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ABSTRACT

Migration kinetics of antiphase boundaries (APBs) in the B2 and D03
ordered phases of the Fe-Al system, with the alloy compositions of 24-
26 percent of aluminum, have been investigated experimentally. Theoreti-
cal efforts to model the structures of the APBs have also been made using
an improved Bragg-Williams model.

In the experimental part of the study, the focus was on the direct
relationship between the instantaneous local curvature and the instan-
taneous velocity of the moving APBs. Although this relationship is the
basis of the kinetics of the migration of APBs and of domain coarsening,
there have been no experimental studies to establish this relationship
because of the difficulties involved in measuring the local curvatures.
New experimental techniques, employing in-situ hot-stage transmission
electron microscopy, have been developed to directly address this pro-
blem, and the mobility of the migrating APBs, which is the propor-
tionality constant relating the velocity to the local curvature, has been
successfully determined for the first time using these techniques.

Three orders of magnitude change in kinetics could be covered in our
experiments. The mobility of the APs in the Fe-26%Al alloy is ranging
from 4.8x10 19 m2/s at 745K to 4.7x10 m2/s at 800K fr the APBs in the
DO3 phase, and from 1.7x10- m2/s at 838K to 1.5x10 m /s at 910K for
the APBs in the B2 phase. From the temperature dependency of M, the
activation energies of the APB migration in both B2 and DO03 phases have
been calculated to be about 2x10 5 J/mol which are very similar to the
activation energy of the interdiffusion in the disordered A2 phase of the
Fe-Al system. From the comparison of the results of these in-situ ex-
periments with the results of conventional bulk coarsening experiments,
it is concluded that the mobility M determined from in-situ experiments
is truly intrinsic.



An improved description of the free energy of Fe-Al solid solution
has been achieved using a Bragg-Williams model with pairwise interactions
to third neighbors, and using composition-dependent interaction energies
calculated from the experimental phase diagram. Gradient energy coeffi-
cients for order parameters and the composition in the Fe-Al system have
been derived using the improved Bragg-Williams model, giving positive
values for the order parameters and negative values for the composition,
which are consistent with the known fact that the Fe-Al system tends to
order.

Due to the negative value of the gradient energy coefficient for the
composition, it was not possible to use continuum diffuse interface
theory to calculate the solute drag force on APB migration, which would
be present if there were composition variations at the APBs. Assuming no
composition variation at APBs, the order parameter profiles and the
energies of APBs in the Fe-Al ordered alloys have been calculated ap-
proximately using continuum diffuse interface theory. Calculated results
are comparable to those obtained in previous work and show good agreement
with expected trends resulting from changes of temperature and composi-
tion.

Thesis supervisor: Dr. Samuel M. Allen
Title: Associate Professor of Physical Metallurgy
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CHAPTER 1

INTRODUCTION

Interfacial surfaces in solids, such as grain boundaries, interphase

boundaries, and antiphase boundaries, migrate to reduce their area, and

hence the total excess free energy associated with the boundaries. A

number of driving forces can cause the migration, such as capillarity,

stress, or the free energy change from a phase transformation. To under-

stand the migration kinetics of interfaces, it is necessary to know the

relationship between the rate of migration and the driving force.

Depending on the extent of atomic rearrangement occurring as the

interface migrates, interfacial migration can be categorized into two

groups. In some interfaces, such as grain boundaries in pure metals,

martensitic phase boundaries, and twin boundaries, only a structural

change involving atomic movements over the distance of the order of an

atomic spacing is required for migration. Migration of the martensitic

phase boundaries and twin boundaries are athermal migration whereas the

grain boundary migration is a thermal process. On the other hand, long-

range diffusion is required for the growth of precipitates from super-

saturated solid solution and the migration of interfaces with segrega-

tion. The interfacial velocity-driving force relationships and mobili-

ties for both types of migration have been the subject of many studies,

especially in grain boundaries. The relatively simple structure of

antiphase boundaries (APB) has made theoretical modelling of these boun-

daries feasible and there have been some studies on the migration kine-

tics of antiphase boundaries in ordered alloys.



Several velocity-driving force relationships have been proposed for

different types of migration. But most of the existing experimental

techniques are not adequate for direct experimental determination of

these relationships. In this study, new experimental techniques are

developed for studying the migration kinetics of antiphase boundaries in

Fe-Al ordered alloys such that the velocity-driving force relationship

can be directly studied. A theoretical effort to model the APB structure

has also been made.

In this chapter, previous work on migration kinetics of interfaces in

general, and antiphase boundaries in particular, are reviewed.



1.1 Migration Kinetics of Interfaces

There have been many studies on the migration kinetics of interfaces

both with and without segregation [1-4]. Most of these works are on

grain boundaries, which is reviewed in this section.

A widely-used phenomenological theory of interfacial motion [1,2]

states that interfacial velocity V is proportional to the thermodynamic

driving force, the proportionality constant being a positive quantity

called mobility. The driving force is the product of the mean of the

local curvature (K1 + K2) of the boundary and its excess free energy per

unit area a, leading to the relationship

V = Aa(K1 + K2) (1-1)

where p is the mobility which in some theories is inversely proportional

to interface thickness [2].

Equation (1-1) is certainly valid for the coarsening of a soap froth,

due to gas transpiration through curved soap films because of pressure

differences. This equation has generally been invoked in models of grain

growth [5] and antiphase domain coarsening [6,7]. But generally in

applications of Equation (1-1) to experimental situations, a has been

considered a constant. Thus the validity of Equation (1-1) for the

system where a changes with composition, temperature and/or local curva-

ture is doubtful.

A more general velocity equation relating the interfacial mobility 4

and the driving force Pd has been suggested by Rath and Hu [8] and is

given by:

V = A(Pd)n (1-2)

For unsegregated boundaries a value of n=1 is usually obtained from ex-



perimental studies.

Excess concentrations of alloy components or impurity species at

interfaces may have significant effects on interfacial migration kine-

tics, interfacial shape stability, and macroscopic material properties.

The effect of adsorption on the migration kinetics of a planar interface

have been treated in the "solute-drag" theory [9,10] which models the

diffusion of solute species whose profile of interaction energy with the

interfaces is known. Cahn [10] estimated the impurity drag in two limit-

ing cases of low velocity and high velocity extremes. In the low velo-

city regime where the impurity drag force is much greater than the in-

trinsic drag force, the velocity is proportional to driving force at

constant composition, and is given by:

V = 1+ (1-3)
(I + ac)

Where ti is the intrinsic mobility (mobility of the unsegregated boun-

dary) and a is given by:

Ssinh 2 E(x)

= 4Nv kB T 2kBT dx (1-4)
J D(x)

Where E(x) and D(x) are the interaction energy between impurities and the

grain boundary, and the diffusion coefficient of impurities respectively

as functions of distance. For capillarity-driven boundaries where the

impurity drag force is much greater than the intrinsic drag force, the

velocity in the low velocity extreme can be written as:

V = Ao(K1 + K2) (1-5)



where k NvkBTec  (1-6)

At the high velocity/high driving force extreme, the velocity is given

by:

V = AiPd - (1-7)

where Nv , 2
r kBv D(x) d)2 dx (1-8)

At sufficiently high driving forces, the velocity equation is similar

to the expression for intrinsic migration, Equation (1-2) with n=1. In

this case, the boundary effectively breaks away from impurity segregation

and the migration kinetics become similar to that of an unsegregated

boundary. In between the low and high velocity extremes, a transition

region was identified. The solution in this region indicates the velo-

city may be unstable and migration at both low and high velocity extremes

is possible.

Hillert and Sundman [11] studied solute drag applying an energy dis-

sipation theorem and generalized the solute drag theory in order to treat

phase interfaces as well as grain boundaries. In both studies of solute

drag effects [10,11], an exact profile of impurity concentration is

needed to calculate the parameters describing the impurity drag phe-

nomena. But there have been no theoretical calculations of impurity

profiles in the grain boundary regions. Krzanowski and Allen [12] calcu-

lated the composition profiles in antiphase boundaries (APBs) in Fe-rich

Fe-Al alloys in order to study the effects of composition changes at

APBs on migration kinetics.



Despite the lack of specific theoretical calculations of solute pro-

files, the basic results of the impurity drag theory have been experimen-

tally observed. The results of Rutter and Aust [13] on the effects of

silver, gold, and tin in lead are explained by impurity drag theory [10].

The existence of both high and low velocity extremes was experimentally

demonstrated by Frois and Ditrimov [14] in studying the effect of mag-

nesium impurity in aluminum recrystallization, by Sun and Bauer [15] in

studying the migration of [100] tilt boundaries in NaCl bicrystals, and

by Glaeser et al. [16] in studying the grain boundary migration in doped

and undoped alkali halides. By applying impurity drag theory,

Krzanowski and Allen [21,22] explained the observed transition from high

velocity extreme to low velocity extreme in the domain coarsening of the

APBs in the Fe-Al alloys.



1.2 Migration Kinetics of Antiphase Boundaries (APBs)

Antiphase boundaries (APBs) in ordered phases are structurally sim-

pler than grain boundaries, and consequently, are easier to model theor-

etically. Equilibrium structures of APBs (structure is taken here to

mean variations in order parameter) can be obtained by application of

diffuse interface theory [17]. For a planar APB at equilibrium, the

order parameter profile can be computed by solving the differential

equation

dn (1-9)dx K (-9)

where n is the long-range order parameter and Af is the free energy dif-

ference between the free energy in the interfacial region and the free

energy of the equilibrium state with order parameter 7e. A schematic

diagram of f, the free energy per unit volume of a homogeneous phase, as

a function of long-range order parameter n is shown in Figure (1-1). f

is an even function of long-range order parameter n when ordering occurs

as a higher-order phase transition. K, is the gradient energy coeffi-

cient for ordering introduced to describe the free energy of an inhomo-

geneously ordered system. A typical APB profile is shown in Figure (1-

2). Equation (1-9) can be solved for known Af when there is no variation

in composition near APB, and the excess free energy per unit area a of a

planar APB can be expressed by:

+re

a = 2(K Af) dn (1-10)
-7e

For a coherent interface in an unstrained cubic lattice, a is shown to be

isotropic for diffuse interfaces [17]. An expression for the antiphase

21
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Figure (1-1) The free energy per unit volume, f. f is an even
function of long-range order parameter n when order-
ing occurs as a higher-order transition. Below the
critical temperature, f has minima at ±ne. Af is the
increase in f when 7 differs from ne. From reference
[18]
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thickness 67 over which ar//ax differs appreciably from zero is easily

developed from Equation (1-9), given by:

K
6 = 2el(Af)m ] (1-11)

e )max

where (Af)max is the local maximum value of Af which occurs at r = 0.

Allen and Cahn [18] studied the migration of APBs in ordered alloys

which are formed by higher-order phase transformations. Considering the

kinetics of ordering where the long-range order parameter n is not a con-

served quantity, along with the free energy of a diffuse interface, the

velocity expression for APBs was given by:

V = M(K1 + K2) (1-12)

where M, the mobility, is a kinetic term with units of a diffusion coef-

ficient and is defined as:

M = 2aKy (1-13)

where a is a positive kinetic coefficient and K/ is a positive gradient

energy coefficient for ordering. In deriving Equation (1-12) no varia-

tion of composition near the APB was considered, and this equation is

valid for the intrinsic migration of APBs. The significant difference

between Equation (1-12) and the results of previous theories is that in

Equation (1-12) the velocity is not proportional to the driving force,

which would involve the interfacial free energy. Nonetheless, the dis-

sipation of free energy by an APB migrating according to Equation (1-12)

was shown to be correctly given in the form of:

a = odS (1-14)
at dt

which indicates that the rate of free energy decrease of the system is



equal to the rate of surface area decrease times a.

Migration of APBs which were wetted by a second disordered phase of a

different composition was studied by Krzanowski and Allen [19] in the Fe-

Al system. The second phase layer wetting the APB was approximately 20nm

thick and a model of the migration kinetics could be developed by con-

sidering the rate of diffusion through the layer. Modelling this layer

as a spherical shell, a velocity expression was developed, and was given

by:

2D a(K1+ K2)SFc (ca).(c a _ cF) 2 . 6

cc

where

6 was

(1-15)

0 = interdiffusion coefficient

a = interfacial free energy of one Interphase Boundary (IPB)
between a layer and FeAl phase

F (c) = the second derivative of F, the bulk free energy,
evaluated at ca

ca = atomic fraction of iron in the a phase at a planar IPB

cF = atomic fraction of iron in the FeAl phase at a planar IPB

6 = thickness of the a layer

time dependent and given by:

dS- 4rw (1-16)
dt

(ca- cF) R 2

where rw = U/[Fc (c (c a - F)] and R is the average radius of the

spherical shell. However, the volume fraction of the a phase was shown

in the theory to be correctly given as independent of time.

Comparison of Equation (1-12) and Equation (1-15) shows interesting

effects of the variation in composition near the APB: when segregation



was absent, the velocity was not linearly related to the driving force,

while the presence of the wetting layer did result in a linear velocity-

driving force relationship. In addition, it was noted that the presence

of the wetting a layer markedly slowed the migration kinetics and also

introduced shape instabilities into the morphology.

It was stated [19] that the common phenomenon of interfacial segrega-

tion refers to a film at the interface which is at most several mono-

layers thick, and the theory of wetted APBs may not be directly appli-

cable to this type of interface. However the transition from wetted APBs

in the a + FeAl region to nonwetted APBs in the FeAl phase involves a

segregation phenomenon similar to the more common type.

Krzanowski and Allen [20,21] studied the possibility of adsorption of

Fe atoms to the APBs in single phase FeAl-ordered alloys and its effects

on migration kinetics of APBs. By applying diffuse interface theory [17]

and a simple thermodynamic model of the Fe-Al system, composition and

order parameter profiles about APBs in the single phase FeAl region which

resulted in the lowest interfacial energy were calculated for different

temperatures and alloy compositions. It was found that adsorption of Fe

atoms on APBs reduces the interfacial energy. Solute drag theory of

Hillert and Sundman [11] was applied to study migration kinetics of this

type of APB. There are two types of drag force. An extrinsic drag force

arises from the presence of segregated solute, and an intrinsic drag

force arises from the irreversible change in order parameter and is

linear to interface velocity. For the low velocity extreme, where the

extrinsic drag force is much larger than the intrinsic drag, the velocity

equation was given by:



Do(K 1+ K2)V = NkBTalc (1-17)

or

V = #A(K1 + K2) (1-18)

where D (1-19)

NkBTal6c

al is a drag coefficient which was calculated theoretically and Sc is the

thickness of the interfacial region where substantial segregation occurs.

In a subsequent experimental study of antiphase domain coarsening in Fe-

24%* and Fe-25%Al alloys in the FeAl phase near the a + FeAl two phase

boundary [22], Krzanowski and Allen provided some experimental verifica-

tion of reduced kinetics hypothetically due to segregation of Fe atoms

around APB. Coarsening of fine initial antiphase domains occurred rapidly

in the early stage, and Equation (1-12) was applicable because the high

curvatures of fine APBs were enough to "break away" from any possible

solute drag force. As domains coarsened, transition from intrinsic

migration to extrinsic migration was detected due to the reducing curva-

tures of the coarsening APBs. This reduced kinetics at the low velocity,

low curvature regime was explained by applying Equation (1-18).

Although their derivation of solute drag effects on APBs in Fe-Al

alloys was very rigorous and thorough, the results of the aforementioned

study by Krzanowski and Allen [21,22] cannot be readily applicable over

the wide range of composition and temperature in Fe-Al alloys. The

thermodynamic model they used was successful in giving a reasonable match

to the experimental phase diagram only near the phase boundary between

* all subsequent composition is in atomic percent.
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the FeAl single phase and the a + FeAl two-phase region. Furthermore,

the validity of the diffuse interface theory [17] in studying composi-

tion variation at APBs in Fe-Al system is in doubt. Positive values for

gradient energy coefficients were assumed in the development of the

diffuse interface theory [17]. But the thermodynamic model calculation

in the Fe-Al system gives negative values for compositional gradient

energy coefficients. This will be discussed in detail in the following

chapter.

Currently, there is no experimental study revealing any compositional

variation or impurity segregation at APBs in Fe-Al alloys. The largest

compositional variation predicted in [21] is about 1% over the range of 2

nm, and there is yet no experimental tool to detect this type of composi-

tional variation.

In this study we attempted to study migration kinetics of APBs in the

Fe-Al system more directly, in terms of the velocity/curvature relation-

ship, than conventional domain coarsening experiments which gives the

change of average domain size with time. This approach has the poten-

tial of detecting the transition from intrinsic migration to extrinsic

migration if there is any solute segregation effect on APB migration. An

effort to improve the thermodynamic model of Fe-Al alloys was also made.



1.3 Description of Present Efforts

In describing the present efforts, shortcomings of previous works (in

studying migration kinetics of APBs) will be mentioned first, and at-

tempts to improve those problems will be briefly described.

1.3.1 Shortcomings of Domain Coarsening Experiments.

As briefly mentioned in the previous section, most experiments on

migration kinetics of interfaces were in the form of the observation of

interface coarsening in the bulk material containing three dimensional

interfaces. Thermal APBs (in contrast to the APBs formed by dislocation

movements) in Fe-Al alloys have a multiply-connected "Swiss cheese" mor-

phology [23] in which the principal curvatures are generally of opposite

sign. This makes it impossible to measure mean principal curvatures of

APB from two dimensional observation. Also the measurement of the in-

stantaneous velocity of a point on a moving interface is not possible

without dynamic in-situ observation of the moving interface. Because of

these difficulties in measuring instantaneous velocities and instan-

taneous principal curvatures, direct experimental testing of Equation (1-

12) or Equation (1-18) is impossible in domain coarsening experiments in

the bulk specimen.

A domain coarsening equation which relates the averages of curvature

to velocity was developed [18] from equation (1-12). Assuming that the

general morphological features remain unchanged during coarsening, the

equation was given by:

[Sv (t)]-2 - [Sv(0)]-2 = 2MYt (1-20)



where Sv(t) and Sv(O) are surface area per unit volume at time t and at

t=O respectively, and 0 is a morphological constant introduced by a

scaling assumption, and is given by:

Km2 = 0 Sv2  (1-21)

where Km2 is the averaged square mean curvature defined by:

Km2 = <(Kl+ K2)> = I (Kl+ K2 dS (1-22)

Here, S is the total surface area of the specimen. We can derive a

similar domain coarsening equation out of Equation (1-18) in the form of:

[Sv(t)]- [S v(0)]-2= 2g1uot (1-23)

The best we can do with domain coarsening experiments using Equation

(1-20) or Equation (1-23) is to get the combined value of MO or aco for

various temperatures and average domain sizes. (The mean linear intercept

domain size 0 is given by 0 = 2/Sv). Because of the aforementioned

complexity of the APB morphology, 4 values have not been determined

theoretically or experimentally. Thus we can not get the intrinsic

mobility M or the extrinsic mobility pa directly, even though we can

study the changes of the combined values of MO or a#o as the average

domain size changes.



1.3.2 Problems of Previous Theoretical Efforts

A good test of the validity of a thermodynamic model of an alloy

system is provided by calculating a phase diagram based on that model and

comparing it with the existing experimental phase diagram of the alloy

system. The thermodynamic model used in studying APB structures in Fe-Al

system was not able to give a good match between calculated and experi-

mental phase diagrams over wide ranges of composition and temperature

[20]. This resulted from the use of a simplified Bragg-Williams approxi-

mation [24] in computing the free energy of the system. The range of

interaction was limited only up to the second nearest neighbors, and the

pair-wise interaction energies were assumed to be independent of composi-

tion. The Bragg-Williams approximation was used because of its advantage

in the bond counting scheme in studying inhomogeneously ordered alloys

and its ability to give simple analytical expressions for the free energy

of the system.

The application of diffuse interface theory to study the profiles of

order parameter and composition at APBs in previous studies [20,21] is in

question, because the gradient energy coefficient of composition in Fe-Al

system has turned out to have a negative value in our current study.



1.3.3 Present Efforts

New experimental techniques employing in-situ hot-stage transmission

electron microscopy were developed in order to study the direct relation-

ship between the local instantaneous curvature and the velocity of moving

APBs. Using in-situ hot-stage TEM, we have succeeded in observing APB

migration as it occurs, and due to the two-dimensionality of the thin

foil samples, measurements of the local curvatures of moving APBs were

possible. Two experimental techniques which can determine the mobilities

of APBs will be described in the later chapter on experiments.

Efforts to improve the thermodynamic model of the Fe-Al system while

maintaining the advantage of the bond counting method of the Bragg-Wil-

liams approximation were also made. This was achieved by considering the

interaction of up to third nearest neighbor atoms with composition-depen-

dent interaction energies calculated from the experimental phase diagram.

