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ABSTRACT

Direct double-diffusive convection (salt fingering) is known under many circum-
stances to set its own vertical scale smaller than that imposed by the physical
boundaries. In the oceans, a domain essentially unbounded in the vertical, the
vertical scale of the salt finger cells is determined by the local dynamics, rather than
the location of the boundaries. A new mechanism is proposed for the formation of
layers in direct double-diffusive convection. Convective modes of higher vertical
wave number than the fastest growing fundamental, called harmonic instabilities,
create regions of reduced, or even inverted, density gradient alternating with regions
of increased density gradient. The regions of reduced density gradient become
turbulent because of additional convective instabilities. The resulting configuration
is alternating layers of laminar cells and turbulent convection. Qualitatively this
agrees well with observations. Calculations of the effects of growing linear modes
on the mean fields are presented to illustrate this mechanism. Some preliminary
results from numerical simulations of very supercritical direct double-diffusion are
presented and discussed.
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List of Symbols

The variables are labeled for the heat-salt system. For other systems the faster
diffusing component corresponds to heat and the slower diffusing one to salt. When
examining one component convection only the component labeled S is present.

No notational distinction is made between dimensional and nondimensional growth
rates. wave numbers, wavelengths, and other quantities; context makes the choice
unambiguous. Numerical quantities are dimensionless unless units are specified.

a = Stern's parameter in eq. (27)

Ao = initial linear temperature gradient when constant

A(z) = a = mean temperature gradient, may be time dependent

Bo = initial linear salinity gradient when constant

B(z) = = mean salinity gradient

C = area of horizontal integration or averaging

F = PFs - aFT = total buoyancy flux
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s = wS = salt Reynolds flux

7T  = wO = heat Reynolds flux

g = gravitational acceleration magnitude

h = thickness of a finger layer

H = height of experimental box, or thickness of turbulent region

J(,.) = ao a9 a = "9 _ Jacobian determinant; 0 and " are arbitrary functions

k = horizontal wave number magnitude, k2 = +-- k2

kf = fastest growing wave number

kj, k2 = x and y wave numbers, respectively

Ks = salt, or slower diffusing component, diffusivity

KT = thermal conductivity, or faster diffusing component diffusivity



1 = horizontal wavelength

If = horizontal wavelength of fastest growing modes

L = length scale = [g3B/(KT)] - 1'/4 for double-diffusion

= [gOB/(Ksv)]- 1/4 for one component convection

m = vertical (z) wave number

mi = vertical wave number of fundamental for system of given height

mi = vertical wave number for Pmax, or vertical wave number for layering

N = [-(g/p) ]1/2 = Brunt-Viisfili, or buoyancy, frequency

NuT = FTI/(KTA) = heat Nusselt number

Nus = Fs/(KsB) = salt Nusselt number

p = pressure

q = ratio of nonlinear to linear terms, see eq. (38)

Q = azFT/OzFs = flux divergence ratio

R, = critical Rayleigh number for convection
for convection between free slip plates = 2.4

Re = IvIl/v = Reynolds number

S = [_-(/p)( )]/( )2 = Richardson number

Rs = (gH4 B)/(vKs), or (gH3p AS)/(UKs) = salt Rayleigh number

RT = (gH4aA)/(vKT), or (gH3a AT)/(vKr) = thermal Rayleigh number

R* = Rs - RT = double-diffusive Rayleigh number

S = S* - Bz = salinity change from base initial state

S = salinity measured from reference, So

S = g/3BL = salinity scale

t = time

T = time scale = (g BKT/v) - 1/ 2 for double-diffusion
= (g#BKs/v)- 1/ 2 for one component convection
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1. Introduction

The possibility of buoyantly driven convective motion in a fluid with a negative

average density gradient has been known for some time, though this is usually

referred to as a stable stratification. There are several ways to create such situations,

of which direct double-diffusive convection is one. Direct double-diffusive, or

differential-diffusive, convection can occur if there is a destabilizing component and

a more rapidly diffusing stabilizing component, even if the stabilizing component

contributes more to the overall density field. The modes are referred to as direct

because the initial perturbation grows monotonically and exponentially. If the

component gradients are reversed but the density gradient is kept negative, the

convection begins with a growing oscillation. For the oceanic case, where the

destabilizing component is salt and the stabilizing one heat, the phenomenon is

known as salt fingers. Historically, this was the first case of double-diffusion that

was examined theoretically (Stern 1960).

The direct cellular modes have some resemblance to low Rayleigh number

single component convection, such as in the Benard, or Rayleigh-Jeffreys problem,

as it is variously known. However in double-diffusive convection, diffusion is

needed throughout the fluid to drive the instability even at large Prandtl number,

not just at the boundaries where vertical motions are prevented. This is clearly

essential in run-down experiments, but the balance of boundary and interior effects

in a real parallel plate experiment might be different. The visually striking features

of salt fingers are tall narrow cells and distinct layering. Layers of laminar cells

alternate with regions resembling high Rayleigh number convection. The process of

layer formation, the instabilities that lead to it, and the resulting vertical structures



are the subjects of this thesis.

This introduction gives a qualitative description of the basic instability and lays

out the problem to be attacked. Chapter 2 gives a brief history of the study of direct

double-diffusive convection. It also examines where the phenomenon is important

and notes variations also being studied. The basic equations and linear theory, both

previously published and new, are presented in chapter 3. Previous nonlinear work

is reviewed in chapter 4, while previous work on layering is presented in chapter

5. Chapter 6 presents the details of the harmonic instability theory of layering

being introduced, including determinations of flux divergences, their effects on the

mean fields, and the resulting change in potential energy, using the growing linear

modes. Preliminary numerical simulations of salt fingers are discussed in chapter

7. Chapter 8 is devoted to a discussion and several loosely coupled conjectures.

Chapter 9 contains a summary and conclusions along with further problems to

persue. Many symbols and named parameters are not defined in the text, but all

are included in the list of symbols.

Qualitatively, as initially realized by Stern (1960), the instability may be

described as follows. Start with a body of fluid having both temperature and

salinity increasing upwards. If only the temperature stratification was present in

the given sense the fluid would be stable, while if only the salinity stratification

was present the fluid would be unstable to overturning convection. Note that the

thermal conductivity is nearly one hundred times greater than the salt diffusivity.

Initially the density effect of the temperature is taken to be greater than that from

the salt, so the net density stratification is decreasing upwards and hence usually

referred to as stable. A parcel of fluid displaced upwards, by any small random

cause, gains heat much faster than salt, becomes positively buoyant, and continues



density = pi warm salty

P2 pI < P2 cool fresh

Fig. la.

density = p, cool fresh

-4O

P2 p1 < P2 warm salty

Fig lb.

- - direction of heat flow

-- ) direction of acceleration

layer boundary

weak concentration boundary

Fig. 1. Illustration of double-diffusive instabilities:
a) direct case - An initial upwards perturbation is cool fresh water surrounded on almost all
sides by warm salty water. Heat, which diffuses faster than salt, enters the perturbation which
soon becomes relatively warm while remaining fresh. It is now positively buoyant and continues
upwards. The water filling its place is subjected to the same process. A downwards perturbation
looses heat to its cooler surroundings . becomes cool while remaining salty, and is accelerated down
because of its negative relative buoyancy.

b) overstable or oscillatory case - An initial upwards perturbation is cooled by its surroundings
but keeps its salt and so becomes negatively buoyant. When it drops back to its original position
it is still accelerated downwards giving a growing oscillation. Conversely, a downward perturbation
gains heat but not salt and from this added positive buoyancy is still accelerating upwards when it
passes its original position.



upwards. This differential diffusion process can occur faster than the overall density

stratification can send the parcel back to its initial position by internal oscillations.

Complimentarily, a parcel displaced downwards loses heat before losing salt and

continues to descend. An illustration of this process is in fig. la. The thinner

the intrusions headed in opposite directions are, the more rapid is the differential

diffusion process. However, for a set of many thin intrusions shears are also greater,

increasing viscous dissipation, or friction. This balance leads to a minimum unstable

wavelength. On the other hand, very large intrusions are not viscously damped but

are returned toward their initial position by the overall stable stratification, before

differential diffusion can create local regions of relative positive buoyancy. These

opposing processes lead to some optimal size intrusion for growth.

It is not neccessary for the vertical density gradient to invert anywhere, even

locally, for this process to occur, though it might. As is particularly clear from the

vorticity equation (11), it is the pattern of the lateral density gradients combined

with the continuity requirement that drives the vertical motions. The difference

in the diffusivities need not be so extreme as the factor of nearly one hundred

between heat and salt. The salt-sugar case has a diffusivity ratio of three and fairly

vigorous convection is still observed, though double-diffusive convection on the

whole is still considerably tamer than convection with a positive density gradient.

Double-diffusion has even been observed with a diffusivity ratio of less than 1.3

using potassium chloride and sodium chloride (Stern and Turner 1969) (however

the ratio may be understated since only the relative diffusivities of the cations is

relevant with the anions identical).

Typically salt finger widths in the laboratory are slightly less than a centimeter.

For the weaker mean gradients in the ocean fingers several centimeters wide are



observed. Salt-sugar fingers created in the lab or kitchen have wavelengths of a

couple of millimeters or less. These scales depend on several fluid and solute

parameters which are the viscosity of water - 0.01 cm2/sec, thermal conductivity

, 1.3 -10-3 cm 2 /sec, salt (sodium chloride) diffusivity - 15 - 10-6 cm2 /sec, and

sugar (sucrose) diffusivity - 5 10- 6 cm2/sec. Density gradients in the lab are

usually of order parts per thousand in centimeters while in the ocean much weaker

gradients of parts per million over centimeters to meters are the norm.

Double-diffusion also allows another interesting instability which begins as a

growing oscillation, first presented by Turner and Stommel (1964) and indepen-

dently by Walin (1964). In this case salt, the more slowly diffusing component,

is stabilizing, while the temperature gradient is destabilizing. Now a parcel dis-

placed upwards loses heat more rapidly than salt and gains density. It is strongly

accelerated back downwards and when it reaches its initial position it is still feel-

ing a downwards acceleration because of its increased density. This situation is

sometimes referred to as overstability and is illustrated in fig lb. Sharply defined

layers with internal fronts also occur in this type of double-diffusion (Turner 1965,

Huppert and Linden 1979). However very different processes seem to cause the

layers though they may be maintained in similar manners. The oscillatory case will

not be considered further except tangentially. As a further example of a convection

with a hydrostatically "stable" mean density gradient, Wunsch (1970) showed that

a sloping insulated boundary forces fluid motions because the isopycnals must be

perpendicular to the insulated boundary. Convection is a far more complicated

and varied set of phenomena than motions driven by a simple density inversion.

Though the work cited above describes the nature of the initial salt finger

instability, it gives few clues as what to expect for a finite amplitude steady, or



quasi-steady, state. It is known that the cells caused by thermohaline instability

often do not extend to the physical top and bottom boundaries of the unstable

fluid but rather form discrete layers of laminar cells separated by turbulent regions

(Stern and Turner 1969). Linden's (1978) work clearly demonstrates the evolution

from linear gradients, to tall cells, and then to layers of cells. This layering is

considered a signature of salt fingers in the ocean. The photographs in Turner

1967, Shirtcliffe and Turner 1970, and Linden 1978 (reproduced here in figs. 14 -

16), are intriguing examples of the phenomena under discussion. Williams (1975)

provides an excellent description of oceanic cases of vertical structure caused by

salt fingers. Vertical scales for salt fingers in the lab range from centimeters to tens

of centimeters. Oceanic layers range from tens of centimeters to several meters.

Sugar-salt fingers have heights from several millimeters to several centimeters in

typical experiments. Currently the only theory on layering is that of Stern (1969a)

on the collective instability which was refined by Holyer (1981), whereby they show

that salt 'fingers can drive internal waves and then suggest that the resulting shear

breaks up the cells.

This thesis presents a new mechanism for layering, or lateral front development,

in direct double-diffusive convection. Convective modes of higher vertical wave

number than the fastest growing fundamental, called primary harmonic instabilities,

create regions of reduced, or even inverted, density gradient alternating with regions

of increased density gradient. This is the result of the difference in the vertical flux

divergences of heat and salt from any given mode. The regions of reduced density

gradient, because of further small scale convective instabilities, called secondary

harmonic instabilities, become turbulent. The resulting configuration is alternating

layers of laminar cells and turbulent convection.



These two phases of laminar cells and turbulent convection are each seen

separately in the Bnard problem with one component. With just one component

convection roughly goes, with increasing Rayleigh number, from diffusive transport

and no motion, to laminar convection rolls with width and height comparable, to

square convection cells (often called cross rolls in the convection literature), to time

dependent oscillating convections, to high Rayleigh number or turbulent convection.

(For a more complete description see Busse 1978a.) This ignores the dependence

on the Prandtl number and applies particlularly at large Prandtl numbers, as with

water. In the ordered laminar motions the gradients are concentrated slightly

at the boundaries and at moderate Rayleigh number can sometimes even lead

to the inversion of the interior gradient so that diffusion balances regions with

excessive Reynolds fluxes (fluxes from the correlation of velocity and temperature

disturbances). In turbulent convection at high Prandtl number there are thin

boundary layers and almost no interior gradient. Transport is by plumes or blobs

of fluid passing through the interior that have broken from the boundary (a model

of this is presented by Howard 1964). At low Prandtl number diffusion remains

important throughout the fluid and the interior gradients are more convoluted (see

the numerical simulations by Gr6tzbach 1982).

Beyond the issue of understanding layering in some specific situation, such as

the ocean, the question is of interest in a relatively abstract sense for the pure study

of fluid motion and the partial differential equations associated with that study.

Sharply defined layers are frequently the result of secondary instabilities as well

as from saturation at large amplitude of an initially unstable mode. A secondary

instability is a perturbation that grows because of conditions created by the finite

amplitude effects of a primary disturbance different from the initial conditions. The



primary disturbance can be either growing, as is relevant here, or decaying. (For

a fascinating example of a secondary instability on a decaying mode see Orszag

and Patera 1983 on a theory of low Reynolds number instability in wall bounded

flows.) Stern's collective instability is clearly a secondary instability. The status of

the theory of harmonic instability presented here is more vague for reasons that

will be discussed below. There is a great difficulty in distinguishing a priori which

unstable initial conditions will lead to a simple saturation of a growing mode in

the manner of a Landau equation, which will lead to complicated time dependent

amplitude behaviour in the manner of some coupled amplitude equations or in

the manner of chaotic Lorenz type systems, and which will allow new instabilities

to grow on the backs of other instabilities. Thankfully, the laboratory frequently

provides an efficient computer for analysing the behaviour of certain sets of partial

differential equations.

An unusual property of the direct double-diffusive system is the manner in

which length scales are determined. It appears that if the experimental cell is

sufficiently large, the length scales in all three spatial dimensions of the instability

phenomena become independent of the boundary geometry. The boundary

conditions are still controlling, but possibly only the solute fluxes are important.

This is greatly different than in single component convection. Though internal

fluid conditions frequently set length scales in two spatial dimensions, it is difficult

to find other systems where the internal dynamics determine all three. If one

considers what kinds of processes can break symmetries in fluid problems this is

not so surprising. Then again we may eventually find out that salt finger layers

are long lived transients with the final state a single cell stretching between the top

and bottom boundaries.



It is important to note that layering in double-diffusive convection is not just

the appearance of standing cells with a vertical wave number greater than the

smallest allowed for the fundamental, though such a system would be layered.

For example, the double-diffusive problem experimentally examined by Calman

(1977), using heat and angular momentum, has a primary instability with the fastest

growing mode having large vertical wave number and smallest allowed radial wave

number, which leads to a set of vertically stacked cells but not sharp fronts. The

convection treated here leads to the development of internal horizontal fronts of

great lateral extent. These fronts appear to be quite sharp and divide regions with

qualitatively different behaviour.

In both the structure of the physics and the mathematics, many similarities can

be found between one component and double-diffusive convection. However, there

are some important qualitative differences. Most noticeably, direct double-diffusion

leads to tall, narrow convection cells that form sharply defined layers of broad

horizontal extent, separated by turbulent regions. This propensity for layering is

not usually found in one component convection, though the two different phases

within the double-diffusive layers are each seen separately in different parameter

ranges of one component convection. Also, unless otherwise constrained the cellular

regime with only one convecting component has comparable vertical and lateral

scales.

Comparisons between one and two component convection will be made here

more extensively than has been done in the past. Several features of layering will

be speculated about because the experiments are as yet undone. On what time

scale are layers a steady state phenomenon if not indefinitely? If one performed

a double-diffusive experiment akin to the B&nard experiment would eventually



one high Rayleigh number type cell result? Do density or concentration gradients

ever invert in the layers? How much of the apparent differences between one

and two component convection are simply the result of the difference in time

scales, because of the relative magnitude of the buoyant forces, and not structural

distinction in the system equations? Some of the differences may provide clues as

to why double-diffusive convection demonstrates complex layered vertical structure.



