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ABSTRACT

The evolution of sedimentary basins is modelled by considering the

extension of a thin viscous sheet of material with a temperature dependent

power-law rheology subject to a constant velocity boundary condition, and

introducing an initial strength perturbation with the system.

The degree of strain achieved in the weakened zone depends little on

the magnitude of the initial strength perturbation, and greatly upon the

rheology and stretching velocity assumed. The stretching in the weakened

zone terminates when this zone has thinned sufficiently for mantle material

to have risen near to the surface, cooled, and become strong again.

This model suggests why basins start to stretch, continue stretching

for a period of time and then stop, with stretching starting elsewhere.

A rheology is considered in which the strain-rate is proportional to

the nth power of the stress and to an exponential term involving an

activation energy, Q.

When the value of Q/nRTL (TL is a reference temperature, which defines

the initial geothermal gradient and R is the gas constant) is less than 20,

the basin may take longer than 25 m.y. to form, and the post-rift

subsidence will be less than 80% of that predicted by an instantaneous

stretching model. Similarly, the surface heat flux is also less than

predicted by an instantaneous stretching model.

These results suggest that a simple mechanical model of sedimentary
basin formation can be used to explain a number of observed features of the

strain history of basins, and that estimates of the thermal evolution of

basins which do not take into account a realistic strain history may be

seriously in error.

Thesis Supervisor: Dr. John Sclater

Title: Professor of Marine Geophysics
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"J'ai parle' d'une voix qui me disait ceci et cela. Je

cormmengais a m'accorder av'ec elle aN cette 'epoque, a

comprendre ce qu'elle voulait. Elle ne servait pas

des mots qu'on avait appris au petit Moran, que lui a

son tour avait appris a son petit. De sorte que je ne

savais pas d'abord ce qu'elle voulait. Mais j'ai fini

par comprendre ce langage. Je 1 ai compris, je Le

comprends, de travers peut-etre. La question n'est

pas La. C'est elle qui m'a dit de faire le rapport.

Est-ce a dire que je suis plus Libre maintenant? Je

ne sais pas. J'apprendrai. Alors je rentrais dana

La maison et j'6crivais, It eat minuit. La pluie

fouette Lea vitres. It n'etait pas minuit. It ne

pleuvait pas."

from "Molloy"

by Samuel Beckett
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1. INTRODUCTION

McKenzie (1978) suggested that the main features of sedimentary basins

could be explained in terms of a model in which isostatic subsidence during

an instantaneous stretching event is followed by a period of thermally

controlled subsidence during which geotherms, over-steepened during the

stretching process, relax toward equilibrium.

These ideas have been applied to a variety of sedimentary basins,

including the North Sea (Sclater and Christie, 1980), the Pannonian Basin

(Sclater et al., 1980) and the Eastern U.S. continental margin (Sawyer et

al., 1981). Estimates of the thermal evolution of a basin based on the

assumption that stretching is instantaneous (McKenzie, 1978), or that it

occurs at a constant strain rate (Jarvis and McKenzie, 1980), are

handicapped because they construct a strain history using only total strain

(McKenzie, 1978) or total strain plus duration of stretching (Jarvis and

McKenzie, 1980). This results in an infinite strain rate, or a strain that

increases exponentially with time, neither of which can be matched with

boundary conditions usually considered appropriate for plate motions.

Reconstructions of plate motions (for example Minster and Jordan, 1978)

show that lithospheric plates move at roughly constant velocities for

extended periods of time. It therefore seems more reasonable to assume

that sedimentary basin formation results from lithosphere extension with a

constant velocity boundary condition, rather than instantaneous or constant

strain rate extension.

In order to model basin evolution more accurately, it is essential to

understand the dynamic processes which operate during the stretching of

continental lithosphere. In particular, it appears probable (see section

2) that the creep strengths of minerals in the lithosphere depend strongly



upon their temperature, and therefore the strain history may be strongly

influenced by temperature changes which take place during lithosphere

stretching (England, manuscript in preparation). The distribution of

strength in the lithosphere is not well known, but the effects of

temperature changes will be especially important if, as has been suggested

(Brace and Kohlstedt, 1980) the strongest part of the lithosphere deforms

by thermally activated creep of olivine.

Sedimentary basins observed in the geological record have many

features, including failed rifts and outer highs, which indicate a complex

strain history. To understand the significance of such observations we

consider it important to discover which of these temporal variations may be

consequences of the mechanical properties of the lithosphere when

constrained by simple, geologically plausible boundary conditions, and

which of them demand that we appeal to more exotic processes for an

explanation. The dependence of hydrocarbon maturity on the stretching

history of basins also provides a strong incentive for an inquiry into the

dynamics of lithospheric stretching.

One of the first attempts to make a mechanical model of the process of

sedimentary basin formation was by Vierbuchen et al. (in press). However,

their approach has a number of drawbacks. First, they do not consider the

changes in strength of the lithosphere produced by its thermal evolution.

Their model is not really a thermo-mechanical model because they neglect

the dependence of the mechanical evolution on the thermal evolution.

Secondly, their constant-stress boundary condition leads to conclusions

about the geometry of the deformed lithosphere which are hard to

substantiate. Their model predicts that the weaker horizons in the

lithosphere will end up longer than the strong horizons. It is hard to see



how this extra length can be accommodated in a realistic model of the

Earth.