Calculation of gradient energy coefficients from this model gives

positive values for order parameter and negative values for composition.

Application of the diffuse interface theory in the form as originally

developed by Cahn and Hilliard in studying the profile of composition at

APBs is not valid because of the basic assumption of positive gradient

energy coefficients in the development of continuum description of the

diffuse interface theory [17]. But the energies and order parameter

profiles of APBs with no composition variation can be successfully calcu-

lated from the continuum version of the diffuse interface theory.

In order to calculate possible compositional variations at APBs, a

discrete lattice formulation similar to the one used by Cook et al. [25]

should be developed, but it turned out to be a major task by itself, and



it will be left out for a future project in our current study.

In the following chapter, efforts of thermodynamic modelling of the

Fe-Al system will be described in detail, followed by a chapter which

explains the experimental details of our study.



CHAPTER 2

THERMODYNAMIC MODEL FOR THE Fe-Al SYSTEM

Since the ordered phases FeAl (which has B2 structure) and Fe3Al (DO3

structure) were first discovered in Fe-rich Fe-Al alloys by Bradley and

Jay [26], much effort has been put into understanding order-disorder

transformations in general and the transitions in iron-aluminum alloys in

particular. Various phase diagrams of the Fe-Al binary system have been

proposed through experimental studies employing X-ray [27-32], electrical

resistivity [33], Mbssbauer spectroscopy [34-36] and direct TEM [37,38]

observations as well as theoretical calculations using various statisti-

cal mechanics approaches [39-43]. Semenovskaya [44] applied

Khachaturyan's concentration wave approach [45,46] of considering the

interatomic long-range interactions in the statistical theory of solid

solutions to calculate the Fe-Al phase diagram using data obtained from

X-ray diffuse scattering experiments.

The currently accepted experimental phase diagram of Fe-rich portion

of the Fe-Al binary system has been clarified by Allen and Cahn [47] who

distinguished between coherent and incoherent equilibrium phase diagrams

of Swann et al. [37,38] and Okamota et al. [36], respectively. The

coherent phase diagram, Figure (2-1), displays some remarkable features:

it has two atomic ordered phases, FeAl(B2,Pm3m) which has the CsCl struc-

ture and Fe3Al(DO3 ,Fm3m) which has the BiF 3 structure, and one magnetic

ordering transition from paramagnetic to ferromagnetic states. The

transitions ap(paramagnetic disordered bcc solid solution) * FeAlp (para-

magnetic B2) and FeAlp - Fe3Alp(paramagnetic DO3) are higher-order tran-
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sitions (sometimes called X-transitions), and the line of higher-order

transitions for ap - FeAlp ends at a bicritical point located at the

intersection of the structural and magnetic ordering transitions located

at about 900K and 23 atomic percent of Al. Below the bicritical point a

miscibility gap exists where aF and FeAlp phases coexist, and the transi-

tion is first-order.

Up to now, quantitative agreements between the experimental phase

diagram of Figure (2-1) and calculated phase diagrams [39-43] have been

poor. Though new approaches like computer simulation techniques and

first-principles calculations look promising in calculating phase dia-

grams [48], the simple model of Bragg and Williams [24] has two main

advantages in studying APB structures: first, the bond counting method of

Bragg-Williams model lends itself nicely to computing the internal energy

of inhomogeneously ordered alloys: and second, the analytical expressions

for the free energy are possible in comparison with less direct methods

such as Monte Carlo simulations. Before interfaces can be modelled, a

good thermodynamic description of bulk phases is necessary, and the

agreement of calculated phase diagram with the experimentally determined

phase diagram is a good indication of the validity of the thermodynamic

model of a bulk phase.

Krzanowski [20] used the Bragg-Williams model considering up to the

second nearest neighbor interactions with composition-independent inter-

action energies in studying the APB profiles and migration kinetics in

FeAl(B2) phase in Fe-24%Al and Fe-25%Al alloys. He calculated only a

portion of the Fe-Al phase diagram near the bicritical point and the

agreement with the experimental phase diagram was poor except at the



aF+FeAl - FeAl phase boundary which was the main concern in his work.

In the current study, an effort has been made to improve the agree-

ment between the calculated phase diagram from a thermodynamic model and

the experimental phase diagram, while retaining the advantage of the bond

counting method which is essential for getting the gradient energy coef-

ficients needed to study APB structure and behavior.

Khachaturyan's theory [45,46] used in Semenovskaya's work [44] is

very powerful because even in the long-range interaction model all the

thermodynamic functions can be evaluated in the self-consistent field

approximation if we know only a few energy parameters. These parameters

V(is) are the Fourier transformations of real space pair-interaction

energies, v(r), and are expressed as:

V(is) = 2 v( )exp(-is* ') (2-1)r

where s is a reciprocal lattice vector and v(r) is defined by:

v(*) = EAA BB -2EAB (2-2)
r r r

EAA, EBB, EAB are bonding energies of A-A, B-B, and A-B bond of distance

r, respectively in A-B binary alloys. The sum in Equation (2-1) is taken

over all crystal lattice sites r. Thus, V(ks) contains all the inter-

action energies associated with the different distances between atoms.

In the Fe-Al system, the three energy parameters V(O), V(O1), V(R2)

completely determine the thermodynamics, where kl = 2n(a1+ a2 + a3), k2 =

(al+ a2 + a3) and k = 0 are the (111) (444) and (000) reciprocal lattice

points of the bcc solid solution respectively. al , a2 , a3  are the

vectors of the reciprocal lattice in [100], [010], [001] directions.

Semenovskaya [44] experimentally determined these V(is) values from



X-ray diffuse scattering and calculated a Fe-Al phase diagram using

theses values. But the later interpretation of X-Ray diffuse scattering

data to get V(is) values [49-51] leaves doubts about the accuracy of

the V( s) values she used to calculate the phase diagram in reference

[44].

We worked along the reverse direction of Semenovskaya's approach,

starting with the well established experimental phase diagram of

Fe-Al [38,47] to get the energy parameters V(is) which can produce the

phase diagram giving the best fit to the experimental one. From these

V(i~s) values which are composition dependent, interaction energies up to

third nearest neighbors can be calculated, and with these interaction

energies, gradient energy coefficients are calculated using the bond

counting scheme of the Bragg-Williams model considering up to third

nearest neighbor interactions.



2.1 Calculation of V(is ) from the Experimental Phase Diagram.

In our experimental work, our main concern was the kinetics of APB

migration in FeAl(B2) phase and Fe3Al(DO3) phase at elevated temperatures

(T>740K) where the system is paramagnetic. Subsequent treatment of the

thermodynamics in this chapter will be valid only in the paramagnetic

region of the equilibrium phase diagram because a magnetic ordering

contribution to the free energy was not included.

The free energy of the homogeneous system of the Fe3AI(D03) ordered

Fe-Al binary alloy can be expressed [44] as:

AF = [V(O) c (c-1) + V(11)2 +2 2

NkBT

+ 2 [(c-nl)ln(c-?l) + (1-c+nl)ln(1-c+l)]

NkBT

+ 4 [(c+l+72)ln(c+7+l 2) + (1-c-gi-l2)1n(1-c-ni-n)]

+ (c+l7-2)ln(c+nl- 2) + (I-c-1+"2)1n(1-c-ni+2)]

(2-3)

c is the atomic fraction of Al atoms, N is the total number of lattice

sites per unit volume, T is the absolute temperature and KB is Boltzman-

n's constant and i1 and n2 are long-range order parameters of Fe3A1

structures defined as :

71 2= 2 ca)/ 2 (2-4)

0'- cP
2 c2 (2-5)

where ca, c1, are the atomic fraction of Al at a, 8, y sublattice



sites respectively as shown in Figure (2-2). In this sublattice designa-

tion, the site ratio of a, P, f is 2:1:1. ca, co, cl can be expressed as

functions of c, 71, and 72 as:

ca= c-171  (2-6)

cP= c+n1-'72 (2-7)

cT= c+71+72  (2-8)

Higher-order transition lines of ap-FeAlp and FeAlp-Fe 3Alp in the Fe-

Al phase diagram in Figure (2-1) are the loci where equilibrium order

parameters 171e and 72e become zero respectively. Equilibrium order para-

meters 7 1e and 72e can be determined from the conditions aF/a8 1 = 0 and

aF/a72 = 0. These conditions can be reduced to a set of two transcenden-

tal equations as:

2 (c+l) 2(1-c+l) 2exp(!- T V(il)) - (c-1) 2(1-c-)1 (2-9)

n2 (c4n, kcT (2-9)

(1-c+7l) exp( V(~1)) - (c-71)

(c+71 -2)(1-c- - 1) 272
ln 71- V( 2) (2-10)

(c+ I n2)(1-c- 1+ 2) kBT

A non-zero value for 72e is only possible when 171e has a non-zero value

because 72e describes the order of Fe3Al(D03) which can be formed only

after FeAl(B2) order with 71e is formed. If the energy parameters V(1)

and V( 2) are known, the equilibrium order parameters 'ile and 72e can be

found from Equations (2-9) and (2-10) for a given temperature and com-

position. On the other hand, if we know the loci of critical tempera-

tures Tcr(ap-FeAlp) where 71e becomes zero, and Tcr(FeAlp*Fe3Alp) where
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n2e becomes zero with non-zero 91e, we can calculate the energy para-

meters V( 1) and V(i2). The loci of Tcr(ap+FeAlp) is the phase boun-

daries between ap and FeAlp in the phase diagram where the condition

a2F/a12 = 0 is satisfied [52]. This condition gives:

Tcr(ap FeAlp) kB c(c-1) (2-11)

Thus V(~1 ) can be calculated from

kBTcr(a *FeAl P)
V() = c(c-) (2-12)

An analytical solution for V(k2) is not possible, but we can solve Equa-

tion (2-9) at Tcr(FeAlp-Fe3Alp) and n2e = 0 for 71e. Then Equation (2-10)

can be solved for V(i 2 ).

Tcr(apFeAlp) and Tcr(FeAl-Fe3Al) were fit numerically to parabolic

curves using the existing phase diagram data from reference [38]. The

experimental data points used and the fitted parabolas are presented in

Figure (2-3). The resultant parabolic equations are given by:

Tcr(ap FeAlp) = -2.366x10 4c2 + 1.835x10 4(1-c) - 2.076x10 3  (2-13)

Tcr(FeAlpFe3Alp) = -3.670x10 4c2 + 1.934x10 4(1-c) - 1.725x10 3  (2-14)

Calculated values of V( 1) and V( 2) are plotted in Figure (2-4) as

functions of composition. V( 1) varies substantially with composition

from -5042kB at c = 0.23 to -6368kB at c = 0.35. V(i2) remains virtually

constant in the composition range of c = 0.25 to c = 0.3 at around

-3300kB. V(0) is not dependent on temperature and composition [44], and

the value determined by Semenovskaya, V(0) = 5800kB, is used in our

study.
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2.2 Expressions for the Free Energy using Bragg-Williams Model.

In this section, expressions for the enthalpy and entropy for the

FeAl(B2) and the Fe3AI(D03) structures are derived using the Bragg-Wil-

liams model considering up to third nearest neighbor interaction. These

expressions will be used to calculate the gradient energy coefficients

which are necessary to describe APB structures. All of the following

derivations are for Fe3Al(D03) ordered structures. Corresponding results

for FeAl(B2) can be obtained simply by replacing all 72's with zero.

According to the definition of order parameters and sublattices in

D03 structure in the previous section, the probability of Al and Fe atoms

occupying a, f, and - sites in a homogeneously ordered system are given

by:

PA = c- 1l (2-15)

pA c+=~-2  (2-16)

pA = c+l 2 (2-17)

PF = 1-c+~i (2-18)

pF 1-c-l+n2 (2-19)

pF = 1-c-,l-, 2  (2-20)

where an Al atom is denoted by A and an Fe by F.

The probability of an Fe-Fe first nearest neighbor bond between an Fe

atom in the a sublattice and an Fe atom in the # sublattice is given by:

PF F = (1-c+"l)(1-c-t1+ 2) (2-21)



An Fe atom in the a sublattice can also form an Fe-Fe first nearest

neighbor bond with an Fe atom in the y sublattice, the probability being

given by:

PF P = (1-c+nl)(1-c-nl- 2) (2-22)

Multiplying the total number of bonds possible for each type of bond with

the respective probabilities around an Fe atom in the a sublattice, the

total probability of Fe-Fe first nearest neighbor bonds around an Fe atom

in the a sublattice can be given by:

(P F 4pa p0 + 4pF F = 8(1-c) 2- 82 (2-23)
(PFF ) 4  F F F p 2 1

Similarly, the total probabilities of Fe-Fe first nearest neighbor

bonds around an Fe atom in the f sublattice and the - sublattice are

given respectively by:

FF( ) = 8(1-c-n1+n2)(1-c+nl) (2-24)

FF) 8p pF = 8(1-c-nl-n 2)(1-c+nl) (2-25)

The total number of Fe-Fe first nearest neighbor bonds per atomic site

can be obtained by taking the average of (PFF)a, (PFF)p and (PFF)

considering the lattice site ratio of the three sublattice sites, and is

given by:

P1  1{2( 1 1 1 28 ((1-c) 2  2
FF - 4(2(PFFa + (PFF) FF =8((1-c) Y 1

(2-26)

Similarly, the total numbers of Fe-Al first nearest neighbor bonds

and Al-Al first nearest neighbor bonds per atomic sites are respectively

given by:



PFA =  16(c-c2+ 1) (2-27)

AA=8(c 2 _  ) (2-28)

For the second nearest neighbor bonds, a similar procedure results in

the following:

P = 3{2(1-c) 2+2-2_) 2 (2-29)

PA = 6(2c-2c 2 -277 2 +77) (2-30)

p2  2 22
PAA 3(2c2+2 2_ 2) (2-31)

Similarly, the numbers of total third nearest neighbor bonds per atomic

site are given by:

P3  6(2(1c)2+22 2 (2-32)
FF 1 2(1-c) 2 1+'2)

FA 12(2c-2c2 - 2_ )2 (2-33)

PAA = 6(2c +2 2 +2 (2-34)

The enthalpy of the Fe-Al system in the Fe3AI(D03) ordered phase consi-

dering up to third nearest neighbors is given by:

N 3 i ii 1 1H = (PFF F + PFAFFA AA AA) (2-35)
1=1

where N is the total number of atomic sites per unit volume and (AB

is the energy of an A-B bond for the ith coordination shell. The factor

of is included since each bond would otherwise be counted twice. The

enthalpy of the pure components can be expressed as:

Hpure = z (ce A + (1-c)eF } (2-36)i



where z is the coordination number for the ith coordination shell. The

enthalpy relative to the pure components, i.e. the enthalpy of formation

of a homogeneously ordered alloy, is then given by:

AH = H - Hpure

= 8(c 2-c- 2)v1+3(2c 22c+2 2_- 2)v2+ 6(2c2-2c+27 2+772)v3]
(2-37)

i i i
where vi AA FF 2 FA (2-38)

The entropy terms are found by determining the number of configurational

states,0, and the entropy is then given by -kBlnt, where kB is Boltz-

mann's constant. Bragg-Williams model considers entropy of mixing on

each sublattice to be ideal. For the D003 atomic ordering in Fe3Al, the

entropy is given by:

-Nk
AS - 2 [(c-n 1)ln(c-nl) + (1-c+nl)ln(1-c+nl)

+((c+1+ 2)1n(c+nl+2 ) + (1-c-7l- 2)n(1-c-l-_2)

+ (c+il-n 2)n(c+nl-7 2) + (1-c-fl1+ 2)n(1-c-~ 1+n2)}] (2-39)

The total free energy of a homogeneously ordered system relative to that

of the pure components is given by:

AF = AH - TAS (2-40)

with the application of Equations (2-37) and (2-39). The free energy

calculated by Equation (2-40) is an approximation, considering up to the

third nearest neighbor interactions of the free energy expressed by

Equation (2-3).

The V(is)'s, as defined in Equation (2-1), are infinite series of

interaction energies vi of Equation (2-38) which is equivalent to Equa-

tion (2-2). We can get truncated expressions for V(is)'s including only



up to the third nearest interaction energy v3 by

r for atomic bonds of first, second and third nearest neighbors in

Equation (2-1). These are given by:

V(O) = 8v1 + 6v2+ 12v 3+ ... (2-41)

V( 1) = -8v1 + 6v2+ 12v 3+ ... (2-42)

V(i 2) = -6v2 + 12v 3+ ... (2-43)

From these equations vi can be calculated using the V(is) values calcu-

lated in the previous section as :

v, = [V(O) - V( 1)]/16 (2-44)

v2 = [V(O) + V(11) - 2V(i 2)]/24 (2-45)

v3 = [V(O) + V(i1 ) + 2V( 2 )]/48 (2-46)

Values of V(is)'s and vi's in the composition range of interest in the

Fe-Al system are shown in Table (2-1). The vi's are also plotted in

Figure (2-5).

Values of v1 and v2 calculated here are substantially different from

previously reported values of v1l/kB = 1050-1100K and v2/kB = 540-560K

which were experimentally determined from phase transition temperatures

considering only up to second nearest neighbor interactions [20,43,53].

These differences suggest the importance of including third nearest

neighbor interactions for a successful thermodynamic model of the Fe-A1

system. Reported values of vj, v2, and v3, when the third nearest neigh-

bor interaction contribution is considered, are comparable to the values

we calculated [49,50]. A very different approach in the experimental

determination of the interaction energies v1 and v2 in the Fe-Al system

49
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was carried out by Crawford [65]. He used the APB energies, which were

determined by measuring the separation distances between superlattice

dislocations [66], to calculate the interaction energies v1 and v2 in

several alloy compositions. He found that v1 increases and v2 decreases

as the Al content increases in the range of 25%Al to 30%Al. Both this

trend and the values of v1 and v2 are in accord with our calculation.

The composition dependency of pairwise interaction energies vi's

calculated from a fit of the phase diagram indicates the effect of many-

body interactions in real alloy systems. In our model calculation we did

not consider many-body correlation effect. But the use of composition

dependent pairwise interaction energies in our model would reduce errors

of ignoring these correlation effects.



Table 2-1

Calculated values of V( ) and vi in the Fe-Al binary system

Comp. V(0)kB V(O1)/kB V(k2)/kB v1/kB V2/kB v3/kB

0.22 5800 -4755 -3405 659.7 327.3 -120.1

0.23 5800 -5042 -3340 677.6 309.9 -123.4

0.24 5800 -5292 -3318 693.2 297.7 -127.7

0.25 5800 -5509 -3310 706.8 288.0 -131.8

0.26 5800 -5695 -3303 718.4 279.6 -135.4

0.27 5800 -5854 -3292 728.3 272.1 -138.3

0.28 5800 -5989 -3272 736.8 264.8 -140.3

0.29 5800 -6100 -3241 743.7 257.6 -141.3

0.30 5800 -6190 -3196 749.3 250.1 -141.3

0.31 5800 -6260 -3133 753.7 244.9 -140.1

0.32 5800 -6313 -3049 757.1 232.7 -137.7

0.33 5800 -6347 -2940 759.2 222.2 -133.9

0.34 5800 -6365 -2799 760.3 209.7 -128.4

0.35 5800 -6368 -2620 760.5 194.7 -121.0

compositions are in atomic fraction of Al. kB is Boltzmann's constant.

All the units of V(is)/k B and vi/kB are in absolute temperature K.



2.3 Expressions for the Gradient Energy Coefficients.

In this section, gradient energy coefficients for B2 ordering, DO3

ordering, and composition were determined using Bragg-Williams approxima-

tion.

The concept of gradient energy coefficients was first introduced by

Cahn and Hilliard [17] in the development of the diffuse interface theo-

ry. The free energy of the inhomogeneous system, in which the order

parameters and composition can vary spatially, can be expressed as a

Taylor series expansion about the free energy of a uniform system as far

as the free energy is a continuous analytic function of its dependent

variables at the point where the expansion is done.

Using a regular solution model, Cahn and Hilliard [17] showed that

there is no contribution to the configurational entropy from a composi-

tion gradient, thus making it sufficient to consider enthalpy changes to

get the free energy of the inhomogeneous system. They also argued that

the free energy of a coherent interface in an unstrained cubic lattice is

isotropic, and this point was supported by the calculation of APB ener-

gies in model bcc system by Kikuch and Cahn [54].

