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ABSTRACT

A numerical multiple crack interaction model was developed to simulate the failure
process in brittle solids containing significant populations of flaws. The model, which
is 2D, allows for the growth of microcracks on a regular array of potential crack sites.
Individual cracks may be oriented vertically, horizontally or at 450 to the sample axes.
Quasi-static equilibrium equations are expressed in terms of finite difference
approximations, and are solved by applying a Renormalization Group Theory
approach. More than 5,000 potential crack sites are included in the current version of
the model. We have successfully duplicated a variety of brittle fracture phenomena
observed in laboratory rock mechanics studies by employing a limited number of
parameters and relations in the model. Included in the model are 1) Lam6 constants X, 9t
for intact matrix material 2) coefficient of friction, f, for friction on cracks 3) an
algorithm to allow for crack closure in response to normal stress 4) an initial crack
population and 5) for time-dependent modeling, a power law sub-critical crack growth
rule. A fracture mechanics approach is used to determine crack growth. Approximate
stress intensity factors are computed for all cracks and when critical values are
exceeded, cracks are allowed to grow in either mode I (tension) or mode II (in-plane
shear). Simulations are performed by specifying a combination of stress and strain
boundary conditions. The model is capable of duplicating experimentally observed
features such as elastic moduli, dilatancy, acoustic velocities, peak strength,
Mohr-Coulomb failure envelope and, to a limited degree, crack coalescence.

A number of supplemental laboratory experiments have also been performed,
focusing primarily on low-temperature creep. In one set of experiments, cylindrical
samples of granite were deformed at 260 C, constant confining pressure (600 bars) and
constant pore pressure (200 bars). Axial and volumetric strain were determined from
changes in the output of resistance foil strain gauges bonded to the rock surface. In
addition, DC electrical resistivity was measured parallel to the sample axis. During
these experiments (typically lasting from one to two weeks), the deviatoric stress 0 d
applied to the sample was cycled between 70% and 90% of the short-term failure
strength. The majority of the experiments were conducted in the secondary or
'steady-state' creep regime. Inelastic volumetric strain rate was fo nd to obey the law
logl0(iv) = A + B od + C log0(Ev) where B = 7.4 ± 0.2 kb- 1 and C - -4. The
C-coefficient represents a strain-hardening-like term. The stress-dependence is of the
same form as the stress-dependence measured for mode I crack growth in double
cantilever beam experiments. The observed creep behavior is analyzed in terms of
stress corrosion and crack growth models.



A second set of experiments was designed to measure the development of electrical
resistivity anisotropy during deformation of granite. In this series, two triaxial
deformation experiments were conducted on brine-saturated (0.1 and 0.01 Maq KC1)
Westerly granite at effective pressures of 100 and 400 bars. Deformation histories
included constant strain rate, constant stress and stress relaxation sequences. Complex
resistivity, over the frequency range from 10-3 to 105 Hz, was measured in both axial
and transverse directions during the experiments. Low-frequency-limit resistivity pDC
increased with initial loading and then decreased steadily after the onset of dilatancy.
The initial increase in pDC was greatest in the transverse direction, in one experiment
reaching a peak contrast PDCI/PDCI = 1.4 at approximately 35% peak strength. With
continued loading and the resultant opening of microcracks, the resistivity contrast
decreased to approximately 0.8 by failure. In terms of the frequency dependence of
resistivity, the general form of the real part of the resitivity varied little during
deformation other than a uniform change in magnitude proportional to the changes in
PDC- Under initial hydrostatic stress, the phase angle between current and voltage
ranged from 10 to 30 mrad over the frequency range 0.001 to 100 Hz. With the onset
of dilatancy, notable changes occured in the phase spectra in the 0.001 to 10 Hz region.
The changes differed in the axial and transverse directions and appeared to be the result
of changing pore structure since they diminished upon removal of deviatoric stress.
Although the variations in complex resistivity were subtle, their occurance in the Earth
may be exploited as a means of identifying secular changes in stress or strain through
induced polarization or magnetotelluric measurements.

Finally, a series of experiments was conducted to measure changes in electrical
conductivity during densification of water-saturated quartz powders at elevated
temperatures. Starting material was ultra-fine quartz powder (5-10 pm-diameter).
Confining pressure ranged from 2,000 to 3,700 bars and pore pressure from 300 to
2,000 bars. All runs were conducted at 7000C and were saturated with distilled water.
Initial porosity in all experiments was in excess of 40%. Experiments lasted from 10 hr
to 8 days, with ending porosities from 19% to as little as 8 + 1%. In all experiments,
initial volumetric compaction rates were rapid (10-5 to 10-6 s-1), decreasing quickly to
rates in the range 10-7 to 10-8 s-1 after approximately 1 day. Electrical conductivity as
well as porosity decreased monotonically during the experiments. Conductivity ranged
from 10-2 to 10 -4 mho/m. A model is presented in which decrease in conductivity is
initially controlled by the loss of fluid filled pore volume, followed by a transition, at
approximately 15% porosity, to a condition in which conductivity in controlled by
constrictions in interconnecting channels.
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Title: Professor of Geophysics
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CHAPTER 1

INTRODUCTION

The importance of flaws in affecting the material properties of solids has been

recognized for some time. Griffith (1920), for example, pioneered the way in

understanding how the presence of flaws significantly reduces the strength of brittle

materials below the theoretical crystal strength. For silicates and ceramics at room

temperature, many of the transport properties are controlled by the flaws, or pore

structure, since the matrix material does not participate actively in the transport process.

For example, fluid permeability and electrical conductivity are dominated by the

structure of the pore volume. Indeed fluid filled cracks in granite are found to contribute

to the electrical conductivity in a proportion far outweighing their volume fraction

(Madden, 1983). Acoustic velocities and attenuation are also influenced by the presence

of microcracks. In experimental studies, for example, volumetric strains of less than

one percent have been observed to reduce p-wave velocities by more than 30% in

granite samples loaded to failure (Lockner et al., 1977; Yukutake, 1989).

One topic of research that has been of fundamental interest in the field of rock

mechanics has been the understanding of the failure process in brittle rock. While in

general terms the process which leads to failure has been well documented, our

understanding of the precise mechanism by which microcracking localizes into a

macroscopic shear plane is still incomplete (Evans and Wong, 1985). Many attempts at

analyzing the failure process have been cast in terms of damage parameters (Spetzler et

al., 1982; Ashby and Hallam, 1986; Sammis and Ashby, 1986; Costin, 1987). Madden

(1983) and Williams and Madden (1988) predicted rock failure in terms of a critical

crack density based on renormalization group theory. Using continuum mechanics,

Rudnicki and Rice (1975), Rice (1976) and Rudnicki (1977) analyzed conditions

underwhich deformation for a dilatant, pressure-sensative material would localize in a

weakened zone.

Earthquake prediction is a field of study which is intimately connected to an

understanding of the changes that occur in a rock mass as it approaches failure. A

variety of phenomena have been suggested as parameters that may be used for the

prediction of earthquakes, including temporal changes in strain, tilt, creep, water level,



radon emission, electrical resistivity, seismic velocity, foreshocks and animal behavior.

All of these phenomena can be associated directly or indirectly with changes in the

microcrack geometry in some region surrounding an impending earthquake. An

understanding of how the microstructure of a rock responds to changes in stress and

strain is required to assess the detection threshold for any of these phenomena.

In terms of the mechanical strength of rock, measurable boundary conditions are in

general some averaged stress and/or strain applied at distances large compared to

individual cracks. Thus a fundamental question is how cracks grow in response to

remote loads. Analytic solutions exist for single cracks (e.g. Paris and Sih, 1965) and

periodic arrays of cracks (Delameter et al., 1975), but determination of the response of

more complicated crack geometries generally requires an iterative technique. Segall and

Pollard (1980), for example, analyzed crack interactions using the Schwarz-Neumann

alternating technique. In this procedure, boundary conditions are satisfied on the

surface of each crack in sequence, and the process is repeated until the desired accuracy

is achieved. Other multiple crack models (Kranz, 1979) simply superimposed the strain

fields of individual cracks, essentially assuming that crack interactions were negligible.

Segall and Pollard (1980) analyzed the stress perturbation due to a crack subjected to

antiplane remote stress. They found that outside a critical radius rc = 2.25a, where a is

the crack half-length, the perturbing stress is less than 10% of the applied stress.

Pollard and Segall (1987) develop the appropriate stress equations for plane strain as

well as anti-plane strain. A similar analysis for plane strain gives rc ~ 3a. This result

can be compared to crack count data compiled by Hadley (1975) and reproduced in

Madden (1983) for Westerly granite subjected to a variety of stress levels. Even in the

undeformed rock, the longest crack length category (100 - 300 gtm) had a crack count

of 36 mm-2 . While the shorter length cracks would not interact, the 100 - 300 gpm

cracks have sufficient density that they would interact. By 65% failure stress, crack

densities had increased sufficiently so that cracks longer than 30 gpm would be expected

to interact. Thus, throughout the loading history, crack interactions can be expected to

play an important role. Of course, the final coalescence of cracks to form a macroscopic

shear plane is a cooperative process as well.

With the development of more and more powerful computers, numerical

simulations of multi-crack interaction problems are becoming feasible. However, at

present, high accuracy simulations of even modest sample sizes remain impractical.



Accepting this limitation, we present in this paper a numerical crack interaction model in

which only first order interactions are considered. We will compare the results of this

model to laboratory deformation experiments. To the degree that the mechanical

properties of rock deformation are controlled by these dominant interactions, we expect

the simulations to capture the general features of laboratory experiments. In particular,

we will examine such phenomena as peak strength, confining pressure dependence,

dilatancy, critical crack density, acoustic velocity, conductivity and time-dependent

creep. By examining the relative success of the model in reproducing experimental data,

we hope to gain some insight into the processes controlling the physical properties of

rocks.
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CHAPTER 2

MULTIPLE CRACK INTERACTION MODEL

Symbols and Conventions

c 4 th rank stiffness tensor; also 3x3 matrix representation of 2D

stiffness tensor

f coefficient of friction for crack surfaces

KIjg crack tip stress intensities for modes I and II

1 crack length

10 length of unit cell in model; in present model, 1o = 0.1 mm

n slope of K-log(v) plot for subcritical crack growth rate

P stress tensor

Pc critical probability for crack density at failure based on RNG

calculation

(r,s) vector components in cartesian, 2D r,s coordinate system; rotated

450 counterclockwise from (x,y) system

u displacement vector

Vpi P-wave velocity in ith direction

(x,y) vector components in 2D x,y coordinate system

E strain tensor

Ev  volumetric strain

y shear strain

rl slip vector magnitude for crack surfaces

X, pt Lam6 constants

5 non-dimensional weighting parameter in present model,

represents fraction of a cell side that is uncracked

Compressive stresses and strains are negative.



Crack Model Description

In this section, the basic elements of the numerical crack model are described. Some

details of the model will be expanded on, where appropriate, in subsequent sections.

As we have already mentioned, a generalized crack interaction model, allowing for

cracks of both random position and orientation, and including a significant sample

volume, is not yet feasible. Recognizing this fact, we have chosen to adopt the

following strategy. We have constructed a quasi-static crack model beginning with a

simple crack geometry and the fewest possible rules and, by comparison to

experimental results, determined how successful we were at reproducing the significant

features of brittle rock deformation. The model was then modified by adding more

complex features in an attempt to reconcile differences with laboratory data. In its

present 2 dimensional form, the model successfully reproduces a variety of phenomena

associated with brittle deformation of crystalline rock up to and including peak strength,

for which microcrack growth is relatively homogeneous. Due to technical limitations,

the model does not adequately deal with the severe large scale heterogeneity in material

properties that accompanies strain localization and fault formation in the

post-peak-strength region. For this reason our simulations will focus primarily on the

phenomena associated with crack growth in the pre-failure region. Since we wish to

duplicate laboratory experiments, we construct the model in a form that will allow for

application of appropriate boundary conditions. These include uniform confining

pressure on lateral surfaces and stress or displacement boundary conditions on sample

ends. The model is presently 2D with simulated sample dimensions of 2.7 x 5.4 mm.

Even with this modest size, up to 5,800 cracks, 0.1 mm-long, can be included.

Expanding the sample dimensions by a factor of three or even nine is a simple matter.

However, conducting simulations using the current sample size taxes our available

computational resources. It does not seem necessary, for the present, to incease the

sample size. Expanding the model to a full 3D simulation is also straightforward in

principle. However, the details of the computer programming are complicated and have

not been undertaken.

In the remainder of this section, we give a detailed description of the various

program elements. Consequently, most readers will probably wish to proceed directly



to the next section entitled 'Summary of Model'. Based on the assumption that the

overall mechanical stability of a brittle rock will be controlled by the gross geometric

interactions of the crack arrays, we are primarily interested in first order crack

interaction effects. As a result, we are willing to sacrifice a certain amount of accuracy

in determining local stresses for the ability to augment the total crack population. The

model, then, is constructed so as to include cracks which are equal in length to unit cell

dimensions. To make this geometry work, we have developed a finite difference code,

based on a staggered gridding scheme, which not only is efficient at computing stress

components from nearest-neighbor displacements but also defines stresses where they

are needed to solve for local equilibria. The technique used to compute local

displacements is based on a multiple scaling procedure. In this procedure, small regions

of the sample are analized to determine their average elastic properties. The local crack

networks create severe anisotropy in these average elastic properties. As a result, fully

anisotropic elastic tensors (represented by 21 independent coefficients in 3D and 6

coefficients in 2D) must be calculated in the model. We begin our discussion of the

model formulation by considering the difference approximations for the governing

equations.

Hooke's Law and Equilibrium Equations

For a linearly elastic solid, stress is related to strain through Hooke's law:

Pij = cijkl ekl (2-1)

Through various energy arguments (Nye, 1986), it can be shown that c contains 21

independent coefficients. Eq. (2-1) can be written, in reduced form, as

Pi = cij ej . (2-2a)

For example, in the case of plane-strain normal to the z-axis, (2-2a) becomes



Pxx cl C4 C5 xx

yy 4 c2 c6  yy (2-2b)

Pxy c5 c6 c3 Yxy .

A typical stress component in the 2D finite difference approximation of (2-2) would be

Pxx = clAux/Ax + c4 Auy/Ay + c5 (Auy/Ax + Aux/Ay) (2-3)

where ux and uy are displacement components in the x- and y-directions, respectively.

