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ABSTRACT OF THE THESIS

The observable frequencies, amplitudes, and linewidths of the normal modes of

the Sun depend on a variety of factors. The degenerate frequencies of the modes

are determined by the radial variation of the thermodynamic variables. The split fre-

quency spectrum depends primarily on the differential rotation, but is also affected by

aspherical structures such as the velocity field of large scale convection, and magnetic

fields. Modal energies are determined by, among other things, the mode excitation

mechanism and nonlinear modal interactions. The latter can lead to exchange of

energy among modes. Modal lifetimes are controlled by dissipative processes such as

radiative damping. A major goal of helioseismology is to devise theories which con-

nect the the observable properties of the modes (and their time variation) to physical

processes and structures in the Sun. In this way the Sun can be used as a laboratory

in which to test the theory of stellar structure, the physics of the equation of state,

theories of convection (including mixing length theory), and conditions in the core

relevant to neutrino production.

The solution to helioseismological problems can generally be separated into two

principal categories; the forward problem and the inverse problem. The forward

problem consists of identifying a physical variable (or process) of interest and deriving

a theory which relates observable properties of the modes to model parameters which

fully characterize the variable (or process) . The inverse problem consists of applying



inverse theory to the data to estimate relevant variables and processes. Subsequently,

conclusions are drawn pertaining to the physics of the problem.

Solar oscillations can be described with classical physics, but mathematical and

physical analogues with quantum mechanics are pervasive. Information about the

aspherical structure of the Sun is mathematically encoded in an object called the

supermatrix. It is composed of the general matrix elements familiar to workers in

atomic physics. Each mode is identified by a set of quantum numbers: radial order

n, harmonic degree 1, and azimuthal order m. Each mode k = (n, 1, m) is a member

of a multiplet ,S which is (21 + 1) dimensional since -1 < m < 1. For a spheri-

cally symmetric Sun, the (21 + 1) modes are degenerate (i.e., they all have the same

frequency wn). Deviations from spherical symmetry, such as differential rotation,

convection, and magnetic fields, breaks the symmetry, and induces splitting of the

multiplet and coupling among the modes. The strength of coupling between modes

k and k' is determined by the general matrix element. The new frequency and dis-

placement pattern associated with the modes for the aspherical Sun is determined

by the eigenvalues and eigenvectors of the supermatrix. Helioseismologists typically

parameterize the frequency splittings in terms of the splitting coefficients ai. The

latter are defined by the relation wk = w,,l + 1'No0 aiPi(-m/1), where the P are the

Legendre Polynomials. Bulk rotation is fully parameterized by the al coefficient.

In Chapter (2), we present a theory which may be used to determine the influence

of long-wavelength convection on modal frequencies and amplitudes. The principal

theoretical result is the general matrix element for convection. Extensive numerical

calculations were performed using a realistic convection model provided to us by

Dr. Gary Glatzmaier. There are two principal numerical results. The first result is

that poloidal and toroidal velocity fields can together generate an even component

to the frequency splitting of a given multiplet. This effect could partially explain

the even component observed in the data i.e., the non-zero a2 and a4 coefficients.

To date, this component has been attributed to magnetic fields. The second result

is that convection induced self-coupling of the modes gives rise to fluctuations in



the differences al - al k comparable in magnitude to the fluctuations measured by

observers. Estimates obtained to date of the radial variation of the bulk rotation may

be biased since observers ignore the effect of convection on the frequencies. The spatial

and temporal basis functions of the oscillatory modes for a Sun with nonaxisymmetric

flow fields do not separate in the observer's or inertial frame. This effect depends

quadratically on the bulk rotation rate and the convective flow field. We ignored this

complicated effect in the numerical calculations. Therefore, the numerical results are

accurate only to first order in the bulk rotation rate and the convective flow field.

In Chapter (3) we derive the kinetic equation for p modes to determine the time

evolution of modal energies due to nonlinear p mode coupling. An expression for

modal frequency shifts is also given. Kumar and Goldreich have used the theory of

three mode coupling to argue against overstability mechanisms as the source of the p

modes. Their calculations were in planar geometry with an idealized atmosphere. Our

results are in spherical geometry, and can be used for a star with arbitrary thermal

stratification.

In Chapter (4) we investigate the influence of perturbations to the spherically

averaged structure of the Sun on modal degenerate frequencies, and the dependence

of these frequencies on important free parameters in stellar evolution theory such as

the mixing length.
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PREAMBLE

In those Hyperborean regions, to which enthusiastic Truth, and Earnestness, and

Independence, will invariably lead a mind fitted by nature for profound and fearless

thought, all objects are seen in a dubious, uncertain, and refracting light. Viewed

through that rarefied atmosphere the most immemorially admitted maxims of men

begin to slide and fluctuate, and finally become wholly inverted; the very heavens

themselves being not innocent of producing this confounding effect, since it is mostly

in the heavens themselves that these wonderful mirages are exhibited.

But the example of many minds forever lost, like undiscoverable Arctic explorers,

amid those treacherous regions, warns us entirely away from them; and we learn that

it is not for man to follow the trail of truth too far, since by so doing he entirely loses

the directing compass of his mind; for arrived at the Pole, to whose barrenness only

it points, there, the needle indifferently respects all points of the horizon alike.

Pierre (1852)

Herman Melville



CHAPTER 1

INTRODUCTION

Not to want to say, not to know what you want to say, not to be able to

say what you think you want to say, and never to stop saying, or hardly

ever, that is the thing to keep in mind, even in the heat of composition.

Molloy (1947)

Samuel Beckett



INTRODUCTION

In §1I of this introduction, we briefly review p mode phenomenology, describe

certain aspects of the internal structure and dynamics of the Sun, and provide specific

suggestions on how helioseismology can be used to probe the solar interior. In §II,

we summarize the major results of this thesis.

I. OVERVIEW

a) The Significance of Helioseismology

Until the emergence of helioseismology, data to verify the theory of stellar struc-

ture was confined to a small set of observable parameters such as stellar masses,

radii, luminosities, and effective surface temperatures. Even these parameters are

not always available. The neutrino flux of a star can constrain core conditions, but

such a measure is available for the Sun only. Though the theory of stellar structure

and evolution is able to rationalize the observed relations between mass, radius, lu-

minosity, and age of the Sun, there are important details of physics which can only

be investigated with the diagnostic power of helioseismology. Since the degenerate

frequencies of the normal modes of the Sun are integral measures of its spherically

averaged internal structure, it is possible to obtain a detailed picture of the interior by

application of inverse theory. Moreover, the fine frequency structure is a measure of

the internal dynamics and departures from spherical symmetry. Even though the Sun

is an ordinary G2 main sequence star, determination of the structure and processes

operating in its interior will have implications for much of astrophysics. For example,

a helioseismological determination of the Helium abundance would have cosmological

significance.

b) p Mode Phenomenology

The resonant modes are confined to the solar interior. They have an upper re-

flection point near the surface due to the rapidly decreasing density there, and they



decay exponentially in amplitude beneath their classical turning point. The depth of

the turning point is determined approximately by the condition

Sc(rt.p.) (1.1)

1(1 + 1) rt.p.

where w is the angular frequency of the mode, I is its harmonic degree, c is the

adiabatic sound speed, and rt.p. is the radius of the turning point (see Christensen-

Dalsgaard et. al. 1985). The vertical component of wave motion vanishes at r = rt.p..

The number of zero crossing of the eigenfunctions describing the mode displacement

is given by the radial order n. The energy of low n and high I modes is confined

primarily near the surface. The high n and low I modes propagate through the center

of the star. The frequency of each mode is an integral measure of the structure of

the star where its amplitude is appreciable; it is asymptotically related to the travel

time between the turning point and upper reflection point.

The observable modes with the most power have periods which range between

three and seven minutes. The power of p modes is confined to ridges (overtone

branches) on an w-k dispersion diagram where k is the wavenumber. The wavenum-

ber of a p mode at the surface with harmonic degree 1 is (1 + 1)/R®, where R®

is the solar radius. Those modes which have an upper reflection point beneath the

atmosphere where the measured line spectra are formed can also be found on w - k

dispersion diagrams produced to date. Their signal is detectable since they are able

to tunnel some distance beyond their resonant cavity. Highly accurate measurements

of the frequencies of the modes have recently become available (e.g., Duvall et al.

1988). Libbrecht and Kaufman (1988) report frequency measurements up to at least

1 = 1320. The observed frequencies generally match the frequencies predicted for

standard solar models to within 1% (the observational uncertainties are as low as 1

part in 10000).

The amplitude of an individual p mode at the solar surface is typically 15 cms - 1

The collective velocity of the p modes near the surface is - 0.5 kms - 1. The theory of

helioseismology is considerably simplified since the amplitudes of individual acoustic



modes are very small. In many applications, it suffices to use linearized, adiabatic

theories. The energy of a typical p mode is - 3 x 1027 ergs , and there are - 10 million

modes, so the total p mode energy is - 1034 ergs (Libbrecht 1988). A p mode can only

propagate in a region if its frequency is greater than the radius-dependent acoustic

cut-off frequency w,... For an isothermal atmosphere, Wa.. = c/Hp where H, is the

pressure scale height. For an ideal gas, wa.. varies with the inverse square root of the

temperature, and therefore, the highest wa.c. occurs at the temperature minimum in

the solar atmosphere, which corresponds to a period of about 185 seconds.

c) Stable and Unstable g modes

There are several types of motion in the Sun including acoustic modes of §b (often

referred to as p modes since pressure is their restoring force), and stable and unstable g

modes. The energy of the stable g modes is concentrated in the core and the radiation

zone; they are evanescent in the convection zone. These modes have not been observed

to date since they have nearly vanishing amplitudes near the surface. The unstable g

modes are confined to the convection zone and correspond to the convective motions

themselves. When their amplitude reaches a certain level, nonlinear effects begin to

dominate and they degenerate into turbulence. The p mode motions can be separated

from the unstable g mode motions by applying temporal and spatial filters to the

Dopplergrams since the power of the p modes is confined to distinct ridges on an w - k

dispersion diagram, whereas the g modes have lower frequencies and all wavenumbers

for a given frequency. Most often, investigators ignore the coupling between p modes

and g modes. For the stable g modes, wave propagation is possible only in the

atmosphere above the photosphere and in regions below the convection zone where

buoyancy can be restoring rather than destabilizing. They are confined to regions

where their frequency is less than the Brunt-Vaisilii frequency. The stable g modes

have long periods (exceeding forty minutes).

d) Mode Excitation



The excitation of the p modes is still an unresolved issue. The excitation mech-

anisms fall into two broad classes, excitation by turbulent fluctuations and self-

excitation (e.g., the K mechanism). In the latter process, acoustic waves modulate the

opacity and tap energy from the radiation field. This is analogous to the -mechanism

which drives the large-amplitude pulsations of the Cepheids. Such driving is probably

weaker in the Sun. Linear stability calculations involving this mechanism are ambigu-

ous because of the uncertainty involved in including turbulent viscous damping of the

modes.

Recent results suggest that solar p modes are driven stochastically by turbulence

(Goldreich and Keeley 1977a, b; Goldreich and Kumar 1988; Kumar and Goldreich

1989). The treatment of this problem is interesting in itself, but since the frequencies

of the p modes are slightly affected by the turbulence (see Brown 1984; Goldreich and

Kumar 1988), it is an important step in the diagnosis of solar structure.

Goldreich and Kumar (1988) have calculated the emissivity and absorptivity of

acoustic radiation by a turbulent fluid. The processes which generate acoustic waves

from turbulence lead dominantly to monopole, dipole, and quadrupole acoustic ra-

diation. When a fluid blob loses its heat at the solar surface, it shrinks in size and

sinks. The shrinking changes the volume of the blob which leads to monopole ra-

diation. The action of gravity on the blob results in dipole radiation. If two blobs

push against one another, then the force on one is equal and opposite to the reaction

force on the other, and the two blobs together emit quadrupole radiation, and this

is the dominant process (see Lighthill 1952, 1954). The acoustic radiation which is

emitted by the blobs can also be reabsorbed by them, which limits the amplitudes of

the modes. Since the absorption and emission processes depend strongly on the Mach

number (the ratio of the convective speed to the sound speed), it is straightforward to

show that convection-oscillation coupling is significant only in a very thin shell near

the solar surface (see Chapter 2).

e) Turbulent Motions

The power of turbulence is spread over a wide range of k for fixed w. The total



energy of the p modes is small compared to the total kinetic energy in the convective

motions, the latter being - 5 x 1038 ergs. Approximately 5 x 1034 ergs of this energy

resides in the top scale height of the convection zone where the characteristic overturn

time is - 5 minutes. The overturn time for the longest wavelength g modes is - one

month. The average convective velocity below the top few scale heights varies from

, 15 ms - 1 to - 100 ms - 1

Turbulence is usually described in terms of characteristic length and time scales.

The largest energy bearing eddies have length-scale - H, velocity magnitude - vH,

and lifetime 7, H/v, . The eddies cascade to scale I where they are dissipated by

molecular viscosity. Energy dissipation is negligible in the inertial range I < h < H.

Therefore, assuming the flow of energy per unit volume for eddies of size h in the

range 1 to H is constant, one obtains pvh/rh = pvi /7, . This implies the Kolmogoroff

scaling Vh - (hIH)1I/3v and rh , (h/H)2/37Tr. The Mach number of an eddy of size

h is given by Mh - Vh/C where c is the adiabatic sound speed (PF1/p)1/2 . We denote

MH simply by M. The pressure fluctuations arising from the Reynolds stresses

have magnitude ,, pv. Assuming perturbations in entropy can be neglected, the

perturbations in density may be obtained from the pressure perturbation by using

AP = (OP/Op),Ap so that the density fluctuations have magnitudes - pM .

To determine the smallest scale of turbulent motion we require the Kolmogoroff

length, time, and velocity microscales which are given respectively by r = (v3/ )1/4,

7 = (v/e)1/2, and v = (V6)1/4 where e is the dissipation rate per unit mass in units

of m2s - 3 , and v is the kinematic molecular viscosity in units of m 2s - 1 (Tennekes and

Lumley 1972). The Reynolds number for an eddy of size H is given by Re = vH H/v.

The cascade of eddies to smaller scales has a termination point because viscosity

dissipates the energy of small scale motions into heat. The Reynolds number in the

Sun is huge but dissipation nonetheless occurs because the nonlinear terms in the

equation of motion always generates scales of motion small enough to be affected by

the viscosity, the smallest scale yj always adjusting to the value of v. Tennekes and

Lumley (1972) argue that in a turbulent flow, the rate of energy supply to the largest



eddies should be equal to the rate of dissipation so that we obtain e ,- vi /H. Using

the above definitions it can be shown the smallest scale of motion is given by I 

H/7/ 4 .

f) The Granules and Supergranules

The scales of motion in the Sun range from the Kolmogoroff microscales to the

differential rotation. In between are the granules, supergranules, giant cells, and

energy-bearing eddies.

The granular velocities are - 1 km s- 1, their horizontal scales are -- 1400 km and

they lifetimes - 6-15 minutes (Bray et al. 1984). The Hydrogen ionization in the top

scale heights liberates ionization energy which is converted to thermal energy. This

enhances the convective instability by contributing to the buoyancy of the gas. Also

V, becomes very large because of the large opacity there. Therefore, the convective

instability is very large but the convective efficiency is low due to the very low density

in this region, radiative losses, and the collisional disspation of kinetic energy. Thus,

the convective velocities become very large to transport the heat flux from below.

The supergranules are a cellular pattern with a horizontal divergence from a cen-

tral point in each cell. The supergranules have mean horizontal velocities - 0.3 - 0.5

kms-1, mean vertical velocities -, 0.1 - 0.2 kms- 1, mean cell sizes of - 35000 km,

and their mean lifetimes are - 20 hours (Bray et al. 1984). The scale of the super-

granules may be related to the depth of the He ionization zone. The granulation and

supergranulation patterns appear to be uniform from the poles to the equator.

g) The Giant-cells

The existence of giant-cells has not been directly confirmed. If they do exist at

the surface of the Sun, their amplitudes are less than 10 ms - 1 (Howard and Labonte

1980; Labonte et. al. 1981; Brown and Gilman 1984). However, the Sun displays

a number of features which are suggestive of sustained large-scale motions (Gilman

1987). These include the persistent large-scale patterns in the solar magnetic field,



the coronal holes which survive several solar rotation periods without being sheared

apart by differential rotation, and the existence of active longitudes where new active

regions preferentially arise. Observation of the distinct cellular motions of granules

and supergranules suggests that for thermal convection there are preferred scales of

motion. This trend may continue deeper in the convection zone. In the mixing length

picture of convection, the scale of the convecting eddies is set by the pressure scale-

height so that one would expect layers of convection with ever decreasing vertical scale

as the surface is approached. However, both linear and nonlinear models (Gough

et al. 1976; Grahm 1975) show that even when the fluid is compressible, and the

stratification includes several scale heights, convection which spans the entire unstable

layer is favored. Thus, for the Sun, patterns of motion with horizontal dimensions

up to - 200,000 km would be expected. In addition, the space-lab experiment of

thermal convection (Hart et al. 1986), and the numerical simulations of Glatzmaier

(1984) and Gilman and Miller (1986) suggest that large and sustained patterns of

motion may exist in the Sun with scales approaching the depth of the convection

zone.

h) The Helium Abundance

Theoretical solar models do not place clear constraints on the abundances. Mod-

els can be built over a wide range of hydrogen abundance X and Helium abundance

Y, with little basis for preferring one over another. The equation of state is largely

determined by these two elements. It would be of interest to determine their radial

variation within the Sun. There are several inverse problems which can be posed

to address this issue. To determine the Helium abundance, one may use the fact

that the first adiabatic exponent F1 is sensitive to the degree of ionization of the gas.

There is virtually no overlap between the H and Hel ionization zones. Therefore,

the radial profile of F1 in the Hel ionization zone is a strong function of the Helium

abundance. In chapter four we derive forward perturbation problems involving the

model parameter combinations (p, F1 ), and (c, F,) which can serve as the basis for



an inversion of F1 . This would involve a sequence of nonlinear iterative calculations.

First an inversion would be performed in which the model parameters are adjusted

from their starting values to minimize the difference between the observed and pre-

dicted frequencies. The forward problem is intrinsically nonlinear, and therefore the

solution to the inverse problem will require several iterations. The next step could

be one of several possibilities. First, one could compute in a monte-carlo type calcu-

lation a suite of solar models with different Helium abundances each with a slightly

different F1 profile to see which one best matches the profile required by the inversion.

Alternatively, one could derive an equation relating perturbations in Helium abun-

dance to perturbations in I' for each knot in the HeI ionization zone, and use the

inversion results to determine the required perturbation to the Helium abundance.

Such an equation is likely to be nonlinear, and will only implicitly determine the

Helium abundance perturbation so that it must be solved iteratively. With this value

in hand, a solar evolution calculation must then be performed to determine a self-

consistent radial profile of the solar structure, and to determine which mixing length

is required to match the surface boundary conditions (where the newly determined

Helium abundance remains fixed). Of course, the constraint (X + Y + Z = 1) must

also be satisfied where Z is the metal abundance. The heavy element abundance Z

influences heavily the opacity. This is an important effect in the radiation zone since

the radiative temperature gradient there depends on the opacity, but is almost of no

consequence in the convection zone since the bulk of the convection zone convects

very efficiently and therefore its temperature gradient is well approximated by the

adiabatic gradient. Whichever method is used, the inverse problem is nonlinear, and

therefore a new set of degenerate frequencies should be computed with the new solar

model and the process outlined above should be repeated. Knowledge of the solar

Helium is important to cosmologists. According to stellar evolution theory, the ma-

terial in the convection zone has not been mixed with the products of the nuclear

transformations in the core. Thus, the Helium abundance in convection zone should

be the same as in the proto-sun.



i) Convective Overshoot

The large-scale dynamics of the convection zone is capable of being studied by

using low and intermediate degree normal modes. These motions affect not only

the fine frequency structure of any given multiplet ,Sl, but can change the radial

stratification of the Sun, and thus, affect the degenerate frequencies wjl as well.

For example, convective overshoot into the stably stratified radiation zone below the

convection zone alters the thermal stratification there. The stratification parameter ir

is sensitive to this type of perturbation. An inversion for the radial profile of r would

shed light on the problem of convective overshoot (which is often ignored in stellar

structure codes). Chapter four contains a detailed discussion on how perturbations

in ql affect helioseismic frequencies. We also show there the dependence of q on the

predictions of mixing length theory. One simplifying aspect of stellar structure theory

as applied to the Sun, is the assumption that the core is unmixed. It could be that

nonlinear g modes, or large-scale meridional circulations act to mix the chemical

species in the core. Deduction of the stratification parameter from helioseismic data

could be used to determine the validity of the no-mixing assumption (see Chapter 4).

j) Mixing Length Theory

The primary application of mixing length theory is to calculate the temperature

gradient in convectively unstable regions of a star. Excellent descriptions of mixing

length theory can be found in Cox and Giuli (1968), Gough and Weiss (1976), Gough

(1977a, 1977b). By analogy with gas kinetic theory, mixing length approaches con-

sider the fluid to be composed of turbulent 'eddies', 'parcels', or 'elements' which

advect heat through a mean free path or mixing length I and then merge with their

surroundings. An element is created as a result of instability, with the same properties

on average as its immediate enviroment; it is accelerated by an imbalance between

buoyancy forces, pressure gradients, and nonlinear advection processes, and may gain

or lose mass by entrainment or erosion. It is as a result of ignoring different com-

binations of these processes, approximating the remaining ones in slightly different



ways, and making different assumptions about the geometry of the flow that different

mixing length models have emerged. Mixing length contains free parameters not de-

termined by the theory, the most important being the mixing length which is usually

taken to be a constant times the pressure scale height. Mixing length theory can

be calibrated since any formula used to evolve the Sun must match the present age,

luminosity, and radius. In chapter 4 we show how the mixing length and the thermal

stratification is related to helioseismic frequencies.

Near the surface of the Sun, the density is very low, and the radiative losses of the

buoyant blobs are very high. The latter is true because the temperature differences

between the blobs and the ambient medium are very high, and because the medium

is optically thin. Therefore, the heat capacity of the blobs becomes very small. The

same luminosity must be transported and therefore two things happen. The velocity

of the blobs becomes very high to enhance the heat flux, and there is a transition

from dominant convective transport to dominant radiative transport.

k) The Mean Radial Structure of the Convection Zone

The mean radial structure of the convection zone depends only on the integrated

properties of the super-adiabatic region as we argue in the following. Below the

strongly super-adiabatic boundary layer the Sun convects very efficiently and, thus,

V = Vaa to a high degree of accuracy where Vad is the adiabatic temperature gradient.

It follows from the definition of the second adiabatic exponent F 2 that

P = KT2-) (1.2)

in the adiabatic part of the convection zone where P and T, denote respectively

the pressure and temperature, and K is a constant (in those regions where F2 is

a constant). For the Sun, at least, the primary use of mixing length theory is to

determine the entropy jump across the super-adiabatic region. The entropy jump

defines the adiabat of the convection zone and implicitly determines K in equation

(1.2). The strength of convective instability is measured by V - Vad where V, is



the radiative gradient. The radiative opacity Ir becomes quite large in the H, He,

and Hel ionization zones and the pressure there increases dramatically compared

to the temperature because r2 approaches unity in an ionizing region. Since V, is

proportional to IrP/T4 the radiative gradient becomes very large. It reaches a peak

value at the base of the HeI ionization zone and decreases roughly as 1/T3 until the

depth where V, = Vad (the base of the convection zone). Since P and T have been on

an adiabat since the transition point to efficient convection (just beneath the strongly

super-adiabatic layer), the peak value of V, depends on the value of P and T at the

transition point. These P and T values depend in turn on the entropy jump. Thus

only the integrated properties and not the detailed structure of the super-adiabatic

region are relevant to the structure of the rest of the Sun.

Since the Sun convects so efficiently, the temperature gradient through the bulk

of the convection zone is determined by the adiabatic temperature gradient and is

insensitive to the opacity. Of course, the particular adiabat depends on the mixing

length. The radiation zone, on the other hand, has a temperature gradient given

by the the radiative gradient V,. Therefore, its structure depends strongly on the

opacity.

1) The Solar Neutrino Problem

Helioseismology may someday yield estimates of the density p, sound speed c, and

composition in the solar core. The low I and high n modes are sensitive to this part

of Sun. Since the temperature can be calculated from the equation of state once p

and c are known, the estimates of p and T can be used to calculate the neutrino flux

(for a given composition). Current theories predict a flux three times larger than that

observed. Before theories of nuclear and particle physics are adjusted to account for

this discrepancy, it is essential to obtain accurate estimates of core conditions.

m) The Solar Differential Rotation

The Solar rotation varies with depth and latitude in the Sun. How it does so is

crucial for testing theories of angular momentum transport and the solar dynamo.



The interaction between rotation and convection has a bearing on the latter. The

mechanisms for a-w dynamo action require a radial gradient of the rotational rate Q

to convert poloidal to toroidal magnetic fields, and a radial gradient of Q together with

helicity (the scalar product of velocity and vorticity) to convert toroidal to poloidal

field. The direction of motion of the resulting dynamo waves (and hence the direction

of migration of magnetic flux) depends on the sign of the product of dn/dr and the

helicity. The latter arises from the interplay of buoyancy and Coriolis forces. The

sense of helicity in the bulk of the convection zone is such that dQ/dr must be negative

in order to reproduce the equatorword migration of low-latitude magnetically active

regions.

Recent results by Brown et. al. (1989) indicate that a latitudinal variation of

Q(r, 0) similar to that observed at the solar surface exists throughout the Sun's con-

vection zone. The near constancy with depth of the latitudinal variation of Q(r, 0)

confronts the a-w dynamo theory with severe difficulties. We show in chapter 2

how the long-wavelength convection can possibly bias the interpretation of frequency

splittings which workers use to recover the rotation profile.

II. SUMMARY OF THE MAJOR CHAPTERS OF THE THESIS

Chapters two, three, and four were written in the style of the Astrophysical Journal

since they are intended for publication.

a) Chapter 2; The influence of convection on p modes

Solar p modes are split and coupled by convective velocity fields and thermody-

namic perturbations in the solar interior. We applied quasi-degenerate perturbation

theory to calculate the influence of time-independent, global, long-wavelength, anelas-

tic, laminar convection on p mode frequencies and amplitudes. The investigation was

motivated by the many studies which have connected the solar dynamo, the observed

surface magnetic activity, and the solar differential rotation profile with large-scale

convective flows deep in the interior of the Sun. Models of the interaction between



p modes and convection are useful in that they provide theoretical predictions of the

split frequency spectrum, amplitudes, and linewidths of the p modes, all quantities

needed by observers to constrain the structures affecting their data. The convec-

tive velocity field was decomposed into a sum over poloidal and toroidal fields. The

principal theoretical result is the general matrix element K', 'm which governs the

interaction between modes with quantum numbers k = (n, 1, m) and k' = (n', 1', m')

due to convection. In the case of self coupling (coupling among singlets of a single

multiplet) the general matrix element vanishes for poloidal velocity fields and for

even degree toroidal flows. Therefore, in the self coupling approximation, only odd

degree toroidal fields contribute to frequency splitting. Both poloidal and toroidal

flows contribute to full coupling (coupling between singlets of different multiplets).

Forward numerical calculations using a realistic convection model were performed to

assess quantitatively the influence of convection on the modes. The numerical results

indicate that convection systematically perturbs the singlet eigenfrequencies, some-

times by as much as 0.65 phz for the sectoral (m = +1) singlets. This is a measurable

quantity and ignoring its effect leads to erroneous estimates of the solar differen-

tial rotation profile. Unfortunately, to date, the effect of global, non-axisymmetric

structure on helioseismic oscillations has been otherwise ignored.

In the self coupling approximation, frequency splitting of a multiplet is purely odd

about the degenerate frequency wt, but in the full coupling case aspherical convec-

tion generates a frequency spectrum with an even component about wt. Thus, an

expansion of the spectrum in terms of Legendre Polynomials requires even-ordered

expansion coefficients. It has been conventional wisdom to ascribe even-ordered ex-

pansion coefficients required by actual data to large-scale axisymmetric magnetic

fields. Our finding that convection can also contribute to the even coefficients can

be understood ray theoretically. In an axisymmetric Sun, frequencies are uniquely

associated with one mode, but this does not hold for an aspherical Sun. Instead the

displacement pattern (which we call the hybrid eigenfunction), is a linear combination

of modes. The set of modes which couple to the mode (n, 1, Im I) in the full coupling



case, is quite different from the set of modes which couple to the mode (n, 1, - Im l).

Thus the hybrid eigenfunctions associated with these modes no longer possess the

symmetry in the n, 1, and m quantum numbers that they did in the self coupling

approximation. They sample the Sun in a manner quite different from the axisym-

metric case. It is this non-symmetric sampling which introduces the even component

to the frequency splitting. It is important to examine full coupling systematically

since we have found, for many individual test cases, that singlets can undergo exten-

sive hybridization perturbing their frequencies and amplitudes significantly from that

predicted by the self-coupling approximation. Uncovering a systematic signal in the

hybridization may allow observers to infer the existence of giant-cells and perhaps

even constrain their size and geometry.

b) Chapter 3; Nonlinear interactions among p modes

The lowest order nonlinear interaction among solar p modes is three mode cou-

pling. Kumar and Goldreich (1989) have used the theory of three mode coupling to

argue that p modes are excited by stochastic fluctuations associated with turbulence

rather than by an overstability mechanism. Nonlinear interactions can lead to trans-

fer of energy from trapped resonant modes to propagating modes that leak into the

solar atmosphere; this process damps the trapped modes. Since the p modes have

finite amplitudes, there must be some nonlinear mechanism which quenches their

growth rate if they are overstable. Three mode coupling is a leading candidate. It

would be an argument against the overstability hypothesis, if it could be shown that

three mode coupling is unable to limit the amplitudes of the overstable modes. Ku-

mar and Goldreich (1989) were not able to unambiguously demonstrate this since the

calculation requires accurate knowledge of the energies of high degree modes. They

performed three mode coupling calculations for a plane layered analog to the Sun

(with an isothermal atmosphere and adiabatic convection zone) using a Hamiltonian

formalism, and found energy transfer rates which range from 10 to 100 per cent of

the products of the mode energies and linewidths (depending on the input energies of



the high degree modes). However, they conclusively demonstrated that f modes are

damped by three mode coupling. Due to the incompressibility of f modes, it is not

likely that they are excited by the K mechanism. Further, since the f modes can not

be excited by nonlinear transfer of energy, they are probably excited by turbulence.

As a first step toward addressing this issue for a spherically symmetric Sun with a

realistic thermal and density stratification, we have used methodologies from weak

turbulence theory of plasma physics to derive the dynamical and kinetic equations for

p modes. These equations are coupled first order differential equations which govern

the time rate of change of the amplitudes and energies of the modes. The p modes

can nonlinearly interact if the interaction conserves energy and angular momentum.

These requirements are embodied by a frequency resonance condition and by selection

rules on the Clebsch-Gordon coefficients. Three mode coupling can also systemati-

cally shift the phases of the modes and thus slightly alter their apparent frequencies.

An expression quantifying this effect is provided.

c) Chapter 4; The influence of perturbations to spherical structure on p mode

frequencies

The degenerate frequencies of solar p modes are integral measures of the radial

structure of the Sun. We have applied Rayleigh's principle to derive sensitivity kernels

that relate frequency perturbations Sw to small model perturbations Sm(r). The

frequencies depend on two independent model parameters so that the perturbations

relations are of the form Sw = f[IK (r)&m, (r) + K, (r)6m2 (r)]r2 dr. These relations

can be used as the basis for inverse problems in which model parameter perturbations

are adjusted to minimize the differences between observed and predicted frequencies.

The pairs of thermodynamic variables considered include (p, r) (c, c), (c, p), (p,

F1 ), (c, F1 ), (c, 7r), and (p, r), where p, K, c, F 1, and r denote, respectively, the

density, adiabatic bulk modulus, adiabatic sound speed, first adiabatic exponent,

and stratification parameter. The variable F1 is sensitive to the He, He+, and He++

fractions in the first and second Helium ionization zones. Application of inverse



theory to determine the radial profile of LF in these ionization zones could be used

to place a constraint on the Helium abundance of the Sun. Knowledge of the radial

variation of the stratification parameter could be used to constrain the depth of the

convection zone and the entropy jump from the photosphere to the adiabatic part of

the convection zone. We derive an asymptotic theory that establishes the connection

between r and the mixing length in regions of low and high convective efficiencies.
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CHAPTER 2

THE EFFECT OF LARGE SCALE CONVECTIVE FLOWS ON HELIOSEISMIC

OSCILLATIONS

It was a clear steel-blue day. The firmaments of air and sea were hardly

separable in that all-pervading azure; only, the pensive star was transpar-

ently pure and soft, with a woman's look, and the robust and man-like sea

heaved with long, strong, lingering-swells, as Samsom's chest in his sleep.

Hither, and thither, on high, glided the snow-white wings of small un-

speckled birds; these were the gentle thoughts of the feminine air; but

to and fro in the deeps, far down in the bottomless blue, rushed mightly

Leviathans, sword-fish, and sharks; and these were the strong, troubled,

murderous thinkings of the masculine sea.

Moby Dick (1851)

Herman Melville
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ABSTRACT

Solar p modes are split and coupled by convective velocity fields and thermody-

namic perturbations in the solar interior. We apply quasi-degenerate perturbation

theory to calculate the influence of time-independent, global, long-wavelength, lami-

nar convection on p mode frequencies and amplitudes. The convective velocity field

is decomposed into a sum over poloidal and toroidal terms. The flow satisfies the un-

perturbed mass continuity equation and therefore does not generate acoustic waves.

The principal theoretical result is the general matrix element K;,,I (eq. 2.143)

which governs the interaction between p modes with quantum numbers k = (n, 1, m)

and k' = (n', 1', m') (defined for a spherically symmetric, non-rotating, isotropic Sun

(SNRIS)).

The Wigner-Eckart theorem implies that , can be separated into a reduced

matrix element independent of m and m' times a Clebsch-Gordon coefficient. Selec-

tion rules immediately follow from both factors. In the case of self coupling (coupling

among singlets of a single multiplet), only odd degree toroidal fields contribute to fre-

quency splitting since the reduced matrix element vanishes for poloidal velocity fields

and for even degree toroidal flows. The Clebsch-Gordon coefficient is nonvanishing

only if 1, 1', and s satisfy the triangle inequalities, and if -m' + t + m = 0 (where s

and t denote, respectively, the harmonic degree, and azimuthal order of a component

of the flow field). In the full coupling case (coupling between singlets of different



multiplets) rt,m' is nonvanishing only if: (1) 1+ l' is even, the poloidal component s

is even, or the toroidal component s is odd, or (2) 1+ 1' is odd, the poloidal component

s is odd, or the toroidal component s is even.