In our derivation of gradient energy coefficients, we only consider

the change of the enthalpy allowing a one-dimensional variation in the

composition and the order parameters along the [100] direction, effec-

tively considering planar APBs parallel to (100) plane. Composition and

order parameters in the bond probability expressions in the previous

section are now functions of distance and these expressions can be Taylor

expanded up to second derivatives. Corresponding equations for Equation

(2-26) through Equation (2-34) are given by:



1 2 2 2 d2 c 2 d2n1PFF = 8((1-c) 2 _ - (1-c)a d2c la2 2a
dx dx

PFA = 16(c-c2 +I) + (1-2c)a2 d2 + 2l a2 d2n1
dx2  dx

P1  = 8(c2 2) + ca2 d2c -oa2 d2n1
dx2 dx2

P F= 3(2(1-c)2+2 2 (1-c)a2 2c

dx

P A 6(2c-2c2 -2 2 + 2)+ (1-2c)a 2 d2c

dx2

+ ra 2 d2n1
dx2

-2la2 d
2n

dx
2

72 a2 d2n2
dx

(2-50)

+ r2a2 d22
dx2

(2-51)

PA = 3(2c2 +202_2) + ca2 d 2
dx 2

+ r a2 d
2n

dx
2

'2 a2 d2 n2
2 dx2

P3 = 6(2(1-c) 2+272 +2 -4(1-c)a2d 2  + 41a2  + 22 a2 d2n2
d + dx dx

(2-53)

P FA = 12(2c-2c -21 22_ 2 ) + 4(1-2c)a 2 - 871 a 2 d 1 - 42 a 2 22
dx dx2  dx2

(2-54)

PAA = 6(2c2+2 7 2+) + 4ca2 42 + 47ja 2 d2n1 + 2a2 d2n2S 2 2 dx dx2 2 dx2

(2-55)

where a is the lattice constant of the alloy as denoted in Figure

(2.2)(a). The composition, c, in the above equations is the average

composition of the whole alloy given in the atomic fraction of Al.

The enthalpy per unit volume is expressed by:

(2-47)

(2-48)

(2-49)

(2-52)



h =- H -2 [8(c 2-c-2 v1 + 3 (2c 2-2c+277 1- 2)v2 + 6(2c2-2c+271+2 72)v3

2 d 1 1 1 2 2 3 3
x 2c FA FF 2 FA FF+4 3 FA-4FFdx

+ 71a2 d 2n (-+V 2+4v3)+ 2a2 d2n2(-v 2+2v3)] (2-56)
dx dx

Using the enthalpy expression for the homogeneous system, Equation (2-

37), Equation (2-56) can be written as:

h=h +K d2c + K d2nl + K d2n (2-57)
7c dx2 11 dx 172 dx

where: w here: h AH (homogeneous)
N

a 1  1  2  2  3  3

1c 2 (c1lc2+4cy3 FA FF FA FF+FA4FF)

2

K1 1 = -1(-V+V 2+4v3

K172 2 2( +2v3)

The gradient energy coefficients for the composition, and order para-

meters i1 and 72 can be obtained following Cahn and Hilliard's definition

of these coefficients [17], and are given by:

-a (-8
Kc = -aK1c/c - 2 (v+ v2+ 4v3) (2-58)

K = -K1/a71 = (v - v2- 4v3) (2-59)

A2

K 2 = -K172/2 l = (v2/ 2 - 2v3) (2-60)

To calculate Kc accurately, we should know the compositional dependencies

of the individual bond energies FAand eFF, as well as the compositional



dependencies of the interaction energies v1, v2, and v3 . As an approxi-

mation, we neglect the weak composition dependencies of the interaction

energies and the individual bond energies to calculate the partial dif-

ferential aKIc/ac.

Calculated values of the gradient energy coefficients are shown in

Table (2-2) and also plotted in Figure (2-6).

The gradient energy coefficient for the composition is negative for

all the composition range in the Fe-Al system, and this is consistent

with the fact that the alloy tends to order [25]. The magnitude of Kc is

of comparable order to the experimentally measured value for gold-silver

alloys [55] which also displays a tendency to form ordered phases.

In this chapter we have improved the Bragg-Williams model of the Fe-

Al system by considering up to third nearest neighbor interactions.

Composition-dependent interaction energies have been calculated from the

experimental phase diagram of the Fe-Al system. The expressions for the

gradient energy coefficients K1~, Kn2 and K have been derived as func-

tions of these interaction energies from the improved Bragg-Williams

model. These gradient energy coefficients are essential in calculating

APB profiles and energies. Actual calculation of APB profiles and ener-

gies using these parameters is presented in Chapter 4.



Table 2-2
Calculated values of gradient energy coefficients in the Fe-Al system.

In calculating above values, the

x 10-10 m are used.

values kB = 1.38 x 10-23 J/K and a=2.90
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CHAPTER 3

EXPERIMENTS

The main focus of the experimental part of this study is on the

determination of the direct relationship between the velocity of migra-

tion and the local curvature of APBs, which will determine the APB mobil-

ity.

Antiphase domains in bulk specimens have a multiply interconnected

morphology [23] in which the principal curvatures are generally of op-

posite sign. This morphological characteristic, which is true for both

of the APBs in B2 and D003 phases in the Fe-Al system, results from the

fact that there are only two possible domains which have the equivalent

structures with order parameter n or -n [56]. In B2 phases, there are

only two different domains separated by the APBs having a displacement

vector a<111> (see Figure (2-2)). The APBs in B2 will be called <111>

APBs for the rest of this thesis. In the DO3 phase, there are two dif-

ferent domains separated by APBs with a'<100> displacement vector within

a much larger domain separated by <111> APBs. Although there are four

possible domains altogether in D003 phases, only two different domains are

possible within each of the large domains inherited from the B2 phase.

Thus, the APBs in the DO03 phase are composed of fine scale <100> APBs

within larger scale <111> APBs. The actual sizes of <100> APBs and <111>

APBs in the DO03 phase are dependent on the specific heat treatment his-

tory of the alloy. Typical APB structures in the DO03 phase are shown in

Figure (3-1).



The antiphase domain coarsening experiments that have been used

previously to investigate APB motion in bulk specimens [18, 19, 22, 57]

do not allow the direct determination of APB mobilities. This is due to

the extreme difficulty in measuring the principal curvatures of APBs from

two-dimensional projected images such as Figure (3-1). Therefore, the

use of bulk antiphase coarsening data for the determination of velocity-

curvature relationships is impossible.

Using in-situ hot-stage transmission electron microscopy, we have

succeeded in observing APB migration directly as it occurs. Because of

the two-dimensionality of APBs in the thin foil samples (either planar

APBs introduced by dislocation movements or thermal APBs aligned themsel-

ves normal to the thin foil surface during heating), measurements of the

local curvatures from recorded images of moving APBs were possible. The

direct relationship between the migrating velocity and the local curva-

ture of APBs could then be determined by applying velocity equations like

Equation (1-12) and Equation (1-18).

Surface pinning of moving APBs in thin foil specimens should be

negligible because the energy of APBs ( = 1 mJ/m 2, see Chapter 4 for

calculated values) is much smaller than the surface energy ( = 1 J/m2),

and virtually no surface groove will be formed at the intersection of

APBs with the foil surface.



Figure (3-1) A dark-field electron micrograph showing typical
structures of thermal APBs in the D003 phase. Fine
<100> APBs are produced inside the large domains
inherited from the B2 phase which are separated by
much coarser <111> APBs. The speciman of Fe-26%Al
was heat treated at 1474K for 1800 s and air cooled,
and then reheated at 745K from 7200 s followed by
water quenching.



3-1 EXPERIMENTAL PROCEDURES

3-1-1 Specimen Composition and Preparation

Nominal compositions of the alloys used were Fe-24%Al and Fe-26%Al

(all compositions are in atomic percent unless otherwise stated). The

Fe-24%Al alloy was prepared at the General Electric Research and Devel-

opment Center. This alloy was made by vacuum melting, and the ingots

were chill cast into 25 mm diameter molds. The alloy was then hot swaged

to 5.0 mm diameter rods, which were later machined to 3.0 mm diameter. A

chemical analysis of this material showed the following impurities to be

present (in wt %): 0.01% 0, 0.007% C, <0.001% N, <0.001% S, 0.0004% Mg,

<0.002% Ni, 0.0003% Ti, <0.02% Si, 0.001% V, <0.0031% Zn, <0.002% Pb,

<0.002% Ga, <0.005% Cr and <0.005% Cu. The Fe-26%Al alloy was obtained

from the Air Force Wright Aeronautical Laboratories. This alloy was

prepared by arc melting three times, followed by an isothermal forging

treatment at 1173K. Out of pancake-like, as received, alloy pieces of

thickness about 5mm, 3mm diameter rods were machined. A chemical anal-

ysis of the alloy showed the following impurities to be present (in wt

%): 0.022% 0, 0.014% C, <0.001% N, <0.001% S and "very small amounts"

(<0.001%) of metallic impurities like Mn, Ni, Si, Ca and Cu.

The Fe-26%Al alloy has the transition temperatures [38] of Tc(A2*B2)

= 1096K and Tc(B2D03) = 826K. The Fe-24%A1 alloy has the transition

temperatures of Tc(A2-B2) = 965K, T(B2bA2+B2) = 858K, T(A2+B2-A2+DO3)

820K, and T(A2+DO3-D03) = 730K.



3.1.2 Isothermal Antiphase Domain Coarsening

Even though a conventional antiphase domain coarsening experiment

does not allow to study direct relation between the velocity and the

curvature of migrating APBs, it has its own merit in studying the migra-

tion kinetics. Unlike in-situ experiments, very slow kinetics can be

detected rather easily because we can heat a bulk specimen at a constant

temperature for a long time without any problem in an inert atmosphere or

in a salt bath. Therefore we can detect the transition from the high

velocity regime to the low velocity regime of the migration kinetics from

a bulk domain coarsening experiment. By comparing the corresponding

results of bulk domain coarsening experiments with those of in-situ

experiments, we can also determine the value of the morphological con-

stant 0 in Equation (1-20). For these reasons we have done the following

domain coarsening experiments.

A three millimeter diameter rod was machined from the Fe-26%Al alloy,

homogenized for 7200 s at 1373K and subsequently air-cooled. Discs 0.2

mm thick for isothermal antiphase domain coarsening heat treatments were

cut from this rod by electro-discharge machining. These discs were then

wrapped in nickel wire meshes, and heat treated in a molten salt bath at

the desired temperatures for various time followed by a water quench.

The accuracy of the temperature of the salt bath was ±2K, and the stabil-

ity of the temperature of the salt bath during heat treatment was ±2K.

Following the heat treatments, specimens were carefully ground on both

sides of the discs using up to #600 emery papers until a thickness of

0.08 - 0.1 mm was obtained. The specimens were then electropolished in a

solution of 1 part nitric acid (HN03) and 2 parts methanol (CH30H) in



-40*=-45°C at a voltage of 10=12 V, using a twin-jet apparatus.

Transmission electron microscopy observations of the specimens were

made employing superlattice dark field imaging as described by Marc-

inkowski and Brown [58]. A JEOL 200-CX TEM with a double tilt holder was

used at 200 kV accelerating voltage. The optimum imaging condition for

observing <100> APBs in DO3 ordered alloys can be achieved by tilting the

specimen for strong diffraction of <111> superlattice reflections near a

(011) pole or a (112) pole along 222 Kikuchi lines. The effective ex-

tinction distance for a <111> superlattice reflection is in the order of

200 nm for small deviations from the exact Bragg condition which we used

[58]. The brightest dark-field images are formed when the specimen

thickness is a half of the effective extinction distance. The average

thickness of the sample we observed could be estimated to be around 100

nm because we observed the first bright area from the edge of the sample.

Fringe patterns which are common in stacking fault images are not ex-

pected in APB images in Fe-Al alloys because of the large effective

extinction distances of the superlattice reflections. Figure (3-1) shows

no fringe patterns in APB images as expected.

Measurements of Sv (the APB area per unit volume, which is related

to the mean linear intercept domain size, D, by Sv = 2 ) from dark field

electron micrographs of APBs were made by counting the number of APB

intercepts with a test circle of known length. The value of Sv was

obtained by dividing twice the total number of intercepts by the total

line length of the circle [59]. A correction factor for the error intro-

duced by tilting the specimen with respect to the beam direction of the

electron microscope was applied to the line length for each application

/~ _( ~_el~l__ll_^_ ~_~~~_C~ll~i~_



of the test circle. More detailed descriptions of the Sv measurements

can be found elsewhere [20].



3.1.3 In-situ Hot-Stage Experiments

In-situ hot-stage experiments were carried out using a double-tilt

heating holder (Model EM-SHTH) in a JEOL-200CX electron microscope opera-

ting at 200 kV. The heating holder can heat a thin foil sample up to

1073K with a electric resistance heating coil. It has a specimen tilting

capacity of ±45 ° X-tilt and ±10* Y-tilt. Even though quicker heating

might be possible, it requires at least 30 or 40 minutes wait to make the

specimen stable enough for photography. The temperature reading of the

heating holder is given by the voltage reading of a W-5%Re/W-26%Re ther-

mocouple embedded in the holder. In order to know the real temperature

of the sample being observed, a temperature calibration is needed.

(a) Temperature Calibration

The temperature reading of the heating holder requires calibration,

because the indicated temperature is the temperature of the rim of a

specimen disc, where the heating coil and the thermocouple are in thermal

contact with the specimen. Most of the observations are made around the

edge of a hole in the center of the specimen disc. The actual tempera-

ture of the observed area can differ from the indicated temperature, due

to the temperature gradients which will vary from material to material.

Thus the use of the same kind of the specimens (in the sense of thermal

contact to specimen holder and thermal conductivity of the specimen) for

temperature calibration is desirable.

For the calibration we have used the invariant transformation aF +

FeAlp = aF + Fe3Alp in the Fe-Al binary system (see Figure 2-1) which has

been determined to occur at 820K in coherent phase transformation [38].
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If we consider the unit cell of the DO3 structure with lattice parameter

a' which is composed of 8 unit cells of the bcc lattice containing 16

atomic sites (see Figure 2-2), fundamental Bragg diffraction of the A2

structure occurs for h + k + 1 = 4n where n is an integer. B2 superlat-

tice diffraction occurs for h + k + 1 = 4n + 2. The DO03 diffraction

occurs for h, k, 1 unmixed. When h, k, 1 are even, the diffraction

coincides with either fundamental or B2 diffraction. When h, k, 1 are

all odd, the diffraction belongs to DO3 alone. By observing the change

of the diffraction pattern in either the (011) or (112) pole with the

change of the ordered structure, we can calibrate the exact transforma-

tion temperature for aF + FeAlp = aF + Fe3Alp in Fe-24%Al specimens.

Figure (3-2) shows the change of diffraction patterns of (011) pole with

temperature.

We also tried to use the melting points of tin (Sn) and aluminum for

temperature calibration using thin film deposits of these metals on

copper grids. But due to the aforementioned difference in thermal con-

ductivity and specimen configuration, these calibration are not valid for

our experiments. Having only one reliable point for calibration, linear

calibration elsewhere is assumed. The calibrated temperature is esti-

mated to be correct to within an error of ±5K. This error range is due

to the difficulty of detecting very weak superlattice reflection spots in

the diffraction pattern like Figure (3-2) when the temperature is within

5K of the invariant transition temperature.

(b) Separation of Planar Intersecting APBs

By deforming ordered Fe-Al alloys on multiple slip systems of (110)

Ill~--C---YII- --.---L-^~X~~ LI-^-~ ili-



Figure (3-2) Changes in the diffraction pattern at (011) pole in
the Fe-24%Al alloy with the temperature change (a)
T=780K, (b) T=798K, (c) T=810K, (d) T=820K. As the
temperature increases, superlattice reflection spots
from the DO03 phase become weaker and disappear at the
invariant transition temperature of 820K. Tempera
tures given above are calibrated temperatures.



<111> type, we have been able to create planar APBs on the slip planes by

the movement of dislocations that have numerous places of intersection

with each other. The intersections of these planar APBs are unstable,

and subsequent heat treatments allow the boundaries to pull apart into a

hyperbolic sheet-like morphology having only one non-zero principal

curvature [83]. This is schematically represented in Figure (3.3).

Planar APBs produced by deformation will not have any segregation

initially, even though the thermal APBs in the same specimen may have

some segregation. And at the early stage of separation, the curvature at

the tip of the hyperbola is infinitely large, producing a driving force

large enough to break away from any solute-drag. These two facts assure

that the mobility determined from the separation of these intersections

is intrinsic.

Sun and Bauer[60] analyzed the motion of hyperbolic interfaces by

applying Mullins' theory [61] of the two-dimensional motion of idealized

grain boundaries. Using the intrinsic velocity equation (Equation (1-12)

V = M(K1 + K2)), the motion of hyperbolic APBs is described by:

R(t) = (2Mf(c)t) (3-1)

where R is the distance of migration from the initial point of intersec-

tion at time t (see Figure (3-3) (c)), and f(a) is the magnifying func-

tion where a is one-half the angle between the asymptotes of the hyper-

bola. f(a) cannot be expressed analytically. Sun and Bauer used a

finite-difference analysis to generate the curve for f(a) versus a shown

in Figure (3-4). In the case of f(a) = 1, the curvature at the tip of



(a)

Origin of
motion

(c)

Figure (3-3) Schematic diagram of a thin foil sample which has an
intersection of two planar APBs produced by deforma-
tion. (a) Before any separation, (b) separated in-
tersection after some heating, (c) schematic view of
(b) along the direction of intersection.
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the hyperbola is exactly the same as the curvature of a circle of radius

R. As a reduces, f(a) increases rapidly giving increasingly higher

curvature at the hyperbolic tip.

By observing R vs. t at a constant temperature, the intrinsic mobi-

lity M can be determined using Equation (3-1). For a correct stereologi-

cal analysis of data from this type of experiment, it is essential to get

several sets of dark-field micrographs of the same area from various beam

directions, along with the relevant diffraction patterns which show

Kikuchi lines for accurate beam direction determination. A diffraction

pattern of the sample with all the tilts zeroed should also be taken to

determine the foil's surface normal. Slip systems forming the intersec-

tion can be determined from the above data by trace analysis, and the

real values of a and R can be calculated from the projected image using

the geometrical relationship between image projection and slip systems.

It is helpful to do all the stereological analysis described above before

heating. Knowing the direction of intersection, the beam direction which

gives the closest edge-on projections can be chosen to reduce the ex-

perimental error related to separation distance measurement.

Fe-24%Al alloy rod of 3 mm diameter was annealed at 1223K for 9000 s

and then held at 700K for 5x10 5 s and quenched. The resultant micro-

structure consisted of <100> thermal APBs of the DO03 structure with the

average domain size of 0.3 pm. The rod was cut to 6 mm length and was

compressed to a total plastic strain of 1.0% at 433K in an oil bath to

encourage smooth slip deformation. Thin foil TEM specimens were prepared

from this material according to the process described in section 3.1.2.

Thin foil specimens were heated to 700K while being observed in TEM.



A detailed description of trace analysis and true separation distance

calculations from measured R can be found in Appendix A.

(c) Two-dimensional Coarsening of Thermal APBs

When a thin foil specimen, made out of a bulk specimen which contains

thermal APBs, is heated in a hot-stage specimen holder, two different

types of adjustments are observed to occur. APBs inclined with respect

to the foil surface rotate rapidly into orientations such that the APBs

meet the foil surface at 90'. This rotation occurs more rapidly where

the foil is thinner. This is shown in Figure (3-5) where the APBs near

the edge of a hole in the thin foil sample are aligned normal to the foil

surface while the APBs in the thicker area still have three-dimensional

morphology.

Coarsening of antiphase domain structures occurs continuously, but

this process is slower than the rotation of APBs normal to the foil

surface. And, after a while, a two dimensional approximation, which

considers the curvature of APBs as viewed normal to the foil surface as

the only non-zero principal curvature, becomes valid. By measuring the

local curvatures and migration distances from a series of micrographs

taken at a constant temperature, the proportionality constant relating

velocity to curvature can be calculated.

Fe-26%Al alloy rods of 3 mm diameter were quenched after being held

for 1800 s at 1373K. Discs of 0.2 mm thickness were cut from these rods

and underwent subsequent isothermal heat treatments in the salt bath to

give various starting domain size of <100> APBs and <111> APBs. Thin

foil samples were prepared according to the procedures described in
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section 3.1.2. These samples were observed in TEM using superlattice

dark field imaging at various temperatures ranging from 745K to 910K,

micrographs being taken at various time intervals to record sequential

changes in the two-dimensional domain structures.

Measurements of the local curvatures and migration distances were

carried out using a Magiscan II image analyzer from the series of micro-

graphs taken for the same area of a specimen. Migration distances were

measured relative to a fixed point on the image, generally a small high-

contrast spot of contamination on the specimen. A standard software

program supplied with Magiscan II was used to measure the distance bet-

ween the two points selected with a light pen on the CRT screen image.

Local curvatures were determined by measuring the radii of circles which

are osculated to the APBs at the points where the local curvatures are

intended to be measured. For this purpose, a software program, developed

at the image analyzing laboratory in the Center for Materials Science and

Engineering at M. I. T., was used which gives the diameter of a circle

going through three points selected on the digitized image using a light

pen. In measuring the curvatures and the distances, numerous independent

tries were made to enter the points for measurement using a light pen.