This thesis presents the results of a series of numerical experiments

on a simpler mechanical model of the continental lithosphere than that

chosen by Vierbuchen et al. The purpose of these experiments was not to

simulate any real sedimentary basin, but to elucidate some of the mechanical

effects of stretching a material with a temperature-dependent, power-law

rheology over a parameter range large enough to encompass the full range of

conditions believed likely to prevail in the lithosphere. We consider it

important to understand these processes before moving on to more

sophisticated models, and therefore we investigate a simple model which

still allows us to draw useful conclusions about the evolution of

sedimentary basins.

2. MANTLE RHEOLOGY AND CONSTITUTIVE RELATIONS

Realistic predictions about the mechanical behavior of a system can only

be made by combining realistic boundary conditions and physical parameters

with an appropriate constitutive relation. It is therefore important to

review the constitutive relations believed to be applicable to the

continental lithosphere.

Brace and Kohlstedt (1980) combine flow laws for quartz and olivine with

the assumption that the upper crust fails by frictional sliding according to

Byerlee's law to produce a tentative profile of strength of the lithosphere.

If the crust deforms in a manner described by Byerlee's law and the assumed

quartz flow law, then it is clear that the crust is much less strong than a

mantle which deforms by plastic flow of olivine. Fig. 1 shows a typical

strength profile resulting from these arguments, which is supported by

studies of the distribution of seismicity in the lithosphere (Molnar and



Chen, in press). The work of Kusznir and Bott (1978) and Mithen (1982)

suggests that modest tensional stresses applied to the whole lithosphere

become concentrated in the crust, promoting failure by a brittle process

such as normal faulting. We conclude that the most important region of the

lithosphere in determining the strength is the mantle, particularly the

uppermost mantle.

The conceptual framework within which most estimates of mantle rheology

are made was defined by Stocker and Ashby (1973). These authors present a

number of deformation maps which predict the flow of a material as functions

of temperature, strain rate, differential stress etc. Different flow

mechanisms require different stresses to maintain the same strain rate. The

region of parameter space in which the lowest stress necessary to maintain a

given strain rate is required by a particular mechanism is termed the

"field" of that mechanism. The extents of these fields were predicted by

Stocker and Ashby (1973) on the basis of the limited amount of available

data, and by making estimates of the poorly constrained parameters by

analogy with other materials. Fig. 2 shows one such deformation map taken

from their paper, and also reproduced by Goetze (1978).

There has emerged a consensus of opinion that the dominant deformation

mechanism in the upper mantle is some process involving the movement of

dislocations. Practical considerations have limited experimental

observations to strain rates of around 10-8-10 - 6 S- 1, whereas the mantle is

believed to strain at rates of the order of 10-16-10 - 1 2 S- 1. Clearly, any

extrapolation across the many orders of magnitude which separate

experimental conditions from those prevailing in the mantle must be treated

with caution. Also, Kirby (1980) presents evidence that at low temperatures

(less than half the melting temperature) common earth materials may deform

by transient creep, not the steady-state creep generally assumed.



Goetze (1978) reviews data including those which accumulated since 1973,

and their effect on the predictions of Stocker and Ashby (1973). This

review indicates that the data appear to correspond well to a combination of

a 'power law' for differential stresses below about 2 kb and above this

stress a relation of the type suggested by Dorn and Rajnak,1964 (the Dorn

Law), but the sparsity of data precludes a more deterministic analysis.

Goetze (1978) also indicates the possibility that a grain-size sensitive

mechanism-Coble creep-may be important in low grain-size materials at high

stress. The mathematical forms of these relations are

a) Power Law creep

= A(al-0 3 )n exp []

b) Dorn Law creep

S= p exp[-Q[l-(a 1 - a3 )/Op] 2 R6]

c) Coble Creep (linear unless the grain-size is a function of stress)

=A(a,-3)n exp[ ]

The symbols used are explained in Table 1.

The values of A, n and Q are not necessarily the same in a), b), and c).

The value of n probably lies in the range from 1 to 6, and the value of Q is

almost certainly less than 200 kcal/mol, (Goetze, 1978).

If the available data were unambiguous and the relevant deformation

mechanisms well understood, an extrapolation to geological strain-rates

could be made with confidence. Unfortunately, this is not the case. The

literature contains a wide variety of data obtained using a wide variety of

experimental methods. Moreover, the non-equilibrium-thermodynamic nature of



dislocation creep makes it difficult to be certain that mechanisms

postulated to occur in the laboratory are those which control the

deformation of the mantle. It therefore seems desirable that any model

which claims to represent upper mantle conditions should be investigated

over a wide parameter range.

The constitutive relation chosen in this study is of the form of a

power law, selected as being the best representation of the three relations

mentioned earlier, and the parameter range is chosen to represent the

uncertainty in experimental determinations and the assumptions inherent in a

simplified mathematical model of this kind.

3. MODEL

3.1 Physical description

Before developing a detailed mathematical formulation of the model, it

is valuable to present a preview of the processes which will be considered.

The model has two uniform elements, side-by-side, which initially have the

same thickness. Before stretching begins, we set the ratio of the lengths

(L I and L2 ) of these elements, and the ratio of the strengths (Bl and B 2 ).