To couple, the modes must satisfy the above selection rules. To interact strongly,

their frequencies must be neary degenerate. In our numerical work we chose a par-

ticular singlet of the spherical Sun (the target singlet) and used the frequency and

quantum number selection rules to cull all singlets with which it could significantly

interact; we then assembled the supermatrix (eq. 2.86) (whose elements are composed

of the various K"'n, 1 ), and performed an eigenvalue-eigenvector decomposition to ob-

tain the hybrid eigenfunction and hybrid eigenfrequency associated with the selected

singlet. We performed this operation using a realistic flow model provided to us by

Gary Glatzmaier for a suite of singlets covering a broad region of the w-k dispersion

diagram.

The self coupling calculations show that the difference aself - d.' (see eq. 2.168)

can be as large as 7.8 nhz, where ae"lf and ad'.-denote, respectively, the al coefficients

calculated for a velocity model of convection in the self coupling approximation, and

for a differential rotation model. Similarly, the difference a"If - ad.r. can be as large as

.27 nhz. For sectoral (m = 1) singlets, the largest frequency difference is setf _- d.r.

.65 phz. The fluctuations in the a, coefficients in the self coupling case with respect

to the ai coefficients predicted by bulk rotation alone are comparble in magnitude

to the fluctuations measured by observers. The largest frequency difference between

wfull- ws_ e a full coupling and self coupling calculation for a suite of singlets with

m = -. 81 is .27 puhz. The difference wful -_ self tends to increase with increasing I

and is largest for low n, high I singlets. The latter singlets can undergo significant

hybridization. The nearly zonal singlets (m , 0) are virtually unaffected by Glatz-

maier's flow model since most of the power of his model is in the sectoral components.

The frequencies of oscillation are nearly insensitive to radial flow. The horizontal sen-

sitivity kernels of poloidal flow in the full coupling case tend to be larger than those

of the toroidal flow. We performed a full coupling calculation for every singlet of



several multiplets. A regression revealed that the a2 coefficient of these multiplets

were comparable in magnitude to the a2 coefficients estimated by Libbrecht (1989).

The even ai coefficients are obtained only in the case of full coupling; frequencies

in the self coupling approximation depend only on odd azimuthal order m. Modes

contributing to the hybrid eigenfunctions often have amplitudes that are - 10 % of

the amplitude of the target mode.

The spatial and temporal basis functions of the oscillatory modes for a Sun with

nonaxisymmetric flow fields do not separate in the observer's or inertial frame. This

effect depends quadratically on the bulk rotation rate and the convective flow field.

We ignored this complicated effect in the numerical calculations. Therefore, the

numerical results are accurate only to first order in the bulk rotation rate and the

convective flow field.

I. INTRODUCTION

a) An Overview of Heliseismology

Helioseismology, the study of the seismic oscillations of the Sun, has recently

emerged as a major field of solar physics. The frequencies and amplitudes of the

oscillations are dependent on the structure and dynamics of the Sun. Oscillation

frequency estimates have been used to estimate the depth of the Sun's convection zone

(Ulrich and Rhodes 1977), the solar Helium abundance (Dappen and Gough 1986),

the sound speed profile through much of the solar interior (Christensen-Dalsgaard et.

al. 1985), the radial profile of the radiative opacity (Korzennik and Ulrich 1988), the

strength of the magnetic field at the base of the convection zone (Dziembowski and

Goode 1988), the velocity profile of the solar differential rotation (Brown et al. 1989),

and to test the physics of the equation of state (Christensen-Dalsgaard et. al. 1988).

These advances have been made possible by the precision instruments (e.g. Brown

1981; Libbrecht and Zirin 1986; Tomcyzk 1988) and high quality data (e.g. Duvall

et. al. 1984, 1986; Brown 1985; Libbrecht and Kaufman 1988; Tomcyzk 1988) that

have recently become available. The raw data are a time sequence of Doppler images



of the visible surface of the Sun for a particular spectral line. The Doppler shifts are

the surface manifestation of millions of resonant normal modes in the solar interior.

The images are spatially and temporally filtered to yield measurements of oscillation

frequencies and amplitudes (see Libbrecht and Kaufman (1988) and Tomcyzk (1988)

for a review of data analysis procedures).

With the Global Oscillations Network soon to be installed by the National Solar

Observatory, a vast amount of high quality data is forthcoming. In addition, the

SOHO satellite, scheduled to be launched in 1995, will contain the Michelson Doppler

Interferometer which will measure the solar oscillations free from the distortions of

the Earth's atmosphere. To utilize effectively the information contained in these

data will require an understanding of the way in which various solar structures affect

helioseismic data. It is upon an understanding of these forward problems that any

future inversions will rest.

b) The Influence of Convection on Oscillations

The goal of this paper is to present a theory which governs the splitting and

coupling of solar p modes by global, steady-state, laminar convection. In this con-

tribution we consider only the forward problem. However, in a later paper we will

discuss the observational consequences of the theory.

It is important to distinguish between convection-oscillation coupling (see Gough

1977), and coupling among p modes due to convection. In the latter (which is the

subject of this paper), the convection breaks the spherical symmetry of the Sun which

leads to p mode coupling. We seek to model the interaction among p modes in a regime

where the convection-oscillation coupling is very weak. The flow model we use satisfies

the unperturbed continuity equation (which we refer to as the anelastic condition)

so that p modes cannot be generated by the flow. The convection zone extends over

many pressure scale heights and thus the characteristic temporal and spatial scales of

the convection and turbulence varies widely. The most vigorous convection is located

in the top few scale heights where the the characteristic lifetimes are the shortest and



length scales are the smallest. This paper is concerned with the influence of convection

on modes below the top few scale heights where the convection is likely to be more

coherent in space and in time. Strong, long-lived features of the convection leave

characteristic signatures in p mode frequencies and amplitudes. Helioseismological

inference of such features would be valuable since many studies (see Gilman 1980)

have connected the existence of large-scale convective flows with the structure of

the differential rotation and with the solar dynamo (see Stix 1981). Also, magnetic

activity observed at the solar surface is probably controlled by flows at depth.

The work to date on convection-induced p mode coupling is sparse. In an asymp-

totic treatment, Gough and Toomre (1983) calculate the frequency shift of a mode

due to advection by a horizontal flow. Hill (1983) has attempted to infer convective

velocities near the solar surface using helioseismic data. The scattering of sound by a

steady laminar compact vortex was considered by Bogdan (1989). Brown (1984) has

calculated the influence of turbulence on modal degenerate frequencies.

In this paper we argue that the problem of convection-oscillation coupling and p

mode coupling in the Sun can be separated into two distinct processes, each process

dominating the physics in one of the shells. The top shell occupies the top few scale

heights where the Mach number is relatively large and where the time scales of the

turbulence and the acoustic radiation are nearly similar and where the amplitudes of

the p modes and the convective modes are peaked. Goldreich and Keely (1977a, b) and

Goldreich and Kumar (1988, 1989) have calculated the amplitudes and energies of the

p modes under the assumption they are excited by stochastic turbulent convection.

Using the results of Goldreich and Kumar (1988), one may show that seismic wave

emission and absorption in the Sun principally take place through interaction with

turbulence in the top few scale heights of the convection zone. The region of significant

interaction between the p modes and the convection defines the radial extent of the

top shell. Processes in the top shell such as convection-oscillation coupling, three-

mode coupling (Kumar and Goldreich 1989), and radiative damping are primarily

responsible for the amplitudes and line widths of the modes, but can also perturb



modal degenerate frequencies since the turbulent pressure alters the radial structure.

The bottom shell is much larger and is directly below the top shell occupying -

99% of the convection zone. The emission and absorption of seismic waves in the

bottom shell by turbulence is negligible and can, therefore, be ignored. The exchange

of energy between long-wavelength coherent velocity structures and the p modes is

quite accurately set to zero in the anelastic approximation as long as it is applied in

the bottom shell alone. The solar medium in the bottom shell is optically thick and

therefore radiative damping is negligible. Since the amplitude of the p modes are so

strongly peaked near the surface in the top shell, the contribution to the interaction

coefficient describing three-mode coupling from the bottom shell relative to the top

shell is negligibly small (Kumar and Goldreich 1989). Therefore, in the bottom shell

the most significant coupling process involving p modes is coupling among them due

to long-wavelength and long time-scale convective structures. In this paper we derive

expressions for the perturbations to the frequencies and amplitudes of the p modes

caused by this coupling. We state and defend the assumptions which have led us to

the above conclusions in §II.

To date, helioseismologists have generally neglected the effect of the complicated

physical interactions in the top shell on the split frequency spectrum of the normal

modes. However, some investigators (e.g. Brown 1984; Christensen-Dalsgaard and

Fransden 1983; Christensen-Dalsgaard et. al. 1989) have attempted to account for

the effect of first-shell physics on the degenerate frequencies. Our interest in this

paper is the description of the split frequency spectrum rather than perturbations to

the degenerate frequency. However, in §II.c we do attempt to justify ignoring top

shell physics on the split frequency spectrum.

c) Velocity Fields in the Convection Zone

The scales of convective motion in the Sun range from the Kolmogoroff microscales to

the differential rotation. In between are the granules, supergranules, giant cells, and

energy-bearing eddies. The solar p modes have scales which range in size from the



smallest to the largest of the convective motions. See Tennekes and Lumley (1972)

and Goldreich and Kumar (1988) for a review of turbulence. Bray et. al. (1984)

and Gilman (1987) provide overviews of the physics and morphology of granules,

supergranules, and giant cells. For a review of p mode phenomenology, see Libbrecht

(1988a). In the following, we briefly summarize the evidence for giant-cells since it is

the influence of motions of this scale we seek to model.

The existence of giant-cells has not been directly confirmed. If they do exist at

the surface of the Sun, their amplitudes are less than 10 ms - 1 (Howard and Labonte

1980; Labonte et. al. 1981; Brown and Gilman 1984). However, the Sun displays

a number of features which are suggestive of sustained large-scale motions (Gilman

1987). These include the persistent large-scale patterns in the solar magnetic field,

the coronal holes which survive several solar rotation periods without being sheared

apart by differential rotation, and the existence of active longitudes where new active

regions preferentially arise. Observation of the distinct cellular motions of granules

and supergranules suggests that for thermal convection there are preferred scales of

motion. This trend may continue deeper in the convection zone. In the mixing length

picture of convection, the scale of the convecting eddies is set by the pressure scale-

height so that one would expect layers of convection with ever decreasing vertical scale

as the surface is approached. However, both linear and nonlinear models (Gough

et al. 1976; Grahm 1975) show that even when the fluid is compressible, and the

stratification includes several scale heights, convection which spans the entire unstable

layer is favored. Thus, for the Sun, patterns of motion with horizontal dimensions

up to - 200,000 km would be expected. In addition, the space-lab experiment of

thermal convection (Hart et al. 1986), and the numerical simulations of Glatzmaier

(1984) and Gilman and Miller (1986) suggest that large and sustained patterns of

motion may exist in the Sun with scales approaching the depth of the convection

zone. Glatzmaier (1984) probably over-predicts vertical velocities near the surface

since he does not model the small pressure scale height regions where the ionization

zones are (see below).



A possible explanation of the small vertical velocities of the supergranules and

the absence of a strong signature of giant-cells in the data of Howard and Labonte

(1981) may be found in the work of Latour et al. (1981) and Ballegooijen (1986).

Latour et al. (1981) have used an anelastic modal approach to model convection in

A-type stars. They find that buoyancy breaking may occur in upward directed flows

which have horizontal scales large compared to vertical scale height of the region into

which they penetrate. This leads to lateral deflection and strong horizontal shearing

motions. If this result applies to G-type stars as well, it may be the explanation of

why giant-cells are not observed at the surface. This is an ionization zone effect since

from the definition of the second adiabatic exponent it can be shown that the vertical

scale height rapidly decreases in an ionizing region. Ballegooijen (1986) finds that

density stratification screens out periodic components of the near surface flow pattern

in his convection model.

d) An Overview of this Paper

In §II, we state and attempt to justify the assumptions used in this study. we

present all equations intended for practical application in the observer's frame. Ref-

erence frames are discussed in §III. The equations of motion governing the seismic

oscillations in the presence of a time independent large-scale velocity field and the

associated thermodynamic perturbations are derived in §IV. We present in §V the

quasi-degenerate perturbation theory needed to calculate the influence of a time-

independent, but otherwise general, aspherical perturbation on solar oscillations. In

§VI, we derive the interaction matrices which determine the strength of coupling be-

tween oscillations due to a specified convection model using the perturbation operator

derived in §IV and the perturbation theory derived in §V. The application of quasi-

degenerate perturbation theory to the normal modes of the Sun and the interpretation

of the coupling phenomenon is discussed in §VII. In §VIII, we consider a special case

in which only modes that are members of a single multiplet couple. In §IX, we present

preliminary numerical results in which the theory derived in this paper is applied to



a convection model provided to us by Gary Glatzmaier (see Gilman and Glatzmaier

1981; Glatzmaier and Gilman 1981a,b; Glatzmaier 1984). Helioseismologists often use

the technique of Cuypers (1980) to reduce integrals on the unit sphere which arise

from complex vector calculus calculations. In Appendix 2B, we present an alternative

technique adapted from Phinney and Burridge (1973) which considerably simplifies

evaluation of such integrals. We used this technique to calculate the general matrices

presented in §VI. Appendices 2A, 2C, 2D, and 2E relate to technical discussions in

the chapter.

II. JUSTIFICATION OF ASSUMPTIONS

a) The Assumptions of Our Approach

We seek to calculate accurately the influence of long-wavelength, long-lifetime con-

vection on p mode frequencies and amplitudes. We adopt the following assumptions.

(1) Convection-oscillation coupling below the top one or two pressure scale heights

(the top shell) does not significantly affect p mode frequencies and amplitudes. A

corollary assumption is that the convective velocity field v and the thermodynamic

perturbations associated with convection in the second shell are small enough so that

the anelastic approximation (Gough 1969) is justified. (2) It suffices to retain terms

in the equation of motion to first order only in the p mode amplitude. (3) The general

features of the long-wavelength convective flow remain approximately steady during

the interval over which helioseismic observations are made.

b) Physical Justification of the Assumptions of our Approach

i) Convection-Oscillation Coupling is not Significant below the Top Few Scale Heights

Recent results suggest that p modes are excited by turbulent convection (Goldreich

and Keely 1977a, b; Kumar & Goldreich 1988; Goldreich and Kumar 1988, 1989).

The extent of energy exchange between oscillations and turbulent convection depends

on their relative time and velocity scales. Convenient measures of the coupling are

given by the spectral emissivity e(w) and absorptivity a(w) of acoustic radiation by



a turbulent fluid and the flux F, pumped into to the modes from the convective

energy. These quantities have been calculated by Goldreich and Kumar (1988, 1989).

The emissivity and absorptivity depend on the manner in which the turbulence is

generated. Turbulent pseudoconvection is the model most relevant model to the Sun

considered by Goldreich and Kumar (1988). The emissivity for this type of turbulence

is given by

e(w) ~ Pov M3 (WTH )2 for wrT < 1,

C(w) , Pov M 3 (WrH )-9/2 for 1 < W7H M - 2 ,

e(w) pov2 M5 (WTH )-7/2 fo M - 2 < WT R /4

e(w) - 0 for R/I 4  WrH, (2.1)

and the absorptivity is given by

M 2

a(w) - - for WTH < R</4 ,
TH

a(w) - 0 for R/4 < H . (2.2)

The variables in equations (2.1)-(2.2) have the same meaning as in §1I. Goldreich and

Kumar (1989) derive an expression for Fp given by

F = M Fc (2.3)

where Fc is the convective flux. In the mixing length picture of convection one would

choose

H cH, (2.4)

M __________1/3 (2.5)
4(M rlp)3/2pT

aHp
TH a (2.6)

cM

where Hp = P/(pg) is the pressure scale height, a is the ratio of the mixing length

to Hp g is the gravity, IF is the first adiabatic exponent, and c, is the specific heat.

We have set Q = (4 - 30)0-1 where 0 is the ratio of the gas pressure to the total



pressure. The convective flux was calculated using

F = r L V V (2.7)

where L® is the solar luminosity. We have used equation (14.58) of Cox and Giuli

(1968) to obtain the Mach number M vH c.

We can show that convection-oscillation coupling is not significant below the top

few scale-heights by calculating the radial dependence of e(w), a(w), and Fp. The

Mach number decreases and 7, increases with increasing depth so that the emissivity

and absorptivity decrease with depth. Figure (la) is a plot of the characteristic

length, velocity, and time scales of convection predicted by mixing length theory (see

equations (2.4), (2.5), and (2.6)). These plots were made using the solar model of

Podsiadlowski (1989) and a was taken to be 1.305. The predicted time and velocity

scales near the surface correspond well with observations of granulation. Figure (ib)

is a plot of e(w), a(w) and Fp versus depth for a 3.5 mhz mode. Equations (2.5) and

(2.6) were used to compute M and 7,, and we have set v, = cM. The values of e(w)

and a(w) are plotted for a single eddy. The period corresponding to 3.5 mhz is similar

to the overturn time of a typical solar granule. From Figure ib, it is clear that wave

emission, absorption, and flux of energy going into the p modes occurs primarily in the

top - .15% of the convection zone. These quantities depend on the Reynolds stresses

which scale as pv2 and which generate quadrupole emissions, and the buoyancy

forces which arise from entropy fluctuations that scale as cuvH /(gH) (Goldreich and

Kumar 1988) and which generate dipole emissions. The Reynolds stresses and entropy

fluctuations act far more efficiently in the top few scale heights as a mode-turbulence

coupling mechanism than in the deeper layers where the characteristic velocities are

smaller and the length scales are larger, as can be seen from Figure lb.

ii) The Convection is Anelastic

The p modes, and g modes (both stable and unstable), are solutions to the general

equations of hydrodynamics. If the convective speeds of the unstable g modes are

much smaller than the sound speed of the p modes there will be a mismatch in



either the time scales or the length scales, or both, and the coupling between the

two types of motion will be small. To decouple the short-period acoustic waves from

convection, only those terms in the equations of motion with scales appropriate to

long-wavelength, long-lifetime convection should be considered. The coupling between

acoustic waves and convective motions (or turbulence) cannot in general be ignored.

However, as far as the general description of the convective dynamics is concerned,

the coupling can safely be neglected as long as the amplitudes of the acoustic modes

are sufficiently small. This filtering forms the basis of the anelastic approximation.

The anelastic approximation excludes density perturbations on acoustic time scales.

However, density perturbations on the much longer time scales associated with con-

vective overturn times in the deeper parts of convection zone are allowed. The primary

reasons that the anelastic approximation has been used in the past (e.g. Latour et

al. 1976; Toomre et al. 1976; Gilman and Glatzmaier 1981) are: (1) the high fre-

quency acoustic waves are filtered out so that the small time-scale associated with

these waves need not be resolved in numerical simulations of convection, and (2) the

convection can be modelled over many density scale heights which is much more re-

alistic than the single scale height required in the Boussinesq approximation. The

anelastic approximation is justified when the frequencies and Mach numbers of the

convection are not too high. Its basic effect is to suppress terms which are nonlinear

in the horizontal fluctuations of the thermodynamical variables yet allows large ver-

tical variation in the mean density and preserves the dynamical nonlinearities in the

equations governing convection. From the argument in the previous subsection, this

implies that the emission and absorption of acoustic modes by anelastic convection

are very weak processes.

We retain the anelastic approximation in this paper for several reasons. First, we

use a perturbative theoretic approach (see §V) which requires that the perturbations

from spherical symmetry (including the velocity field and thermodynamic variations)

are small enough so that accurate estimates of frequency perturbations can be ob-

tained by retaining terms first-order only in the perturbation variable. A flow which



satisfies the conditions of linearization in our perturbation theory is likely to satisfy

the anelastic approximation as well. Second, the interaction matrix which describes

the coupling of the p modes due to a given flow field is Hermitian only if the flow is

anelastic. This result implies that the eigenfrequency of a normal mode of oscillation

is complex in the presence of a flow which is not anelastic. The physical interpretation

is that such a flow field has a non-zero mass-flux in or out of a finite volume which

means within the context of the anelastic approximation that if the density is not al-

lowed to change on the acoustic time scale, then there are mass-sources, mass-sinks,

and cavitation in the flow field. A flow which is anelastic satisfies the unperturbed

continuity equation, V (pov) = 0 which clearly, is a condition that eliminates sources,

sinks, and cavitation. Therefore, to examine self-consistently the influence of a flow

with time-scales far longer than the acoustic time scale and to satisfy the lineariza-

tion requirements of our theory, we use the anelastic approximation. The principal

physical effect of an anelastic flow on the p modes is that energy may be scattered

between any two p modes provided that the angular momentum is conserved i.e., the

modes must satisfy certain selection rules which we enumerate in §VII.

iii) A Linearized Treatment Suffices

Helioseismologists ordinarily retain mode displacement terms to first order only in

perturbed equations of motion that govern frequency splitting caused by aspherical

structures. We adopt this approximation as well. The convective velocities and

the p mode amplitudes are peaked in the top few scale heights (the first shell) and

diminish with depth. Thus, the most significant nonlinear interactions between p

and g modes, or among p modes alone, are largely confined to the first shell. In

the linear approximation, p modes are coupled by convective structures (energy is

scattered among them). There are several nonlinear energy transfer mechanisms

whose efficiency depends on the finite amplitude of the p modes alone, or on the

finite amplitudes of the p modes and the unstable g modes. Retaining terms to

second order in the displacement fields, the various scenarios are: (1) one p mode

may couple to two g modes, (2) two p modes may couple with one g mode, (3) three



p modes may couple with one another, or (4) three g modes may couple with one

another.

The two important classes of interaction involving the p modes alone are two

mode coupling and three mode coupling. There are two types of two mode coupling

and these are self and full coupling. Self coupling occurs when two modes that share

the same degenerate frequency (modes with the same radial order n and harmonic

degree 1) couple. More generally, two modes with different degenerate frequencies

may couple and this is called full coupling. In self and full coupling, the energy is

scattered by an asphericity in the Sun such as convection. We show in §VI that full

coupling can be induced by both poloidal and toroidal velocity fields and that in the

self coupling approximation only toroidal velocity fields couple modes. Three mode

coupling (Kumar and Goldreich 1988) is important if the p modes have significant

finite amplitude. In this case, nonlinear terms in the equation of motion cannot

be ignored. Energy can be exchanged between the three modes if the interaction

conserves energy and momentum. Kumar and Goldreich (1989) have shown that the

most significant nonlinear interactions among p modes occurs in the top few scale

heights. Although, the convective velocities are large in the first shell, the scale of the

aspherical structure there is so small, that to first order in the velocity field, coupling

between modes with harmonic degrees 1 < 1 < 100 is zero. We argue this point in

§II.e.

The amplitudes and energetics of the p modes depend strongly on turbulence

(which is intrinsically nonlinear) and on the finite amplitude of the p modes them-

selves (Goldreich and Keely 1977b, Kumar and Goldreich 1988). Turbulence and

three-mode coupling inappreciably change the frequencies (Brown 1984; Kumar 1989,

personal communication). Thus, the influence of internal structure on the frequencies

is relatively divorced from complicated nonlinear interactions. Since the amplitudes

of the p and unstable g modes are small below the top few scale heights, it suffices

to solely consider self and full coupling to calculate the frequency splitting due to

convective structures in this shell.



iv) The Flow Field is Steady

As a first step toward modelling convection-induced p mode interaction, we derive

in this paper a perturbation theory for a steady flow field. At each instant in time,

the frequency shift of a mode due to an asphericity is a function of global properties.

If the asphericity changes in time, the peak of the resonance function associated with

a given mode also varies. The peak instantaneously traces a trajectory in frequency

space. The peak of a resonance function in the frequency domains represents a time

average of the trajectory of the modal frequency. Thus, an asphericity which changes

during the data collection interval leads to line broadening. These are complicated

effects which we do not address in this paper.

The coherence time of large-scale flows beneath the turbulent boundary layer is

not known since the flows cannot be directly observed. Clearly though, slower velocity

and larger length-scale convective eddies have longer lifetimes than the small length-

scale and time-scale granules and supergranules observed at the surface as can be

seen from Figure la. The lifetime of active longitudes and coronal holes may be

related to the lifetime of large-scale motions in the interior. Glatzmaier and Gilman

(1981, 1982) find in their numerical simulations that some components of the flow

have lifetimes on the order of weeks.

c) Frequency Splitting from Small-scale Structure

We are interested in the fine frequency structure of modes and not their degen-

erate frequencies. Our goal is to describe the interaction of p modes with harmonic

degrees I between 1 and 100. The turbulence in the turbulent boundary layer will

affect the degenerate frequency (see Brown 1984) but not the fine structure. The lat-

ter observation follows from the conservation of angular momentum. The harmonic

degree 1 of structure with horizontal wave-number kh is given by 1 - R®kh where R®

is the radius of the Sun. Taking a typical horizontal wavelength of granules to be

1400 km implies a harmonic degree s - 3140. Suppose two modes interact which have

harmonic degrees I and 1'. The angular momentum is conserved only if I' - s I < 1



and I 1- s I < 1'. Modes with I and 1' between 1 and 100 cannot satisfy these triangle

inequalities and therefore their fine structure will not be affected by the small-scale

structure in the turbulent boundary layer. This result follows from the discussion in

§VII.

d) Summary Remarks

We have argued that mode coupling between p modes and unstable g modes is

important only in the first shell (the top few scale heights), and that the principle

effect of convection on p modes in the second shell (which comprises the vast majority

of the convection zone) is to induce two mode coupling among them (a process which

we call self and full coupling and which is the subject of the rest of this paper). We

have argued that it is justifiable to use the anelastic approximation (V - (pv) = 0)

in the second shell by using the results of Goldreich and Kumar (1988) and stan-

dard results of mixing length theory. The wave emission and absorption by a single

convective eddy at depth is down by many orders of magnitude relative to the first

shell which is consistent with the anelastic approximation which filters out coupling

between acoustic modes and convective modes. Our perturbation theory is derived

for a stationary flow field. The large scale flow in the second shell may be steady for

a time approaching the coherence time of observed large-scale magnetic features.

III. REFERENCE FRAMES

Current measurements of helioseismic oscillations are generally made from the

surface of the Earth. Space-based measurements will soon exist, but whether mea-

surements are obtained from a natural satellite such as the Earth or future man-made

satellites, observers require theoretical results reported in a frame other than the

Sun's. So that observers can more easily use the results in this paper, all equations

intended for practical application will be set up and solved in what we call the ob-

server's frame. Let us denote the origin of the observer's frame as 0 , and the origin

of the Sun's frame, the Sun's center of mass, as O,, as is shown in Figure 2. The



position vector R connects the origins of the two frames. Positions in the solar frame

are taken relative to a set of orthonormal unit vectors {ei, e2, e3 } which rotate about

e3 with rotation rate ft, the bulk rotation of the Sun. Thus, the position vector in

each frame is given by

r, = riei,

ro = R + ree, (2.8)

the velocity vectors by

V, = e,

v0 = R + ej + rii , (2.9)

and accelerations by

as = Fjei,

ao =R + rie + 2 iij + rieji, (2.10)

where the overdot signifies the local time derivative I. For our purposes the rate

of bulk rotation of the Sun can be considered constant and the orientation of the

rotation axis fixed relative to the observer's frame. With these assumptions, a simple

geometric argument shows that

ei = 2 x ej. (2.11)

The vectors it and R account for the fact that the origin of the solar frame may itself

translate and accelerate relative to the observer's frame.

We assume that the reference model undergoing convection exhibits a stationary

flow field uo superimposed on the equilibrium solar model. We identify this velocity

field with ie, so that

uo = iej. (2.12)

Thus, with equations (2.11) and (2.12), we rewrite the velocity and acceleration

in the observer's frame as

v = R + uo +~x r,

ao = R + 2 x uo + 2x Ix r + u -Vu (2.13)



where we have used the assumption that the velocity field and rotation rate are steady;

i.e., = =. The velocity and acceleration in the solar frame are then given by

Vs = U 0 ,

a, = 0. (2.14)

The solar rotation dominates the Doppler shifts of spectral lines. However, the

orbital motion of the earth and its rotation also contribute. Henceforth, we assume

that the Doppler images have been processed to remove these latter motions and,

therefore, we set R = R = 0. We also assume that the images have been rotated

to account for the inclination of the solar rotation axis out of the plane of the sky

(the B angle). Other operations that are usually performed include multiplication

by the factor ,p = sin(O)cos() to obtain the projection onto the line of sight and

multiplication by an additional factor of y to reduce the weight of the polar regions

(see Tomczyk 1988 for a detailed discussion). Assuming the application of these data

corrections and neglecting the acceleration of the solar system with respect to the

rest of the universe, we can identify the observer's frame with the inertial frame so

that vo and ao can be identified with the inertial velocity v1 and acceleration a,

referred to in §IV. We have

v, = Uo + Q x r,

a, = 2Q x uo +f x x r + uo - Vuo (2.15)

IV. THE EQUATION OF MOTION

We derive in this section the equation of motion governing p modes in the presence

of global, long-wavelength, steady state, laminar convection and is given in equation

(2.70) The perturbation operator is derived in the observer's frame so that our nu-

merical results are more easily comparable to observations. The equation of motion

governing oscillations in an otherwise static and spherically symmetric Sun is given

in equations (2.21) and (2.22). The equation of motion governing oscillations in the



presence of convection is given by equation (2.70) with equations (2.61), (2.68), and

(2.69).

To derive these equations, it is necessary to define precisely four solar models.

These are: (a) equilibrium model, (b) the perturbed equilibrium model, (c) the ref-

erence model, and (d) the perturbed reference model. The equilibrium model is the

standard solar model. In §IV.a we prescribe the minimal set of characteristics the

equilibrium model must possess. The perturbed equilibrium model is the equilibrium

model undergoing helioseismic oscillations. The reference model is the equilibrium

model with the addition of rotation and convection and, therefore, has a prescribed

set of departures from spherical symmetry taken relative to the equilibrium model;

it is not seismically disturbed. The perturbed reference model is the reference model

undergoing helioseismic oscillations. In the following, we prescribe the properties of

each of these models in greater detail.

a) The Equilibrium Model

The equilibrium model is the spherically symmetric, non-rotating reference model

to which convective structural perturbations will be added. For our purposes, we

require only knowledge of its mass Me, radius Re, and the radial profile of two inde-

pendent thermodynamic state variables for 0 < r < Re (the density p and adiabatic

bulk modulus ic, for example). We refer to these variables as the equilibrium model

parameters. They smoothly vary with position and display no internal discontinu-

ities. The equilibrium model which we have used in this paper was calculated with

the stellar evolution code of Gilliland (see for example, Gilliland, 1985). We evolved

the sun to age 4.6 billion years and used X = 0.75, Y = 0.23, and Z = 0.02 for the

initial hydrogen, helium, and metal abundances, and chose a = 1.368 for the ratio of

the mixing length to the pressure scale height.

Let p,, 0 , and P denote the density, gravitational potential, and pressure of

the equilibrium model. The equilibrium equations are:

Po V0O = -VPo, (2.16)



V2 
0 = 4rGpo . (2.17)

Equations (2.16) and (2.17) must be solved in the volume of the model subject to the

jump conditions at r = RE:

[o0 ]+ = 0, (2.18)

[f. V ]+ = 0, (2.19)

[~- PO I]+ = 0, (2.20)

where G is the constant of gravitation, i is the unit vector in the radial direction, and

I is the identity tensor. The notation [Q]+ denotes the jump discontinuity of quantity

Q across the surface r = R®, the positive contribution arising from that side toward

which i~ is directed. Both Po and P are defined to be zero for r > RE, and 0 is

required to vanish at infinity.

b) The Perturbed Equilibrium Model

The perturbed equilibrium model is an equilibrium model subjected to seismic

oscillations. The equations governing this model result directly, as a special case,

from the more general equations derived in detail in §IV.d (see eq. 2.66) Consider

a single normal mode of oscillation, with angular eigenfrequency w and associated

displacement eigenfunction s(r) so that s(r, t) = s(r)e t. The linearized momentum

equation which governs oscillations of the equilibrium model is given by

£(s) + pw2 s = 0, (2.21)

where

£(s)= V.[Po {(IrF -1)(V.s)I+2e-Vs}] -poV6O-pos.VVo (2.22)

and rl is the first adiabatic exponent, VV is the dyadic derivative, e is the incremental

strain tensor defined by

e= -(Vs + (Vs)T) (2.23)
2



and, 6 is the eulerian perturbation in gravitational potential governed by

V2bo = -47rGV (po s). (2.24)

In equation (2.22) we have assumed the oscillations are adiabatic. The boundary

conditions for 6b at r = R® can be written

[5s]+ = 0, (2.25)

[f~ {(47rG)-1 VSb + po s}]+ = 0, (2.26)

where equation (2.26) can be derived from equations (2.52) and (2.53) with an appli-

cation of the divergence theorem. An additional surface boundary condition is that

the Lagrangian pressure variation must vanish:

AP = -PFrV -s = 0. (2.27)

The inner boundary conditions can be obtained by approximating the innermost

region of the star as a small homogeneous sphere and by solving analytically for

the eigenfunction displacements. The inner boundary conditions can be obtained by

evaluating ratios of the eigenfunctions at the surface of the sphere (see Pekeris et. al.,

1958). We have used a computer code written by John Woodhouse to calculate the

eigenfunctions and eigenfrequencies of the oscillations. See Woodhouse (1988) for a

detailed description of the code.

c) The Reference Model

The reference model is an aspherical rotating and convecting model. Perturbations

in structure (such as density perturbations) are referred to the equilibrium model. The

reference model rotates with bulk rotation rate Q and includes u0 , the velocity field

u0 of long-wavelength convection (referred to from the rotating frame). The velocity

field satisfies the anelastic condition (see eq. 2.29) which insures that seismic waves

are not generated by the convection.

The general velocity field v introduced below includes uo and contributions due

to reference frame effects. The anelastic condition insures that seismic waves are not



generated by the convection. The reference model is fully characterized by Q, vi,

and a parameterization of the convective perturbations to two independent thermo-

dynamic state variables (e.g. p and K).