After entering each set of the points, the program displays a circle

going through three selected points with its diameter or a straight line

between two points with its length. We can accept or discard each set of

points after reviewing the circle or the line it produces. Only the data

points with gave reasonable osculating circles and measuring points on

the digitized image were selected in calculating average values.

One source of errors in measurement of curvatures and migration dis-



tances is image projection when the foil normal is tilted with respect to

the electron beam. These errors should not exceed 6% unless the tilt

angle exceeds 20 degrees. Detailed analysis of errors involved in speci-

men tilting can be found in Appendix B. In the cases of larger tilt

angles, interface locations which move normal to the tilting axis should

be used for measurements because the deviation of the measured distances

and curvatures from the real values tend to cancel each other in comput-

ing the mobility. In the case of circular APBs, deviation of distances

and curvatures exactly cancel each other to give a correct mobility value

when all the measurements are carried out along the direction normal to

the tilting axis on the image plane (see Appendix B).

In actual experiments, the thin foil specimens which could be ob-

served in superlattice dark field imaging with less than 10 degrees of

total tilt were chosen for in-situ hot-stage experiments. Thus the

possible errors from tilting were comparable to the error range of actual

measurements of migrating distances and curvatures.

From the measurements of migration distances with time, migration

velocity can be calculated for local features of APBs with measured

instantaneous local curvatures. From the velocity equation (Equation (1-

12) or Equation (1-18)), the mobilities can be determined as functions of

the temperature and the local curvature.



3-2 Experimental Results

3-2-1. Isothermal Antiphase Domain Coarsening in Bulk Specimens.

The starting microstructure obtained from the heat treatment

described in section 3.1.2 revealed very fine <100> APBs with Sv z 3x10 7

m-I within large domains of <111> APBs with Sv < 1x106 m-1.

The kinetics of domain coarsening of <100> APBs in DO3 phase in Fe-

26%Al alloys were studied at temperatures of 745K and 778K which are in

DO03 phase. Figure (3-6) shows the domain size changes with time. The

measured values of Sv vs. time for these temperatures at various times

are listed in Table (3-1). Measurements of Sv are made by counting the

number of APB intersections with a test circle of known length on the

micrographs. The size of the test circle was determined to have more

than six intersections for the coarsest domains in our experiment accord-

ing to the suggestion in reference [62]. The accuracy of the value of Sv

determined by this method depends on the total number of intercepts

counted [62]. Sufficient number of intersections were counted for the

determination of each Sv value so that the standard deviation a for each

Sv is about less than 15%.

The plots of Sv-2 vs. time for isothermal coarsening at 745K and 778K

are shown in Figure (3-7) (a) and (b) respectively. Equation (1-20) pre-

dicts that the plots should be linear if M is constant. But the plots

suggest that there is a transition from rapid domain coarsening at small

domain sizes (high driving force regime) to slower kinetics at larger

domain sizes (low driving force regime). These results are similar to

Krzanowski's results for coarsening of <111> domains in a B2 ordered Fe-
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Figure (3-6) Series of dark field electron micrographs in the same
magnification showing the average domain size change
as thermal <100> APBs are coarsened in bulk specimen
at 745K after water quenched from 1474K. Fe-26%A1
alloy (a) after 300 s, (b) after 1200 s, (c) after
3600 s, (d) after 14400 s



5 10
Time, s

40
x10- 15

30

20

10

0 I I

0 5 10 15
Time, s

20 25
x10 3

Figure (3-7) Bulk domain coarsening kinetics observed
in D03 ordered specimens of the Fe-26%Al
alloy at (a)745K and (b)778K.

(a)

15
x10- 1 5

N,
E

CY

15 x103 20

(b)



Table 3-1

Experimental Data for Antiphase Domain Coarsening

in Fe-26%Al Alloys

time (s) Sv(m-1) a(Sv)(m -1) o(in %)

0 3.02 x 107  2.7 x 106  9%

300 2.63 x 107 4.3 x 106 16%

T=745K 1200 1.95 x 107 1.8 x 106 9%

3600 1.42 x 107 2.0 x 106 14%

7200 1.23 x 107 1.7 x 106 14%

14400 1.06 x 107 1.7 x 106 16%

0 3.02 x 107  2.7 x 106  9%

300 1.44 x 107 1.7 x 106 12%

1225 1.19 x 107 1.4 x 106 12%

T=778K 2700 9.46 x 106 1.1 x 106 12%

4800 7.09 x 106 1.1 x 106 14%

9605 6.89 x 106 7.5 x 105 11%

20015 5.45 x 106 8.7 x 105 16%

a=standard deviation



24%Al alloy [22]. The slopes of the linear portions of the plots in

Figure (3-7) (a) and Figure (3-7) (b) give values for 2MO, as seen by

Equation (1-20). These values are presented in Table 3-2.

Table 3-2

Observed Values of 2Mk in High and Low

of Migration of Antiphase Domains in

Driving-Force Regime

an Fe-26%Al Alloy.

Temperature, K 2MO, m2/s

High Driving Force Low Driving Force

745 1.0 x 10-18 3.6 x 10-19

778 2.7 x 10-18 1.1 x 10-18

The error bars in Figure (3-7) become larger as domain coarsens because

we plotted Sv-2 values, even though the relative standard deviations of

S, are independent of domain sizes. Thus the accuracy of 2MO values for

low driving force regime should be lower than that for high driving force

regime.



3-2-2 Separation of Planar Intersecting APBs

Figure (3-8) shows the separation of planar intersecting APBs in an

Fe-24%Al alloy at 700K. By applying trace analysis and projected width

computation as described in Appendix A, the intersecting planes were

identified as (I01) and (110). The surface normal of the foil was
A

determined as S = (0.026, 0.455, 0.890). Considering the deformation

geometry with the aid of stereographic projection, two slip systems were

identified as (101)[111] and (I10)[111], respectively. The angle between

two slip planes, 2a, was 60* and the magnifying function f(c) has a value

of 1.4 from Figure (3-4).

The thin foil specimen containing as-deformed planar intersecting

APBs of Figure (3-8) (a) was heated quickly up to 700K. Figure (3-8) (b)

was taken just after the calibrated temperature reading reached 700K.

The time interval between Figure (3-8) (a) and Figure (3-8) (b) was about

1200 s. Because of the quick heating, the image of the specimen was not

stable during heating and Figure (3-8) (b) was not sharp. Thus the

separation at the intersections in Figure (3-8) (b) was not clear and it

was assumed that the separation at this stage would be minimal. The real

temperature of the observed specimen at the time when Figure (3-8) (b)

was taken might be lower than 700K because the steady state of tempera-

ture distribution would not be established at that point. The tempera-

ture calibration experiments as described in section 3.1.3 suggested that

it would take more than 1800 s to establish the steady state near 820K.

The mobility M was calculated from Equation (3-1) using the true

separation distance calculated from the measured separation distance on

the micrographs. The mobility M for <100> APBs in the Fe-24%Al alloy at



Figure (3-8) Dark-field electron micrographs showing the separa-
tion of planar intersecting APBs (Fe-24%A1) during
heating at 700K (a) As deformed, (b) just after the
temperature reached 700K, (c) after 5540 s at 700K



700K was determined to be 6x10 -21 m2/s, but the validity of this value

for true intrinsic mobility is doubtful because of several reasons. The

onset of the separation, which is believed to occur at the early stage of

heating, cannot be detected in the superlattice dark-field image due to

the drifting and instability of the specimen during quick heating. It is

also difficult to determine when the specimen reaches the intended iso-

thermal temperature as mentioned in the previous paragraph.

Due to these and other difficulties involved in this type of experi-

ments which will be discussed in the later section on Discussion, we have

decided that the separation experiments of planar intersecting APBs are

not ideal for our purpose of the migration kinetics study.



3-2-3 Two-Dimensional Coarsening of Thermal APBs

Isothermal two-dimensional coarsening processes of the thermal APBs

of Fe-26%Al alloys were observed using in-situ hot-stage TEM at tempera-

ture of 745, 778, 800, 838, 853, 910K, the first three temperatures being

in DO3 phase and the rest in B2 phase.

Superlattice dark-field micrographs using (111) reflections were

taken at various time intervals at 745K and are shown in Figure (3-9).

By measuring the change in the local curvatures and the corresponding

migration distances in each succeeding micrograph, the mobility was

calculated as the ratio of migration velocity to the instantaneous local

curvature. Curvature changes and migration distances of the features A

and B of Figure (3-9) are plotted in Figure (3-10) (a) and (b), respec-

tively, as functions of time. In Figure (3-10) (a), which is the case of

a shrinking circle, the curvature increases rapidly with time, becoming

infinite when the circle totally disappears. Migration velocities can be

calculated by curve-fitting data of migration distance vs. time. Calcu-

lated mobilities have an average value of 6.9x10 -19 m2/s with no apparent

variation with curvature. In Figure (3-10) (b), the curvature does not

change with time, and the migration velocity is constant over the range

observed, giving a mobility value of 4.6x10 -19 m2/s. In general, the

local curvatures can increase (e.g. circular APBs) or decrease (e.g.

sinusoidal APBs) or remain roughly constant (e.g. hair-pin like APBs such

as the feature B on Figure (3-9)) as the APBs migrate toward their

centers of the curvature, depending on the shape of the APBs.

Figure (3-11) shows the migration of two-dimensional <100> APBs at

778K (in D003 phase) in the Fe-26%Al alloy. A number of small circular
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Figure (3-9) In-situ hot-stage dark-field electron micrographs
showing the migration of thermal APBs (Fe-26%Al, DO3)at 745K. (a) Just after the temperature reached
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APBs with very high curvature (K > 20x10 7 m-1 ) can be observed to disap-

pear. Migrations of the features with smaller curvatures are less visible

in the time interval taken in the four micrographs shown.

Figure (3-12) shows the migration of two-dimensional <111> APBs at

853K (in B2 phase) in the Fe-26% Al alloy. Because of higher tempera-

ture, the migration kinetics are much faster in Figure (3-12) than in

Figure (3-11), and features with high curvatures (K > 20x10 7 m-1) migrate

too fast to be detected even in the shortest time interval between micro-

graphs ( > 16 s without using video recording equipment). An elliptic

APB was shown to become circular before disappearing due to the higher

curvature at the tips of longer axis (see feature A of Figure (3-12)).

An analysis of the shape change of an elliptic APB toward a circular APB

as it shrinks was carried out in Appendix C. This analysis shows that

any elliptic APB will become circular as it shrinks, and it agrees with

our numerous experimental observations.

In Figure (3-13), which was taken from the same sample at the same

temperature as Figure (3-12), migration of hairpin-like feature is shown

where the curvature at the tip of the "hairpin" remains virtually con-

stant as it migrates. This kind of elongated APBs are not thermal APBs

(thermal APBs are fairly isotropic in the Fe-Al alloys), but believed to

be formed by the movements of dislocations during the heating of the

thin-foil sample in TEM. Formation of these linear APBs during in-situ

heating experiments is detrimental to our experiments, because the forma-

tion of these linear APBs across the thermal APBs which are being ob-

served changes the whole picture by creating numerous intersections of

APBs. This will be discussed more in the following section on Discus-
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Figure (3-12) In-situ obervation of migration of <111> APBs at 853K
(Fe-26%A1) (a) 0 s, (b) 38 s, (c) 62 s, (d) 84 s, (e)
132 s, (f) 154 s, (g) 180 s



Fiqure (3-12) continued



Figure (3-13)

In-situ observation of migration
of <111> APBs at 853K (Fe-26%A1)
(a) 0 s , (b) 19 s , (c) 43 s
(d) 75 s, (e) 117 s.
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sion.

Figure (3-14) summarizes all the data obtained at 745K, giving aver-

age mobility for <100> APBs in DO3 ordered Fe-26%A1 alloy, M = 4.8x10-19

m2/s with a standard deviation of 1.3x10 -19 m2/s. No systematic depen-

dence of mobility on curvature is apparent. Mobility data for <100>

APBs of the same alloy at 778K and 800K are plotted on Figure (3-15) and

Figure (3-16) respectively. In plotting these data in Figure (3-14)

through Figure (3-19), error bars for individual data points were omitted

since the error ranges for the curvature and mobility determination of

each data point are relatively quite small compared to the scatter of

data points, comparable to the size of square dots used in the plots.

But it should be mentioned that the error ranges are larger for the data

points of smaller curvatures because of slower kinetics.

Average mobilities of <100> APBs at 778K and 800K are 2.9x10 -18 m2/s

and 4.7x10 -18  m2/s respectively. There is slight tendency of decreased

mobility for low curvatures (i.e. K = 1x107 m-1), though the extent of

decrease can be seen as being within the experimental errors. Accurate

measurement of the mobility becomes more difficult as the curvature de-

creases because the absolute migration distance is proportional to the

curvature. Measurement of migration distances for low curvature APBs

has larger error ranges.

Mobilities of <111> APBs in B2 ordered Fe-26%Al alloys are plotted

on Figure (3-17), Figure (3-18) and Figure (3-19) for T=838K, T=853K, and

T=910K respectively. The data presented in Figure (3-14) through Figure

(3-19) show no evidence for a dramatic change of mobility over the range

of curvatures accessible in the experiment. Since the data extends to
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of APBs as measured from in-situ
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of APBs as measured from in-situ
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Figure (3-17) Mobility M (m2/s) vs. curvature K (m-1)
of APBs as measured from in-situ
experiments. <111> APBs in the Fe-26%Al
at 838K.
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Figure (3-18) Mobility M (m2/s) vs. curvature K (m-1)
of APBs as measured from in-situ
experiments. <111> APBs in the Fe-26%Al
at 853K.
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of APBs as measured from in-situ
experiments. <111> APBs in the Fe-26%Al
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domain radii as low as 5 nm (K = 2x10 8 m-1), we believe that the bulk of

the observations yield mobilities for the intrinsic regime of migration.

Average mobilities with standard deviation are summarized in Table (3-3).

Table (3-3)

Intrinsic Mobility of APBs as determined by
Experiments in an Fe-26%Al Alloy

in-situ

APB type and Phase Temp (k) M (m2/s) a (m2/s) (%)

<100> D003 745 4.8 x 10-19 1.3 x 10-19 27

<100> 003 778 2.9 x 10-18 7.5 x 10-19 26

<100> DO3  800 4.7 x 10-18 1.1 x 10-18 23

<111> B2 838 1.7 x 10-17 2.4 x 10-18 14

<111> B2 853 2.9 x 10-17 5.7 x 10-18 20

<111> B2 910 1.5 x 10-16 2.4 x 10-17 16

a = standard deviation

An Arrhenius plot of the mobility M vs. I/T for Fe-26%A1 is shown in

figure (3-20). From this plot, we can get the activation energies of

2.1x10 5 J/mole and 1.95x10 5 J/mole for the APB migration process in D03

and B2 phases respectively. These activation energies agree very well

with the activation energy of interdiffusion in disordered Fe-25%Al which

was reported to be around 2x105 J/mole [63].

We might expect more apparent discontinuity in the Arrhenius plot at

B2-DO3 transition temperature and higher activation energy for the D03
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phase because of more ordered structure of the DO3 phase according to the

widely accepted study of Kuper et al. [64]. This point will be discussed

in the following section of Discussion.



3-3 Discussion

3-3-1. Difficulties Involved in Separation Experiments of Planar
Intersecting APBs.

Besides the time-consuming trace analysis required to identify the

slip systems, there are several difficulties in carrying out separation

experiments of planar intersecting APBs to get the reliable values for

the mobility of these APBs.

(a) Ability to Produce Planar APBs by Deformation.

We have not succeeded to produce planar APBs other than in Fe-24%Al

alloys (we have tried Fe-26%Al and Fe-30%Al). This might be due to the

increase of APB energy as Al content increases. As the APB energy in-

creases, the dislocations in ordered alloys are likely to move in the

form of superlattice dislocations without leaving planar APBs on the slip

planes.

There have been several studies on the deformation of the Fe-Al

ordered alloys where the superlattice dislocations were observed in

alloys with an Al content higher than 26 atomic percent [66-69]. It was

also reported that the formation of superlattice dislocations is thermal-

ly activated [70], and the fact that we performed the plastic deformation

at 433K for smooth slip deformation made it even more difficult to pro-

duce planar APBs by assisting the nucleation of superlattice disloca-

tions.

Even in the cases where we succeeded to produce planar intersecting

APBs, we can not get various intersection angle because it was determined
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by the deformation geometry. Thus this technique is very limited in

terms of the range of curvatures as well as the alloy composition to

study the migration kinetics.

(b) Temperature Uncertainty and Instability of the Images at the Early
Stage of Heating.

The real temperature of the rapidly heated sample in the heating

specimen holder can not be determined accurately until the steady state

is achieved. During the rapid heating, specimen in the form of thin foil

moves resulting in drift of the TEM image, and the recording of sharp

images is not possible until the image is stabilized. Because of these

two reasons, the onset of the separation of planar intersecting APBs

which occurs at the early stage of heating can not be detected accurate-

ly. This problem gets worse at higher temperature, because the required

time for temperature steady state and image stabilization becomes longer

whereas the migration kinetics become faster as temperature increases.

(c) Multiple Domain Configuration at Intersection

Four different domains can be produced in DO3 phases by dislocation

movements. In DO3 structure, superlattice dislocations are composed of

four dislocations of <111> type, which are schematically sketched in

Figure (3-21) along with the superlattice dislocations in B2. Unlike the

planar APBs produced in B2 phase, planar APBs produced in DO3 phase can

be either of <111> APBs or <100> APBs depending on the number of disloca-

tions which moved on the slip plane. This is also schematically sketched

in Figure (3-21) along with the four domains separated by the <111> type
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and D003 ordered structures. From Reference [66].
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dislocations.

Thus if we get planar intersecting APBs by plastic deformation in D03

ordered alloys, we can have two different separation configurations as

sketched in Figure (3-22) when these intersections are allowed to pull

apart by heating. Figure (3-22) (a) shows the separation of two hyper-

bolic <100> APBs. Similar separation of <111> APBs is shown in (b). In

Figure (3-22) (c), the separation of the two hyperbolic sheets of <111>

APBs leaves additional <100> APBs along the centerline. In this case,

the separation kinetics will be retarded by the additional <100> APB, and

the hyperbolic shape will be altered to form metastable junctions at the

tip where <111> APBs and <100> APB meet. This kind of separation was

actually observed in our experiments, and in that case, the separation

distance is significantly smaller.

Relative probabilities of having <100> APBs or <111> APBs by deforma-

tion in D03 ordered alloys are dependent on the relative magnitude of the

energies of <100> APBs and <111> APBs which will determine the dissocia-

tion distances between component dislocations of superlattice disloca-

tions. The energies of <111> APBs and <100> APBs in Fe-24%Al D03 or-

dered alloys at room temperature are comparable to each other (= 8x10-4

J/m2 according to ref. [66]), and consequently the relative probabil-

ities of having <111> and <100> APBs are comparable.

Deformation of B2 ordered alloys will always produce <111> APBs and

there will be no case similar to Figure (3-22) (c). But the need to heat

the sample into B2 phase which is higher temperature phase causes the

severer problems with this type of experiment, as described in previous

section.
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3-3-2. Bulk Domain Coarsening Experiments.

Domain coarsening experiments on bulk specimens give results similar

to those obtained by Krzanowski and Allen [22], namely that over a limi-

ted range of domain sizes, Equation (1-20) was obeyed. The plots pre-

sented in Figure (3-7) indicate a change in growth kinetics that occurs

at approximately Sv = 1.4x10 7 m- 1 at 745K and Sv = 7x10 6 m- 1 at 778K.

These values correspond to domain sizes (in mean linear intercept, D) of

140 and 260 nm, respectively. Although significant statistical errors

are present in the measurements at the largest domain sizes, it is non-

etheless clear that the domains coarsen more rapidly at small domain

sizes, particularly at 745K.

Such behavior would be expected if solute drag processes influenced

the migration of these boundaries as discussed in the Introduction.

Small domain sizes correspond to high driving forces for APB migration,

since the driving force for capillarity-driven migration is proportional

to interface curvature. Conversely, the behavior at large domain sizes

is in response to low driving forces for migration. If solute drag

processes are important, the migration kinetics in the low driving-force

regime would be controlled by diffusion of the solute "atmosphere" with

the migrating boundary, resulting in what is termed "extrinsic" behavior.

In the high driving-force regime of solute drag behavior, the boundary

velocities are too high for solute atoms to keep up, and the kinetics are

governed by the kinetics of reordering that occurs in the vicinity of the

APB. The resulting migration kinetics are said to be "intrinsic".