The initially narrower element is, to start with, weaker, and for

convenience we refer to it as the "basin". (Initial values are indicated by

the superscript "0").

We then begin to extend the system. There is a simple relationship

between the strengths of the elements and the element strain-rates resulting

from a constant velocity boundary condition applied to the whole system.

Given the strengths we can find the strain-rates and hence calculate the

lengths of the elements after an increment of time has elapsed, and also the

thicknesses.



Knowing the strain-rate history of the elements we can find the Moho

temperatures, which, as we shall see, are the most important parameters in

determining the strength of the element. Since we now again know the

strengths and lengths of both elements we can repeat this procedure many

times, obtaining a detailed picture of the strain history of the system.

This method is shown schematically in Figure 3.

We may anticipate that the initially weaker element begins to strain

very rapidly, but, as it thins, the insulating layer of crust which

separates the atmosphere or sea from the strength-controlling uppermost

mantle is attenuated, and therefore the element becomes more rigid.

Eventually this, initially, weaker, element may "lock up" and the strain

will be accommodated in the element which was initially stronger.

3.2 Mathematical formulation

We model the continental lithosphere as a thin sheet of viscous

material with a temperature-dependent power-law rheology which is considered

to strain in the vertical dimension and one horizontal dimension. The model

has two elements, horizontally adjacent, one of which is initially weaker

and narrower and is regarded as representing the incipient sedimentary

basin. The elements initially have strengths B I and B 2 B I >B 2 ) and

lengths L1 and L 2 (LI >L2 ) . The ends of the system are constrained to

recede from one another at a constant velocity Uo (Fig. 3). It is not our

intention to suggest how the initial weakness might be induced, but likely

candidates are pre-existing irregularities in the thickness of the

lithosphere, and transient heat sources in the asthenosphere.

The motion of a viscous fluid in a stress field is described by the

Navier-Stokes equation, which, neglecting body forces, and where rates of

flow are small enough to justify ignoring acceleration terms, becomes



_ i  -J i (3.1)

where p is the pressure in the field and Tij the elements of the deviatoric

stress tensor, and we use the convention of summing over repeated

subscripts. Since we approximate the continental lithosphere by a thin

viscous sheet with no strain in one horizontal dimension, then if there is

no shear stress on the top or bottom of the lithosphere we may assume that

there are no vertical gradients of horizontal velocity within it

(sxz = eyz = ezx = Szy = 0) and so xx -zz and equation 3.1 reduces to

S- x (3.2)

In this formulation, pressure gradients arise from gradients in crustal

thickness (England and McKenzie, in press) and we assume that the magnitude

of these gradients is not sufficient to affect the deformation. Neglecting

horizontal gradients of pressure we have

atxx
- 0 (3.3)

The assumption that the deformation within the lithosphere is independent of

depth (E = 0) means that we ignore the role of brittle deformations.

Since faults represent only the fracture of a thin brittle layer, and not

the deformation of the whole lithosphere this is not unreasonable. For the

purpose of this study we regard faults as a consequence of the viscous

deformation of the lithosphere, and not as a controlling mode of deformation

in themselves (see also section 2). Also, the nature of faulting in a given

region certainly owes something to the regional fabric which results from

previous tectonic events, and therefore a model such as this cannot predict



a particular location or type of faulting, though it can predict the general

stress regime.

We therefore need to consider the vertically averaged stress within the
d

lithosphere. This is given by / Txx dz, where the lithosphere has initial

0

thickness d. We have already discussed the rationale for using a power law

constitutive relation of the form

= A(alo 3 )n exp [](3.4)

This equation, appropriate for the case of uniaxial stress and strain, may

be generalized by the introduction of the second invariant of the deviatoric

1/2
stress tensor, T = (Tij Tij) , or the second invariant of the strain-rate

* 1/2
tensor, E = (Sij ij) /2, thus:

ij = CTn-lTij exp ([ (3.5)

Since Exx = -Szz and the other elements of the strain rate tensor are zero,

these second invariants are simply T = VrI TzzI and E = V/WEj, so

xx = DTx exp (- -) (3.6)

or Txx = D-1/n 'n exp Q (3.7)

The vertically averaged stress is therefore

d d
dz = F1xSn f exp (Q/nRO)dz (3.8)

o o

And if we assume that the stress required to deform the crustal lithosphere

is much less than that required to deform the mantle lithosphere, and that
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there is a linear geotherm: e(z) = 0o + gz where 0o is the surface

temperature then equation (3.8) becomes

Sd F n TL
S Txxdz = - f exp( )d 6 (3.9)

o 6m

For Q/nR > 5 and L>>em, this may be solved approximately, giving

2
Sd s1/nFnR m
d f Tx x dzgQ exp ( (3.10)

0

i.e. Txx = B Cl/n (3.11)
xx

FnR

where B = exp ( (3.12)
Q g R6

FnR
The quantity is a constant for the material, hence

2em

B C -- exp (3.13)

Equation (3.10) may also be written in terms of the second invariant

of the strain-rate tensor:

d nR Om m
f Txx dz = F El/n-1 - exp (3.14)

d o Q g

This linear relation between the stress and strain rate contains a scale

nR m . em
effective viscosity, 1/n-1 exp ) and a scale depth - -



The strain rate history of our model system is controlled by two

opposing effects: a) As the lithosphere stretches it becomes weaker, and

b) as the thinning procedes, material in the strongest layer is carried

towards the surface, cools, and becomes still stronger.