The unperturbed mass continuity equation of the reference model is written

+ V -(V) = 0 (2.28)

where v, = fl x r + uo, and uo satisfies the anelastic condition

V - (p0 u ) = 0. (2.29)

The conservation of energy is given by

DS
pT-- = entropy production terms, (2.30)

Dt

where the total time derivative is defined by

D d
D- = - +  V. (2.31)Dt at

The right hand side of equation (2.30) represents the production of entropy through

dissipative processes such as heat conduction, viscous shearing and expansion, emis-

sion and absorption of radiation, divergence of the convective flux, and so on. Even in

the absence of entropy production terms, equation (2.30) states that entropy must be

conserved along streamlines of the motion in steady state. In general, such a velocity

field cannot be designed ab initio and this requirement is not naturally incorporated

into the Lagrangian describing the oscillations. Rather, we assume in the sequel that

the flow fields in the reference model are determined a priori from a self-consistent

dynamical calculation in which equation (2.30) holds. We will later assume that the

Lagrangian and Eulerian variations of the entropy are zero, and, therefore, drop any

further consideration of the energy equation (2.30).

Ignoring magnetic fields, the Reynolds stresses generated by turbulence, and the

effects of external body forces, the conservation of linear momentum becomes

Dvi VPD - V. (2.32)
Dt p



The gravitational potential is governed by Poisson's equation:

V2€ = 41rGp. (2.33)

The equation of state is given by

P = P(S, p) (2.34)

which for our purposes need not be given an explicit form.

d) The Perturbed Reference Model

In this section we seismically perturb the reference state defined in §IV.c to obtain

the equations of motion governing small elastic-gravitational oscillations of the Sun

in the presence of a time independent velocity field. As argued in §III, we identify

the observer's frame with the inertial frame. Therefore, we make the indentification

Dt

The response of the reference state to an oscillation can be determined by per-

turbing the momentum equation (eq. 2.32). The resulting equation includes terms

perturbed in p, 0, and P; these terms can be obtained by perturbing equations (2.28),

(2.33), and (2.34), respectively. In the rotating frame, the temporal and spatial basis

functions of the oscillatory modes conveniently separate. They also separate in the

observer's frame if the rotating body has an axisymmetric flow field. However, the

temporal and spatial basis functions do not separate in the presence of a flow field

that is more general than an axisymmetric flow if the measurements are taken in

the observer's frame. Ignoring this effect introduces errors that are quadratic in the

bulk rotation rate, the nonaxisymmetric flow, and products between them (personal

communication, Ad Van Ballegooijen). To avoid this problem, the perturbation cal-

culations could be performed in the rotating frame. To make comparisons with the

data, the Doppler images would have to be transformed to the rotating frame for

reduction and analysis. To avoid these complications, we have chosen to assume the

modal basis functions separate i.e.

s(r, t) = s(r)eiwt (2.35)



and perform the calculations in the observes frame to first order accuracy in the bulk

rotation rate and flow field. In future work, we will perform the calculation in the

rotating frame and determine the appropriate transformation.

Since the oscillations are assumed to be small, all perturbed quantities calculated

in the following are linearized in s(r). In the observer's frame, the first and second

time derivatives of (2.35) are given by:

ds 8(sie)Os - O(se) iws + f2 x s, (2.36)
at at

82s
-= W_2s + 2iwft x s + f2 x f2 x s, (2.37)

at2

where we have used equation (2.11). The Lagrangian change operator is denoted by

A and is defined by the operation

A(Q) = Q(r + s(r, t), t) - Q0o (r, t) (2.38)

where Q and Q0 are the values of a scalar or vector quantity in the perturbed and

unperturbed flows, and s(r, t) is the displacement suffered by that fluid element which

would have been at r at time t in the unperturbed flow. Lynden-Bell and Ostriker

(1967) show that the total time derivative and the Lagrangian change operator com-

mute:

[ , A =0. (2.39)

The Eulerian change operator is defined by the operation

6(Q) = Q(r, t) - Qo (r, t) (2.40)

Comparing equations (2.38) and (2.40), we see that the two operators are related to

first order in s by

A = 6+s V. (2.41)

To obtain the Lagrangian governing the oscillations, we need to take the variation

of equation (2.32). Since the operator S does not commute with the total time deriva-

tive, variational calculations are greatly simplified if we take the Lagrangian rather



than the Eulerian variation of the equations of motion. Applying equation (2.38) to

equation (2.32) yields
(Dv, Ap A(VP)

A D - VP + + A(V¢) = 0. (2.42)
k Dt p2  P

The Lagrangian change operator may be brought inside the total time derivative

operator with commutation relation (2.39). It may also be brought inside the gradient

operators with the the commutation relation

[A, V]i = -(Visj)Vj, (2.43)

which can be derived from the discussion in Cox (1980). Thus, we require the per-

turbed quantities Av,, Ap, AP, and AO which are given by

Ds
Av, = (2.44)

Dt

Ap = -pV -s (2.45)

A4 = 6 + s -.V (2.46)

AP = -PrlV -s (2.47)

where P1 is the first adiabatic exponent. The product PF1 can be identified with the

inverse of the adiabatic compressibility ic,. Equations (2.44)-(2.47) are derived in the

following.

By the definition of the the Lagrangian change operator in equation (2.38), the

Lagrangian variation of velocity in the inertial frame is given by

A D(ro + s) Dro0  Ds
Dt Dt Dt'

which follows from the linearity of the total derivative. This establishes equation

(2.44).

The Lagrangian perturbation to the density is given by

Ap = Sp + s - Vp. (2.49)



To determine Sp we take the Eulerian variation of the mass conservation equation

6 p + V (p,) = 0. (2.50)

Dropping terms second order in small quantities, noting that V - (pQ x r) = 0, and

using the commutation relations from Cox (1980)

a,6 = [V,6] = 0, (2.51)

we obtain

Sp = -V (ps), (2.52)

which, together with equation (2.49), yields equation (2.45).

Equation (2.46) results simply from the application of equation (2.41) to 0. The

Eulerian perturbation in gravitational potential &6 can be obtained by solving the

perturbed Poisson equation

V260 = 47rG6p, (2.53)

which is

6 = -G p(r' d3 ' = G p(r')s(r') -dS - G p(s(r'(r) -V' 1 dr' (2.54)

J|r-r'l Ir-r |rr-r'  (

where we have used equation (2.52) and the divergence theorem. The Lagrangian

perturbation in pressure AP can be determined from the equation of state. Taking

the total derivative of equation (2.34) yields

AP a= SAp + 5) AS. (2.55)(P s S
Under the assumption that the oscillations are adiabatic (i.e., AS = 0):

=( _ P) p P InP\ PF1
AP Apnp Ap= Ap = -PFIV -s, (2.56)

aP ' p lnp Jp

completing the derivation of equations (2.44)-(2.47).

The inertial term in equation (2.42) may be reduced by application of equations

(2.39) and (2.48) which yields

AtDv, D2s- +2 v  - as
Dt Dt2 2v V + a, -Vs + v, - V (v, -Vs)=

Dt D t2 at2 4,



-w2s + 2iwf2 x s + f2 x 2 x s + 2(u, + f2 x r) -V(iws + 2 x s) +

(2f x uo + x2 x r + uo -Vuo ). Vs +

(uo + x r) - V((uo + 2 x r) -Vs). (2.57)

Substituting equations (2.44)-(2.47) and equation (2.57) into equation (2.42) yields

PD2 = 2S Cs (2.58)

where

ijs = Vi(PF iVs) - (Vsj)ViP + (Visj)ViP - psViViV - pViS . (2.59)

Using equations (2.15), (2.57), and (2.59), equation (2.58) can be rewritten

- pw 2s + pT(s) = £(s) (2.60)

where

T(s) = B(s) + C(s) + D(s) + E(s). (2.61)

The operators B(s), C(s), D(s), and E(s) are defined as

B(s) = 2iw x s + 2iw(Of x r) - Vs + 2iwuo - Vs, (2.62)

C(s) = f x f2 x s + x f2 x r -Vs + x rV(fl x s) + x r-V(Q x r -Vs), (2.63)

D(s) = 20 x (uo Vs) + 2uo - V(f2 x s) +

2 x r - V(uo • Vs) + u0 - V(f1 x r - Vs), (2.64)

E(s) = 2uo - V(u0 - Vs). (2.65)

The operator B is linear in uo and 0, C is quadratic in 0, D is of order f2 - u ,

and E is quadratic in u, which for the Sun is a progression from the most to the

least significant contribution to the perturbed equation of motion. The equation of

motion in the solar frame is given in appendix 2A; it is identical to the corresponding

result of Lynden-Bell and Ostriker (1967).



For a spherical non-rotating, non-convecting Sun the perturbation term T(s) = 0

and

- pw2s = £(s) (2.66)

which is identical to equation (2.21). As we have mentioned earlier, the assumption

that the temporal and spatial basis functions separate in the observer's frame is

accurate only to first order in the bulk rotation rate and nonaxisymmetric flow field.

Therefore, in the rest of this paper, we neglect contributions from the higher order

terms in the operators C, D, and E.

e) The Equations of Motion for a General Model Perturbation

Thus far we have accounted for the velocity field of convection and the reference

frame effects. It remains to introduce convective perturbations of the thermodynamic

state variables. In a fluid there are only two independent state variables, the equilib-

rium model parameters. A variety of model parameter combinations can be chosen;

the density p and incompressibility modulus n are convenient choices. The latter is

also known as the adiabatic bulk modulus and is defined

r = p = PrP. (2.67)
( aps

In the following, any scalar quantity with the subscript o denotes the value of that

quantity in the equilibrium model. It is solely a function of radius. The operator 6

applied to a quantity Q without the subscript o signifies the eulerian perturbation of

that quantity due to seismic motion. The operator 6 applied to a quantity Q with

the subscript o signifies the structural perturbation of that quantity referenced to the

equilibrium model.

Therefore, using equation (2.22), the operator £ may be written

£(s) = V. [, (V -s) I + P {2e - Vs - (V - s) I}] - Po V80 - Po s - VV .68)

Clearly, q0 and P are functions of density alone so that L is a function of the model

paramaters r 0 and Po.



We now present the equations of motion for the perturbed reference model in the

observer's frame when the perturbations include bulk rotation, velocity field uo, and

perturbations b6i to Ko and bpo to o ,. We use the notation 6£ to indicate the

perturbation to the operator £ due to perturbations in the scalar model parameters

and the concomitant perturbations 6Po to Po and 60 to 0 . Thus, 6 can be written

6S(s) = V. [bio (V. s) I + 6Po {2e - Vs - (V. s) I}] -

bpo V6S - bpo s . VVo - po s -VV6 0  (2.69)

where we have linearized the perturbation operator in the structural perturbations.

In general ba = Sbo (r, 0, q) and 6Po = bPo (r, 0, q). Thus, the equation of motion

given by equation (2.60) for the perturbed reference model in the observer's frame

becomes

- Po W2 s + Po B(s) = 1(s) + 6£(s) (2.70)

where we have ignored the higher order terms in the operators C, D, and E.

V. PERTURBATION THEORY

In this section we present the quasi-degenerate perturbation theory (e.g. Dahlen

1969; Luh 1974; Woodhouse 1980) and show that degenerate perturbation theory

(Mathews and Walker 1970) is a special case. We consider a small, but otherwise

general perturbation to the equilibrium model and seek expressions for the eigenvalues

and eigenfunctions of the perturbed system. The particular perturbations we consider

are the rotation, the convective velocity field, and perturbations to K, and p,. The

parameterizations of these perturbation are given in §VI.a. In §§V.a-V.c, no references

is made to the form of the perturbing operator; in §V.d, the operator is specialized

to the perturbations considered in §IV. We present the normal mode eigenfunctions

of the equilibrium model in the following subsection.

a) The normal modes

The p modes are spheroidal; their displacement may be written in the form

s(r) = nU(r)Y' (0, )r + nVi(r)V, EYm (0, ) (2.71)



where ,Ut(r) and ,Vi(r) denote, respectively, the radial and horizontal eigenfunctions

for harmonic degree I and radial order n. The surface gradient operator is given by

V 1 = r(V - r - V). We use the notation sk'(r) to indicate a mode with indices

k' = (n', 1', m'). The function Ym is a spherical harmonic of degree I and azimuthal

order m defined using the convention of Edmonds 1960:

0J7 J0[Y,' (0, )]*Yrm (0, q) sin OdOd = bmmS'I (2.72)

where integration is over the unit sphere. The coordinates (r,0,0) are spherical polar

coordinates (where 0 is colatitude) and i, 0, q denote unit vectors in the coordinate

directions. Henceforth, we will drop the subscripts n and I in equation (2.71) and

use instead U=nU(r), V=,Vi(r), U'=,U,(r) and V'=,,V,(r). The modes satisfy an

orthogonality condition given by

ps*k, Skdr = N 6bmmbn'Jil (2.73)

where

N = Po [UU' + l(1 + 1)VV'r2dr. (2.74)

The scalar normalization constant N depends on the normalization convention of the

eigenfunctions U and V. This varies among codes commonly in use so we retain

N. To facilitate discussion we introduce in the following subsection notation and

terminology.

b) Notation and Terminology

A multiplet of the equilibrium model is uniquely specified by n and 1 and is de-

noted by ,Sl. The range of m for a multiplet with radial overtone n (where n = 0

corresponds to the fundamental mode) and harmonic degree I is -1 < m < 1. Thus,

the dimension of the eigenspace associated with multiplet ,Sl is (21+ 1). The (21+ 1)

eigenfrequencies associated with each multiplet are wmj. In the equilibrium model,

these frequencies are all identical and therefore the degenerate frequency wun is said

to be (21 + 1) degenerate. Each member of the multiplet ,S will be called a singlet.



Two singlets whose eigenspaces are orthogonal do not interact and are said to

be isolated from one another. A multiplet composed of singlets whose combined

eigenspace is orthogonal to the combined eigenspace of the singlets composing all

other multiplets is said to be isolated or self-coupled. The effect of rotation and other

asphericities in the sun is to destroy the (21 + 1) degeneracy of ,S and split the

multiplet. The split eigenfrequencies of an isolated multiplet are given by w' = "w1

+ Sw for -1 < m < 1 where the 6w!V are the eigenvalues of a (21 + 1) x (21 + 1)

hermitian matrix called the splitting matrix.

Two or more singlets which are not isolated, interact and are said to be coupled.

The degree of coupling between singlets is a function of a number of factors, among

which are the strength and geometry of the asphericity producing the coupling, and

the similarity of the radial eigenfunctions. When two singlets k and k' couple, the

strength of interaction is described by the so-called general matrix element H 'm,

The matrix Hn'n,at1 is of dimension (21' + 1) x (21+ 1) and is called the general matrix.

The square general matrix H, 11 is just the splitting matrix. The eigenfrequencies

of non-isolated singlets which couple within or across n or I are the eigenvalues of

an assemblage of block diagonal splitting matrices and off-block diagonal general

matrices. The entire assemblage is called the supermatrix.

In general, the eigenfunction of an aspherical Sun is a linear combination of the

basis functions of the unperturbed system; we call it the hybrid eigenfunction, its

associated eigenfrequency is called the hybrid eigenfrequency. If we are interested in

the properties of any given singlet we call that singlet the target singlet. Likewise if

we are interested in all the singlets of a given multiplet we call that multiplet the

target multiplet.

c) Quasi-degenerate Perturbation Theory

We introduce quasi-degenerate perturbation theory in order to calculate the hybrid

eigenfunctions and eigenfrequencies of non-isolated singlets of a system perturbed

about some reference state. We seek a set of eigenvalues of the perturbed system in

the neighborhood of a frequency w,,ref which we call the reference frequency. Let S



denote the set of all singlets and let K denote the set of singlets with unperturbed

frequencies close to w,,ref i.e.,

S- Wref I r (2.75)

for each member k of set K, and r is some small number. Quasi-degenerate per-

turbation theory is so-named because it is applicable only in a small bandwidth of

frequency space as given by equation (2.75).

To obtain the perturbation equations, we perturb the equation of motion of the

equilibrium state (47) to first order in e where c is some small number related to the

size of the perturbation quantity:

('o + L' )(so +s, ) -(Po + Pi )(wef +W1 )(So + S), (2.76)

where o , po, and so are, respectively, the Lagrangian, density, and eigenfunction of

the equilibrium model each of which are independent of c, and £, , p, , and s, are the

perturbations of the corresponding quantities in the perturbed system to first order in

S. The quantity w.ef +w2 represents the squared frequency of the perturbed system.

The perturbed operator £ can include the operators associated with rotational and

convective velocity fields derived in the §IV, model perturbations to ro and po (and

the corresponding perturbations to O0 and Po ), magnetic fields, and perhaps other

effects as well. Collecting the terms independent of c in equation (2.76) yields

o so = -Po WefSo . (2.77)

The zeroth-order eigenfunction so of the perturbed system is a linear combination of

singlets Sk for k E K. The first-order eigenfunction correction s, is a sum of singlets

Sk for k E S. Therefore, the zeroth and first-order hybrid eigenfunctions are written

So = akSk, (2.78)
kEK

S, = bksk',, (2.79)
k'ES

where the expansion coefficients ak are independent of c and the bk, are first-order in

E. Inserting equation (2.78) into equation (2.77) we obtain

> ((w) 2 e- Wf)po akSk = 0 (2.80)
kEK



and consequently ak = 0 for k D K to zero order in r. Collecting the terms first-order

in r or c in equation (2.76) yields

(o + Po )SI + ( + PI ef)so + POw 2s 0 +[(o + wLef)So]= 0. (2.81)

The last term in equation (2.81) is included because the expression in square brackets

leads to terms such as in equation (2.80) which by equation (2.75) are first order in

T. Following the Galerkin method, we substitute equations (2.78) and (2.79) into

equation (2.81), project the result on to the basis function sk,,, and integrate over the

volume of the Sun to obtain

bk, S * + Po 2 Sk'dr + ak S ( + Pi ) Skd 3

k'ES kEK

+ S,, kdr + S,, ( + Poe) Skd 3r} = 0 (2.82)

where each term in equation (2.82) is a scalar.

The first term in equation (2.82) may be reduced to the expression

bk" (wLf - WL,), )Nn"n'b"I'm"mm' (2.83)

where we have used equations (2.21), (2.73), and (2.74). Thus, the expansion coeffi-

cient for the first order correction to the zeroth order eigenfunction is given by

bk" = 1 * i -[,CI +PI L 2 f+Po L0 , Ln W
bk" = N(wL,, _ 2E ak {s,,.[ +P F+Po 1w +P ef]Sk}d3 r. (2.84)

The terms in equation (2.82) are easily reduced to

2 2 2+ 1 f)(L2+ o~e L2

ak[ SkI' " (, + P w2ef ) . skd 3 r + (w 2 + Wef - w)Nn'nv mm] = 0 (2.85)
kEK

where we have discarded the terms in bni,,im,, for reasons explained below. Equa-

tion (2.85) represents the principle result of quasi-degenerate perturbation theory.

The eigenfrequency perturbations w2 are the eigenvalues of the supermatrix whose

elements are

Sk, " (- - PI Wref) * Skd3r - (nWef - W)N6nn"nIm"m (2.86)



for k", k E K.

Had we included the bk", terms for k" 9 K in the supermatrix, they would have

decoupled in an eigenvalue-eigenvector decomposition from the singlets k E K since

the bk" terms fall only on the diagonal. The bk,, terms with k", k E K do not decouple

but become second order in small quantities since they include the factor wre2 - wn,,t,

which becomes O(r) for k" E K and since the coefficient bk" is O(e) by definition.

We define the general matrix element to be

H7,n,,, =J Sk" (- -p, ef) * Skd r (2.87)

for -1" < m" < l" and -1 < m < 1 and where H"m is the (m", m) component

of the general matrix Hn,,,1,11. Denoting the supermatrix by Z, the component Zk"k

becomes
Zk"k = 2 f - W 2l )NSn6 lmim},,} (2.88)
Z N,,k n ,,Y% - Wef - l"Ib

for k", k E K. The squared frequencies of the perturbed system are given by

w ef + (w)i (2.89)

and the range of i is the dimension of the supermatrix. If desired, the approximation

(W )i = 2refSWi (2.90)

may be used so that

Wi = i ref + 2 (2.91)
2wre

The zeroth-order eigenfunction of the perturbed system is given by equation (2.78)

and the expansion coefficients ak are simply the components of the eigenvectors as-

sociated with each eigenfrequency wi. If there are factors of frequency such as w or

wJn which appear in the H7,I,,,1 or in C, , we replace that frequency with Wref.

Degenerate perturbation theory can be recovered from equation (2.85) by choosing

wref = wn, setting n" = n, l" = 1, and by spanning the entire eigenspace of the

multiplet ,S1.



To visualize the geometric structure of the coupling problem, it is helpful to exam-

ine in matrix notation the block elements contributing to the supermatrix Z. Using

the approximation of equation (2.90), the hybrid eigenfrequencies wi are given by

the eigenvalues of the matrix Z/2w,ef. The matrix Z is assembled from the pre-

scription given in equation (2.88). Suppose we are interested in all the singlets of a

target multiplet ,St. We now introduce a small notational change and denote the

self-coupling matrix for that multiplet by Hoo. The singlets of nSj may also couple

to the singlets of other multiplets ,,Si,. The symbol Hij denotes the general matrix

governing interaction between singlets from ,,S 1, and ,,,St,,. The index i is chosen to

be positive or negative depending on whether w,,l, is greater than or less than the

reference frequency w,ref = w,t. Similarly j is > 0 or < 0 if wnl,, > Wan or Wn,,I, < wnt,

respectively. Finally, let us denote the reference frequency by w0 With this notation,

the matrix Z may be written

(W2
1 - W02)I-1-1

P(w - W2)I1

1
N

We note that the supermatrix can become quite large if all

to the H matrices are retained. We discuss in §IX the practical

Z, and provide a criterion which can be used to retain only

significantly contribute to Z.

H-1- 1 H-lo H- 11

Ho- 1  Hoo Ho01

Hi- 1  Ho10  H11

(2.92)

singlets contributing

details of assembling

those singlets which

d) The Perturbation Equation for Convection

We presently specialize quasi-degenerate perturbation theory to the model pa-

rameter and velocity field perturbations associated with convection. The operator for

these perturbations in the observers frame to first order in the bulk roation rate and



the flow field is given by equation (2.70). We may rewrite this equation as

(Co + bC - po B)(so + s ) = -(o + )(w + w)(So + s, ) (2.93)

where 6LS is given by equation (2.69) and where we have allowed for a general density

perturbation p, . Comparing this to equation (2.76), we may make the identifications

£ (s) = 6L£(s) - Po B(s) (2.94)

and

Pi = Po . (2.95)

Substituting equations (2.94) and (2.95) into equation (2.87) gives

H, = ,, Ski (Po B - po sef) kd 3r. (2.96)

VI. THE GENERAL MATRIX ELEMENT FOR CONVECTION

In this section we derive the general matrix for convective perturbations. The

scalar and vector perturbations are expanded, respectively, in terms of spherical and

vector spherical harmonics. The general matrix which governs the interaction between

two modes is given by equation (2.96). It includes contributions from the operators

B and 6, and from the perturbation po . The operator B includes terms linear in

Q and uo. The operator SL includes terms linear in 6Po and 8o . In §VI.b we derive

the general matrix for the term in operator B which is linear in uo for a velocity

field without the anelastic constraint. We denote that matrix by G,t,,,It. We show

that Gn,ti does not lead to a hermtian supermatrix. In §VI.c we incorporate the

anelastic condition into Gn,tt, denote that general matrix by anGn,,, and show

that it does lead to a hermitian supermatrix. In §VI.d we present the general matrix

for the operator B whose contributions include terms linear in Q and uo and denote

that matrix by B,,y-t. In §VI.e we derive the general matrix for the operator &6

and denote that general matrix by L,,,,t1t. Finally, in §VI.f we assemble these general

matrices and denote the sum by the general matrix K,,,,lt.

a) The Flow Field and the Thermodynamic Variables



A general, time-independent velocity field can be represented as the sum of vector

spherical harmonics

00 8

uo (r) = > _ [u (r)Y,'(0, €)i + v](r)V, Y:(9, +) - wt(r)xV1 Yt (9, )]. (2.97)
s=O t=-s.

The first two terms in equation (2.97) compose the poloidal flow and the last term

represents the toroidal flow. The anelastic condition can be incorporated into the

Lagrangian describing the oscillating system by combining the anelastic condition

with the reality of the flow field to yield a relationship between the poloidal spherical

harmonic coefficients ut and vt. The anelastic condition is given by

V - (p0 u ) = 0. (2.98)

Equation (2.98) implies that

a,(r 2P ) = po rs(s + 1)vt (2.99)

for each s and t in uo . The reality of the flow fields implies that each coefficient

in equation (2.97) satisfies a condition like u-t = (-1)rut*. In addition, the radial

component of the velocity field must vanish at the surface. Therefore, we require

ut(Re) = 0 V s, t. (2.100)

The scalar model parameters of the reference model are given by

n(r, 0, ) = ro (r) + Sno (r, 0, )

p(r, 0, ) = Po (r) + 6Po (r, 0, q) (2.101)

where the perturbations to the adiabatic bulk modulus and density are prescribed by

OO 8

eSk = s E 2O(O, )+K 62y0tY(0 , q), (2.102)
s=0 t=-s

bP0 = P y 2 (0, €)+ Z 6Pl;Yt (0, €). (2.103)
s=O t=-s

The superscript e denotes the structural perturbation due to the ellipticity induced

by the bulk rotation. The ellipticity e(r) is the solution of Clairauts's equation (see



Tassoul (1978) for a derivation of e(r)). The ellipticity perturbations to Ko and po

are given in Woodhouse and Dahlen (1978):

[I, , bp = () -re(r) [aOr , ,p o (2.104)

where

e(r) = e(R®) exp - R x-ly(x)dx ,

1 z(r)] - 1,

(fr Po (x)xdx) / (' Po (x)X2dx),

c(Re) = 15f 2/[87rGpio ( (R®) + 2)],

Po (x)x
2dx.

b) The General Matrix for a General Flow Field

The contribution Gnn,ll to the general matrix Hn',I, for terms first order in uo

may be obtained from equations (2.61), (2.62), and (2.96):

Gn,l = 2 iwref Po s'* - uo - Vs d3 r. (2.110)

This is the only term first order in the perturbation quantity which is constrained by
the anelastic condition. The components G"Im"i of Gn'n,i't can be derived with the

formalism in Appendix 2B. We obtain:

G"',l't = 2wref 47r7,yl(-1)m'
s=0 t=-s ( l' s l

m' t m

(J poiu (r)R,(r)r2dr + poivt(r)H,(r)rdr +S ISIpowf(r)T,(r)rdr} (2.111)

where the kernels R,(r), H,(r), and T,(r) are given by

R, = U' B,03)+ + V'I'B) +,

H. = [UU' - VU']B(1), + (1 + (-1)("'+3+')) VV l'oQSl 1
r 0 002

(2.112)

1' s -2

1 1 -2

z(r) = r-2
3

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)fipo = 3R - 3 o R

0



+[V'U - V'V]- B , (:2()+
0 0j ,O 0.sill

TS = [UU' VU']B )- +[V'U - V'V]Q'B O -+'V U- s il

(1 - (-1)(v + ,+ ) V t, o st s21 (2.114)
(1 r 1 1 -2 (2.114)

for -1 < m <1 -l' < mi <1', and where the overdot indicates the radial derivative.

The -Yk and QR factors are given by

= 2k + 1 k (k + N)(k - N + 1)7k =V and =_ 2= (2.115)

The B,(N) coefficients are defined

(N) = 1 '++ (l' + N)!(1l N)! (-1)N . (2.116)
311 2 ((1 - N)!(l - N)! -N 0 N

There are several useful identities which the B coefficients satisfy (see Woodhouse

1980, eqs. (A43) and (A46)):

) = [1'(l' + 1) + 1(1 + 1) - s(s + 1)]B~ , (2.117)

,1, = (E + 2)(E + 4) 2.1
B {()2) - 4)(E + 1 - 21)(E + 1 - 21')(E + 1 - 2s)1,81 2 E +3

SB'+,s+l,l+l (2.118)

where E = 1' + s + 1. The phase and normalizations of the Wigner 3-j symbols are

those of Edmonds 1960. A numerical algorithm for calculating the symbols is given in

Appendix 2C. The decomposition of general matrix element of equation (2.119) into a

product of a reduced matrix element independent of m and m' times a Clebsch-Gordon

coefficient is a consequence of the Wigner-Eckart theorem (see Edmonds 1960).

The general matrix in equation (2.111) does not lead to a hermitian splitting

problem. In general, a general matrix is not a square matrix and therefore cannot

be hermitian. However, as can be seen from equations (2.85) and (2.86), the split-

ting problem reduces to performing an eigenvalue-eigenvector decomposition of the

(2.113)



supermatrix in equation (2.86). The supermatrix is an assemblage of block diagonal

splitting matrices and block off-diagonal general matrices. The entire assemblage is a

square matrix whose dimension is the number of singlets contributing to the coupling.

In order for the supermatrix to be hermitian we require that the real terms of the gen-

eral matrix remain unchanged and that the imaginary quantities be skew-symmetric

after the primed and unprimed quantities are interchanged. The wt term in equation

(2.111) satisfies this requirement but the terms in u' and v' do not. The w' coeffi-

cients are the expansion coefficients for the toroidal velocity field which by definition

is a solenoidal field and therefore the anelasticity condition does not constrain them.

To obtain a hermitian supermatrix, we must incorporate the anelastic constraint of

equation (2.98) into the poloidal kernels.

c) The General Matrix with the Incorporation of the Anelastic Constraint

The anelastic version of the general matrix Gnln,pI is denoted by anGn'n,'ti and is

derived in Appendix 2D. The final result is

an, ',, = 2wrf47r7t,7t(-1)m' , :1s=Ot=-s 
-m' t

anGt an ()m' S 5 ( ian
x { poiu ,(r)R"(r)r2dr + poivt(r)Ha"(r)rdr

+ Jrpow()T(r)dr} (2.119)

where the radial kernels R. (r), Hn(r), and T, "(r) are given by

R " (r) = (U'U - U'U)Bt 1 + 1(V' - V'V)B(), (2.120)

H"(r) = + 1) - l'(l' + 1)] [(U'U)B)+ (V'V)Bf' + V'UB) -U'VB(1)+s2 ] -+ 1) " +V slls I V. ll s

(2.121)
T(r) = {UV + VU - UU - V'V[1(1 + 1) + l'(l' + 1) - s(s + 1)]}B ,'-. (2.122)

The superscript an of the kernels R "(r), H"(r), and T"(r) denotes that they are the

anelastic version of the kernels Rs(r), H,(r), and T,(r) in equations (2.112)-(2.114).

The general matrix anG m '1,t in equation (2.119) leads to a hermitian splitting

problem. This can be seen by noting that the poloidal kernels are multiplied by



the imaginary number i, and that swapping the primed and unprimed quantities

in those kernels leads to kernels skew-symmetric with respect to the original ones

and performing the same operation on the toroidal kernel T,"(r) leaves that kernel

unchanged. We have also used the reality condition of the expansion coefficients

(u* = (-1)tut*, -t = (-1)tv*, w-t = (-1)twt*), and the permutation relation

for Wigner 3-j symbols in equation (2B.19) of Appendix 2B. In Appendix 2E we

show that the operators B in equation (2.62) is hermitian provided that the anelastic

condition is enforced and that the velocity field u0 satisfies the boundary condition in

equation (2.100). If desired, the integral kernels in equation (2.119) may be reduced

to expressions involving 3-j symbols of the form:

by making use of identities in equations (2.117) and (2.118).

d) The General Matrix for Terms Linear in u, and Q

The general matrix Bn'n,lt valid to first order in Q and uo may be obtained from

equations (2.61), (2.62), (2.96) and equation (2.119) to yield

Bn,,s = 2iwe..f s* - x s d3r + 2 iwref s * * x r Vs d3r anGnn,ii (2.123)

where we have used the anelastic version of Gnn,I1I. Noting that

0s
x r Vs = = ims + Q x s, (2.124)

the general matrix becomes

Bn, = - 2 mrefJ P s'* . sd 3 r + 4 iWref J S * . x sd3r + anGn1n,'i. (2.125)

The first two integrals are easily reduced using the technique described in Appendix

2B and anGnn,ti is given by equation (2.119). We obtain then,

B"nmit = -2mQnwref6Str.b6mm,N + 4 mQ~wrefjii6 mm' C(r)r2dr + a-nGm'm,

(2.126)



where the normalization integral N is given by equation (2.74), and

C(r) = Po (UV' + U'V + VV'). (2.127)

e) The General Matrix for Perturbations to the Thermodynamic Variables

We now present the general matrix for perturbations to the thermodynamic vari-

ables. The general matrix for a general aspherical perturbation to the model param-

eters of the earth has been derived by Woodhouse(1980). The appropriate general

matrix for the corresponding model parameters in Sun may be inferred from his work.

The required general matrix may be obtained from equation (2.69). Its components

are given by

L'nnt1 = - sk + Po Wef) Sk (2.128)

and

L'n,'l Em 1 E(r)2dr + 47717(-1)Em -
s=Ot=-s -m t m

x R [bStK , + SptR 2 )]r2dr (2.129)

where

3 3
Em = Smm(Timjll .+ SlimS +1,m11l'+2 + S1'mSl+1,mS 'l+2), (2.130)

2
E(r) = [ [o (K - (r + 1)K) + Po (R - (q + 3)R)], (2.131)

K,(r) = (U + F')(U + F)B,(O)+ (2.132)

R(2)  R(1) + 2s+1 {r R r -[(s + 1)G! 2) - rG l)]dr

r- r'- 1  rs+[sG(2) + rG ')]dr}, (2.133)

R 1 ) [_2efVV' + r-'( V + SqV') + 1go r-'(U'V + V'U)]B ,)+

+ [8 rGpo UU' + Sb'U + 6U' - w2efU'

-1go (4r-1 UU' + U'F + UF')]B )+, (2.134)2 "1 Ils 214



G!2)  Po r-UV'B()+ P r-1U'VB(')+"- -l'ls + Io ll's2 2

1
= (U + F)(U'+ -(l'(l' + 1) -

- (U + F)(& + (l(+ 1) -'(2

R = F(r' + 47rGpo rU' + go U')

+ -(l'(l' + 1) - 1(1 + 1) + 6)UV'(wef

- Po (F'U + U'F)B,°+

1(1+ 1) + 6)r-'V')

l' + 1) + 6)r-1 V),

- r-190 ) + 3r-lgo UU'

+ r-1 [- (l'(l' + 1) + 1( + 1) - 6)V - l'(l' + 1) U]

+ F'(rb + 47rGpo rU + go U) + 2-(6 + 1(1 + 1) - l'(l' + 1))U'V(wef - r-1go )

+ 3r-lg0 U'U + r-164[ (l(l + 1) + 1'(l' + 1) - 6)V' - l(l + 1)U'], (2.138)

1

+ -(U],+ F')(-U] + F + (l(l1+ 1) - l'(l' +
1) + 6)r-1 V')

1) + 6)r-1 V),

1
R = (l(l + 1) + l'(l' + 1) - 6)(2r-'V' - wrefVV')

1
+ -U'[26 + 87rGpo U -- w2 U - ((1+ 1)

'('1) + 6)go r-'V] + (l(l + 1) + l'(l' + 1)- 6)(2r-lVS ' -wef2 VV')
l' ( l'4

1
+ -U[26b + 87rGpo U' - w2 U'2 ref U1 - (l'(l' + 1) - 1(l + 1) + 6)g0 r-1 V'],

F = r- 1(2U -l(l+ 1) V),

Sim [(21+ 1)(21- 1)J

F' = r-1(2U' - l'(l' + 1)V'),

S1(1+ 1) - 3m 2
(21- 1)(21 + 3)'

1 _
= -Po r -(UV' + r 1 UV' - &V'- 2FV')B()+

+ Po r-(U + r-UV - UiV - 2F'V)B3Ill

+ Po r-2UUs(s + 1)B (2.135)

(2.136)

(2.137)

(2.139)

and

(2.140)

(2.141)

(2.142)



We have used the notation 6S and 6S instead of Woodhouse's notation q, and

q,. The variables S!, b6, U and V are the eigenfunctions of the solar oscillations.