Krzanowski and Allen [21] presented a calculation of the expected

solute drag force to support their conclusion that the change of domain
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coarsening kinetics observed in the B2 ordered Fe-24%Al alloys was due

to a solute drag effect. Direct application of their calculation in our

experiments is not feasible for the reasons described in Section 1.3.2 in

the Introduction. Theoretical efforts to calculate most stable profiles

of compositional and order parameter variation at APBs are in progress

[72]. Lacking this result, we make the tentative conclusion that the

transitional behavior observed in the data presented in Figure (3-7) are

due to a solute drag process.
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3-3-3. In-Situ Two-Dimensional APB Migration Experiments

The in-situ two-dimensional boundary migration experiments allow for

the first time, the measurement of the mobilities of APBs, over a wide

range of curvatures (and hence driving forces). It is a versatile tech-

nique, in that the mobility data obtained span more than three orders of

magnitude (see Table (3-3)). There is also relatively little scatter in

the data at a given temperature, because of the large number of data

points that can be analyzed from a series of micrographs. Another virtue

of the technique is that the inevitable shrinking and disappearance of

single domains will always result in an increase of driving force to

extremely high values as the domain collapses on itself and disappears.

This contrasts with the separation of planar intersecting APBs and domain

coarsening in bulk specimens in which the driving force steadily de-

creases. Thus by observing those shrinking domains, it guarantees access

to the intrinsic regime of solute drag behavior.

To maintain the validity of the two-dimensional approximation, only

the APBs aligned normal to the thin foil surface, appearing as thin sharp

lines on the image, were considered for measurement. One possible cause

of the data fluctuation in Figure (3-14) through Figure (3-19) is that

the APBs may not be perfectly aligned normal to the surface and the

curvature on the surface may not give the mean principal curvature. If

there is a small through-thickness curvature which has the same sign as

that on the foil surface, the calculated mobility using just the curva-

ture on the foil surface will be higher than the true mobility, and a

through-thickness curvature of the opposite sign will reduce the calcu-

lated mobility. This point is illustrated schematically in Figure (3-
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a O

Cb K- 2 > 0

c K -K3<0

Va = MK

Vb :M(KI+K 2)

Vc = M(Ki+K 2)

Vb > Va > Vc

Figure (3-23) Three possible APBs in thin foil TEM samples which
may give apparently circular APB images with curva-
ture K6. (a) has a truly two-dimensional curvature
(K2 = ), (b) has a positive (the same sign as K1)
K2, and (c) has a negative K2. Mobility from Va gives
true value when only K1 is measured.
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23). All three apparently circular APBs (as they appear in projected

TEM images) have the same curvatures on the sample foil surface (K1).

But the through-thickness curvatures (K2) are K2 = 0, K2 > 0, and K2 < 0

for (a), (b), and (c) respectively. Circular APB (cylindrical, more

precisely) in (a) will shrink faster than the APB in (c) but slower than

the APB in (b). If we calculate the mobilities by measuring K1 values

only, the mobility from (b) will be higher, and the mobility from (c)

will be lower than the mobility determined from (a) which is the true

mobility. If there is appreciable surface pinning at the intersection of

APBs with the surface of a thin-foil sample, we can expect to have some-

thing like Figure (3-23) (c) where K2 has the opposite sign. This would

result in the measurement of lower than actual mobility.

Another possible source of errors is the surface irregularity of

thin-foil specimens. If there is large thickness variation in the sam-

ple, APBs moving to a thinner area will be accelerated and APBs moving to

a thicker area will be decelerated. But the thickness variations in our

samples are generally small and gradual, and this would not be much

concern in our experiments.
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3-3-4 Temperature Dependence of the Mobility

The observed temperature dependence of the mobilities, shown in

Figure (3-20) is somewhat surprising. As mentioned earlier in Chapter 1,

the mobility, as defined by Equation (1-13), is proportional to the

product of a gradient energy coefficient of ordering Kn, and a coeffi-

cient a that is related to the kinetics of ordering. The values for the

gradient energy coefficients of ordering for B2 and DO3 order, K 1 and

K72, were calculated in chapter 2. These quantities are independent of

temperature. Values for the Fe-26%Al alloy are presented in Table (3-4).

Table 3-4

Calculated Values of Gradient Energy Coefficients for APBs in Fe-26%A1

APB Type and Phase Gradient Energy Coefficient K,, J/m

<111>, B2 and DO3 4.7 x 10-11

<100>, D003 2.0 x 10-11

Values for the <100> APBs in the DO03 phase are seen to be lower by a

factor of 2.3 compared with those for <111> APBs in the B2 phase. We

have no detailed prediction for the expected temperature variation of the

kinetic coefficient a. To a first approximation, we expect it to have a

simple Arrhenius dependence within a given phase, similar to an interdif-

fusion coefficient. But if a does behave like the interdiffusivity, a

change to a higher activation energy in the DO03 phase would be expected

[64]. There have been two independent studies on the interdiffusion in

A2 and B2 phases in the Fe-Al system [63, 71]. Even though the magni-
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tudes of the diffusivities differed between these studies, both studies

indicated increased activation energy in B2 ordered phase compared to the

activation energy in disordered A2 phase. The more reliable of these two

studies gives the activation energy for interdiffusion in disordered A2

phase of = 2.1x10 5 J/mol and in B2 phase of = 2.6x10 5 J/mol for the

Fe-26%Al alloy [63]. Interdiffusion in D03 phase has not been studied

experimentally mainly due to the slow kinetics at low temperatures where

D03 order occurs, but we can assume that the activation energy in D03

phase is still larger than that in B2 because of more ordered structure

of D03 phase.

Activation energy calculated from the left-hand portion (B2) of

Figure (3-20) is 1.95x10 5 J/m which is comparable to the activation

energy of interdiffusion in disordered solid solution (2.1x10 5 J/mol).

This can be explained as follows. At the center of a diffuse <111> APB

in B2 phase, the order parameter is zero, and order parameter gradient

(dq/dx from Figure (1-2)) is the maximum at that point. The extent of

the local atomic rearrangement required at migrating APBs is dependent on

the order parameter gradient. Thus the extent of the atomic rearrange-

ment required at the center of a migrating diffuse APB is the largest.

And it becomes smaller at the both edges of the APB where the order

parameter gradient approaches zero. Therefore, it may be possible that

the change of the order parameter at the center of the APB is rate-con-

trolling process for migration, even though the diffusion rate at the

center of the APB is higher. If that is the case, the activation energy

of the APB migration will be that of the interdiffusion in disordered a

phase.
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If the same argument is applied to the migration of <100> APBs in D03

phase, the activation energy of D003 phase calculated from the right-hand

portion of Figure (3-20) should have a value comparable to the activation

energy of interdiffusion in B2 phase which is higher than that for disor-

dered A2 phase. At the center of diffuse <100> APBs in DO3 phase, the

D003 order parameter n2 is zero. But B2 order parameter i1 is constant

across the <100> APBs, and the diffusion at the center of <100> APBs

would be similar to the diffusion in a B2 ordered phase.

Thus, the generally expected form of Figure (3-20) would be for the

right-hand (D03) portion of the curve to have a steeper slope, and for a

discontinuity to exist at the critical temperature, the magnitude of

which depends on the difference between the gradient energy coefficients.
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3-3-5 Comparison of Bulk and In-Situ Studies

A comparison of the data obtained in the bulk and the in-situ migra-

tion experiments carried out at 745 and 778K allows the topological

constant 0 defined in Equation (1-21) to be determined. In making this

comparison, we assume that the in-situ experiments give data for intrin-

sic migration kinetics, and we use the data from the high-driving force

regime of Table (3-2). The calculations give 0 = 1 at 745K and 0 = 0.5

at 778K. These results seem surprisingly large. For an idealized struc-

ture of right circular cylindrical domain boundaries occupying half of

the volume of the material, it is easily shown that 0 = 1. Thus, the

analysis of the experimental data implies that the domain boundary shapes

in bulk specimens are on average cylindrical. This is at variance with

the long-recognized concept of a multiply-connected morphology for the

domain structure [23]. The values of 0 implied by this study could be

too large if some unanticipated drag force were operating in the thin

foil experiments. The most obvious possibility, grooving at the inter-

sections of the APBs with the surfaces of the thin-foil specimens, should

be negligible because the APB energies are so small in comparison to the

free surface energies (APB energies will be calculated in the next chap-

ter). Additional analysis is required to fully interpret the value of ¢

calculated here.

Given the value of Sv at the point where the bulk domain coarsening

kinetics change, as seen in the plots of Figure (3-7), plus knowledge of

0, it is possible to estimate the curvature K* at which the transition to

high driving-force behavior would be expected in the in-situ experiments.

The calculation gives estimates of the conditions for high driving-force
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behavior when K* > 1.4x10 7 m-1 at 745K, and when K* > 0.5x10 7 m-1 at

778K. From Figure (3-14) and Figure (3-15), it is seen that a portion of

the data points at 745K falls below this curvature value, while all of

the data points at 778K lie well above this curvature value. The most

basic conclusion from this analysis is that the bulk of the in-situ data

were indeed taken in the high driving-force "intrinsic" regime. The data

at 745K shown in Figure (3-14) are not consistent with a change of M when

K = 1.4x10 7 m-1. One possible reason for this is a rather large uncer-

tainty in the value of Sv where M changes in the bulk domain coarsening

experiments (i.e. the point where the slope changes in Figure (3-7)).

There is a tendency in the data from the in-situ experiments at 745K for

reduced mobilities when K < 0.7 x 107 m-1, but for such gentle curva-

tures migration distances are small, and hence errors in the measurements

are larger than for the high-curvature data points. A second possibility

is that the actual value of 0 is less than that reported above. This

would make the true value of K* smaller.
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3-3-6 Limitations in In-Situ Hot-Stage Experiments.

Through the current study, we have demonstrated unique merits of in-

situ experiments employing heating specimen holder in TEM in studying the

migration kinetics of the APBs in Fe-Al alloys. But there are some

limitations which should be considered before trying to apply this ex-

perimental technique to other systems.

(a) Heating Rate and Time Required to Achieve Steady State

Instantaneous heating up to a desired temperature is impossible with

the heating holder, and the exact temperature during the transient period

before the specimen reaches steady state can not be determined. Further-

more, the TEM images of the sample during this transient period drift and

well focused images can not be recorded. To get high quality images the

microscope needs to be realigned and the specimen orientation readjusted

after the specimen becomes stable. All of these factors make it very

difficult to detect any changes in the sample which might occur at the

early stage of heating. Therefore, experiments which are mainly intended

to detect changes at the early stage of heating will not be very suitable

for in-situ hot-stage experiments.

(b) Range of Kinetics

Even though we have successfully observed the migration kinetics over

more than three orders of magnitude, there are practical limits of kin-

etics on both the high and low ends which can be covered. If the migra-

tion velocity V is smaller than V < 1x10 -13 m/s, the migration distance
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in four hours of heating should be less than 1.5x10 -9 m which will be

very difficult to detect in good accuracy (0.15 mm of migration distance

on the micrograph of magnification 105). If the migration velocity is

larger than V > 1x10 -8 m/s, conventional photographic images would not be

suitable and a video recording device should be needed.

The migration velocity is given as the product of the mobility and

the curvature. For the curvature of K = 5x10 7 m-1, V = 1x10-13 m/s gives

M = 2x10 -21 m2/s. Extrapolating for this value in Figure (3-20) gives T

= 640K. V = 1x10-8 m/s give M = 2x10-16 m2/s. Extrapolating this value

gives T = 925K. So if we observe a migrating APB having K = 5x10 7 m-1

in an Fe-26%Al alloy, temperatures of 640K and 925K would be the lower

and upper limits.

Similarly, there is also a limit in the range of the curvatures which

can be covered at a given temperature. If the curvature is too small,

migration velocity will be too small to be measured accurately. In addi-

tion, the errors in the measurement of a small curvature (gently curved)

is much larger than the errors involved in the measurement of a large

curvature (sharply curved). Because of these reasons, we were not able

to accurately determine the mobilities when the curvature is lower than

1x10 7 m-1.

(c) Specimen Damage during Observation at Elevated Temperatures.

We have observed the formation of APBs by the movement of disloca-

tions during TEM observation at elevated temperatures. These APBs are

formed preferentially along specific crystallographic orientations, and

the process seems to be thermally activated (that is, the formation and
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the movement of dislocations seem to occur faster at higher tempera-

tures). These dislocations are believed to be formed by the thermal

stresses during heating. APBs forming during the observation at high

temperatures are detrimental in studying migration kinetics of APBs. The

movement of a dislocation across a thermal APB which is being observed

will alter the geometry of the APB. This might be a serious problem

particularly when we need to observe the migration of very gently curved

APBs which require long time intervals to detect movements.
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CHAPTER 4

CALCULATION OF THE ENERGIES AND PROFILES OF THE APBs

There have been several studies on the calculation of APB profiles

and energies. Kikuchi and Cahn [54] calculated APB profiles in the body

centered cubic stoichiometric B2 alloy using both discrete lattice models

of the pair approximation and the Bragg-Williams approximation and a con-

tinuum model at temperature of T = 0.728Tc and T = 0.611Tc. The discrete

profiles were found to agree well with the continuum curves at these

temperatures. Furthermore, for the b.c.c. structure, the domain wall

energy was isotropic, as is assumed in the continuum diffuse interface

theory [17]. Lee and Aaronson [71] calculated coherent interphase boun-

dary structures and energies using discrete lattice and continuum models.

They determined that at temperatures above T = 0.75Tc the continuum and

discrete lattice models gave equivalent results.

Krzanowski [20] calculated the order parameter and composition pro-

files and the energies of APBs in the single-phase B2 ordered Fe-Al

alloys near the bicritical point applying the diffuse interface theory.

But in his calculation he miscalculated the gradient energy coefficient

for composition Kc as a positive value, and consequently the validity of

the composition profiles he calculated is questionable. In the devel-

opment of the continuum description of diffuse interface theory [17]

positive gradient energy coefficients were assumed. Therefore it would

not be possible to calculate composition profiles by applying continuum

diffuse interface theory in the alloy system which has a negative gradi-

ent energy coefficient for composition. In the Fe-Al system the gradient
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energy coefficients for the B2 and the D003 ordering, K 1 and K72 have

positive values and the gradient energy coefficient for composition Kc

has a negative value as calculated in Chapter 2 of this study.

To calculate the exact profiles of the composition and order para-

meters of APBs in the B2 or the D003 ordered Fe-Al alloys where K1 and

K72 are positive and Kc negative, a discrete lattice approach similar to

the one Cook et al. [25] used when they studied the atomic diffusion at

the early stage of ordering where Kc was negative should be used. The

preliminary work on this problem is in progress [72].

Although the composition profiles of APBs in the Fe-Al ordered alloys

can not be calculated using continuum diffuse interface theory, we can

calculate the approximate order parameter profiles and energies of these

APBs from the continuum diffuse interface theory if we assume that the

composition does not vary across the APBs. These approximate calcula-

tions are valuable at this point because exact composition profiles have

not been calculated in the Fe-Al system yet. Furthermore, this assump-

tion of no composition variation is very reasonable in our study of APB

migration kinetics because our experimental results in Chapter 3 show

that most APBs migrate intrinsically without any solute drag effect,

indicating negligible composition variation at APBs. If the composition

variation at the APBs is thermodynamically favorable, true APB energies

would be lower than that calculated by assuming no composition variation

at the same temperature and composition.
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4.1 Theory of Diffuse Interfaces for More than One Parameter.

In the development of the diffuse interface theory, Cahn and Hilliard

expanded the free energy function in a Taylor series about the free

energy of a uniform solution. This required that the free energy be a

continuous function of its dependent variables, limiting the application

of the theory to systems where the free energy can be described in a

continuous manner. Physically, this requirement is often met when the

two phases have similar atomic structures. The phases which exist in the

Fe-rich portion of the Fe-Al binary system (A2, B2, D003) are all very

similar being derived from the b.c.c. structure, since they undergo

continuous transformations from ordered to disordered states.

By using a truncated version of the free energy expansion, Cahn and

Hilliard developed a continuum expression for the free energy of a dif-

fuse interface for one and two parameters. When two parameters were

considered, cross terms involving the gradient energies were neglected.

When we consider the APBs in single phase paramagnetic B2 or D03

phases, up to three parameters may be involved: the first nearest neigh-

bor order parameter n1, the second nearest neighbor order parameter n2,

and the composition c. If we assume that the composition remains con-

stant across the APBs, the interfacial free energy is then given by:

a o = (A Af(n 1 , 2, c) + K7 (1 x-  + K ( )2 } dx (4-1)

where x is the distance through the boundary, Af is given by [73]:

Af(1,'Z 2,c) = AF('1, 2,c) - AF(7le' 2e,c) - ( ) (l - 71 e)
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- (AF,,) (2- 2e )  (4-2)
2 72e

AF is the total free energy with respect to the pure components given by

Equation (2-3), and K 1 and K72 are the gradient coefficients for order

parameters 71 and 72 respectively. 'le and 772e are equilibrium order

parameters for given composition and temperature, and these equilibrium

order parameters are defined by following equations:

(AF = 0 (4-3)

an le

aAF
( F) = 0 (4-4)

"2 72e

Equation (4-2) can be simplified as:

Af('1,l2,c) = AF(l 1,'2,c) - AF(le,'l2e,c) (4-5)

Equation (4-1) is specifically for a flat interface. The thermal APBs

produced by order transformation are curved, and the expression for the

interfacial energy is therefore approximate. However, as long as the

radius of curvature of the APB is large relative to the thickness of the

APB, this approximation is adequate.
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4.2 Minimization of the Interfacial Free Energy.

The variations of order parameters which describe the actual profile

in the interfacial region of an APB are those which minimize the interfa-

cial energy. Since the interfacial energy is represented as an integral,

it becomes necessary to determine mathematically stationary values of the

integral, which are minima in a. This is done by finding sets of func-

tions n1(x), 2(x) which give stationary values of the integral. These

functions are found by solving the Euler equations, one for each indepen-

dent variable. The general form of Euler equation is given by [74]:

aI d dla - d (d ) = 0 (4-6)az dx dz'

where I is the integrand, z the independent variable, and x the distance

from the center of the APB.

The set of Euler equations for the integral in Equation (4-1) is:

Af = 2K d2l
S 1 dx2  (4-7)

Af = 2K d2 2

2 2 dx2  (4-8)
an2  dx2

The expression on the left side of each equation is an algebraic ex-

pression which can be determined by applying Equation (2-3) to the ex-

pression for Af given by Equation (4-5) and then performing the partial

differentiation. The equations (4-7) and (4-8) are then coupled second-

order ordinary differential equations in x, and each equation requires

two boundary conditions to specify a solution.

For the <111> APBs in the B2 phase, 72 is zero and Equation (4-7)
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is the only equation to solve. Since the +i7 state is physically identi-

cal to the -71 state, all the solutions to the Euler equation must be

symmetric about n = 0 for a flat interface. One boundary condition for

equation (4-7) can be specified at x = C. The second boundary condition

can be specified at x = 0, which, by definition, is the point at which n1

= 0. These boundary conditions are 71 = 71e at x = c, and i1 = 0 at x =

0.

For the <100> APBs in the DO03 phase, two different order parameters

n1 and n2 should be considered and two coupled equations (4-7) and (4-8)

should be solved simultaneously. In this case we need two boundary

conditions for each equation. The boundary condition of 72 = n2e at x =

c, and n2 = 0 at x = 0 can be derived from the same argument discussed in

the previous paragraph for <111> APBs in the B2 phase. For the variable

n1, the boundary condition of x = c is n1 = 771e, this value being deter-

mined by thermodynamic equilibrium. Near x = 0, i1 may also have non-

equilibrium values. However, the value of i1 at x = 0 is not determined

by any specific physical requirements, only that the value results in an

overall minimum in the interfacial free energy. The process by which the

proper boundary conditions for 71 is obtained is to determine natural

boundary condition at x=O for n1. Using the method described by

Krzanowski [20], the boundary condition becomes:

dtl = 0 at x = 0 (4-9)dx

In actual calculation of 72 profiles and energies of <100> APBs in

the D003 phase, we assumed constant n1 having the 71e value across the

<100> APBs. This is a trivial solution to Equation (4-7) since n1 does

not vary with x. A simple justification for this assumption is that the
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<100> APBs in the D003 phase are formed inside the domains separated by

<111> APBs inherent to the B2 phase where i1 has the equilibrium value

7le. Nonetheless, it is possible that non-trivial solutions for the case

in which nl(x) is non-uniform do exist.
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4.3 Calculations of Interfacial Profiles and Energies.