The degrees of stretching of the two elements of the model are 81 and

L1

81 = - (3.15)
L1

L 2
and 82 = - (3.16)

L 2

The ends of the system are constrained to recede from one another at a

constant velocity Uo . The strain rates of the element are L1 and E2 and the

constant velocity boundary condition corresponds to an initial bulk strain

rate of

. Uoo 
(3.17)

L1 +L2

0

LI
which, for -i>> 1 is approximately

SUo
Fo =- (3.18)

L1I

Since there are no horizontal gradients of stress, we have:

Bllll/n = B2s21/n (3.19)



and from the boundary condition:

L14 + L2S2 = Uo  (3.20)

Eliminating I from (3.19) and (3.20) we find '2 is given by:

S 2  
-

L1 B2 n

and hence 4 is found from (3.19) by:

B2 n
S 2 (-) (3.21)

After m time-steps of finite length 6t, al and 2 are found from

m

1 + E S1(i-l) 6t (3.22)
i=1

m
and 82 = 1 + E 2(i-1) 6t (3.23)

i=1
o 0

LI B2
Equations (3.19) through (3.21) show that from given values of---- ' --

L2  Bl

and So we can progressively calculate the strain history of the system,

timestep by timestep, provided we know the Moho temperature of both elements,

B2
in order to calculate new values of --

B1



This differs from the approach used by England (in prep.), in which the

velocity boundary conditions were applied to a homogeneous lithosphere, with

the result that the strain rate within the lithosphere always obeyed the

relation:

(t) = o/8 (3.24)

or a = i + sot (3.25)

To find the Moho temperature precisely would entail solving the heat

flow equation for each timestep, for both elements. Instead, we separate

the mechanical and thermal problems, and to solve the latter we construct,

from numerical solutions to eq. 3.26, a table of Moho temperatures and

surface heat flux for increasing values of 8, and various initial strain

rates, for a homogeneous lithosphere undergoing extension with a constant

velocity boundary condition and make the assumption that the solution to the

thermal problem obtained for this situation is sufficiently accurate as long

as the predicted strain history does not deviate too strongly from a simple

constant velocity boundary condition extension. (This approximate solution

was checked by calculating the exact solution for a number of cases, and

was demonstrated to be sufficiently accurate for our purpose.) The thermal

state of such a system is dependent upon the period of stretching, At, and

the stretching factor, 8. The model strain rate, L, is related to the

initial strain rate, So, by equation (3.24), and the appropriate non-

dimensional heat flow equation for this situation is

2
+' ( ) ' - T'
+ s'(l-z') 3 Z' 2 (3.26)



where the non-dimensional time, t' is related to the dimensional quantity,

t, by t'=Kt/a 2 , K and a being the thermal diffusivity and thickness of the

lithosphere, and the non-dimensional depth, z', is given by z'=z/a. The

temperature is non-dimensionalised using the absolute undisturbed

temperature at the base of the lithospere, TL, i.e. T'=e/TL (for

comparison, see Jarvis and McKenzie, 1980, equation 2), or England, in

prep., equation 8). Hence the non-dimensional strain rate is related to

the dimensional strain rate by

2
aK' = 8 (3.27)K

or Pe/K
or S' 22

a 8 (3.28)

where Pe is the Peclet number for the system, which is also given by
* 2
Soa

Pe = K (3.29)

(B<

or Pe = )K (3.30)

a At

where At is the period of stretching. Since we know 8 for both elements,

and we know the period of stretching, we can easily find what the initial

strain rate, would have been if the elements had each undergone extension

at a constant velocity. By using these values of 8 and So, and

interpolating linearly between values of Moho temperature given in the table

referred to above, we can arrive at an approximation to the Moho temperature

which will be accurate if the strain histories of both the elements

approximate to a constant velocity extension.



The strength of an element, Bk (k = 1,2) is related to its Moho

temperature, 0m and geothermal gradient, g by equation (3.12)

Bk m2 exp ( (3.31)

If the initial strength, Bk is related to the initial Moho temperature,

To , and geothermal gradient go, then

Bk - To2 exp ( (3.32)
gonRT

and

Bk go em 2 Q 1 1
S(y) exp [ (- - o)] (3.33)

Now, if we note that g/go = 8, and non-dimensionalize the temperature with

respect to the temperature at the base of the lithosphere, TL i.e.

6m = 6m'.TL and To = To.TL equation (3.32) becomes

Bk 1 m Q 1 1-exp 1 (3.34)

T-) exp RL To'

Equation (3.34) shows that the strength of an element, relative to its

initial strength, depends exponentially upon the ratio Q/nRTL, and suggests

that Q/nRTL can profitably be considered as a single parameter.

3.3 Parameter Range

All the experiments reported below were begun by assuming an initial
a o

L1 B2
length ratio of - of 10 and an initial viscosity contrast --- -ranging from

L2  Bl

0.01 to 0.75. We consider initial non-dimensional strain rates of between 5



2a
and 150. Using a value of -- of 625 m.y., quoted by Parsons and Sclater

(1977) as being appropriate to the oceanic lithosphere this is equivalent to

strain rates from 2.5 x 10-16 S-1 1 to 8 x 10-15 S
- 1. Over the range of

temperatures prevailing in the lithosphere - probably less than 1700 K,

these strain-rates fall within the Coble-creep and dislocation creep fields

of Stocker and Ashby (1973) (see Fig. 2).