In solving the quasi-static crack growth problem, we will also require that the

equilibrium equations be satisfied:

aPxx/x + aPxy/ y = 0

aPxy/x + aPyy/ly = 0 (2-4)

Pxy = Pyx

Gridding Scheme

Tradeoffs must be made in choosing the most appropriate grid for solving the

elasticity problem. The staggered grid is the most accurate finite-difference

representation of elasticity of a continuous medium. This nodal arrangement, for the 2D

case, is shown in Fig. 2. a. In the staggered grid representation, displacements and

stress components are defined on square lattices throughout the material. However,

displacements and shear and normal stresses are all offset relative to each other.This

representation has distinct advantages over the 'standard' grid representation shown in

Fig. 2.lb. First, consider the most common elasticity applications in which the

material is isotropic and c5, c6 = 0. In this case, notice that stress components are

represented where their defining displacement differences (e.g. eq. (2-3)) can be

obtained from nearest-neighbor displacements. This property accounts for the good

accuracy of the staggered grid. In contrast, consider the standard grid shown in Fig.

2.lb. The advantage of this gridding scheme is that stresses and displacements are

centered at the same locations. This property avoids some of the ambiguities

encountered with the staggered grid at high-contrast boundaries of the material. The



main disadvantage of the standard grid is its reduced accuracy. For the standard grid,

stresses cannot be defined in terms of displacement differences spanning a single unit

cell. Instead, displacement differences must be averaged over two unit cell lengths. If

these were the only considerations involved in choosing the gridding scheme, the

staggered grid would be the obvious choice. However, three additional points need be

considered. First, we will require the full 2D tensor representation (non-zero c5 and

c6). The corresponding terms in the equations defining stress components do not have

efficient representations on the staggered grid. Displacement differences spanning more

than a unit cell are required to compute stress components and a corresponding loss of

accuracy occurs. The second difficulty arises in representing the equilibrium equations.

If a unit cell is defined as represented by the dashed lines in Fig. 2.1a, then both both

Pxx and Pxy are available precisely where needed to balance forces in the x-direction.

However, neither Pyy nor Pxy are known in positions needed for balancing forces in

the y-direction. Thus, stresses must be averaged to represent the equilibrium equations

and much of the accuracy achieved in evaluating stresses is now lost. The third

consideration involves the fact that the elastic tensor elements, representing a material

property, are varying with position throughout the material. In the staggered grid

representation, stiffness components must be averaged across unit cell boundaries in

computing some of the stress components. If the material properties are varying

smoothly as a function of position, then the necessary averaging is not a serious

problem. However, we wish to consider a material which is filled with cracks on the

same scale as the unit cell of the differencing representation. Since the cracks represent

a discontinuity in material properties (some components of cij -+ 0 for an open crack),

averaging across cracks becomes a serious difficulty.

Having said all this, the first attempt at developing the crack-interaction model did,

in fact, use a staggered grid representation. After considerable effort, this approach was

abandoned and a compromise representation, which will be referred to as a modified

staggered grid, was adopted. This representation is shown in Fig. 2.1c. In this case,

both displacements and material properties are defined at the centers of the unit cells

while stress components are defined at cell edges. In addition, cracks can occur along

all cell edges. Thus, stresses represent the forces transmitted between adjacent cells and

are known in the proper positions to solve equilibrium equations for each cell. One

compromise of this configuration is that only half of the displacement differences used



to compute stress components span a single unit cell dimension. The remaining

displacement differences average over larger distances. Notice that in computing a

single stress component, strains and stiffnesses of two unit cells plus an intervening

crack are involved. This configuration is approximated by a column of elements in

series. The exact form of this series approximation will be described below.

After implementing this modified staggered grid representation, it became clear that

restrictions on the crack locations and orientations were too severe to allow for crack

coalescence and mechanical failure of the sample. For example, the closest

approximation to a diagonal shear failure plane would be a staircase of horizontal and

vertical cracks (Fig. 2.2). A sample containing this crack geometry clearly has zero

macroscopic tensile strength. For axi-symmetric compression, however, even in the

case where there is zero frictional shear strength across crack surfaces, such a sample

would be metastable to uniaxial compression and would be fully stable for finite lateral

compression. Due to this important geometric restriction, the model was then modified

to include diagonal cracks as shown in Fig. 2.3. This geometry proved to be a

significant improvement over the previous model since diagonal cracks, oriented 450 to

the sample axes and applied principal stresses, are subjected to the maximum shear

stresses. While cracks at angles somewhat less than 450 to the maximum principal

stress direction would have larger ratios of shear to normal stress, this additional

refinement did not seem warranted in the initial diagonal crack model. The primary

importance of including diagonal cracks is that slip on these crack surfaces tends to

develop large tensile stress concentrations at the crack tips, leading to the formation of

'wing' cracks parallel to the maximum compressive stress direction. This process has

been identified as an important aspect in microcrack development (Evans and Wong,

1985; Ashby and Hallam, 1986; Sammis and Ashby, 1986; Horii and Nemat-Nasser,

1986).

Up to this point, the model has been linear; at least for a given crack population.

However, two non-linear features were added to enhance the model. These were crack

closure effects and crack frictional strength. Crack closure properties are non-linear

since an open crack has effectively zero stiffness regardless of how open the crack is,

while a crack which closes in compression becomes stiffer (also as a non-linear

function of closure). Thus the model, which computes displacement adjustments

according to a linearized stress-strain relation, must be cycled through many steps to



allow the crack geometry to converge on a stable configuration. In terms of crack
friction, a crack and the surrounding material will deform approximately linearly as
long as no slip occurs on the crack face. However, once shear strength on the crack
surface is exceeded, slip occurs with little change in shear stress. Thus there is an
abrupt drop in apparent shear modulus to nearly zero. The behavior is further
complicated since while the shear modulus for continued slip is essentially zero, any
decrease in shear strain unloads the crack and the apparent shear modulus jumps to a
non-zero value until the crack is driven to slip in the reverse sense. These frictional

crack properties have been included in the final model through the use of a crack slip
vector associated with each crack.

Of course, the crack interaction process itself is non-linear. A given crack
population will produce complex stress and strain fields in the sample in response to a
given applied load. Any crack which grows will alter its local stress field. For distances
greater than the crack half-length, the stress perturbation due to a crack drops off as r 2

where r is the distance from the crack center (Pollard and Segall, 1987, pp. 328). As
the crack density increases it becomes more and more likely that neighboring cracks
will be induced to failure even though the applied boundary stresses have not changed.
This process is observed in our simulations where a sample held at constant boundary
stress conditions near failure will require many iterations before all crack growth
ceases.

Difference Approximations

The basic procedure for solving the elasticity problem involves the following steps.

1) For a given crack population and nodal displacements, strains within each unit cell

are computed. 2)From these strains, stresses are computed. 3)Equilibrium equations

are solved to compute nodal displacement adjustments. 4)Stresses are recomputed and

the crack population is modified according to local stress states. After any desired

modifications of the boundary conditions, the entire procedure is then repeated.

Unit cell strains are obtained by first approximating displacements at cell edges

using a series-average scheme involving two adjacent nodal displacements and the

intervening edge crack. For example, consider the grid without diagonal cracks shown

in Fig. 2.4a. To determine the average y-displacement uy(a along cell side a with no
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crack present, using cells A and B il series gives

uya = UyA + c2 A/ (c2 A + c2B) ( yB - uyA) (2-5a)

where c2 i is the elastic constant c2 of the ith cell. In a similar fashion, the

x-displacement uxa along side a is given by

uxa = uxA + c3 A/ (c3 A + c3 B) (uxB - UxA) (2-5b)

where, in this case, shear moduli c31 are used. If side a contains an open crack (Fig.

2.4b), then no stress is transmitted across the side and

uja = A (2-6)

uj= jB

If side a contains an open crack of length I out of a total side length 1o (Fig. 2.4c), then

the average displacements on the side are approximated by

uxa = 5 (UxA + c3AB (uxB - uxA)) + (I - ) UxA

Ux0 = (UxA + c3AB (uxB - uxA)) + (1 - ) uxB (2-7)

uya = 5 (uyA + c2A B (yB - uyA)) + (1 - 5) uyA

UyP = (uyA + e2AB (u yB uyA)) + (1 - ) y B .

The weighting parameter for the crack length is defined as

= 1 - 1/1, (2-8)

and ciAB = ciA/(ciA + ciB). Once the average displacements are computed for each edge,

strains and then stresses are computed. For example, to compute Pyy, the average

normal stress between cells A and B (Fig. 2.4d), first compute strain components in

cells A and B. For example,



ExxA = (uxY - ux8 )/lo

eyyA = 2(uy0 - u A)l o (2-9)

Yxy A = (uyY - Uy)flo + 2(uxa - uxA)fIo

Then the average normal stress component becomes

Pyy = ~ 2 (c 4
A exxA + c4 B xxB

+ c2A eyYA + c 2B yyB (2-10)

+ c6A xyA + c6B YxyB ).

The weighting function 4 assures that no stress is transmitted across a fully cracked

edge. Expressions for the other stress components are constructed in a similar manner.

Eq. (2-10) gives the desired result for both fully cracked edges (Pi = 0) and uncracked

edges (where it reduces to the form shown in (2-3)).

For simplicity, the previous development has been restricted to horizontal and

vertical cracks. However, the model has been augmented to include diagonal cracks. In

this case, the procedure for computing strains and then stresses is essentially the same

as before, with the added complexity of computing local stress and strain components

along directions rotated 450 to the sample axes. The assumption that material properties

at the finest level are isotropic leads, mercifully, to significant simplification of the

difference equations and offsets some of the geometric complications. The isotropic

stiffness tensor values, expressed in terms of the Lam6 constants X and g., are one of

the model inputs:

L+2t X 0 cliso c4iso 0

ciso = X X+2p. 0 = c4iso c2iso 0 (2-11)

0 0 t 0 0 c3iso

In this case, the series approximation for displacements at cell edges (e.g. eq. 2-5a)

becomes

uya = UyA + ( UyB - uyA)/2. (2-12)



Average edge displacements for edges containing cracks become, for example

(referring again to Fig. 2.4c),

uxa = (UxA + (uxB - UxA)/2) + (1 - 5) UXA

uxI = 4 (uxA + (uxB - uxA)/2) + (1 - ) uxB (2-13)

ya = (uyA ( A) + (u1B - uA)2) + ( - U) uy A

uyI = 4 (uyA + (uB uyA)/2 ) + (1 - ) uyB .

Strains needed for computing Pyy are again given by eq. (2-9), and

Pyy = 4/2 (c4iso (ExxA + xxB) + c2iso (EyyA + EYYB)). (2-14)

To accomodate diagonal cracks, displacements are maintained in two coordinate

systems; the standard (x,y) system and an (r,s) system rotated counterclockwise by 450

(Fig. 2.3). Then, displacements, strains and stresses along diagonal edges are all

computed in the (r,s) system.

Crack Closure

Numerous studies have analized the closure of cracks in compression (e.g. Brace et

al., 1965; Walsh, 1965; Walsh and Brace, 1966; Walsh and Grosengaugh, 1979).

Since we wish to simulate the effects of confining pressure in our model, it is desirable

to have some mechanism for crack closure. As with other aspects of the model, it

seemed appropriate to choose a closure algorithm that was simple while reproducing the

main features of the closure process. The algorithm currently in use describes crack

closure in terms of the net strain normal between nodes across a crack. If normal > 0,

the crack is designated open. For Enormal < 0, the fraction of the crack that is open is

given by A-b e . Constants A and b have been chosen so that cracks are approximately
80% closed for a normal stress of 1 kb (100 MPa). This gives reasonable agreement

with granite data (Brace et al., 1965; Bernabe, 1986; Morrow et al., 1986). A more

accurate algorithm is planned for future implementation.



Crack Surface Friction

The algorithm for computing slip offsets on crack surfaces has a simple form. A

slip vector is defined for each crack so that the total slip offset parallel to the crack

surface is T1 (Fig. 2.5). We begin by assuming that an edge which in not completely

cracked will have no slip offset (1l = 0). This is done partly as a matter of convenience.

However, the increased compliance of a partially cracked edge is taken into account in

the procedure used to compute subnode displacements. The main disadvantage of

neglecting slip on partially cracked edges is that it sets a threshold of a unit crack length

for frictional historesis effects. For edges which are completely cracked, the total shear

strain y in the material near the crack will be reduced by slip on the crack:

y = Yo - rl/d (2-15)

where yo is the shear strain that would result if there were no slip on the crack and d is

the distance between displacement nodes. If the crack is open, then no shear stress and

therefore no shear strain can be sustained so that rl = yod. Then, the only remaining

case is for a crack which is partially or completely closed (as express by the parameter

4). Since 4 represents the fraction of the crack that is closed and the normal stress

Pnormal as computed above represents the stress averaged over the entire edge, the

average normal stress on the closed portion of the crack is really Pcnormal =

Pnormal/%. Then the magnitude of the shear stress that can be supported by the closed

portion of the crack is

IPcshearl = -fPnormal = fPnormal / ( (2-16)

where f represents the coefficient of friction. The minus sign is required since

compressive stresses are negative. The corresponding range in strain is just tyI = -f

Pnormal / (gt). Since shear strain and therefore shear stress will be zero for rl = y d, T1
must fall in the range

d ( yo +fPnormal / (4t)) 5 1T 5 d ( Yo -fPnormal / (4g)) . (2-17)



If Ti from the previous program iteration falls within this range, it remains unchanged

so that the crack remains locked in its previous position. If T1 lies outside of this range,

it is reset to the nearest bound, indicating that the crack has slid at its frictional strength

limit. This procedure allows the crack to slide in one direction and then, if loaded in the

reverse sense, to remain locked until its shear strength is again exceeded. It also allows

a crack to become stronger or weaker as the normal stress varies. In the present

simulations, the coefficient of friction was f= 0.5. Byerlee (1978) found that for a

wide range of silicates, the coefficient of friction ranged from 0.6 <f < 0.85. The

cracks most favorably orientated for sliding would be inclined approximately 300 to the

maximum compressive stress. Since the present model is limited to 450 cracks, a

coefficient of 0.5 on these cracks would allow slip at approximately the same

differential stress asf = 0.6 on a 300 crack.

Crack Growth Criteria

Once the stress components along cell edges have been computed, a procedure must

be developed to decide when cracks will grow. The algorithm adopted in this model is

based on the stress intensity factors K (mode I tensile crack growth) and KII (mode II

in-plane shear crack growth) as used in fracture mechanics. In terms of the mechanical

properties of a medium, a crack would be represented as a discontinuity in elastic

properties. When the medium is stressed, this leads to discontinuities in both stress and

displacement. In the case of the long, thin cracks that are of interest in the present

study, singularities in stress and displacement develop at the crack tips which can be

expressed in terms of the stress intensity factors. The fracture mechanics approach to

the analysis of stressed cracks has been developed in, for example, Lawn and Wilshaw

(1975) and Liebowitz (1968) and a variety of solutions to particular problems appear in

Sih (1973) and Paris and Sih (1965). Applications to geologic problems appear in, for

example,Li (1987), Pollard and Segall (1987), Dmowska and Rice (1983) and

Rudnicki (1980). We wish to consider the conditions necessary for microcrack growth

in an overall compressive stress state. It is generally accepted that cracks grow in

tension when the stress singularity at a crack tip overwhelms the remotely applied stress

field. A classic example is the development of wing cracks in response to slip on a

crack oriented obliquely to the principal stress directions. Lawn and Wilshaw (1973)



analyze this situation of mixed mode loading in which both KI and KII are present.