Perturbations in P0 and q0 have been incorporated into the density perturbation

kernel. The integral in E(r) represents the contribution from the ellipticity.

f) The General Matrix

Finally, we collect the results from the previous sections to obtain the general

matrix which governs the interaction between two singlets to first order in Q, uo, 6o

and 6 po. We denote this general matrix by Kn,,,,t. From equations (2.119), (2.126),

and (2.128 ) we obtain

K"'m= - 2 mQwref.,Sa ,nn,6mm,N + 4 mwrefSu,,mm Po C(r)r2dr

+Em CRe E(r)r2dr +

47 ( ( ) x R [6t (r)K,(r) + p (r)R 2)(r) +
s=ot=-s -m' t m

poiu (r)R n(r) + poivt(r) H (r) + pow(r) T(r) 2dr (2.143)r r

where the Coriolis kernel C(r), the ellipticity kernel E(r), the bulk modulus pertur-

bation kernel K,(r), the density perturbation kernel R (r), the poloidal flow kernels

Rn"(r) and H.n(r), and the toroidal flow kernel T."(r) are given, respectively, by

equations (2.127), (2.131), (2.132), (2.133 ), (2.120 ), (2.121 ), and (2.122). The

velocity field expansion coefficients ut,(r), v(r), and wt(r) are defined by equation

(2.97), and the thermodynamic expansion coefficients nt (r) and pt(r) are defined,

respectively, by equations (2.102) and (2.103)

VII. QUALITATIVE INTERPRETATION OF QUASI-DEGENERATE

PERTURBATION THEORY

The determination of modal frequencies and amplitudes for an aspherical Sun re-

quires application of quasi-degenerate perturbation theory as we now argue. Rotation

and convection in the Sun lift the degeneracy of each eigenfrequency wn. Coupling



can take place between singlets Sk and Sk, when the difference w,a - w,'t, is compara-

ble to the predicted total splitting widths of ,S and , St, in an ordinary degenerate

perturbation theory calculation. Bulk rotation perturbs singlet frequencies of n S to

the new value w, - wn, + mQt. Therefore, given the near-degeneracy of many of

the p modes (see the w - k dispersion diagram in Figure (1) of Libbrecht and Kauf-

man 1988) and the above criterion, many singlets may couple. In §VII.a we list the

selection rules which determine the possible coupling partners. A discussion of the

qualitative sensitivity of the p modes to a convective velocity field is given in §VII.b,

and in §VII.c we discuss the significance of the hybrid eigenfunctions.

a) Selection Rules

The condition for coupling given by the quasi-degenerate criterion in equation

(2.75) is necessary, but not sufficient. For a singlet sk to contribute to the supermatrix

Z in equation (2.88) the quantum numbers k must also satisfy selection rules so that

Sk has a nonzero interaction with at least one of the other singlets in the eigenspace.

Angular integrations over the sphere are insensitive to the radial order n, and therefore

any selection rules on n and n' must be inferred from the radius dependent coupling

kernels. The range in I and 1' over which modes k and k' can couple depends on the

range in harmonic degree s of the spherical harmonic basis functions representing the

aspherical perturbation. The harmonic degrees 1, 1', and s must satisfy the following

triangle inequalities:

I'-s / <

S- 1' I s. (2.144)

The azimuthal orders m, m' and t of the singlets must satisfy the selection rule

-m' +t + m = 0. (2.145)

These selection rules apply for each aspherical perturbation we have considered and

may be deduced from equation (2B.22).



b) Qualitative Discussion of Sensitivity

We examine the advection kernels R ", H"n, and T" (see equations (2.120)-

(2.122)) in detail to obtain insight into mode coupling in the presence of a velocity

field which satisfies the anelastic condition. The most important selection rule can

be obtained from the kernels R ~ and Han by noting they vanish for the case of self-

coupling (l' = 1, n' = n). Therefore, in the anelastic approximation, poloidal flow

fields do not split isolated multiplets. The poloidal kernels contain only B + terms

(see eq. 2.116) which are nonzero only if the sum l' + 1 + s is even. The toroidal

kernel T," contains only B- terms (see eq. 2.116) which are nonzero only if the

sum l' + 1 + s is odd. Therefore, in the self-coupling approximation, only odd degree

toroidal expansion coefficients w induce coupling. Both toroidal and poloidal flows

can contribute to coupling when n' 74 n or 1' = 1. If the sum l' + 1 is odd, only

odd degree poloidal fields and even degree toroidal fields contribute to coupling. If

the sum 1' + 1 is even, only even degree poloidal fields and odd degree toroidal fields

lead to coupling. The component of the velocity field with azimuthal order t which

contributes to the coupling between modes k and k' is given by t = m ' - m.

The strength of coupling between modes k and k' is determined by the magnitude

of the general matrix element KI,,I and by the frequency difference (wk - Wk).

The latter condition is true because in general, off-diagonal components of the gen-

eral matrix attain enhanced significance when the difference (wk - wk) is small. The

magnitude of K,''m, is controlled by the eigenfunctions and the B coefficients (see

eq. 2.116). Generally,the radial eigenfunctions U are considerably larger than the

horizontal eigenfunction V. Therefore, terms such as U2 are far larger than terms

such as UV or V 2. As may be seen from figures 3a and 3b, the shape of the eigen-

functions U and V in the upper region of the convection zone are strongly correlated

when the modes have nearly degenerate eigenfrequencies wl. This implies the radial

eigenfunction factors in the kernel R a(r) are very small for nearly degenerate modes

in the upper regions of the convection zone since the kernel is a function of the dif-

ferences U'U - U'U and V'V - V'V. Therefore, the near-surface contribution from



the radial component of a poloidal flow field to the splitting spectrum is small. The

contribution from the deeper regions will also be minimized because phase differences

in the mode shapes lead to cancellation in the integrated kernels that make up the

matrix elements. The poloidal contribution to cross-multiplet coupling will be domi-

nated by the horizontal component since the kernel H.n(r) includes the large factor

UU', and the difference 1(1 + 1) - l'(l' + 1) can become quite large when the modes

are widely separated in harmonic degree. However, I - 1' cannot be arbitrarily large

because the triangle inequality must be satisfied. In addition the B(1) coefficients in

the horizontal poloidal terms are usually larger by a factor of - 100 than the B (O)

coefficient in the radial poloidal kernel.

c) The Hybrid Eigenfunctions

In a spherical or axisymmetric solar model, each modal frequency is uniquely as-

sociated with a single mode k. More generally, a modal frequency of an aspherical

model is associated with a hybrid eigenfunction (a linear combination of modes as

in equation (2.78). The complex expansion coefficients ak are the components of

the eigenvectors of the supermatrix. The eigenvector matrix in conjunction with the

frequencies of the perturbed system may be used to assess the significance of mode

coupling. An eigenfrequency can be uniquely associated with a single mode Sk if the

eigenvector matrix is diagonal. If the perturbation includes departures from axial

symmetry, there will be non-zero off-diagonal components in a given eigencolumn. If

one of these components is significantly larger than all other components in the eigen-

column, then it is still possible to associate a single sk with a given eigenfrequency.

It is usually assumed that orthogonal decompositions of Doppler images isolate

the contribution from the target mode plus corruption from modal cross-talk due to

the non-orthogonality of the spherical harmonics on the hemisphere. A sequence in

time of such decompositions are fourier transformed to yield the frequency resonance

function of the target mode. In the presence of a non-axisymmetric asphericity there

are also contributions from the resonance functions of other hybrid eigenfunctions.



This is because other hybrid eigenfunctions may contain a contribution from the

target mode Sk. The spatial filtering operation will extract not only the resonance

function from the target resonance function but the resonance function of other hybrid

eigenfunctions in an amount which depends on the size of the expansion coefficient

of the common component.

The geometric interpretation of mode displacement for an axisymmetric Sun is

clear. The sectoral modes with singlets m = fl corresponds to modes traveling

prograde or retrograde along the equator of the coordinate system depending on

whether the time dependence e- i lt or ei t is chosen. Modes with m = 0 correspond to

propagation paths over the poles, and modes with intermediate values have significant

displacements in the mid-latitude regions. The displacement pattern of a hybrid

eigenfunction is a linear combination in varying degrees of the end members described

above.

VIII. SELF-COUPLING

In this section we specialize the formulae of §§V and VI to the case of self coupling

in which 1' = 1 and n' = n. This reduction represents a simplification since only the

toroidal component of the velocity field contributes to self coupling. In this section

we neglect thermodynamic perturbations.

a) General Toroidal Flows

The general matrix element in the case of self coupling for a general velocity field

may be obtained from equation (2.143):

Tm'~ = -2mwre SmmN + 4mwre6mm Po C(r)r2dr +1 nn,ll --

0 s Re T 2"(r)47 s(- )m , T pow(r) r r2dr. (2.146)
s= t=-s -m' t m r

In this special case, the integral kernels C(r) and T,""(r) are given by

T,(r) = {2UV - U2 - V'V[21(l + 1) - s(s + 1)]}B' ) - , (2.147)

C(r) = po (2UV + V 2). (2.148)



Using equation (2.85) and setting wref = wnl, the eigenvalue-eigenvector problem

becomes

Ta = 26wtNIa (2.149)

where N is given by equation (2.74), a represents one of the (21 + 1) eigenvectors, I

is the identity tensor, and 2wlSw are the eigenfrequencies of the (21 + 1) x (21 + 1)

general matrix T.

b) Differential Rotation

The general matrix for differential rotation is a special case of equation (2.146).

The differential rotation is an axially symmetric, even function about the equatorial

plane. Therefore, the latitude-dependent scalar rotation rate can be expanded in even

degree spherical harmonics:

Q(r, 0) = Q + E Gk(r)Yko(, q) (2.150)
k=0,2,4,...

where Q is the bulk rotation rate and the Qfk(r) are radially dependent expansion

coefficients representing the differential rotation. The coefficient OQ (r) represents

purely radial perturbations to Q. The rotation rate vector is given by

Q (r, 0) = fQ(r, 0)r cos(O) - Q (r, 0) sin(0)0 (2.151)

so that the velocity v,,ot due to rotation can be written

ro, = n(r, 0) x r = lr sin(0) + Q nk(r)rsin(O)Yko(0, )0. (2.152)
k=0,2,4,...

The expansion coefficients Qk(r) can be obtained by equating vrot with the toroidal

axially symmetric part of uo in equation (2.97):

k(r)r sin(O)YkO(, ) = - w°Y (O, )$. (2.153)
k=0,2,4,... s=1,3,5,...

To determine Q1, Q3, and Qs, we take the sum over s and k for s = 0,2,4 , and

k = 1, 3, 5, expand the spherical harmonics in terms of sin and cos functions, and



equate coefficients sharing the same trigonometric basis function. This operation

yields
r [ () 202(r) + 44(r)] , (2.154)

w°(r) = r71 , o(r)o5 7f( 12 (2.154)

W (r) = r 744(r) (2.155)
73 5 18

w(r) = r [Y44(r)] (2.156)

where

7= 2s 1 (2.157)

The general matrix for the multiplet ,S including the effects of bulk rotation, the

Coriolis force, and degrees 0, 2 and 4 differential rotation of equation (2.150) may

be obtained by substituting the coefficients in equations (2.154), (2.155), and (2.156)

into the general matrix for terms first order in Q and uo to yield the splitting matrix

Dnn,1i with components

Dm; ~= -2mawaB mJ Po (U2 + 1(1 + 1)V 2)r 2dr

+4mQwnSmm' J Po (2UV + V 2)r 2dr +

2w4r 2(-1) m'=: t,3,5 -m' m ) p ( r) an ( r ) r d r  (2.158)
s=1,3,5 -M' 0 m

where in this special case,
Tan(r) = [2UV - (U 2 + 1(1 + 1)V 2) + s(s + 1)V2IB 1 )- .  (2.159)

The differential rotation kernel may be further reduced for low harmonic degrees

s by using analytic expression for the Wigner 3-j symbols. For the case s = 1 we have

S 1 1 = (-1)- m  mbmm .(2.160)
-m' 0 m [(21+ 1)(1 + 1)1](1

For s = 2 we have

1 22[m 2 - (I + 1)]bmm

-m( 0 m [(21+ 3)(21+ 2)(21 + 1)(21)(21 - 1)]



Higher order terms (s = 3, 4, 5, 6,...) can also be reduced analytically by using recur-

sion relationships in Edmonds (1960).

IX. NUMERICAL RESULTS

We have performed self and full coupling calculations to assess the influence of a

realistic convective flow field on p mode amplitudes and frequencies. The flow field

was computed by Dr. Gary Glatzmaier. A description of the anelastic modal equa-

tions governing convection and the numerical technique used to solve them is given in

Glatzmaier (1984). The convection and differential rotation models used in our calcu-

lations are described in §IX.a. We illustrate the effect of convection on frequencies of

singlets with dispersion-type diagrams which show the magnitudes of the frequency

differences (w elf - r. ) and (wul _-wsef). The notation Mw f denotes the frequency

of the hybrid eigenfunction associated with the singlet (n, 1, m) computed in the self

coupling approximation, wfu" is the frequency of the same hybrid eigenfunction using

full coupling theory, and wd.r. is the frequency of the singlet (n, 1, m) calculated in the

self coupling approximation with a simple differential rotation model. Only toroidal

flow fields contribute to self coupling whereas both poloidal and toroidal fields con-

tribute to full coupling. The eigenspace of a hybrid eigenfunction in the self coupling

approximation is always (21+1) dimensional and is known a priori. The eigenspace of

a hybrid eigenfunction in the full coupling theory is theoretically infinite dimensional;

those elements which contribute significantly must be discovered by numerical exper-

iment. Practical details concerning the numerical implementation of the full coupling

theory are given in §IX.b. The effect of convection on the frequencies and the a,

coefficients (see eq. 2.168) is described in §§IX.c and IX.d. In §IX.e. we describe the

character of the hybrid eigenfunctions.

a) The Velocity Models

All of our numerical results depend on Glatzmaier's velocity model. Glatzmaier

ran his code until the differential rotation matched the observed solar rotation rate.



His velocity field is given by

42 s

pv = [Vx Vx (Wi') + V x (Zji)]. (2.162)
s=1 t=-s

Since pv is solenoidal it automatically satisfies the anelastic condition V - (pv) = 0.

The relationship between Glatzmaier's expansion coefficients (W,, Z') and the ex-

pansion coefficients (ut, vI wt) in equation (2.97) can be obtained by equating the

components of equation (2.162) to the components of equation (2.97). The compo-

nents of the latter are given in equations (2B.12)-(2B.14). This procedure yields

s(s + 1)
u (r) = p Wt(r), (2.163)

v (r) = 1 W(r) (2.164)
por Or

w t(r)- Z (r) (2.165)
Por

We have used capital letters to distinguish Glatzmaier's coefficients from ours. Glatz-

maier expanded the radial dependence of the velocity field in terms of Chebyshev

polynomials T,(r) for degrees 0 < n < 33. The expansion coeffcient Wt(r), for

example, is given by

Wr (r) = - ~ WIT,(r) (2.166)
n=O

where the n = 0 and n = N terms should be multiplied by 1/2. The (0, q) dependence

is parameterized in terms of spherical harmonics Yt to harmonic degree s = 42. In

our numerical calculations we often truncated the velocity field at degree s = 25 since

there is very little power in the expansion coefficients for s > 25. The spherical shell

in which convection is modelled extends from r = 0.65R® to 0.97R@.

The solar model we used in our numerical computations was calculated with a solar

evolution code written by Ron Gilliland (see Gilliland 1985). The model contains 408

radial knots, 206 of which are located in the convection zone. We interpolated Glatz-

maier's velocity coefficients onto 142 radial knots in the range 0.65R® < r < 0.97R®.

Convective motions in the range 0.65R@ < r < 0.71R® correspond to convective over-

shoot. We describe in the folowing the differential rotation and convection models.



i) The Differential Rotation Model

The differential rotation model was adapted from the differential rotation law of

Libbrecht et.al. (1988). The velocity field is given by

[462 - 58 cos 2(0) - 84 cos4 (0)]r sin(0)

430 r sin(0)

0.65Re < r < R®

0 < r<0.65Re

where 0 is the colatitude, and the temporal dependence is in nhz.

ii) The Convection Model

The convection model includes the differential rotation

and poloidal velocity fields calculated by Glatzmaier:

[462 - 58 cos2(0) - 84 cos4 (0)]r sin(0)
42 s

v = 462 r sin(0) + Z Z [u'Yfi + v V 1Y,t - w'ixVi1Y t]
s=1 t-s

430 r sin(O)

model and the toroidal

0.97R® < r < R®

0.65R < r < 0.97R®

0 < r<0.65R®.

To make instructive comparisons of frequency splittings, we replaced the w, w °,

and wo coefficients calculated by Glatzmaier with coefficients that mimic the velocity

field of the first model by using equations (2.154), (2.155), and (2.156). This operation

requires running a regression on the first model to obtain the rotation rate in terms

of the expansion coefficients Q , Q2, and f4 in equation (2.150).

In figure 4 we show the geometrical character of a sectoral flow field. Figure 5

contains the horizontal poloidal component and toroidal component of Glatzmaier's

flow field for degrees 1 < s < 20 and all azimuthal orders t inclusive. Plots of

the magnitude of the velocity expansion coefficients u', v , and w' at radial level

r = 0.96R o are given respectively in figures 6a, 6b, and 6c. The size of each hexagon

in these figures is proportional to the magnitude of the expansion coefficient. The

relative amplitude of the expansion coefficients do not change greatly with radius. The

power of the expansion coefficients is dominantly in the sectoral (s = t) components.

These components dominantly perturb the eigenfrequencies and eigenfunctions of the

modes.



b) The Numerical Implementation of Self and Full Coupling

The numerical implementation of self coupling is straightforward since the modes

contributing to the eigenspace of the hybrid eigenfunction associated with a given

target singlet is composed solely of the singlets sharing the same n and I of the target

singlet. Thus, the eigenspace is known a priori and is (21 + 1) dimensional. The

poloidal kernels vanish in the self coupling approximation and therefore coupling is

caused only by the toroidal component of the velocity field. The coupling is completely

specified by the eigenvalue-eigenvector decomposition of equation (2.149).

The purpose of the full coupling calculation is to determine the hybrid eigenfre-

quency and eigenfunction associated with a target singlet in the presence of poloidal

and toroidal flows. The required numerical effort is considerably more burdensome

than in the self coupling case since the eigenspace must be discovered by numerical

experiment, and a large number of general matrices must be computed. To mini-

mize the computational expense of constructing and decomposing the supermatrix,

some sensible criteria must be used to determine a cutoff of the modes that span

the eigenspace of hybrid eigenfunctions. Some modes may couple with the target

singlet more strongly than others; the criteria should eliminate the modes which do

not significantly contribute to the coupling.

i) The Determination of the Eigenspace

The eigenfrequency of a given singlet k = (n, 1, m) is predicted to a high degree of

accuracy for small (m/1l) by a simple bulk rotation model and to - 10 % accuracy for

(m/1l) - 1. Splitting due to differential rotation, convection, and all other effects lead

only to very small perturbations about the frequencies predicted by bulk rotation

alone. Thus, the differential rotation model predicts with accuracy sufficient for our

purposes the frequencies wk in the quasi-degenerate criteria (see eq. 2.75). Let us

rewrite that criteria as

I Wk - Wref 1< 7'. (2.167)



where r' is a small number. By varying the size of r' we were able to determine the

sensitivity of the hybrid eigenfrequencies to the dimension of the eigenspace of the

hybrid eigenfunctions. We used the velocity field of the differential rotation model to

calculate all singlet frequencies for p modes that have been observed by Duvall et.al.

(1988) with degrees 1 < 1 < 100 and with degenerate frequencies wl that fall in the

range 1.5mhz < wt < 5mhz. This window on the w-k dispersion diagram yielded

1698 modes. The frequency splittings can be parameterized in terms of the splitting

coefficients ai (e.g. Brown and Morrow 1987) where

N

wk = l + I aiPi(-m/1) (2.168)
i=O

and the Pi are Legendre Polynomials. We determined the ai coeffcients by perform-

ing a regression analysis on the frequency spectrum for each multiplet. In applying

equation (2.167), we used the ai coefficients from the differential rotation model to

calculate w,,ref of the target singlet and wk of all other singlets.

The minimum dimension eigenspace can be determined by calculating the hybrid

frequency for a variety of choices of T'. We implement equation (2.167) to determine

all possible modes k which satisfy the quasi-degenerate criteria for the chosen value

of r'. We then construct and decompose the supermatrix (we describe how to do this

in the next subsection) and retain only the hybrid eigenfunction and hybrid eigen-

frequency associated with the target singlet. We then perform the same operation

for another value of 7'. The value of r' associated with the minimum dimension

eigenspace is defined to be the point where the hybrid eigenfrequency of the target

singlet ceases to change significantly as 7' is increased. Alternatively, we could choose

7' at the value where the quantity

EI ak 12 / I aktarget 12 for k / ktarget (2.169)
k

levels off as the tolerance r' is increased. In practice, one need only perform one of

the two procedures for just a few singlets, and use the estimated value of 7' for all

other singlets. We found it often suffices to use a value of 5.5 pthz.



The singlets that contribute to the eigenspaces of target singlets immediately

adjacent in m for a given multiplet are very similar. The eigenspaces are quite different

for target singlets with widely different frequencies. For 7' = 5.5 Phz, and a maximum

harmonic degree s = 25 in the velocity field expansion, the typical dimension of an

eigenspace for a target singlet with harmonic degree I varies from - 50 to - 125 for

10 < I < 90.

ii) Assembling the Supermatrix

The supermatrix for each target singlet can be assembled once the appropriate

eigenspace is obtained. To determine which general matrices are required, we ini-

tially assume that each of the singlets couple with the target singlet and with each

other as well. Not all singlets will couple since by equation (2.144), the difference

1 - 1' of the singlets k and k' must not exceed the maximum value of s in the ve-

locity field expansion. General matrices should be computed for all possible (n'l', nl)

combinations which satisfy the above selection rules. In addition, splitting matrices

should be computed for each (n, 1) in the eigenspace. From each general and splitting

matrix the subblock which contains matrix elements K'm, describing the interac-

tion between two singlets that are members of the eigenspace should be extracted

and incorporated into the supermatrix in a fashion analogous to that illustrated in

equation (2.92). The general matrices fill the off-diagonal blocks and the splitting

matrices fill the diagonal blocks. The general matrix subblocks will always be square

or rectangular and those of the splitting matrix will be square. Since the supermatrix

is hermitian, we need only retain the full lower triangles of the splitting matrix and

we emplace the subblocks of the general matrices only in the strict lower triangle of

the supermatrix. For each target singlet we assemble the supermatrix, decompose

it, and save only the hybrid eigenfrequency and hybrid eigenfunction associated with

that singlet. We use the double precision complex hermitian path in EISPACK to

decompose the supermatrix.

c) The Effect of the Flow Field on Frequencies



We calculated in the self coupling approximation frequencies of all singlets ob-

served by Duvall et. al. (1988) whose n and 1 values lie in the range (4 < 1 < 99,

2 < n < 26). We used the full range in harmonic degree s of the toroidal component

convection model and all t inclusive so that (1 < s < 42, -s < t < s). We used

the toroidal component only, since in self coupling approximation, frequencies are not

affected by the poloidal component of the field. We also calculated the frequency

splittings for the same set of multiplets under the self coupling approximation for the

differential rotation model. Due to computational expense, we performed full cou-

pling calculations only for a limited set of singlets. The frequencies were computed

for every third I in the range (10 < 1 < 90) along the overtone branches (2 < n < 20)

for the azimuthal order m = -. 81. We also calculated the frequencies for all singlets

of the multiplets 3 S59 , 3S70, 5S 45 , 8 S35 , 18S70 , and 9 S65 using the self coupling approx-

imation, and the full coupling theory. The purpose of the latter computation was to

examine how the ai coefficients are affected by full coupling induced by both toroidal

and poloidal velocity fields.

The full coupling calculations for the multiplets listed above were performed with

a tolerance of r' = 5.5 /uhz (see eq. 2.167), and maximum s value given by s = 25.

The results are shown in figures (7a)-(7f). From each frequency w 1 we subtracted

the degenerate frequency of the multiplet and the linear trend induced by the average

rotation (0.46m). The frequency differences w - wd 'r and w"elf - wd' are greatest

for the sectoral and nearly sectoral singlets and smallest for the zonal and nearly

zonal singlets. The reason for this can be deduced from figures 6a, 6b, and 6c. The

dominant contribution to Glatzmaier's flow field comes from the sectoral components;

there is very little power in the zonal components. A wave that propagates along a

line of longitude (which corresponds to a zonal mode) tends not to be advected in that

direction. The frequency profile of the full coupling calculations sometimes display

abrupt jumps. This is a complicated effect which depends on the structure of the

w - k dispersion diagram, and on the character of the velocity field. As the azimuthal

order m of the target singlets varies, the potential coupling partners change, and



the components of the velocity field which may couple the target singlet with other

singlets changes. The eigenspace between two adjacent target singlets is usually quite

similar but since the tolerance r' is finite and since the unperturbed frequencies of

the target singlets are about .46 phz apart, there are differences in the eigenspaces

of the adjacent singlets. When a new member is introduced it could happen that it

couples particularly strongly with other singlets that couple to the target singlet. This

changes the structure of the supermatrix and hence, several of its eigenfrequencies

can be quite different than those of the supermatrix for the adjacent singlet.

The hierarchy of coupling among modes in the Sun can be viewed in the following

way. The most basic structure is the axisymmetric flow field. In this case, singlets

split, but do not couple, and the supermatrix is purely diagonal. In this case, one

ususally considers the split singlets of a single multiplet and so the supermatrix con-

sists of a single diagonal block. The next step up is the inclusion of a toroidal velocity

field. In this instance, singlets of a single multiplet can split and couple. The splitting

block of a particular multiplet may be sparse, but is no longer diagonal. It is possible

for singlets from several multiplets to couple. Ignoring this effect leads to the self

coupling approximation. In the self coupling approximation, poloidal flows do not in-

duce splitting or coupling. The next step up is the inclusion of toroidal and poloidal

velocity fields and to allow for coupling among singlets from different multiplets. We

call this full coupling. There are several approximations to full coupling which we call

first order coupling, second order coupling and so on. First order coupling consists

of identifying those singlets which may couple with the target singlet and only in-

cluding those in the construction of the supermatrix. Second order coupling consists

of including those singlets which may couple to the target singlet, and of including

those singlets which may couple to the singlets that couple to the target singlet. The

approximations we have described are in order of increasing accuracy. To date, he-

lioseismologists have considered only the axisymmetric case. The abrupt jumps in

figures (7a)-(7f) show where the first order coupling theory is inadequate. We only

carried the full coupling calculations to first order. If we had unlimited computer



resources, we would include all possible multiplets in the full coupling calculations;

this would correspond to a treatment without approximation.

We have found in these full coupling calculations that there can be significant

hybridization of the target singlets. For some target singlet-coupling partner pairs,

the frequencies can be totally degenerate (or nearly so) which leads to particularly

strong coupling. Though the amplitudes are strongly affected, the frequencies are not

since the frequency difference between the two singlets must be small in order for this

effect to be important. The frequency differences are determined by the structure of

the w - k diagram. Nevertheless, we can think of the strong hybridization as being

due to 'accidental degeneracies'.

We performed a regression analysis to determine the ai expansion coefficients of

the multiplets listed above. The results are tabulated in Table 1. We also provide

in Table 1 the ai coefficients Libbrecht (1988b) has determined from his data. In

the full coupling case aspherical convection generates a frequency spectrum with an

even component about wt. Thus, an expansion of the spectrum in terms of Leg-

endre Polynomials requires even-ordered expansion coefficients. In the self coupling

approximation, frequency splitting of a multiplet is purely odd about the degenerate

frequency w,t, and thus requires only odd expansion coefficients. For some of the

multiplets, the a2 coefficients predicted by the flow field are comparable in magnitude

to Libbrechts a2 coefficients. It has been conventional wisdom to ascribe even-ordered

expansion coefficients required by actual data to large-scale axisymmetric magnetic

fields. Our finding that convection can also contribute to the even coefficients can

be understood ray theoretically. In an axisymmetric Sun, frequencies are uniquely

associated with one mode, but this does not hold for an aspherical Sun. Instead

the displacement pattern, is a linear combination of modes. The set of modes which

couple to the mode (n, 1, Iml) in the full coupling case, is quite different from the set

of modes which couple to the mode (n, 1, -Im). Thus the hybrid eigenfunctions asso-

ciated with these modes no longer possess the symmetry in the n, 1, and m quantum

numbers that they did in the self coupling approximation. They sample the Sun in a



manner quite different from the axisymmetric case. It is this non-symmetric sampling

which introduces the even component to the frequency splitting.

The frequency difference (wself - wd.r ) for the sectoral singlet (m = 1) is plotted

in figure 8a. Each symbol in the figure is proportional to the size of the frequency

difference. The differences tend to increase with increasing I and the largest difference

is .65phz for the singlet (n = 3, 1 = 99, m = 99). The differences display zones of

extinction as a function of the degenerate frequency of the multiplets. This extinction

takes place at frequencies where the toroidal sensitivity kernels of the multiplets

become nearly orthogonal with the radial variation of the velocity model. As such,

their location is a strong function of the convective flow field.

The frequency difference (wM= .s81 - w= .st) is shown in figure 8b. The difference

is not a completely monotonic function of 1 but does tend to increase with 1. The

largest difference is .27 phz for the singlet (n = 2, 1 = 89, m = -72). The purpose of

the computation was to test the accuracy of the self coupling approximation over a

wide range of n and 1.

d) The Effect of the Flow Field on the ai Coefficients

We performed a regression to obtain the al, a3 , and a5 coeffcients for the multi-

plets corresponding to each sectoral singlet shown in figure 8a. In the self coupling

approximation, splitting is odd about the degenerate frequency (it depends on odd az-

imuthal order only) and it therefore suffices to parameterize frequency splitting with

odd ai only. The differences (ad'. - a tself) and (a - ase) are shown respectively in

figures 9a and 9b. The size of each symbol is proportional to the magnitude of the

coeffcient difference; the largest al coefficient difference is 7.8 nhz for the multiplet

1 8 S4 8 , and the largest a3 coefficient difference is .27 nhz for the multiplet 3 S9 7 . The

extinction pattern of both sets of differences precisely mimics the extinction pattern

of the frequency differences in figure 8a. The toroidal flow field reduces the size of the

ai coefficients from the corresponding coefficients of the differential rotation model.

Observers such as Brown and Morrow (1987) and Libbrecht et. al. (1988) have



collected and reduced data in order to determine the ai coefficients and make infer-

ences concering differential rotation. Figure 9c is a reproduction of the al, a3 , and a5

coefficients determined by Brown and Morrow (1987). The dashed lines on the plots

indicate the expected values if the surface latitudinal differential rotation prevailed

through out the Sun. The coefficients are averaged over the radial overtone n. In

figure 9d we plot the difference between aeIef and a' r. for overtone branch n = 8. In

figure 9e we plot the same difference except we have averaged over all n in the our

forward calculations, and performed a running mean average in 1. In both cases, we

observe that the fluctuations are comparable in magnitude and pattern to the data of

Brown and Morrow (1987). One implication is that interpretation of al coefficients in

terms of a radially varying rotation profile is likely to be biased by long-wavelength

convection. The signal in the al data of Brown and Morrow (1987) is evidently about

the same size of the signal due to convection in the self coupling approximation. The

same result will no doubt hold true in the full coupling case.

e) The Effect of the Flow Field on the Eigenfunctions

The principal asphericity in the sun is the bulk rotation. This lead to a diagonally

dominant splitting matrix for every multiplet and therefore the hybrid eigenfunctions

are dominated by a single component (which is the component present in the axisym-

metric case). In some cases, there can be strong hybridization if the frequencies of the

target singlet and a coupling partner are completely degenerate (or nearly so). When

there is complete degeneracy, the size of the diagonal component of the supermatrix

is down-weighted and the off-diagonal components assume enhanced relative signifi-

cance which leads to stronger coupling. Even without degeneracy, for a sufficiently

white velocity coefficient spectrum, there is always some coupling present.

The frequencies of 445 target singlets are shown in figure 8b. We can use expan-

sion coefficients ak (see eq. 2.78; these should not be confused with the frequency

expansion coeffcients in eq. 2.168) which completely specify the hybrid eigenfunc-

tions to assess the influence of convection on the corresponding eigenfunctions of the



axisymmetric Sun. The coefficients are normalized so that
N

SI ak 2= 1 (2.170)
k=1

where N is the dimension of the eigenspace. The azimuthal order t that contributes

to the expansion coefficient ak can be determined by comparing the azimuthal order

of k to the azimuthal order of the target singlet and by using the selection rule

-m' + m + t = 0 (see eq. 2.145). Without knowledge of the flow model, we cannot

distinguish which s is associated with the particular t. However, from figures 7b and

7c, it is clear that the wt and vt expansion coefficients are often the largest for t=s;

we can deduce the associated s value with this information. Once we know s, we can

also distinguish whether ak comes from the poloidal or the toroidal part of the field by

adding the harmonic degrees 1' of the target singlet I of the component k = (n, 1, m),

and s of the flow field, and by using the fact that the poloidal and toroidal kernels

are respectively proportional to (1 + (-1)(t+ '+ s)) and (1 - (-1)(+t'+S)).