It is necessary to use a large range of activation energies, since

activation energy is one of the least well-determined parameters in the

constitutive relation. Since the temperature at the base of the lithosphere

is also poorly constrained we consider the single parameter Q/nRTL to vary

widely, between 1.5 and 40. For a value of TL = 1500 K, if the gas

constant, R, is 2 cal/mol and the value of n is 3, a Q/nRTL of 10

corresponds to an activation energy of 90 kcal/mol. Similarly, for a

Newtonian lithosphere (n=l) with a temperature at the base of the

lithosphere of 1500 K, Q/nRTL of 40 corresponds to an activation energy of

120 kcal/mol. Values of n between 1 and 6 are considered.

For Q/nRTL as high as 40, the only value of n which gives a reasonable

activation energy is n = 1. Therefore we shall, in general, consider that

Q/nRTL = 40 corresponds to a Newtonian lithosphere.

The quantitative results reported below were derived only from those

numerical experiments for which the temperature estimate was demonstrated

to be accurate, i.e. when the calculated strain histories were reasonably

close to a constant velocity extension.



4. RESULTS AND DISCUSSION

4.1 Strain History

Over the entire parameter range the strain rate history of the system

shows the general form depicted in Fig. 5 . The weaker zone stretches very

rapidly and, as it becomes thinner, the effective viscosity decreases,

concentrating the strain. However, this rapid thinning is not maintained

because mantle material is brought closer to the surface, cools, and becomes

stronger until eventually, the pre-weakened zone, which, for convenience we

will refer to as the "basin" begins to "lock up", and the strain is taken up

by the rest of the continent. This results in the length-ratio profile

shown in Fig. 6.

One of the principal features of interest is the degree of

concentration of strain into the basin region which can be achieved during

stretching. It is therefore of interest to find the strain in the basin,

at the time of the maximum concentration of strain, that is, to find 2

L1

when s1 - s2 (and - is a minimum).2 L2

Figs 7, 8 and 9 show contours in Q/nRTL- o space of a2 at the time when

1 =i2 for different values of B2
0/B1

0 . We do not show contours where

32 is greater than ten, because it seems likely that by that stage

large-scale intrusions would significantly influence the stretching process

(Le Pichon and Sibuet, 1981, argue that such intrusion is likely to begin

when the stretching factor is as little as 3 or 4) and render our model

inapplicable. Neither do we plot any values for stretching during which the

stress in the system excedes twenty-five times the initial value, because

this would represent such a large departure from the initial conditions that



processes other than those modelled here would probably begin to play an

important role. The effect of the latter condition is to eliminate S2

values for B2
0 /BI0 =0.01 when n is 3 or 6. Since the time when 4 = 2

is also the time when the two elements have the same strength, then when

stretching takes place too quickly for BI to change significantly from B1
0,

the strength of the basin must increase by a factor of about B10/B2
0 before

l= = 2. These conditions prevail for B20/Bi
0 = 0.01 and n = 3 or 6.

When n = 1, the strengthening of the basin is accompanied by a weakening of

the rest of the continent, and the stress in the system does not increase as

rapidly as when n is 3 or 6.

One of the most important points which is made clearly by figures 7

to 9 is that the disposition of 82 contours in Q/nRTL -S 0 space is not

significantly altered by making large changes in the value of B2
0 /B O0 , the

initial strength contrast. The largest stretching factor possible for the

maximum initial strain rate when Q/nRTL = 40 varies only from 3 to 4.5 as

the value of B2
0 /Bl ranges over nearly two orders of magnitude. The range

of parameter space where a 82 of greater than 10 is possible also varies

relatively little over a wide range of B2
0 /Bl. The reason for this is made

apparent by considering a plot of the stress in the system (relative to

its initial value) against k - an example is shown in Figure 10. As we

have already noted, E1 = 2 when the initial strength contrast has been

evened out by the strengthening of the basin and the weakening of the rest

of the continent, and at this the point the ratio T/TO is roughly equal

to (B1
0 /B2

0 ), that is to say, 1= k2 when T/TO0 increases to some value

which depends upon B2
0 /B1

0 and, to a lesser extent, upon the strain history.

Figure 10 shows that a large change in the value of T/TO0 takes place over a

small range of 82, when the effect of cooling on the strength of the



lithosphere is most marked, and therefore that the value of R2 when c l = 2

is not strongly dependent upon the initial strength contrast. The value of

a2 when this rapid increase in the strength of the lithosphere takes place

depends on the initial bulk strain rate and the sensitivity of the strength

of the lithosphere to temperature changes i.e. on the values of n and Q. It

is the relative importance of n, Q and 0 in determining the disposition of

the 82 that can be seen in Figures 7-9.

For a small boundary velocity (i.e. a small initial strain rate),

changing Q/nRTL by a factor of two can have a dramatic effect on the strain

concentration. For example, when B2
0/B1

0=0.75 (Fig. 9) and 80 is 5,

increasing Q/nRTL by a factor of two leads to a decrease in the value of

a2 by a factor of five, from 10 to 2. The effect of changing Q/nRTL is much

less important at higher strain rates.