2. History and Applications

The first known work on double-diffusion is that of Jevons in 1857. He was

attempting to model the cause of "cirrous" clouds and performed an experiment

using sugar and heat creating fingers, which he also correctly explained. After

this insightful piece of work diffusive convection was promptly forgotten for one

hundred years. The estimated importance of double-diffusive processes has grown

immensely in the past twenty-five years. What started in the present round of

research as an "oceanographic curiosity," has led to a complex set of phenomena

with myriad applications. The curious idea was of a passive pipe that could pump

up colder, fresher, water in the ocean (Stommel et al. 1956)* by allowing diffusion

of heat but not salt, in an area where the gradients of temperature and salinity were

both positive. Stern (1960) then showed that the pipe was unneccessary and that

free convection in a fluid interior was possible, based on the inherent difference of

the diffusivities.

The first observation, in the modern work, that salt fingers are in fact realized-

was an experiment by Stommel and Faller (Stern 1960). Turner (1967) provided

the next experiments and was the first to demonstrate the layering effect and clearly

document the large height to width aspect ratio. The cells tend to be square and

meet at right angles (Shirtcliffe and Turner 1970) while layers have a large, level,

horizontal coherence. The first modern applications were on oceanic mixing of

heat and salt (Stern 1967). Oceanic applications will be discussed in more detail

below. Though it is apparently not responsible for cirrus clouds, Jevons might be

* A description of this discovery can be found in Arons 1981, p. xvi. Stommel,
Louis Howard, and Dave Nergaard eventually built an oceanic salt fountain of
uncertain success with a long piece of tubing (see Stong 1971).



pleased to know that double-diffusion may be responsible for mammas on anvil

cloudts (E. Mollo-Christensen, personal communication; see photographs in Scorer

1972). Heat-moisture double-diffusion may also exist in the atmosphere other than

in clouds (Merceret 1977). Application has been made in stellar dynamics (e.g.:

Ulrich 1972). Double-diffusive convection causes problems in the solidification of

alloys (Copley et al. 1970) and in separation processes (Mason 1976), where one

might like to eliminate it. Schmitt (1983) gives some behaviors of the growth

rate, wave number, and other dependent properties, covering Prandtl numbers and

diffusivity ratios appropriate for such systems.

Complications could be compounded by having an insulated sloping boundary

(Linden and Weber 1977) or by adding a third component [as Griffiths (1979) did

for the overstable case]. Other variants include non-Fickian conservation equations

of the components, such as with chemical reactions. Systems with density and

angular momentum differentially diffusing (McIntyre 1970a, 1970b) are possible

and the primary instability exhibits coherent layers (Calman 1977), though as was

noted above, these are not fronts. This case may be important in the dynamics of

Gulf Stream eddies and rings (Lambert 1974). A differential-diffusive convection

is possible with both gradients stably stratified when the diffusion equations are

coupled linearly (McDougall 1983) or nonlinearly (Schaefer 1975). To the two

component case we started with, the effects of shear (Linden 1974), rotation

(Schmitt and Lambert 1981, Pearlstein 1981), or both (Worthem et al. 1982) may

be added. Including these makes singular changes to the system of equations

by increasing the order of the dispersion relation and adds new sets of modes,

some of which have been studied in other contexts and for which diffusion is an

uninteresting perturbation. These complications, however, may greatly affect the



essentially diffusion driven modes in some parameter ranges.

As Munk (1966) noted, in most of the world ocean the observed turbulence

levels are insufficent to provide mixing rates as large as are observed if heat and salt

are passive tracers. (Though in the area he was primarily looking, the mid-Pacific,

salt fingers would not easily come to his rescue.) The first work to show that

salt fingers were strong enough, despite their small scale, to have a real effect on

ocean dynamics was that of Stern (1967). He showed that vertical shear in a water

mass with lateral gradients could increase the vertical gradients and conditions

favoring salt fingers, and that the resulting convection was probably strong enough

to account for the observed downward transport of salt under the Mediterranean

outflow. Further, he suggested the process could help maintain the tightness of

temperature-salinity (T-S) correlations. Again attacking large problems with broad

strokes, Stern (1969b) proposed that salt fingers play a major role in dissipating

potential energy put into the ocean thermocline by wind driven Ekman pumping.

Contemporaneous to Stern's conjectures, Tait and Howe (1968) suggested the

existence of salt fingers under the Mediterranean outflow, and Cooper and Stommel

(1968) suggested the same in the main thermocline near Bermuda. This was

based on the presence of thermohaline steps which are the vertical compression

of the temperature and salinity gradients into thin layers, and the laboratory

demonstrations by Turner (1967) that salt fingers would break up into layers if

started from linear gradients. These experiments were soon extended and confirmed

by Stern and Turner (1969). More definitive proof for the ocean was obtained

several years later. The observations of Williams (1974, 1975) using a shadowgraph

technique and Magnell (1976) using a towed conductivity probe confirmed structures

of the appropriate horizontal length scale for direct double-diffusive convection



under the Mediterranean outflow. Salt fingering seems almost inevitable when a

warm salty current flows over cooler fresher water, when there is a net heat flux

into the ocean and an increase in salinity (from evaporation) at the surface, and

along intrusion boundaries at many water mass fronts.

As is required on energetic grounds, the density contribution of the energy

providing salt flux must be greater than that from the stabilizing heat flux to

overcome dissipation. The buoyancy flux ratio (or simply, the flux ratio), X, has

been a source of controversy and is of great oceanographic importance. Turner's

(1967) first experiments concentrated on this. He obtained a value of x - 0.56

independent of the two layer density ratio. However Linden (1973) estimated a flux

ratio of approximately 0.1 for a heat-sugar system, which should be similar. For

salt-sugar fingers both Stern and Turner (1969) and Lambert and Demenkow (1972)

obtained constant flux ratios of about 0.9. Stern (1976) predicted constant flux ratios

of 0.25 and 0.50 for the heat-salt and salt-sugar cases, respectively. However these

values did not correspond well to the values in the work that indicated constant

flux ratios. More recently Schmitt (1979b), for the heat-salt case, and Griffiths and

Ruddick (1980), for the salt-sugar case, have shown that the flux ratio increases

with decreasing density ratio, which seems more reasonable, though the effect is

not large. Schmitt found that

(0.7, A < 2.5

X "-' 0.58, 2.5 < A < 4 , for heat-salt fingers,
10.3, A > 6

while Griffiths and Ruddick found a systematic variation of x: 0.94 -+ 0.88 as

A: 1.2 - 2 for salt-sugar fingers. This is as expected since less powerfully driven

systems must be more efficient in extracting potential energy from the salt field

while doing little work on the temperature field. For A close to 1 the flux ratios



are in excellent agreement with what Schmitt (1979a) predicted for the fastest

growing modes in the growth phase, however for larger values of A this is no

longer the case. There is agreement, though, that the unstable component flux goes

as (p AS)4/3, where AS is measured between just above and just below the cellular

regime. This was first suggested by Turner (1967), and later by Stern (1969) using

different scaling arguments. However, this is quite simplistic since the stabilizing

temperature gradient is ignored. Schmitt (1983) claims that the flux is proportional

to (AT)4/3 . This only makes sense if the flux ratio is nearly one for all of the

experiments performed.

Though knowledge of some of the flux law dependences is sketchy, the relations

obtained in the laboratories do allow rough estimates of expected ocean mixing.

These have been applied with some success. Lambert and Sturges (1977) found

that the vertical flux divergence of a series of salt finger layers could balance the

horizontal divergence of salt in part of the Carribean Sea. Vertical flux divergences

are inseparably tied to the vertical structure of the convection modes, as will be

discussed in detail below. In the North Atlantic Central Water, where there is

little turbulent mixing, Schmitt and Evans (1978) have shown that salt fingers can

account for the large observed downward salt fluxes driven by surface evaporation.

They further suggest that the process might be intermittent because of internal

wave strains and shear effects but do not develop these ideas. Schmitt (1981) has

advanced a theory based on nonlinear flux laws and an equation of state with

nonconstant coefficients, that salt fingers can account for the observed constant

density ratio in these same waters.

Some of the fascination of the phenomenon is that salt fingers provide an

efficient mechanism for an upgradient buoyancy flux. This is not entirely mysterious,



since the more ftindamental quantities of heat and salt are both transported

downgradient. To those familiar only with thermal convection, this may seem

counterintuitive if one is used to viewing convection as a rapid method of fluxing

buoyancy downgradient. Still in direct double-diffusive convection, the motions are

buoyantly driven. Though double-diffusion is relatively fast compared to simple

diffusive mixing, it is still much slower than convection with a downgradient

buoyancy flux. This is why density inversions are almost never observed in the

ocean. To realize how extreme the difference in time scales is we note - all

double-diffusive experiments have been run-down experiments but it would be

extremely difficult to setup a single component density inversion to observe its

run-down.

There are many areas of the ocean where there is a net flux of negative

buoyancy into the surface. If an efficient means did not exist for the oceans'

center of mass to drop, releasing potential energy, without maintaining an overall

negative density gradient, many regions of the central and equatorial waters would

have positive or near zero mean density gradient. A major consequence of this

would be a decrease in oceanic Richardson numbers, Ri, a ratio of static stability

to the square of the shear, and far greater turbulence than is observed. Further

there would be a far less powerful tendency for oceanic motions to remain quasi-

horizontal. So, the details of double-diffusion can affect not only the details of

the ocean microstructure, but also motions strongly affected by the overall density

gradient. Additionally, though the temperature and salinity steps are nearly density

compensating a stepped density structure still results. This greatly affects the

propagation and spectrum of internal waves (see Johns and Cross 1970 and Miles

1972).



Not only are salt fingers a mechanism for rapid mixing, but they also have

characteristics quite different from other oceanic mixing events. Like other types

of mixing, double-diffusion in the long run makes water with distinctly different

properties more homogeneous and mean gradients are weakened. However on the

smaller layer scales very sharp gradients of temperature and salinity are created.

Normal eddy diffusivity models that treat heat and salt inidividually as passive

tracers and look only at the net desity contribution in the dynamics are grossly in

error in a region of vigorous salt fingering. Further, in addition to simplistic models

underestimating the fluxes, eddy models assuming that the relevant length scales

are much larger than the scales appropriate for molecular diffusion yield equal

mixing coefficients for heat and salt. In reality the mixing coefficients are greatly

different even on fairly large length scales, in the presence of double-diffusion.

Garrett (1982) has made some suggestions for this problem in mixing at fronts.

Since there is reason to believe that in large parts of the ocean double-diffusive

convection is the major source of mixing (e.g.: Schmitt and Evans 1978), this is a

major problem for establishing heat and salt balances in the general circulation.

There are several features of salt fingers, though not all independent ones,

that make them important to large scale ocean structure and dynamics. The heat

and salt Nusselt numbers, NUT and Nus, which are the ratio of the transports

with convection to purely molecular diffusion, can be several orders of magnitude

greater than one. Any resulting turbulence from the convective motions is on

scales of centimeters or tens of centimeters. Salt is transported more efficiently

than heat because of its lower diffusivity while both are transported downgradient.

However, buoyancy, or equivalently density, is transported upgradient, so the

density gradient can remain negative with a negative buoyancy flux. The overall



temperature and salinity gradients are concentrated into thin layers so that the

thermohaline structure is stepped providing a characteristic signature in regions

where direct double-diffusion is a dominant process. An explanation of these steps

is the major goal of this work.



3. Basic Equations and Linear Theory

The simplest basic equations appropriate for studying double-diffusion are the

Boussinesq equations for an incompressible fluid:

dv 1 p
- P Vp + vV V - gi (1)

dt Po Po

Vv=O0 . (2)

Density variations are only kept in the buoyancy term. A detailed discussion of

the validity of this approximation, along with some history of it, can be found in

Gray and Giorgini 1976. For traditional reasons, an equation of state dependent

on just temperature and salinity is chosen, which linearized is

P = Po(1 - 0aO, + PS,) . (3)

Other systems, such as water with salt and sugar which is frequently studied in

the laboratory experiments discussed herein, or hydrogen with helium and heat

as might be relevant in stellar dynamics, could be similarly considered. This

particular sign convention is chosen because it is familiar to oceanographers. It will

be maintained even when referring to systems other than heat and salt where both

density coefficients would more naturally be taken to be positive. Fourier-Fick type

diffusion laws with constant coefficents are assumed, so

dO* KTV2 0O
dt

dS.
= KsV'2S , (4)dt assume that both KT and K

which ignore frictional heating and assume that both KT and Ks are constants.



For constant vertical base gradients of temperature, Ao, and salinity,Bo, and

periodic lateral boundary conditions, eq. (1) and eq. (4) with eq. (3), become (see

Stern 1975 for details),

= -VO + V2 v - [(PS - aO) + (Bo - Ao)z]g^ (5)
dt

dO
+ wAo = KTV2 0

dt

dS
-d wBo - KsV2S . (6)
dt

The linear stability analysis has been done in great detail by Baines and Gill (1969)

but the scaling and vertical dependence will be treated here in a different manner

to allow for an arbitrary vertical wave number. For expansion in normal modes of

the form

w "- ,tiei(klx ' k2y+mz)+Xt

where ii is the initial perturbation amplitude, and with the linearization (d -+ )

of eqs. (5) and (6), the three dimensional stability problem reduces to a two

dimensional probem using k2 = k2 + k2. The vorticity equation in x and z, with

the nonlinear terms kept, is then

+ J(, ) = v - g (S - 0) , (7)
at ax

where the standard definitions of

i = , =- , (8)

and,

9. l(9)



apply. The choice of eqs. (8) guarantees that the continuity constraint of eq. (2)

is satisfied.

The set of nondimensional parameters used to characterize the double-diffusive

problem is traditionally taken as having four members consisting of a salt Rayleigh

number (sometimes using the thermal diffusivity in the denominator), a thermal

Rayleigh number, Prandtl number, and diffusivity ratio (Lewis number), such as

was used by Baines and Gill (1969). Unlike in the one component problem, here

the Rayleigh numbers and the mean density gradient are decoupled. A net Rayleigh

number R, = RT- Rs is useful in characterizing the stability boundaries. For the

case of very tall regions, in effect the infinite Rayleigh number limit, the problem

can be reduced to three parameters. For these we choose the density ratio, A,

Prandtl number, a (or its reciprocal, r7), and the diffusivity ratio, 7, similar to the

choice of Schmitt (1979a). Note that r is chosen less than one; the reciprocal

convention is frequently used with the same choice of letter. To fully specify the

problem the fourth parameter would be a nondimensional height based on the

length scale chosen. The length and time scales chosen here are slightly different

than Schmitt's in that we use the destabilizing rather than the stabilizing gradient.

Schmitt's (1983) later use of the Brunt-Viisilli frequency, N, to give a time scale

is problematic because this diverges as the density ratio goes to one, as he notes.

The limit A -+ 1 is still within the parameter range of interest here. That scaling

choice, however, does make clear when growth rates are greater than the buoyancy

oscillation frequency, which Schmitt uses as a heuristic to decide if fingers are

driven strongly enough to be observed in the ocean. No notational distinction will

be made between dimensional and nondimensional versions of growth rates, wave

numbers, and other quantities, since the choice is made obvious by the context.



When referring to numerical values quantities are dimensionless unless units of

measure are given.

If eqs. (6) and (7) are nondimensionalized by a time scale and a length scale

T = K gB)- x/2  (10a)

L ( - 1/4

L = ,KT' (10b)

respectively, with the salinity perturbation scaled by S = gflBL and the temperature

perturbation scaled by e = AS the resulting equations are

d aV -- -(S - Ao0) (11)
dt 89

dO + Ao = V0 (12a)dt ax 2

dS a8,bS + L = ryS . (12b)

Equation (9) remains unchanged. The solutions of the linearization of eqs. (9),

(11), and (12) are, with 72 = k2 + m2,

S= _ (13a)
k

S (X -y2 ) (13b)

Aow0 = AW (13c)
(X + 2)

and require the dispersion relation

r -+(1 +-7- r+r)X2 +(1+r/7r)X 47 -+y'+-(Ao-1) X-(1-Aor)k2  = 0 ,
(14a)



or in dimensional form grouped slightly differently,

k2  (flB aA)
(X+vrs)(X+Kr2)(X+Ks?')+g(aA-PB) k2X-gKsKOB A k2 = 0 .

(14b)

The choice of the velocity perturbation as the solution normalization is arbitrary;

the solutions could have been expressed just as easily in terms of the temperature

or salinity perturbation amplitude. These keep an arbitrary vertical wave number,

unlike previous treatments of the linear problem. This nondimensionalization will

be referred to as intrinsic since it depends only on fluid parameters and their

ratios and not on container scales. The Rayleigh number approach, conversely, is

essentially extrinsic. A generalization of eq. (14), including shear and rotation, but

with the vertical dependence structure hidden by the use of two Rayleigh numbers,

as in Baines and Gill 1969, may be found in Worthem et al. 1983.

It can be shown that the principle of the exchange of stabililies holds for this

problem with A > 0 and B > 0 as it does in the Bbnard problem. This implies

several things of importance. There is no subcritical instability at finite amplitude

and when the instability is reached X is real. Further X = 0 defines the marginal

curve with no complex part, so the initial mode is direct. The instability occurs

when the release of potential energy from the buoyancy flux can exceed dissipation.