The application of the theory of diffuse interfaces to the APBs in

Section 4.1 resulted in the Euler equations which need to be solved for

the interfacial profiles. These profiles need to be determined in order

to compute the interfacial energy. Due to the complexity of the Euler

equations, it will be necessary to compute numerical solutions. This

complexity arises due to the form of the left sides of Equations (4-7)

and (4-8). The derivatives of Af are given by:

S NkB V(k) (1-c+i 1) 1 (c+) 1+'2)(c+n 1+ 2) ]
-- 2(( )n + T(nn + na71 2B 1 (c - 71) 2 (1-c- I- 2)(1-c-qi+72)

(4-10)

af NkB V(~2 ) T (1-c-7 1+7 2)(c+71 1+7 2)
a k 72 + {1n })I2 2 kB 2 { (1-c-7 1-7 2)(c+7l 12)

(4-11)

To solve for the profiles of <111> APBs in the B2 phase, only Equation

(4-7) needs to be solved using Equation (4-10). The boundary conditions

are 71 = '71e at x = c, and 71 = 0 at x = 0. To solve for the profiles

of <100> APBs in the DO03 phase, Equation (4-8) needs to be solved using

Equation (4-11) with a constant value of 71e for t1 at given temperature

and composition.

For actual calculation of these profiles, NAG Fortran library subrou-

tines C05NBF and DO2HAF were used [75]. C05NBF was used to calculate the

equilibrium order parameters 771e and 72e at given temperatures and com-

positions from Equations (2-9) and (2-10). In order to use DO2HAF to

solve Equations (4-7) and (4-8), these equations were rewritten in the

following forms:
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djl
dx = 71p (4-12)

= (4-13)d71 1 f
dx 2K1 1 (413)

dq2dx 2p (4-14)

dq2p 1 Af

d = (4-15)dx 2K72 an2

Then we have a two-point boundary-value problem for two ordinary dif-

ferential equations which can be solved using the Newton iteration in a

shooting and matching technique in DO2HAF subroutine.

Once we get the profiles of j1 and n2 for the APBs, we can calculate

the energies of these APBs by numerical integration of Equation (4-1).

A description and listing of a sample computer program to calculate

the APB profiles and the energies is given in Appendix D.
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4.4 Results

Calculations were done in the single-phase B2 and the single phase

D003 regions above the Curie temperatures in the composition range from

Fe-24%Al to Fe-28%Al. A planar APB in an infinite system was assumed to

be stationary and at thermodynamic equilibrium.

Figure (4-1) shows the calculated equilibrium order parameters rle

and 1r2e as functions of the temperature in the Fe-26%Al alloy. rl1max

and r72max are maximum theoretical order parameters for the first nearest

neighbor and the second nearest neighbor ordering respectively, and for

Fe-26%A1, 1max=0. 26  and n2max = 0.48. The changes of B7le /1max and

02e//2max with respect to T/Tc showed typical characteristics of the

higher-order phase transition. r/7max values decrease continuously to

zero as the temperature reaches the critical temperature. The critical

temperatures Tc are 1096K for A2-B2 and 826K for B2-DO3 respectively for

the Fe-26%Al alloy.

Figure (4-2) shows the calculated order parameter profiles of the

<111> APBs in the B2 phases for the Fe-24%Al alloy. Only one-half of the

profiles are plotted due to the symmetry of the structure. As the temp-

erature increases, the profile becomes more diffuse with lower nle value.

Profiles of the <100> APBs in the D003 phase have also been calculated and

the general characteristics are very similar to those of the <111> APBs

in the B2 phase.

The diffuseness of the APBs can be expressed by the thickness of the

APBs defined as:

2re
6 e (4-16)
S (dq/dx)12=0
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Figure (4-1) Changes of ne/1emax for n7 and 72 in the B2 and the

DO phases respectively for the Fe-26%Al alloy. X
axis is plotted as the reduced temperature T/Tc where
Tc=1096K for A2-B2 and Tc=826K for B2-DO3 . Both 7ie
and n2e show the typical characteristics of the
higher order phase transformation.
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Figure (4-2) Calculated profiles of the order parameter i7 at
<111> APBs in the Fe-24%A1 alloy. Due to the sym-
metry of the structure, only one-half of the inter-
faces are shown. Tc= 965K.
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This relation computes twice the distance at which the extrapolation of

the slope of the /(x) profile at x = 0 intersects the value of the equi-

librium order parameter. The thicknesses of the <111>APBs and the

<100>APBs in the B2 and the DO3 phases respectively for the Fe-26%Al

alloy were plotted in Figure (4-3). At the same T/Tc, the <100> APBs in

the D003 phase are a little more diffuse than the <111> APBs in the B2

phase. When T/Tc is less than 0.7, 6/1 and 672 are less than 0.7nm which

is less than three times the lattice parameter of the B2 phase. Thus,

for temperatures lower than 0.7Tc the APBs are not very diffuse in the

order parameter profile, and the application of the theory of diffuse

interfaces in calculating the profile and the energy of the APBs will not

be plausible.

Cahn and Hilliard [17] showed that when the interfacial energy is a

function of only a single variable, the value of (dn/dx)x=0 is given by:

d _ Afmax (4-17)
dx K77

where Afmax is given by Af(e) - Af(0). The interfacial thickness is

then given by:

6 =21 K (4-18)
77 e Afmax

The calculation of 6. using Equation (4-18) showed excellent agreement

with numerical solutions plotted in Figure (4-3). The APB energies for

the <111> APBs, a11 1 , and <100> APBs, a100 , in the Fe-26%Al alloy were

plotted in Figure (4-4).

As expected, a decreases as the temperature increases for both types
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of APBs, becoming zero at their respective critical temperatures. The

excess entropy of the APBs in the limit of approach to the critical

temperatures is expected to become zero [76]. If this is the case, a vs.

T plot should have zero slope at the critical temperature. Figure (4-5)

shows the a vs. T plot of the <111> APBs near Tc(A2B2) for the same

alloy. This plot shows the slope decreasing to zero as the temperature

reaches the critical temperature. The calculated interfacial energies of

the <100> APBs near Tc(B2-D03) showed similar behavior.

<111> APB energies in the Fe-25%Al and the Fe-28%Al alloys were

plotted along with the <111> APB energies in the Fe-26%Al alloys in

Figure (4-6). At a given temperature, a111 increases as the aluminum

content increases. a111 would have a maximum around the composition of

Fe-50%Al where the equilibrium order parameter is the maximum for a given

temperature. In Figure (4-7), all 1 vs. wle were plotted for the Fe-25%Al

and the Fe-28%Al alloys. In this plot, all 1 , has a higher value in the

Fe-25%Al alloy for a given equilibrium order parameter 'le'

<100> APB energies in the Fe-25%Al and the Fe-28%Al alloys were

plotted in Figure (4-8). a100 in the Fe-25%Al has a higher value than

that in the Fe-28%Al for a given temperature. a100 decreases as the

aluminum content increases above Fe-25A1l which is the stoichiometric

composition for the D03 structure. In Figure (4-9), a100 vs. n2e were

plotted for the Fe-25%Al and the Fe-28%Al alloys. In Figure (4-7) and

Figure (4-9), a11 1 and a100 become zero asymptotically as the order

parameters '1e and n2e become zero respectively.

As a rough check on the APB energies calculated here, the results can

be compared to the experimental measurements of APB energies in Fe-Al
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Figure (4-5) <111> APB energy, a111, in the Fe-26%A1 near the

critical temperature Tc=1096K. It shows the decreas-
ing slope which becomes zero as the temperature
reaches the critcal temperature.
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Figure (4-8) <100> APB energy a100 for Fe-25%A1 and Fe-28%A1 al-
loys.
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alloys made by Crawford and Ray [66]. They measured the separation

distances of dissociated superlattice dislocations in the B2 and the D03

phases in order to determine the APB energies. Experimental results were

obtained for alloys of 26.9 to 35.8%Al which were slowly cooled to room

temperature. Thus, their values for APB energies were not given as func-

tions of temperature. But their results showed that a111 increases and

a100 decreases as the aluminum content increases. The magnitudes of

their room temperature values for a111 and a100, which is around 60 = 80

erg/cm 2, seem to be compatible with our high temperature values of these

APB energies.

Krzanowski calculated alll for the Fe-Al alloys of 24% and 25% Al at

high temperatures in the B2 phase using a simple Bragg-Williams model and

the diffuse interface theory [20]. The calculated value for a1 1 1 at 860K

was 4.23 erg/cm 2 for 24%Al and 6.41 erg/cm for 25%Al. Our calculation

gives a111 = 10.6 erg/cm2 at 860K for 25%A1. Thus, his results gave

similar magnitudes for the APB energies.

From these energy calculations we can check the validity of our

assumption of the negligible surface grooving at the intersection of the

APBs with the surface in thin-foil in-situ TEM experiments. Calculated

APB energies corresponding to our experimental conditions (temperature

and composition) range from 1 mJ/m 2 to 20 mJ/m 2 whereas the surface

energy is usually in the order of 1=2 J/m2 (1 erg/cm 2 = 1 mJ/m 2). Thus

the assumption of minimal surface grooving is valid in our experiments in

Chapter 3.

It would be of interest to compare the change in APB energy with

composition at a constant temperature with the corresponding change in
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the mobility M. The intrinsic mobility of <111>APBs in the Fe-26%Al

alloy at 910K was determined to be 1.5x10 -16 m2/s in our experimental

study in Chapter 3. Allen and Cahn [18] reported that Mo = 1.1x10 -16

m2/s for <111>APB migration in the Fe-24%A1 alloy at 904K. If we use a

value of 0 = 0.5 (as calculated in Chapter 3), M is 2x10 -16 m2/s for

<111>APBs in the Fe-24%Al alloy at 904K. The intrinsic mobilities M for

both the Fe-24%Al and Fe-26%Al alloys are very similar in magnitude at

the same temperature. On the other hand, APB energies a for these alloys

at 910K are quite different. According to our calculation, a = 2 erg/cm2

for <111>APBs in the Fe-24%Al and a = 12 erg/cm2 for <111>APBs in the Fe-

26%Al at 910K. It is quite obvious that the difference in a is not re-

flected in the intrinsic mobility M of these APBs.

This agrees well with the APB migration theory of Allen and Cahn [18]

which states that the intrinsic mobility is expressed by Equation (1-13)

and does not include the interfacial energy term. At a given tempera-

ture, the interdiffusion coefficient in the Fe-Al system is not a strong

function of composition [63]. Therefore, the intrinsic mobility, whose

thermal activation energy is very similar to that of the interdiffusion,

would be similar for different compositions at the same temperature.
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CHAPTER 5

CONCLUSIONS

The following conclusions have been drawn from this work.

1. Studies of bulk antiphase domain coarsening kinetics indicate that

there is a solute drag effect when the driving force is small. Tran-

sistions from the high velocity extreme to the low velocity extreme

were observed as the <100> domains coarsened in the DO3 phase of the

Fe-26%Al alloy. Average domain sizes at the transition points indi-

cate that most of the in-situ experiments were carried out in the

high velocity extreme, thus leading to measurements of the intrinsic

mobility M.

2. In-situ hot-stage transmission electron microscopy has been proven to

be valuable in studying the migration kinetics of antiphase boun-

daries (APBs) in Fe-Al ordered alloys. A two-dimensional approxi-

mation of the complicated three-dimensional morphology of the APBs

made it possible to determine the mobility of the APBs, which is the

proportionality constant relating the velocity to the local curva-

ture.

3. The intrinsic mobility, M, of the APBs has been determined experimen-

tally, for the first time, employing in-situ hot-stage TEM. M for

<111> APBs in the B2 phase of the Fe-26%Al alloy has values ranging

from 1.7x10-17 (m2/s) to 1.5x10-1 6 (m2/s) for temperatures from 838K

to 910K. M for <100> APBs in the DO3 phase of the same alloy is in

the range 4.8x10 -19 (m2/s) to 4.7x10 -18 (m2/s) for temperatures from
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745K to 800K.

4. <111> APBs in the B2 phase and <100> APBs in the D03 phase in the Fe-

26%Al alloy migrate intrinsically without any noticeable solute drag

effect when the curvature is larger than K = 1x10 7 (m-1). When the

curvature is smaller than 1x10 7 (m-1), there was a tendency toward

reduced mobility indicating possible extrinsic behavior due to a

solute drag effect.

5. From the temperature dependence of the mobility, the activation

energy required for APB migration has been determined. For both the

<111> APBs and <100> APBs, this activation energy has almost the same

value as the activation energy for interdiffusion in the disordered

A2 phase of the Fe-Al system.

6. The Bragg-Williams model has been improved to give a better match

between the calculated and the experimental phase diagram of the Fe-

Al system. This has been achieved by considering up to third nearest

neighbor interactions and composition dependent interaction energies

which are calculated from the experimental phase diagram.

7. Using the improved Bragg-Williams model, the gradient energy coeffi-

cients K 1, K n2, Kc which are for the order parameters i1 and 772 and

the composition, respectively, have been derived for the Fe-Al sys-

tem. K71 and K 2 have positive values, but Kc has a negative value

which is consistent with the known fact that the Fe-Al system tends

to order.
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8. Due to the negative value of Kc, it is not possible to use a con-

tinuum description of diffuse interface theory to compute possible

composition variations at APBs. A discrete lattice formulation

approach is suggested to solve this problem.

9. Assuming no composition variation at APBs, the order parameter pro-

files and the energies of APBs in the Fe-Al ordered alloys can be

calculated approximately using diffuse interface theory. Calculated

results are comparable to those obtained in previous work and show

good agreement with expected trends resulting from changes of temp-

erature and composition.
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CHAPTER 6

SUGGESTIONS FOR FUTURE WORK

The following points, which have arisen from the results of this

thesis investigation, could be pursued further.

1. In order to calculate the composition variation at the APBs which is

needed for the solute drag effect calculation, a discrete lattice

formulation should be developed which is capable of dealing with both

positive and negative gradient energy coefficients.

2. Throughout the current research, the APBs were assumed to be iso-

tropic, a very reasonable assumption at elevated temperatures of T >

0.7Tc in the Fe-Al system. But there have been some experimental

observations of APB morphologies in Fe-Al alloys which show evidence

of anisotropy of the interfacial free energy. It is believed that

the elastic strain energy plays a significant role in determining

excess free energies of APBs under some conditions. To study this

problem, we should incorporate elastic strain energy effects in

describing the free energy of an inhomogeneous system containing an

APB. This can be achieved by allowing for the variation of the

lattice constant with the composition and order parameter. We can

then use a continuum formulation which is similar to the one used in

the theory of spinodal decomposition, where both profiles c(x) and

q(x) give rise to elastic strain energy contributions to the free

energy. But a discrete lattice formulation which can handle the

elastic energy contribution, as well as the negative value of Kc,
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would be most desirable to attack these problems simultaneously.

3. It would be worthwhile to study ternary Fe-Al-X alloys, where "X" is

an element that segregates strongly to APBs. Such segregation should

be marked in systems in which "X" additions markedly change the

order-disorder transition temperatures relative to those for binary

Fe-Al alloys [78]. If we have strong solute drag forces on the

migrating APBs in these ternary alloys, the "break-away" regime will

be clearly observed in in-situ hot-stage TEM experiments. Additions

of these "X" elements also tend to make the APB more anisotropic, and

the combined effects of the anisotropy and segregation could then be

studied. Additions of 5%Ti to Fe-25%Al substituting for Fe, is known

to cause dramatic anisotropic APB morphologies to develop, and Ti is

an addition that significantly raises the order-disorder transition

temperature [79].

4. The nature and magnitude of adsorption at APBs have been difficult to

quantify experimentally because of the diffuseness of the interfacial

regions, particularly in the Fe-Al system, where difficulties with

X-ray absorption effects make microanalysis by STEM extremely dif-

ficult. But it would be possible to study the structure of APBs by

means of atom-probe field-ion microscope. Not only is it be possible

to detect and quantify interfacial segregation [80,81], but it is

also possible to measure long-range order parameter [82] using the

atom probe.

5. Even though we have estimated the range of the values of the topo-

logical constant 0 of the thermal APBs in the Fe-Al system, this
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parameter should be studied more carefully. Due to the complexity of

the morphology of these APBs, it would not be very easy to determine

0 experimentally. But, it should be possible to study this problem

theoretically because values of 0 will be set by the random processes

that give rise to the ordered domain structure and will not be al-

tered by attempts to adjust the interface shape as the domain coar-

sens.
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APPENDIX A

A-i. Trace Analysis

Exact slip planes are variable for our system. Prior work [67,77]

indicated (110), (112), and (123) as possible slip planes for Fe-Al

alloys, and degree of order can affect the active slip system. The

actual slip planes can be determined using a computer program which
A A

employs beam direction, B, foil normal, S, a reference direction, R, and

a guess for the normal of the slip plane, N.

Beam direction may be determined from the selected area diffraction

(SAD) patterns. The surface normal for the sample can be determined from

the diffraction pattern taken with all tilts of specimen holder zeroed.
A A A

Once B and S have been determined, the slip plane normal, N, can

determined by trial and error. The (110) family consists of six planes,

the (112) family has twelve planes, and the (123) family has twenty-four

planes. Forty-two different plane normals have to be tried to get a

complete analysis of the potential slip planes. A computer program

will be used to do the analysis using the principles shown in Figure A-i.
A A

B, beam direction, S, surface normal, R, reference direction, and
A

N, a guess for the slip plane normal are the input for the program. The

program normalizes the vectors and then performs a series of cross pro-

ducts; the first vector product is
A A

=SXN (A-1)

T is the direction along the line of intersection between a planar defect
A

of normal N and the surface of the foil.

To determine where a picture of this defect would lie in the actual

micrograph, this direction, T, must be projected in the plane of the
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= direction of defect along foil surface, trace
S = foil normal
N = planar defect normal
B = beam direction
tp = projected trace

1 = SxN, and Tp = (fxB)xB

Figure A-i. Schematic diagram of information necessary for
a trace analysis

148



micrograph. This is done with a triple vector product:
A A

p = (B x 1) x B (A-2)

?p gives the direction of the projected trace. The program uses the

reference direction to compute the angle between A and Ip. The projected

trace can then be sketched on the micrograph (Figure A-2). The refer-

ence direction is a direction lying in the plane of the micrograph.

This direction is determined with the aid of the pertinent diffraction

pattern and the rotation calibration chart for the electron microscope

used.

A-2. Projected Width Analysis

After the trace analysis was completed, more than one slip plane had

a projected trace that aligned well with the actual trace (Figure A-2).

Calculation of projected width that would appear in the micrograph for

each well-aligned trace will be done with the formula:

A A A A

Wp = t(B N)/I (SxN)xBI (A-3)

A A

From the diffraction patterns, B and S are known. N is one of the poten-

tial slip plane normals. For a given value of thickness t, variation of

Wp can be calculated and by comparing these changes in Wp with the micro-

graphs, the actual slip plane normal can be decided. And once actual

slip plane is decided, by measuring actual projected width, we can es-

timate the foil thickness of the sample.

A-3. Separation Analysis

To calculate mobility we must know how far the hyperbolic interfaces

have moved. The following analysis should be done to know the real

separation distance d from the measured separation distance ds(p).
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Figure A-3 is a schematic diagram of a foil with intersecting planes. As

long as the measurement of separation distance is correctly made to

represent ds(p), which is the projected length of ds, the relationship

between this ds(p) and real separation d will be independent of the foil

thickness. The relationship is given by:

A A

d = s() IUs Ud 

(A-4)

S A (A-4)

Usx BI
A

where S = surface normal
A

B = beam direction
A A

N1, N2 = two slip plane normals (sign of these normals decided
so that the direction of separation is parallel to
A A

N1 + N2)
A

Ud = unit vector along the direction of d (real separation di-
rection

A A A

A Sx (NI- N2)
U s I A ^

S x (NI- N2)

A A A A

(N1x N2) (N1- N2)

(N1x N2)x(N1- N2)

A A

N+ N2
A A

IN1+ N21

Two different kinds of APB intersection images are possible, and for each

kind, measurement of ds(p) should be done differently. This is schemati-

cally represented in Figure A-4. Once the slip planes are known, we can

determine which of the two kinds is the case with the aid of stereo-

graphic projection.

A-4. Mobility Determination

Equation (3-1) gives the distance migrated by hyperbolic APBs as:

R(O,t) = ({2Mf(a)t)
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bisecting plane of

N 1 and 12 whose normal

is NI-N
2

N1xL2

drawn on bisecting plane

Measured distance d is the projection of ds on the

plane which is normal to B.

U = unit vector in the direction of d
s s

Ud = unit vector in the direction of d

U sS = 0 U (N1-N2) = 0

Figure A-3 Schematic diagrams for separation distance analysis
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(a)

thin foil

projected
image

Figure A-4. Schematic diagrams showing two different types of
intersecting APBs. Relative directions of two plane
normals with beam direction decide the type for a
particular intersection. Note the difference of d
measurement from the projected images. s(p)
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R in this experiment is one half of real separation d, as calculated from

Equation (A-4). a is one half the angle between two intersecting planes

which is smaller than 180 ° . a can be calculated once we know two inter-

secting planes. f(a) can be gotten from Figure (3-4). t is the duration

of the APB migration. From this we can calculate the APB mobility, M.
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APPENDIX B

ERRORS IN MEASURING DISTANCES AND CURVATURES FROM A
PROJECTED IMAGE DUE TO THE SPECIMEN TILTING.