Using a maximum strain energy release rate criterion, they show that the presence of

mode II stress intensity promotes out-of-plane crack growth. In fact, crack extension

tends to be in the direction where local tensile stress is the greatest. We have adopted

this rule as a criterion for choosing the direction of tensile crack growth. A limited

number of tests were conducted to verify the performance of the model. The simplest

case of an isolated crack loaded in tension gave the proper in-plane extension. An

isolated diagonal crack loaded in compression also developed wing cracks in the proper

orientation. Finally, a variety of right and left stepping crack pairs were loaded in shear.

On a qualitative basis, the development of interconnecting cracks agreed with the

predictions of Segall and Pollard (1980) (e.g. tensile cracks developed, spanning the

fault jog, in the case of right-lateral slip on right stepping cracks).

In addition to choosing the direction of propagation, we must also decide at what

stress level a crack will propagate. While this would be straight forward for an isolated

crack, our model must deal with a variety of complicated geometries. This is a key

element in the model and, unfortunately, is dealt with in only an approximate manner.

Future versions would clearly benefit from an improvement of this treatment. The

problem would be more tractable if stresses at crack tips were known more accurately.

However, the stress components computed for each cell side are local stresses and at

the same time are averaged over distances large compared to the crack tip singularity

region. Before describing the precise crack growth algorithm, we will summarize the

basic result. In effect, a crack will grow when a tensile strength limit on a neighboring

cell edge is exceeded. This limit is To = KIClo - 1/2 = 1 kb for the current model

parameters (KIC is the critical stress intensity factor for mode I crack growth and 10 is

the length of the unit cell in the model).

While the mode I crack growth criterion reduces to the preceeding tensile stress

criterion for most cases, the actual algorithm is more complicated and approximates a

maximum strain energy release rate rule for cases where crack interaction is weak. If

we first consider a single crack of unit length lo , stresses on adjacent cell sides would

occur in 'region 3', using the classification of Pollard and Segall (1987). This

encompasses the region greater than one crack width from the crack center (r > 1/2

where I is crack length) and is characterized by a stress field perturbation, due to the

crack, that drops off as (r/l)-2. As an example, an isolated unit length crack was loaded



in tension and the normal stress on the edge just off the end of the crack was 1.3 times

greater than the remotely applied stress. Using the region 3 stress approximation from

Pollard and Segall, we would expect a stress amplification of 1.2. Again, for isolated

cracks, this near-field calculation could be handled efficiently. The difficulty is that in

the model, crack networks develop so that effective crack lengths become large and

shapes become irregular. In this case there is no simple way of relating the stress

computed for a cell edge to the stress intensity at a neighboring crack tip. By default,

we have chosen to assume that the stress for a cell side represents 1.3 times the

equivalent far-field stress for a crack tip loaded in isolation. The approximate stress

intensity factor then becomes KI = (xlo/2)1/2 Pnormal/1.3. This expression is correct for

the simple case of pure mode I extension. However, we make no attempt at improving

upon it in the case of more complicated geometries. When the approximate stress

intensity computed in this manner exceeds a critical value KIC, the crack is allowed to

grow. The critical stress intensity factor KIC can be considered a material property. It

has been determined experimentally (Atkinson and Meredith, 1987b) to be 1 - 4

MPa-ml/2 for many silicates. A value of 1 MPa-m 1/2 has been used in this study. This

criterion is also applied to cell sides that are only partially cracked. In this case, the

model was calibrated by loading a single partially cracked cell side in pure mode I and

observing the resulting stress that was developed on the uncracked portion of the cell.

An appropriate empirical function was then developed to relate the local stress to the

far-field stress so that in this case, KI = (xl/2)1/2 Premote.

An initial series of simulations was conducted in which cracks grew only when this

mode I growth criterion was met. In this case, it was found that there was no curvature

to the Mohr failure envelope and that the sample strength continued to increase

unbounded with increasing confining pressure. It was obvious that some additional

failure mechanism was required to operate at high confining pressure. The crack

growth criterion that was settled on was for mode II crack extension. It may be more

appropriate to use the term 'apparent' mode II since the microscopic mechanism for

in-plane shear is left unspecified. One possible mechanism would be the development

and coalescence of en echelon tensile cracks. At the level of resolution of the model,

however, crack growth appears to be mode II, and the term 'apparent' will not be used

further. For mode II growth, we compute a stress intensity factor Kn = l%(xlo/2)1/2

where r is shear stress. Then, a crack is allowed to propagate in mode II for KII 2



KIIC. Rice (1980) and Wong (1982a) examined the critical strain energy release rate

GIIC for mode II crack propagation. They reported that, based on laboratory

measurements of poly-crystalline rock, GIIC ranged from 0.5 x 104 to 7 x 104 J-m-2

(seismological estimates of GIIC are typically 2 to 4 orders of magnitude larger). Since

Gu is related to KII by Gu = ((1-v 2 )/E)K 1
2, these laboratory determinations suggest

that for crystalline rocks, KIIC ranges from approximately 10 to 50 MPa-ml/ 2 . A value

of KIIC = 15 MPa-m l/ 2 has been used in all computer runs. As we will show in the

simulations, at low confining pressure, tensile crack growth is dominant. However, as

confining pressure is increased, tensile cracking is suppressed and an increasing

number of cracks grow in shear. The ratio of the critical stress intensity factors

determines the pressure where this transition occurs.

Finally, the crack growth algorithm used in the model is as follows. Each junction

where potentially eight cracks can meet is evaluated individually. The approximate

stress intensity factors are computed for each uncracked edge and divided by the

appropriate critical stress intensity factor.The largest value is selected and, if it is greater

than unity, the corresponding edge, and only that edge, is allowed to grow a crack.

Time Dependence

As presented so far, the model contains no time-dependence other that the basic

assumption of causality that new cracks will grow in response to the present crack

population and boundary conditions. That is, once a stable configuration is achieved,

no crack growth will occur until the boundary conditions are changed. The majority of

the simulations were performed in this manner. However, it is well known that rocks

will creep under constant applied boundary stress conditions. To investigate these

time-dependent phenomena, a limited number of simulations were conducted in which

the model was extended to include subcritical crack growth. The dominant mode of

subcritical crack growth rate, v, is found empirically to satisfy a power law dependence

on stress intensity factor (Atkinson and Meredith, 1987a); i.e. v = AKIn, where A and

n are constants. Since the present model computes an approximate stress intensity

factor for each crack, it is relatively straight forward to include the subcritical crack

growth rate.



Satisfying Equilibruim Conditions

Equilibrium is achieved by balancing forces and moments. Balancing moments

requires that in the absence of internal torques, shear stresses in orthogonal directions at

every point must be equal (e.g. Pxy = Pyx and Prs = Psr). Forces are balanced in x-

and y-directions for each element in the sample. In the square array geometry (Fig.

2.1c), elements are simply the square unit cells. In the diagonal crack geometry (Fig.

2.3), elements are the 45-45-900 triangular elements of which there are four per unit

cell. In this case, shear and normal stresses acting on the diagonal sides of elements are

resolved into tractions in the (x,y) reference frame. An inversion routine is used to

adjust displacements to bring each cell into equilibrium. First, the sample is divided into

blocks of 3x3 unit cells each. Each of these blocks is adjusted separately. For an

individual block, vectors are generated for stress components, Pj, on each side, sums

of forces acting on each cell, Fi , and displacement adjustments, Aui, of each node. For

each iteration, Pj is premultiplied by a simple matrix Aij, which is determined by the

cell geometry, to compute the force imbalances Fi on each cell. Another matrix, relating

pressure changes to displacement changes, Sji = aPj/ui, must be constructed each time

the crack population or the material properties of the block are changed. The desired

displacement adjustments are those needed to null the force imbalances. Then

S Au = AP (2-18)

and the stress adjustments are related to the force corrections through A,

-F = A AP. (2-19)

Defining the matrix product G = AS gives

-F = AS Au = G Au . (2-20)

Therefore, displacement adjustments are expressed as

Au = -G- 1 F. (2-21)



G is a square, sparse, non-symmetric matrix.

Multiple Scaling or Renormalization Group Method

In principle, the matrix G could be constructed for the entire sample and solved in

one step. However, this is problematic for any reasonably sized test sample. The

current model is using a sample size of 27 x 54. With four sub-elements per unit cell

and two displacement components per sub-element, this direct approach would require

inverting an 11,664 x 11,664 array. In 3D, the array dimension would grow to

approximately 2.8x106. The multiple scaling approach provides a means of avoiding

dealing with the entire sample matrix at one time. By breaking the overall system into 3

x 3 blocks, matrix inversions are kept small. In the case of the square 2D array, G has

dimensions of 18 x 18. For the 2D diagonal crack array, the dimension increases to 72.

Even in the 3D case, the array dimension is still a managable 648. In fact, for the 2D

diagonal array, more computation time is spent constructing G than in inverting it.

The basic approach in the multiple scaling procedure has been described in Madden

(1976, 1983) and Williams and Madden (1988). The basic idea is taken from

renormalization group theory, RNG, which was developed primarily in quantum

mechanics and applied to critical phenomena. While the procedure of averaging

quantities and changing scale is important in RNG, it represents only a limited aspect of

the theory. We therefore prefer, in the present context, to use the term 'multiple

scaling'. As an example, we will consider a three level system with the top level

consisting of 27 x 27 elements. This level is divided into 81 square blocks of 3 x 3

elements each. The operators Gij1=3, where I refers to level, are individually

constructed based on the location of cracks, the degree of closure of each crack, and the

local elastic constants. In the present model, the material is assumed to be

homogeneous (in the absence of cracks) and isotropic. This condition is not a

restriction of the method, but rather, was adopted for convenience to simplify the inputs

used in the starting model. Thus, the only inhomogeneity present in the model is due to

the position of cracks. After the individual operators are constructed, their inverses are

computed and stored for later use. For each block, a full stiffness tensor, consisting of

six independent elements, is determined to represent average material properties. This is
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accomplished by subjecting the block to three independent strain conditions: eI =
a(1,0,0); e2 = a(0,1,0); e3 = a(0,0,1) and finding the average stress tensors that are

produced. From these nine relations between average stress and average strain, average

elastic properties are determined using a least squares fit. At this stage, the original level

3 sample is represented by a 9 x 9 array of elements on level 2, comprised of averaged

elastic properties. Next, the procedure is repeated, this time operating on the level 2

elements. Level 2 is divided into 9 square blocks, again consisting of 3 x 3 elements.

The individual operators Gijl=2 are constructed and their inverses stored. Each block is

tested to determine average elastic constants. These new elastic constants are used to

represent the original sample by a set of 3 x 3 elements corresponding to level 1. The

final step involves performing the same procedure on the level 1 elements to arrive at a

single set of elastic constants (level 0) that represent the average properties of the entire

sample.
Now that the bulk properties of the sample are known, the second half of the

modeling procedure is begun. First, the desired boundary conditions are applied to the

sample. Using these boundary conditions and the stored inverse operator [Gl= - 1,

displacements at the nine level 1 nodes are computed. These level 1 displacements are

then used as boundary conditions in conjunction with the level 2 operators [Gijl=2-l1 to

solve for displacements of level 2 nodes. Repeating the procedure one more time

provides displacements for the level 3 nodes. From these displacements, the local

stresses on the sides of individual elements are calculated. Finally, by using the local

stresses in computing the stress intensity factors, the growth of new cracks is

determined.

A number of comments need to be made about this basic procedure. Each change in

level in the averaging scheme is accompanied by a significant reduction in the

distribution of elastic properties throughout the sample. Clearly, the original sample

contains the maximum contrast in properties since it can contain elements with no

cracks and therefore full stiffness components as well as fully cracked sides with

essentially zero stiffness. The off-diagonal average stiffness components, c4 through

c6, for level 3 can be quite large. However, c5 and c6 invariably approach zero as they

are averaged over larger and larger regions. For the case where there is no preferred

crack orientation, the material must appear isotropic in bulk. Thus, on a scale large

compared with the crack size, the elastic tensor components must assume the relations



given by eq. (2-11), although Xbulk and ibulk will be less than X and p. for the

individual crystals. For simulations in which the principal stress directions of the

applied stresses are oriented parallel to the x- and y-axes, the orthorhombic symmetry

requires c5bulk, C6bulk = 0. This, in fact, is observed. By averaging over only three

scales, c5bulk and c6bulk are consistantly reduced to > 0.005 pt.

Since the method for estimating average material properties is not exact, we wish to

know that the estimated properties are physically meaningful. This becomes

increasingly important as crack populations increase and some of the stiffness

components approach zero. By considering the work needed to deform an elastic body

(Nye, 1986), it can be shown that cij is symmetric. To be stable, any deformation from

a state of zero applied stress must involve an increase in strain energy, given by 1/2 cij

ei j. This condition requires that c be positive definite and therefore that the three

pivots of c are all positive (e.g. Strang, 1986). The first condition is simply

c 1 >0. (2-22a)

A positive second pivot requires

dl/ cl > 0 (2-22b)

where dl = clc2 - c4c4. Similarly, a positive third pivot requires

(dld2 - d3 d3 ) / cldl > 0 (2-22c)

where d2 = clc3 - c5c5 and d3 = c1c6 - c4c5. Conditions (2-22a) and (2-22b) require

cl >0 (2-23a)

c2 > 0 (2-23b)

c42 < clc2 .  (2-23c)

Condition (2-22c) places constraints on the remaining stiffness elements, requiring:

c3 > 0 (2-23d)



c5
2 < ClC3 (2-23e)

(c4c5 - (d1d2 )1/2)/c 1 < c6 < (c4c5 + (d1d2 )1/2)/cl. (2-23f)

All stiffness tensors are evaluated according to these constraints. Occasionally, one of

the restrictions will be violated, in which case, small adjustments are made to satisfy

inequalities (2-23). No large adjustments are ever required.