Though our model can only describe, at best, the behaviour of a

continental lithosphere during the initial phase of a single purely

extensional event, it may be profitable to speculate upon the geological

implications of our results. It appears from these figures that unless the

stretching velocity, the temperature at the base of the lithosphere or the

power law exponent is large, or the activation energy for lithosphere

deformation is small, it is unlikely that a piece of continental lithosphere

can be stretched continuously until a large degree of thinning is achieved

and oceanic crust formed. In fact, the margins of major oceans are marked

by evidence of multiple phases of stretching and quiescence, indicating that

stretching, cooling and "locking up" of continental lithosphere may play a

significant role in determining the strain history of an extensional

province. For a value of Q/nRTL of 40, corresponding to the Newtonian

lithosphere, and a range of realistic strain rates, this "locking up"



appears to take place when 8 is around 1.5, or a stretching of 50%. This

figure corresponds well with estimates of the degree of stretching of a

number of well-documented sedimentary basins. For example, Sclater and

Christie quote values of around 50% for the amount of stretching which has

taken place in the central North Sea. It is also in accordance with the

estimates of the maximum possible stretching made using simpler models

(England, 1981). Clearly our model is far too crude to use as a basis for

predicting actual amounts of stretching, but it is encouraging that the

results do not differ widely from reasonable values, and lends support to

the idea that cooling and strengthening of the lithosphere is a probable

extension-inhibiting process.

4.2 Heat flow and subsidence

An important factor in determining hydrocarbon maturity is the surface

heat flow during stretching. For this reason we include a brief discussion

of the implications of our stretching model to the thermal evolution of the

lithosphere, bearing in mind the caveat mentioned in section 4.1 -that we

are only using an approximate solution to the thermal problem.

In spite of this, it is possible to make some important observations on

the dependence of the thermal history on the model parameters. Figs. 11 to

13 show the surface heat flux plotted against the stretching factor, 2, for

B20/B10 = 0.1 and n is 1,3 and 6. McKenzie's (1978) model predicts that

when stretching stops the heat flow will lie on the line q/qo = S, at the

appropriate value of 8. This is clearly not the case for a model which

includes finite strain rates. In fact, the peak in the q/qo curve is

significantly displaced from the q/qo = 8 line.

In order to compare the post-rift subsidence predicted by this model

with that predicted by the instantaneous uniform extension model we consider



the situation depicted in Fig. 14. Immediately stretching ceases the

lithosphere, of initial thickness a, has a thickness of a/S. At a depth z

it has a temperature VC and hence a density p = p0(l-ae(z)), where Po is

the density at 0*C and a is the thermal expansivity. The surface is
O

maintained at 00C and the temperature below a depth a is TL C. The geotherm

is O(z), and for z<a this is, in general, non-linear. This column of

material is isostatically compensated at a depth of s+a. The lithosphere

subsides after stretching by a distance s, and is covered by a column of

seawater of height s with density Pw, and the lithosphere geotherm is

linear. Isostasy requires that the columns in 14a) and 14b) have the same

mass, i.e.

a TL
po f (l-a6(z))dz + sPo(1-aTL ) = sPw + apo(l-a--) (4.1)

o0

hence

drL  a
a(l - -) - I (1-aO(z))dz

0
s =  w(4.2)

((l-aTL) - -)
p0

If the stretching had occurred instantaneously, the value of the integral

a oTL
is simply a - acTL +2

and

a c L
s = 2((1-TL)- P Po) Y (4.3)



where Y = 1 - 1/8

The form of this solution suggests that we express the solution to the

general problem as

s =  acL (4.4)

2((l-oTL)- Pw/P o )

where Y * is a function of the temperature profile, which depends upon 8 and

the strain history. This temperature profile is supplied by the same

program which supplied the Moho temperatures and surface heat fluxes, so we

can find Y* at the time of maximum heat flux for a variety of rheologies and

initial strain-rates. The values of Y and the ratio -*/Y obtained are

presented in Table 2.

Table 2 also gives the value of the ratio of the stress in the system

to its initial value, T/To , at the time of maximum heat flux. Using this

table in conjunction with figs. 11-13 we can draw a number of important

conclusions about the influence of rheology and initial strain rate on the

thermal and subsidence history of a sedimentary basin.

First of all, it is clear that the form of the heat flow profiles in

figs. 11-13 depends little on the value of n, and strongly upon the initial

strain-rate and the ratio Q/nRTL. The time of maximum heat flux corresponds

well to the time when the basin begins to "lock up" and the value of the

maximum heat-flux is greatest for those rheologies which allow stretching to

take place rapidly, i.e. the lower the activation energy, or the higher the

initial strain rate, the greater will be the oversteepening of the geotherm

before significant strengthening can occur, and hence the higher the heat

flux. When o is 150 the maximum heat flux varies from 3 (Q/nRTL = 40)

to 5.5 (Q/nRTL = 1.5) whereas for slow stretching, with So = 5, the

maximum heat flux is confined to the range between 1.2 (Q/nRTL = 40) and

1.5 (Q/nRTL = 1.5).



From the values of T/T o at the time of maximum heat flux (Table 2) it

is apparent that for Q/nRTL, T/T o is low, typically around 0.5, but for

higher Q/nRTL this ratio of stresses is high, suggesting that stretching

may have been halted before the curve has departed greatly from the q/qo -

a line, and that such a basin may be difficult to distinguish from a basin

which has stretched instantaneously.