We used the above procedure to assign t values to each ak coefficient. Figure

10a is a histogram plot of this information. The vertical axis contains the number

of coefficients ak from the 445 target singlets shown in figure 8a that correspond

to the absolute value of the associated azimuthal order t. We included only those

coefficients which satisfied lak I > 0.01. This figure clearly shows which components

of the velocity field primarily contribute to the coupling. We can safely assume the

radial poloidal component does not contribute since the radial poloidal kernels are so

small. Therefore, by the argument in the preceding paragraph, the contributions to

the histogram count come primarily from the wf+ and v8 components. There are

several clear correlations between the histogram count for each t value and the size

of the sectoral expansion coefficients in figures 6b and 6c. The largest count is for

the t = +1 value which corresponds to the w, 1 component. The next largest peak

is for t = +2 which corresponds to the v2 component. The contributions from both

poloidal and toroidal fields for t = +3 are rather small which accounts for the small

histogram count for that t value. There are large contributions at t = +4 and t = ±7

which come respectively from the v4 and v 7 expansion coefficients. Continuing this



sort of analysis for -8 < t < 25, we find a rough correlation between the histogram

counts and the size of the v±" expansion coefficients.

To assess the strength of the coupling for each target singlet shown in figure 8b we

again use a histogram plot. Figure 10b contains on the horizontal axis the quantity

lak llak,targt where ak is the second largest eigenvector component. In every case

the largest eigenvector component corresponds to the k of the target singlet. This

is the only component which contributes to the eigenfunction for a spherical or an

axisymmetric Sun. The vertical axis is the number count of eigenvector component

ratios with the values prescribed on the horizontal axis. We truncated the horizontal

axis at 0.6 in order to provide enhanced horizontal resolution. The counts for ratios

between 0.6 and 0.9 is similar qualitatively to the counts for the range 0.3 to 0.6.

We that for a few singlets there is almost complete hybridization but that for most

singlets, the largest lakI is ,- .1.

APPENDIX 2A

THE EQUATIONS OF MOTION IN THE SOLAR FRAME

In this appendix we present the equations of motion governing oscillations in the Sun's

frame. We seek to write the momentum equation in a form resembling Newton's

equation which at the same time is valid in a noninertial reference frame. This is

achieved by adding the fictitious accelerations in equation (2.15) to the acceleration

of an object as perceived by an observer in the Sun's frame. Let the subscript sun

indicate that the local time derivative 0 is taken by an observer in the Sun's frame.

The momentum equation becomes

Dv + 2 x v, +  x x r = - V, (2A.1)
Dt )s P

where
D 0D- v +V-V (2A.2)
Dt Ot



and v, has the same meaning as in equation (2.14). The perturbed Euler equation is

obtained by taking the Lagrangian variation of equation (2A.1) so that

DAR p A(VP)
+ 2Mt x Av, + f2x f2x Ar - 2-VP + + A(V)= 0. (2A.3)

Dt /sn P2

Noting that Avs = (Ds) and Ar = s, equation (2A.3) can be written

D2S tDs Ap =(VP)
2 + 2 x+ -2 f + x x s - VP + + A(VO) = 0, (2A.4)

Dt2 rot D sn P2 P

where

D2 S (2s \ +2v,.V (-S'\ + (0vt ' *Vs+v,"V(v, 3 Vs). (2A.5)

Dt2r -8t 2 )J Kt
Equation (2A.4) may be reduced to its final form by using (2.35), equating v, with

u0 , noting that ei = 0 (since we are in the sun's frame), that the convective flow is

steady state, and that the treatment of the pressure and gravity terms is the same as

in the inertial case. We obtain then

- pw2 s + pBsun(s) + pCsun(s) + pD, n(s) + pE,,(s) = £(s) (2A.6)

where

B,sn(s) = 2iw2 x s + 2iwuo -Vs, (2A.7)

C,,,(s) = nZ x 0 x s, (2A.8)

D,,(s) = 2M x uo -Vs, (2A.9)

E,u,(s) = Uo - V(u o . Vs), (2A.10)

and £(s) is given by equation (2.59). Finally, defining Tsu by

T8 un(s) = Bsu(s) + C,,(s) + Dun(s) + Eun(s), (2A.11)

equation (2A.6) becomes

- pw2s + pTun(s) = C(s). (2A.12)

APPENDIX 2B



CALCULATING THE GENERAL MATRIX

The matrix elements presented in this paper were calculated using a formalism de-

veloped by Burridge (1969) and Phinney and Burridge (1973). A tensor of arbitrary

rank may be expanded in terms of generalized spherical harmonics (GSH's) YNm(0 q)

where N is the generalized index, I is the harmonic degree, and m is the azimuthal

order. The above authors describe a formalism which involves transforming to a new

set of canonical coordinates. The rules of vector-differential calculus are then appro-

priately transformed. These rules represent a simplification of traditional methods

used to calculate quantities in spherical geometry. However, the rules themselves are

unfamiliar and counterintuitive and thus the procedure is prone to error. We have

found it convenient to use a hybrid technique adapted from Phinney and Burridge's

results which considerably simplifies the use of generalized spherical harmonics in

computations and we describe this procedure below.

The generalized spherical harmonics are the matrix elements of the finite rotation

operator in spherical coordinates. In the notation of Edmonds (1960) they are given

by

YNm(0, () = 0lNm(, 0, 0) = dmv (0)e 'm. (2B.1)

A scalar spherical harmonic is given by

YIm(0 ) = Yom"(0, €), (2B.2)

where

= +. (2B.3)

The utility of the generalized spherical harmonics derives from the fact that they

may be used to transform calculus operations into simple algebraic operations. Fur-

ther, their products are easily integrated on the unit sphere by using Wigner 3-j

symbol relations. The useful identities are:

QlN YN-l,m ) N+a 1 N+,m ) (0, ), (2B.4)



Q+1 N+l,m 4~ yN-1,m( )
Y+ , ) + (o €

= /Ncos(O) - my Nm(0, O),
s(0)

where
(1 + N)(1 - N + 1)

N 2

Consider now the vector spherical harmonic

s = UY ti' + V, V 1Y,t - WtrxVlY,t,

where

S=
80

+
sin(0) ao"

In component form, s is given by

wtS, = U V)Y' y.so = V,'8 0 + -- 8Y,sin(0)

s4 = -W:t01' + - Yt.

Using the above identities, it easy to show that

s, = U Yot,

s = V t (y--l t(o, )88- ff - Yst (9, 0)) - i V;" Wl t (Y(, 0 )
fiB"

v/2t(lt(o)+ Y-lt(O V2sWt(Yst(-l Yitb .
S= -- ,Ot(Y t(, €) + Y,' t(9, )) W' (Y, (0, ) - (0, ))JZ 1,5

With this representation, it is very convenient to perform standard vector differential

operations by repeated application of identities (2B.4) and (2B.5). Higher derivatives

in 0 are easily calculated. For instance,

0Yot (9, ') = [fQ(Y,- 2t (O, q) + ,2t (0, q)) - 2Ysot (O, S)].2
(2B.15)

It may be necessary to take derivatives of the spherical unit vectors. The relations

= , = ^sin(0), = - - = r cos(O),=9, (),a aq To
- = 01
09

8 A= - sin(O) - 0 cos(0)

(2B.16)
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(2B.6)

(2B.7)

(2B.8)

(2B.9)

(2B.10)

(2B.11)

(2B.12)

(2B.13)

(2B.14)

+ Y-l t (0, q)),

O0i



should be used. The real advantage of calculating matrix elements with generalized

spherical harmonics is the simplicity of the angular integration formula. The integral

of the product of three generalized spherical harmonics is given by

1 f.rf2r yr*N'm'(e, )fN"m"( , (yNm(0 d =47r Jo Jo

(_1)(N-m ", 0 ' " I . (2B.17)
-N' N" N -m' m" m

Below we list properties of the Wigner 3-j symbols which have proven useful in

the derivation of the general matrix elements. The 3-j symbols are invariant under

even permutation of columns i.e.,

l 2 3 m3 m 3  im3 m m 2  (2B.18)

and for odd permutations of columns they satisfy the relations

Sm 1 M 2 M3 ) 2 i 1 M3

mi

j3

m3

j3

m3

j2

m2

j2

m 2

ji

ml

(2B.19)

The symbols also possess the properties

1 j2 J3 +j + 1 i

-m1 -m2 -M3 i3 1

Jl j2 = j3 0 if jl + j2 + j
3 is od d ,

il j2 0 only if m + m 2 + 3 =
Mand 2  2 3

and I jl - j2 1_ '3, i 2 - j3 1jil, 1 Jh - jl :5 j2

2 13

2 m 3 ) (2B.20)

(2B.21)

0, m 1 5 j1, mn2  j2, m 3 < 3 ,

(2B.22)
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The first selection rule in equation (2B.22) states that the integral over azimuth of

the product of the three azimuthal eigenfunctions eimk¢ for k = 1, 2, 3 vanishes unless

mi + m 2 + m 3 = 0. The second selection rule is a statement that the projection of a

momentum state onto the polar axis cannot exceed the magnitude of the momentum.

The third selection rule is also known as the triangle inequality and is a statement of

the conservation of angular momentum.

We have consistently used the notation, normalization, and phase relations of

Edmonds (1960) for all angular functions in this paper with the exception of the

notational change defined in equation (2B.1)

APPENDIX 2C

AN ALGORITHM FOR THE CALCULATION OF WIGNER 3-j SYMBOLS

The numerical calculation of the general matrix element in equation (2.143) re-

quires an efficient algorithm to calculate 3-j symbols. There are formulae providing

closed expressions for the symbols (e.g. Landau and Lifshitz 1958) but the implemen-

tation of such formulae are computationally expensive compared to methods which

use judiciously chosen recursion relationships.

The recursion relationships can be derived from equation (6.2.8) in Edmonds

(1960) which is given by

E (-1) i 12 13 1 j 213 11 12 3

ALL2a m 2 - 3 -1 2 23 P1 -P2 m3

i 12 h i: 2 } (2C.1)
m m2 M3 11 12 13

where a = 11 + 12 + 13 + 1 + IL2 + /3. The quantity in curly brackets is a 6-j symbol

and is defined in Edmonds (1960). Analytic expressions for 3-j and 6-j symbols for

numerous special cases are given in the appendices of Edmonds(1960). These in

conjunction with equation (2C.1) can be used to obtain analytic representations for

more general 3-j symbols and to derive recursion relationships among them. The sum
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in equation (2C.1) is taken over all possible combinations of P1, 12, and pt3 which

satisfy the selection rules in equation (2B.22). In practice, it is necessary to sum

over just one of the pi since the values of the remaining pi are constrained by the

requirement that the sum of the bottom row of indices in each 3-j symbol is zero. The

range of the pi over which the sum is performed must not exceed exceed the harmonic

degree associated with it (which is the corresponding li value) and therefore it is most

convenient to sum over that i which has the smallest associated 1i value. With this

choice, equation (2C.1) generates a recursion relation among (2 * min{li, 12, 13} + 1)

3-j symbols where min{ll, 12, 3} denotes the smallest li integer of that set. Thus

if the smallest 1i is simply unity, the values of at least two of the three Wigner 3-j

symbols in the recursion must be known a priori to initiate the recursive algorithm.

For an arbitrary triplet {ji, j2, j3}, it is simplest to choose the values to be the corner

value (for which a closed expression from Edmonds (1960) is available) and a 'ghost'

element immediately adjacent to the corner value but outside the allowed bounds of

the mi so that its associated 3-j symbol vanishes.

The corner value (on the upper left) is defined by (ml = -j, m 3 = -j3) where mi

and m 3 are, respectively, the row and column indices of the 3-j symbol on the right

hand side of equation (2C.1). It may be calculated by setting m 3 = j3 in equation

(3.7.11) of Edmonds (1960) and by applying equations (2B.20) and (2B.19) to the

resulting equation to obtain

( J 2 J3 (-1)3+m3

-jl il + j3 -j3
1

(2j,)!(-j +J2 + j3)!(jl + j2 + j3)! 23 (2C.2)
(il + j2 + + 1)(j1 - j2 + j3)!(l + j2 - 13)!(-11 + j2 - j3)!(2ja)!

A recursion relation to iterate across rows can be obtained from equation (2C.1)

by setting l1 = 1, 12 = J3, and 13 = j2. We choose to sum over p1 which has a range

of {-1, 0, 1}. If p1 = 1, then / 2 =1 + n 3, and Y3 = 1 - m2. If y1 = 0, thenY2 = m3,

and 13 = -m2. If f1 = -1, then /2 = -1 + n3 , and /3 = -1 - m 2. Performing the

sum in (2C.1) and using various analytic reductions of Wigner 3-j and 6-j symbols
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from the appendices of Edmonds (1960), we obtain

[(j2 - m2 )(2 + m 2 + )(j 3 + m3 )(j3 - m3 +)] 1  2 1 3 +
m1 m2+1 M3 -1

[(j2 + m2)(j2 - m2 + l)(j - m3)(j3 M3 + ) 1 m2 1 3 +1

= (l(ji +1) - j 2(j2+1)-j 3 (j3 + 1)-2m 2m 3) ( m m2 3 ) (2C.3)

Our procedure is to iterate from left to right across successive rows. To do so we

use for starting values a 'ghost' column with m 3 = -j3- 1 for -jl _ mi 5 ji for

which the 3-j symbols are zero and, 3-j symbols for the left column with m3 = -j

and -J, 5 ml I jl.

A recursion relation which yields the left column values starting from the corner

value and the ghost value (ml = -il - 1, in 3 = -j3) can be derived from equation

(2C.3) by making the index exchanges jl --+ j, j3 --+ jl, m3 -+ mi and, mi --

m3. Performing this operation and applying the identity in equation (2B.19) to the

resulting equation yields

[(2 - m2)(j2+m2 + l)(j + mi)(- mi+1)] (m i 2 1
m1 -1 M2+1 r3

[(j2 + 2) 21(j - M2 + 1 jl _rnl)(jl +r 2-1 3 

i1 +1 m 2 - M3

=(Ja(ja + 1) - j2(j2 1) - jl(jl + 1) - 2m2M)( l j2 j J3 . (2C.4)

In summary, the procedure involves three steps. (1) Use equation (2C.2) to calcu-

late the corner value. (2) Initiate the recursion relationship in equation (2C.4) with

the corner value and the 'ghost' value (ml = -jl - 1, m 3 = -j3) to calculate all of

the elements in the left column. (3) To initiate the recursion relation on each row

(mi, -j 3 < m3 < j3), use the previously calculated value (ml, -j3) and the ghost
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value (ml, -j3 - 1). Finally, we note the computational time can be halved by com-

puting only the full lower triangle of the desired 3-j symbol (i.e., iterate the m3 value

of the 3-j symbol from the left column to the diagonal element only) and by using the

identity in equation (2B.20) to compute the strict upper triangle of the 3-j symbol.

APPENDIX 2D

INCORPORATING THE ANELASTIC CONSTRAINT INTO THE GENERAL

MATRIX

The derivation of the general matrix given by equation (2.119) is the purpose of this

appendix. The general matrix for a general flow field uo is given by equation (2.111);

equation (2.119) is its anelastic counterpart. The anelastic condition V - (p0 u, ) = 0

imposes a constraint on the expansion coefficients of the poloidal components of the

velocity field uo (see eq. 2.99). The incorporation of this constraint into the kernels

R,(r) and H,(r) (equations (2.112) and (2.113)) leads to a general matrix with the

required hermitian properties detailed in section VI.

The transformation of the general matrix into its anelastic counterpart requires

two identities involving the Wigner 3-j symbols. The first identity can be derived by

setting mi = -1, m 2 = 0, m 3 = 1, jl = 1', j2 = s, and j3 = I in equation (2C.3)

which yields

1 -1 0 1 1 -2

= [1'(1' + 1) - I(l + 1) - s(s + 1)] . (2D.1)
2(1 0 -1

Equation (2.116) can be used to rewrite equation (2D.1) in terms of the B coefficients

(see eq. 2.116) :

1 B('IB + (1 + ()( Ir' + 1))fQ I2 S
2 1 1 -2

x -[s(s + 1) + 1(1 + 1) - 1'(1' + 1)]B(,')+  (2D.2)
4
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which is our first required identity. From equations (2D.1) and (2.116) we may show

that

B , 1 I,(i' s i

2 1 + (12 o o 1 1 -2

= [l'(l' + 1) - 1(1 + 1) - s(s + 1)]B,' - . (2D.3)

Adding the quantity 1l(1 + 1)B(,)- to both sides of equation (2D.3) and recognizing

that B')- = B 1 )- (which follows from the symmetry properties of equation (2.118)),

we obtain the second required identity which is

(1 (-) )) 1 1 -2

= [l(l + 1) + l'(l' + 1) - s(s + 1)]B~,)- . (2D.4)

Returning to the general matrix in equation (2.111), we note that the integral

kernel for the radial part of the velocity field (eq. 2.112) may be written as a sum of

symmetric and antisymmetric parts i.e.,

r2 Po (r)iu'(r) [-(U'& + UU')B(?)+ + -(V V + VV')Bl)] dr +

2 I 2Srpo (r)iu'(r) [ (U'1 - UU')B, + + I (V'V - VV')B(,')+] dr. (2D.5)

The first integral in (2D.5) is a symmetric quantity multiplied by i and is thus anti-

hermitian while the second integral is skew-symmetric and is multiplied by i and is

therefore hermitian. The symmetric term can be integrated by parts to give

(rT2poiu (r))[ [ UB +- V'VB )+ ]dr. (2D.6)

Substituting the anelastic relation (2.99) into (2D.6) and adding the result to the

antisymmetric term in (2D.5) the total contribution from kernel in u, in equation

(2.111) may be written

r2po (r) ( - U ')B + ( V'T _ - VV)B(1)+]dr -

frpoiv(r))s(s + 1)[- U'UB( ) + -V1'VB(')+]dr. (2D.7)
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Using identity (2D.2) the kernel in v' in equation (2.111) may be replaced with the

expression

/rpoivt(r) [i[s(s + 1) + 1(1 + 1) - l'(l' + 1)]VV'B 1) +

+U' UB' ,T '+ V' - VU' B ]dr. (2D.8)

Using identity (2D.4) the kernel wt terms in equation (2.111) may be replaced by

Srpow (r){(U'V - U'U)B()- +V'UB ( ) -
. V U sill + V Il. l s

-V'V[l(l + 1) + l'(l' + 1) - s(s + 1)]B)')-}dr. (2D.9)

Recognizing that B()- = B~~)- = B l )- (from eq. (2.118)), equation (2D.9) reduces

to

rpowt (r) {U'V+ V'U-U 'U-1 V'V[1(l+1)+'(l'+1)-s(s+1)}B)-dr. (2D.10)

The integral kernels (2D.7), (2D.8), and (2D.10) represent, respectively, the anelastic

versions of the integral kernels for the components ut, vt, and wt of the velocity

field. In fact, the wt has remained unchanged, we have merely written it in a more

convenient manner. The anelastic constraint does not constrain toroidal flow fields.

The anelastic version of the integral kernels general matrix for a general flow field given

in equation (2.119) may be derived by summing the integral kernels (2D.7), (2D.8),

and (2D.10) and by noting that the terms in UU' that multiply the vt coefficient can

be combined by using the identity

B,=' = -[s(s + 1) + 1(1 + 1) - l'(l' + 1)]B, )+ (2D.11)

which follows from equation (2.117).

APPENDIX 2E

THE HERMITICITY OF THE GENERAL MATRIX

We must prove the general matrix

H = pos'* B(s)d3r (2E.1)
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is Hermitian where B(s) is given by equation (2.62). Let s' = 9 and s = 5, then to

be hermitian, the operator 0 must satisfy

9* - O()d3r = [J* - (o)d3r] (2E.2)

where * denotes complex conjugate.

The first term in B yields

2iwpo* 2 x d3 r = S2iwpf2 -

where we have used the identity a (b x c) = b (c x a) The right hand side of (2E.3)

clearly passes the Hermiticity test. The second term in B yields

I 2iwporq* • x r -V d3 r.
(2E.4)

Noting that

V. (po2 x r) = 0, (2E.5)

equation (2E.4) may be written as

J 2iwV - (p2 x r * - )d3r -/ 2iwpf2 x r - Vy*d3 r.

The divergence term in (2E.6) may be converted into a surface integral through

application of the divergence theorem. The surface integral vanishes because the

unperturbed fluid velocity is orthogonal to the unperturbed surface i.e.,

0x r -dS = 0, (2E.7)

where dS is an element of surface area. The remaining term in (2E.6) clearly satisfies

the hermiticity condition. The third term in B yields

J 2iwpoY* -uo - Vd 3 r. (2E.8)

Using the anelasticity condition

V (pouo) = 0 (2E.9)
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we find (2E.8) reduces to

/2iwV (pouo l* - )d3 r - f 2iwpo -uo - V*dr (2E.10)

The divergence term vanishes since

uo. dS = 0 (2E.11)

and the remaining term satisfies the hermiticity condition.
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TABLE 1

THE a, COEFFICIENTS FOR SEVERAL MULTIPLETS IN THE CASES OF SELF COUPLING, FULL
COUPLING, AND DIFFERENTIAL ROTATION

coupling case for 3S59  al a2 a3  a4 as
full coupling 438.38 -1.25 24.09 0.33 -3.86
self coupling 438.27 0.0 24.05 0.0 -3.84
differential rotation 439.46 0.0 24.12 0.0 -3.85
Libbrecht's data 441.7 0.3 23.0 3.2 -7.9

coupling case for 3S 7 o al a2 a3 a4 a 5

full coupling 437.55 -1.85 24.07 0.323 -3.91
self coupling 437.59 0.0 24.05 0.0 -3.85
differential rotation 439.76 0.0 24.16 0.0 -3.87
Libbrecht's data N.A. N.A. N.A. N.A N.A

coupling case for 5S 45  al a2 a3 a4 a 5

full coupling 435.37 -0.10 23.71 -0.06 -3.73
self coupling 435.34 0.0 23.84 0.0 -3.85
differential rotation 439.54 0.0 24.07 0.0 -3.81
Libbrecht's data 442.8 -0.1 22.3 0.9 -5.1

coupling case for sS 35  al a2 as a4  a5

full coupling 438.15 -0.42 23.22 -0.18 -3.55
self coupling 438.17 0.0 23.26 0.0 -3.54

differential rotation 439.09 0.0 23.30 0.0 -3.55
Libbrecht's data 437.0 2.7 25.0 4.2 -4.9

coupling case for 18S 7o al a2 a3 04 a5

full coupling 437.91 -0.87 23.05 0.02 -3.44
self coupling 438.05 0.0 23.00 0.0 -3.49
differential rotation 440.03 0.0 23.11 0.0 -3.51
Libbrecht's data N.A. N.A N.A. N.A. N.A.

coupling case for sSss al a2 as a4 as

full coupling 436.76 -1.0 24.03 0.1477 -3.82
self coupling 436.72 0.0 23.98 0.0 -3.84
differential rotation 440.54 0.0 24.20 0.0 -3.87
Libbrecht's data N.A. N.A N.A. N.A. N.A.
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Fig. la. Characteristic length, time, and velocity scales of convective eddies as pre-

dicted by mixing length theory (see eqs. (2.4), (2.5) and (2.6)) plotted as a function of

depth. The solar model of Podsiadlowski (1989) was used to calculate these quantities.
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Fig. lb. - The emissivity c(w) (eq. 2.1), absorptivity ca(w) (eq. 2.2), and the energy of
convective flux flowing into the p modes Fp (eq. 2.3). The quantities have been normalized
by their peak values. For r < 0.994?, E(w), a(w), and Fp are many orders of magnitude
smaller than the values plotted here. We use the shape of these quantities to argue that
coupling between convection and p modes is significant only in the top , 0.15% of the
convection zone.
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Fig. 2. - This figure illustrates the relationship between the observer's frame and the
Sun's frame. The origin of the observer's and Sun's frames are, respectively, 0, and O,.
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radial eigenfunction U(r)

Fig. 3a. - Square root of the kinetic energy density of the radial eigenfunction (i.e.,

p1/2U) plotted for the multiplets 14S30 (3.25013 mhz), 11S49 (3.25001 mhz), 9S70 (3.24938
mhz), and 8S84 (3.24786 mhz). The shapes of the eigenfunctions U and V (see Fig. 3b)
in the upper region of the convection zone depend primarily on the degenerate frequencies
of the multiplets. Eigenfunction shapes at a constant frequency are similar even for widely
differing harmonic degree 1.
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Fig. 3b. - Square root of the kinetic energy density of the horizontal eigenfunction (i.e.,

(pl(l + 1))1/2V) plotted for the same multiplets as in Fig. 3a. This plot illustrates that

the phases of eigenfunctions V which have nearly degenerate frequencies correlate well in

the upper region of the convection zone but are phase shifted relative to one another in the

deeper regions.
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Fig. 4. -The horizontal component of the poloidal flow field for (S 7, -7 < t < 7)
at radial level r = 0.96Pk. Inspection of the v' expansion coefficients in Fig. 6b reveals
that the field is dominated by the sectoral component t = 7. The horizontal flow illustrated
here has alternating zones of divergence and convergence which corresponds to the well
known banana cells. Figs. 6a and 6b illustrate that the power of the poloidal component of
horizontal flow is contained primarily in the large wavenumber, sectoral, convective modes
of the type shown in this figure and that the vertical flow is principally in the small wave
number radial convective modes.
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Fig. 6a. -The modulus of the complex expansion coefficient n of the radial component

degrees 0 < s < 30 and positive azimuthal orders t. The size of each hexagon is proportional-

to the modulus of u. with units of m/s. Much of the power is concentrated in the sectoral
components between s = 17 and s - 25 peaking at (s = 25,t = 25) with a value of 78.3
m/s. The power in the flow field in the large s components is enriched relative to the power
of the small s components which implies the radial flow is composed primarily of narrow

updrafts and downdrafts.
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bution to the poloidal component of the convective velocity field ( =
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radial level r = .96R for harmonic degrees 0 < s 30 and positive azimuthal orders . See

Fig. 6a for a description of the symbols. Much of the power is concentrated in the sectoral
components with prominent peaks at (s = 2, 4,7, 8, 10, 17, and 25) which corresponds to
the horizontal motions associated with banana cell type convection.
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Fig. 6c. - The modulus of the complex expansion coefficient w of the toroidal com-

ponent of the convective velocity field (torv,,r -w(r)-x ViYt(0, )) at radial level
r = .96Re for harmonic degrees 0 < s < 30 and of positive azimuthal orders 1. See Fig.
6a for a description of the symbols. The zonal (t=0) expansion coefficients for (s=1,3,5)
which correspond to bulk rotation (s=1) and differential rotation have been omitted since
their large size would overwhelm the features of this plot. There is very little power in the
toroidal field for large s and most of the power (excepting the axially symmetric velocity

field components) is in the (s = 1, t = 1) and, (s = 3, t = 2) components.r --. 6®frhroncdges0_ s_ 0ado ostv zmta odr .SeFg
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Fig. 7a. - The frequency splittings [wm59 - (W3 ,59 -+-0.46m)] in phz, of multiplet 3 S59

(1.76331 mhz) for the three cases listed in Table 1. The degenerate frequency and the linear

trend (the bulk rotation splitting) have been removed from each of the profiles.
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Fig. 7b. - The frequency splittings [w3,70 - (W3 ,70 + 0.46m)] in phz, of multiplet 3 S 7 0

(1.87906 mhz) for the three cases listed in Table 1. The degenerate frequency and the linear
trend (the bulk rotation splitting) have been removed from each of the profiles.
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Fig. 7c. - The frequency splittings [w 45 - (w5,45 + 0.46m)] in phz, of multiplet sS45
(1.02423 mhz) for the three cases listed in Table 1. The degenerate frequency and the linear
trend (the bulk rotation splitting) have been removed from each of the profiles.
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Fig. 7d. - The frequency splittings [w8,35 - (w8,3 5 + 0.46m)] in phz, of multiplet 8 S 3 5

(2.41115 mhz) for the three cases listed in Table 1. The degenerate frequency and the linear

trend (the bulk rotation splitting) have been removed from each of the profiles.
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Fig. 7e. - The frequency splittings [w17, 70 - (w18 ,70 + 0.46m)] in ihz, of multiplet 18S70

(4.99514 mhz) for the three cases listed in Table 1. The degenerate frequency and the linear
trend (the bulk rotation splitting) have been removed from each of the profiles.
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Fig. 7f. - The frequency splittings [w9,65 - (w9 ,65 + 0.46m)] in phz, of multiplet 9 S65
(3.16578 mhz) for the three cases listed in Table 1. The degenerate frequency and the linear
trend (the bulk rotation splitting) have been removed from each of the profiles.
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model are smaller than the associated singlet of the axisymmetric model The size of
strong function of the convective flow field.20 40 60 80 100harmonic degree

(1 s < 42 -s <t I s) with frequencies calculated in the self coupling approximation.
In every case, the frequencies of the sectoral singlets for the full toroidal velocity field
model are smaller than the associated singlet of the axisymmetric model. The size of
each symbol is proportional to the magnitude of the difference, the largest being .65 Phz for

(n = 3, 1 = 99, m = 99). The differences tend to increase with increasing 1 and display zones
of extinction as a function of the degenerate frequency of the multiplets. This extinction
takes place at frequencies where the radial eigenfunctions of the multiplets become nearly
orthogonal with the radial variation of the velocity model. As such, their location is a
strong function of the convective flow field.
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Fig. 8b. - The differences (wf _-ws elf ) in frequency of the singlet (n, 1, m = -. 81) where
wself and wfull denote, respectively, the frequencies predicted by self coupling (toroidal flows
only) and full coupling (poloidal and toroidal flows) using degrees 1 < s < 30 of Glatzmaier's
flow field. The differences were computed for every third l in the range (10 < 1 < 90) along
the overtone branches (2 < n < 20). The eigenspace of the full coupling calculation consisted
of all singlets with frequencies wd .81 in a 3.5 phz bandwidth about each target singlet.
The average dimension of the eigenspace was - 200. The size of each symbol is proportional
to the magnitude of the residual, the largest being .27 phz for (n = 2, 1 = 89, m = -72).
The residuals tend to increase with increasing 1.
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splittings of the two models to determine the a, as, and asO coeffcients. In the self couplingdifferences in Fig. 8a.

harmonic degree

Fig. 9a. - The differences (ad  a f) of the al coefficients for the two velocity models

described in Fig. 8a for a suite of multiplets. We performed a regression using the frequency
splittings of the two models to determine the al, a3, and as coeffcients. In the self coupling
approximation, it suffices to parameterize the frequencies of a given multiplet with only
odd ai coefficients since splitting is purely odd in azimuthal order m about the degenerate
frequency. The size of each symbol is proportional to the magnitude of the coeffcient
difference, the largest being 7.8 nhz for (n = 18,1 = 48). The differences (ad ' - aelf)

display zones of extinction that precisely mimic the extinction pattern of the frequency
differences in Fig. 8a.
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described in Fig. 8a. The largest difference is .27 nhz for (n = 3,1 =97). The differences

display zones of extinction which mimic the extinction patterns in Figs. 8a and 9a.
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Fig. 9b. -The differences (a ' - a +) of the a3 coefficients for the two velocity models

described in Fig. 8a. The largest difference is .27 nhz for (n = 3, l = 97). The differences

display zones of extinction which mimic the extinction patterns in Figs. 8a and 9a.
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Fig. 9c. - Data from Brown and Morrow (1987). The three figures are the al, a3 , and
a 5 coefficients. The horizontal lines represent the values the coefficients would have if the
observed surface differential rotation rate prevailed through out the Sun.
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Fig. 9d. - The differences (aelf a.r.) of the a1 coefficients for harmonic degrees
4 < 1 < 99, and overtone branch n = 8, in units of nanohertz. This should be compared to
the corresponding plot of actual data in figure 9c.
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plot of actual data in figure 9c.
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Fig. 10b. - A convenient measure of coupling strength is the ratio between the two
largest expansion coefficients ak of a given hybrid eigenfunction. The target singlet always
has the largest ak. We have plotted in histogram form the numerical value of the modulus of
these ratios on the horizontal axis and the number of occurences for each ratio on the vertical
axis. The coefficients were taken from the same sample of modes used in the construction of
fig 10a. The horizontal axis was truncated at .6 to provide enhanced horizontal resolution;
there are ratios which extend up to .9.
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CHAPTER 3

THREE MODE COUPLING OF SOLAR OSCILLATIONS 1. THEORY

Some stars, such as the Cepheids, are Capitalist stars since one mode

dominates all the others. Other stars, such as the Sun, are Communist

stars since all modes share the same low level.

Comments overheard at a colloquium (1988)

Peter Goldreich
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THREE MODE COUPLING OF SOLAR OSCILLATIONS 1.

THEORY

EUGENE M. LAVELY

Massachusetts Institute of Technology, Department of Earth, Atmospheric, and

Planetary Sciences

ABSTRACT

We derive in spherical geometry a theory to calculate energy transfer rates of p

modes due to three mode couplings among them. Three mode coupling can alter

the power spectrum of modes, limit the growth of overstable modes, contribute to

mode linewidths, and slightly alter the apparent frequencies of the modes.

The principal results are the kinetic equation and an expression for the time rate

of change of the modal phases. The nonlinear interaction strength scales as M 2,

where M is the acoustic Mach number. For the Sun, modal amplitudes reach their

peak value near the photosphere, and therefore, the most significant coupling takes

place in this region. The collective motion of the resonant modes leads to a velocity

field with a non-negligible M near the solar surface. The velocity of each individual

mode is - 15 cm/s and the collective motion is , 0.5 km/s (the sound speed c near

the solar surface is - 10 km/s). The lowest order nonlinear coupling is three mode

coupling which follows from retaining terms in the equation of motion to second order

only. Thus, modes can couple in resonant triads provided the interaction conserves

energy and angular momentum. A given triad is composed of the modes k, k', and

k". The index k, for example, represents the quantum numbers (n, 1, m) which denote

respectively the radial overtone, harmonic degree, and azimuthal order of mode k. For

the nonlinear interaction to conserve angular momentum, the harmonic degrees must

satisfy the triangle inequalities II - '1 5 l1", 1' - l"1 5 1, and II - l"1 5 1'. In addition,

1, 1', and 1" must sum to an even number. These selection rules can be deduced from

the Wigner 3-j symbols which appear in the nonlinear interaction coefficient Vkk'k".
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To conserve energy, the frequencies wk, Wk,, and Wk,, of the modes must satisfy the

resonance condition Wk - Wk' - Wk,, " 0. The coefficient Vkk'k,, averages to zero over

the nonlinear interaction time if the frequency resonance condition is not satisfied.

The nonlinear interaction time is the e-folding time for a change in the energy of a

mode. The coupling leads to a change of the modal energies on a time scale which

is long compared to the periods of oscillation. The selection rules on frequencies and

harmonic degrees vastly truncate the multitude of possible coupling partners. The

structure of the w - k (frequency-wavenumber) dispersion diagram in conjunction

with the frequency resonance condition imply that low 1 modes (1 < 100) with typical

periods of - 5 minutes can couple with very large I modes (1000 < 1 < 2500) where

the spacings between the fundamental branch and overtone branches are - 5 minutes.