Also for slightly supercritical states the modes saturate at a steady finite amplitude.

(For a fuller description of the significance of this see Chandrasekhar 1971 secs.

11-14 and appendix I.) A neccessary condition for instability, with A > 1, then is

that Ar < 1. It is also neccessary that the experimental cell have sufficient height

since there is a maximum unstable vertical wave number, so



h > 7r (1 - Aor)] (15)

for instability with stress free, perfectly conducting boundaries and unbounded

horizontal extent. In more traditional form, using Rayleigh numbers, the minimum

condition for direct convection, ie.: real positive growth rate, X, is (Stern 1960)

R gH 4 B aA 274=
v Ks KT 4

which is a criterion very similar to that obtained for one component convection.

The complete structure of the growth rate dependence on both vertical and

horizontal wave numbers for direct double-diffusive convection can be seen in fig.

2. Though the figure is only for the heat-salt case with A = 1.5, the general

appearance of the curves is unchanged for other cases if A > 1. A blow up of

the region near the maximum growth rate is in fig. 3a. Going from fig. 3a to 3d

the increase in maximum growth rate with decreasing density ratio is evident. The

fastest growing modes shift to smaller wave number at lower density ratio. Figures

4 and 5 show growth rates as a function of vertical and horizontal wave numbers

for the salt-sugar parameter set. The values of the density ratio match some of

those chosen for fig. 3 for comparison.

Though most of the terms of the double-diffusive dispersion relation depend on

the square magnitude of the total wave number the differences of the dependence

on the vertical and horizontal wave numbers have some important consequences.

These features are apparent when studying the marginal curves, X = 0, in figs.

2 and 4. In horizontal dependence there is a distinct short wavelength cutoff

for the instability. Though there is no clear long wavelength cutoff the growth
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Fig. 2. Growth rate as a function of horizontal and vertical wave numbers for direct double-diffusive
convection heat-salt case, density ratio = 1.5. Plots of growth rate are contours of the largest rootX,
of eq. (14a).
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Fig. 3. Growth rate as a function of horizontal and vertical wave numbers for heat-salt case,
expanded scale: a) density ratio = 1.5, b) density ratio = 1.2, c) density ratio = 1.1, d) density
ratio = 1.0.
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Fig. 4. Growth rate as a function of horizontal and vertical wave numbers for direct double-diffusive
convection salt-sugar case, density ratio = 2.0.
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Fig. 5. Growth rate as a function of horizontal and vertical wave numbers for salt-sugar case,
expanded scale: a) density ratio = 1.5, b) density ratio = 1.1, c) density ratio = 1.0, d) density
ratio = 0.95.
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rate vanishes as the horizontal wave number goes to zero when the vertical wave

number is zero. For finite vertical wave number there is a long wave cutoff for

maintaining growth. In the vertical dependence there is also a short wave cutoff,

however in the long vertical wavelength limit the growth rate remains finite and

usually reaches its greatest value. There is little dependence of the fastest growing

mode on the vertical mode number as long as the vertical wave number remains

small for the first several harmonics. This leads to the preference for tall narrow

cells.

Wave numbers will be assumed to be real, though for some types of forced

boundary condtions complex wave numbers may be appropriate. The growth

rate may in general be complex. For the roots in the direct convection case

discussed here it will, however, always be real. Nield (1967) discusses in detail the

minimum conditions for direct instability with various other boundary conditions.

However, where double-diffusion is observed these conditions are exceeded by at

least several orders of magnitude. For constant gradients and a deep layer, a

neccessary condition for instability, as was noted, is that the density ratio be less

than r, the ratio of diffusivities; if a system starts with two sharp layers letting

diffusion set up gradients at the interface, the criterion for the growth of fingers is

(Huppert and Manins 1973)

( aAT\ KT31

P AS KSj
which is a still weaker requirement.

Several other points may be noted from eq. (14). If there is a direct mode,

with the gradients of given sign, the other two modes are decaying (Stem 1960).



The fastest growing mode has (Stern 1975)

kf [ g(aA - B) 1/4KT

or nondimensionally,

k (1 - Ao) - 12 (16a)

and

max 1 - 2/2 , (16b)

in the limits of large Prandtl number, small diffusivity ratio, and tall cells. This

clearly does not hold in the limit A -+ 1. In this limit the wave number does

decrease but does not vanis. The tallest allowed vertical mode for the fastest

growing wave number, kf, is the fastest growing mode. This is proven by Baines

and Gill (1969) in their appendix. However if ax = 0 it is possible to have

a > 0 [see eq. (17)]. Examples of this can be seen in the contours of fig.4,

amongst others, and explicity in the data of fig. 8b. However this does not occur

in the neighborhodd of the fastest growing horizontal wave numbers.

A more global picture of the dependences of the maximum growth rate on

density ratio was given in Schmitt 1979a and is reproduced here as figs. 6. Note

that the time scale is different than the one used here. A very rapid increase in

maximum growth rate occurs as A approaches one but not until it is fairly close.

When A < 1 the increase in maximum growth rate is quite dramatic [see fig. 5d

and eq. (20a)]. This is quite clear in both the heat-salt and salt-sugar cases, despite

the fact that the heat-salt case is unstable over a much larger range of A. Salt finger

modes have much smaller growth rates than direct modes with unstable net density
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gradients. Yet, even if the net density gradient is unstable and the gradients are of

the salt finger type, double-diffusion still contributes to the growth. Schmitt also

provides a complete picture of the fastest growing wave number for 1 < A < r,

which is reproduced as fig. 7. The decrease in kf with decreasing A as is shown in

figs. 2 - 5 does not hold over the entire unstable range, but only as A nears one.

From eq. (14a), it can be detennined that

aX [(1 + r + r)X2 + 2(1 + r + r)X2 + 3r4 - (Ao - 1)Xk 2 / 4] (17)
=m (17)am 2  [3rX 2 + 2(1 + 77 + rr)72X + (1 +r %- rr)y4 + (Ao - 1)k2/y 2]

(contoured in figs. 8 and 9) and that

aX
ak2

[(1 + + 7 r)X 2 + 2(1 + r - 7r)Xy2 + 3r-),4 + (Ao - 1)Xm 2 /7y4 - (1 - Aor)]
[377X2 + 2(1 + r7 +,r)^ 2X + (1 + r/ r)4 + (Ao - 1)k2 /-y2 ]

ax [(Ao - 1)X/y2 - (1 - Ar)] (18)

am2  [37X2 + 2(1 + 17 + r])-2X ± (1 + 7 +- 77)-y 4 + (Ao - 1)k2/y 2

When taking 9 , m2 is held constant, while when taking 1, k2 is held constant;

hence y2 is not held constant when taking the partial derivatives. Equations (17),

(18), along with the dispersion relation, eq. (14), imply that

0X 81ak2 - 2> 0 (19)

for growing modes. The inequality holds strictly for X > 0, strictly. Note that

eq. (19) proves that there is no simultaneous solution to eqs. (14), (17), and (18),

for AL = a>,= 0. This indicates that the fastest growing mode has either m 2

or k2 -+ 4oo. In this case the sought extremum in X is at the limit m 2 -+ --o.

However, complex or imaginary wave numbers can only match unusually forced

boundaries and will not be considered further.
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When A = 1 the point (k 2 = 0, m2 = 0) becomes singular, and remains so

for A < 1. For A = 1 the derivative , blows up at the wave number origin (see

fig. 5c). For A < 1 (see fig. 5d.),

lim ( lim )X (-A) 1/ 2 (20a)
k2 -+0 m 2 -~+0 77

though

lim (lim )X = 0 . (20b)
m2-+0 k2-+0

A similar result will be found below for one component convection. There are

other roots to be found but care must be taken to follow those are are smoothly

connected to the greatest root. The singularity is not simply the result of a mistaken

switching of branches. Once,a region is created with a density ratio less than one

the wave number selection resembles selection in the one component case. The

same behavior also occurs in the heat-salt case but is not shown.

For the small values of m2 that will be of interest here it is useful to have the

derivative, 9_A1, which is shown in figs. 8 with two scales for the heat-salt case.

This derivative for the heat-salt case and the salt-sugar case, both with A = 1.1 is

contoured in figs. (9). Using a first order Taylor expansion X(k2 , m2 ) can then be

obtained to excellent accuracy as

X(k2 , m 2) = X(k2, 0) + M2 X 2  (21)

Near kf, 9 < 0, near its largest absolute value, and of order 1. One can

see that for some horizontal wave numbers less than the fastest growing one

(longer wavelengths), the growth rate increases slightly with increasing vertical

wave number. More importantly there is little change in growth rate going from



m = 0 to some small finite m since the derivative is of order one. In particular,

based on experiments and oceanic observation, we are usually interested in aspect

ratios of 10 or more. For example, with A = 1.2 in the heat-salt case the fastest

growing modes have nondimensional k) 2 0.42, and Xf = 0.63 so the relevant

m 2 < 0.004 (see fig. 3b). The derivative ax ; -0.72 (see fig. 8b). Using the

approximation of eq. (21) the decrease in X is less than 0.003 or less than 0.5%.

For a 5% decrease down to X = 0.60 would require an aspect ratio as small as 3.

The growth rate dependence on wave number for one component convection

has some significant qualitative differences. This will be useful in the discussion

of why two component convection layers but one component does not. To get the

dispersion relation for single component convection quickly, the limits of aA -+ 0

and KT -- 0 or oo (both will work) are taken in eq. (14b), and give

X2 + (V + Ks)7 2 + vKs 4 - - gB 2 = 0

The same result is of course obtained from the normal linearization of eqs. (9) -

(11), setting A = 0, and with only one diffussion law, eq. (12b). This must be

nondimensionalized slightly differently because of the mixing of temperature and

salinty parameters in the double-diffusive nondimensionalization previously chosen.

Choosing L = [gflB/(Ksv)]- 1/ 4 and T = (gfBKs/v)- 1/ 2 the nondimensional

dispersion relation is

sX2 + (1 + )Xa + 7 4 - 2 = 0 (22)

where ti = Ks/v. Plots of growth rate as a function of vertical and horizontal wave

numbers for Prandtl numbers appropriate for heat convection and salt convection

are found in figs. (10). By taking derivates of eq. (20) the results
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ax [X(1 + I) + 2Y2 - m2/(2]

ak2 2ypX + (1+ -)4  (23a)

ax [X(1 + ) + 2,y2 + k2/ 2] (23b)m =--- /(2)3 b)

ax 1
ak2  [2X 2 + (1 + )4]

are obtained. For specified m2 the maximum of X occurs at a = 0. Clearly

setting , = 0 in eq. (23b) implies a < 0, so as in the two component case

the fastest growing modes are as tall as allowed by the boundaries. When m2 = 0,

ax < 0, the importance of which will soon be apparent.

It is worth noting several differences between the dispersion relation of direct

double-diffusion and direct single component convection. For single component

convection the point m2 = 0, k2 = 0 is always singular. This can be easily seen

since

lim ( lim X) = -1/2 = 1/2 (24a)
k2-+0 m2--O

lim (lim X)= 0 . (24b)
* m 2-0 k2-+0O

Further the maximum growth rate possible is obtained by the limits of eq. (24a).

All of the contours from 0 to /-1/2 converge at (k2 = 0, m2 = 0). There is

a very strong dependence of k2 on m2 for the fastest growing mode unlike the

double-diffusive case. Hence the horizontal scale shrinks as the vertical scale is

diminished if one follows the fastest growing modes. It still holds that x < 0

for all k2 of interest and -2  < 0, so that the tallest allowed mode is always

the fastest growing even for extremely small lateral constraints. This contrasts with

the double-diffusive case where ak 2  can be of either sign depending on
Ok__ 1=0o



the position in parameter space, but in any case is not particularly large. The

behavior of the double-diffusive dispersion relation develops a resemblance to the

one component curve as A goes to 1 from above by compressing the growth rate

contours at small k2, however the singular point does not occur until A < 1. As

was shown in the double-diffusive case, the intrinsic nondimensionalization chosen

leads to finite growth rate even with infinite extent for single component convection.

This is as it must be since regardless of cell height the gravitational acceleration is

finite. The instability condition is then again a minimum required height in terms

of the intrinsic length scale:

h > 27)1/4 . (25)

There is a singularity in the maximum growth rate as the Prandtl number goes to

inifinity, but this is compensated for by the change in time scale. It is easy to create

an intrinsic nondimensionalization which does not have this problem, though it was

not chosen here.

The minimum criteria for instability in one component convection, eq. (25),

looks almost identical to eq. (15) except that in the one component case A = 0.

Using Rayleigh numbers this is equivalent to RT = 0. For the first harmonic to

be unstable in either the one or two component case R, > 24Rc; for the second

harmonic the requirement is that R* > 34R,; and so on for higher modes. However

once the system has R, > Rc there is a spectrum of horizontal wave numbers which

are unstable. For complex vertical structures to develop it is neccessary for vertical

harmonics to be unstable and not just driven by the fundamental through the

nonlinear terms of the governing equations. This will be quite important in the

analysis of harmonic instabilities.



The experiments examined here all have Prandtl number much greater than

one. We are aware of no double-diffusive experiments that have been performed

with a < 1 and no theory has emphasized such a regime. The roads to chaos are

different for the small and large Prandtl number cases (Busse 1981). (The use of

the term Prandtl number is not standard if heat is not the convecting component,

but is unambiguous.) In the small Prandtl number domains chaotic behavior

occurs at supercritical Rayleigh numbers less than 16Rc, but this is from the

interaction of horizontal disturbances (see Golub et al. 1975 and their references).

Turbulent convection can result form the interactions of many different horizontal

modes but the structure is different than what has traditionally been called high

Rayleigh number convection. At large Prandtl number the gradients are forced

into thin boundary layers as the Rayleigh number is increased and diffusion

becomes unimportant in the interior. Time dependent behavior can also occur

with R less than 16R, from the interaction of modes of different horizontal wave

number but the gradient does not compress to the ends with a nearly isothermal

interior. Simplistically, high Rayleigh number convection at large Prandtl number

has transport by bubbles and blobs, while low Prandtl numbers lead to convoluted

narrow filaments (see Grbtzbach 1982). The double-diffusive run-down experiments

have large Prandtl number but the convection is diffusion limited in the interior

like small Prandtl number convection.

The linear flux ratio can be easily obtained at this point and is simply the

ratio of the coefficients of the heat and salt perturbations from eq. (13). So, in

nondimensional form

(X + r2)
X = A (26)

(X+ 2)
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Contours of x from eq. (26) are in figs. (11). The flux ratio is a measure of the

efficiency of the mode in taking potential energy taken from the reservoirs or from

outside of the system. For unstable modes and the gradients as for salt fingers it

is bounded by zero and one. As the ratio approaches the value one, most of the

potential energy received from the positive buoyancy (negative density) flux of salt

is used to drive a negative buoyancy flux of heat. Smaller values indicate more

efficient modes in the sense that less energy is used to support a temperature based

negative buoyancy flux and hence a larger fraction of the available potential energy

can be used to support motion. The net buoyancy flux must of course remain

positive. However, when an eventual steady or quasi-steady state is reached the

input of potential energy must be balanced by viscous dissipation. When finite

amplitude is reached the mode with the greatest buoyancy transport is far in wave

number space from the modes that have the smallest flux ratios because of the

strong dependence of equilibrium amplitude on wave number.

The dependence of the flux ratio on density ratio and wave numbers is not

obvious from eq. (26) alone because of the implied dependences from the dispersion

relation. Schmitt (1979a) finds that the observed flux ratios and salt finger widths

in the run-down experiments that have been performed correspond well to those

calculated for the fastest growing modes. Figure 12, taken from Schmitt's paper,

shows x for k = kf, m = 0 as a function of A. The preference is not for the modes

most efficient at extracting potential energy from the reservoirs, which have smaller

flux ratios and larger wave numbers than the faster modes. The small range of x

at kf in the range of A for which run-down experiments have been performed does

well to explain why so many investigators concluded that x was nearly constant.

However, since the amplitudes are not known it is still possible that the mode with
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the greatest buoyancy flux is selected, similar to the selection condition that Malkus

(1954) recommended for examing thermal convection. Boundary conditions in the

ocean may be more realistically viewed as having the fluxes given and hence the

flux ratio specified. These linear results and laboratory run-down experiments may

not then be as relevant as one might hope them to be.

Nondimensional results must be compared with caution. For example, if for

a given convection problem one doubles the cell height but keeps the temperature

difference constant the Rayleigh number increases by a factor of eight. The

Nusselt number, the nondimensional flux, also goes up; however, the actual flux

decreases. Scales must be accounted for carefully. Similar problems were noted

above in discussing the behavior of growth rates in the limit of infinte Rayleigh

number for the extrinsic scaling, and in the limit of infinite Prandtl number in the

chosen intrinsic scaling of the Benard problem. In retrospect a different intrinsic

nondimensionalization that has not been used at all is probably best for comparing

results with different Prandtl number and diffusivity ratios. This choice would

use L = [gPB/(Ksv)]- 11/ 4 , T = [gB]- 1/2, and keep the same scaling for the

temperature and salinity fields. This is similar to Schmitt's choice (1979a, 1983)

but using the destabilizing component gradient and diffusivity. The limit of no

destabilizing gradient, A -- 0, leads to no instability before vanishing. However if

the scale using the stabilizing gradient is chosen it is impossible to take the limit

of one component convection. Even looking at the effect of a small stabilizing

component gradient yields strangely scaled results. After having made our choice

in this work it was not worth the effort to rescale all of the data.