It is inevitable to tilt a thin foil sample of TEM with respect to

the beam direction in order to get a superlattice dark-field image of

APBs. And the image formed on a plane normal to the beam direction is

the projected image of the tilted sample along the beam direction. If

the tilt angle is small, the difference between the projected image and

the real image will be small because the difference will be proportional

to the cosine value of the tilt angle. Roughly speaking, if the tilt

angle is less than 200, the linear difference between the projected and

the true image would be less than 6% which is within the measuring error

range. In most of our experiments we used the tilt angles less than

200. But in some cases where the tilt angles were large, we should con-

sider the specimen tilt in measuring distances and curvatures from the

projected images.

It would not be feasible to compensate the tilting effect exactly in

measuring the local curvatures of APBs from the projected images due to

the complex morphology of the APBs. But we can reduce the error if we

know the total tilt angle and the tilt axis. The tilt axis can be calcu-

lated from the surface normal of the untilted specimen and the beam

direction to the tilted specimen. The tilt axis would be normal to both
A A

the surface normal S and the beam direction B. The tilt axis A can be

expressed by:

A A

SSxB (B-i)Sx BI
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And A can be drawn on the projected image if the relative rotation

between the image and the diffraction pattern is known.

The linear distance between two arbitrary points on a projected image

can not be greater than the true distance, but the local curvature of a

projected APB image can be either larger or smaller than the true local

curvature depending on the relation between the tilt axis and the APB.

This is schematically illustrated in Figure (B-i). In Figure (B-i) (a),

the curvature at the tip of a projected parabolic APB is larger than the

true curvature. But the measurement of the migrating distance of the tip

which will be along the tilt axis will not change with the tilt. The

mobility calculated from the measurements of the curvature and the migra-

ting distance of this feature will be lower than the true mobility.

In Figure (B-i) (b), the curvature at the tip of a projected para-

bolic APB is smaller than the true curvature. And the measurement of the

migrating distance of the tip which is normal to the tilt axis is smaller

that the true value due to tilting. In calculating the mobility from

these measurements, the effects of the tilt on the curvature and the

distance tend to cancel themselves out, because the mobility is the ratio

of the curvature and the migrating distance in unit time. If we consider

a circular APB in Figure (B-i) (c), we can calculate the exact effects of

tilting on the measurements. If a circular APB with a radius r is tilted

by angle 0, the projected image will be an ellipse with the long axis r

and the short axis rcos0. The curvature at the tip of the long axis is

then given by:

(K)1 2 2 (B-1)
r cos 0
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Projected Images

Tilting angle(a)

(b)

(c)

Figure (B-1) Effects of specimen tilting on the projected APB
images. Linear distance between any two points
is reduced or remains unchanged, and the local
curvature can increase or decrease depending on
the orientational relation between the tilt axis and

the APB.
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And the curvature at the tip of the short axis is given by:

(K) r cos (B-2)
r

The migration distance along the long axis which is parallel to the tilt

axis is unchanged by image projection. Thus the measured ratio of the

migration distance and the curvature, which is proportional to the mobi-

lity, is smaller than the real ratio by the factor of cos20. But the

migration distance along the short axis which is normal to the tilt axis

reduces by the factor of cos0 by image projection. And the measured

ratio of the migration distance and the curvature is the same as the real

ratio because the cos0 terms in both the curvature and distance cancel

each other.

Therefore, we can reduce the error introduced by specimen tilting in

calculating the mobility by measuring the migration distances and the

local curvatures of the APBs which move normal to the tilt axis.
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APPENDIX C

SHRINKING OF AN ELLIPTIC APB TO A CIRCULAR APB

As mentioned in Section 3-2-3, we have observed many elliptic APBs

became circular as they shrunk to disappear in thin-foil samples. It

would be worthwhile to analyze this problem mathematically to see if a

two-dimensional elliptic boundary is expected to shrink into a circular

boundary before it disappears.

Mullins [61] first considered two-dimensional motion of idealized

grain boundaries where any given point of a curve moves toward its center

of curvature with a speed that is proportional to the curvature. Let's

consider a shrinking ellipse which has the long axis of 2a parallel to y

axis and the short axis of 2b parallel to x axis. The equation of this

ellipse is then given by:

2 2

2 + =1 (C-1)

The radius of curvature of a two-dimensional curve of y = f(x) is given

by:

1 f 1+(y2) 3

K y" (C-2)

The curvature of the ellipse at the tip of the long axis is then given

by:

(K)a a (C-3)
b

And the curvature at the tip of the short axis is:

(K)b= b2 (C-4)
a
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The shrinking rate at the tip of the long axis is then given by:

da = -M a (C-5)
dt 2

Similarly the shrinking rate at the short axis tip is:

db= -M b (C-6)
dt 2a

where M is the mobility of the boundary.

In order for the ellipse to preserve the elliptic shape, we should

have the condition:

da a (C-7)
db - b

But actually we have the condition:

db= ()3 (C-8)

Because a > b by definition, the shrinking rate of the long axis is much

faster than that of the short axis. Thus the ellipse will become more

circular as it shrinks.

By integrating Equation (C-8), we have:

a_ (C-9)b

1+b2c

where c = a - a . a and b are the respective initial values for a
0 0 0 0

and b.

Thus if the initial ellipse has the ratio of ao/bo = 2, then

a 1 (C-10)b -

1-2 b24

a/b becomes 1.05 when b = 0.352b . This means the initial ellipse of

aspect ratio 2 becomes virtually circular (difference between the long
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axis and the short axis of 5%) when the short axis is 35% of its initial

length. But it should be noted that the exact circular boundary having

a/b = 1 will not be formed until the ellipse totally disappear. This

can be seen from Equation (C-10), where a/b = 1 only when b = 0.

In the limiting case of the infinite aspect ratio where ao/bo = c,

we have:

a 1
= (C-11)

S1 - b2

In this case we have a/b = 1.05 when b = 0.305b .

Thus we can say that an ellipse becomes virtually circular as it

shrinks when their short axis becomes =30% of its initial value. This

result is consistent with what we observed experimentally.
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APPENDIX D

THE COMPUTER PROGRAMS APBPRO1 AND APBPR02:
DESCRIPTION AND SAMPLE LISTS

The programs APBPR01 and APBPR02 have been written to compute the

equilibrium order parameters, the order parameter profiles and the ener-

gies of APBs in the Fe-Al binary alloys for given temperature and alloy

composition, based on the equations described in Chapter 4.

The programs have been written in FORTRAN (in CMS operating system of

IBM) and use all double precision variables except for integer constants.

Alloy composition, CB, is given by the mole fraction of Fe atoms. The

unit for the temperature and V(O)/kB, V( 1)/kB and V(W2)/kB is the ab-

solute temperature K. The gradient energy parameters Kc, K , and K 2

are given in erg/nm. The free energy of the system per unit volume is

calculated in erg/nm3.

The equilibrium atomic order parameters are computed using a NAG

subroutine C05NBF. Because of the logarithmic functions which can not

have negative arguments, reasonable guesses for the starting values for

the order parameters are needed for this subroutine to compute 771e and

172e.

The order parameter profiles are calculated by solving the Euler

equations in Equations (4-12) through Equation (4-15) using a NAG sub-

routine DO2HAF. Two boundary values for each differential equation

should be supplied, one being the mathematical boundary condition for one

end and the other being a well guessed value for the other end which will

be adjusted in the subroutine.

The distance range in which the order parameter profile will be
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calculated should be given in nanometers. This range should be adjusted

to cover the whole diffuse interface. But if the range is much larger

than the thickness of the diffuse interface, the subroutine has troubles

to find the solution. Once the distance range is given, the subroutine

determines the interval of calculation by itself to optimize the calcula-

tion. The number of intervals is usually far more than enough for our

purpose of the profile calculation. This subroutine gives the values of

n and dn/dx from x=O to x=xFINAL at intervals specified by NLIMIT, which

is given as an input data.

The interfacial free energy of the APB is calculated by numerical

integration of Equation (4-1) using Simpson's rule. The interfacial

energy is calculated in erg/nm 2 and is converted in erg/cm2 for printout.

The program APBPRO1 is for <111> APBs in B2 ordered alloys, and the

program APBPRO2 is for <100> APBs in D003 ordered alloys.
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C PROGRAM NAME: APBPROI APB00010
C THIS PROGRAM SOLVES THE EULER EQUATIONS TO GIVE THE ORDER APB00020
C PARAMETER PROFILE OF THE APBS WHICH GIVE MINIMUM INTERFACIAL APB00030
C ENERGY IN B2 ORDERED FE-AL ALLOYS. THE PROGRAM USES TWO NAG APB00040
C NUMERICAL SUBROUTINES. C05NBF IS USED FOR CALCULATING ORDER APB00050
C PARAMETERS FROM NON-LINEAR TRANSCENDENTAL EQUATIONS. APB00060
C D02HAF IS USED FOR SOLVING DIFFERENTIAL EQUATIONS OF THE APB00070
C EULER EQUATIONS. APB00080
C APB00090
C VARING ONLY B2 ORDER PARAMETER,HOLDING COMP CONSTANT. APB00100
C DO3 ORDER PARAMETER IS NEGLECTED IN COMPUTING B2 APB PROFILES APB00110
C AND ENERGY SINCE DO3 ORDER IS FORMED ONLY AFTER B2 ORDERING APB00120
C APB00130
C ROUTINE FOR INTERFACIAL ENERGY CALCULATION INCLUDED., APB00140
C ---------------------------------------------------------- APB00150

APB00160
IMPLICIT DOUBLE PRECISION (A-H,P-Z) APBO00170

C-- ETAFN AND ECFUN DECLARED AS EXTERNAL FOR USE IN C05NBF AND D02HAF APB00180
EXTERNAL ETAFN, ECFUN APB00190

APB00200
COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DV1DC,DV2DC,VIDK,V2DK, APB00210
& DFDC,DELF,ETI,ET2,NUMEQ APB00220

APB00230
DIMENSION BOUND2(2,2),BDFLG2(2,2),ECVAL2(2,200) APB00240
DIMENSION ETAE(2),FNVEC(2),WORK2(2,50),WORK(50) APB00250

APB00260
LWORK=50 APB00270

C------- DATA INPUT --------- APBOC280
C-- THE NUMBER OF POINTS TO BE CALCULATED FOR GIVEN INTERVAL APB00290

WRITE (6,*) 'NUMBER OF POINTS= ' APB00300
READ (6,*) NLIMIT APB00310

C-- DATA FOR COMPOSITION, TEMPERATURE AND ENERGY PARAMETERS APB00320
WRITE (6,*) 'COMPOSITION IN XFE= , TEMP IN K= ' APB00330
READ (6,*) CB,TEMP APB00340
WRITE (6,*) 'ENERGY PARAMETER VO/K IN K= ' APB00350
READ (6,*) VODK APB00360
WRITE (6,*) 'GRADIENT ENERGY PARAMETERS KC,KE1,KE2 IN ERG/NM ' APB00370
READ (6,*) TKAPC,TKAPE1,TKAPE2 APB00380
WRITE (6,*) 'COMPOSITIONAL DERIVATIVES OF V1/K AND V2/K ' APB00390
READ (6,*) DV1DC,DV2DC APB00400

APB00410
CBIMCB=CB*(1DO-CB) APB00420
IF (ABS(CBIMCB) .LT. 1D-27) STOP 27 APB00430

APBOO0440
C-- CALCULATION OF ENERGY PARAMETERS V1/K AND V2/K AS FUNCTIONS OF CB APBOO0450

VIDK=(2.0764D3+(1DO-CB)*((-1.835D4)+2.3655D4*(1DO-CB)))/CBIMCB APB00460
V2DK=2.9512D5+CB*((-1.2021D6)+CB*(1.6157D6+CB*(-7.2461D5))) APB00470

APB00480
C-- COMPUTATION OF EQUILIBRIUM ORDER PARAMETERS ETAEl AND ETAE2 APB00490
C USING NAG C05NBF FOR GIVEN CB AND TEMP. APB00500
C APB00510
C TOLERANCE FOR C05NBF, THIS CAN BE ADJUSTED APB00520

ETOL=1.D-05 APB00530
C-- STARTING VALUES FOR ETAIE AND ETA2E, TO BE USED IN C05NBF APB00540
C THESE VALUES SHOULD BE ADJUSTED AS CB AND TEMP CHANGE APB00550

ETAE(1)=0.050DO APB00560
ETAE(2)=0.OODO APB00570

APB00580
C-- CALL FOR C05NBF TO CALCULATE EQUATIONS IN SUBROUTINE ETAFN APB00590

IFAIL=0O APB00600
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CALL C05NBF(ETAFN,2,ETAE,FNVEC,ETOL,WORK,LWOR K,IFAIL) APB00610
WRITE(6,*) 'C05NBF ERROR CODE = ',IFAIL APB00620
WRITE(6,*) 'FINAL VALUE OF IST ZERO = ',FNVEC(1) APB00630
WRITE(6,*) 'FINAL VALUE OF 2ND ZERO = ',FNVEC(2) APB00640
WRITE(6,*) 'TEMP= ',TEMP APB00650
WRITE(6,*) 'ETAIE = ',ETAE(1) ,'ETA2E = ',ETAE(2) APB00660
ET1=ETAE(1) APB00670
ET2=ETAE(2) APB00680

APB00690
C-- PARTIAL DIFF OF FREE ENERGY DIFFERENCE DELTAF BY CB AT EQUIL. APB00700
C ORDER PARAMETERS APB00710

CP=CB+ETAE(1) APB00720
CMP=CB-ETAE(1) +ETAE(2) APB00730
CMM=CB-ETAE(1) -ETAE(2) APB00740
Z=DLOG(CP/(1DO-CP))+.5DO*DLOG(CMM*CMP/((1DO-CMM)*(1DO-CMP))) APB00750
Z=TEMP*Z+VODK*(2DO*CB-1DO)+DV1DC*ETAE(1)**2+ APB00760
& .5DO*DV2DC*ETAE(2)**2 APB00770
DFDC=5.7195D-15*Z/(2DO*TKAPC) APB00780

APB00790
C-- SOLVE DIFF'NTIAL EQUATIONS APB00800
C USING NAG D02HAF. EQUATIONS SUPPLIED IN SUBROUTINE ECFUN APB00810

NUMEQ=2 APB00820
APB00830

C FREE ENERGIES IN UNIT VOLUME (ERG/NM3) APB00840
DELFO=5.7195D-15*(VODK*CB*(CB-1DO)+2.0*TEMP*CB*DLOG(CB)+ APB00850
& 2.0TEMP*(1D0-CB)*DLOG(1D0-CB)) APB00860
DELF=5.7195D-15*(VODK*CB*(CB-1DO)+VIDK*ETAE(1)**2+0.5DO*V2DK* APB00870
& ETAE(2)**2+TEMP*(CP*DLOG(CP)+(1DO-CP)*DLOG(1D0-CP)+ APB00880
& 0.5DO*CMM*DLOG(CMM)+0.5DO*(1DO-CMM)*DLOG(1D0-CMM)+ APB00890
& 0.5DO*CMP*DLOG(CMP)+0.5DO*(1DO-CMP)*DLOG(1D0-CMP))) APB00900
DETADX=DSQRT((DELFO-DELF)/TKAPE1) APB00910

C DETADX IS AN ESTIMATE OF THE INITIAL SLOPE OF ORDER PARAMETER APB00920
C PROFILE APB00930

APB00940
C-- BOUNDARY CONDITIONS (SOME FIXED, SOME ADJUSTABLE) APB00950

APB00960
BOUND2(1,1)=ODO APB00970
BOUND2(2,1)=DETADX APB00980
BOUND2(1,2)=ETAE(1) APB00990
BOUND2(2,2)=ODO APB01000
BDFLG2(1,1)=0DO APB01010
BDFLG2(2,1)=1DO APB01020
BDFLG2(1,2)=0DO APB01030
BDFLG2(2,2)=1DO APB01040

APB01050
C-- RANGE OF THE DISTANCE OF APB THICKNESS IN NM APB01060
C XFINAL SHOULD BE ADJUSTED ACCORDING TO THE DIFFUSENESS OF APB APB01070

XINIT=ODO APB01080
WRITE (6,*) 'XFINAL= ' APB01090
READ (6,*) XFINAL APB01100

C ADJUSTABLE TOLERANCE FOR D02HAF APB01110
TOL=1D-6 APB01120
IFAIL=110 APB01130

APB01140

CALL D02HAF(BOUND2, BDFLG2, NUMEQ, XINIT, XFINAL, TOL, ECFUN, APB01150
& ECVAL2, NLIMIT, WORK2,LWORK, IFAIL) APB01160

APB01170

IF (IFAIL .EQ. 0) GOTO 9000 APB01180
WRITE(6,*) 'Diff-eq. failure = ',IFAIL,'Tolerance =',TOL APB01190

APB01200
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9000 WRITE(6,9015) CB,TEMP,ETAE(1),ETAE(2) APB01210
9015 FORMAT (1X,'CB=',F5.3,2X,'TEMP=',F6.1,2X,'ETA1E=',E11.4,2X, APB01220

& 'ETA2E=',E11.4) APB01230
WRITE(6,*) 'FROM X=ONM TO XFINAL= ',XFINAL APB01240
WRITE(6,9014) (ECVAL2(1,J),J=1,NLIMIT) APB01250
WRITE(6,9013) (ECVAL2(2,J) ,J=1,NLIMIT) APBO1260

9014 FORMAT(1X,'VALUE OF ETAl FROM X=0 TO XFINAL' //6(D11.4,1X)) APB01270
9013 FORMAT(1X,'VALUE OF (ETAl)" FROM X=0 TO XFINAL' //6(D11.4,1X)) APBO1280

APB01290
C-------------------------------------------------------------------- APB01300
C-- CALCULATION OF INTERFACIAL ENERGY SIGMA USING SIMPSON FORMULA APB01310

WRITE(6,9020) NLIMIT APB01320
9020 FORMAT(1X,'NUMBER OF POINTS USED IN INTEGRATION FOR SIGMA=',I7) APB01330

IF (NLIMIT .EQ. (NLIMIT/2)*2) GOTO 210 APB01340
NUI=NLIMIT-1 APB01350
NU2=NLIMIT-2 APB01360
GOTO 220 APB01370

210 NUI=NLIMIT APB01380
NU2=NLIMIT-1 APB01390

220 H=(XFINAL-XINIT)/(NLIMIT-1) APB01400
SUM1=0DO APB01410
SUM2=ODO APB01420
DO 110 I=2,NU1,2 APB01430

SUM1=SUM1+4DO*ECVAL2(2,I)**2 APB01440
110 CONTINUE APB01450

DO 120 I=3,NU2,2 APB01460
SUM2=SUM2+2DO*ECVAL2(2,I)**2 APB01470

120 CONTINUE APB01480
APB01490

TINT1=(H/3DO)*(SUM1+SUM2+ECVAL2(2,1)**2+ECVAL2(2,NLIMIT)**2) APB01500
SUM3=0DO APB01510
SUM4=0DO APB01520
DO 130 I=2,NU1,2 APBO1530

SUM3=SUM3+4DO*FREE(ECVAL2(1,I)) APB01540
130 CONTINUE APB01550

DO 140 I=3,NU2,2 APB01560
SUM4=SUM4+2DO*FREE(ECVAL2(1,I)) APB01570

140 CONTINUE APB01580
TINT2=(H/3DO)*(SUM3+SUM4+FREE(ECVAL2(1,1)) APB01590
& +FREE(ECVAL2(1,NLIMIT))) APB01600
SIGMA=(2DO*TINT2+2DO*TKAPE1*TINT1)*1D14 APB01610
WRITE(6,9016) SIGMA APB01620

9016 FORMAT(1X,'INTERFACIAL ENERGY OF B2 APB= ',D12.5,' ERG/CM2') APB01630
APB01640
APB01650

STOP 9000 APB01660
END APB01670

APB01680
C---- END OF MAIN PROGRAM ------------------------------- APB01690

APB01700
APB01710

FUNCTION FREE(ETA) APB01720
C-- CALCULATION OF FREE ENERGY DIFFERENCE APB01730

IMPLICIT DOUBLE PRECISION (A-H,P-Z) APB01740
COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DV1DC,DV2DC,V1DK,V2DK, APB01750
& DFDC,DELF,ET1,ET2,NUMEQ APB01760