Other than effects of crack interactions, the multiple scaling procedure described

above is linear and, for a given set of boundary conditions, an equilibrium

configuration can be determined in one iteration. However, there is one disadvantage of

the method. As described, displacements at a given level are determined from elastic

properties at that level and boundary displacements at the next lower level. Since these

boundary displacements are arrived at from elastic properties averaged at the lower

level, they provide an approximate boundary condition which, at best, gives only an

average displacement on the boundary. Thus errors are locked into the displacement

solution and are propagated along, level by level. To avoid this problem, the basic

modeling scheme was modified in the following way. Rather than computing

displacements at each level from the overall imposed boundary conditions, only

changes in displacements, due to changes in boundary conditions and elastic constants,

are computed. These changes are carried through to the finest level where they are

added to the displacements from the previous iteration. Then, the entire level 3 array is

re-solved, block by block, using the surrounding displacements as boundary

conditions. This relaxation procedure, in which the entire sample is adjusted locally,

would eventually converge on the correct solution, even without the multiple scaling

procedure. However, while the procedure is efficient at removing short wavelength

errors, it is very inefficient at removing long wavelength residuals. By contrast, the

multiple scaling procedure ignores short wavelength information in favor of the average

properties. By combining the long wavelength sensitivity of the multiple scaling

technique with the short wavelength sensitivity of the relaxation procedure, we have

taken advantage of the best features of each.

Computation Time

As a matter of interest, we give a brief account of the computation time involved in



the simulations. For all practical purposes, the program is completely cpu-bound. The

main computational expense is in building and inverting the 72 x 72 element stiffness

arrays. For a sample size of 27 x 54 unit cells, one program iteration requires

approximately 30 minutes on a VAX 785. There are undoubtedly ways of improving

program efficiency. However, these are not anticipated to result in dramatic

improvements in computation speed.



Summary of Model

The multiple crack interaction model requires the following inputs (values used in

current model are listed in brackets):

Lam6 constants X, i for intact matrix material. [X = p. = 400 kb (40 GPa)]

Critical stress intensity factors, KIC, KIIC, for crack growth criteria. [KIC =

0.01 kb-ml /2 (1 MPa-ml/ 2); KIIC/KIC = 15]

Coefficient of friction,f, for friction on cracks. [f = 0.5]

Parameters A, b to define crack closure characteristics. [approximately 80%

crack closure for Pnormal = 1 kb]

For time-dependent model, power law exponent n relating crack growth rate

to stress intensity factor. [n = 20]

Initial crack population.

Stress/strain boundary conditions (and time history if desired).

General assumptions and features of the model are:

Matrix material is elastic and, in present model, isotropic.

Cracks grow unstably according to fracture mechanics critical stress intensity

rules in either mode I (tension) or mode II (in-plane shear). As used in the

model, in-plane shear crack growth may be more appropriately referred to

as an apparent mode II phenomena, since the microscopic mechanism,

whether tensile or shear, is left unspecified.

For time-dependent modeling, crack growth rate is assumed to obey

subcritical crack growth power law.

Cracks can only grow along vertical and horizontal boundaries and diagonals

of unit cells.

Cracks close in response to normal stress.

Closed portions of cracks can support shear stress up to their frictional

strength limit. Fricitonal strength is represented by a single coefficient of

friction f. For time-independent modeling, f is constant. In some



time-dependent simulations, subcritical crack slip rate is a function off.

A slip vector is assigned to each crack to keep track of slip offset.

In the present application, a uniform stress boundary condition is designated

for the sides of the sample to simulate laboratory triaxial experiments in

which confining pressure is applied.

Top and bottom boundary conditions are given as vertical displacements and

zero average shear stress.

Material in contact with top and bottom of sample is assumed to have the

same average elastic properties as the sample and changes properties as

the average sample properties change.
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Model Results and Comparisons to Laboratory Experiments

The main series of computer runs has been designed to simulate laboratory

experiments performed on a triaxial testing apparatus. In a typical triaxial experiment, a

cylindrical sample is placed in a pressure vessel which is then pressurized with an

appropriate confining fluid (Fig. 2.6). A thin, impermeable jacket is used to separate

the sample from the confining fluid. Deviatoric stress is achieved by advancing a piston

against the end of the sample column. Thus, the boundary conditions become: On the

sides of the sample, uniform normal stress (02 = 03 = Pconf) and zero shear stress. A

displacement boundary condition is commonly prescribed at the ends of the sample, so

that the maximum compressive stress olis oriented parallel to the sample axis. Due to

the mismatch in moduli between the sample and steel end caps, the ends of the sample

are generally constrained laterally. This effect leads to a distortion of the stress field

near the ends of the sample. As a result, a length-to-diameter ratio of 2.5 is commonly

used to provide a sufficient working volume, which is free of end effects, in the center

of the sample (Jaeger and Cook, 1984).

Results of a laboratory test on Westerly granite are shown in Fig. 2.7. Sample

dimensions were 25.4 mm-diameter by 63.5 mm-length. The sample was deformed at a

confining pressure of 400 bars (10 bars = 1 MPa) and an axial strain rate of -10-5 s-1.

Differential stress (adif = 01 - 03), circumferential strain and volumetric strain are

plotted as functions of axial strain in Fig. 2.7. Features that are typical of this type of

deformation experiment of brittle rock include peak strength amax, Young's modulus

(E = slope of stress-strain curve), and onset of dilatancy (ace/r11 > 0) which generally

occurs between 1/3 and 2/3 of the total strain (Brace et al., 1966).

To simulate this type of experiment, the 2D computer model includes a stress

boundary condition applied at the sides of the sample: Pxx = Pconf, Pxy = 0 (Fig.

2.8). Mixed boundary conditions are applied at the top and bottom of the sample.

Vertical displacements at y = 0 and y = 2L are chosen to provide an average desired

vertical strain eyy. Rather than simulating the steel end caps used in laboratory

experiments, the computer sample is assumed to be in contact with rock of the same

average elastic properties. Since the elastic properties of the sample change during the

experiment, the adjacent rock also changes. In this way, the most severe of the end

effects are removed and a sample length-to-diameter ratio of 2 is used. The final
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boundary condition is that the y = 0 and y = 2L surfaces are translated laterally to

maintain zero average shear tractions.

A computer simulation for Pconf = 1 kb is shown in Fig. 2.9. Notice that the

sample 'fails', although no discrete fault plane develops. This point will be discussed

more fully. Also, as was the case with the laboratory sample, the model sample

becomes dilatant before failure. (For plane-strain, Ezz = 0 so ev = exx + Eyy-) The

unevenness in this and subsequent stress-strain curves comes from two sources. As

discussed earlier, the model is nonlinear both through crack interactions and through

the frictional properties of the cracks. Following an increment of axial strain, a set of

new cracks will be formed. By redistributing stresses locally, these cracks may induce

the formation of a secondary set of cracks, even though the boundary conditions are not

changed. With an additional iteration of the model, a tertiary set of new cracks may be

formed, and so on. This crack interaction becomes increasingly important as the sample

approaches peak strength and, in fact, is the primary motivation for undertaking this

study. Each of these sequences shows up as a vertical drop in differential stress in Fig.

2.9. Note that time is not a parameter in this simulation and each of these relaxation

sequences is seeking a stable crack geometry for the given applied boundary

conditions. In this sense, the equilibrium stress-strain curve would be represented by

the locus of points connecting the minimum differential stress at each strain increment.

In the post-failure region, a point was reached where the production of new cracks

increased each iteration, even though the applied axial strain was held constant.

Apparently, the stored internal elastic strain energy was sufficient to drive the sample

into mechanical instability. This material would be termed class II by Wawersik and

Fairhurst (1970), who distinguished between failure which was driven by the elastic

energy stored in the loading system and failure which would proceed catastrophically

even if the loading system has infinite stiffness, as is the case for these simulations.

The nonlinearity due to crack friction comes into play as soon as shear stresses are

large enough to cause slip on cracks. This happens when the slope of the stress-strain

curve begins to decrease. As with the creation of new cracks, slip on existing cracks

alters the local stress field so that in the next model iteration, slip may be induced on

nearby cracks. This process requires many iterations to converge and proved to be the

most costly in terms of computation time. Constraints in available computer time

required that in this and subsequent simulations, the model was never allowed to relax



fully. To evaluate the severity of this problem, a run was conducted using smaller strain

steps so that the model remained much closer to equilibrium. While the peak strength

was about 12% lower, the sequence of crack development was essentially the same as

that shown in Fig. 2.9. It was therefore decided that the general features of the crack

interaction process could be studied even though the sytem was being driven away

from equilibrium throughout the simulations.

Model parameters used in this simulation are listed in Table 2.1. The starting crack

population, which will be refered to as Ml, is shown in Fig. 2.10a. Crack sites were

filled randomly so that 20% of the possible crack sites were fully cracked. This is less

than the critical probability for crack connectivity in 2D (28%), so that no connected

path exists from top to bottom or from side to side. The largest cluster of connected

cracks contains 73 cracks and is shown in Fig. 2.10c. As new cracks grow in the

stressed sample, the largest clusters gradually grow by accreting smaller clusters. Since

new cracks are only allowed to appear on cell edges, the resolution of the model is

determined by the length scale of the unit cell. At the same time, the model is capable of

dealing with partially cracked cell edges, so it was decided to emplace partial cracks on

all cell edges that were not fully cracked (Fig. 2.10b). This provides only partial

compensation for the limited resolution that is inherent in the model, since it restricts the

locations of small cracks to cell sides and therefore cannot provide for the densities of

smaller cracks which would be appropriate for a real rock. The small-scale cracks

would be more appropriately simulated by reducing the material properties of the matrix

material from single crystal stiffnesses to stiffnesses appropriate to a multi-crystalline

aggregate containing the appropriate flaw densities. No attempt was made, however, to

include these features in the present model, so that we expect strength and stiffness

values in the simulation to be a bit high. In addition, restricting inclined cracks to 450

will also tend to make the sample stronger. By including partially cracked edges in the

starting model, we do provide seed cracks in regions which happen to lack full cracks

and therefore would otherwise be unrealistically strong. If 1o is the length of a cell side,

then the distribution of normalized crack lengths 1/10 for starting model M1 is shown in

Fig. 2.10d. This seed crack size distribution was chosen arbitrarily as a simple starting

model. Also shown in Fig. 2.10d is the distribution of cluster sizes for clusters of

connected cracks.
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Confining Pressure Dependence

Stress-strain curves for a suite of runs at selected confining pressures are plotted in

Fig. 2.11. Simulations are then plotted individually in Figs. 2.12 through 2.19. All of

these runs used the parameter values listed in Table 2.1 and starting crack population

M1. With the exception of the unconfined run, all of the stress-strain curves have the

same initial slopes. The crack closure algorithm used in the model was chosen so that

cracks would close by approximately 1 kb normal stress. Thus, the unconfined run has

a reduced initial slope since it is the only case where significant closure of horizontal

cracks could occur during axial loading. In all examples, the slope of the stress-strain

curve (Young's modulus) first began to decrease when shear stress was sufficiently

large to cause slip on existing diagonal cracks. Slip on these cracks results in the

concentration of stress at the crack tips. At low confining pressure, the local tensile

stresses that develop at the crack tips eventually overcome the overall compressive

stress state imposed by the confining pressure, resulting in the growth of axial wing

cracks. As discussed earlier, this process leads to the opening of microcracks in the

rock and the onset of dilatancy. However, as confining pressure is increased, the

differential stress needed to produce tensile stresses at crack tips also increases. One

reason for this is that the ambient stress field at the crack tips becomes more

compressive with increased confining pressure, creating a larger stress difference

which must be overcome to achieve a tensile stress state. The other reason is that

increased confining pressure increases the frictional strength of the cracks so that higher

shear stresses are needed before cracks begin to slip. Thus, as confining pressure is

increased, shear stress at the crack tips also increases. A point will be reached where it

becomes easier for diagonal cracks to extend in mode II shear than in tension. This

transition is shown in Figs. 2.12 through 2.19 where cumulative crack growth is

plotted vs axial strain. Horizontal (y-normal) cracks are, for the most part, closed by

the axial load and contribute little to the kinematics of the problem. For this reason, they

are not plotted. Crack populations that are important are the vertical (x-normal) and

diagonal cracks. As discussed earlier, cracks are allowed to grow in either tension

(mode I) or shear (mode II), when the appropriate critical stress intensity factor is

exceeded. In the present simulations, in which there is no time-dependent crack

growth, we assume that once the critical stress intensity is exceeded on a partially
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cracked edge, the crack will grow unstably in a single program iteration, cracking the

entire edge and creating a 'new' crack. In this context, a 'new' crack is said to occur

each time a potential crack site becomes fully cracked. The cumulative number of cracks

which grew in each of these four categories is plotted in the figures. Referring to Fig.

2.14, for example, mode I axial cracks begin to grow at the onset of dilatancy, and are

the dominant mode of cracking. This development of axial cracks as open voids in the

rock has been well documented in laboratory experiments and is responsible for most

of the anisotropy in material properties that develops as rocks approach failure. The

onset of dilatancy corresponds to the ambient stress level where locally the confining

pressure is overcome and tensile stresses are developed. The primary mechanism for

this is slip on diagonal cracks, producing tensile stresses at the crack tips and the

development of vertical 'wing' cracks. The onset of failure at 1.05% axial strain is

accompanied by the abrupt production of diagonal cracks in tension. Since the overall

stress field for cracks of this orientation is compressive, development of tensile cracks

indicates that locally the stress field is being rotated. A frequently cited mechanism for

the coalescence of axial cracks into a shear zone is the buckling of closely spaced

slender columns (Wong, 1982a; Nemat-Nasser and Horii, 1982; Ashby and Hallam,

1986; Sammis and Ashby, 1986). While our computer model does not contain a direct

analog to buckling, the large rotations of the local stress fields represent the

development of a similar geometric instability. The other significant crack growth that

occurs is the development of diagonal cracks in mode II. These cracks grow at a nearly

continuous rate throughout the loading cycle and represent failure of partially cracked

sites. To understand this, remember that the initial crack population (Fig. 2.10b)

consisted of 20% fully cracked sites and 80% partially cracked sites. Thus some sites

were broken nearly through and developed large KII stress intensity factors when

loaded. At quite modest differential stress levels, some of these cracks were driven to

link up with neighboring cracks. Especially at low confining pressure, this mode II

crack growth is an artifact of the model since cracks are restricted to cell edges. In a real

rock the majority of these cracks would be expected to grow wing cracks rather than

extending in-plane.

For the run at zero confining pressure (Fig. 2.12) axial tension cracks are the

dominant mode of crack growth. Only ten cracks grow in mode II throughout the entire

simulation. At 0.5, 1 and 2 kb confining pressure, the pattern of tensile crack growth
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remains much the same as for the unconfined sample. The most dramatic change to

occur with increasing confining pressure is the systematic increase in the rate of

diagonal mode H crack growth. By 4 kb (Fig. 2.16), diagonal mode II crack growth

dominates the tensile crack growth throughout the run. By 8 kb, tensile crack growth is

completely suppressed and the material behaves ductily. Note that there is little strength

loss after failure as well as a significant reduction in total dilatancy. Up to about three

percent axial strain, approximately 800 new diagonal cracks are formed, resulting in

47% of the possible diagonal crack sites being cracked. At this point crack growth

diminishes and the entire sample deforms in distributed shear remeniscent of cataclastic

flow. By 12 kb, the transition is complete and the material would be classified as

elastic-plastic.