It is quite fortuitous that the values for the wavelength and flux ratio for the

fastest growing modes correspond so well to those observed. Nonlinear effects at



finite amplitude frequently lead to far more confusing scenarios. If there exist many

stable, metastable, or neutral states at finite amplitude that are nearby in phase

space, the race to be the observed state may well be to the swiftest. Further, then

hysteresis would exist between various states, though this has not yet been studied

in the context of double-diffusion. Some experiments have been performed on one

component convection that make hysteresis effects obvious (Chen and Whitehead

1968). The linear results that have been obtained will be used extensively to

provide clues for finite amplitude effects during the growth phase of direct-double

diffusive systems.



4. Nonlinear Theory

Direct double-diffusive convection has proven more resistant to attack by

weakly nonlinear theory than the overstable double-diffusive instability. Though

the techniques work they do not apply to the parameter ranges of interest where

behavior unique to salt fingers occurs. At just slightly supercritical configurations

nonlinear theory looks much like the unconstrained Benard problem with direct

modes just saturating. It appears that this problem is also doomed to fall inextricably

into the clutches of computers for major headway to be made.

When the gradients are reversed the instabilities get interesting at low Rayleigh

numbers because the exchange of stabilities does not hold. Steady, greatly

subcritical, finite amplitude instabilities exist (Veronis 1965). Saturation of even a

weakly driven mode looks qualitatively different than the initial instability. The

presence of a mode frequency as well as a growth rate leads to nontrivial couplings

with only .a small number of modes, and bifurcation theories can be applied (eg.:

Knobloch and Proctor 1981). Chaotic behaviour can also show up. This.problem

has also been subjected to several numerical studies (e.g.: Gough and Toomre

1982).

The earliest first principles nonlinear work on salt fingers [with the possible

exception of Stern's (1969) collective instability work which will be held until the

next section] was by Straus (1972). His analysis was performed in the limits r <<

1, a > 1 and used a two dimensional numerical Galerkin technique. Using

the criteria suggested by Malkus (1954, and also see 1963) that the realized

solution maximizes the unstable flux, he finds that the preferred wave number

increases dramatically with increasing Rayleigh number, unlike in single component



convection. Straus also tested the stability of his solutions to three dimensional

disturbances. As found by Schliiter, Lortz, and Busse (1965) for one component

convection, stability is limited by the development of cross-rolls. (In a very long

and tedious totally analytical calculation performed in the course of this work,

following Schlfiter, Lortz, and Busse closely, the structure of the double-diffusive

problem was found to be quite similar to the one component problem and gave

the same result for the weakly supercritical case. That calculation will not be

included here.) The mode with the greatest Nusselt number, the ratio of the heat

flux with convection to the heat flux in a purely diffusive state without motion, is

always in the stable regime though the marginal mode eventually has too small a

wave number to remain stable, providing another distinction with one component

convection. (This has recently been challenged for single component convection.

See Frick, Busse, and Clever 1983.) The cross-role instabilities lead to square cells

as seen in moderate Rayleigh number Bnard type experiments and in salt fingers.

The wave number dependences help explain the observed narrow cells. Though

several vertical modes had to be included in the expansions the regimes were not

sufficiently supercritical to layer.

The weakly nonlinear study by Joyce (1982) was unusual in its use of constant

flux boundary conditions but simply shows the saturation of a direct mode, after

some overshooting oscillation. Both the height and horizontal wave number were

specified; no natural selection of the wave number was allowed. Nothing unusual

was predicted and the behaviour just resembled that of a mode saturating as in

a Landau equation, though Joyce's equations were more complicated. Decaying

oscillations after overshoot of a saturating amplitude were observed in the numerical

model presented below for a specified horizontal mode, though the boundary



conditions in this case were fixed properties, not fluxes.

One previous detailed numerical study has been performed by Piacsek and

Toomre (1980). Their work models the two layer initial conditions used in the

early experiments with heat and salt. The density ratios used varied from 2 to

10. Though two dimensional, the results were quite realistic. They found that the

heat variation across the fingers looked nearly sinusoidal while the slower diffusing

salt anomaly took on almost a square-wave shape. As the fingers grew the initial

sharp salinity gradient split and moved with the ends of the fingers keeping a

nearly constant mean salinity in the interior. The thermal gradient remained fairly

smooth and the gradient region spread over time extending to the finger ends.

The most interesting result however was the development of unstable bulbs at

the end of the fingers breaking off into blobs and starting to move through the

constant property reservoirs. There was insufficient vertical extent in the model

for this process to fully develop, but this was nevertheless encouraging. The bulbs

and blobs were unstable with regard to density. Since the model included only a

few cells occassional inversions of the horizontally averaged density were observed.

These simulation provided the impetus for the numerical modelling done in the

course of this work. Zeman and Lumley (1982) have modelled salt fingers using

a second-order turbulence closure while reducing the problem to only one, the

vertical, spatial dimension. They examined the evolution of an imposed layer for a

short period of time. The large number of ad hoc constraints limit the usefulness

of their model in examining layer evolution though there was good agreement

between their calculation of the flux ratio and experimental values.

None of the powerful variational methods has been brough to bear on the

direct double-diffusive problem. Stern (1981) has applied such techniques to the



overstable case. The "optimum theory" of Busse (1978b) as was applied to the

thermal convection problem could be directly extended to the case of salt fingers.

That approach would be able to provide limits for the buoyancy flux, but would

not further the study of the layering process.



5. Layer Related Theories and Observations

The history of the association between salt fingers and thermohaline layering

has taken some interesting turns. Early theoretical work such as that cited above

started with linear mean vertical gradients of both heat and salt. The earliest

experiments, however, started with layers such as those by Turner (1967), who

argued that in natural oceanic situations salt fingers would be expected at intrusions.

Turner (1967) suggested that fingers would maintain sharp interfaces at their ends,

and that by fluxing buoyancy would drive the observed larger scale convection

above and below the cellular regime. However he did not push this idea very far

though it seems correct. He likened this to the interfaces in the oscillatory case

started from two layers (Turner 1965) or the sharp interfaces resulting from heating

a stable salt gradient from below (Turner 1968), though here the connection is

more tenuous. In these cases turbulence driven by the double-diffusive regime

helps maintain the sharp gradients. This appears to also apply to the direct case.

As noted earlier, this association of well defined layers with double-diffusive

phenomena suggested an explanation for the observations of a thermohaline

staircase in some portions of the ocean (Turner 1967, Cooper and Stommel 1968,

Tait and Howe 1968). Shortly thereafter it was shown experimentally that with

linear gradients as initial conditions sharp layering results (Stern and Turner 1969).

Stern (1969a) presented a mechanism for a secondary instability, which he called

the collective instability, to explain the breakup by the finger regime into layers.

This theory has been recently refined by Holyer (1981). [There is also a process

known as collective instability in one component convection (Busse and Whitehead

1974) but this is unrelated.] The mechanism for this secondary instability is the



interaction of the salt fingers with internal wave type modes of wavelength much

greater than the cell width. If certain flux conditions are exceeded there is a net

transfer of energy from the convection into waves. The waves cause a shear which,

they postulate, disrupts the convection cells. The balance of these processes would

result in a steady state. Observations are not fully in line with this theory and

some of the problems will be discussed below. There is no theory which appears

to explain the large horizontal scale of the observed layers both in the laboratory

and oceans.

Since the collective instability is the only quantitative theory that has been

applied to explain layering for direct double-diffusive convection we will examine

some of its assumptions and results. Both Stern (1969a, 1975) and Holyer (1981)

assume a basic state that has infinitely tall finite amplitude cells that are marginally

stable. These are exact solutions to the nonlinear Boussinesq equations, so it

is appropriate to develop perturbation equations linearized about this state. An

instability was then sought on a length scale much greater than the finger width.

The crucial dynamical assumption made by Stern was that internal waves alter

the direction of the fluxes but not their magnitudes, and that the fluxes remain

parallel to isohalines. Holyer, by using a multiple scales approach, shows that

the flux magnitudes are affected, though their ratio remains unchanged. Besides

serious doubts about the relevance of some of the assumptions to layering, both

papers have mathematical problems which will be discussed below. In spite of

these problems, both get similar results for the onset of collective instability of

PFs - aFT (1 , Stern 1975
v(aA - #B) 1/3, Holyer 1980

Stem (1969) also finds for his fully developed similarity model that



H [gIK" (28a)

h Kg-~ - 1/4 (28b)

Kf gB 1'/ (28c)

where, H is the separation between finger regions, and h the thickness of the finger

regions. In a later paper, Stern (1976) calulates a limit on the buoyancy flux with

two layers as the initial conditon, and the internal gradients then being dynamically

determined, of

F < 3(1.2)1 - S4/3p AS)413(gKT)1/ 3
164/ 3 - KT)

in the limit as (a AT)/( AS) --- 1, and also finds

k . f4(KTV'( 1 +3Ks/KT 
1/4

13 gaA) 1 - Ks/KT )

164/3(1.2)2v 1 + - [gP AS(KT - KS)]- 1/3

Since the basic theory for the collective instability breaks down as A -, 1 it is not

clear that this limit should be allowed.

Stern's mathematical problems begin with the description of the basic state.

The assumption that Ks = 0 requires, as he notes, = 0 for a steady state

to exist. Both the wavelength and the flux ratio are undetermined, though are

interdependent, so only one may be treated as a free parameter. The horizontal

wavelength is then chosen as being close to the "most unstable disturbance."



However, the basic state chosen has no salt finger type instabilities because there

is no salinity gradient. It is only through the assumption that 6 AS - a AT that a

fastest growing mode wave number not dependent on 1 AS is obtained. For this

case the assumptions that lead to the scale for the most unstable disturbance do

not hold. The choice of a horizontal scale is important and so will come up again

in the discussion of Holyer's work below. The collective instability is the result

of flux convergences and divergences and the fluxes and their ratios are strongly

tied to the horizontal wave number. Despite this, Stern's arguments concerning the

"kinematical effects" of internal waves on the convergence of fluxes may still be

valid.

While the difficulties in Stem's work are deliberately left out in the open by the

author for us to examine and challenge, Holyer's major trouble is far more subtle.

The basic state she chooses is infinitely tall marginally stable salt fingers. This is

done to have a time independent basic state, as did Stern, but here a mean salinity

gradient is included along with a nonzero salt diffusivity. If one wished to find

instabilities of this system there are far more powerful and easier to find examples

than the collective instabilities; these are salt finger modes that are unstable and

closer to, or at, the fastest growing mode. There are three scales used in Holyer's

analysis; the mean gradients, a salt finger width, and a collective instability scale

much longer than the finger width. Averaging is performed over many finger

widths at an arbitrary angle to the finger wave number vector, corresponding to the

direction of a possible collective mode wave vector. The unstable collective modes

that are found have a nearly vertical wave vector. This limit however violates the

scaling assumptions. Once the collective mode is nearly vertical, averaging over its

wavelength no longer averages over many finger widths.



It would be hasty to conclude from this brief critisism of collective instability

theory that such an instability can not or does not exist. As a cause of layering in

direct double-diffusive convection, however, it will not do. Credit must be given

to Stern for providing an easy target. His reasoning is made clear even when

subject to quick objection. His predictions are powerful, concise, and can be tested

experimentally in a straight forward manner. This work will be unable to match

his fine example.

There have been several attempts to compare collective instability theory with

observations and experiments. Stern.(1969) made order of magnitude comparisons

with the data of Tait and Howe (1968) using PB = 10-8 cm- 1 and got a value

for H of 101/4 103 cm, which is reasonable, and 101/4 for h, which is an order

of magnitude too small. He" found the data of Cooper and Stommel (1968) to

show more variety in the structure than could be explained by collective instability.

Lambert and Demenkow (1972) found the fluxes to be only 10- 3 of the amount

needed for the onset of the instability, but nevertheless quasi-steady layers were

present. One might argue that fingers can still exist in a regime where the collective

instability is already being driven to some extent but not strong enough to disrupt

the cells; however, it is difficult to imagine an instability limiting some phenomenon

before the conditions for its onset are met. Though Stern and Turner (1969) and

Linden (1973) come within an order of magnitude, there is no particular value of a

in eq. (27) about which their values cluster. Linden's experimental values ranged

over an order of magnitude from 0.2 to 1.9 for heat-sugar fingers. Also, except for

the case of mixing at a front which has clearly different behaivour, oblique motions

or disturbances have not been reported. The layers form oriented almost perfectly

horizontally, as can be seen in the photographs of figs. (16), exactly where Holyer's



analysis is mathematically inappropriate.

Supercritical salt fingers can survive rather strong motions and shears on length

scales greater than the finger scales. Examples of this may be found in Turner and

Chen 1974 and Turner 1978. Even Stern and Turner (1969) found that fingers can

grow in a strong shear. Linden (1974) found that imposing a steady shear led to

two dimensional rolls, not total breakup. Even if fingers pump energy into some

larger mode at a finite rate their breakup seems unlikely. It is not sufficient, as

Stern (1976) suggests, that internal waves displace the cells of order of a cell width

for disruption. The vertical scale of the shear would have to be of the order of

the finger width to be destructive. Further, the ends of the fingers have reduced

density gradients, though exaggerated thermohaline gradients, so that the shear of

internal waves is concentrated elsewhere. These are more reasons that the collective

instability doesn't seem to be the mechanism for layering.

If we look at Stern's basic result, eq. (27), it does have two things which

give it a qualitative validity; vigorous fluxes are more likely to be associated with

an unstable mode, and a steep stable net density gradient is stabilizing. These

conclusions are likely to be matched by any secondary instability mechanism and

are intuitively reasonable without the collective instability model. With regards to

physical details and quantitative validity, the collective instability does not appear

to hold up to scrutiny as the cause for the breakup of salt finger convection cells

into layers.

Thermohaline layering in theocean, even when stratified in the salt finger sense

may still have multiple causes. Several different forcing situations can exist and

theories are not well divided in the literature discussions (though nature may be as



confusing). Three clearly come to mind: 1) a net input of heat and salt from solar

heating and excess evaporation, such as in the Atlantic Central waters, 2) a warm

salty current over cooler fresher water, such as under the Mediterranean tongue,

and 3) at the front of two water masses of different origins and T-S relations.

Though the layering processes of the first two are probably similar, the physics of

the third may be markedly different. The third case develops alternating layers of

fingers and layers started by the oscillatory instability. The setting of vertical scales

is very different in this problem. Some theory on this is presented by Toole and

Georgi (1981). The references in that paper list most of the other work in this

area. Evidence for all three of these in the oceans has already been noted.

Some theoretical work has been done taking the existence of layers for granted

and examining the interactions of sets of layers. Using empirical flux laws for the

relatively thin double-diffusive regions, separated by larger homogeneous turbulent

regions, Huppert (1971) determined the conditions required for a series of layers

to be a stable configuration in the oscillatory case. The method is easy to extend

and he shows how to apply it to more general flux laws and the salt finger case.

Though Huppert restricted the dependencies of the flux laws to density ratio, and

power law dependence on the temperature difference across each double-diffusive

layer, generalizations are only a practical, and not conceptual, difficulty. Schmitt

(1981), applying a method strongly related mathematically to Huppert's, shows that

the known semi-empirical flux laws for salt fingering should lead to a constant

density ratio in the ocean. He notes observations that appear to confirm this in

several ocean regions with density ratios ranging from 1.15 to 1.9.

The observations of Williams (1975) demonstrated that the layered structure of

the ocean could be quite intricate. In the Tyrrhenian Sea the fine structure steps had



about a 30 m scale with a mean salinity gradient of ; 5. 10- 7 cm- 1 concentrated

into gradient regions of about 6 m, with nearly compensating temperature gradient.

Within these 6 m layers multiple salt finger layers were found with the gradient

concentrated into thinner layers. For a strong interface under the Mediterranean

outflow a well defined finger region about 40 cm tall with a fairly smooth internal

temperature gradient, the structure of the salinity field within the fingers could

not be resolved but had a AS of 30 - 10-6, by mass, for a mean gradient of

just under 10- 6 cm-' and the mean density ratio can be calculated as about 1.2.

Based on Linden's (1973) laboratory work, that salinity gradient is probably further

concentrated to a few centimeters at each end of the cells. This is beyond the usual

measuring capability of ocean going instruments.

Possibly the most fascinating finger experiments were those of Linden (1978)

who chronicled the development of layers in a salt-sugar system. The experiments

started with a layer of linear gradients sandwiched between two constant property

reservoirs, each about 12cm deep. A small discontinuity in concentration was

initially present at the boundaries between the gradient and reservoir regions,

though we do not feel that this was strongly related to the evolution of the systems.

