their ability to simulate the

climate. Perhaps a QG model with comparable physics and resolution may

give as good a simulation of the climate as current global circulation

models. If for some purpose, low resolution and simplified physics are

not objectionable serious consideration should be given to QG models.

At the high level of forcing we made two attempts to get better

simulations of the PE climate within the QG framework - the tuned and

perturbed quasigeostrophic models. These models are both more successful

than the original QG model at simulating the PE climate.

Both the tuning procedure and the perturbation procedure require some
-i

knowledge of the short term (5f-1 ) prediction errors caused by the QG

assumption. One might argue that tuning models for the purpose of

simulation studies is a futile exercise since any procedure based cn

observations is strictly valid only for present "external" conditions.

However, current observations, especially considering seasonal variations,

span different "external" conditions. Second "external" is nearly

equivalent in meaning to "having a lairge scale separation" (Leith, 1978b);

if the process causing errors has shcrt time or space scales current

observations do embrace a variety of external conditions. Third, objec-

tive comparisons of different models must be based on their ability to

reproduce current conditions. To be fair, the models should first be

optimally tuned. The first two points also apply to perturbing models.

i~i~ii~-W-iP -iili--IIIY~-_IIL-rPCI~I^~I
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As far as the perturbation procedure 4s concerned we may in some situa-

tions have theoretical knowledge of the orCer of the magnitudes of the

errors involved over the short time scale. These theoretical estimates

will in general q-pend on the external paramT~ TP~ -ue may use this

knowledge for other than current conditions.

In the experiments reportec here although the observing system is

perfect the initialization and forecast verification procedures used in

determining the prediction errors are open to question. In brief, gravity

waves are eliminated by low pass filtering and then each PE observation

is projected onto the QG solution space by replacing the values of a

al.d 7 by their geostrophically determined diagnostic values. Fil-

tiaring is justified since the QG and BE models cannot simulate gravity

waves. The projection procedur-e is arbitrary.

The tuning procedure described in Section 6 is quite gereral; it is

actually a particular form of l ast squares estimation. We have tuned

-i
the QG model to minimize the average squared short term (5f1 ) prediction

errors. (This criterion is somewhat arbitrary; other criteria defining

the optimal QG model might be considered.) The tuned QG mod(:l is better

than the untuned version at simulating the PE time mean model state, but

the simulated energy cycle and the budgets maintaining the mean state

ace not improved at all.

In the perturbed QG model randomly generated perturbations are added

to the model state every 5f-1. These perturbations are desinTred so that

their statistics, other than those involving time lags, are very similar

to the statistics of the observed prediction errors. An important statis-

tical feature of both perturbations and prediction errors is that their

variances are proportional to th.e square of the model's kinetic energy.
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The perturbations are adjusted to conserve the energy invariants of the

system thereby ensuLing bounded solutions. The perturbed QG model is

nearly as successful as the BE model at simulating the PE climate.

This procedure is economical; once the statistics of the errors are

known the additional computer time needed to generate the perturbations

is small relative to the computer time necessary for the time marching

procedure.

Although we are concerned here with climate simulation models the

tuning and perturbation procedures can be applied to numerical weather

prediction models. The tuning procedure offers an objective way of

choosing empirical constants once a scoring rule is defined. Tuning

of operational models is probably possible with currently available

data. If one chooses just a subset of the observations which are truly

independent then the computations should not be too burdensome and ,ould

only have to be done once for each model (modification). The major

stumbling block is that current initialization procedures depend on the

previous forecast so that several forecast analysis cycles would be

needed prior to each "initial" condit:.on. The perturbation technique

can easily be incorporated into a Monte Carlo stochastic dynamical pre-

diction model. (Fleming (1972) and Pitcher (1977) have already accom-

plished the more difficult task of incorporating stochastic forcing

into stochastic dynamical prediction models which directly forecast the

statisti:al moments.) It seems however that as computer resources increase

the complexity of numerical models increases apace, so that operational

Monto Carlo prediction models may never be econom'ical.

_ _I I__ ___ X^III~II_ YL-~-_~~~~I__I . . ll~i I~ iiii~lii~il ~-i- - -----------_-. iX
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