There is no such systematic relationship between T/T 0 and the initial

strain rate because although high strain rates require large stresses for a

given lithosphere strength (see equation 3.11), low strain rates permit

thermal relaxation and "locking up" of the basin. Which of these processes

dominates depends on the value of the power-law exponent-high values of n

acting to promote the former effect. Hence, for n=--3, increasing initial

strain rate is accompanied by an increase in T/T o for a given Q/nRTL. For

n-1 higher strain rates result in lower T/T o . When n=6, whether T/T o

increases or decreases with strain rate depends upon the value of Q/nRTL.

The amount of post-rift subsidence predicted by this model is

significantly less than that predicted by McKenzie's (1978) model for the

case of instantaneous stretching (and, by implication, the syn-rift

subsidence is greater). This difference is most marked for low initial

strain rates, which cause a slow stretching, since the long stretching time

allows significant syn-tectonic thermal relaxation to take place. The ratio

y*/y varies from around 0.5 for o = 5 to around 0.85 for o = 150.

Rheologies which bring stretching to a halt rapidly, i.e. high Q/nRTL, allow

little time for thermal relaxation and hence y*/y is higher for higher

values of Q/nRTL.

The value of y*/y depends, therefore, upon the time taken to achieve

the maximum surface heat flux. Comparing these values of y*/y with the



dimensionless time taken to reach maximum heat flux reveals that Y*/-y is

less than 0.8 for dimensionless times of about 4 x 10- 2 DTU. For a

2/
lithosphere with a K = 625 m.y. (Parsons and Sclater, 1977) this

corresponds to time of 25 million years, that is to say that a basin taking

25 million years to achieve maximum heat flux will have a post-tectonic

subsidence which is only 80% of that predicted for a basin formed by

instantaneous stretching. Estimates of the thermal history for basins

taking much longer than 25 m.y. to form may therefore be in error.

The shaded areas on Fig. 7, 8 and 9 show the region of parameter space

in which basin stretching ceases at a time of 0.04 D.T.U. In the parameter

space above the line, the stretching ceases in less than 0.04 DTU. These

figures show that if Q/nRTL is below about 20, then basin stretching will

not be impeded by syn-deformation cooling and strengthening of the

lithosphere for 25 million years.

5. CONCLUSIONS

A number of important points arise from modelling sedimentary basin

formation as a consequence of extending a thin viscous sheet of a power-law

material. First, and most important, there appears to be a limit on the

amount of extension possible before the strong material in the "basin"

portion of the lithosphere cools and strengthens, which does not depend

strongly upon the initial strength contrast between the "basin" and the

"continent". The amount of strain concentration achieved is determined by

the velocity of extension and by the values of the parameters in the

constitutive relation. The time-dependence of the locus of stretching

indicates that tensional regimes may have a complex strain history which

derives solely from the mechanical properties of the lithosphere.



The heat flow and post-rift subsidence predicted by this model are less

than predicted by McKenzie's instantaneous stretching model. If the

lithosphere has a Q/nRTL of less than 20 then "locking up" is not likely to

occur in less than 25 million years. If Q/nRTL is greater than 20 it

appears that sedimentary basins cannot stretch for periods of time longer

than 25 million years. The fact that there examples of basins which

stretch for long periods of time suggests that, locally at least, the

lithosphere is not Newtonian.

Basins taking longer than 25 million years to form subside after

stretching less than 80% of the amount predicted by an instantaneous

stretching model. Jarvis and McKenzie (1980) have already pointed out that

the thermal state of a basin stretching for over 20 million years is

significantly different from an instantaneously stretched basin. What we

are now able to do is to show that stretching over a long period of time is

not possible if the lithosphere behaves as a Newtonian fluid. Results such

as these suggest that it may be important to consider the dynamic processes

of basin formation when modelling thermal evolution, and that an assumption

of instantaneous stretching may result in errors in estimates of hydrocarbon

maturity.
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Figure Captions

Figure 1. A strength profile for the lithopshere based on the assumption

that the upper crust fails by frictional sliding on pre-existing

fracture surfaces, the lower crust deforms according to the quartz

flow law and the mantle deforms according to the olivine flow law.

Figure 2. Deformation map of olivine, showing the strength developed at

each temperature as a function of strain rate. The heavy lines

separate regions where different deformation mechanisms predominate.

Figure 3. Diagrammatic representation of the procedure involved in the

modelling.

Figure 4. Diagram showing the system modelled. The two elements have

uniform strengths Bl and B2 , and lengths L1 and L2 . The ends of the

system are constrained to move apart at a constant velocity Uo, and

the upper and lower surfaces are free of shear stresses.

Figure 5. A typical strain-rate history for the model. The "basin" has

strain rate e2 and the "continent" has strain rate sI. The

intersection of the curves gives the time at which the "basin" and

"continent" have the same strength.

Figure 6. A plot of the history of the ratio of lengths of the "continent"

and "basin" during the extension. The "continent" is initially ten
L1

times as long as the "basin". The minimum value of 2 occurs where

i = S2 (see Fig. 5).