The photographs were produced with a shadowgraph technique. This produces

light and dark regions on a screen by the differential focusing from the variations

of the index of light refraction with density. The method is sensitive to the second

spatial derivative of the index of refraction (Shirtcliffe and Turner 1970). The first

sequence shown in fig. 14 does not exhibit layering. Initially vigorous convection

shrinks the layer thickness, as can be seen going from fig. 14a to fig. 14b.

Eventually as the system ran down the layer thickened (not shown).

The second sequence shows more structure. The initial pattern is salt fingers
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Fig. 14. Time lapse photographs of salt-sugar fingers without layering. The full depth of the tank
is visible, the depth being shown by the tape on the left-hand side which has alternating light and
dark regions each 1 cm long and offset every 10 cm. The digital clock in the lower right-hand corner
shows the time in hours. minutes, seconds and tenths since the beginning of the addition of the top
layer. A, = 1.16, ) AS/h, = 8.0- 10- cm- '. Note the decrease in height of the layer and that
the layer remains continuous. Photgraphs and parts of the captions for figs. 14 - 16 are from P. F.
Linden. J. Geophys. Res. 83 C6, 2902-2912, @ American Geophysical Union.
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Fig. 15. Time lapse photographs of salt-sugar fingers with layering (from Linden 1978). Ao =
1.1, BAS/h,, = 8.3. 10-:cm-'. Note that the first harmonic clearly develops and is then-
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throughout the gradient region (fig. 15a). However the convection is so vigorous

that the clear cellular pattern is not evident. It is possible that for a short while

the whole layer is turbulent. By the second photograph, fig. 15b, a sharp gradient

evenly divides the cells. We attribute this to the modification of the mean field

by the first harmonic. In the next step another sharp gradient developed just

below the upper gradient region boundary. The strong asymmetry evident at this

time eventually vanishes. The final photograph of this sequence shows two finger

layers with each having sharp gradients visible at both ends. Since the initial

configuration was so extremely supercritical, we believe that fairly high harmonics

that were unstable dominated the system.

The third sequence, fig. 16, layers more gracefully and it is easier to distinguish

the laminar cells from the chaotic regions. Thin, but clearly cellular layers develop

at two levels. Eventually the cells lengthen with the weakening of the gradients as in

the first experiment. No large scale lateral motion was reported. The development

of horizontal layers associated with a sharp density gradients at their top and

bottom is evident. A theory for the formation of these layers, by the mean field

modifications from modes with high vertical wavenumbers and the accompanying

change in the stability of some regions, is presented in the next chapter.
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Fig. 16c.

Fig. 16. Time lapse photographs of salt-sugar fingers with
1.05, PA S/ho = 4.4. 10- 3. Note the establishment of a
time between 16a and 16b and the subsequent growth of the
in fig. 16c.
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6. 1 larmonic Instabilities

For a highly supercritical basic state there is a large spectrum of unstable

modes. This applies to the ocean where salt fingers are observed and almost all of

the laboratory work that has been performed. Not only is the effective Rayleigh

number enormous because of the large vertical extent, but also the density ratio

is small leading to large growth rates. In weakly nonlinear theory saturation of

the vertical fundamental is sufficient to stabilize the system and the fundamental

weakly drives the first vertical harmonic through the nonlinear terms. As the

systems become more supercritical the higher vertical modes are themselves unstable

and their dynamics become more loosely coupled to the fundamental. Further,

the fundamental alone when saturated will be unable to stabilize the system to

instabilities on smaller scales.

One class of instabilities takes on a very different role in the parameter ranges

of layering in double-diffusion; these are the vertical harmonics. They have the

ability to greatly alter the base conditions and control where turbulent layers will

occur. We will demonstrate that even with initial white noise, the fastest growing

mode is not the mode that has the greatest effect on a system, at least by some

important criteria. The approach here is based on examining flux divergences and

has not been previously applied to salt fingers. Collective instability theory looks at

modification of fluxes by internal waves. The analysis that follows concentrates on

the effects of the convective instabilities themselves on the stability of the system

with regard to other direct convective instabilities. The system we will examine is

unbounded in the vertical, initially with linear positive gradients of temperature and

salinity, and net stable density gradient. Equations (12) are still the fill nonlinear



diffusion equations. Horizontally averaged they become

a0~ a2  a
at az2 az

- -r 5s , Y SwS . (29)at az2 
,z

Until the disturbance amplitudes reach a point where the nonlinear terms in the

basic equations become significant, it is valid to look at the forced solutions to

eqs. (29) by determining and using the Reynolds fluxes of a mode from linear

theory as the forcing. This approach will provide a tendency calculation for the

early evolution of the mean field without feedback to the linear growing modes. A

horizontally in phase linear combination of solutions, eqs. (13), to the linearized

problem of eqs. (9), (11), and (12), yields

a 2 me2Xt sin 2mz

z ( + y2)

a me2Xt sin 2mz
-- = (30)az (X + r- 2)

while it is still required that the dispersion relation, eq. (14a), be satisfied. The

initial value problem for eqs. (29), with the forcing as in eqs. (30), and initial

conditions

#(t = O) = S(t = 0) = 0 (31)

has solutions

[ 2m(e2xt - e-4m2 t) sin 2mz

2(X + 2m2)(X + 2)

= m(e2Xt - e-4m 2t) sin 2mz (32)
2(X + 2rm2)(X + ry2)



For very small initial noise amplitudes the decaying transients are unimportant

since only at times after e2x t > 1 do the solutions have significant amplitudes. This

is equivalent to not strictly requiring the initial conditions of eq. (31). Dropping

the transients in eq. (32), the vertically local, horizontally averaged density ratio is

then

A(z) = (a , /( a ) Ah0+ 1 + z (33)
8z az z (z

S 2 me 2 t cos 2mz + j2m'e2xt cos 2mz

= 1O (X + 2m 2)(X + y2)[ (X + 27m2)(X + Tf2)

The layers of greater instability will occur at regions of reduced density gradient

so we look for the minima of A(z) which occur where cos(2mz) = -1. If the

growing terms are still much less than one, the expression may be Taylor expanded.

Equation (33) then simplifies to

min[A(z)] Ao(1 - )2 r) (34)

= me2 Xt 1 1
(X + 2rm2)( + Try2) (X + 2m 2)(X + ,2)

For an initial disturbance consisting of spatial white noise, it is not the fastest

growing mode that most greatly affects the mean fields and A(z). This can be

easily understood with the following heuristic. The fastest growing mode is the

fundamental, which has the smallest allowed vertical wave number with k = kf.

For an unbounded fluid this is m = 0, and for a deep region m is very small.

However, this mode has no effect on the mean field since it has no flux divergence

because m = 0 and little flux divergence if m is extremely small. On the other

hand, there is some maximum vertical wave number above which there is no

growth, so



m2 < [4(1
m 1 [27

SA 1/ 2

-Ar) (35a)

or in dimensional form,

aA 1/2

Kr
(35b)

This is determined in a manner similar to determining the marginal instability

criteria for a fixed cell, with conducting, stress free boundaries and hence is

essentially the same result as eq. (15).

To find the mode that has had the greatest effect of the density ratio at a given

time, set

a min[A(z)] = Smin[A(z)] = 0
ak2

Taking these derivatives of eq. (34), we therefore require

0 = 1+ 2m.t x 1 1 

0= ( +- 2 m2 (X + 2m 27)(X + -1 2r) (X ± 2m 2 )( + -2)

m [( 27X + 2r)(X + ,r) + (X + 2m2T)( X + )]

(X + 2m27r)2 (X + iy2r)2

[( + 2)(X +, ') + (X + 2m2)( 1
(X + 2m2) 2 ( + 72)2

and

(36)

m2< 4 KsB
27 v Ks



0 = 21 
1

ak2  (X + 2m2r)(X + "y2 T) (X + 2m 2 )(X + 72)

[a(x + .2)+ (X + 2m2 (a + 7-)]

(X + 2m2r) 2 (X + "y2r)2

QX (X7+ -y2)+(X + 2m2)( QX +1)]
4 ka(37) (X + 2m2) 2 (X + 2)2

The simultaneous solution of Eqs. (14), (36), and (37), still has a time dependence

and holds for e2xt > 1 or, approximately, Xt > 1. A criterion for the closure of

this system must still be specified, or determined.

How much effect can the flux divergences have before the dynamics are surely

nonlinear? Admittedly for mathematical convenience, and fortuituosly for oceano-

graphic relevance, take A = 1 + e, e <K 1. In the areas of the ocean where salt

fingers are observed to be vigorous c - 0.2. This is not totally fortuitous since

layering can only occur if A is not much greater than one. Further this is also

required for vigorous convection and would naturally result in an area with a large

negative buoyancy. flux into the surface (with standard conventions for direction

this is a positive buoyancy flux). The acceleration term in the vorticity equation

is largest for the fastest growing mode; then it is of order XWA ext. The nonlinear

terms are of order iy2 iie 2xt or iy2(m/k)i 2 e2X, so their ratio, q, is

Se(38)

The ratio of the viscous term to the nonlinear terms is me et/(Uay 2) while the

ratio of the density gradient driving term to the nonlinear terms is mt2,ext7 2(X +

r72)/(ak2 ) metXt/a which is even less than q for a > 1. As long as q < 1,



the approach taken is still valid. From eq. (33) for heat-salt fingers, so r < 1,

assuming 7y2/X ,- 1, and m2 < 72,

m2 2e2Xt 2

min [A(z)] -- 1 e- 2 -c --. (39)
2X2 2

So if

E< - (40)
2

regions are created that have a mean statically unstable density gradient, while all

the dynamics are still essentially linear.

It is not the case that the nonlinear terms are in this ratio to all the linear

terms. However, for the dynamics to remain linear at least two linear terms from

each of the equations (11) and (12) must be much greater than the nonlinear terms.

In particular the diffusive terms in the salt conservation equation, (12b) is quite

small if r < 1, and then the time derivative term balances the advection term. In

the salt conservation equation the ratio of the nonlinear terms to the time derivative

term is again q as in the vorticity equation. The nonlinear terms over the linear

advection of the mean salinity field are also of order q if r < 1, otherwise they are

less than q and the ratio of the nonlinear terms to the diffusion term is q/(ry2 ) > q

for r < 1. This does not present a problem for the reason noted that there are

still two large linear terms to maintain a consistent dominant balance that does

not include the nonlinear terms. A similar analysis can be performed on the heat

conservation equation (12a) and yields the same required condition.

The results of the previous calculations are at least suggestive even when

eq. (40) does not strictly hold. The nonlinear terms do not force saturation of



the normal modes before the stability characteristics of some regions are changed

enormously. This is crucial for all of the tendency calculations presented here. If

the fundamental does reach .arge amplitude before breakdown occurs, the process

is not stopped but may be significantly slowed down. As long as the fundamental

can not fully stabilize the system harmonics will still develop.

A search for the mode that first creates levels that are statically unstable in the

mean for a given initial density ratio and noise level, provides conditions that close

the system of eqs. (14), (36), and (37). The criterion of the creation of regions with

positive density gradient was used by Turner (1968), and also by Linden (1976),

for theoretical examinations of the limitations of layer thickness and the initiation

of additional layers, when the gradients are as in the oscillatory double-diffusive

case. Demonstration that regions exist that have a mean positive density gradient is

not sufficient to generate an additional type of instability. However, it is suggestive

that regions can be created that have such large accelerations that the resulting

motions will be turbulent and not cellular, since the growth rate grows rapidly

with decreasing density ratio. Modifications of the mean field in one component

convection cannot create regions with.significantly greater accelerations than in the

initial state.

Since it is not clear how to pick an initial perturbation amplitude and spectrum

it is not yet possible to analytically solve the set of eqs. (14), (36), and (37). Modes

with the greatest effect at early times have a much larger m2 and smaller k2

than observed. However the time dependence of the pattern is strong. After

long amounts of time, Le.: Xt > 1, small vertical wave numbers become more

important, as is observed and indicated in the contours of r at later times, and the
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Fig. 17. Effect on mean density ratio by growing modes as a function of horizontal and vertical
wave numbers for heat-salt case, density ratio = 1.5: a) t = 5, b) t = 10, c) t = 20, d) t = 25.

Contours are plots of f from eq. 34.
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most important horizontal wave number approaches kf.

Figures 17 - 21 provide contours of P from eq. (34) at various times later

than t = 0 but within a range where exponential growth might still be occurring.

With this approach we bypass the search for a particular closure, at least for the

moment. As time passes the mode with the greatest effect evolves toward the fastest

growing mode at (ky, m2 = 0). However Fmax(t) always occurs at finite m2 . To

allow a perturbation to grow from Angstroms to centimeters is an amplification of

108 which is more than 18 e-folding periods. This is an amplification of 1016 for

quantities proportional to the square of the amplitudes. If Xma, - 0.5 this criterion

is reached at t ~ 37. Though the resulting amplification ratios are enormous they

are not unreasonable given the probable small size of the initial perturbations,

which may be well less than an Angstrom in displacement at the appropriate

horizontal and vertical wavelengths.

The values of the density ratio which are presented in figs. 17 - 21 were chosen

to be relevant for oceanic situations and laboratory experiments where layering has

been observed, particularly Linden's 1978 experiments. At the earliest time shown,

fig. 17a, t = 5 and Xmaxt is only about 2.5. The behavior is swamped by the

dependence on m2 and is pushed up to the marginal curve, beyond which no data

was plotted. By the the time Xmaxt 5 the result is more along the lines of our

expectations. There is little qualitative development of the pattern later on, though

the scale of the figures is changed. The continual evolution of the location of Pmax

in wave number space toward k2 and smaller m2 is evident.

Figures 17 and 18 show the development of P for the heat-salt case while figs.

19 - 21 apply to the salt-sugar case. The qualitative behavior is identical for the



different parameter sets though the numerical values are different. The width of

the peak at r,,, is fairly broad but narrows as time passes in absolute magnitude.

When normalized by the value of m, at Fmax the width becomes fairly constant

after a few e-folding periods. For example in the heat-salt case with A = 1 the

full width at half maximum goes 0.12, 0.073, 0.054, as t goes from 10 to 25 by

increment 5, while the width normalized by m, goes 1.6, 2.6, 2.4, 2.7. The large

relative width indicates that the criterion of choosing m, is not sharply selective

and includes several harmonics. The plots of I provide only relative amplification.

An initial spectrum is still required to generate relative magnitudes.

As an example, we take a 10 m high region with A = 1.1, iB = 10- 6 cm-1

for the heat-salt case using the nominal parameter values from the introduction,

except for convenience take KT - 10- 3 . This example has a slightly astronomical

Rayleigh number of order 1015. The scales from eqs. (11) are T s 100 sec, L ,

10-1/2 cm. From fig. (3c) we get k, 0.32, so the fastest growing wavelength

is 3.5 cm and X ~ 0.715. The fundamental has m2 ; 10-6. The first hundred

harmonics all have X > 0.70. It would take over 30 e-folding periods, or more

than one hour, before the fundamental had a factor of 2 more amplification over

the slowest of these. About the 140 th harmonic has m2  0.02 and a vertical

wavelength of 14 cm, while X has only dropped to 0.69 requiring 20 e-folding

periods for a relative factor of 2 in amplification. Their relative effects on the mean

field however are quite different. At t = 25, ex
maxt - 108 and the effect of the

140 th harmonic on the mean density ratio is twice that of the hundredth harmonic

and orders of magnitude greater than the effect of the fundamental.

For a laboratory example we take a 10 cm height region with A = 1.1, PB =
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Fig. 19. Fffect on mean density ratio by growing modes as a function of horizontal and vertical
wave numbers for salt-sugar case. density ratio = 1.5: a) t = 40, b) t = 60, c) t = 80, d) t = 100.
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Fig. 20. Effect on mean density ratio by
wave numbers for salt-sugar case, density
e) t = 50, f) t = 60.
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Fig. 21. Effect on mean density ratio by growing modes as a function of horizontal and vertical
wave numbers for salt-sugar case, density ratio = 1.05: a) t = 10, b) t = 20. c) t = 30, d) t = 40.
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10- 2 cm-1. The resulting values as above are T 8 sec, L 0.011 cm, k2

0.25, ljy 0.14 cm, and m - 10- 5 . the growth rate of the fastest growing allowed

mode is 0.499. Over sixty harmonics have a growth rate over 0.45. The relative

effects on the mean field are similar to the heat-salt case. At t = 50, taken from fig.

20e, m = 0.011. The derivative a 2 k=k = -1.05. The relative amplification is

e(m, - mi o,- e0 6 , 2, while Fmax is orders of magnitude greater than F(ky, mi),

and the vertical wavelength corresponding to mi is 0.7 cm.

The flux divergence ratio is defined as aFT/8,Fs. It is only relevant for

the exponential growth period. At steady steady the vertical flux divergences must

vanish. Taking the vertical derivatives of the solutions from eqs. (13)

_ FT __ (X + 27m2 )(X +- ry 2)
a Fs (X + 2m2)(X + 72)

The flux divergence ratio is a measure of a mode's efficiency in extracting potential

energy from the mean fields within the cell. This is distinct from the flux ratio

which is a measure of a mode's effectiveness in obtaining potential energy from

the reservoirs at the ends of the cells or at the boundaries. It is strongly related to

the formula for the potential energy change calculated in eq. (44b). Contours of

the flux divergence ratio are in figs. 22. The values of Q are bounded by 0 and 1.