The derivation of the energy rate change equation (the kinetic equation) was

simplified by application of the random phase approximation (RPA). In this approxi-

mation, one assumes the phases of the modes change many times during the nonlinear

interaction time. The counterpoint to the RPA is the coherent mode coupling theory

which is intended for situations in which the phases of the modes vary only slightly

during the nonlinear interaction time. The nonlinear interaction coefficient was re-

duced to a product of a reduced matrix element times a Wigner 3-j symbol, the

latter of which contains all of the azimuthal order dependence, by application of the

Wigner-Eckart theorem. The summation over the modes which enter into the kinetic

equation was simplified by application of Wigner 3-j symbol orthogonality relations.

Highly accurate asymptotic approximations to the Wigner 3-j symbols are provided

to make numerical computations practical.

I. INTRODUCTION

We apply weak turbulence theory from plasma physics (e.g., Galeev and Karpman

1963, Davidson 1972) to calculate the energy transfer rates of modes due to three mode

couplings. Kumar and Goldreich (1989) have addressed this problem analytically

and numerically. Their calculation is for a plane parallel envelope with an adiabatic
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convection zone, and an isothermal atmosphere which extends through the optically

thin region above the photosphere to the temperature minimum. They show that

the theory of three mode coupling indirectly bears on the question of solar p mode

excitation. The excitation of the p modes, and the energies and amplitudes they

should attain is an area of active study in helioseismology, but has received much

less attention than the influence of the internal structure and dynamics on the modal

frequencies. The modes are thought to be excited either by turbulent fluctuations,

or by an overstability mechanism. Stars with large-amplitude variations such as

the Cepheids are thought to be driven by the -mechanism. This is an overstable

process since during the compression phase, the increased opacity leads to absorption

of radiation energy . This mechanism has been discussed in the solar context by

Ando and Osaki (1975), and Goldreich and Keeley (1977a). Other authors who have

examined the linear stability of p modes include Christensen-Dalsgaard and Fransden

(1982), Kidman and Cox (1984), and Anita, Chitre and Narashima (1986). The

driving of p modes by the K-mechanism in the Sun is thought to be weak, and whether

it is significant or not depends sensitively on the dissipative effects of turbulence.

A linear overstability calculation can be performed to derive an equation of the

form

E_ = apEp (3.1)

where Ep is the energy of a p mode. The mode is overstable if a is greater than

zero. The numerical value of a depends on the particular overstability mechanism

(the K mechanism, for instance). It can be shown (e.g. Davidson 1972) that energy

rate equations for three mode mode coupling depend linearly on the modal energy

if the modes that couple are phase coherent. If the modes have random phases, the

rate equation has quadratic dependence on the modal energy. In our derivation of

the rate equation, we will assume the random phase approximation is valid. Thus the

rate equation for modal energies is of the form

E, = -PE, p > 0. (3.2)
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We have taken P, greater than zero since Kumar and Goldreich (1989) have shown

that three mode coupling generally damps modal energies. If three mode coupling

and the ac mechanism are simultaneously operative, the rate equation becomes

E, = aE - PE 2, (3.3)

and the steady state energy is given by Ep = a/. Kumar and Goldreich (1989)

have shown that the dominant coupling process is between a p mode, an f mode,

and a propagating wave. Energy can be drained from the trapped modes to the

propagating waves by three mode coupling. The f modes couple most dominantly

with one another so that the rate equation for f modes is given approximately by

Ef = a. Ef - 3 Ef E., (3.4)

and the rate equation for p modes is given approximately by

EP = apEp - /pEpEf. (3.5)

Thus, we see the f mode energies are roughly independent of the p mode energies,

and if anything, are damped by the p modes through couplings with the propagating

waves. Furthermore, a. is approximately zero since the f modes have virtually no

compression which renders the r,-mechanism inoperative. The f modes and p modes

at the same frequencies are observed to have similar energies. Since the f modes

cannot be excited by the K-mechanism or by nonlinear transfer of energy, Kumar and

Goldreich (1989) concluded that they must be excited by turbulence. Three mode

coupling is thought to be a leading candidate to damp overstable modes. It would

have been a more direct argument against overstability to show conclusively via equa-

tion (3.5) that three mode coupling cannot damp overstable modes. The reasoning is

that the p modes have observed finite amplitudes and energies; if three mode coupling

cannot quench the growth of the modes, it is unlikely they are overstable. Unfortu-

nately, such a proof requires accurate knowledge of the energies of modes at large

harmonic degree and these are not yet available. In their numerical work, Kumar and
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Goldreich (1988) using plausible assumptions, find energy transfer rates which range

from 10 to 100 percent of the products of the mode energies and linewidths. If their

calculations had conclusively shown that three mode couplings are unimportant, it

would have made a strong argument against the overstability mechanism. It is for

this reason they used the f mode argument described above to argue against oversta-

bility. The driving of p modes by stochastic fluctuations associated with turbulence

has been considered by Goldreich and Keeley (1977b) and by Goldreich and Kumar

(1988).

As a first step toward addressing these issues for a spherically symmetric Sun with

a realistic thermal and density stratification, we apply methodologies from weak tur-

bulence theory of plasma physics to derive the kinetic equation for p modes. We seek

to derive an equation of the form given in equation (3.2). The dynamical equation has

been derived previously by Vandakurov (1979) and Dziembowski (1982). To derive

the kinetic equation, we work directly from the equation of motion whereas Kumar

and Goldreich (1989) use a Hamiltonian formalism. These equations are coupled first

order differential equations which govern the time rate of change of the amplitudes

and energies of the modes. The theory derived here takes explicit account of the

effects of spherical geometry and can be applied to a star with arbitrary thermal

stratification i.e., the atmosphere need not be isothermal or adiabatic. The effect of

the ionization zones and the superadiabatic layer in the sub-photospheric region on

nonlinear coupling coefficients is naturally accounted for. The perturbations in grav-

itational potential are included. The most important result is the kinetic equation

(which specifies the energy transfer rate for a given mode). The p modes can non-

linearly interact if the interaction conserves energy and angular momentum. These

requirements are embodied by a frequency resonance condition and by selection rules

on the Wigner 3-j symbols (which enter into the nonlinear interaction coefficient).

Three mode coupling can also systematically shift the phases of the modes and thus

slightly alter their apparent frequencies. An expression quantifying this effect is de-

rived. This paper contains theoretical results only; numerical results will be presented
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in a future paper.

The outline of the paper is as follows. In §II we derive the dynamical equation, the

frequency resonance condition, and the form of the nonlinear interaction coefficient.

In §III we discuss the random phase approximation, and apply weak turbulence theory

to derive the kinetic equation, and an expression for the frequency shift of the modes.

In §IV we derive the equation of motion to second order in the mode displacement,

calculate second order perturbation to the thermodynamic variables, and explicitly

calculate the nonlinear interaction coefficient in terms of the eigenfunctions of the

modes. In Appendix 3A, we provide highly accurate, easily calculated, asymptotic

approximations to the Wigner 3-j symbol which appears in the kinetic equation.

II. COHERENT MODE COUPLING

a) Derivation of the Dynamical Equation

In a spherically symmetric Sun, the normal modes of oscillation are uncoupled

provided the modal amplitudes are sufficiently small. In this case, the linearized

equation of motion is valid and the time-varying displacement field is written

s(r, t) = sk(r, t) + s*(r, t) = k C~()sk(r)eiwkt + C(O)s(r)e-i k t  (3.6)
k k

where r denotes the spherical polar coordinates (r,0, q). The temporal and spatial

basis functions of the displacement field are given, respectively, by eiwkt and Sk where

wk is the mode eigenfrequency and Sk is the modal displacement. Each are calculated

in the linear approximation. The displacement field of equation (3.6) is written as

a standing wave pattern. The complex constants Co) and C(0o) are the amplitudes

of waves with k = (n, 1, m) and k = (n, 1, -m). The waves propagate in opposite

directions because sk and s* are proportional to exp[i(wkt + m)], and exp[-i(wkt +

mq)], respectively. To maintain constant phase as time increases, a wave described

by exp[i(wkt ± Im )] propagates in the :F q direction. The amplitude C(O) depends

on the mode excitation mechanism. The superscript (0) in Co( ) indicates that mode

interaction has been neglected. If modal interaction does take place, the displacements
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Sk can serve as basis functions for the new displacement field with time dependent

coefficients Ck(t) to be determined. We must assume that the amplitudes do not

become so large that the basis functions Sk are no longer appropriate. Most of the work

in this paper is directed toward calculating the time variation of Ck(t) to determine

the time-evolution of the energy of mode k due to modal interactions.

The amplitude coefficients Ck(t) can be expanded in the form

Ck() - 0) + 1) + 2) (3.7)

The superscripts (1) and (2) indicate that Ck is expanded to first and second order in a

small parameter of the system. We take this to be the nonlinear interaction coefficient

Vkk'k", which is derived in §IV. We will suppose that the nonlinear interaction is

turned on at time t = 0 so that the amplitude of mode k at t = 0 is set by the

excitation mechanism and is taken to be the result of either a calculation or an actual

measurement.

In general, the displacement field is given by

s sk(r,t) + st(r,t) = Z{Ck(t)sk(r)ewkt + CZ(t)s*(r)e-i'wkt }. (3.8)
k k

where the sum is taken over all modes. The velocity field is given by

v = vk (r, t) v(r, t)
k

= {Ck(t)sk(r) + iwk Ck(t)sk(r)}e t

k

+ {Ck(t)sk(r) - iWkCk(t)S*(r)}e - k"  (3.9)

where the overdot indicates I. If the nonlinearity is weak, it is reasonable to assume

that the time variation of Ck(t) is slow compared to the harmonic behavior of the

mode i.e.,

k << k (3.10)
Ck

By equation (3.10), we may neglect the temporal derivatives of Ck which are sec-

ond order or higher. This approximation should be used in calculating higher order

derivatives of v.
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In the calculation of second-order terms appearing in the nonlinear equation of

motion, it proves convenient to work with time derivatives one order higher than is

necessary in the linearized case. Therefore, we write the linearized equation of motion

as

t2 vk(r, t) + £Vk(r, t) = 0. (3.11)

The mode vk in the linear approximation is orthogonal to all other modes i.e.,

-w v,. Vkd r6kk' = V Vkd 3 r. (3.12)

However, modes can couple in the linear approximation if the Sun is aspherical (see

Chapter 2).

The equation of motion to second order in the displacement field can be written

a2v + £v + Kn(s, s) = 0 (3.13)

where s and v represent, respectively, the displacement and velocity field of all modes.

To keep our discussion as general as possible, we defer the derivation of the operators

£ and / until a later section.

Since Y is second order in the displacement, modes will in general couple in triads.

To derive the dynamical equations governing the evolution of such a triad (composed

of members k, k', and k") we substitute equations (3.8) and (3.9) into equation (3.13)

to obtain

S {2C(t)wS (r)e - 2C (t)ws(r)e-i + Kj(sj, sj)} = 0. (3.14)

j=k,k',k"

We have used equation (3.11) to cancel terms and equation (3.10) to justify the neglect

of second and third order time derivatives of Ck(t). In addition, since the operator

K is presumed to be small, we have neglected any terms which contain derivatives of

Cj(t) in A.

To derive the dynamical equations for Ck(t), Ck'(t), and Ck,,(t), we need only

multiply equation (3.14) by pos* exp - i kt, poS, exp - iwkst, post,, exp - i mwk' t, respectively,

and integrate over the volume of the sun. Using the normalization condition

R e Po(r)s . kd3r = 6bk (3.15)
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where d3r = r2 sin(O)drdOd, and Re is the solar radius, we obtain

1 R®
Ck(t) P p(r)A(s, s) . s exp - kI d3r (3.16)Ckl(t) 7210

Ok(t) , Po(r)AN(s, s) -s, exp-iwkt d3 r (3.17)

Ckil(t)= 2  po(r)A(s, s) sr,, exp-ikit d3 r (3.18)

and where the displacement fields s and v in X are as in equations (3.8) and (3.9)

except the sums in equation (3.8) and equation (3.9) should be taken over the three

modes k, k', and k", and any terms containing derivatives of the Ck(t) in X should

be omitted.

The nonlinear operator / as written in equations (3.16)-(3.18) contain many

different products among members of the temporal basis set. To derive the dynamical

equations we average equations (3.16)-(3.18) over the fast time scale associated with

the oscillation frequencies. We define all of the frequencies Wk to be positive. The

amplitudes Ck, Ck', and Ck", may be considered constants in such an average since

by assumption Ok << WkCk. For arbitrary wk, wk,, and wk",, each term on the right

hand sides of equations (3.16)-(3.18) will vanish. However, when the three oscillation

frequencies satisfy a resonance condition, the oscillation rate arising from the product

of the temporal basis functions in the nonlinear terms reduces to a time scale more

comparable with the time scale for a change in the amplitudes Ck(t); the term with

those products will survive the averaging process. We define the frequency resonance

condition to be

wk - Wk' - Wk" = Aw 0 (3.19)

where Aw is a small quantity. By requiring that the resonance condition in equation

(3.19) be satisfied and by performing the averaging process, we obtain the coupled

dynamical equations. These are given by

1
Ck(t) = -2 Vkkk" Ck'(t)Ck"(t) exp-iAWt, (3.20)

2 1
Ck'(t)= 2w, Vk'kk"Ck(t)C,,(t) exp"a '' , (3.21)
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1
k") = 2wk,, Vkkk'*Ck(t)Ck,(t) expit (3.22)

The nonlinear interaction coefficient Vkk'k" is given by

Vkk'k" = JR' po(r)A(Sk", Sk') * Sd 3 r + RE p(r)/(Sk, Sk") . sdJr. (3.23)0 +0
The interaction coefficient Vk'kk"* can be obtained from Vkk'k" by interchanging indices

k and k' and by replacing sk"(r) and wki with st,,(r) and -wk,. The interaction

coefficient Vk"kk'* can be obtained form Vk'kk"* by interchanging the indices k' and k".

III. WEAK TURBULENCE THEORY

a) The Random Phase approximation

To analyze modal interactions, it must first be determined whether the modal

phases are random or nonrandom. Nonlinear interactions among modes can alter

their mean amplitudes and energies. The qualitative nature of the changes depend

on whether the phases of the waves remain coherent or vary randomly during the

time over which the nonlinear interaction occurs. If the phases remain coherent

during the nonlinear interaction, it can be shown that the energy of a given mode

varies linearly with the amplitude expansion coefficients (see Davidson 1972). If, on

the other hand, the phases vary randomly, the time evolution of a given mode has

a quadratic dependence on the energies of the modes with which it interacts. The

principal assumption of coherent mode coupling theory is that the phase of the modes

remain coherent during the nonlinear interaction time. The weak turbulence theory

on the other hand asserts that the phases change randomly many times during the

nonlinear interaction time.

Associated with each mode k is a spectral resonance function. The resonance

function has a non-zero bandwidth due to the finite lifetime of the mode. We denote

the linewidth of mode k by Fk. Since a typical period of oscillation is five minutes,

and since the modes have lifetimes on the order of days, it follows that

Fk << wk (3.24)
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To facilitate our discussion of the nature of modal phases we use the following

definitions:

r = 27rn/wk where n is an integer,

r = characteristic time for a phase shift of mode k,

7'k.. = characteristic nonlinear interaction time for mode k .

To determine experimentally whether a wave has a random phase, one need simply

measure the amplitude of the wave at the same point in space in successive time

intervals at times r . If the phase does not change, the measurements would give the

same value for the amplitude. Suppose now the phases of the waves vary randomly,

then for rn >> r, completely different values of the amplitude are obtained. If

the mean value of the amplitude is zero for time t >> r, the field is random.

The apparent randomness of the field depends on the measurement technique. If we

take tk << r, the measured fields could exhibit regular rather than random values.

The appropriate observation time tk.l is determined by the characteristic time of the

physical process. In our application, this is the length of time for a significant amount

of energy to transfer from one mode to another due to three mode coupling. We define

this time to be the e-folding time. Denoting the energy of mode k by Ek, we obtain

t.. = Ek) . (3.25)

The time rate of change of the energy of a given mode is given by the kinetic equation

which we derive in a later section.

Any given mode has a finite quality factor Q, due to dissipative processes. In

addition the mode can undergo phase shifts due to the source excitation processes.

Therefore, the mode has a characteristic spectral width in the frequency domain which

can vary in time. Thus, the resonance condition Aw = wk - wk' - wk" = 0 is generally

never met, and instead we require that Aw is less than the sum of the linewidths of

the modes. To determine whether coherent mode coupling theory, or weak turbulence

theory be applied, we need only determine T7n.. and determine whether the argument
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Awt in the exponential factors in equations (3.20)-(3.22) with t = ,.1. is << 1, or

>> 1. If

t = 7,= >> 2 (3.26)

then the random phase approximation should be used since only mean-squared quan-

tities have non-zero expectation values. In this case the nonlinear interaction occurs

over many periods of the oscillation. The phase of the waves can change repeatedly

before the nonlinear effects change the power spectrum or the mean wave amplitude.

However, if

t = 7," =, << A7, (3.27)

is fulfilled, the nonlinear interaction will be felt before any change in the phase rela-

tions of the waves. The coherence condition implies that during the time of interac-

tion, the phase difference between the waves cannot change so much as to allow the

sign of the the nonlinear interaction to change. Modes which satisfy the coherence

condition must have very narrow line-widths.

The random phase approximation means that the values of the phases 0(k) of

C(O)(t) in equation (3.7) for all modes k are distributed completely randomly. We

can assume the modes are either overstable or are excited by stochastic excitation.

Although the phases are initially randomly distributed, phase coherence can develop

between some of the modes due to nonlinear interactions. Mathematically, the ran-

dom phase approximation may be written

< cII) ) 2kk. (3.28)
k k' bkkl (3.28)

The time average is the same as the average over the statistical ensemble. The systems

in the ensemble differ from one another only in the phase (0). The distribution of

the phases is completely random so that

< 0  ICkl(< cos(¢k° )) > +i < sin((k ) ) >) = 0, (3.29)

since < cos(4k°)) > = < sin( (0 ) ) > = 0.

b) Derivation of the Kinetic Equation
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In this section we apply the methods of weak turbulence theory to derive an

equation which governs the time evolution of the energy of a given mode due to all

possible nonlinear interactions which conserve energy and angular momentum. We

call this equation the kinetic equation which is the same as the master equation in

the language of Kumar and Goldreich (1989). The energy density of mode k is given

by
1

ek = 2powk Ck 2Sk * (3.30)

and its energy is given by

Ek= po (r)ekd r = 2 klc 1 (3.31)

where we have used equation (3.15). Thus, to determine the time evolution of Ek we

must determine the time rate of change of ICk 12. The change in energy from time to

to time t due to nonlinear interactions is given by

1
AEk = [Ck(t2 IC(t)12 ]. (3.32)

Dividing both sides of equation (3.32) by the quantity t -to, we obtain the differential

equation
OEk(t) 1 20lCk(t)l 2

= ok  . (3.33)at 2 L a

In §II we derived the dynamical equations for a single resonant triad in which the

time evolution of mode k was coupled through two additional time evolution equations

to the modes k' and k". In general, the mode k will couple to any set of modes in which

the interaction conserves energy and momentum. Thus, the dynamical equation for

mode k generalizes to

1
Ck (t =2w Vkk'k" Ck(t)Ck,,(t) exp - i(w k - k '

k")t. (3.34)

The interaction coefficient can be simplified by application of the Wigner-Eckart

theorem (see §5.3 of Edmonds 1960). Provided that the nonlinear operator A which

defines the interaction coefficient Vkk'k" contains no terms which break symmetry in

the azimuthal orders (m, n', m"), the Wigner-Eckart theorem assures us that Vkk'k"
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can be decomposed into a product of a reduced matrix element (independent of m,

m', and m") and a Wigner 3-j symbol that fully specifies the azimuthal quantum

number dependence. Thus, we obtain

I 1 ' I"
Vkk'k" = V,n'j.,nt,,(-1)-m - (3.35)

where V i,1,n,,,, denotes the reduced matrix element. The reduced matrix element

can only be determined by a detailed analytical calculation. Its explicit form is given

in §IV. Since we know a priori that the reduction in equation (3.35) is possible, we

will use this result in the derivation of the kinetic equation.

The requirement that angular momentum be conserved is encapsulated in the

selection rules that the 3-j symbol in equation (3.35) must satisfy. These are the

triangle inequalities and are given by:

I - 1' l",

l" - 1 < '. (3.36)

In addition, the azimuthal orders must satisfy the relation

- m' + m + m" = 0. (3.37)

We use time-dependent perturbation theory to determine the coefficients C(l)(t)

and C(2)(t). Equating terms first order in the nonlinear interaction coefficient in

equation (3.34), we obtain

( 1) (t) = k) V- k  'kk,k,,ei(wk - k '
k")t (3.38)

Integrating this equation over time, we obtain

C2) - 21 (0) Vkqqi(t')dt', (3.39)
k q'q"

where q' and q" are dummy indices, and we have defined

Vkq'q"(t) = Vkqqe -- )t. (3.40)
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The coefficients C(l)(t) and C(),(t) may be determined in an analogous manner. We

find

(3.41)

(3.42)

21 /oC!'~P , t~ -('d~C , )(C),, t Vkr,,,,.(t')dt',

kC - 2= 1:C ) n
C( t) - 2 , C ( )  Vk,1,(t")dt"l

2 1 
I

%/
i

where r', r", s', and s" are dummy indices, and we have defined

,O,,,1,,,(t) = Vk"s's"' -"ei(w-w "),wk,)t and Vkrr,,.(t) = Vkir,,* ei(W r Pwri-WkA )t (3.43)

Equating terms in equation (3.34) with second order dependence on the nonlinear

interaction coefficient, we find

2 c(t) k= , + ,l) (t)C O)}Vkk'k"(t) (3.44)

Inserting equations (3.41) and (3.42) into equation (3.44), and integrating over time

from t = 0 to t, we obtain

C2)(t)
1

4w2
k k'k"

Wk' r"

t Ck(°) E ( )) ,,t
58"

I

c "'r ,, C o) ,, * (t')dt' } Vk'k(t)dt. (3.45)

The right hand side of equation (3.32) can be simplified by application of the

random phase approximation. To second order, we find

SckC( > -< Ck (0) C (0) >=< k (t)C-(1) (t) >

+ < C(2)(t)C (°) > + < C°c(O)(t) >
k k k M (3.46)

where we have used the random phase approximation to eliminate < C O) (t)C(1)(t) >

and < Cl)(t)C2(0)(t) >. The first term on the right hand side of equation (3.46) may

be written

1 ' ,(o)C(o)C *(0o)C o)
k k'k" q'q"

x [It kkk(t')dt ] [It o*qtq,(t")dt".
Vrkk 0kq

(3.47)
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The amplitude factor in the above equation may be written

S k" >< (0)

S f(O)C ,() >< 0() c*()

S< k' (O)C >< k )C (o) >

k Ijc k)2C Ik2(k'q'8tk"q" + bk'q"k"q').

Inserting this result into equation (3.47), we obtain

(< kl)( *(1) >= -1 () 2 (0) 2

k k'k"

x [ Vkk'k"(t')t'] [t Vk*' (t")dt"+ Vkk"k, (t")dt" .

Noting that Vkk'k" = Vkk"k', this becomes

< C(l) C(t) >= '"2 (0) 2
k'k" kkik" (t)' ) dVkkik,,((" )dt3.

(3.50)
To calculate < C(2) ( (0) > in equation (3.46), we use the expression for C(2) in

equation (3.45). This leads to

< 2)(t)C*() 1

k k'k"
k() (0) 0()*) (0)

+ 7 < (k) ) (0) *(0)> t krr* (t')dt'}Vikk,,(t)dt.
k ' ri'r" 0o

The expectation values of the amplitude coefficients are given by

I0Vk,,s,8,,* (t")dt"

(3.51)

(3.52)

(3.53)

" 0(0)0(0)0*(0)Ck () > = I C (0)o 12 1 C(O) 012~
ckIO '() () (0) k) bks ) 2 's",

< c 'c0(o)C *(( ) >= IC0)12kr' IC 1k"T"
,-.k "o r(o, .-r/ ko ,kr, V(o)r

Inserting equations (3.52) and (3.53) into equation (3.51), we obtain

< k 2) (t)c 
(0) 1

It{ I7
k" Vk"kk* (t")dt" +

w . ) I C k l) t k'kk*.(ti)dt'1}Vkk'k"(t)dt.
Wk' 0

(3.54)
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%1'J - k " l ,-'q l q .

I I' 10 Wi

kC(O) 2 (0) 2
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The derivation of < C(o)(t)C*(2 ) > in equation (3.46) is similar to the derivation of

equation (3.54). We obtain

< CO) (t)Ck(2)>= V 4W0) 2 (0)2

I lc () 1

w1" , fot(O V£' fI" (0 t'dt }¢k' k" ( t)dt"

Vk,,kk,, (t")dt" +

(3.55)

Consider the integral

I= Vkkk"(t')dt' = Vkkk 2 -( '")dt' (3.56)

Performing the elementary integral over t' in equation (3.56) and applying several

trigonometric identities we obtain

= sVk,k,, n2[(wk w k' - Wk")(t - to)/2] (357)
kWk - WkI - Wki")

Equation (3.56) may be reduced further in in the limit of large t by application of

the identity

sin2 [(wk - Wk' - Wk")(t - to)/2]

(Wk - ' - k')2
-+ 2w(t - to)6(wk - Wk' - Wk') for t --+ 00 (3.58)

which yields

I = IVkk'kl" 122(t - to)S(Wk - Wk - Wk') for t -+ oo.

Symmetry arguments can be used to show that

Vkk'k" Vk'kk",* Vk"kk'*

Wk WkI Wk"

Using equations (3.59) and (3.60), and the identities

iKCO) 2 2Ek °

k 2
Wke

IC (0) I2 2-  o)
k" '

Wk'

the results in equations (3.50), (3.54), and (3.55 ) can be reduced to the forms

<C) (t) C1(t) >= z
Wk k'k

I Vkk'k" 1 2
(WkWk'Wk") 2

XWkE 7)E(°)(t - to) 5 (wk - Wk' - Wk"),
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(3.60)

=0) 2 E(O)
Wk"I

(3.61)

(3.62)



< C2(t)£ Y I>= Vkk'k" 12
k 'k" (WkWk'Wk"2

S[Wt ,k)El) + L )E,O)] (t - to)6( k - wk - Wk),

< O) t (2) |>= 2 : IVkk'k" 21
W 3'kt ( (k Z ( k' k" ) 2

x [w oEO)E(o)
X [ k . k '

+ WkIE )E (, (t - o) -- ' - Wk,)

where we have taken the limit t --+ oo. Substituting the right hand side of equation

(3.46) into equation (3.32), using the above expressions for the expectation values,

dividing the resulting expression by (t -to), and taking the limit of t -- oo, we obtain

finally the kinetic equation

0 2 IVkk'k" 12
< Ek(t) >= Vkkk 2

Wk k'k" (Wk Wk' Wk" )

xW kE( )E(O) + WkEk, + WkIO)+ IWEO)E} 6(wk - kI - Ik").k' klckr I" k 'lC klTIE' C -/ \I -WkI-WIII (3.65)

More explicitly, the kinetic equation for the rate of change of energy for the modes

(k = n, 1, -1 < m < 1) can be written

=-(l

-m

< Enim(t) >=
m=-l

l' l")

m' m"

2r IVnrl,n' ,n//"l 2

LO3 nI i I 1I' 1 m I , Wnl nl' In"l" ]

M -6(Wmn W m m" "- Wnil' - Wnrl

(3.66)fl 1Efl'j En0  (0) m n'l'm ' 5{ , Efo) * o),,E m E Io , , ,, E m mo)

where we have used equation (3.35).

For a spherically symmetric Sun we have the simplifications

WonI -= Wn1t Wll = Wn', Wn"1 = Wn"I'l

E(O _ E )+ 1
ntm - 21 + 1' 21' + 1' 21" + 1'

(3.67)

(3.68)

so that the left hand side of equation (3.66) becomes

0=-I< Entm(t) >= S< En(t) >. (3.69)

157

(3.63)

(3.64)

E(O)
(l) f



Further, the azimuthal quantum number dependence on the right hand side of equa-

tion (3.66) separates and may be written

I .N (3.70)
m m

t 
m

t  
-m m

I 
m" -- m m' m

II

This summation may be vastly simplified by application of the orthogonality property

of the Wigner 3-j symbols from equation (3.7.8) of Edmonds (1960). Rewriting that

equation in terms of our notation, we obtain

EE 1 If I/ i I// 6rr1 1mm ... (111111(3.71)
m m' m -m m m' m 21 (3.71) 1

where b(ll'l") = 1 if the three harmonic degrees 1, 1', and 1", satisfy the triangle

inequalities given in equation (3.36) and is zero otherwise. Using this result to simplify

equation (3.70), we obtain

_ I' l" ) 1 I ' l" ) 1
= ) 2 1 1 = 1. (3.72)

m mm -m m m -m m/ m" m=-I 21 + 1

Using equations (3.68), (3.69), and (3.72), the kinetic equation in equation (3.66) can

be written

0 1 2ir V~,n,ni 12-,
< Eni (t) >= 1 2 , , n ) 2 b(win - wnllq - Wn"l")

8121 + 1 unt ni ni I t III GnIL o satintil )

where the g(jl, j2) are weight functions are analogous to statistical weights and are

given by
1 1

g(jl,1j2)= 2 * 2 (3.74)
2j, + 1 2j2 + 1

c) Determination of the Frequency Shift

We show in this section that three mode coupling can shift the frequency of a

given mode. A differential equation governing the time rate of the change of the

phase of a mode due to nonlinear interactions with other modes can be derived by
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combining the dynamical equation and kinetic equation. The part of the phase that

varies linearly in time is associated with the frequency shift.

The amplitude coefficient Ck(t) can be written

Ck(t)= Ck(t) exp i k (t) (3.75)

where

ck(t) - (0) + 0(1)(t) + 0(2)(t). (3.76)

The phase of the mode in the absence of nonlinear interactions is given by 0(°) and

the superscripts (1) and (2) in equation (3.76) denote the order of the dependence

on the nonlinear interaction coefficient Vkk'k". The phase is real-valued and therefore

Ok = O$. With the aid of equation (3.75), the dynamical equation as given by equation

(3.34) can be written

ICk eik(t)+ ICk Iik (t)eik(t) 2w Z Vkkk"Ck,(t)Ck,,(t) exp -i(wk -wk ' - Lk '")t (3.77)
k k'k"

From the kinetic equation (see eq. 3.33), we have

Ek
ICk(t)I = WI.k (3.78)

Substituting equation (3.78) into equation (3.77) and solving for qk(t), we obtain

k(t) = Ek Im(Vkk k)(t)k k, (t)-  ))) (3.79)
wICk(t)j ICk (t) 2 k'k"

where Aw = wk - k' - Wk. In deriving equation (3.79) we used the result from §IV

that Vkk'k", is purely imaginary i.e., Vkk'k" = ilm(Vkk'k,,). Since the phase kk(t) is

real, the imaginary components of equation (3.79) must sum to zero. Using this fact,

we can obtain the expression for qk(t) by taking the real part of the right hand side

of equation (3.79):

k (t) -= 2 1 - Im(Vkk'k") Tre {Ck(t)Ck,, (t)e-'(At+k'())j}. (3.80)

Retaining terms to first order in the nonlinear interaction coefficient on the right hand

of equation (3.80), and using equation (3.61), we obtain the first order expression for
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dk(t):

k E(1) = k Im(Vklk,,) E~o)EO81)
k'k" WkWkIWk' 2Ek

Equation (3.81) can be integrated to yield

1 Im(Vkk'k") I') Ek'( )

' k L k' k" 2E(0)
x [sin(Awt + ~(O) _ o) _ ) - sin(k o0 ) - €ko) - 0(o))]. (3.82)

We note that < (l)(t) >, the expectation value over time of (l')(t) in equation (3.81)

vanishes. Therefore, to calculate the frequency shift, we must retain terms to second

order on the right hand side of equation (3.80):

€(2) (t)=  
1 1

k2w 2c IkI -" Im(Vkkk,,)2 k 1k O) " k,'-,
X Re [{ [(C (t) '1 + 0( c)(t)Cr(0]-i(AWt+ 0()) (3.83)

where Aw = wk - Wk' - Wk. We can perform the integrations in equations (3.41) and

(3.42) to obtain

1 e ( ',  - y'- k ')t  -1]
k - 2, E C' )Vk''r"*i , (3.84)

2[k rr (Wr' - Wr" - Wk')

1 [ei(* ' -""' w- I ,)t - 1]

2w,, = i(w - S, - W' (3.85)

Substituting equations (3.84) and (3.85) into equation (3.83), and taking the temporal

expectation value of the resulting quantity, we obtain

< ~2)(t)>= O) Im(Vkk'k") x Re {2wkI Ck ) I k'k"

C(1) 2,, ) m(V' ' < ei[(wl-k)+(k'-1')]t > (0)
Ok ' 20),) -ik +

s21 3131 W.S - ws8" - WkII

0(O)1 < eRWr,- k) >
k, ' C '()  krr*)< eI [(W,)+(Wk- ,)l)t >e_ } (3.86)

2w k ' rWrr Ir - WrI - WkI

where the temporal expectation values of several of the terms have vanished. Noting

that

< ei[(WIwk)+(wkII,
-wrI)t > = r'kbr"k", (3.87)

< ei[(w,,-wk)+(wk1w11'' )l
t > -= 

5 kSkk's" (3.88)
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we obtain

< ( > 1 1 Im(Vkk'k) 

iRe f0(0) 1 (0)C*() Im(Vk"kk,*) (o)
R{kf 2 k k' e

2Wkj (Wk - Wk' - WkI)

(0) 1 (0)*( ) Im(Vk'kk" c()*)

2W)k (Wk - W k" - kl)

This result can be reduced to the form

1
2 wk24 k'k"c

(3.89)

Im(Vkk'k")

(Wk - Wk' - WkI)

(3.90)
I Ck(01 12 (0)O)12 -- 3

X ie'22 Im (Vklkk+ I*) ' 2wk" k'

Using the previously derived results IC ()12 = 2E(o) C2 k1CO) 12 = 2Eh( W2 Vkkk,,* =
-1 -

Wk' k 1 k'k", and Vkkk' Wk" k Vkk'k", the expression in equation (3.90) simplifies

to the form

1 IVkk'k" 12

2w kk ( k - k' - WkI")
WkW k,)) + [ k'E)] (.3.91)( ,, ,)

We can use equations (3.35), (3.67), and (3.68) to rewrite this result in the form

1 IVl,n'tl,n1,/ 12  (
2w4 nilrMntum ( nl - Wn'll - Wnlt)

-

-M

2

m' "

(w i,,tiLni',)2]
21' + 1 21" + 1

The summation over the azimuthal orders can be elimated by application of the

orthogonality relation for 3-j symbols in equation (3.71), we obtain

=() V Vn ,,, ' 12

n'l',n"lii(&n -
t ~,n

)' + 1
211+1

E(O)
nl"

+ WI +
21" + 1 (3.93)

Equation (3.93) is our final expression for the frequency shift of mode (n, 1). It

should be understood in the following sense. The resonance function of a mode in
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the time domain has the dependence exp[i(wkt + Ok)]. The phase qk can be expanded

in a Taylor series; the term which varies linearly in time leads to the dependence

exp[i(wk + qk)t] and this yields the frequency shift.