Figure 7. Contours of the value of 82 when E1 = 2 for an initial strength

ratio of 0.01 over a range of initial strain rates and values of

Q/nRTL. There is strong concentration of the strain in the basin for

Q/nRTL less than 2.5 over the whole range of initial strain rates.



For high Q/nRTL, the extent of strain concentration depends upon the

initial strain rate. In this figure, and in Figs. 8 and 9, the shaded

area shows the region of parameter space for which stretching ceases

after 0.04 DTU. Below this shaded area, stretching is possible for

longer than 0.04 DTU.

Figure 8. Contours of the value of a2 when sl = e2 in Q/nRTL - co space

for an initial strength ratio of 0.1. The disposition of 82 contours

is almost the same as in Fig. 6.

Figure 9. Contours of the value of 32 when e1 = c2 in Q/nRTL - O space for

an initial strength ratio of 0.75. There is less strain concentration

at low Q/nRTL than in the two previous cases, and the range of 82

values possible at high Q/nRTL is more restricted.

Figure 10. A plot of stress in the "basin", relative to its initial value,

for increasing strain in the "basin". After falling slightly, the

stress increases very rapidly as the Moho temperature falls below

some "threshold" temperature which depends on the value of Q/nRTL.

Figure 11. A plot of the surface heat flux, relative to its initial value,

with increasing strain for n = 1, = 5, 50 and 150, and Q/nRTL =

1.5, 15, 40. For a basin caused by instantaneous stretching, the

maximum value of q/qo would lie on the q/qo = 8 line. Clearly, for

more realistic strain histories the peak value of q/qo is displaced

from this line, especially for low values of Q/nRTL. For Q/nRTL, the

peak value of q/qo is quite close to the q/qo = line.

Figure 12. As Fig. 11, but for n = 3. Again, for Q/nRTL = 40 the maximum

q/qo is quite close to the q/qo = 8 line, whereas for lower Q/nRTL, it

is significantly displaced.

Figure 13. As Fig. 11, but for n = 6.
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Figure 14. Density profiles through the lithosphere a) immediately after

stretching and b) at equilibrium, after post-rift subsidence by an

amount s. The lithosphere is now covered by an extra depth s of water

and has a linear geotherm.



Table Captions

Table 1. Table of symbols used.

Table 2. This table gives, for an initial strength contrast of 0.1, and a

variety of rheologies, the value of the maximum heat flux, the value

of 82 when this occurred, the predicted post rift subsidence, 
Y,

the ratio of Y* to 1-1/8 (the amount of subsidence predicted by

McKenzie's (1978) model), the stress in the system at the time of

maximum heat flow, and the period of stretching in dimensionless

time units (.04 DTU z 25 m.y.).



Table 1

e temperature

0o  surface temperature

em  Moho temperature

To  initial Moho temperature

TL initial temperature of the base of the lithosphere

T deviatoric stress

a1 , "3  greatest and least principal stresses

n the "power law exponent" - a dimensionless number

Q activation energy of the deformation mechanism

A,C,D,F material constants

R gas constant

Sp and ap reference strain rate and stress (in the Dorn law)

Sstrain rate

Uo0, o boundary velocity, and corresponding initial bulk strain-rate

d, a lithospheric thickness, initial lithosphere thickness

B lithosphere strength

T,E second invariants of the deviatoric stress, and strain-rate tensors

K thermal diffusivity

q heat flow

qo equilibrium heat-flow

PO density of lithosphere material at OC

Pw density of seawater

a thermal expansivity of lithosphere material

s amount of post-tectonic subsidence



Table 2

max. heat
flux 2 Y* Y T/ T0

time to max.
heat flux

1.5
5 15

40

1.5
1 50 15

40

1.5
150 15

40

1.5
5 15

40

1.5
3 50 15

40

1.5
150 15

40

1.5
5 15

40

1.5
6 50 15

40

1.5
150 15

40

1.3
1.2
1.1

2.6
2.3
1.9

3.8
3.5
3.1

1.5
1.4
1.3

2.9
2.7
2.5

4.0
3.8
3.6

1.5
1.4
1.3

2.9
2.8
2.5

4.1
3.9
3.5

2
1.3
1.2

4.1
2.8
2.0

6.0
4.3
3.3

2.0
1.6
1.4

4.0
3.4
2.7

5.9
4.7
3.8

2.0
1.6
1.4

4.0
3.4
2.7

6.0
4.8
3.8

.14 .28

.10 .43

.08 .47

.54 .71

.50 .78

.42 .84

.68 .82

.66 .86

.62 .88

.20 .40

.20 .53

.18 .62

.56 .75

.56 .79

.54 .86

.70 .84

.67 .85

.64 .86

.20 .40

.20 .52

.18 .62

.56 .75

.56 .79

.54 .86

.70 .84

.70 .88

.66 .89

n 60 Q/nRTL

0.49
1.6
1.7

0.16
1.5
1.7

0.10
1.4
1.7

0.50
4.5
5.6

0.23
4.2
5.3

0.19
3.0
4.2

0.56
5.5
6.2

0.28
7.7
7.9

0.35
10.2
10.3

>.09
>.09
.090

.078

.042

.042

.039

.033

.024

>.09
>.09
.072

.060

.051

.036

.033

.027

.021

>.09
>.09
.081

.060

.048

.033

.033

.033

.021
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Figure 2
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Figure 3
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Figure 6
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Figure 10
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