Low values are indicative of a mode that is efficient in extracting energy from the

salt field but does not lose much of it doing work on the temperature field. There

does not appear to be any preference for modes with small flux divergence ratios

in realized double-diffusive convection.

It is not difficult to determine the relative efficacy of different modes in

extracting potential energy from the system. The gravitational potential energy
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Fig. 22. Flux divergence ratio a function of vertical and horizontal wave numbers: a) heat-salt case,
density ratio = 1.2, b) salt-sugar case, density ratio = 1.2. Contours are plots of Q from eq. (41).

0.10

0.08

0.06D. D6

Cu

0.04

0.021



EFFECT ON POTENTIAL ENERGY DENSITY w10e-3
1/PRANDTL - 0.0018 KS/KT- 0.3300 DEN. RAT. - 1.5000

T = 20.00

EFFECT ON POTENTIAL ENERGY DENSITY sl0a-5
1/PRANDTL - 0.0016 KS/KT- 0.3300 DEN. RAT. - 1.5000

T a 30.00

0.40

0.30

S0.20

0. 10

S0.00
0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80

KN02 Kwm2

Fig. 23a. Fig. 23b.

Fig. 23. Effect on mean potential energy density by growing modes as a function of horizontal and
vertical wave numbers for salt-sugar case, density ratio = 1.5: a) t = 20, b) t = 30, c) t = 40,
d) t = 50. Contours are plots of 60 from eq. (44b).
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Fig. 24. Effect on mean potential energy density by growing modes as function of horizontal and
vertical wave numbers for salt-sugar case, density ratio = 1.1: a) t = 10, b) t = 20, c) t = 30,
d) t = 40.
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may be defined as

U = (z) d dy dz

Referenced to the initial state, the amount of energy extracted is

h
6U= C gz(6-r )dz , (42)

where C is the lateral area of the integration and horizontal averaging. Putting

in the effects of the growing normal mode solutions from eqs. (13) and vertically

averaging as well as dividing by the volume considered gives a change in the

average potential energy density in nondimensional form of

1 * 'm 1 Ad

Sz sin(2mz) Wme 2xt A dz
h o 2 (X + 2rm 2)(X + 77 2) (X + 2m2)(X + 2)

(43)

Integrating over one wavelength regardless of its length, so h = 7r/m, gives a

vertical average of

1 A ]2e2xt

6U= (X + 2rm2)(X + ri2) - (X + 2m2)(X + 2) 4(44a)

[1 - Q(k2 , m2)] @,2e2Xt
[(X + 27m)(X + -r-)] -  4

This can be calculated easily as a function of (k2, m 2) for various parameter sets as

a function of time was as done above for the analysis of the nonlinear change of

the basic stability characteristics. Some results are shown in figs. 23 and 24.

The limit of zero vertical wave number should be examined carefully. In this

limit the amplitude of the mean field adjustment vanishes linearly to first order.
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However, averaging over a full period of a sin(2mz) shaped perturbation for an

arbitrary potential energy spectrum results in a linearly diverging singularity as

m - 1 times the amplitude spectrum. These cancel to give a finite result with a

nonsingular finite limit as m -, 0. Taking the derivative of the potential energy

density with respect to the square of the vertical wave number it becomes clear

that d6) is small and can be of either sign for small m 2 at t = 0. Analytically

a&/ w2 2Xi [(a + - 2r)(X + r-2) + (X + 2,m 2 )( a2 + 7)]

= -e
am 2  4 (X + 2rm 2)2 (X + 7ry2 )2

[( + _Y2+ (X
+ 2)(X + 2)+( + 2m2)( 1)]

+ A0  (X + 2m2)2 (X + y2)2

+ 2t in 2  . (45)

So, eventually g6 < 0 everywhere in the parameter range of the growing modes

since A < 0 for k near kf.

One could perform some of these calculation on single component convection.

In particular, calculation of the effect on the mean field and potential energy change.

could be made. However the change of the mean field only changes the growth

rates of other modes by changing the scaling time which is proportional to the

square root of the gradient. A dramatic dependence such as is on the density ratio

in the double-diffusive problem is unavailable.

Some further approximations can be made to the results obtained by eqs. (36)

and (37), though it might be difficult to have them met. However the resulting

calculation emphasizes the problems of the time dependence. For m2, r, (A - 1)

all much less than one
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1. heat-salt case, A = 1.5
2. heat-salt case, A - 1.1
3. salt-sugar case, A = 1.5
4. salt-sugar case, A = 1.1
3. salt-sugar case, A = 1.05
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Fig. 25. Vertical mode with the greatest effect on the mean density ratio as a function of time.
Points for lines 1 - 5 are obtained from the location of ra,, in figs. 18 - 22, respectively. Lines
2a and 4a are calculated from eq. (48) with data from figs. 9.
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m2ke 2 t
r . (46)

X2(X +k 2)

To search for the strongest vertical mode by this criterion take 9 and divide out

common factors to get

-m2 m- I 2 X2(X + k 2) (47)

In eq. (47) the ratio of the third term to the second is (3X + 2k2)/[2Xt(X + k2)],

which is of order 1/(Xt), while the ratio of the third term to the first is clearly just

equal to the third term, so when Xt > 1,

1 (48)
am 2

where the derivative is evaluated at (kf, m = 0). Some curves of this are plotted

in fig. 25 and compare very well with the corresponding curves from figs. 19

and 21 also included in fig. 25. The same result can be obtained by making the

same approximations in eqs. (26) and (27) which makes the balance of terms more

intuitively clear, but this path of derivation is shorter. [Without being very careful,

eq. (26) is dropped and k is taken as kf. Assuming m2 (< 1 then leaves only the

first line of eq. (27) which then requires the vanishing of the first factor.]

Still further approximations can be made. In the same limits used above with

k = , so = O0, approximating eq. (18) yields

am? k2 (2X + k2) (49)

Now substituting from eq. (49) into eq. (48) the result obtained is

112



m (Xf + . (50)
t 2

Further substitution of the approximations, also made in the same limits, from eqs.

(16) while keeping only the terms lowest order in e leads to the simple result that

2 1/2
m. (51)

The result of eq. (51) that has mi independent of the fluid parameters in the limits

of small r and rl is consistent with the result that each pair of lines 1 and 3, and

lines 2 and 4, from fig. 25, are nearly on the same curve and have the same density

ratios. The actual values obtained with eqs. (50) and (51) are considerably smaller

than those from eq. (49), are much less acurate, and are not plotted.

As time goes by there is a continual shift to preferring taller vertical modes

for disrupting the system. The smaller the initial noise spectrum the longer the

amount of time needed for any mode to reach sufficient amplitude for layers to

become distinct. After long times, modes with a growth rate larger by even a small

amount gain an advantage over modes with large vertical wave number since the

growth rate increases with decreasing vertical wave number in the parts of wave

number space of interest.

As noted earlier while discussing fig. 6, there is a dramatic increase in growth

rate as A --+ 1. The maximum growth rate continues to grow when A < 1, as A

decreases, which is still a well defined problem. If localized density ratios approach

one in regions with vertical extent much greater than the finger width but much

smaller than the fully system height, the results should be quite dramatic. In the

course of this process the local mean gradient will also be altered so that the time
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and length scales shift proportional to the reciprocals of the square root and the

fourth root of the salinity gradient, respectively, but this effect is small compared

to the dependence of the growth rate on the density ratio. This points out a major

distinction with one component convection where the latter scaling effect is the only

one that might lead to fast growing instabilities, but this is more than countered

by the smaller vertical restrictions.

The harmonics will not take over as quickly as the calculations for figs. 18 -

22 indicate. The fundamental though unable to stabilize the system will still try to

do so; it increases the density ratio in the interior as it decreases it at the extremes,

the vertical harmonics will sense a weaker driving potential and hence have slower

growth rates. To quantify this would require a nonlinear time dependent growth

rate calculation and is probably not worth the effort, since simple sinusoidal vertical

structure functions could not be used. In a highly supercritical system it will still

be unable to succeed in preventing the growth of the higher modes. Just how

poor this assumtion is is demonstrated by Linden's (1978) experiments. In the

experiment shown in fig. 16 an e-folding period is 20 sec and about 100 of them

elapse before the first harmonic is visually obvious. For the experiment of fig. 17

an e-folding period is about 30 sec and harmonics higher than the first take over

after about 500 e-foldings. Higher modes also grow in one component convection

but in that case lead to the characteristic chaotic high Rayleigh number convection.

In single component convection modes with small vertical extent disrupt the

entire laminar cell structure not just regions of it. This difference in behavior is

because of the difference in the relation of the horizontal and vertical scales as

well as the creation of regions with larger exponential growth than the primary

modes in the double-diffusive case. The shorter cells for single convection also have
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smaller horizontal wavelengths. Hence, vertical harmonics in this case are generally

disruptive of the cellular structure. The vertical harmonics in double-diffusion have

almost no difference with the fundamental in the preferred horizontal wavelength,

so the harmonics do not disrupt the cellular planform.

There is some horizontal scale shift in the direct double-diffusive problem that

is indicated in this theory and in the observations reported. In layers where the

density ratio has been driven down to near one, vertically local modes that have the

same wavelength as the fastest growing modes which have altered the mean field,

will have their growth rates increased. However, the fastest growing modes in the

layers of reduced density ratio have a larger wavelength than the initially important

modes. This is only the case when A is near one as is clear in fig. (7) taken from

Schmitt (1979a). This development of larger scale motions in the disordered layers

has been noted in the literature (Linden 1973) and by this author's observations

of motion picture films by Schmitt (provided through personal communication).

Further; even though the modes with larger wavelengths were not the dominant

modes of the entire system they probably have significant amplitude by the time

the low density ratio regions develop so that when they have the largest growth

rates in the system they become rapidly significant.

The regions of increased density ratio will remain cellular. Not only is there

little change in the fastest growing horizontal wave number with increase in vertical

wave number as seen in figs. 2 - 5, but there is also little shift in the fastest growing

wave number with increase in density ratio as seen in fig. 7. It is encouraging that

the shifts in density ratio that are part and parcel of harmonic instability theory do

not even suggest the need for a wholesale restructuring of the cellular planform in

the regimes where it should remain intact.
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The poorest assumption in this calculation is the choice of the initial noise

spectrum. Neither the ocean not the laboratory are likely to have a spatial white

noise spectrum in the parameter region and spectrum section of interest. The

question of the shape of the noise spectrum is probably only relevant to the

laboratory work where the base state initial condition are so well ordered. At the

spatial scales of interest only two sources of perturbations are occur, thermal noise

and fossil turbulence. Thermal noise is always present and salt fingers are very

long wavelength phenomenon in the realm of the random thermal acoustic modes.

In this range the energy per mode is essentially independent of k and there is

little distinction in the behavior of liquids and solids. The smoothed mode density

is the Debye spectrum (for an elementary discussion see Kittel 1976) to a very

good approximation which decays as k2 in the limit k -+ 0, so that the energy

density per wave number also decays as k2 in the limit k -+ 0. Assuming that

maximum displacement is proportional to potential energy as in a simple harmonic

oscillator, the maximum displacement will decrease proportionally. These are the

only motions that cannot be eliminated in a maximally quiet system. If there is

any motion imposed on the system or driven at larger scales a dissipation spectrum

is also present. At what is very small scale in the dissipation process a Kolmogorov

spectrum decaying in energy as k- 5/3 and m-5/3 holds (see Tenekes and Lumley

1972 for an elementary discussion of this spectrum). Even with the most carefully

prepared experiment some fossil turbulence remains from the set up which must

damp out. It is impossible from first principles to assign an amplitude to the

Kolmogorov spectrum.

The relevant perturbation spectra are an interesting set since one is red with a

cutoff and one is blue with a cutoff. By adjusting the relative magnitudes the peak
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could be put wherever it matched the data. From Linden's (1978) experiments we

can get a crude estimate of the time scales of the growth of the fastest growing

mode and its perturbations which appears to be tens of e-folding times and longer.

This correspond to enormous amplifications well in excess of 1010, the ratio of

a meter to an Angstrom. Because of the care taken in filling the tank and

the extremely long time needed for finite amplitude effects to develop, it seems

reasonable to assume that the initial noise amplitudes at the wavelengths of rapidly

growing double-diffusive instabilities are minuscule. No explicit calculation of the

disturbance amplitudes has been made.

Until a region is no longer unstable to finger growth on vertical scales smaller

than the region height but of the same order, it seems reasonable that harmonic

instabilities will disrupt larger scale motions by altering the mean field with their

flux divergences. A cellular layer isolated by two turbulent regions, if unstable to

perturbations that are smaller but not as small as the first harmonic would expel

gradient towards the cell ends, making the interior less unstable. If instabilities

shorter than the first harmonic are possible, there are two possibilities. Should

all the harmonics not be strong enough to create regions in the interior with

strong enough gradients for turbulence, the situation would resemble the one just

discussed above. However, if the harmonics are strong enough to generate an

interior turbulent region, a split would occur into two or more finger regions, each

shorter and less supercritical.

These scenarios and the behavior photographed in Linden's (1978) experiments,

shown in figs. 14 - 16 are in excellent qualitative concordance with the theory

presented here. Layers form where strong density gradients, visible on the

shadowgraph occur. There are no regions of noticably strong, broad scale shear. In
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fig. 14 a mode with larger vertical wavenumber than the fundamental dominates

the system initially shrinking the finger layer thickness. However the wavenumber

is not sufficiently large to create multiple layers. As the gradients weaken this trend

is eventually reversed and the finger layer thickens.

The development of the first harmonic is clear in fig. 15b. Though the

harmonic creates a visible high gradient region it does not cause an immediate

complete breakdown. Actually the convection in the finger region of both figs.

15a and 15b is so vigorous as to be fairly disordered. Finally higher harmonics

create thin cellular regions bounded by strong gradients. Initially the two finger

regions are asymmetric in figs. 15c and 15d, probably due to some asymmetry in

the initial conditions. However this is unstable on the larger scale and a symmetric

arrangement develops.

The layering process can be seen more clearly in figs. 16. In this case the

gradients are weaker and the evolution slower. Even in the first photograph, fig.

16a, the beginning of layer formation is evident along with the sharpening of the

gradients at the finger ends. This becomes quite pronounced by fig. 16b. Some

evidence of the first harmonic can be faintly seen though it is weak and the central

region is quite disordered. The last state shown in fig. 16c is taken much later and

there is extremely sharp contrast between the laminar fingers and the separating

chaotic layer. By this time the overall gradients have been greatly weakened. The

system is still supercritical enough to maintain layers. The harmonic instability

theory also predicts a decrease in the vertical wavenumber of the most powerful

mode over time, but after layers have formed we hesitate to apply this.

If shear was the primary cause of the layers, tilts of the fingers should be
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visible in the early stages before breakdown stabilizes the system. Further there

would be no need for strong gradients to be associated with the layer boundaries

so quickly, though they would eventually develop at the finger ends. However it

is just where the sharp gradients occur before layers are distinct that the layers

divide. This corresponds to the harmonic instability mechanism.

119



7. Numerical Simulations

Numerical simulations were performed with a code similar to that used

by Piacsek and Toomre (1980). However the scheme was pushed further into

the supercritical unstable regime than previously and the initial conditions were

qualitatively different. Equations time stepped were the vorticity equation (7), the

heat equation, and the salt equation (6), with a solution of a Poisson equation

(9) obtained at each time step. The grid spacings were constant in both the I

and i directions, though the spacings in the two directions were different. The

temperature and salinity grids were staggered with the stream function and vorticity

grids. Boundary conditions in the I-direction were periodic. The top and bottom

boundaries had constant temperature and salinity, and were of the no slip type.

The time step procedure used was a Dufort-Frankel leap-frog scheme (see

Roache 1972) for the diffusion terms of all three conservation equations. Simple

averaging was performed at regular intervals to cancel leap-frog divergences of

the alternating time steps. An Arakawa Jacobian (Arakawa 1966) was used on

the vorticity adve&tion term while the salt and heat equations had simple second

order differencing corresponding to J,+ in Arakawa's notation for their advection

terms. The density term of the vorticty equation also used simple second order

differencing by use of the staggered grid. The Poisson equation was solved using a

spectral method outlined by Williams (1969). Much of the code was provided by

Steve Piacsek including a Poisson solver written by D. A. Moore and some output

routines by Glyn O. Roberts. The code was cleaned up, vectorized and altered for

the Cyber-205, and new initialization routines were written.

Some runs were attempted using Arakawa Jacobians on the advection terms
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of all three conservation equations and without a staggered grid. These developed

numerical instabilities at parameter values that for the other scheme were stable.

The all-Arakawa scheme was tried because of explosive numerical instabilities of the

first scheme even though the Courant-Friedrichs-Lewy (CFL) condition requiring

that advection not exceed a gridpoint spacing in a time step was always satisfied.