IV. DERIVATION OF THE NONLINEAR INTERACTION COEFFICIENT

a) Equations of Motion of the Quiescent State

The mass continuity equation, the momentum equation, the conservation of energy

equation, and Poisson's equation are given respectively by

op + V (pv) = 0 (3.94)

Dv VP
D - V4 (3.95)
Dt p

DS
pT = entropy production terms (3.96)

Dt

V 2 = 47rGp, (3.97)

where P, T, p, q, S, and v are respectivley, the pressure, temperature, density,

gravitational potential, specific entropy, and velocity. The material time derivative

appearing in equations (3.95) and (3.96) is given by

D dD = 0 + v - V (3.98)
Dt at

Equations (3.94)- (3.97) must be supplemented by an equation of state which is given

by

P = P(S, p) (3.99)

and for our purposes it need not take an explicit form. We now assume that the

system is adiabatic so that entropy is conserved along streamlines and the equation

(3.96) drops out.

b) The Perturbed Equation of Motion

To discover how the system described by (3.94)- (3.97) responds to a seismic dis-

turbance we need to perturb the momentum equation (3.95), which in turn requires

162



perturbations in p, 0, and P. These are obtained by perturbing equations (3.94),

(3.97), and (3.99) respectively.

We adopt the perturbation expansions

p(r, t) = po(r) + Sip(r, t) + 62p(r,t)

P(r, t) = Po(r) + SiP(r, t) + 52P(r, t)

(r, t) = qo(r) + 651 (r, t) + 52 (r, t) (3.100)

where the notation S1Q and 52Q denotes, respectively, perturbations of the quantity

Q to first and second order in the displacement field of the disturbance.

In the linearized theory, the displacement eigenfunction can be written

s(r, t) = s(r)ei Wt (3.101)

The momentum equation to second order in s can be written:

v -Vv + 1 +
PO

+- + 2 V[Po + 1P 5 2P] + V[0o0 + 1 + 620 = 0.

(3.102)

Taking the time derivative o of this equation and separating the first and second

order contributions, we obtain

atv + CV + n(s, v) = 0

where

(3.103)

C(v) = 1 VaP
Po(r) at

VPo as1p
p2(r) ot

and

nA(s, v) = [v Vv]8i
1 a 2P+ p V

VS1P aS1p
p2(r) at

VP aS2p

p (r) at
5 1P

p02
PO

Va7at
as2+ V at

t(3.105)

(3.105)

c) Calculation of First and Second Order quantities

To determine the Eulerian perturbations to p and P, it is convenient to use the

relationship

A =+s V (3.106)
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where A and 6 are, respectively, the Lagrangian and Eulerian change operators. It is

easy to show that

Ap = -pV -s (3.107)

AP = -PF 1 V -s (3.108)

where Fr is the first adiabatic exponent. Equation (3.108) follows from the equation

of state and the assumption that the modes are adiabatic. The Eulerian perturbation

of 0 is the solution of the perturbed Poisson equation

V2 6S = 4irGbp. (3.109)

and is given by

r - r) p(r')s(r') 1bo = -G I Jr G r dr'=G ir-ri .dS-GIp(r')s(r').V' r-r, d r' (3.110)

where we have used the divergence theorem. Combining equation (3.106 ) with equa-

tions (3.107) and (3.108), we obtain the first order Eulerian perturbations to p and

P:

1p = -pV s - s -Vp, (3.111)

61P = -PF 1 V - s - s - VP. (3.112)

We may use the method of successive approximations to show that

- = - V. (V (pos)v) (3.113)

From equation (3.112) we may deduce

2P = -S1(PrF)V s -s. VS1P (3.114)

where

51(PrF) = Pbari + r 15bP. (3.115)

To derive Sr1 we take IF = Fi(p,T). We have chosen p and T as the independent

variables since derivatives of F1 with respect to p and T are available from Dappen

(1988). The first variation of F, is given by

b,(r,) a= - 1p + -r, ]oT. (3.116)
Op )T OT)
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To determine b1T we use

P P
Au = #Ap + TAS = p = c,AT (3.117)

P P2

where u is the internal energy of the gas per unit mass, c, is the specific heat at con-

stant volume, and where we have assumed the oscillations are adiabatic. Substituting

equation (3.107) into equation (3.117), and solving for AT, we obtain

PV-s
AT = (3.118)

pcv

The lagrangian change in temperature is given by

dT Ts, dlnT
AT = 61T + s - VT = 61T + s, = 61T - (3.119)

dr H, dlnP

where Hp = P/(pg) is the pressure scale height. Combining equations (3.118) and

(3.119), we obtain
PV s Ts, dlnT

61T - - + (3.120)
pc, H, dlnP

so that equation (3.116) becomes

S pcS dlnP=(F[)= P, P +HpTsr dinT (3.121)

The calculation of Vkk'k,, requires the explicit form of various quantities in terms

of the radial and angular eigenfunctions. These can be calculated using the formalism

described in Appendix 2B The angular functions can be reduced to functions of the

generalized spherical harmonics YNm, where N is the generalized index (see Phinney

and Burridge 1973). The mode displacement is given by

Sk () )1 1yomr+H i (r) ((-lk )S (r) (-lm Im)$ (3.122)

where

s!k)(r) = U, and s )(r) = V. (3.123)

The divergence of mode k is given by

V Sk = div(k)(r)y ylom (3.124)
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div(k)(r) = & + F,

2F(r) U - 1(1 + 1)V
F(r) = r

(21+ 1)1/2

(3.125)

(3.126)

(3.127)

The first order perturbations to the thermodynamic variables P, p, and IF are

given by

6lP(Sk) = 81P(k)(r)y1 O m ,

S1p(Sk) = lp(k)(r)~lylOm,

bi 1 = S1Fjk)(r)7,YTOm.

(3.128)

(3.129)

(3.130)

= [-PF,(jU + F) + Upg],

= -[p(U + F) + Up],

r,
aP .)T

(3.131)

(3.132)

(p(U + F) + Up)

(Far, dlnT P( + F))].
+ )p dlnP pc, F)) (3.133)

Using the linearized equation of motion, we can show that the gradient of 61P is

given by

= (VS1P)(k) (r)tYlomi + (V 1 P)(k) Y1IO

- i(V 1P) (I 2 -2 m ±ym )O

(VlP)k)(r) = [pUw2 + pg(U + F) + gU3 - pI]

(V 1P) ()(r) = [pwLV - r-lpl]

The gradient of the perturbed gravitational potential 01 is given by

V 1 (k) = =1 miYo°m +r-ll- 1 -(y _lYlm)o-ir--1 m +1 l m).

N/2-Z
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1 p(k)(r)

6p(k) (r)

Eir(k)

VS1P

where

(y-lm - ylm) 0

(3.134)

(3.135)

(3.136)

(3.137)



e) The Nonlinear Interaction Coefficient

The nonlinear interaction coefficient Vkk'k" is a sum of six terms given by

6

Vkk'k" = Z 'VJ)k,, (3.138)
i=j

where

k')k"o 0  ) [Vk' * VVk" + Vk" Vk] * Sd 3 r

R0

() 

( 

PO (r)d

+ Wk' 1P(Sk" S) { •}dr (3.141)

YVk 'ki R0 908 k" POSkSk") + k'V - (V -POSkt)Sk) ]d3r

= Lk"1p OSk Vsk s +S k S r) (4k,, Gp -

+ Riwk p1k,) Vk . sr)* + skr)*S (4Gp - )d r (3.142)
0 ( )

Re 1

Vkk)k,, = -i 1 R 1 k1p(Sk V1 P(Sk"

+ wk'61P(Sk")SP(Ski)} s*d3 r (3.143),k ,,'k = k" R [ kV S (POk,),) + V. (V. (PO)sk)d

-- ik R V POSko")Sk' V 1  odr)d3 (3.144)

To calculate the six integrals contributing to the nonlienar interaction coefficient,

we repeatedly applied the divergence theorem. In each instance we discarded the

surface integrals resulting from such operations. We find that Vkk'k" can be written

6 1 i' i"

in , , th e (fr,,mlP( ,)VlP( ,)-Vkk'k" m [IK, ,,,, + Kj,,*d3 ,]. (3.145)
31 m(3.144)
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Comparing this with equation (3.35), we find that the reduced matrix element is given

Vnln1,nnW,,, nl =n R 1(j)
j=1

(3.146)

The terms K ( j ) ,,ti,, and K (j ) ,n, in equation (3.145) are independent of the

azimuthal orders of the modes, and are given by

K(1)nl,nIlI,nI'" = -(WkiWk + Wk"Wki) R po(r)R(1) (r)r2dr

+ JoR po(r)H(1)(r)rdr}, (3.147)

= i(wk + WkII)

K (3)
Kn,nl'"

K(4)
nI,nql,,nIl"

)+(k' sk")(V 1 p) k') (r)] BJ1,,r2dr

+ i(Wk' + W) Rj div(k)(r)s( )(r)(VS1P)') (r)B(1)+r2dr(3.148)

- iOk { {p (k') (r) (V H (r)]B,

(3.149)- () (k') (()s(k) ( ) V 1P(0k") (r)B +, }r 2 dr,

R0 {[ 16 (k') ( rSk) k")(r)(4rGp - 2gr-1')

-+ 1p(k') (r)g s( )(r)k" ) (rk)( +),)

- k6i p ((k') ) (r)grl ) (+) (r)Bjj ( 1)}r 2dr,

- W O, WkW I(k"k

= R {S , ) (k') (r) (k) (r)SkV)(r)BO

- r -816 (k') (0) ()¢k)( )B,2dr,

(3.150)

(3.151)

(3.152)

(3.153)= U'UU "B O), + U'VB j11j
1'' "

VVI/Vif= [U"UV' - V"UV']B3i - v v [1(1 + 1) - l"(l" + 1) -l'(l' +1)]Bit1),
r

and it is understood that wk = wri, WkI = Wr'l', and Wk, = Wn"r". We have defined

168

where

R(1)(r)

H()(r)

Ki(2)
Knl,nill,n/'" div( k ) (r)div(k")(rP)[PS1 (k')(r)

K(6)Knl,n 1,n'"



S= (1(1 + 1)/2)1/2. The BI coefficients are defined

(N) =1 (1ttl + N)!(I + N)! '. (3.155)
I 2'- N)! (1- N)! -N 0N (3.155)

A useful identity which the B,,) coefficients satisfy is given by equation (A43) of

Woodhouse (1980):

B,,,, = -[l'(l' + 1) + 1(1 + 1) - l"(l" + 1)]B0,. (3.156)
2

We can replace the B(')+ coefficients in Vkk'k" with B (O)+ by using equation (3.156).

This represents a simplification since we then need only compute Wigner 3-j symbols

with zeroes on the bottom row. An accurate and efficient asymptotic method for

calculating such symbols is given in Appendix 3A. Should the need arise to use the

dynamical equation rather than the kinetic equation, the more general form of the

Wigner 3-j symbols must be calculated. An algorithm for this is given in Appendix

2C.

APPENDIX 3A

CALCULATION OF WIGNER 3-j SYMBOLS

The practical implementation of the theory described in this paper requires an

efficient method to calculate the Wigner 3-j of the form

' "0 (3A.1)

which enters into the kinetic equation. It is possible to calculate this particular symbol

by application of equation (3.7.17) in Edmonds (1960). He finds

1 1' 1" L/2 (L - 21)!(L - 21')!(L - 21")!] 1

0 0 0 (L + 1)! )! )! l")!
(3A.2)

for L even where L = 1 + 1' + l", and is zero otherwise. There are combinations of

the harmonic degrees 1, 1', and l" which could lead to large factorials which do not
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conveniently cancel. In numerical calculations, this prescription, though exact, could

lead to great computational expense.

There are several asymptotic approaches to evaluating equation (3A.1). Each

method has restrictions on the range of harmonic degrees 1, 1', and 1". From Brussaard

and Tolhoek (1958) we have

I l' 1" 21"1/2( _ 1)(1+1+")/21(_(14+ 1 + 1114)2(12+ l12102 l"t212)-1/4

0 0 0 [r(21"+ 1)]1/2

(3A.3)

This approximation is valid only for large values of 1, 1', 1". It is derived by applying

Stirling's approximation to Racah's closed expression for Wigner 3-j symbols.

Schulten and Gordon (1975) rewrite Wigner 3-j symbol recursion relationships in

terms of difference equations which they then convert to differential equations. They

solve the latter using the WKBJ method and obtain asymptotic expression for the

symbols in terms of well known functions. They obtain uniform and non uniform

solutions in the classical and classically forbidden domains. Their results simplify

considerably when the azimuthal orders m, m', and m" vanish. For given I and 1',

the classical domain of l" lies in the range

1 1 1 1 1 1 1 1
[(1+ 1)2 + (+ 2 -2(+ )(+ 1)] 1/2< " < [(+ )2 +('+ 2 +2(1+ )('+ 1)]1/2

2 2 2 2 2 2 2 2
(3A.4)

The full quantum mechanical domain is

1 - 1' - 1/2 < l" < I + l' + 1/2. (3A.5)

The two nonclassical domains are

12 1 1 1 11
I-l'll <  1" < [(1+ )2  + )2 -2(1+ )(1' + )]1/ 2, (3A.6)

2 2 2 2 2
1 1 1 1 1

[(1+ )2 + (1' + )2 + 2(1 + -)(l' + 1)]1/2 < < l+ + . (3A.7)2 2 2 2 2

Using the results in Schulten and Gordon (1975), we have derived three expressions

for the Wigner 3-j symbol in equation (3A.1). The first solution is nonuniform and
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is valid in the classical domain:

1 l' l" (-1) 3 ( + '+T'  )
= ) (3A.8)

0 0 0 (27rA) 1/ 2

where

A = (1 [(+,l'+ + )(l' + 1(" - 1+ -)("+1 - ' + ( + l' - l" + -1/2 (3A.9)

The second solution is uniformly valid in the classical domain and is given by

1(-)11+ 1-//* = al6 Bi(-a 2/3) (3A.10)
0 0 0 (2A)1/Bi(-a2  3 )

where
3ii 3

a = --(1 + 1' + " + 3), (3A.11)
4 2

and the function Bi is the complement of the Airy function Ai. The third solution is

uniformly valid in the classically forbidden region and is given by

1 l' l" 1/6S(2A) l/(-1) - Bi(a 2/ 3 ) (3A.12)
0 0 0 (2A) 1/2

We have compared the three solutions obtained from Schulten and Gordon (1975),

and the Brussaard and Tolhoek (1958) solution to the exact values for a wide range

of harmonic degrees. Theoretically, the nonuniform solution in the classical domain

should be accurate only for very large harmonic degrees. However, we have found

numerically that it is an accurate approximation, even for small harmonic degrees.

Therefore, we recommend this solution be used in practice.
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CHAPTER 4

HELIOSEISMOLOGICAL APPLICATIONS OF RAYLEIGH'S PRINCIPLE

In the deep discovery of the Subterranean world, a shallow part would

satisfie some enquirers; who, if two or three yards were open about the

surface, would not care to rake the bowels of Potosi, and regions towards

the Centre.

Urn Burial (1658)

Sir Thomas Browne
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HELIOSEISMOLOGICAL APPLICATIONS OF RAYLEIGH'S

PRINCIPLE

EUGENE M. LAVELY

Massachusetts Institute of Technology, Department of Earth, Atmospheric, and

Planetary Sciences

ABSTRACT

The degenerate frequencies of solar p modes are integral measures of the radial

structure of the Sun. We apply Rayleigh's principle to derive sensitivity kernels

that relate frequency perturbations Sw to small model perturbations Sm(r). The

mechanical properties of the oscillations (their frequencies and eigenfunctions) depend

on two independent model parameters. Thus, the perturbations relations are of the

form Sw = f[K, (r)6m, (r) + K, (r)6m, (r)]r 2dr. These relations can be used as the

basis for inverse problems in which model parameter perturbations are adjusted to

minimize the differences between observed and predicted frequencies. Possible model

parameters m(r) include the sound speed c(r), the density p(r), the first adiabatic

exponent rl(r), the adiabatic bulk modulus ic(r) and the stratification parameter

We show q(r) is sensitive to the chemical and thermal stratification of a star; it is

closely related to the Brunt-Vaisail frequency. A fluid parcel of material in a depth

range in which 7r = 1, is neutrally stable. The parcel is stable or unstable according to

whether r is greater or lesser than one. Several important features of stellar structure

that depend on the predictions of mixing-length theory could be examined provided

the profile of y(r) is known. We show that knowledge of 7 is equivalent to knowledge

of the Ledoux instability criteria. An asymptotically valid relationship (in the limits

of low and high convective efficiency) is derived which relates y(r) to the mixing

length in Bohm-Vitense's mixing length theory.

The variable F1 is sensitive to the He, He+, and He++ fractions in the first and

second Helium ionization zones. Application of inverse theory to determine the radial
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profile of IF in these ionization zones could be used to place a constraint on the Helium

abundance of the Sun.

Modal frequencies depend nonlinearly on the thermodynamic model parameters

of the Sun. Therefore, inferring the Sun's radial structure will require an iterative

sequence of forward modeling calculations and nonlinear inversions in which the com-

position parameters and mixing length ratio are adjusted to better match the observed

frequencies. The iterative sequence is continued until a chi-squared criteria is satisfied

(the theoretical normal mode frequencies match the observed frequencies to within

errors in the data).

I. INTRODUCTION

Helioseismology can be used to probe the internal structure of the Sun. The

degenerate frequencies of solar p modes depend on the spherically averaged radial

profile of the thermodynamic state variables. It is of interest to infer the variation

of these variables since such information could, for example, (1) be used to constrain

the thermal and chemical stratification of the Sun, (2) be used to constrain free

parameters in stellar evolution theory i.e., the Helium abundance and the entropy

jump from the photosphere to the adiabatic part of the convection zone (e.g. Ulrich

and Rhodes 1977), and (3) be used as a basis to test the physics of the equation of

state (e.g. Christensen-Dalsgaard et. al. 1988).

The most uncertain predictions of stellar structure theory are in the subpho-

tospheric region, where the assumptions of mixing length theory break down, and

where p modes attain peak amplitudes. The frequencies of modes that are sensitive

to structure in deeper regions depend also on the subphotospheric structure. Thus,

it is important to obtain a detailed model of this region to make corrections to all

frequencies.

The frequencies of the adiabatic oscillations of a star can be calculated given

the radial profile of two independent thermodynamic variables. We calculate the

perturbation in frequency due to perturbations of several pairs of thermodynamic
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variables including (p, K), (c, K), (c, p), (p, 1l), (c, r 1), (c, 77), and (p, ), where p,

n, c, F1, and 77 denote, respectively, the density, adiabatic bulk modulus, adiabatic

sound speed, first adiabatic exponent, and stratification parameter. The quantities K

and F1 are defined by the relation

1 1 OVl' 11- - ( 
(4.1)

K V aPsi Pr'

where P is the pressure, V is the specific volume, and the derivative is taken at

constant entropy s and mean molecular weight y. The adiabatic sound speed is given

by

2 PF 1- (4.2)
P P

The stratification parameter is given by r = -F 1Hyp-'() where H, is the pressure

scale height (see eq. 4.23) and is discussed in detail in §II. The parameter i is sensitive

to departures from chemical homogeneity and thermal adiabaticity. In particular,

il can be related to V, (see eq. 4.11) and the sub or superadiabatic temperature

gradient V - Vad. For a typical solar model, the parameter 71 varies between 0 and 1

in the superadiabatic region, is a nearly constant value very slightly less than 1 in the

adiabatic part of the convection zone, and varies between 1 and 2 in the subadiabatic

radiation zone and chemically stratified core. The inverse problem for any of the

model parameter pairs listed above can be posed as a nonlinear optimization problem.

Inversions for these variables will be the subject of future work. We only consider

theoretical issues in this paper. The constraint that the mass of the Sun remain

unchanged can be imposed if p is one of the variables being inverted for. Should we

have a priori knowledge of the entropy jump from the photosphere to the adiabatic

part of the convection zone, we can use the variable q to impose the constraint that

the entropy jump remain unchanged. The first adiabatic exponent is sensitive to the

degree of ionization in the ionization zones. Hydrogen is almost completely ionized at

the depth of the HeI ionization zone so that F1 in this depth range is sensitive to the

Helium abundance. Thus, the latter can be constrained by a helioseismic inversion for

IF. To obtain a unique solution for any of these variables and to stabilize the inversion,
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a priori information must be introduced. The objective function to be minimized is

a chi-squared measure of data misfit, and model-roughness (for example). Various

non-linear iterative methods can be used including variable metric methods, and the

Levenberg-Marquardt method. A data set of 2097 degenerate eigenfrequencies of

solar p modes is available (see Duvall et. al. 1988; Libbrecht and Kaufman 1988).

The outline of the paper is as follows. In §II we discuss the physical significance

of the stratification parameter. In §III we apply Rayleigh's principle to derive vari-

ous perturbation equations. In §IV we establish an asymptotic connection between

the thermal stratification predicted by mixing length theory, and the stratification

parameter.

II. ENTROPY AND DENSITY STRATIFICATION

In the following we derive expressions for the entropy and density stratification of

the Sun in which we explicitly account for departures from chemical homogeneity and

thermal adiabaticity. The well known Bullen stratification parameter from geophysics

(see Bullen 1967) is introduced. We show that it may be used as a measure of

convective instability, and that it is equivalent to the Ledoux instability criteria. The

value of this parameter from the perspective of helioseismology is that it may be

inverted for from the solar oscillation frequencies. Masters (1979) has inverted for the

terrestrial profile of r to determine the stratification of the Earth's mantle and core.

For a chemically homogeneous system, a thermodynamic state variable depends

only on two independent state variables. However, if the system is a multi-component

system, or if the system is ionizing, then a general variation of a state variable will

depend in addition on changes in mass fractions of the various components. In general,

four thermodynamic state variables are required, the ionic molecular weight y,, the

electronic molecular weight pe, and any two additional state variables vi and v2. The

mean molecular weight per ion is given by

1 X1 = X, 
(4.3)
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where Xi and Ai are the mass fraction and the atomic weight of atomic species i.

The electronic molecular weight is given by

1 E

e [to
(4.4)

where E is the total number of free electrons. The total molecular weight y is given

by
1 1 11 1 1u U

(4.5)

It follows that dy is given by

dp = dpe + Ldpo.
ie [o

(4.6)

In general, a thermodynamic state variable F has dependence F(vl, v 2 , e, o). How-

ever, in certain idealized circumstances, e.g., in nondegenerate regimes where there

is full ionization, or where the ideal equation of state applies, F(vlv 2, v2/, o) may be

simplified to F(vi, v2, p). Let the specific entropy s be a function of temperature T,

pressure P, and mean molecular weight [ so that s = s(T, P, y). It follows that the

radial stratification of the specific entropy is given by

ds (Os dP ( s dT (s d (4.7)

dr \ap T,o Pd1 ur /I P,T

This result can be rewritten in terms of readily calculated quantities introduced below.

The coefficient of thermal expansion is given by

Q= V v 1 (as\ 1 (V VT V dP a tcp sTs

where V is the specific volume i.e. pV = 1. The specific heat at constant pressure c,
is given by

cp=T (
The hydrostatic support relation is given by

The hydrostatic support relation is given by

dP
dr = -Pg

(4.9)

(4.10)
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Inserting equations (4.8), (4.9), and (4.10) into equation (4.7) and using the notation

dlnT ( dlnT dln (4.11)
dlnP' Vad dlnP , dlnP '

and
P

Hp = -, (4.12)
P9

where Hp is the pressure scale height, we obtain

ds c v (s
d= s -c - V. (4.13)dr Hp OP P Hp

The adiabatic temperature gradient Vad is obtained by setting the radial entropy

gradient to zero:
g Q H, 1 s (4.14)

Vad = CP C (2 (4.14)

The prime in Vad denotes the adiabatic gradient in the presence of a gradient in the

mean molecular weight. The gradient can arise where there is an inhomogeneous

mixture (as in the core), or in the hydrogen and helium ionization zones where the

number of free particles can nearly double. It is common in astrophysics to define

the adiabatic gradient for a system in which V, = 0 (e.g., Kippenhahn et.al. 1967).

To be consistent with the notation and usage of Kippenhahn, we define the adiabatic

gradient for such a system to be

gQHp
Vad = QH (4.15)

cp

With these definitions the entropy gradient becomes

ds c, 1
ds- V- V - )P V, (4.16)dr Hp c ( P,

Now consider the radial derivative of the density which we take to be a function

of specific entropy, pressure, and composition i.e. p = p(s, P, y). We obtain

dp _ ,1p) ds + p dP dp d (4.17)
dr 19s dr OP dr pSdr
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Again, we seek to rewrite this in terms of easily calculated quantities. Toward this

end, it proves convenient to use Jacobians to transform thermodynamic derivatives.

Using the identities
0(u, v, w) 8(u, v, w) (r, s, t)
a(x,y, z) (r,s,t) a(x,y,z)

(4.18)

and
(au _(u,y,z) (4.19)

x , (x,y,z)(4.19)

the first thermodynamic derivative in equation (4.17) can be written in the form

(p _ (p, P, y) 8(T, P, y) pTQ (4.20)

-s p, (T, P, y) a(s, P, Ip) c,

where we have used equations (4.8) and (4.9). Substituting equations (4.10), (4.16),

and (4.20) into equation (4.17), and using equation (4.2), we obtain

dp + V - Vad + V 1 (,u . (4.21)
dr c2  H [ [c '\OTP pTQ p sPJ

a) The Stratification Parameter q

The stratification parameter is most naturally introduced by way of the the

Adams-Williamson equation, a well known relation in geophysics. Under the as-

sumption of chemical homogeneity and thermal adiabaticity, the derivative of the

density can be written

(dp dp dP pg(4.22)
dr dP dr c2 '

where the last equality follows from equations (4.10) and (4.21). The stratification

parameter is defined

c dp = -HPFlP-1 (4.2
pg dr dr

where IF is the first adiabatic exponent. The motivation for this definition is that

dp i dp)'4.y=1, if L =  r (4.2
dr dr)

A departure in 7 from the value 1 signifies either chemical or thermal stratificati

or both. Inserting equation (4.21) into equation (4.23) we obtain

S= 1 V - Vad + I- V . (4.2gH c P T, pTQ P SP

3)

4)

on

5)
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b) The Stratification Parameter as an Instability Criteria

Knowledge of y/ is equivalent to knowledge of the Ledoux convective instability

criteria. See Kippenhahn et. al. (1967) for a discussion of the latter. To show this, we

begin by deriving the relationship between r and the Brunt-Viaisala frequency. The

buoyancy restoring force depends on the thermal and chemical stratification. Consider

a small radial displacement ( of a parcel of material in a time small compared to

the diffusion times of heat and matter (the parcel moves with constant entropy and

composition). Equation (4.22) can be used to calculate the density change of such a

parcel

pg
(SP)parcel = (4.26)c2

From equation (4.23), the change in density outside the parcel is

(p)o,,t = -P . (4.27)ci

The restoring force acting on the parcel is given by

2

g[(6p)out - (SP)parcel] = (77 - 1)C. (4.28)

Equating the restoring force to the inertial reaction of the parcel, we obtain

d2 = -- ( - 1)(. (4.29)

This result can be rewritten as

d25dt+ N2  = 0 (4.30)
dt2

where

N 2 = 7( - 1). (4.31)

A fluid parcel oscillates with real frequency N if y > 1. In such a medium, the

stratification is stable. Toroidal motions are allowed (since toroidal displacements

are confined to spherical shells), but large scale poloidal motions are excluded. If y is

less than 1, the stratification is unstable and a perturbation to a material parcel will
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grow with exponential rate N. A medium with = 1 is neutrally stratified; a parcel

of material, if displaced, will remain at its new position. Using equations (4.2) and

(4.10), it follows that N2 may be rewritten as

N 2  g 1 dlnP dlnp]

r Fl dlnr dlnrJ (4.32)

which is the familiar definition of the Brunt-Viiisailai frequency. For chemically ho-

mogeneous, non-ionizing regions of the Sun, the expression for N 2 in equation (4.31)

reduces to

gTQ
N2 (V - Vad). (4.33)Hp

To establish the connection of ri with the Ledoux instability criteria, we return to

the general expression for r in equation (4.25) and rewrite it as

gH, 1 (sI (ap\ 1 O n1 4wr4P
(1 - r) TQ= V - Vd - (4.34)

c2 C p sp S aM, GM, '

where we have used equation (4.10) in the form

GM_
OlnP = r M,r (4.35)

41rr4 P

where OM, = 47rpr 2dr. Using equation (4.34), let us define the critical temperature

gradient V~,(r) by the relation

Vcr - LVad+ + Qas 1 J OM I G = 0. (4.36)
cP p , pTQ 8p aPM, GM =

Since the factor multiplying (1 - y) on the left hand side of equation (4.34) is al-

ways positive, the stratification at radius r is unstable, neutrally stable, or stable,

depending on whether V(r) > V~,(r), V(r) = V~,(r), or V(r) < Vc,(r). According

to Kippenhahn et.al. (1967), the Ledoux convective instability criteria is embodied

by the equation
S- Vad + nT \ lnp 4rr4p (4
Vnp O -lMr GMr (4.37)

To complete the proof that knowledge of r is equivalent to knowldege of the Ledoux

instability criteria, we must show that the thermodynamic derivatives in equations
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(4.36) and (4.37) are equivalent. Substituting the rightmost equality in equation (4.8)

and the first equality in equation (4.9) into equation (4.36), and equating the resulting

expression with equation (4.37), we find that the two criteria are identical if it can

be shown that the identity

OT) [T) (1 s (CT) (a)p 1
- s a a a (4.38)

8p s ( ) 8p SIP

is valid. Since the pressure is taken to be constant in each of the above derivatives, we

drop the p subscript notation. The left hand side of equation (4.38) can be rewritten

(8T) _ (T, p) a(s, Y)

ap P- a(s, )a(,ip)

# T #p p ),v (aT

( p as N T 1
- + ) i

Ts ap s aT s
- a J 17 YUp i) '+} a(4.39)as ap p Ty aT

The right hand side of equation (4.38) can be written

aT as\ ( T ( ap

( T jaT! T aP p ) j
as J T a p 87Tj

= +as\ + ( ( 1
_T (p) (4.40)

Comparing the last equalities in equations (4.39) and (4.40), we find the two criteria

are equivalent if the identity

(aT) (as = (4.41)

is valid. Using the identity

ay ay az)?P/z (1 )O'X )?,y (.2
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(with x = s, y = p, z = T,4 = P), we find that equation (4.41) is indeed correct.

Therefore, the information contained in the stratification parameter is equivalent to

the information contained in the Ledoux instability criteria i.e.,

(OlnT 8lny 4rr4p
< 1 -- V,, - Vad + j p, aM GMr > 0 -+ instability,

\&lnjt p 0M7 GM '

vv=(alnT lnya 4irr4 P

771 Ver - Vad + aT pp M 7 GM =0 - neutral stratification,

(OlnT Olns 4irr4P
>1 - Vcr - Vad + < 0 -+ stability. (4.43)

\fln.ip Mr GM

We have taken care in defining the stratification parameter because it can be inverted

for directly using helioseismology as we show in the next section. The diagnostic

capabilities of such a variable are clearly important.

III. THE FORWARD PROBLEM

In this section, we apply Rayleigh's variational principle to obtain the perturbation

equations for numerous model parameter combinations including the pairs (p, r),

(c, K), (c, p) (p, IF,), (c, IF,), (r, p), and (r, c). The displacement of the p modes can

be written in the form

s(r) = [nUl(r)Y m (0, €) + ,Vl(r)VlY m (O, ¢)]eiwt (4.44)

where nUl(r) and ,V(r) denote respectively the radial and horizontal eigenfunctions

for harmonic degree I and radial order n. The angular frequency of the mode is

denoted by w. The surface gradient operator is given by V 1 = r(V - r. V). The

function Ym is a spherical harmonic of of degree I and azimuthal order m defined

using the convention of Edmonds 1960:

02 " 0r [Y1"'(0, )]*Y (0, 0) sin OdOd = 8 mm' 8 rt (4.45)

where the integration is over the unit sphere. The coordinates (r,0,0) are spherical

polar coordinates (where 0 is colatitude) and r ,, 0 denote unit vectors in the coor-

dinate directions. Henceforth, we drop the subscripts n and 1, in equation (4.44) and
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use instead the notation U = UtI(r)Y m , V = ,V(r)VjY1 m so that

s = Ui + V 1V = sri + sr O + s A

The equation of motion is given by

fijsj - p, s;

where

£ijsj = Vi(PrlF s j ) - (Vjsj)ViP + (Visj)VjP - psjVjVi¢ - pVi1 l

(4.46)

(4.47)

(4.48)

where q1 is the perturbation in gravitational potential due to deismic motions. This

operator can be simplified by introducing the Piola-Kirchoff tensor

Tij(r, 9, ) = PorIajSbij + Podisj - Po~jOkdk (4.49)

The pressure P vanishes at r = R® and therefore

T j(Re, 0, €) = 0. (4.50)

It follows from equations (4.48) and (4.49) that

,ijsj = OjTij - Poi11 - posjOiOjo. (4.51)

To construct the variational principle, we begin by multiplying equation (4.51) by s

and adding and subtracting the term posiOijo to obtain

e ijsj 3 = osTi - Posa i - poss dton + (posii - posit).n

The first term on the right hand side of equation (4.52) can be rewritten

siajTij = aj(Tijsi) - Tijjs i.