Mohr Diagram

The peak strength data shown in Fig. 2.11 are replotted in terms of shear vs

normal stress in Fig. 2.20. The Mohr failure envelope is constructed by connecting

tangents to the failure stress circles. The failure envelope is concave downwards as is

commonly observed for brittle rock (Jaeger and Cook, 1984). When a suite of

simulations was performed in which cracks were allowed to grow only in tension,

according to the KIC growth criterion, a linear failure envelope resulted. For this

reason, we suggest that the curvature of the failure envelope is due to the activation,

with increasing confining pressure, of mode II crack growth. Wong (1982b) reported a

similar trend for Westerly granite.

The maximum shear strength that can be sustained by a single, unflawed crystal can

readily be calculated by estimating the stress needed to break an entire lattice plane of

bonds in unison. It is generally assumed that this ultimate shear strength is given by
.t/10 (Dieter, 1961). By limiting the maximum shear stress that could be sustained by

the rock, this ultimate shear strength would force the failure envelope to become

horizontal at high normal stress. However, before this could happen, dislocations

would be activated and lead to plastic deformation. This behavior is observed in

minerals such as halite and calcite (Fredrich et al., 1989) which become ductile at room

temperature and modest confining pressure. However, there is no evidence for the

mobilization of defects in quartz or feldspar at room temperature and pressures as high



as 15 kb (Tullis and Yund, 1977). In the present model, this ultimate shear strength

would be approximately 40 kb and is too large by at least a factor of two to have any

direct effect in the simulations. Instead, as described in the previous section, we have

included a mode II critical stress intensity factor of 0.15 kb-ml /2 (15 MPa-ml /2 ) to

produce the desired Mohr envelope curvature. Rice (1980) and Wong(1982a) have

used the post-failure response of laboratory samples to calculate critical energy release

rates GIIC for mode II crack growth. Although their determinations were not for single

crystals, they should provide a good estimate of the appropriate values to use in our

simulations. In fact, their findings suggest that for typical crystalline rocks, KIIC

should range from 10 to 40 MPa-ml/2 . The inclusion of KIIC in the model limits the

peak shear stress to approximately 15 kb and causes a transition, with increasing

confining pressure, from axial crack growth to distributed shear throughout the sample.

A similar behavior was reported by Tullis and Yund (1977) for low-temperature

deformation of granite. A possible physical mechanism would be the development of en

echelon tensile cracks in front of the advancing shear plane. At lower confining

pressure, the tensile cracks would grow into wing cracks and deflect the main shear

crack. However, at high confining pressure, the tensile cracks cannot grow and instead

collapse to form a cohesionless damage zone. Such a mechanism is suggested in biaxial

PMMA experiments (Petit and Barquins, 1988).

On a Mohr diagram, the transition should occur when the brittle failure envelope

and frictional strength curve converge. As the brittle-ductile transition is approached,

the strength contrast between intact material and fractured material vanishes.

Consequently, the driving force for concentrating shear along discrete fracture planes

also vanishes. Byerlee (1967) suggested such a brittle-ductile transition for Westerly

granite. He measured peak strength and frictional sliding strength as a function of

confining pressure and noted that the two were converging at approximately 12 kb

confining pressure (Fig. 2.21). Samples that were fractured at this pressure and then

forced to deformed further, did so by stick-slip, although the peak intact strength and

peak fricitional strength were the same, and stick-slip stress drops were less than at

lower confining pressures. These observations are consistant with the present

interpretation.

A brittle-ductile transition has been suggested to operate in the lower crust (e.g.

Kirby, 1980; Sibson, 1982) where it was was used to explain the lower limit of the



zone of crustal seismicity. This transition depends on thermally activated processes

such as dislocation creep mechanisms and represents a transition to truly plastic

deformation. Tse and Rice (1986) have appealed to a variation in the velocity

dependence of friction with temperature to explain the depth limit of the seismogenic

zone of the San Andreas fault. This mechanism is also based on thermally activated

processes. The high pressure-low temperature behavior shown in Figs. 2.12 through

2.19 would be included in the semi-brittle field classification, e.g. Tullis and Yund

(1977) and Kirby (1980). It is, however, distict from the semi-brittle processes which

they described as being a combination of brittle microfracturing and thermally activated

plastic deformation.

Acoustic Velocity

The acoustic velocity for body waves in a homogeneous medium with

orthorhombic symmetry can be expressed as

Vi = (mi / p)1/2 (2-24)

where p is density and mi is an appropriate modulus of the medium. mi is given by

mi = aPi / Dei (2-25)

and is composed of the diagonal elements of the reduced elastic tensor. Thus, in the

principal directions,

Vpx = c11/2
Vpy = (1/p) 1/2 c2/2  (2-26)

Vs = c31/2

Since the bulk elastic tensor is calculated as a byproduct of the modeling procedure, it is

a simple matter to compute acoustic velocities for the simulation. Using a density of 2.7

g/cm 3, the P-wave velocities are plotted in Fig. 2.22a. Axial velocity increases initially

due to closure of horizontal cracks and then gradually decreases. Transverse velocity



decreases monotonically as vertical cracks open, dropping approximately 20% by peak

strength. The same data are replotted in Fig. 2.22b vs normalized differential stress.

Included in the plot is transverse P-wave velocity for Westerly granite at 500 bars

confining pressure (from Lockner et al., 1977) and for Aji granite at 810 bars confining

pressure (from Yukutake, 1989). The Westerly data show a 35% drop in transverse

P-wave velocity by peak strength while the Aji velocity drops by 20%. The difference

in confining pressures is responsible for the variation in velocities between the two

granite samples (Yukutake reported a 30% drop in velocity for a 540 bar experiment).

The 2D simulation is in good agreement with the velocity changes observed in the 810

bar experiment. At this point it is not clear what improvement would be gained from a

full 3D simulation. For the properties examined so far, the fact that the simulation is

only 2D has had remarkably little effect when results are compared to actual laboratory

data. However, some aspects of 3D samples are clearly not properly modeled in 2D.

For example, cracks in virgin rock samples invariably form through-going connected

pathways, since rocks have finite fluid and electrical conductivities (Madden, 1983).

The beginning crack population for the 2D simulation, however, is not fully connected.

Thus, proper modeling of these properties may require a full 3D formulation.

Porous Rock

In the previous set of simulations, a crack closure algorithm was included in the

model which was designed to close all cracks at approximately 1 kb normal stress.

Such a closure criterion is appropriate for a crystalline rock, such as granite, that has

large aspect ratio cracks. However, for a rock such as sandstone, which has more

equi-dimensional pores, the pores are more resistant to closure by pressure. One way

of simulating this behavior is to modify the closure algorithm so as to be less sensitive

to pressure. Fig. 2.23a shows a set of stress-strain curves for runs in which cracks

would not close until approximately 100 kb. The main difference in response is a

gradual increase in Young's modulus in the elastic loading portions of the loading

histories. As confining pressure is increased, the cracks (pores) gradually close,

increasing the elastic moduli of the material. This pressure dependence has been noted

for sandstones. For example, in Fig. 2.23b, Young's modulus is plotted vs confining

pressure for Berea sandstone (18% porosity).
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Microcrack Development and Critical Crack Density

In this section, we will examine the development of the crack population in

response to loading. Since horizontal cracks are closed by the application of axial

stress, they contribute little to the kinematics of the failure process. Consequently, we

will only consider vertical and diagonal crack populations in this section. Figs. 2.24

through 2.28 show the evolution of the crack population throughout the 1 kb run. Note

that near the peak stress (Fig. 2.25) the largest connected cluster is still rather limited in

extent, although, just after peak strength (Fig. 2.26) the largest cluster has jumped in

size by joining to another large cluster. It is not until well into the post-failure region

(Fig. 2.27) that the sample boundaries become fully connected. Intuitively, one might

expect the sample to become fully connected very close to peak strength. However,

these two properties are not closely related. For example, in 3D, undeformed rocks

typically contain a fully connected pore structure since they have finite fluid and

electrical conductivity. In the 1 kb simulation, peak strength is achieved when 22% of

the possible sites have become fully cracked. This is an increase of only 10% relative to

the original crack population (and a two percent increase in the number of possible sites

that are cracked). Complete loss of mechanical strength does not occur until

approximately 28% of the potential sites are fully cracked, or a 40% increase over the

initial crack population. In a second simulation, in which a starting crack population of

11% was used, peak strength occured after only 16% of the possible sites were

cracked. We must point out here an important shortcoming of the model. For reasons

that will be discussed in a later section, the model tends to suppress the development of

a through-going failure plane. Thus the microcrack growth in the post-peak-strength

region, where strain localization is expected (Rudnicki and Rice, 1975), at best places

an upper bound on the amount of uniform cracking that could be expected from a more

accurate model. As a result, we will concentrate on the crack growth leading up to peak

strength. Fig. 2.28 shows the development of the crack population. Notice that the

small cracks are essentially passive throughout the failure process. Stress intensities for

these cracks are never large enough for them to grow on their own. Instead, small

cracks are consumed uniformly as cracks extend from the network of fully cracked

edges. Wong et al. (1989) point out the importance of the interconnected pore structure



in controlling material properties. Other studies (e.g. Tapponnier and Brace, 1976;

Hadley, 1975) have recognized that cracks tend not to grow in isolation, but rather are

spawned from pre-existing cracks. This characteristic also plays an inportant role in the

crack development in the present model.

Madden (1983) applied renormalization group theory to the problem of evaluating

critical crack densities for both failure and electrical conduction in rock. Most of his 3D

calculations were based on a 2x2x2 unit cube with cracks on bounding surfaces. The

critical parameter for both failure and conductivity was N12/S where N is number of

cracks, 1 is crack length and S is the area used in the crack count. Critical values for

failure and conductivity were, respectively, 0.79 and 0.21. We wish to apply this same

approach to crack densities in our model, in this case based on a 3x3 unit square to

conform to the RNG grouping used to calculate bulk material properties. Since our

model is 2D and we have included diagonal cracks, our critical densities will be

different. For 2D, and assuming unit length cracks, the critical parameter is simply

N/S. The calculation is actually performed in two steps. Remember that in the

calculation of elastic properties, cracks were only included at the finest scale. At all

other scales, each unit cell was considered homogeneous. To calculate the critical

density needed for failure, we use the same approach. Starting one level above the

finest scale, we assume that each unit cell is either failed or intact. We then wish to

know, for a given probability of failure for each unit cell, what is the probability that

the entire sample will be failed. There are in fact three fixed points, at probabilities of 0,

1 and the critical probability P*. For any probability below P*, an infinite sample will

be intact while for probabilities greater than P*, the sample will have failed. Examples

of the failure criterion are shown in Fig. 2.29. A 3x3 block is considered failed for

vertical maximum compressive stress when the the top and bottom sides are completely

separated by failed cells. Failed cells are considered connected if they touch on either

corners or edges. A Monte Carlo method was used to determine the critical probability

of P* = 0.38 for all levels above the finest level. The finest level is treated separately

since it is the only one in the model that contains cracks explicitly; in the other levels,

cracks are represented by their effects on the average elastic moduli. Then, all that

remains is to determine the critical crack density at the finest level needed to give the

critical probability of 0.38 appropriate for the coarser levels. For vertical loading,

horizontal cracks are ignored since, in general, they will be immobilized by friction.



Once again, a block is considered failed if the top and bottom are completely separated

by a connected set of cracks. The critical probability for a crack site being cracked on

the finest level is found to be P*crack = 0.29 ± 0.01. The crack densities at peak

strength are significantly less than this value. However, the samples are still stable in

the post-peak-strength region, where they can still support significant load. For the 1

kb simulation, the runaway condition of uncontrolled crack growth that is indicative of

a critical phenomenon occured when P*crack = 0.28. Thus the RNG calculation

predicts the point of mechanical instability quite well. Peak strength crack densities are

plotted in Fig. 2.30 as a function of confining pressure. Notice that a 1 kb run using

model M2, in which starting crack probability was 11%, reach peak strength at a much

lower density than the runs using an initial crack probability of 20%. This may reflect

the fact that new crack populations are anisotropic and non-random. This result

indicates that models which predict failure based on a damage parameter may have

varying degrees of success depending on the initial crack densities of the test samples.

Also shown in Fig. 2.30 are crack densities at the onset of tertiary creep in

time-dependent creep runs. These crack densities are systematically higher than the

crack densities for non-time-dependent peak strength using the same starting models.

This is an interesting feature for which we have no explanation at present.

The critical crack density for electrical conduction, representing the point at which

the sample becomes fully connected, can also be calculated. In determining the critical

probability on the coarser scales, the connectedness criterion must be changed. Now,

cells that touch at corners are no longer considered connected. Instead, only cells

sharing a common side are connected. This condition give a critical probability P* =

0.62. At the finest level, horizontal cracks must be included since, even though they are

held closed mechanically, they will still have finite conductivity. We find that the critical

crack probability for electrical conduction is P*crack = 0.28 ± 0.01. This is in good

agreement with the crack density for which the 1 kb run became fully connected. It

turns out that for the 2D crack geometry used in our simulations, critical crack densities

for failure and conductivity are essentially the same.

Time Dependence and Creep Simulations

In the simulations presented so far, there has been no explicit time-dependence



other than the progressive development of new cracks in response to the stress field

created by existing cracks. Once an equilibrium crack geometry has been achieved, no

new cracks will grow without further modification of the boundary conditions.

However, it is well known that in actual experiments as well as in the earth,

time-dependent crack growth and creep occur whenever sufficient deviatoric stress is

present. Static fatigue is one of the most important low-temperature time-dependent

phenomena in rock. It refers to a process by which materials are observed to fail at

stresses below their short term failure strength when subjected to corrosive

environments. Since water, which is ubiquitous in the earth's crust, actively attacks the

Si-O bond, silicates in general exhibit this phenomenon. Considerable attention has

been paid to the study of stable tensile crack growth in glass (Charles, 1958) and more

recently in rock (Atkinson, 1987). The typical relationship between crack extension rate

and stress intensity is shown in Fig. 2.31. Over most of the range of stress intensity

achieved in laboratory tests, crack growth rate can be fit by a power law dependence on

stress intensity:

v = AKn . (2-27)

For many silicates at room temperature, the exponent n falls in the range of 10 to 30

(Atkinson, 1987). As KIC is approached, a region often occurs, especially in glass, in

which stress dependence first decreases and then increases super-exponentially until the

crack grows unstably at KIC. Since an approximate value of KI is already computed in

the model to determine the point where unstable crack growth will occur, it is a simple

matter to include subcritical time-dependent crack growth. For simplicity, we assume a

strict power law relation for subcritical crack growth, adopting an exponent of 20.