Evidence of possible numerical instability in the codes used by Piacsek and Toomre

(1980) had already been noticed even at much less supercritical conditions when

near the ends of runs started with a sharp interface, salinities were observed that

were beyond the boundary values (Piacsek, personal communication). Though the

Arakawa Jacobian was originally used in the vorticity equation because of a previous

use of the codes, it is the diffusion equations that are more likely to develop a

Phillips type instability (Phillips 1959) because of their smaller diffusion coefficients,

so the experiments were performed using Arakawa Jacobians there. This scheme

proved to be unstable even in parameter ranges where the first scheme was stable,

which was, surprising. The instabilites were finally eliminated by a decrease in grid

size and a corresponding decrease in time step. Even though a single diffusion

equation is unconditionally stable using a Dufort-Frankel, scheme if the CFL

condition is met, the set of three coupled equations with a leap-frog appears not

to be. The nature of these numerical instabilities has not been fully analyzed

yet, though either a diffusive of leap-frog type instability is expected. We know

of no studies of the computational stability of finite difference schemes of such

complicated coupled equations. The problems are exacerbated by the fact that the

chosen base state is physically unstable.

The primary hope before these simulations were begun was to be able to

examine in detail the evolution of the layering process, by whatever mechanism it
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occurred. This goal was not achieved. It was not possible even using a Cyber-205

computer operating at about 20 million floating point operations per second for

nearly an hour to run for a sufficient number of time steps, with a fine enough

grid, and large enough vertical extent. Initial runs attempting to model one of

Linden's (1978) experiments developed explosive numerical instabilities probably

related to the inability to resolve the salinity gradients on the course grid spacing.

The numerical experiments that remained stable are presented here and appear to

have had sufficient resolution in the interior but were probably too coarse near the

top and bottom boundaries.

Three simulations will be described all of which were numerically stable. All

have infinitely conducting constant property boundaries with no slip at the top

and botton. Periodicity was imposed as a lateral boundary condtion. The runs

vary only in the initial conditions and total box height. The first simulation was

started with constant linear gradients and was given perturbations with a white

vertical specturm over several modes and a single horizontal mode. A spectrum

of several modes in the horizontal was added in the second simulation. The third

simulation imbedded a region with linear gradients between two initially constant

property reservoirs and had a limited white noise spectrum in both the vertical and

horizontal.

All of the simulations had several parameters and conditions identical. Parame-

ters were chosen to correspond to the salt-sugar case. This reduced a problem that

Piacsek and Toomre had of the grid being finer than needed for the faster diffusing

component and yet still unable to resolve the gradients of the driving component.

The kinematic viscosity, v, was taken as 0.01 cm2/sec, KT = 1.8 . 10- 5 cm2 sec,

and Ks = 6. 10-6 cm 2/sec. Hence the Prandtl number was 556 and the diffusivity
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ratio was 3. The vertical grid size was 0.04 cm, the horizontal grid spacing 0.02 cm,

and the time step 0.1 sec. The solute differences were measured directly in density

units with AS set at 5.10 - 3 g/cm 3 and AT at 6. 10- 3 g/cm3, giving A = 1.2. The

grid box was 66 points laterally by 130 points vertically, in the gradient region, and

so was 1.28 cm wide by 5.12 cm tall. In the third simulation the gradients were

unchanged and the reservoirs were added by putting 64 more grid rows both above

and below for a total height of 258 points or 10.24 cm.

The initial perturbations for simulation A were all at a single horizontal

wavelength corresponding to the fastest growing allowed mode which fit four waves

across the grid. The first ten allowed modes in the vertical were included. Each

mode was made to vanish at the top and bottom boundaries and had random lateral

phase. Perturbation amplitudes were set to 10-6g/cm3 , equivalent to physical

displacements of 10-3cm. The sixty-four bit accuracy of the computations was

sufficient to maintain evidence of only wave number four across the grid in the

two dimensional profiles (not shown) after more than 30,000 steps.

Exponential growth lasted about 600 sec as can be seen in fig. 26. At that

time the salinity profile appears as a single mixed layer with sharp boundary layers.

By t - 700 sec growth has slowed and the mode amplitude has become so large

that the interior gradient is inverted. After this time the amplitude overshoot is

corrected by a slight decrease while the profile becomes smoother, indicating the

decay of some unstable, short vertical scale, transients. At t = 2000 sec there is

evidence of two mixed regions each associated with a physical boundary. In the

last profile the slow extension of the mixed regions into the interior is seen. We

will return to this last point when discussing the salt Reynolds flux.
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Fig. 27. Development over time of mean density field in numerical simulation A.
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Fig. 28. Development over time of salt Reynolds flux in numerical simulation A.
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The density profile evolution for simulation A is in fig. 27. At the boundaries

a strong density gradient inversion developed as expected. The exponential

growth follows the same pattern as the salinity profile development. Eventually

growth slows at t = 700sec and then decays slightly. In the later profiles

the density boundary layer thickens. The salt Reynolds flux profiles in fig.

28 provide information on the intensity of convection as a function of vertical

coordinate. Initially the convection is vigorous throughout, growing exponentially

and predominated by the fundamental, as indicated by the broad central peak, with

some harmonics superimposed. At t = 600 sec the convective motion is nearly

independent of z, except at the boundaries, and by t = 700 sec the convection has

begun to decay, though the salinity and density profiles continued their development

as noted above. In the last three profiles convection in the interior has been

thoroughly quenched and the time evolution shows the slow extension of the

convecting layers toward the interior.

The continuing destabilizing buoyancy flux forces the, convective regions to

encroach on the quiescent center. Though the fundamental has created an

interior that is absolutely stable, it has not been able to fully stabilize the system.

The simulation was stopped before convection inevitably extended between the

boundaries. This does represent the development of two separated convecting

layers but this was not exactly what was anticipated. The last configuration is

far from steady state because of the vertical divergence of the salinity flux, yet

individual modes have saturated and are in a quasi-steady state. Whether a slow

oscillation of this pattern would have occurred or a steady state developed is

unknown.

Simulation B started with multiple modes in both the vertical and horizontal
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Fig. 29. Development over time of mean salinity field in numerical simulation B.
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Fig. 30. Development over time of mean density field in numerical simulation B.
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Fig. 31. Development over time of salt Reynolds flux in numerical simulation B.
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directions. Again the modes were arranged to individually match the end boundary

conditions and have random phase in the i-direction. Each mode had an amplitude

of 10-6g/cm3 as before. Profiles of salinity, density, and salt Reynolds flux are

presented in figs. 29, 30, and 31, respectively. The structure in the two dimensional

profiles (not shown) is not easily discernable to the eye. The results were greatly

different than the previous simulation. Salinity inversions developed just outside

the boundary layer. The inversion layers thickened over time and eventually

disappeared. The final configuration had about half of the total salinity difference

concentrated in the two boundary layers and the remainder in a nearly linear

interior gradient. Density inversions at the boundaries quickly developed. The

evolution of the density profile was quite similar to that in simulation A. Growth

and eventual decay of the convective motion can be seen in the evolution of the

salt Reynolds flux. Throughout all of the profiles here the Reynolds flux is nearly

depth independent except at the boundaries. The final result at t = 3000 sec is

close to a consistent steady state.

The difference in the results between simulations A and B indicate that the

interactions of various lateral modes is quite complex and strongly affects the

vertical structure. A broad specturm of vertical modes was insufficient for the

development of a high Rayleigh number configuration with gradients compressed

to the boundaries and a nearly homogeneous interior. The interaction of multiple

modes in more than one spatial dimension appears to be required for the mean

fields associated with turbulent convection. It is conceivable that many vertical

modes are sufficient for aperiodicity but the simulations were not run long enough

to determine this. Since simulation A is constrained in a similar was as a single

mode calculation (e.g.: Gough and Toomre 1982) the results obtained here may
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indicated that such a single mode approach, which is considerably less expensive

than the modelling done here, might not be effective for analysing direct double-

diffusion. We are not aware if similar effects have been noticed in numerical work

on high Rayleigh number thermal convection. Simulation B appears to reasonably

model the double-diffusive analog of high Rayleigh number, parallel plate bounded,

thermal convection, an experiment not yet performed.

The last numerical experiment, simulation C, added reservoirs to the previous

one at both ends. Perturbations again had spectra in both directions which were

extended into the constant property reservoirs. The salinity profiles in fig. 32

again show the initial salinity inversion associated with the boundaries thickens and

finally vanishes. The earlier profiles inidcate a good deal of noise in the vertcal

which smooths out over time. The linear gradient region shortens to a height

of about 4cm. When the system settles down two clear mixed region are again

present. Two fifths of the salinity gradient is concentrated at the boundaries and

the remainder is in the interior linear gradient region. Sharp density inversions at

the boundaries occur as expected (fig. 33). The inner boundary layers, where the

density inversion is compensated, thicken with the passage of time and the central

gradient region shrinks. From the salt Reynolds flux profiles (fig. 34) the driven

convection can be seen to peak and then decay slightly. An examination of the

fluxes from the convection and diffusion indicates that the system is still far from

steady state. However, from the standpoint of individual modes finite amplitude

saturation has been reached.

The reservoirs in simulation C did not break down. They maintained significant

homogeneity even at the end of the simulation and even though the solute

concentrations had drifted. With the exception of boundary effects this model
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Fig. 32. Development over time of mean salinity field in numerical simulation C.
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Fig. 33. Development over time of mean density field in numerical simulation C.
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Fig. 34. Development over time of salt Reynolds flux in numerical simulation C.
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corresponds well to the development of Linden's experiment shown in fig. 14.

Again the search for layers was frustrated, but the simulation did capture the

essential physics of a complex laboratory experiment, which is encouraging.

Significant improvements in computational efficiency are still possible with

available techniques. These will come at the expense of additional programming.

One of the simplest would be the dynamical determination of the time step to

keep it close to the CFL limit. More complete vectorization of the code can be

accomplished but the resulting programs would be less transportable. At greater

programming cost some dynamic changes in grid size could be implemented. It is

quite clear that the salinity gradients at the boundaries need a much finer grid for

proper resolution than was used here. If a simulation does develop layers a finer

grid would be needed at some interior levels.

Enough of the physics of double-diffusive convection has been captured in the

simulations to recommend simulations of longer time and greater height. The choice

of boundary conditions, however, will continue to present a complex problem and

will be discussed further in the next section. The boundary conditions used do

not correspond to any actual experiment. It is possible to match the boundary

conditions of the rundown experiments but the eventual steady state is one of no

motion. Numerical boundary conditions that are appropriate for oceanic layering

are not obvious.
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8. Discussion and Collected Thoughts

The strong time dependence of the vertical wave number that most strongly

affected the system, as is contained in eqs. (36) and (37), and made plain in eq.

(48), is a distressing result. It does not hurt the basis of the theory but makes it

impossible to determine, from what we have done so far, a vertical length scale.

One must have some idea of the initial noise spectrum to do that if layering occurs

significantly before saturation. After a mode creates chaotic regions it locks-in and

the time scale needed to change the configuration lengthens enormously. Whether

this reflects the reality of the system, that there is a range of possible vertical scales

based on the initial noise spectrum, or whether there is a unique scale associated

with finite amplitude effects, we are as yet unable to say.

A system that has the property that the final configuration has little or no

dependence on the details of the initial conditions is called robust. If a system

is not robust it may be difficult, or impossible, to predict its final state. There

may exist a large number of accesssible steady states, which may or may not be

contiguous in phase space. Examples of this have been found in direct convection

problems. Startin with Chen and Whitehead (1968) and followed by Busse and

Whitehead (1971) it has been shown that by using an initial perturbation to force a

particular planform a stable configuration may be created that would not otherwise

result. Further, if the forced array is not stable the breakdown of the cellular

pattern in favor of a new one can be quite slow. At fairly low Rayleigh numbers

a range of stable rolls is predicted by Busse (1967) for thermal convection and by

Straus (1972) for double-diffusive convection. It seems quite possible that a given

double-diffusive problem may admit multiple stable state with different planforms,
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as thermal convection, and multiple stable vertical structures.

The fact that rolls are unstable to cross-rolls is evidenced the same way

in double-diffustion as in one component convection. Square cells occur in

supercritical regimes that are not sufficiently driven to be chaotic. Fine distinctions

have been made between cross rolls, bimodal convection, and square cells (see

Busse 1981), but they are of little importance here. The result of Schlfiter, Lortz

and Busse (1965) that cross rolls are the strongest instability to limit some rolls

in thermal convection, an unpublished result of ours for direct double-diffusion

leading to the same conclusion, the work of Straus (1972), and work by Busse

(1967) giving the stability regime called the "Busse bubble," are consistent with this.

The highest Rayleigh numbers in thermal convection that still allow stable, time

independent behavior, exhibit a square planform (Busse and Whitehead 1971). In

double-diffusive convection the layering regimes also take this pattern, we believe,

for similar stability considerations. The aspect ratio in double-diffusion is of course

far from one. Whether or not the various instabilites that Busse (1978a) has noted

in his reviow on thermal convection can occur in double-diffusion will be unknown

until more careful observations are made on better controlled experiments.

An interesting set of gedanken experiments results if one looks at various fixed

boundary problems in the steady state. They should help clarify the broad issue

of the stability problem. Take top and bottom boundaries separated by a given

large distance, H. At each of these boundaries we fix the temperature and salinity.

This is a well posed problem that can, at least in principle, have a steady solution.

Any steady solution also has vertically constant mean fluxes. The possibility that

there will be no stable state with stationary horizontal means cannot be dismissed.

Schmitt and Evans (1978) suggest that fingering is an intermittent process in the
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ocean because of effects from internal wave strain. However, though wave strain

can disrupt the laminar cells it can not easily prevent the convective flux. It is

possible that different levels are active at different times but this would require

that the sharp gradient regions migrate. If this is the case a Huppert (1971) type

analysis would show such behavior if realistic flux laws are used. The individual

layers, though, would still have to be stable in to smaller scale instabilities. If no

steady, stable solution exists for the imposed vertical scale, the result must be either

layering, time dependence, or both. Running the gamut between easily analyzed

extreme cases, may serve to illustrate some of the similarities between one and two

component convection.

For constant positive temperature difference, measured from the bottom, there

is only one steady solution, which has constant gradient and is stable. For constant

positive salinity difference, the standard one component convection problems are

returned, depending only on the salt Rayleigh number, Rs, and the salt Schmidt

number, as. As Rs increases from zero, there is eventually a transition from a

purely conductive state to barely supercritical cellular convection state. Further

increase brings aldout greater degeneracy of the the solutions, different cellular

structures, and eventually turbulence. For any given large Rs sufficient for

turbulence, there is a thermal Rayleigh number, RT, great enough to return the

system to a purely conductive state. Just short of that, a full height cellular mode

would be expected. Up to some RT, the entire interior would remain turbulent.

Somewhere in between the last two described states alternating layers appear to

occur.

In double-diffusion there appears to exist a range of Rayleigh numbers, Rs

and RT, for which neither full height cellular or full height turbulent regimes
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are stable. There is nothing, a priori, that precludes a similar situation occuring

for one component convection, but we have no reports vertical wave numbers

greater than the first allowed predominating. Single component convection has

however, provided a recent surprise related to layering. Hele-Shaw convection,

which is extremely constrained horizonally to a vertical slot, does exhibit two time

dependent stacked cells (Frick and Miller 1983). In the range studied these cells

remained laminar; there was no development of a front, just the strong presence of

the first allowed harmonic. The prevention of cells of width comparable to height,

as is usual in one component convection, is clearly forced in this problem leading

to the increased vertical structure. Direct double-diffusive convection has narrow

cells without imposed constraints so there may be a connection, particularly if the

cell Reynolds numbers are supercritical for shear instabilities, discussed below.

The question remains why at ultra-high Rayleigh numbers at which most

double-diffusive experiments are performed is not turbulent convection from top

to bottom observed as in the Bnard problem. This does not have a simple answer.

First it is important to note that the double-diffusive analogy of the B6nard

experiment has never been performed. The numerical experiments presented

here did contain only one vertical cell for the length of time they were run,

which appeared to be sufficient to reach at least a quasi-steady state. It is

considerably more difficult to maintain constant solute concentrations at a boundary

than constant temperatures. The numerically generated solution with an initial

broad noise specturm resulted in a configuration with hydrostatically unstable steep

gradient boundary layers and an, interior not all that dissimilar to the simulation

of Gr6tzbach (1982) on low Prandtl number convection. Low Prandtl number

convection shares double-diffusion's property that diffusion remains important in

140



the interior. However, diffusion is less important when convection is driven from

the boundaries, as in our numerical simulations, than in Linden's (1978) and other

run-down experiments, which are driven from the interior as much as the reservoirs.

In a convective steady state there must be a positive buoyancy flux (negative

density flux) to counteract dissipation. Therefore at the boundaries of the cell

where the vertical velocities vanish the density gradient must be positive, i.e.: in

the unstable sense. It may well be that the numerical simulations accurately reflect

what would happen in the so-far-unperformed steady state salt fingering experiment

with constant temperature and salinity boundaries. Whether or not layers can be a

steady state phenomenon remains a serious unanswered question. So far all of the

laboratory experiments have been of the run-down variety. Lambert and Sturges

(1977) labeled observed layers in the ocean "steady" because they persisted for four

days. However the run-down times of lab experiments which are clearly not truly

steady state stretch into several days even with more vigorous convection, much

smaller water volumes, and smaller vertical extents. Still the time scales of layer

life times are considerably longer than the transport times for a parcel of fluid to

move through the system.