APB01770
CP=CB+ETA APB01780
CMP=CB-ETA APB01790
CMM=CB-ETA APB01800
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APB01810
FREE=5.7195D-15*(VODK*B*(CB B-IDO)+VIDK*ETA**2+ APB01820
& TEMP*(CP*DLOG(CP)+ APB01830
& (1DO-CP)*DLOG(1DO-CP)+0.5DO*CMM*DLOG(CMM)+0.5DO*(1DO-CMM)* APB01840
& DLOG(1DO-CMM)+0.5DO*CMP*DLOG(CMP)+0.5DO*(1DO-CMP)* APB01850
& DLOG(1DO-CMP)))-DELF APB01860

APB01870
RETURN APB01880
END APB01890

APB01900
APBO1910

C-- SUBROUTINE ETAFN TO BE USED IN C05NBF APB01920
APB01930

SUBROUTINE ETAFN(N,ETAE,FNVEC,IFLAG) APB01940
IMPLICIT DOUBLE PRECISION (A-H,P-Z) APB01950
COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DVIDC,DV2DC,VIDK,V2DK, APB01960
& DFDC,DELF,ET1,ET2,NUMEQ APB01970
DIMENSION ETAE(N),FNVEC(N) APB01980

APB01990
WRITE(6,*) 'ETAFN CALLED WITH: ',ETAE(1),ETAE(2) APB02000

APB02010
CM=CB-ETAE(1) APB02020
CP=CB+ETAE(1) APB02030
CMP=CM+ETAE(2) APB02040
CMM=CM-ETAE(2) APB02050
ETV=DEXP(4D0*ETAE(1)*V1DK/TEMP) APB02060

APB02070
CCCC=(1DO-CMP)*CMM/((1DO-CMM)*CMP) APB02080
FNVEC(1)=CCCC-DEXP(2DO*ETAE(2)*V2DK/TEMP) APB02090

APB02100
CE1=CP**2*ETV-(1-CP)**2 APB02110
IF (CE1 .NE. ODO) GOTO 90 APB02120
WRITE(6,*) 'ETAFN(2) 1ST RESET AT ',ETAE(1),ETAE(2) APB02130
CE1=1D0 APB02140

90 C1EC1=(CP*(1DO-CM))**2*ETV-(CM*(1DO-CP))**2 APB02150
APB02160

C1EC1=CIEC1/CE1 APB02170
FNVEC(2)=ETAE(2)**2-CIECI APB02180

APB02190
RETURN APB02200
END APB02210

APB02220
APB02230

C-- SUBROUTINE ECFUN TO BE USED IN D02HAF APB02240
APB02250

SUBROUTINE ECFUN(X, VARS, DIFVEC) APB02260
C Compute derivates according to expanded first-order eqns. APB02270

IMPLICIT DOUBLE PRECISION (A-H, O-Z, $) APB02280
DIMENSION VARS(2), DIFVEC(2), ETAE(2) APB02290
DATA IPRINT / 1 / APB02300
COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DVIDC,DV2DC,VIDK,V2DK, APB02310
& DFDC,DELF,ET1,ET2,NUMEQ APB02320

APB02330
CP=CB+VARS(1) APB02340
CMP=CB-VARS(1) APB02350
CMM=CB-VARS(1) APB02360
CPD1=CP/(1DO-CP) APB02370
CMPD1=CMP/(1DO-CMP) APB02380
CMMD1=CMM/(1DO-CMM) APB02390
IF (CPD1 .LE. ODO) THEN APB02400
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WRITE (6,*) CPDI,X,VARS(1), VARS(2) APB02410
STOP 1000 APB02420

ENDIF APB02430
APB02440

13 CMMD1=CMMD1*CMPD1 APB02450
IF (CMMD1 .GT. 1D-44) GOTO 14 APB02460
WRITE(6,*) '2ND LOGARITHM ARGUMENT RESET IN ECFUN' APB02470
WRITE (6,*)X,VARS(1),VARS(2),CMMDI APB02480
STOP 1100 APB02490

14 CPD1L=DLOG(CPD1) APB02500
CCCCL2=.5DO*DLOG(CMMDI) APB02510

APB02520
DIFVEC(1)=VARS(2) APB02530
DIFVEC(2)=(5.7195D-15/TKAPE1)*( V1DK*VARS(1)+(TEMP/2DO)* APB02540
& (CPD1L-CCCCL2) APB02550

APB02560
APB02570

RETURN APB02580
END APB02590
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C PROGRAM NAME: APBPRO2 APB00010
C THIS PROGRAM SOLVES THE EULER EQUATIONS TO GIVE THE ORDER APB00020
C PARAMETER PROFILE OF THE APBS WHICH GIVES THE MINIMUM APB00030
C INTERFACIAL ENERGY IN D03 ORDERED FE-AL ALLOYS. APB00040
C THE PROGRAM USES TWO NAG NUMERICAL SUBROUTINES. C05NBF APB00050
C IS USED FOR CALCULATING ORDER PARAMETERS FROM NON-LINEAR APB00060
C TRANSCENDENTAL EQUATIONS. D02HAF IS USED FOR SOLVING APB00070
C DIFFERENTIAL EQUATIONS OF THE EULE EQUATIONS. APB00080
C APB00090
C VARING ONLY THE DO03 ORDER PARAMETER ETA2, HOLDING APB00100
C COMPOSITION AND B2 ORDER PARAMETER ETAl CONSTANT. APB00110
C APB00120
C ROUTINE FOR INTERFACIAL ENERGY CALCULATION INCLUDED. APB00130
C ------------------------------------------------------ APB00140

APB00150
APB00160

IMPLICIT DOUBLE PRECISION (A-H,P-Z) APB00170
C-- ETAFN AND ECFUN DECLARED AS EXTERNAL FOR USE IN CO5NBF AND D02HAF APB00180

EXTERNAL ETAFN, ECFUN APB00190
APB00200

COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DVIDC,DV2DC,V1DK,V2DK, APB00210
& ET1,ET2, DFDC,DELF2,NUMEQ APB00220

APB00230
DIMENSION BOUND2(2,2),BDFLG2(2,2),ECVAL2(2,131) APB00240
DIMENSION ETAE(2),FNVEC(2),WORK2(2,50),WORK(50) APB00250

APB00260
LWORK=50 APB00270

C-------- DATA INPUT ------------ APB00280
C THE NUMBER OF POINTS TO BE CALCULATED FOR GIVEN INTERVAL APB00290

WRITE (6,*) 'NUMBER OF POINTS= ' APB00300
READ (6,*) NLIMIT APB00310

C DATA FOR COMPOSITION, TEMPERATURE AND ENERGY PARAMETERS APB00320
WRITE (6,*) 'COMPOSITION IN XFE= , TEMP IN K= ' APB00330
READ (6,*) CB,TEMP APB00340
WRITE (6,*) 'ENERGY PARAMETER VO/K IN K= ' APB00350
READ (6,*) VODK APB00360
WRITE (6,*) 'GRADIENT ENERGY PARAMETERS KC,KEI,KE2 IN ERG/NM' APB00370
READ (6,*) TKAPC,TKAPE1,TKAPE2 APB00380
WRITE (6,*) 'COMPOSITIONAL DERIVATIVES OF V1/K AND V2/K' APB00390
READ (6,*) DV1DC,DV2DC APB00400

APB00410
APB00420

CBlMCB=CB*(IDO-CB) APB00430
IF (ABS(CBIMCB) .LT. 1D-27) STOP 27 APB00440

APB00450

C-- CALCULATION OF ENERGY PARAMETERS V1/K AND V2/K AS FUNCTIONS OF CB APB00460
V1DK=(2.0764D3+(1DO-CB)*((-1.835D4)+2.3655D4*(1DO-CB)))/CBIMCB APB00470
V2DK=2.9512D5+CB*((-1.2021D6)+CB*(1.6157D6+CB*(-7.2461D5))) APB00480

APB00490

C-- COMPUTATION OF EQUILIBRIUM ORDER PARAMETERS ETAE1 AND ETAE2 APB00500
C USING NAG C05NBF FOR GIVEN CB AND TEMP. APB00510

APB00520

C TOLERANCE FOR C05NBF, THIS CAN BE ADJUSTED APB00530
ETOL=1.D-06 APB00540

C STARTING VALUES FOR ETAIE AND ETA2E APB00550
C THESE VALUES SHOULD BE ADJUSTED AS CB AND TEMP CHANGE APB00560

ETAE(1)=0.20D0O APB00570

ETAE(2)=0.02DO APB00580
APB00590

C-- CALL FOR C05NBF TO CALCULATE EQUATIONS IN SOUBROUTINE ETAFN APB00600
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IFAIL=O APB00610
CALL C05NBF(ETAFN,2,ETAE,FNVEC,ETOL,WORK,LWORK,IFAIL) APB00620
WRITE(6,*) 'CO5NBF ERROR CODE = ',IFAIL APB00630
WRITE(6,*) 'FINAL VALUE OF IST ZERO = ',FNVEC(1) APB00640
WRITE(6,*) 'FINAL VALUE OF 2ND ZERO = ',FNVEC(2) APB00650
WRITE(6,*) 'TEMP= ',TEMP APB00660
WRITE(6,*) 'ETAIE = ',ETAE(1) ,'ETA2E = ',ETAE(2) APB00670
ET1=ETAE(1) APB00680
ET2=ETAE(2) APB00690

C-- PARTIAL DIFF OF FREE ENERGY DIFFERENCE DELTAF BY CB AT EQUIL. APB00700
C ORDER PARAMETERS. APB00710

CM=CB-ETAE(1) APB00720
CP=CB+ETAE(1) APB00730
CMP=CB-ETAE(1) +ETAE(2) APB00740
CMM=CB-ETAE(1) -ETAE(2) APB00750
Z=DLOG(CP/(1DO-CP))+.5DO*DLOG(CMM*CMP/((1DO-CMM)*(1DO-CMP))) APB00760
Z=TEMP*Z+VODK*(2DO*CB-1DO)+DV1DC*ETAE(1)**2+ APB00770
& .5DO*DV2DC*ETAE(2)**2 APB00780
DFDC=5.7195D-15*Z/(2DO*TKAPC) APB00790

APB00800
C-- SOLVING DIFF'NTIAL EQUATIONS USING NAG D02HAF. APB00810
C EQUATIONS SUPPLIED IN SUBROUTINE ECFUN APB00820

APB00830
NUMEQ=2 APB00840

APBO00850
C FREE ENERGIES IN UNIT VOLUME (ERG/NM3) APB00860

DELF20=5.7195D-15*(VODK*CB*(CB-1DO)+V1DK*ETAE(1)**2+TEMP*(CP* APBO00870
& DLOG(CP)+CM*DLOG(CM)+(1DO-CP)*DLOG(1DO-CP)+(1DO-CM)* APB00880
& DLOG(1DO-CM))) APB00890
DELF2=5.7195D-15*(VODK*CB*CB(CB-1DO)+VDK*ETAE(1)**2+0.5DO*V2DK* APB00900
& ETAE(2)**2+TEMP*(CP*DLOG(CP)+(1DO-CP)*DLOG(1DO-CP))+ APB00910
& 0.5DO*TEMP*(CMM*DLOG(CMM)+(IDO-CMM)*DLOG(1DO-CMM)+ APB00920
& CMP*DLOG(CMP)+(1DO-CMP)*DLOG(1DO-CMP))) APB00930
DET2DX=DSQRT((DELF20-DELF2)/TKAPE2) APB00940
WRITE(6,*) 'DET2DX=',DET2DX APB00950

C-- DET2DX IS AN ESTIMATE OF THE INITIAL SLOPE OF ORDER PARAMETER APB00960
C PROFILE APB00970

APB00980
C-- BOUNDARY CONDITIONS (SOME FIXED, SOME ADJUSTABLE) APB00990

APB01000
BOUND2(1,1)=0DO APB01010
BOUND2(2,1)=DET2DX APB01020
BOUND2(1,2)=ETAE(2) APB01030
BOUND2(2,2)=ODO APB01040
BDFLG2(1,1)=ODO APB01050
BDFLG2(2,1)=IDO APB01060
BDFLG2(1,2)=ODO APB01070
BDFLG2(2,2)=1DO APB01080

APB01090
C-- RANGE OF THE DISTANCE OF APB THICKNESS IN NM APB01100
C XFINAL SHOULD BE ADJUSTED ACCORDING TO THE DIFFUSENESS OF APB. APB01110

XINIT=ODO APB01120
WRITE(6,*) 'XFINAL= ' APB01130
READ (6,*) XFINAL APB01140

C ADJUSTABLE TOLERANCE FOR D02HAF APB01150
TOL=1D-6 APBO1160
IFAIL=110 APB01170

APB01180
CALL D02HAF(BOUND2, BDFLG2, NUMEQ, XINIT, XFINAL, TOL, ECFUN, APB01190
& ECVAL2, NLIMIT, WORK2,LWORK, IFAIL) APB01200
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APB01210
IF (IFAIL .EQ. 0) GOTO 9000 APB01220
WRITE(6,*) 'Diff-eq. failure = ',IFAIL,'Tolerance =',TOL APB01230

APB01240
9000 WRITE(6,9015) CB,TEMP,ETAE(1),ETAE(2) APB01250
9015 FORMAT (1X,'CB=',F5.3,2X,'TEMP=',F5.1,2X,'ETA1E=',E11.4,2X, APB01260

& 'ETA2E=',E11.4) APB01270
WRITE(6,*) 'FROM X=0ONM TO XFINAL= ', XFINAL APB01280
WRITE(6,9014)(ECVAL2(1,J),J=I,NLIMIT) APB01290
WRITE(6,9013)(ECVAL2(2,J),J=1,NLIMIT) APB01300

9014 FORMAT(1X,'VALUE OF ETA2 FROM X=0 TO XFINAL //6(D11.4,1X)) APB01310
9013 FORMAT(IX,'VALUE OF (ETA2)" FROM X=0 TO XFINAL //6(D11.4,1X)) APB01320

APB01330
APB01340

C-- CALCULATION OF INTERFACIAL ENERGY SIGMA USING SIMPSON FORMULA APB01350
APB01360

WRITE(6,9020) NLIMIT APB01370
9020 FORMAT(1X,'NUMBER OF POINTS USED IN INTEGRATION = ',17) APB01380

IF (NLIMIT .EQ. (NLIMIT/2)*2) GOTO 210 APB01390
NUI=NLIMIT-1 APB01400
NU2=NLIMIT-2 APB01410
GOTO 220 APB01420

210 NUI=NLIMIT APB01430
NU2=NLIMIT-1 APB01440

220 H=(XFINAL-XINIT)/(NLIMIT-1) APB01450
SUM1=0DO APB01460
SUM2=ODO APB01470
DO 110 I=2,NUI,2 APB01480

SUM1=SUM1+4DO*ECVAL2(2,I)**2 APB01490
110 CONTINUE APB01500

DO 120 I=3,NU2,2 APB01510
SUM2=SUM2+2DO*ECVAL2(2,I)**2 APB01520

120 CONTINUE APB01530
TINT1=(H/3.ODO)*(SUM1+SUM2+ECVAL2(2,1)**2 APB01540
& +ECVAL2(2,NLIMIT)**2) APB01550
SUM3=ODO APB01560
SUM4=0DO APB01570
DO 130 I=2,NU1,2 APB01580

SUM3=SUM3+4DO*FREE(ECVAL2(1,I)) APB01590
130 CONTINUE APB01600

DO 140 I=3,NU2,2 APB01610
SUM4=SUM4+2DO*FREE(ECVAL2(1,I)) APB01620

140 CONTINUE APB01630
TINT2=(H/3DO)*(SUM3+SUM4+FREE(ECVAL2(1,1)) APB01640
& +FREE(ECVAL2(1,NLIMIT))) APB01650
SIGMA=(2DO*TINT2+2DO*TKAPE2*TINT1)*1D14 APB01660
WRITE(6,9017) SIGMA APB01670

9017 FORMAT(1X,'INTERFACIAL ENERGY OF DO3 APB= ',D12.5,' ERG/CM2') APB01680
APB01690

STOP 9000 APB01700
END APB01710

APB01720
C---- END OF MAIN PROGRAM --------------------------------------- APB01730

APB01740
APB01750

C-- FUNCTION FOR FREE ENERGY DIFFERENCE CALCULATION APB01760
FUNCTION FREE(ETA2) APB01770
IMPLICIT DOUBLE PRECISION (A-H,P-Z) APB01780

COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DV1DC,DV2DC,VIDK,V2DK, APB01790
& ET1,ET2,DFDC,DELF2,NUMEQ APB01800
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APB01810
CP=CB+ET1 APB01820
CM=CB-ETI APB01830
CMP=CM+ETA2 APB01840
CMM=CM-ETA2 APB01850

APB01860
FREE=5.7195D-15*(VODK*CB*(CB-1DO)+VIDK*ET1**2 APB01870
& +0.5DO*V2DK*ETA2**2 APB01880
& +TEMP*(CP*DLOG(CP)+(1D0-CP)*DLOG(IDO-CP))+0.5DO*TEMP* APB01890
& (CMM*DLOG(CMM)+(1DO-CMM)*DLOG(1DO-CMM)+CMP*DLOG(CMP)+ APBO1900
& (1DO-CMP)*DLOG(IDO-CMP)))-DELF2 APB01910

APB01920
RETURN APB01930
END APB01940

APB01950
C---- SUBROUTINE ETAFN TO BE USED IN C05NBF APB01960

APB01970
SUBROUTINE ETAFN(N,ETAE,FNVEC,IFLAG) APB01980
IMPLICIT DOUBLE PRECISION (A-H,P-Z) APB01990
COMMON CB,TEMP,V0DK,TKAPC,TKAPEI,TKAPE2,DVIDC,DV2DC,V1DK,V2DK, APB02000
& ET1,ET2, DFDC,DELF2,NUMEQ APB02010
DIMENSION ETAE(N),FNVEC(N) APB02020

APB02030
WRITE(6,*) 'ETAFN CALLED WITH: ',ETAE(1),ETAE(2) APB02040

APB02050
CM=CB-ETAE(1) APB02060
CP=CB+ETAE(1) APB02070
CMP=CM+ETAE(2) APB02080
CMM=CM-ETAE(2) APB02090
ETV=DEXP(4DO*ETAE(1)*V1DK/TEMP) APB02100

APB02110
CCCC=(1DO-CMP)*CMM/((1D0-CMM)*CMP) APB02120
FNVEC(1)=CCCC-DEXP(2DO*ETAE(2)*V2DK/TEMP) APB02130

APB02140
CE1=CP**2*ETV-(1-CP)**2 APB02150
IF (CE1 .NE. ODO) GOTO 90 APB02160
WRITE(6,*) 'ETAFN(2) 1ST RESET AT ',ETAE(1),ETAE(2) APB02170
CE1=1D0 APB02180

90 C1EC1=(CP(1D0O-CM))**2*ETV-(CM*(1DO-CP))**2 APB02190
APB02200

C1EC1=C1EC1/CE1 APB02210
FNVEC(2)=ETAE(2)**2-C1EC1 APB02220

APB02230
RETURN APB02240
END APB02250

C---- SUBROUTINE ECFUN TO BE USED IN D02HAF APB02260
APB02270

SUBROUTINE ECFUN(X, VARS, DIFVEC) APB02280
C Compute derivates according to expanded first-order eqns. APB02290

IMPLICIT DOUBLE PRECISION (A-H, O-Z, $) APB02300
DIMENSION VARS(2), DIFVEC(2), ETAE(2) APB02310
DATA IPRINT / 1 / APB02320
COMMON CB,TEMP,VODK,TKAPC,TKAPE1,TKAPE2,DVIDC,DV2DC,VIDK,V2DK, APB02330
& ET1,ET2, DFDC,DELF2,NUMEQ APB02340

APB02350
APB02360

CM=CB-ET1 APB02370
CP=CB+ET1 APB02380

CMP=CM+VARS(1) APB02390

CMM=CM-VARS(1) APB02400
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CPD1=CP/(1DO-CP) APB02410
CMPDI=CMP/(1DO-CMP) APB02420
CMMDI=CMM/(1DO-CMM) APB02430
CMPM=(CMP*(1DO-CMM))/(CMM*(1DO-CMP)) APB02440

APB02450
IF ((VARS(1).GT.(1DO-CB+ET1)).OR. (VARS(1).GT.(CB-ET1))) APB02460

& THEN APB02470
WRITE(6,*) X,VARS(1), VARS(2) APB02480
STOP 100 APB02490

ENDIF APB02500
APB02510

15 DIFVEC(1)=VARS(2) APB02520
DIFVEC(2)=(5.7195D-15/(2DO*TKAPE2))*(V2DK*VARS(1)+ APB02530

& .5DO*TEMP*DLOG(CMPM) ) APB02540
RETURN APB02550
END APB02560
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