(4.52)

(4.53)

The term posidi' 1 in equation (4.52) can be written

Pos8ioi1 = Oi(Posiol) - O1i(Posi)

= (posi ) + 1p1l

"= i(posiol) + 4irG
1

= d;(Posi, + 4 1 ai 1)a 47rG 1 1 4 i i i14xnG
(4.54)
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where the perturbation in density is given by pl = -ij(Posj). Inserting equations

(4.53) and (4.54) into equation (4.52) we obtain

, 1
[Tij ijs, + Posi'0l + PosiAil + Posisjaidjoo + 4Gi 1i1]. (4.55)

The terms in the second set of square brackets are unaffected if s and s' are inter-

changed so that

Lijsj -si 2ij = i-[sTi -siTj+(a 1+Posj) 1( Pos) ]. (4.56)
! 3 47rG 47rG 1

The perturbed Poisson's equation is given by

V 2 1 = - 4 1rGOk(Posk), (4.57)

which implies that

SV - [Vol + 47rpoGs]d3r = 0. (4.58)

Applying the divergence theorem to equation (4.58), we obtain

/[Vo 1 + 4poGs] -dS = 0. (4.59)

By taking the volume integrals of the terms on the right hand side of equation (4.56),

and by applying the divergence theorem, we can show that the volume integral of each

term vanishes by using equations (4.50) and (4.59). It follows that the Lagrangian is

a symmetric operator i.e.,

sijssjd3r = fsiiijsjd3r. (4.60)

Inserting equation (4.49) into equation (4.55), integrating the resulting quantity over

the volume of the Sun, and recognizing that the first term (the divergence term)

vanishes, we obtain

S Cdr = - [PrIlasbi6s; + P0{Ois - 'bijikSk} 3 S + POSiqi + POS&iqi1
+or. (4

+posisjdOij& o ± --- Oi di ']d 3r. (4.61)
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Consider the quantity

aj[Po(;ais - bij(akSk)s9] = Po[isjajsi - b;j(ksk)a3sI +

ajPo[sidisj - bij(0kSk)Si] + Po[si9iajsj - bijaj(OkSk)Si]. (4.62)

We see the last term equation (4.62) is zero, and that by integrating over the

volume of the sun the divergence term on the left hand side vanishes by Gauss'

theorem so that we obtain

JPoli is - 6(OksAk) ajs]d3r - J Pol is0S - Sij(dkSk)s]dr. (4.63)

Inserting this result into equation (4.61) and using 0jPo = -PojA3 o we obtain the

result

s L'jsjd r = - [PFlXdj idOjs, + Poajo(Si asj - s9,8 s) +

PoSdiOil + PosiOiql + posisji+jo + 4 iiG ]d3r. (4.64)

By setting Sk (r, t) = Sk(r)ekt, it follows from equation (4.47) that

I k 
i I

wJ psi - sdr= ][PI' 1 aj 3 8;s;3  + po8 ;3 qo(s&8sj - idi)

Pos0il1 + PosO 1 + poSiSidajo + aiO1ai]d3r (4.65)

which is the final statement of the variational principle. We now set PrI = r, and

s' = s* (for notational convenience, we henceforth ignore the complex conjugate

symbol). Equation (4.65) becomes

, 0w J p0 S. S .dr = [, s(0 )2 + psisjOjo + p&)o( sids 3 - )O ) +
1

,G V112 + 2psiaOil]d3 r. (4.66)

This is identical to the result stated in the appendix of Backus and Gilbert (1967).

Several of the terms in equation (4.66) can be simplified by application of the

chain rule and the relations

r2 = x +x 2 +x 2 and O -(4.67)
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Thus, the term Oijo can be rewritten

aiajio = bjjr-18,r0 - r-3'xxjro + r-2 xixj 20o. (4.68)

The second derivative in the last term can be removed with the relation d0o =

4rGp - 2r-10rd o so that

iajo0 = r-3 (r2 ij - 3xixj)aro + 47rGpr-2xxj. (4.69)

Inserting equation (4.69) and the identity djoo = r-xjO,¢o into the right hand side

of equation (4.66), we obtain

w2
0 /e

poS Sd 3 r = 0  (s) 2 + posisjr -3(r 2 j - 3xixj)Orqo +
02

47rGpor-2sisjxixj + por-l1'ro(xjSidisj - xjsjOisj) +

1
IVx 12 + 2posiOil]d3r.

4 G
(4.70)

The terms xjsiOisj, xjsjaisi, sixisjxj, sisjij, aisi, and si9qoS in equation (4.70)

can be simplified with the identities

= siO(sjxj) -sjsjOjx 1 = sjO;(sjxj) - sisjij = s V(rs) - S S

= s + rs - Vs, - s - s

= r s V s= rs,V s

= (r s)(r s) = r2

=V- S.S
=--V7S

sii, = s - Vol

Inserting equations (4.71)- (4.76) into equation (4.70), we obtain

ps * sd 3 r =

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

RO[K(V . )2 + p0(-2r- 1S - sV -s + s Vs,) + 4rGp2s

1
+ V41 2 + 2ps . Vl]d3r. (4.77)

Inserting into equation (4.77) the representation for the displacement field s given

in equation (4.46) and using repeatedly the identity Via -Vlb = -aV2b (where a and
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b are products between an arbitrary functions of radius and a spherical harmonic),

we obtain finally the desired result:

w2 R P[U 2 + 1(l + 1)V 2]r2dr = [( + F) 2 - 2UFpg + 41rGp2U2 +

11+ 1)02)V

Gr2+2p + )V )]dr (4.78)4rGr2  /
where

F = 2U - l(1 + 1) (4.79)
r

and where we have returned to the notation U = ,U(r), V = ,V(r), and q1= n0l,t(r).

The modes satisfy an orthogonality condition given by

Sps*, skdr = NSmim,,,,nnbI (4.80)

where k denotes the triplet (n, 1, m), and

N = R p[U 2 + 1( + 1)V2]r2dr. (4.81)

Rayleigh's principle states that first order variations of modal frequencies are

stationary to first order variations of the eigenfunctions. Thus, in taking the variation

of equation (4.78) to determine the frequency variation Sw2 = 2wSw, we can (to

first order accuracy) neglect the contributions from the eigenfunction perturbations

(SU, SV, 6S 1) and consider only the structural variations (Sc, Soo, So 0, bp). The

perturbation equations are derived in Appendix 4A. The final results are:

Sw 2  Re= [K(,)(r)sp(r) + K 1)(r)Sb(r)]r2dr, (4.82)

Sw2N = [KI2) (r)Sc(r) + KI2) (r)S(r)]r2dr, (4.83)

Sw2N = [IK 3)(r)6c(r) + Ks3)(r)Sp(r)]r2dr, (4.84)

Sw2 N o R [K)(r)p(r) + K()(r)bFj(r)]r2dr, (4.85)

w2 N R [K )(r)8c(r)c(r) + K ()(r)Sri(r)]r2dr, (4.86)

w2 N = R [I 6)(r)Sc(r) + K 6)(r)6q(r)]r2dr, (4.87)

Sw2N = [K(7')(r)Sp(r) + K '7) (r)(r)(r)]2dr (4.88)10 p 77"\/ r
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where

K( 1)(r) = -w 2[U2 + 1(1 + 1)V 2] - 2UFg + 87rGpU2

+ 2 U + + - 4rGS(1)(r), (4.89)
r

K(1)(r) = (U F) 2, (4.90)

K2)(r) = K( 1)(r) + KC) (r) . (4.91)
c2 (r)

KI2)(r) = -2p(r)K(1 )(r) (4.92)
c(r)

(3) (r) = K (1)(r) + c2 (r)K )(r), (4.93)

K 3)(r) = 2p(r)c(r)K(1)(r), (4.94)

K ()(r) = P(r)iK)(r), (4.95)

S(4)(r) = K(1)(r) + [B(4)(0) - B(4)(r)][g(-) + S( 4)(r)], (4.96)

5)(r) = 2  K(r) (r) + [S()(0) - +S()(r)], (4.97)

KIr( )(r) K4)(r) c(r)K,,)(r) (4.98)g(r) 21F,(

K 6)(r) = rK) [fp 3)r2 dr - 47rG p(r)r2S(6)(r)dr] , (4.99)

K 6)(r) = K 3 )(r) - c(r) K(r) ) (4.100)

K(7 )(r) = -K(2)2 (r ) (4.101)
P(r)

K ) = K(l)(r) + 2c 2(r)K 1)(r) + 47rGS(7)(r)

1 r 2  d _22  d 2 + 2 (4.102)
+ P24g dr p27,g

and

S(')(r) = Re 2U(r')F(r')p(r')dr', (4.103)

r
4 Jr 4 dr', (4.104)B(4)(r) = KJI')(r') 1(r')r'2dr', (4.105)S(5)(r) = Re K(')(r')c(r') 2

S)(r) 2P(r') r 2 r, (4.106)
[Re 4xrGp(r')

9(5)(r) = r dr', (4.107)
r r/
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jr (r') K(6)(r')
S()(r) = (r')K)(r') dr', (4.108)o g(r')

S(7)(r) = (r')(r') (r') dr', (4.109)
r g (r')

and 0 and b are given respectively by equations (4A.49) and (4A.50). The kernels

K! 5) , K(6) , and K( 7) are the solutions of integral equations. The rest of the kernels in

equations (4.89)-(4.102) are in closed form. To solve these integral equations numeri-

cally, we use the following procedure. An inital guess for the given kernel is obtained

by calculating those terms on the right hand side of the equality which are known a

priori. This first solution is then substituted into the remaining terms to obtain a

second solution for the desired kernel. This procedure is iterated until convergence.

Depending on the mode, we have found numerically that the solutions to these equa-

tions converge to sufficient accuracy with no less than three but no more than seven

iterations.

IV. THE THEORETICAL RELATIONSHIP OF THE STRATIFICATION

PARAMETER TO PREDICTIONS OF MIXING LENGTH THEORY

a) Overview of Mixing Length Theory

Mixing length theory (e.g., Cox and Giuli 1968; Gough and Weiss 1976) is the

most widely used method to calculate the temperature gradient V in convectively

unstable regions. The goals of mixing length theory are to predict the temperature

stratification V, the convective heat flux Fe, and the convective velocity v. Below

the strongly super-adiabatic boundary layer the Sun convects very efficiently and

thus V = Vad to a high degree of accuracy. In the bulk of the convection zone,

the high thermal capacity of the gas and the relatively small radiative losses (of the

buoyant parcels of material) leads to high convective efficiency and so only slight

superadiabaticity is required to transport the heat flux. The entropy in this region

is nearly constant (slightly increasing with depth) and the pressure and temperature

lie on an adiabat, i.e.

P = KTr 2- (4.110)
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where K identifies the particular adiabat under consideration. This relation follows

from the definition of the second adiabatic exponent:

V = Vad = (r2 - 1)/r 2. (4.111)

The quantity K is a constant provided that F2 is a constant, and therefore K assumes

different values in each of the ionization zones. The entropy jump from the surface of

the star to the nearly adiabatic region determines the value of the constant K. The

entropy jump depends on the mixing length theory and the choice of mixing length A.

The structure of the convection zone is specified by the constant value of the entropy

s, the equation of state, and the composition.

In solar evolution calculations, the primary use of mixing length theory is to

determine the entropy jump across the superadiabatic region. The entropy jump

defines the adiabat of the convection zone and implicitly determines K in equation

(4.110). The strength of convective instability is measured by Vr - Vad where Vr

is the radiative gradient. The radiative opacity ~, becomes quite large in the H,

He, and Hel ionization zones and the pressure increases dramatically compared to

the temperature because F2 approaches unity in an ionizing region. Since V, is

proportional to K7P/T 4 the radiative gradient becomes very large in these regions. It

reaches a peak value at the base of the Hel ionization zone and decreases roughly

as 1/T3 until the depth where V, = Vad (the base of the convection zone). Since P

and T have been on adiabats since the transition point to efficient convection (just

beneath the strongly superadiabatic layer), the peak value of V, depends on the value

of P and T at the transition point. These P and T values depend in turn on the

entropy jump. Thus only the integrated properties and not the detailed structure

of the super-adiabatic region are relevant to the structure of the rest of the Sun.

The metal abundance can also affect the depth of the convection zone since metal

ionization can become important at high temperatures and thereby raise the radiative

temperature gradient.

To gain insight on how mixing length theory determines certain aspects of the

structure of the convection zone, we derive asymptotic expressions for the superadi-
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abatic temperature gradient in the limit of low and high convective efficiencies, and

the expression for the stratification parameter in the corresponding limits. We obtain

the well known result that the radial variation of the pressure and temperature in

strongly superadiabatic regions has a strong dependence on the value of the mixing

length.

Using the radial rate of change of entropy given in equation (4.16), we find the

entropy jump from the photosphere to the adiabatic part of the convection zone is

given by

Reds Re CyV (4.112)cAS = d dr = d V d - V - V dr (4.112)a d ad Hp cp P ,T

where rad is the depth at which (V - Vad) first becomes negligibly small. The radial

variation of (V - Vad) in the strongly superadiabatic region depends critically on the

mixing theory and choice of mixing length (see Gough and Weiss 1976). The most

significant contribution to the entropy jump integral comes from the subphotospheric

region where the applicability of the mixing length theory is most suspect. The den-

sity in this region is small and the radiative losses are large which taken together

imply that the thermal capacity of the gas is low. To transport the luminosity, an

appreciable superadiabatic gradient and a large convective velocity is required. Ap-

proaching the surface, the dominant mode of heat transport switches from convective

to radiative since the convective efficiency becomes so low and since the medium

becomes optically thin.

We point to the connection between the thermal stratification and the stratifica-

tion parameter since the helioseismic recovery of the latter could be used for a variety

of applications. The radial variation of r(r) is sensitive to the superadiabaticity of

the sub-photospheric region, the depth at which the convection zone first becomes

adiabatic, and the entropy jump from the photosphere to this depth. An empirical

determination of q(r) would provide data with which to fit the temperature gradi-

ent V as a function of density or optical depth to an empirical law (in the manner

of the Krishna-Swamy relation for instance). The y(r) profile changes abruptly at
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the base of the convection zone. In addition, it sensitive to the subadiabaticity and

chemical stratification in the core and radiative zone. To make clear the context of

our development, we briefly summarize the principal features of mixing theory. Since

the asymptotic results we derive in the following depend on the specific form of mix-

ing length theory used, we follow the extremely clear development of Cox and Giuli

(1968).

Mixing length theory is to calculate V in convectively unstable regions. In the

convectively stable portions of a star, the temperature gradient is set equal to the

radiative gradient i.e.
3L sP

V = Vr = r . (4.113)
16racGMr T4

During the evolution calculation, a stability criteria must be evaluated at each radial

knot of the stellar model to determine which temperature gradient to use. There are

three possible criteria one could choose from (two of which are equivalent). Often, the

Schwarzschild criteria is used (the mixing length formalism is employed if V, > V).

This criteria takes into account the thermal stratification only. Alternatively, one

may use the Ledoux criteria which accounts for the chemical as well as the thermal

stratification. Here, the mixing length formalism is used if V, > Vcr where

(8nT lnt 47rr4P
Vcr = Vad ( p la (4.114)

a ln~,p PM, GM,

The third criteria that one could use is to evaluate the stratification parameter ij.

The star is convectively unstable at a given radius if

q = -Hp ip-1dpr (4.115)

is less than 1 at that point. We showed in §11 this is equivalent to the Ledoux

instability criteria.

According to Bohm-Vitense's theory, to calculate V one begins by postulating

that the mixing length is given by

A = aH, (4.116)
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where a is a constant, typically between one and two. Physical reasoning leads one

to the cubic equation

+ BC) + aoB 2 J - aoB2 = 0 (4.117)

which must be solved for the unknown variable ( given by

V, - V ao r 2

V, - Vad 1+ r(1 + aor)

Here, ao = 9/4 and F is a measure of convective efficiency given by

V - V'
r = V'- V (4.119)

V - Vadj

The gradient V' is the temperature gradient of the convecting element. The quantity

B is given by

B = [A2(Vr - Vad)] 3 (4.120)

where

A = /2pgp/2A(4.121)
12 acP1/2T3 (4.121)

and Q = (4 - 30)fP- (where f is the ratio of the gas pressure to the total pressure).

In this development, is the basic unknown. As -+ 0, F -+ 0 (inefficient convection)

and as -- 1, F -+ oo (efficient convection). It can be shown that there is only one

real root of equation (4.117) for 0 < < 1. Once is determined, the important

quantities V, V - V', and F are given by

V = (1 - )(V) + Vad, (4.122)
2

S- V = ,(Vr ad) (4.123)
Aao

1

r = B . (4.124)

The ratio of convective flux to the total flux is given by

= [1 _ _ a] . (4.125)

The ratio of the convective velocity to the local sound speed v, can be written

S_ CQ1/2 (V _ V') 1/ 2

S(4.126)v. 2 A
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From equation (4.122) we have

(V - Vad) = (I -)(V - Vad).

Thus, 1 - 7 can be written

vsQ
1 - ] = (V

Hg
- Vad) = 2 (1 - )(Vr - Vad).

H g

From equations (14.83) and (14.84) of Cox and Giuli (1968) we can derive ap-

proximate solutions for (1 - ~) for low (B << 1), and high (B >> 1) convective

efficiencies. We have

1 -aoA 4 (Vr - Vad) 2 [1 - 3A 2 (V, - Vad)+

(9 - 3ao)A 4 (V, - Vad) 2 ] B << 1

1 2 (1-ao)
[a;A 2(Vr-Vad)]1/ 3  3[aoA 2(Vr-Vad)]'/ 3  3[aoA2(Vr-Vad)]2/3 B >> 1

(4.129)

Combining this result with equation (4.128), we obtain

{QI(V, - Vad) - a 4A4 (

1-7 = (9 - 3ao)A 4 (V, r - Vad) 2]}

v 2 gQ  (Vr -Vad)
Hpg [a2A 2 (Vr- Vd)1/2

r - Vad) 3 [1 - 3A 2 (Vr - Vad)+

2
3[a 2A2(Vr-Vad)11/3 S3[aA 2 (Vr-Vad)] / ]

(4.130)

Setting
Q1125/gp5I2H2A = a2E and E = 
12/acP1/2T3 '

the expressions for 1 - r at low and high convective efficiencies can be written

2{(Vr - Vad) - a4asE4(Vr - Vad) 3 [1 - 3a4E 2 (V - ad)+

(9 - 3ao)a8E4 (V - Vad) 2 ]}

VQ (Vr-Vad 1/2

Hpg a 2aoE
2/3

4 /I[aE2(Vr-Vad)1/3 (1-a) )]2
308/3[a E2 (Vr-Vad)]2/3

(4.131)

(4.132)

We have ignored mean molecular weight gradients.

can easily be deduced from equation (4.25).

The necessary correction term
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(4.128)

1~I

B << 1

B >> I

l-r = { B <<1

B >>



b) Inferring the Mixing Length Ratio from Helioseismic Data

There are several ways in which the mixing length ratio a could be determined

from helioseismic data. The first possible approach is deterministic and the second is

a monte-carlo technique based upon X2 minimization.

In the first approach, the quantity 1 - r is inverted from the oscillation frequencies

as a function of radius. The inversion for 1 - n is underdetermined. However, once

the radial profile of 1 - I is obtained, a can be estimated by performing a nonliner,

least squares fit using equation (4.132). The analytic formulae in equation (4.132),

though fairly accurate if the conditions on the convective efficiency measure B are

satisfied, are only approximate. The second approach avoids this problem .

In the second approach, a suite of solar models are evolved with various combi-

nations of (X/Z, a), for example, where X is the hydrogen abundance and Z is the

metal abundance.. For each model, the mixing length ratio a is held constant and the

ratio of the hydrogen to metallic abundance (X/Z) is changed until the solar radius

and luminosity are matched. For each model the profile of (V - Vad) is retained.

We denote this profile by (V - Vadheo(a). The superscript indicates the profile is

the result of a theoretical forward calculation and depends on the mixing length ratio

a. Next, the radial dependence of the quantity 1 - is inverted from the data and

related to (V - Vad) from equation (4.128). We denote this profile by (V - Vad)data

Once these profiles are obtained, the X2 quantity

X2 [(V - Vad) o(V - Vad) (4.133)X'- C, theo(a )12[(V - Vad)i I

is formed for each theoretical model. The index i indicates the radial grid knot, and

K is the total number of grid knots. The model which yields the smallest X2 best fits

the data, and is therefore the model with the best choice of mixing length.

The numerical value of the mixing length ratio a depends on the particular mixing

length theory implemented (see Gough and Weiss 1976). Much more fundamental

is the stratification (V - Vad) in the strongly superadiabatic region of the Sun. An

inversion for 1 - / would in principle yield the value of (V - Vad) and the result
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would be independent of mixing length theory. Just as the Krishna Swamy relates

temperature to optical depth in stellar atmospheres, an inversion for V - V,da could be

used to as the basis of an empirical law relating the thermal stratification to either the

temperature or density depth of an atmosphere until the point where the convection

is strongly adiabatic.

Appendix 4A

DERIVATION OF PERTURBATION EQUATIONS

In this appendix we present the derivation of equations (4.82)-(4.88).

a) Derivation of equation (4.82)

To derive equation (4.82), we take the variation equation (4.78) and apply Rayleigh's

Principle to obtain

6w 2 R p[U2 + 1(1 + 1)V2]r 2dr + w2 p[U 2 + 1(1 + 1)V 2]r2dr =

(0 [ + F) 2 - 2UFgbp - 2UFpbg + 8rGU2Sp +

( 1(l + 1)VO1 2

26 U a + ]r2dr. (4A.1)

We seek to express Sw 2 in the above equation in terms of Sp and Sn. The gravity

perturbation Sg can be expressed in terms of bp with the identity

4x G r 2
g(r) = 2 Sp(r')r'2 dr'. (4A.2)

r o

In this appendix, we must repeatedly use the rules for differentiation of integrals

which are

d f (t)dt = -f(x) and I f(t)dt = f(x) (4A.3)

where x is the independent variable, t is a dummy variable, a is a constant, and f(t)

is an arbitrary function of t. Using the first rule in equation (4A.3) we can derive the

identity

oRe A(r)m(r)dr = - R S(r)m(r)dr (4A.4)
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where

S(r) = iRe A(r')dr' (4A.5)

and m(r) and A(r) are arbitrary functions of radius. To complete the transformation

of the integral over Sg into one over Sp in equation (4A.1), we set A(r) = 2UFpr2,

and m(r) = Sg(r) in equation (4A.4) and perform an integration by parts to obtain

0R e 2UFp6g(r)r2dr = 47G ]R S(1)(r)Sp(r)r2dr (4A.6)

where

S(1)(r) = R® 2U(r')F(r')p(r')dr'. (4A.7)

Substituting equation (4A.6) into equation (4A.1), and separating terms in Sp and

Sn yields equation (4.82).

b) Derivation of equation (4.83)

The result in equation (4.83) can be obtained by replacing Sp in equation (4.82)

with the expression

6p = -~ - pSc (4A.8)
c2 c

(which follows from taking the variation of c2 = r/p) and separating terms in Sc and

5K.

c) Derivation of equation (4.84)

Equation (4.84) can be derived by replacing S in equation (4.82) with n =

c2Sp + 2pc6c (which follows from eq. 4A.8) and separating the terms in Sp and Sc.

d) Derivation of equation (4.85)

To derive equation (4.85) we begin by replacing Sx in equation (4.82) with the

expression

Er(r) = Fi(r)SP(r) + P(r)Sli(r), (4A.9)
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which can be derived by taking the variation of K = PF1. The pressure is given by

P(r) = p(r')g(r')dr' (4A.10)

so that P(r) is given by

SP(r) = JRo [g(r')6p(r') + 4wGp(r') fr
+ r 2 0

which follows from equation (4A.2). Inserting equation (4A.9) into equation (4.82)

and using equation (4A.11), we obtain

6w2 N = {K')bp + PK(1)SbF +

rlK(1) Re [g(r')Sp(r') + 4wGp(r') jr' (4A.12)

The rightmost term in equation (4A.12) can be simplified by setting

A(r') = 4rGp(r') r'

A(r') = r,/2 and m(r') = 1 p(r")r"2dr"

in equation (4A.4), and performing an integration by parts to obtain

(4A.13)

[FI(r) K(1)(r) JR 47rGp(r) r p(r")r"2dr"dr] r 2dr =
r/ J

l (r)K )(r) R R [S( 4) (r')6p(r')r'dr']r2dr

g(4()=') 1Re
$(4) I

4rGp(r'") dr.
rdr"

A(r) = Fl(r)K(1)(r)r2 and m(r) = R g( 4 ) (r)'p(r')r'2dr'

in equation (4A.4), and performing an integration by parts, we obtain

R®o r(r)iK1)(r) R [( 4) )Sp(r')yr' T 2dr ']r =

0e [B(4 )(0) - B( 4)(r)]S)(4)r)p(r)r2 dr

where B(4)(r) is given by

B( 4 ) (r) , i(r')KI(,1)(r')r'2dr'.
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p(r")r 2dr "] dr' (4A.11)

J Re

JR®

where

Setting

(4A.14)

(4A.15)

(4A.16)

(4A.17)

(4A.18)

6p(r")r"2 dr"]dr' } r2 dr.



Returning to equation (4A.12) we can apply techniques similar to those already used

to derive the identity

0Re (r)x(1)(r) J Re [bp(r')g(r'9~)dr']2dr =R [B (4)(0) - B(4) (r)]g(r)p(r)dr.

(4A.19)

Replacing the last two terms in equation (4A.12) with equations (4A.17) and (4A.19),

we obtain equation (4.85) which is the desired result.

e) Derivation of equation (4.86)

To derive the kernels K 5)(r) and Kr5)(r) in equation (4.86) we begin by postu-

lating the identity

6w 2N R [K 4)(r)6p(r) + Kfj (r)6F(r)]r2dr =

Ren [K')(r)c(r) + K (r)6 Fi(r)]r2 dr. (4A.20)

The perturbation Sc(r) on the right hand side of equation (4A.20) can be replaced

with the identity

Sc= 1[ c(r) r C(r) +
2 r, (r) p(r)

(47) R(') ' ,,
(r) { [g(r')6p(r') + 4i rGp(r') S(r 'Ir 2dr I" dr' . (4A.21)c(r)p(r) r r/

Equation (4A.21) can be derived by taking the variation of equation (4.2) and re-

placing SP with the expression in equation (4A.11). Performing this operation and

equating the appropriate groups of terms we obtain the identities

Re Re c(r)K(s)(r)
JR O K( 4 ) (r)p(r)r 2 dr 2P(r)

gx [g(r')P(') ) + 4Gp(r') p()r" dr'}d dr

oR e c(r)K(5)(r)Sc(r)K pr 2dr, (4A.22)
K) 2p(r)

K)(r) = c(r) K)(r) + K(5)(r). (4A.23)A & r i 2 r ( r) ' L)
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The first term on the right hand side of equation (4A.22) can be simplified by setting

A(r) = c(r)r2 K()() and
2P(r)

m (r) = Ir Sp(r')g(r')dr'

in equation (4A.4) and performing an integration by parts, which yields

Re c(r)K,5)(r)

2P(r)

where

S( 5)(r) = 2 P(r') dr'.

Using a similar methodology, we can show that

SRe c(r)K)(r)
0o 2P(r) [Re 41rGp(r') '/

r r 2 0 r

Sp(r")r"2)dr ' '] dr'r2dr =

oRe [S(")(0) - S(5)(r)]9()(r)6p(r)r2dr.

r = R 4xGp(r')9(s)(r) = r dr'.

Inserting the identities in equations (4A.25) and (4A.27) into equation (4A.22),

inferring the appropriate equalities, and solving for K!5) , and K 5), we obtain

K!5)(r) = 2pK4)(r) + [S(5)(0) S(5)(r) ) + 9( 5 )(r)],
C C r

K )(r) = K~4)(r) c(r)K I 5)(r)
r 217(r)

(4A.29)

(4A.30)

Equation (4A.29) is an integral equation for K(' ) . A suggested method of solution is

described in §III1. Once Ks5 ) is obtained numerically, the kernel ' follows immedi-

ately.

f) Derivation of equation (4.87)

To derive equation (4.87) we begin by postulating the identity

6w2 N = JR. [KI)(r)6p(r)+K(3)(r)c(r)]r2dr = oR [K 6)(r)6c(r)+K6)(r)&(r)r2dr.

(4A.31)
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Ro g(r')p()dr') dr = JR [S)() - S(5)(r)]g(r)Sp(r)dr

(4A.25)

(4A.26)

where

(4A.27)

(4A.28)



Taking the variation of q = -C2 p/(pg), inserting the resulting expression into Sbi

of equation (4A.31), and equating the appropriate groups of terms, we obtain the

identities

K6) (r) = K( 3
) (r) - 2 K (6)(r),C c(r)

R R3 (r) K ( 6) ( r)
KR(~ K )(r)p(r) dr = ') Sp(r) -
Sp_) g(r)
c2(r) )(r) dSp(r) - r(r)K, )(r) ]r dr.

p(r)g(r) ) ]drdr.

The Sg term in equation (4A.33) can reduced to a term over Sp in a

to the derivation of equation (4A.6). We find

- JR® i() - J6 '92 R()

g 4GS (r)prdr

where

S(6)( )= ( r') )( r' .Jo g (r')

(4A.32)

(4A.33)

manner similar

(4A.34)

(4A.35)

The integral in equation (4A.33) over dSp/dr can be integrated by parts to yield

c (r) dp(r) 2dr =

p(r)g(r) K ( dr
-J sp(r) d (r 2 c2(r)K)(r) dr

odr p(r) g(r)

where we have neglected a surface term. Replacing the appropriate terms in equation

(4A.33) with equations (4A.34) and (4A.36), we obtain the identity

2 2) d 2K)
K 3) = K(6) + d rC + 4rGS(6)(r).Pp -2 dr pg

Multiplying equation (4A.37) by pr2 and integrating from 0 to r, we obtain

pK,~3)r 2dr = - J qK('6)r dr + 47rG r p(r)r2 S(6)(r)dr + Jo p- (

The last term in equation (4A.38) can be integrated by parts to yield

c2 (r)r 2 K 6)(r) + r7 K6 r2dr.S + qK,*' d.

(4A.37)

r2c2K (6) .
Pg ) dr.

(4A.38)

(4A.39)
r d r2c2K 6 ) dr=
Sdr = P

Substituting equation (4A.39) into equation (4A.38) and solving for Ki(6) we obtain

K 6)(r) = r p2( 3) r 2dr - 4rG p(r)r2S(6)(r)dr] (4A.40)

which is an integral equation for K,6)(r). A method of solution is suggested in §III.
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g) Derivation of equation (4.88)

To derive equation (4.88) we begin by postulating the identity

Sw2N = [K () (r)(r)+ )(r)S (r)]T2dr

= R [K 7)(r)6p(r) + '7)(r)r,(r)]r2dr. (4A.41)

Substituting the relation

gp2 b_C2g pC2 dSp
S= + 2c2 6p + Sg (4A.42)

p g p dr

into the left hand side of equation (4A.41) and equating the appropriate groups of

terms, we obtain the identities

2

K (7)(r) = -K)(r) (4A.43)
P

JR [K'1)(r)6p(r) + K,~)(r) 2c26p + pc2 g PC2 dp 2dr=
o g p dr

Re K 7) (r)bp(r)(r) 2 dr. (4A.44)

To transform the integral over Sg(r) in equation (4A.44) to an integral over Sp(r)

pc2r2K(1)(r)A(r) = (r) and m(r) = 6g(r) (4A.45)
g

in equation (4A.4), and integrate by parts to obtain

Sc 2 I 1)(r) g(r)r2dr = 47rG 10 S(')(r)6p(r)r2 dr (4A.46)
o( g 0

where

S(7) = 2 (r') ) (r') dr'. (4A.47)
g(r')

Consider the integral in equation (4A.44) over dSp/dr. Performing an integration by

parts we obtain

JR p(r)c2(r)K(1)(r) dSp(r) Re d [K(1)Kr 2

(r) r = - Sp- ]dr (4A.48)
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We were able to discard the surface contribution by application of the boundary

condition AP = K(U + F) = 0 where AP is the Lagrangian pressure variation.

Letting

S= (U + F), (4A.49)

we can show from the equation of motion that

d ( 2 4pg pl(l+l)g2 U - l( l)g+
d 4p r2 2  r2 2

= -p ( U _____

pl( + 1)g (1 + 1)p + P b +(1+1 + 47rGpU (4A.50)

Using equations (4A.49) and (4A.50), the right hand side of equation (4A.48) can be

written

Re dr K(1)Kr 2 1 Rd [ _ r2 ]d

-J dr 10jo dr p 2ig
[R ®J. r2 d r 2

p 2 + 2 d[ r2 dr. (4A.51)
o p2 dr p2?lg

Substituting equations (4A.46) and (4A.51) into equation (4A.44) we obtain finally,

the desired result

K(7) = K'1) + 2c2(r)Ki)(r) + 47rGS(7) + 2~P r;g + 2 2 r (4A.52)
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CHAPTER 5

CONCLUSION

ESTRAGON: I can't go on like this.

VLADIMIR: That's what you think.

Waiting for Godot (1948)

Samuel Beckett
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CONCLUSION

We have carried out three separate investigations in this thesis. Our aim has

been to derive new methodologies with which to address important issues confronting

helioseismology. These include the influence of the structure and internal dynamics

of the Sun on the oscillations, and the influence of nonlinear interactions among the

modes on their frequencies and amplitudes.

In Chapter 2, we derived a theory to model the influence of large scale convection

on solar oscillations. We implemented the theory with the aid of a realistic convective

flow model provided to us by Dr. Gary Glatzmaier. We treated the forward problem

only; the inverse problem is much more difficult and will be the subject of future work.

However, we obtained several important results from the forward modelling. First,

the convective flow appears to be able to generate departures in the al coefficients

from the value predicted by bulk rotation alone that are similar in magnitude to

observations. Second, the combined effect of poloidal and toroidal flow fields on the

frequencies is sufficient to generate a2 coefficients that are in some cases comparable

in magnitude to a2 coefficients measured by observers.

In Chapter 3, we used weak turbulence theory from plasma physics to derive

the kinetic equation for p modes in spherical geometry and an expression for the

frequency shift of a mode due to nonlinear interactions. The purpose of the derivation

was to provide a theoretical framework with which to address the question of mode

excitation. If it can be shown that three mode coupling cannot decisively damp

overstable modes, then one would conclude that it is more likely the modes are excited

by turbulence rather than by the t-mechanism. This work is intended to complement

the work of Kumar and Goldreich.

In Chapter 4, we applied Rayleigh's Principle to derive perturbation equations

relating small model perturbations to differences between theoretical and observed

modal frequencies. We showed how these problems can serve as the basis of inverse

problems to recover important free parameters of stellar evolution theory such as the

mixing length.
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With the unprecedented amount of helioseismic data soon forthcoming from the

GONG network and the SOHO satellite, we are poised to learn a great deal about

the physics of the Sun. We hope the work in this thesis will aid in that quest.
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