Some possible boundary conditions that are more realistic for the ocean and

the laboratory but difficult to make mathematically precise might avoid the extreme

boundary layers and allow layered convection. An example would be stirred layers

with constant properties and a turbulent velocity spectrum. Numerically this might

be accomplished by specifying boundary property values at the top and bottom

and imposing a turbulent velocity profile within a restricted layer. This however is

assuredly analytically inaccessible. The presence of homogeneous reservoirs at the

ends of the fingers in both laboratory and ocean situations seems strongly tied to
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the lack of development of a single high Rayleigh number type cell. The presence

of a physical boundary at the finger ends that forces the vertical velocity to vanish

totally further requires a strong density inversion. At the softer boundaries that

form internally the velocity need not vanish for all time. Yet, the end of the

of the fingers is qualitatively different than the interior and the internal finger

velocities are much greater than the movement of the internal boundary layers.

A possibility is that the velocities at the end are small and time average to zero.

This would require at least some small time dependence in a neighborhood of the

finger ends. The ends of the fingers do drive what appears as a time dependent

high Rayleigh number cell. However, there is great difficulty in separating- the

tail, the dog, and the wag. The third simulation crystallized this confusion since

it is clear that the convection is driven from the conducting boundaries, yet the

interior gradient region along with the surrounding mixed retions were long lived.

The rapid increase in the accelerations of parcels if the salinity gradient gets very

compressed puts limits on the amplitude of any given long vertical mode.

Layering in the ocean, particularly in the central waters, may be encouraged by

the time dependence of the forcing. In regions driven by heating and evaporation

the forcing has a strong diurnal component, which is sufficiently long for modes

to approach saturation. The layering on two different scales reported by Williams

(1975) we suggest is the result of a combination ot time dependent forcing and

harmonic instabilities. Layering on the scale of meters is caused by a strong positive

buoyance flux at the surface forced by air-sea interactions, Le. surface heating and

evaporation, driving penetrative turbulent convection on time scales faster than

strictly diffusion driven convection. The cells resulting from this process are still

unstable to harmonic instabilities on scales of tens of centimeters.
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The question posed on layering in one and two component convections can also

be inverted a bit. Since greatly supercritical regimes in the B'nard problem also

have unstable harmonics why is layering not observed there? The most important

difference is how the finite amplitude effects of a mode affect the stability of the

fluid. Growth of normal modes does increase the unstable gradient in some regions

of the one component problem. However, growth rates only grow as the inverse of

the scaling time, proportional to B 1/2, and the restiction on the vertical extent of

these regions will not allow faster growing modes. In the double-diffusive case the

growth rate is strongly dependent on the density ratio. So, even regions restricted

vertically can support local instabilities with faster growth rates than the taller

disturbances.

It is interesting that many vertical modes were not sufficient to lead to the

expected profile for turbulent convection in numerical simulation A. In the model of

turbulence put forward by Ruelle and Takens (1971) the interaction of many modes,

all unstable because of the supercriticality of a system and having incommensurate

time constants leads, to turbulence. Whether or not the long time behavior of the

simulation would have proved to be aperiodic, and therefore "turbulent" in some

sense, is not known. However the vertical spatial structure traditionally associated

with turbulent convection appears to require the interaction of many lateral modes.

We have not yet developed an understanding of this process.

Both the experiments of Linden (1978) and our numerical work show that once

a sharp gradient layer has been created it is fairly long lived. Constant reservoirs

above and below gradient regimes with fingers rapidly become like turbulent high

Rayleigh number convection. When the fingers invert the density gradients at their

ends, plumes will travel through the entire reservoir because there is no stabilizing

143



density gradient to slow them down and require fuirther driving from diffusion.

This is consistent with both experiment and simulation. Why the interface migrates

so slowly is not fully understood.

For fingers growing between two homogenous layers the interior velocities

were much greater than the front velocity lengthening the fingers (Linden 1973).

This indicates a nearly closed cell and requires boundary layers to maintain the

fluxes. Coming up with a finite amplitude theory, even at the level of scaling

arguments, that finds this scale separation is an open challenge. On the spatial

scale of finger widths and the boundary layer thickness a steady state appears to be

reached. Typical vertical velocities of 0.5 cm/sec with a width of 0.23cm gives a

finger Reynolds number - 1 for salt-sugar. Glucose-sucrose fingers had typically

w - 0.003 cm/sec and L - 0.006 cm for Re - 2 - 10- 3 (Linden 1973). The lower

of these Reynolds numbers indicate disruption of cells is not likely to be from shear

type instabilites. However,the flow is full of inflection points in the velocity profile.

The critical Reynolds number for a viscous sinusoidal flow is f2 (Green 1974). A

square wave profile is always unstable (Beaumont 1981). The velocity profile in

fingers is probably not exactly sinusoidal, but somewhere between sinusoidal and

square and may have a critical Reynolds number even less than one. However,

it is not know how effective negative density gradients are in stabilizing a flow

above the critical Reynolds number for the pattern. This is a well defined, tractable

problem with available techniques and requires a modification of the Orr-Somerfeld

equation. Whether finite amplitude instabilities at even lower Reynolds numbers

exist, as the result of simple subcritical finite amplitude instabilities or from the

more complex interactions leading to instability as demonstrated by Orszag and

Patera (1983) in bounded shear flows, is an open question. The possibility that
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shear flow instabilities contribute to cellular disruption is definitely worth further

study, in particular since it is long wavelengths that are first unstable (Beaumont

1981) once the critical Reynolds number is exceeded.

The experiments and observations make it clear that direct double-diffusive

convection leads to at least two types of regions with qualitatively different physics.

The configuration could be taken as being made up of alternating layers of laminar

cellular convection and turbulent convection with steep gradients at their common

boundaries. Hence, we have a model composed of two somewhat familiar models,

that have been subject to extensive investigation for one component convection.

The cellular regime is probably in a state not far from the marginal curve, so that

a weakly nonlinear theory can be applied. The turbulent regime probably fluxes

buoyancy downgradient, has statically unstable boundary regions, and a neutral

interior.

Several things appear to belong in such a theory. Even without fixed boundaries

forcing a hydrostatically unstable net density gradient, as in some of the simulations,

an organized convective regime strong enough to invert the density gradient at its

ends is probably needed to drive the turbulent regime. The limitation on the

height of the cellular regime is that in its interior, not counting the boundary layer

gradients, it is unable to support growth of the first harmonic, Le.: the Rayleigh

number of the interior alone is of order 16 R,. Linden's (1973) data show that the

solute gradient becomes so weak as to be unmeasureable accurately in the laminar

interior of heat-sugar fingers. How close the resulting configuration is to marginal

stability can hence not be determined. Limitations on the height of the turbulent

regime are tied to a parcel's ability to move with velocities on a time scale set by the

density inversion at the finger ends rather than the slower diffusive time scale. The
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boundary layers themselves are probably near marginal based on their thinness, as

proposed by Howard (1964) for high Rayleigh number thermal convection. These

conditions are not sufficient to close the problem and give unique length scales.

When restrictions can be made to configurations that match the heat and salt fluxes

in the laminar and turbulent regions that might well close the problem. Fig. 2 in

Schmitt 1979 that shows two density ratios with the same flux ratios for small A at

the fastest growing mode for each A is intruiging in looking at this.

Recently, density inversions have been found at the edges of layers stratified

to allow direct double-diffusiton in the equatorial Pacific Ocean. Worthem and

Ostapoff have found inversions of about 40 -10-6, over about 5cm (E. Mollo-

Christensen, personal communication). The root mean square vertical velocity

vanishing over the thickness of this layer needed to support this is of order

0.5cm/sec. This is more than sufficient to provide oceanic magnitude buoyancy

fluxes with turbulent convection which Schmitt and Evans (1978) estimate of the

order 10-8 cm/sec in areas of the North Atlantic where salt fingers are probable.

In the course of this work it would have been useful to have results on

single mode finite amplitude calculations, somewhat in the spirit of Joyce (1982).

Particularly of interest are saturation amplitudes of different modes as a function

of horizontal and vertical wavenumbers, and density ratio for a given fluid with

solutes. Accompanying information of note is the flux ratio with a comparison to

the growth phase value, and the individual fluxes. As a numerical calculation it is

clearly easier than the ones reported herein, but would require many calculations

to determine the functional dependences. Possibly results could be obtained by

integral methods, at least approximately, as can be found in Chandrasekhar (1961)

for thermal convection. Should such calculations show that the most vigorously
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fluxing modes are not the fundamental then it would be easier to conclude that

layers are a steady state phenomenon and also be possible to suggest a preferred

vertical scale. We do not hazard a prediction on the outcome of such work.

The strong horizontal coherence of the layers is the result of two things.

Harmonics must be standing modes and are hence locked in place. If the initial

conditions then have no broad lateral variation the horizontal translational symmetry

must be basically maintained. The second reason applies to all layered phenomenon.

The equations for convective motion, in particular in vorticity equation form, are

very intolerant of horizontal variations of density. It is essentially horizontal

symmetry breaking which is required in continuum mechanics to allow vertical

motions, though the forcing is vertical. If the forcing requires horizontal divergences

on a scale larger than the finger widths a balance requires vertical flux divergences

to satisfy conservation. Even experiments with extreme horizontal divergences, such

as the experiments by Ruddick and Turner (1979) involving vertical fronts lead to

nearly level layers of cells. The vertical scale in that work is probably not strongly

tied to interactions of harmonics since alternating regimes include both direct and

overstable convections.

Worthem et al. (1983) also take the position that flux divergences lead to

layering. However the fact alone that a mode with vertical structure will have flux

divergences is insufficient for layering to occur. There must be some mechanism

to force coherence of modes. If the finite amplitude modifications of a mode

make it likely that another mode will end up spatially out of phase, layering will

not result. Alternatively as proposed herein, if the modified state leads to more

localized instabilities positioned selectively, layers will develop. Worthem et al.

show an example of this also where internal waves increase shears so that shear
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instabilities will result.

The issue of boundary conditions brings up the problem of the nearly constant

density ratio that is observed in the laboratory. This result may be essentially tied

to the fact that these are run-down experiments. One still has a mathematically well

defined problem if one chooses to fix the fluxes and only one end value. So clearly

one can regulate a system to have a density ratio far from Schmitt's (1979) curve

in his fig. 2 of x for the fastest growing modes as a function of A. However in a

run-down experiment that one observes the fastest growing modes is not surprising.

The weakness of the dependence of x on A for the range of A used in most

experiments explains the lab results. If oceanic fingering is limited by essentially

flux boundary conditions, or more realistically mixed boundary conditions, results

could be markedly different..

Whether or not one chooses to consider harmonic instabilies true secondary

instabilites is probably based more on semantics than physics. The harmonics

growing contemporaneously with the faster growing fundamental are in some sense

also primary instabilities. The high harmonics whose large growth rates depend

on the modification of the mean fields longer wavelength modes could well be

called secondary instabilites, though they are still direct double-diffusive convective

modes. If one started with a base state of a saturated fundamental, not as was done

by the calculations herein, there may be harmonics that are still unstable because

the fundamental was unable to fully stabilize the system. However, these harmonics

are not drawing on the modification of the linear gradient state as their primum

mobile and in fact have smaller growth rates than in the original state. After

fairly long harmonics create regions of reduced density gradient not up against

the boundaries, as the fundamental creates, more rapidly growing harmonics can
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occur. We consider modes that have greater growth rates after the modification

of the mean field than they did initially, though this rapid growth is localized, to

be sceondary instabilities in the spirit of the term. It is these modes that finally

disrupt the laminar cellular motions.
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9. Summary and Conclusions

A new mechanism for layer formation in direct double-diffusive convection

has been proposed. This theory is labeled harmonic instability theory because

higher harmonics of the fastest growing convective mode, still themselves convective

modes, are shown to be able to disrupt the system. The vertical flux convergences

and divergences of these harmonics create layers with density ratio reduced from

the mean and even sometimes creating density inversions. These regions of reduced

density ratio are unstable to additional small scale convective instabilities with larger

growth rates than the primary instabilities.

The differences in the growth rates of the fastest growing fundamental and its

first several harmonics are negligible in greatly supercritical systems. The mode

that is most rapidly changing the mean field can have a vertical wavenumber

significantly greater than the fundamental. However, which mode has affected the

mean fierd the most at any given time is highly time dependent. Conceivably

then, the resulting layer scale is strongly dependent on the initial noise spectrum..

The model is, therefore, explicative but not predictive, which is disappointing.

This system is an interesting demonstration of the fastest growing mode not being

preferred because smaller slightly slower growing modes can condition a disruption

of it. The only other theory of layering, the collective instability, has been shown

to have problems in its fit with available data, mathematical procedures, and the

basic physics. It does not appear to be able to provide an appropriate disruption

for layer formation.

We conclude that the vertical structure in double-diffusion is the result of

interactions of only convective modes as is the case with one component convection.
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Several differences between the dispersion relations of one and two component

convection lead to qualitatively different configuations. Harmonics in single

convection do create regions with stronger gradients, but the more restricted vertical

extent does not allow markedly faster growing modes; however, double-diffusive

convection by only slightly changing the mean fields can significantly alter the

density ratio allowing much faster growing modes. Higher modes in the one

component system are fully disruptive of the lateral structure because the strongest

horizontal scales rapidly decrease with the decrease of the vertical scales, giving

the characteristic chaotic high Rayleigh number cell. Salt finger harmonics have

wavelengths similar to the taller disturbances so the cellular pattern is only broken

in the thin layers where the secondary instabilities based on low density ratio take

over and create restricted turbulent convection regions. Once this configuration has

developed, with the gradients concentrated into very thin layers and laminar cell

alternating with less organized transports, we believe that there is not much that

can disrupt it; ie.: no other instabilities have significant growth rates. That is not

to say that the system is globally stable with respect to the boundary conditions.

However, the system may be locally stable or any remaining instabilities have

negligible growth.

The expense of running a straight forward numerical model with sufficient

height to allow layering, with a small enough grid to capture motion of plumes

and bulbs, over sufficiently long time for layers to develop, is still prohibitive. A

more sophisticated code using different grid sizes for the salt, heat, and vorticity

fields along with a dynamically determined grid sized to resolve internal fronts

but remaining coarse elsewhere could possibly bring computation costs down to

a manageable level. Dynamically altering the time step would be fairly easy way
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to increase efficiency. The basic numerical techniques to do this already exist but

would still require significant labor to apply them to double-diffusion. It is also

possible that a stirred layer numerical boundary region might give greatly different

results than the fixed property boundaries used here. A numerical experiment up

to a steady state with such a configuration might prove interesting.

Several important problems remain outstanding, the most conspicuous of which

is a determination of whether or not a series of layers can remain as a steady state.

This remains unsolved on all of experimental, theoretical and numerical levels. It

seems likely that at least two laminar finger regions would exist each associated

with a boundary, as resulted in Linden's (1978) experiments. However once a

layer has formed its lifetime is of the order of the time it takes the fingers to

equilibrate the turbulent resevoirs on each side of it. In both the lab and ocean

this can be several days or more. To develop a full understanding of the problem

a manageable approach might be to separately model the laminar and turbulent

regimes and then piece them together with an approach akin to Huppert (1971).

The possibility of instabilities that are not essentially convective should still

be considered. Though shear flow instabilities may not provide the initial impetus

for layering they may provide an upper bound for layer heights when the finger

Reynolds number is supercritical for an appropriate viscous periodic shear flow.

Both the numerical simulations performed in the course of this work and some

observations imply Reynolds numbers that are close to critical or even exceed it so

such an investigation is worthwhile.

Though there is reason to believe from our numerical studies that single mode

(laterally) calculations would not accurately depict the full vertical structure of
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salt fingers, they would still provide a first order estimate of mode amplitudes at

saturation. Amplitude estimates are of particular importance for oceanographic

modes requiring heat and salt fluxes. A related problem of interest is the transport

of "passive" tracers. Ocean constituents that occur in insufficient quantity to

noticably affect the equation of state, and hence drive any motion, still have

increased fluxes because of the presence of double-diffusion. The transport of such

constituents suffers from the interesting paradox that lower molecular diffusivities

lead to greater fluxes. Since the transport of passive chemical species are used

for diagnosing the general circulation as well as determining nutrient availability

for biological processes and constituent availability in chemical reaction, and since

double-diffusive may be the chief mixing process in large regions of the oceans,

this is a problem of major oceanographic importance.

Finally, we note that the work here somewhat unifies the theories applied to

double-diffusive convection with the more studied problem of single component

convection. We propose.that the resulting configurations of alternating layers in

highly supercritical states of direct double-diffusive convection are the result of

the interactions of many convective instabilities over a range of vertical scales and

not instabilities of another nature. This is consonant with the generally accepted

belief that the planforms and vertical structures in thermal convection stem from

nonlinear interactions of multiple convecting modes.
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