Time-dependent shear has also been observed for faults oriented obliquely to the

principal stress directions (Rutter and Mainprice, 1978; Solberg et al., 1978; Higgs,

1981). This phenomenon has been studied extensively in terms of rate- and

history-dependent friction models (e.g. Dieterich, 1981; Rice, 1983; Ruina, 1983).

While some fault materials have been found to develop negative velocity dependence of

steady-state shear strength after sliding for some distance, initial velocity dependence

seems to be consistantly positive (Lockner and Byerlee, 1986). In general, we expect

some degree of time-dependent relaxation of stress on microcracks that have been
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loaded close to their shear strength limit. Secondary creep rate from Solberg et al.

(1978) is plotted as a function of coefficient of frictionf/fc in Fig. 2.32.fc (= 0.7 for

the Solberg data) is the value of f where unstable slip occurs. In these studies of

time-dependent fault creep, the faults contained gouge layers of finite thickness. Since

complex structures develop and evolve in the gouge layer with continued slip (Moore,

et al., 1989; Yund et al., 1989), the details of how slip is accomodated may be quite

different in experiments containing thick gouge layers than in the case of slip on

microcracks with little or no gouge. As a first attempt, we have used

logl0v [mm/s] = 7.56 (flfc) - 15.26. (2-28)

This relation is plotted as the straight line in Fig. 2.32.

To study how these time-dependent effects influence the model, we have conducted

a series of creep test simulations using the subcritical crack growth and shear slip rate

algorithms individually and then combined. In a creep test, the sample is loaded to a

desired deviatoric stress state which is then held constant as the sample deforms. The

time history for a creep simulation using both subcritical crack growth and

time-dependent shear slip and run at Pc = 1 kb and Pdif = 5.5 kb is shown in Fig.

2.33. The starting crack population referred to as M2 is show in Fig. 2.34. In this case,

only 11% of the possible crack sites were fully cracked. The simulation exhibited the

classic creep response of exponentially decaying primary creep rate followed by

secondary (constant rate) creep and finally accelerating tertiary creep. In Fig. 2.35, two

creep tests, at differential stresses of 5.0 and 5.8 kb are compared to a constant strain

rate simulation which included no time-dependent algorithm. All three simulations used

the same confining pressure and starting crack population. This comparison is similar

to a technique employed by Wawersik and Fairhurst (1970) and Wong (1982b) to

evaluate the post-failure stress envelope. By connecting the points on the various

curves where the samples failed, we find that the post-failure envelope has positive

slope, indicating a class II material according to Wawesik's terminology. We have

already mentioned in an earlier section that in non-time-dependent simulations, a

runaway condition is reached in the post-failure region in which the number of new

cracks generated during each program iteration continued to increase. This feature is

another characteristic of a class II material.
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An important assumption implicit in reconstructing the post-failure envelope from

creep curves is that the crack population at a point on the stress-strain curve is

path-independent. While the validity of this assumption cannot be tested with real

samples, we have the ability to deform identical samples under different conditions.

The development of new cracks during the three simulations is shown in Fig. 2.36.

While the growth of cracks as a function of axial strain is quite different in the three

examples, the relative changes in the various crack populations shows good

correspondence from one experiment to the next. At the time of failure, total crack

counts are quite similar. By the end of the constant strain rate run, differential stress

had dropped to the same level as the upper creep run (5.8 kb). Mode I vertical crack

counts in both cases had reached approximately 200. The 5.0 kb differential stress run,

which should intersect the failure envelope at a more advanced stage in the failure

process, reached a runaway condition at a mode I vertical crack count of approximately

300. Thus, in terms of cumulative crack damage, this reconstruction technique seems

valid.

A more rigorous test is to compare the locations of individual cracks. In Fig. 2.37,

the crack population occuring at peak strength in the constant creep rate run is compared

to the crack populations occuring near the end of secondary creep and in the early

stages of tertiary creep for the Pdif = 5.8 kb run. In all plots, the background (dotted)

cracks are common to both data sets. In plots (a) and (b), the solid lines represent

cracks present in the creep run but not in the strain rate run. Solid lines in (c) and (d)

represent cracks present in the strain rate run but not in the creep run. Notice that in the

secondary creep plots (a and c), most of the cracks that are not common to both data

sets are mode I axial cracks. The few diagonal cracks that are exclusive to the creep run

appear in what will become the overall damage zone responsible for accelerating tertiary

creep. Notably fewer axial cracks, exclusive to the strain rate run, appear in plot (d)

than in plot (c). This would indicate that the creep run is preferentially developing many

of the same axial cracks that grow in the non-time-dependent run. Since there is only

about a 500 bar difference in stress level between these two runs, we would not expect

large differences in crack populations. However, a similar comparison between the

constant strain rate run and the 5.0 kb differential stress creep run is shown in Fig.

2.38. The development of crack patterns is quite similar to that described for the 5.8 kb

run. In this case, the stress difference between the constant strain rate run and the creep
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run is approximately 1.3 kb. The close similarity between the crack growth patterns in

these two runs supports the use of creep curves to reconstruct post-failure curves.

In the non-time-dependent simulations it was found that small cracks were not

actively involved in the development of fracture patterns. Instead, most new cracks

were spawned from existing crack arrays. This is also found to be true for the

time-dependent simulations. This process is similar to the suggestions of Kranz (1979)

and Batzle et al. (1980) that surface irregularities on existing cracks may act as sites for

initiation of new microcracks. In terms of the time-dependent modeling, crack growth

rate is so strongly stress dependent that small cracks have essentially no chance to

grow. Consider two isolated cracks under the same ambient stress conditions where

one crack is twice as long as the other. To extend an increment 8, will require nearly

200 times longer for the small crack. Thus, under creep conditions, we can expect the

largest cracks to quickly grow to near their stable lengths, followed by progressively

smaller cracks achieving significant growth. This process will continue until either

crack growth ceases or a critical crack density is achieved which leads to tertiary creep

and failure.

The static-fatigue response of rock is commonly evaluated by measuring the

time-to-failure, tf, of creep experiments. Time-to-failure generally has an exponential

dependence on differential stress (Kranz , 1980). Results from 1 kb simulations are

shown in Fig. 2.39 along with 1 kb data from Kranz (1980) for Barre granite. The

simulations all show an exponential stress dependence. The surprising result, however,

is the close agreement between the slopes of the simulated and laboratory data sets.

Given the latitude in choosing the stress-dependence of crack growth rate from

laboratory experiments (Atkinson (1987) reports 10 < n < 30 for silicates at room

temperature), there is no difficulty in matching laboratory results. Apparently,

subcritical crack growth of axial cracks, and alternatively time-dependent slip on

diagonal cracks, is sufficient to explain the observed time-to-failure behavior of

crystalline rock.

A series of room temperature laboratory creep runs are described in Chapter 3. In

those experiments the relationship between stress and volumetric strain rate was

examined for wet Westerly granite under secondary creep conditions. It was found that

the stress sensitivity satisfied
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logl 0(pv) = A + BPdif + f(v)

where A and B are constants. B was found experimentally to be 7.4 ± 0.2 kb-1. A

similar stress sensitivity was found for unconfined Westerly granite (Wawersik,

1973), Barre granite (Kranz, 1980) and Tennessee sandstone (Rutter and Mainprice,

1978). The creep simulations shown in Fig. 2.38 give B = 5.2 ± 1 kb-1 for the

simulations using only subcritical crack growth, and 2.5 ± 0.5 kb-1 for the simulations

using both subcritical crack growth and time-dependent crack friction. Although we

have not yet performed the necessary simulations, we expect to be able to match the

laboratory values using a different choice of subcritical growth rate and slip rate

parameters. The agreement between model and experimental data suggests that

subcritical crack growth of the largest members of the crack population dominates the

time-dependent behavior in these rock types.

Acoustic Emission

The monitoring of acoustic emission, AE, has proven to be a useful non-destructive

technique for studying the development of microcracks in samples in both pre- and

post-failure conditions. AE in rock is generally assumed to be the result of unstable

microcrack growth. This assumption is supported by the close correlation between AE

rate and inelastic strain rate, AE frequency content (0.5 to 10 MHz), and the

correspondence of AE source locations and damage zones in laboratory samples (e.g.

Lockner and Byerlee, 1977, 1980). In the computer simulation, crack extension occurs

when the critical stress intensity factor is exceeded and therefore represents unstable

crack growth. Consequently, each crack extension should represent an AE event. With

this in mind, we have conducted a creep simulation at 500 bars confining pressure and

a differential stress of 3.5 kb. The time histories of axial strain, acoustic emission rate

(new crack growth rate) and transverse P-wave velocity are plotted in Fig. 2.40. For

comparison, data from a 500 bar creep experiment on Westerly granite (from Lockner

and Byerlee, 1980) are reproduced in Fig. 2.41. Once again, the computer model

reproduces all of the significant features of the laboratory experiment. To achieve a

comparable time-to-failure, the simulation was conducted at a lower differential stress

level than the actual experiment. This was necessary since both subcritical crack growth
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and time-dependent slip were included in the simulation. As shown in the previous

section (Fig. 2.39), this results in an early time-to-failure when compared to granite.

The three creep stages are reproduced in the simulation, as well as the correlation of AE

rate and creep rate. The increase in AE rate in the tertiary creep phase in the simulation

is more abrupt than in the actual experiment (note that log(AE rate) is plotted in Fig.

2.40). This may be due in part to the small sample size used in the simulation (3 mm as

compared to 76 mm for the laboratory sample). Transverse P-wave velocity drops

steadily to approximately 60% of the hydrostatic value in the simulation. This velocity

change agrees reasonably well with the experimental data as well as with results from

Yukutake (1989); especially considering that the simulation is 2D.

Shear Localization

In the preceeding sections, we have focused primarily on the processes and changes

in material properties that occur in the dilatant pre-failure region. It was found that as

the sample was loaded,the first cracks to grow were quite efficient at redistributing local

stress concentrations over larger regions. Since the initial stress concentrators were

distributed randomly throughout the sample, the new crack growth was relatively

homogeneous. The growth of individual cracks in an overall compressive stress field

tends to be bounded by the action of frictional forces acting across the crack faces.

Properties of diagonal cracks,for example, are discussed further in Chapter 3.

Numerous studies have shown that cracks have little tendency to link up (e.g. Horii and

Nemat-Nasser, 1985; Segall and Pollard, 1980). This effect coupled with the fact that

cracks tend to grow parallel to the direction of maximum compressive stress makes

brittle materials suprisingly resistant to failure in compression. The process by which

cracks coalesce and form a macroscopic shear plane has been a subject of great interest

in rock mechanics. Rudnicki and Rice (1975) suggested that, at least for the case of

axisymmetric compression, shear localization could be expected to occur late in the

post-peak strength region. Hadley's (1975) data showed that granite samples which

failed in compression had achieved critical crack density everywhere by the time failure

occurred (Madden, 1983). By locating acoustic emissions in a creep experiment,

Lockner and Byerlee (1980) (Fig. 2.42) monitored the development of the fracture

plane. They found that in a 2.5 day experiment, localization of AE into a narrow region
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on the eventual failure plane did not begin until 2.5 hr before failure. By two seconds

before failure, this zone had elongated in the plane of the fault to only 30 mm (the

eventual fault length was 200 mm). Since crystalline rock generally weakens rapidly in

the post-failure region, there are significant technical difficulties in retrieving samples

after only partial failure. Wawersik and Fairhurst (1970) and Wong (1982b), however,

have accomplished this task to study microstructural changes in the post-failure region.

One of the primary reasons for undertaking the present modeling effort was to

investigate the microcrack localization process in brittle materials. It was therefore a

great disappointment to find that the numerical model, in its present form, has

limitations which become significant in the post-peak-strength region. As described in

the section on model description, there are two main elements in the model which

operate in parallel. First, displacements for the entire sample are adjusted each program

cycle to attempt to bring local elements into equilibrium. This relaxation procedure

operates on 3x3 blocks of the sample, using the surrounding displacements as

boundary conditions. The process is very efficient at removing short wavelength

residuals but has a prohibitively slow convergence rate for wavelengths longer than

three unit cell lengths. To correct the longer wavelength errors, the model depends on

the multiple scale RNG procedure. For a linear problem, the multiple scaling would

correct long wavelength errors in one iteration. However, the crack interaction problem

is highly non-linear. As a result, we have chosen to apply significant damping to the

multiple scaling adjustments. In this way, we avoid the possibility of over-driving the

system and causing regions to fail artificially. The penalty that is paid for this

performance stability is that regions which strain-weaken require many program

iterations to transmit load to surrounding regions. And in fact, this problem becomes
worse as the regions grow in size. Since the entire sample is near the critical crack

density when the localization process begins, the effect is to artificially strengthen weak

regions and inhibit their growth. Through trial and error, we have found that creep

experiments consistantly develop more localized failure regions. We suspect that this

occurs because, in the creep runs, the model iterates many times with little change in

boundary conditions, allowing significant slip to occur before new cracks are formed.

The fact that the creep simulations also allow time-dependent slip to occur at friction

levels below fc should aid this process. Because of this limitation of the model, the

stress-strain curves in the post-failure region should be regarded as upper bounds of the
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true equilibrium stress-strain curves.
We conclude this section with two examples of limited fracture localization during

creep simulations. The first example (Fig. 2.43) is for the tertiary creep phase of a run

using starting model M2, at confining pressure of 1 kb and differential stress of 5.8 kb.

Here we have plotted the crack density N/S for vertical and diagonal cracks. Recall that

the critical crack density for failure should be 0.9 and a fully cracked region would have

N/S = 3. The second example (Fig. 2.44) was run at 1 kb confining pressure and 5 kb

differential stress. In this case, starting model M3 was used in which the probability of

vertical and diagonal cracks was 15% and the probability of horizontal cracks was

60%. Note that, as in the case of the acoustic emission density plot for granite (Fig.

2.42), crack density was relatively homogeneous through secondary creep, localizing

with the onset of tertiary creep and developing into a large damage zone as tertiary creep

progressed.



Conclusions

The numerical simulations presented in this section have been suprisingly sucessful

at duplicating a variety of features observed in laboratory rock deformation

experiments. By including in the model crack friction, crack closure, fracture toughness

and subcritical crack growth, a rich assortment of behavior is observed. The model, in

its present form, has notable limitations. These include modest sample size, limited

accuracy in calculating stress, restriction of cracks to a periodic array, and the fact that

the model is a 2D simulation. Even so, the model is able to duplicate dilatancy, pressure

dependent strength, acoustic velocities, creep behavior, including time-to-failure,

acoustic emission rate and to a limited extent, crack localization. In particular, the

success at relating subcritical crack growth to bulk deformation properties is an

unexpected result. For the most part, experimental studies of subcritical crack growth

have concentrated on single cracks loaded in pure mode I. The numerical model appears

to have properly combined this process with the complicated cooperative crack effects

that develop large local stress heterogeneity in the sample. Numerical model results also

indicate that similar crack patterns develop in creep simulations conducted at different

stress levels. This result provides support for the technique of using creep experiments

to examine post-failure behavior in laboratory samples. As in low confining pressure

laboratory experiments, pre-failure microcrack growth in the numerical simulations is

primarily parallel to the maximum compressive stress direction. Both peak strength in

the non-time-dependent simulations and the onset of tertiary creep in simulations with

time-dependent crack growth, are coincident with an abrupt increase in the number of

diagonal cracks that extend in tension. This transition in crack growth orientation can

only occur as the result of a rotation of local stresses due to crack interactions. Such

behavior argues for the existance of a critical crack density which corresponds to the

onset of mechanical instability of the sample. By including a mode II critical stress

intensity factor in the model, a curved Mohr failure envelope was generated which

approximated the failure envelope for Westerly granite. In addition, a low-temperature

brittle-ductile transition was observed which involved a number of features that have

been identified in low-temperature high-pressure granite experiments. While many

aspects of the model can readily be improved upon to provide closer agreement with



experimental results, the basic performance has been demonstrated and should not

change appreciably. Extensions of the model to larger sample size and to 3D would be

interesting exercises to persue.



TABLE 2.1 - MODEL PARAMETERS

KIC

[kb-ml/2]

(MPa-ml/2)

0.01

(1)

KIIC

[kb-ml/2]

(MPa-ml/2)

0.15

(15)

[kb]

400

[kb]

400 0.5
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Figure Captions

Figure 2.1 Examples of 2D finite-difference gridding schemes. Unit cell is shown

by dashed line. Modified staggered grid was used in present model

formulation.

Figure 2.2

Figure 2.3

Diagonal fault can only be approximated by staircase assemblage of

cracks if only vertical and horizontal cracks are allowed. Unlike a

diagonal fault, this geometry is stable to axial compression. In addition,

model displacements on the crack set require opening of voids. This

would not be the case for deformation on a diagonal fault.

The basic 3 x 3 block, including diagonal cracks, which is solved in the

2D simulation. Each side of each triangular element is a potential crack

site. Shear and normal stress components are computed on the sides of

each element from adjacent displacements. The 72 displacement

compononts are determined that will bring each triangular element into

equilibrium, using surrounding displacements as boundary conditions.

Figure 2.4 Examples of series averaging scheme based on two cells and intervening

crack site. Interim use is to interpolate displacements of cell sides.

Ultimately, these displacements are used to compute local strains and

stresses.

Figure 2.5

Figure 2.6

Figure 2.7

Representation of slip vector iT along crack surfaces.

Schematic view of triaxial test geometry modeled by computer

simulation.

Triaxial deformation of Westerly granite showing differential stress,

transverse and volumetric strains plotted vs axial strain.
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Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Boundary conditions applied in 2D simulation.

Stress and strain plots for I kb confining pressure simulation.

Starting crack model M1 in which 20% of potential crack sites are fully

cracked. a) Fully cracked edges b) fully cracked and partially cracked

edges c) largest cluster of connected cracks d) distribution of crack

lengths and cluster sizes.

Summary of stress-strain curves for suite of runs at different confining

pressures; brittle-ductile transition occurs with increasing confining

pressure. Model parameters are listed in Table 2.1. All simulations used

initial crack population M1.

Results of unconfined simulation plotted vs axial strain: a) differential

stress b) transverse and volumetric strain c) and d) cumulative crack

count for vertical and diagonal cracks in modes I and II. A new crack is

said to occur in the program iteration in which a partially cracked site

becomes fully cracked.

0.5 kb confining pressure simulation.

1 kb confining pressure simulation.

2 kb confining pressure simulation.

4 kb confining pressure simulation.

8 kb confining pressure simulation.

12 kb confining pressure simulation.
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Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

Figure 2.27

16 kb confining pressure simulation.

Mohr construction for simulations shown in Fig. 2.11

Fracture shear strength and frictional shear strength vs normal stress for

Westerly granite, after Byerlee (1967).

Axial and transverse P-wave velocity from 1 kb confining pressure

simulation. a) Plotted vs axial strain, b) plotted vs relative differential

stress; includes experimental data from Lockner et al. (1978) (Pc = 0.5

kb) and Yukutake (1989) (Pc = 0.81 kb).

a) Stress-strain curves for simulations at confining pressures upto 8 kb.

Crack closure algorithm was modified to simulate pressure-resistant

pores (see text). b) Young's modulus vs confining pressure for Berea

sandstone (unpublished data).

Crack plots at eyy = -0.0073 (see Fig. 2.9); Pc = 1 kb; a) all fully

cracked edges (dotted lines represent cracks present in undeformed

sample, solid lines represent new cracks), b) largest crack cluster.

Crack plots at eyy = -0.0096; a) all fully cracked edges (dotted lines

represent cracks present in previous plot, solid lines represent new

cracks), b) largest crack cluster.

Crack plots at eyy = -0.0114; a) all fully cracked edges (dotted lines

represent cracks present in previous plot, solid lines represent new

cracks), b) largest crack cluster.

Crack plots at eyy = -0.0124; a) all fully cracked edges (dotted lines

represent cracks present in previous plot, solid lines represent new

cracks), b) largest crack cluster.
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Figure 2.28

Figure 2.29

Figure 2.30

Figure 2.31

Figure 2.32

Figure 2.33

Figure 2.34

Figure 2.35

Figure 2.36

Figure 2.37

Crack length/cluster size distributions for Pc = 1 kb simulation (Fig 2.9);

a) eyy = -0.0073; b) eyy = -0.0096; c) eyy = -0.0114; d) eyy = -0.0124.

Examples of cell geometries used in RNG calculations for critical failure

probability and critical connectivity probability.

Probabilities of crack sites being fully cracked plotted vs confining

pressure for peak strength in non-time-dependent simulations and for

onset of tertiary creep in time-dependent simulations. Critical crack

probability for failure is 0.29.

Schematic view of crack growth rate vs stress intensity for mode I

subcritical crack growth.

Log (slip rate) vs relative coefficient of friction for Westerly granite

gouge at Pc = 4 kb (from Solberg et al., 1978).

Creep simulation using starting crack model M2. Pc = 1 kb, Pdif = 5.5

kb.

Initial crack population model M2; 11% probability of crack site being

fully cracked. a) Fully cracked sites, b) partially and fully cracked sites,

c) crack length/cluster size distribution.

Non-time-dependent simulation using starting model M2 (top), creep

simulations using subcritical crack growth and time-dependent crack slip
(middle and bottom); Pc = 1 kb.

Cumulative crack growth data for simulations shown in Fig. 2.35.

Comparative crack distributions for non-time-dependent simulation and

5.8 kb creep simulation show in Fig. 2.35. Non-time-dependent peak

strength crack distribution is used in all plots. Late secondary creep crack
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Figure 2.38

Figure 2.39

Figure 2.40

Figure 2.41

Figure 2.42

Figure 2.43

distributions are used in a) and c); early tertiary creep crack distributions

are used in b) and d). Dotted lines represent cracks common to both data

sets. Solid lines represent: a) and b) cracks in creep sample but not in

non-time-dependent sample, c) and d) cracks in non-time-dependent

sample but not in creep sample.

Comparative crack distributions for non-time-dependent simulation and

5.0 kb creep simulation show in Fig. 2.35. Non-time-dependent peak

strength crack distribution is used in all plots. Late secondary creep crack

distributions are used in a) and c); early tertiary creep crack distributions

are used in b) and d). Dotted lines represent cracks common to both data

sets. Solid lines represent: a) and b) cracks in creep sample but not in

non-time-dependent sample, c) and d) cracks in non-time-dependent

sample but not in creep sample.

Time-to-failure plots for Pc = 1 kb creep simulations using subcritical

crack growth alone, time-dependent friction alone and subcritical crack

growth and time-dependent friction together. Also plotted is 1 kb

time-to-failure data for Barre granite from Kranz (1980).

Pc = 0.5 kb creep simulation data. a) axial strain, b) acoustic emission

rate and c) transverse P-wave velocity relative to hydrostatic velocity.

Pc = 0.5 kb Westerly granite creep data from Lockner and Byerlee

(1980). a) axial strain, b) acoustic emission rate and c) relative transverse

P-wave velocity.

Plot of density of acoustic emission source locations from Lockner and

Byerlee (1980). a) Primary creep, b) secondary creep, c) initial 133

minutes of tertiary creep and d) final 18 minutes of tertiary creep.

Density of vertical and diagonal cracks in creep simulation at Pc = 1 kb

and Pdif = 5.8 kb. a) starting model M2 crack density and b) mid-tertiary
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creep crack density. Note localization of crack damage in upper part of

sample. Critical density for failure = 0.9, density for fully cracked region

= 3.0.

Figure 2.44 Density of vertical and diagonal cracks in creep simulation at Pc = 1 kb

and Pdif = 5 kb. a) Starting model M3 crack density, b) late secondary

creep crack density, c) early tertiary creep crack density and d) late

tertiary creep crack density. Note similarity to granite sample in Fig.

2.42.
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Figure 2.44
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CHAPTER 3

LOW TEMPERATURE CREEP IN SATURATED GRANITE

abstract. Cylindrical samples of granite were deformed at 260C, constant confining

pressure (600 bars) and constant pore pressure (200 bars). Axial and volumetric strain

were determined from changes in the output of resistance foil strain gauges bonded to

the rock surface. In addition, dc electrical resistivity was measured parallel to the

sample axis. During each experiment (typically lasting from one to two weeks), the

deviatoric stress ad applied to the sample was cycled between 70% and 90% of the

short-term failure strength. The bulk of the experiments were conducted in the

secondary or 'steady-state' creep regime. Inelastic volumetric strain rate was found to

obey the law logl0(lv) = A + B ad + C logl0( v ) where B = 7.4 ± 0.2 kb- 1 and C=

-4. The C-coefficient represents a strain-hardening-like term. The stress-dependence is

of the same form as the stress-dependence measured for mode I crack growth in double

cantilever beam experiments. The observed creep behavior is analyzed in terms of

stress corrosion and crack growth models.

Introduction

The understanding and description of the failure process in brittle rock has been a

long-standing goal in the field of rock mechanics. Brittle failure is important in, for

example, the stability of structures, mines and tunnels, and on a larger scale, faulting,

earthquakes, tectonic processes and crustal plate bending. It has been known for a long

time that when rocks are loaded below their short term failure strength they will

undergo permanent, time-dependent deformation, especially when subjected to

corrosive environments such as water. Under proper conditions, rock will fail after

being loaded below failure strength for extended periods of time. This phenomenon,

referred to as static fatigue, was first studied in glass (Baker and Preston, 1946;

Charles, 1958; Mould and Southwick, 1959; Adams and McMillan, 1977) and later in

rock and single crystal quartz (Griggs,1940; Martin, 1972; Scholz, 1972; Wawersik,

1973; Wawersik and Brown, 1973; Cruden, 1974; Martin and Durham, 1975; Kranz,

1980; Lajtai et al., 1987) where it is important from an engineering standpoint in the
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delayed failure of mine pillars and in rock bursts. Because of the practical interest in

predicting failure, studies of static fatigue have been primarily interested in impirical

and semi-impirical relations of time-to-failure, tf. Constant-stress creep tests have been

conducted which lead to laws of the form

tf = to f(stress) . (3-1)

Kranz (1980), for example, lists the common power law and exponential forms:

tf = to 0 -m (3-2)

and

tf = to e-2.303ba . (3-3)

Scholz (1968a) proposed a slightly different form:

tf = to exp[-E/kT + b(S* - a)] (3-4)

where E is activation energy of the corrosion reaction, k is Boltzmann's constant, T is

absolute temperature and S* is the 'instantaneous' strength.

While knowledge of time-to-failure has practical applications, understanding of the

failure process requires studying the different stages of creep. When a brittle rock is

held at constant stress, it will typically creep in a manner as shown in Fig. 3.1. Initial

loading leads to primary or transient creep in which strain rate monotonically decays. A

period of stead-state or secondary creep follows in which strain rate is approximately

constant. The final tertiary creep phase involves a constantly increasing strain rate and

terminates in failure of the rock. During primary and secondary creep, the nucleation

and growth of microcracks occurs uniformly throughout the rock (Kranz, 1979, 1980).

Studies of crack growth in glass and plastic plates (e.g. Horii and Nemat-Nasser,

1985) have shown that in compression, cracks have little tendency to link and instead,

interact in such a way as to eliminate regions of high local stress (Madden, 1983;

Sammis and Ashby, 1986; Williams and Madden, 1989). Thus during the first two
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stages of creep, the growth of flaws in rock has the paradoxical effect of stabilizing the

internal structure; an effect which contributes to strain-hardening. Once the crack

density reaches a critical level, further crack growth leads to a local weakening of the

rock and microcracking accelerates. Eventually, one such weakened region grows

rapidly, microcracks coalesce, and a macroscopic fault is formed. Lockner and Byerlee

(1980) demonstrated this process by locating the acoustic emissions generated during

microcracking. They observed a diffuse distribution of acoustic emission events

throughout the primary and secondary creep stages. The onset of tertiary creep was

accompanied by a sudden localization of microcracking in a small region located on

what eventually became the fracture surface. A similar process has been observed in the

fracture of plates containing preexisting cracks (e.g. Horii and Nemat-Nasser, 1985).

Since tertiary creep represents rapid, unstable growth, the characterization of the

critical crack density attained at the start of tertiary creep and the crack growth processes

leading up to this stage should provide insight into the failure process. Early attempts at

describing this process used a statistical approach (Scholz, 1968a), assuming a

distribution f(o, am) of local stresses about the mean applied stress am . When the

stress in any small region exceeded some local strength, that region was assumed to

fail, redistributing the load over the remainder of the sample. All regions were assumed

to weaken by a stress corrosion mechanism, according to eq. (3-4). Spetzler et al.

(1982) used a different approach in which they assumed that the external stress is

supported by unfractured material between microcracks. In their model, the normalized

area that supported the external load was given by

An = 1 + q (co 2 - c2) (3-5)

where q is a constant and c and co are the current and initial crack lengths. Costin

(1987) described how damage theory can be used to model the failure process. In this

approach, a damage parameter, related to the internal structure of the rock, will evolve

with time and/or strain, allowing the material properties of the rock to be modelled.

Madden (1983) and Williams and Madden (1989) described a different approach, based

on renormalization group theory, in which the microscopic crack growth,

macroscopically applied loads and bulk material properties could all be modeled.

At high homologous temperatures, rocks can deform plastically, for example, by
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dislocation mechanisms (Poirier, 1985), or through other mechanisms such as pressure

solution. This is especially true at the slow strain rates (<10-12 s-1) common to

geologic processes. At low temperature, however, dislocations become pinned and

other thermally activated processes that can contribute significantly to high temperature

plasticity are arrested. Thus, quartz-bearing rocks tend to deform brittly at low

temperature, even at slow strain rates. The principal low-temperature, time-dependent

deformation mechanism in crystalline rocks appears to be a process known as stress

corrosion. This process was first reported in metals when work-hardened brass bullet

casings cracked after being stored in high humidity. A great deal of work has been done

on glass and ceramics where it was found that cracks could be caused to grow stably

from surface flaws when samples were loaded at levels below the critical stress

intensity. This phenomenon is referred to as subcritical crack growth.

Stress corrosion provides a mechanism whereby a crack can grow under an applied

load which would normally be too small to break bonds at the crack tip. By introducing

a chemically corrosive agent (e.g. water in the case of silicates) to the crack tip, the

bond energy is reduced and bonds can be broken at a reduced stress level. The rate at

which a crack will grow is then controlled by the slowest in a series of steps including

the reaction kinetics and the rate at which the corrosive agent can be supplied to the

crack tip (generally a diffusion process (Martin, 1972 and Martin and Durham, 1975)).

A wealth of data has been collected related to the rate of crack growth in glass and

ceramics and more recently rocks. Reviews are given by Anderson and Grew (1977)

and Atkinson (1984, 1987). A prototypical growth rate curve is shown in Fig. 3.2.

Log (v) is plotted as a function of KI (the fracture mechanics stress intensity factor for

mode I crack growth). KIC is the critical stress intensity factor representing the stress at

which the crack will grow unstably. K-v plots are generally divided into three regions.

In region I, crack velocity is very sensitive to stress while in rigion II, there is little

stress sensitivity. These regions are presumably controlled by reaction kinetics (region

I) and diffusion of corrosive agent to the crack tip (region II). The mechanism

controlling region III, as stress intensity approaches criticality, is less clearly

understood. A lower limit to the stress at which cracks will grow, Ko , has been

discussed, for example, by Rice (1978). Expressions for describing the region I

behavior were put forth by Charles (1958)
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v = vo exp[-H/RT] n

and Wiederhorn and Bolz (1970)

v = vo ' exp[(-E + b'K)/RT] (3-7)

where vo , vo', n and b' are constants, H is enthalpy, and E includes the stress-free

activation energy. n typically falls in the range 20 < n < 50 for stress corrosion in

ceramics (region I) and in the range 2 < n < 10 for diffusion controlled growth (region

II). While theoretical work has been conducted on the microscopic mechanisms

responsible for the crack growth behavior shown in Fig. 3.2 (reviewed in Atkinson,

1987), much remains to be done. Both eqs. (3-6) and (3-7) remain in use as

semi-impirical expressions. In fact, there are good theoretical reasons (Rice, 1978) to

relate crack growth rate to a*G rather than b'K in eq. (3-7), where a* is activation area

and G is the strain energy release rate. This approach will be examined further in the

discussion.

K-v measurements are performed almost exclusively on single cracks in tension.

This is because the test apparatus used (e.g. double cantilevered beam and double

torsion) allows for the determination of KI. For a brittle rock loaded compressively in a

creep test, time-dependent strain is primarily the result of microcrack growth (Hadley,

1975; Tapponnier and Brace, 1976; Kranz, 1979,1980). Acoustic emission

measurements also support this assertion (Scholz, 1968b; Evans and Linzer, 1973;

Lockner and Byerlee, 1977, 1980). The impulsive energy radiated in acoustic waves is

the result of discrete microfracturing events within the sample (e.g. Evans, 1978). This

could result either from cracks extending unstably in tension (at KIC) or unstable shear

failure (stick-slip) of existing cracks whose walls are in contact. The fact that acoustic

emissions and strain continue with time indicates that microcracks must be initiating and

growing stably (aseismically) throughout the experiment. The macroscopic strain is

then the summation of the strain increments contributed by cracks of different

orientations and in different stages of growth throughout the rock. Since cracks at low

stress intensity are growing slowly, they will contribute very little to the macroscopic

strain rate. Thus the strain rate will be controlled only by those cracks at or near KC.

This explains the strong correlation between acoustic emission and strain. By the same
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token, the residence time for cracks in the near-KC region is short. Thus the

microcracking process can be viewed in terms of reaction kinetics in which the

rate-limiting step is either crack nucleation or crack growth. By varying temperature,

stress and other parameters, it should be possible to learn about these processes.

In the present experiments, we have measured the stress-strain rate dependence for

granite in the secondary creep regime. While many static fatigue studies have been

conducted on rock, these have generally been concerned with time-to-failure. As a

result, relatively few data exist regarding the a-Y dependence for rock in compression

during secondary creep; the mode in which a rock in nature will spend the greatest

length of time before failure. Wawersik (1973) conducted uniaxial creep tests on

saturated Westerly granite and was able to determine stress-strain rate dependence.

Rutter and Mainprice (1978), hereafter referred to as RM, performed stress relaxation

experiments on confined Tennessee sandstone at room temperature and 3000 C. This

relaxation method has the advantage of sweeping out a range of stress in a single

experiment We have undertaken a series of experiments on Westerly granite which are,

in fact, similar to those of RM . The bulk of our experiments were performed at

constant stress steps. This procedure has yielded useful information that is not available

in the stress relaxation experiments. Our experiments are exploratory in nature and as

yet have only been conducted at room temperature and a single effective confining

pressure. Our motivation is two-fold. We wish to examine the effect that confining

pressure has on creep processes. In addition, we wish to search for a

low-stress-sensitivity creep mechanism which might be dominant at low temperature

and low stress. Such a mechanism could be important for geologic processes occuring

at shallow- and mid-crustal conditions in that it would allow deformation to occur at

lower stresses than are predicted by extrapolation of current laboratory measurements.
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Experimental

All rock samples used in this study were cored from a single block of Westerly

granite. Samples were 25.4 mm-diameter cylinders with nominal lengths of 63 mm. A

hardened steel sample was also prepared for calibration purposes. Orthogonal pairs of

resistance foil strain gauges were used to measure axial and transverse strain. Gauges

were bonded to the rock surface with epoxy and then encapsulated with sealant to

isolate them from the pore water. 3.2 mm-walled vinyl tubing was use to jacket the

samples. Strain gauge leads were passed through the tubing and sealed with vinyl

cement. This system proved effective in sealing the sample and maintaining electrical

isolation ( > 107 ohm) of the strain gauges. Since the gauges were in direct contact with

the sample and pressed against the sample surface by the confining pressure, strains of

10-6 could be resolved and were stable for extended periods of time. Calibration

measurements on a steel sample indicated that strain measurement variations due to

temperature fluctuations determined the long term and therefore minimum strain rate

resolution of the experiments.

Electrical resistivity was measured periodically during each experiment. Two

Ag/AgC1l electrodes were prepared by first pressing flat 25.4 mm-diameter circles of

silver screen and then plating them with AgCl. Electrodes were separated from the

sample by 0.25 mm wafers of porous alumina. Sample impedance was measured at 10,

30 and 100 Hz using a system described in Lockner and Byerlee (1985). This system

is capable of measuring complex resistivity over a range of 10-4 to 106 Hz and will be

utilized more fully in future experiments. In the present experiments, however, we

were interested in measuring secular variations in only near-de resistivity. A 1-volt

peak-to-peak sine wave was applied to the sample in series with a known precision

resistor. The complex resistivity of the sample was then computed from knowledge of

the amplitude and phase relation between the voltage drops across the sample and the

precision resistor.

The jacketed sample assembly was placed in a pressure vessel and confining

pressure was applied. Silicone oil was used as confining fluid. A series of dry

experiments were performed at 400 bars confining pressure and axial strain rates of

10-5 to 10-7 s- 1 to test the system and confirm the dry breaking strength of Westerly
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granite. Wet experiments were performed at constant confining pressure of 600 bars

and pore pressure of 200 bars, using 0.01 molar KC1 saturated with AgC1l to protect the

Ag/AgC1 electrodes. Solution resistivity was 6.3 ohm-m. To remove possible soluble

salts that might have been in the rock pores, 0.8 cm 3 of electrolyte was forced through

these samples before each experiment. Each sample was then allowed to sit for

approximately 20 h to allow fluid pressures to equilibrate. A piston was then advanced

against the end of the sample, raising the differential stress at a rate of approximately 1

bar/s, to 3.45 kb which is 77% of the instantaneous dry strength. A period of

approximately 20 h ensued during which stress was held constant and the sample

underwent primary creep. Stress levels were then changed periodically to values

ranging from 65 to 90% ultimate strength, and creep response and resistivity were

monitored. Axial load was measured by means of an internal load cell situated on the

end of the piston. In one experiment, a stress relaxation sequence was conducted to

allow comparison to RM's data. In this relaxation technique, the sample was loaded to

some stress close to the short-term failure strength and then maintained at constant

strain. The sample then deformed internally, converting elastic strain to permanent,

inelastic strain, monotonically lowering the stress as it did so. By knowing the elastic

constants of the sample and loading system, the stress time derivative was converted to

an inelastic strain rate.

Long term resolution of both strain and resistivity was limited by temperature

fluctuations of the sample, recording amplifiers and other electronic components. To

minimize the temperature-related effects, the pressure vessel and sensitive electronics

were housed in a controlled temperature chamber. The vessel was maintained at a

temperature of 26.50 ± 0.05 OC.
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Results

A 'room-dry' experiment, in which the sample was pre-dried in vacuum for 24 h, is

presented in Fig. 3.3. The sample was deformed at confining pressure of Pc = 400 bars

and axial strain rate 4 = -10-5 s-1. Differential stress (ad = a 1 - Pc), tangential strain

(et) and volumetric strain (ev = ea + 2et) are plotted as functions of axial strain. (Note

that we use the somewhat ackward convention that compressive stresses are positive

while extensional strains are also positive.) Peak dry strength, which we will here after

refer to as 'instantaneous strength', oi, occurs at 4.51 kb. The average value from our

dry experiments of <ai> = 4.5 kb, at 400 bars confining pressure, will be used as a

reference peak strength in this paper. As is characteristic for brittle rock, volumetric

strain initially decreases as thin, low-aspect-ratio cracks are closed. Then, at

approximately half the instantaneous strength, continued loading leads to an increase in

volume, or dilatancy, as new cracks are formed and existing cracks grow in the rock.

This process has been well documented for Westerly granite and other brittle rocks(e.g.

Hadley, 1975; Tapponnier and Brace, 1976; Kranz, 1980).

The initial loading and primary creep phase for a saturated sample are shown in Fig.

3.4. Differential stress was gradually raised to 3.45 kb (at approximately 1 bar/s),

resulting in an axial strain of -0.0070. This modest loading rate was used to prevent

excessive pore pressure transients during the loading cycle. The volumetric strain

record during this period indicates that the sample had progressed well into the dilatant

stage during this initial loading. The sample was then held at constant stress for 8.6 h

as it underwent characteristic transient creep.

After the transient creep phase had passed, the main part of the experiment was

begun. The sample was cycled through a series of stress steps and allowed to creep at

each level so that strain rates could be determined. A typical sequence of stress steps

and resulting volumetric strain and strain rate are plotted as a function of time in Fig.

3.5. Note that following each increase in stress, the sample underwent a period of

initially high strain rate, gradually decaying to an approximately constant rate. This

transient response, remeniscent of primary creep, was consistently observed, even

during repeated loading cycles. A 'stress relaxation' experiment was also performed to

allow comparison to the constant stress measurements. In the relaxation experiment
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(Fig. 3.6), stress was initially raised to 3.92 kb, at which point control was switched to

maintain constant axial strain of the sample. This procedure required a controlled

backing off of the ram applying load to the sample and a consequent reduction in stress.

Even though the axial strain was constant, the sample continued to dilate as elastic

strain was converted to inelastic strain.

We next examine the strain rates attained at the end of each stress step (as shown in

Fig. 3.5). In some cases, we clearly did not wait long enough for the transient response

to pass, but this problem can be corrected in future experiments. For the present, we

recognize that some steady-state strain rates will be picked too high. We should

mention at this point that the term 'steady-state' may well be a misnomer. The

microcrack growth mechanisms that occur in brittle rock in compression tend to reduce

stress intensity and therefore growth rate with time. Thus, the secondary creep phase

identified in many experiments may either be the tail of a decaying creep curve or the

region of inflection between decaying homogeneous creep and accelerating localized

creep that occurs as the sample approaches failure. The results from two creep

experiments are plotted in Fig. 3.7 as logl 0(i v ) vs differential stress. Data points are

connected according to the sequence in which the measurements were made. Data for

the two points in brackets were too noisy to determine accurate strain rates and

represent rates occuring at those stresses as predicted by the model. As expected, a

strong correlation exists between stress and strain rate, but superimposed on a gradual

migration to the right of the plot with increased strain. Least squares fits of the form

logl0(ev) = A + B Od + C logl0(ev,i) (3-8)

and

logl0(ev) = A' + n logl0(a d ) + C' logl0(ev,i )  (3-9)

were performed on the data where ev,i is inelastic strain. Results are given in Table

3.1. A test of how well eq. (3-8) describes the observed data is shown in Fig. 3.8.

Here the data shown in Fig. 3.7a have been de-trended by plotting logl0( V) - C

logl0(ev,i) vs ad. This operation brings the data back to a single straight line. Thus,

on an empirical basis, the quasi-steady-state creep rate of granite in the secondary creep
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phase can be adequately fit by either an exponential stress dependence or power law

stress dependence superimposed on what is essentially a strain-hardening process.

The conductivity measurements which were taken during these experiments confirm

the continual growth of microcracks during the secondary creep phase. As dilatancy

progresses, the number of paths available for conduction through the pore fluid, as well

as conductance of existing paths, should increase. This effect is shown in Fig. 3.9

where conductivity (at 10 Hz) is plotted vs. volumetric strain. Time progresses from

left to right. The initial three measurements were taken during transient creep while the

remainder correspond to the entire experiment shown in Fig. 3.7a. Conductivity

increased approximately three-fold over the hydrostatic value. These results are in good

agreement with similar measurements taken during creep (Lockner and Byerlee, 1986).

The observed conductivity changes are also comparable to changes reported for

constant-strain-rate experiments (Brace and Orange, 1968; Brace, 1975).

125



Discussion

One motivation for conducting these experiments was to explore the possibility of

detecting a low-stress-sensitivity creep mechanism. Such a mechanism would be

masked by the commonly observed stress corrosion mechanism at room temperature

and loads above 80% instantaneous strength, but could become dominant at lower

stress levels (and strain rates). Extrapolation of the present data to a strain rate of 10-14

s-1 would reduce the rock strength to approximately 70% of its short term strength. If a

low-sensitivity mechanism became dominant at low stress, it would further reduce the

long-term strength. Such a mechanism would appear as a break in slope of the a - iv
plot. There is, however, no indication in our present data of a new low-stress

mechanism. A practical lower limit for obtaining meaningful data through this method

is approximately 10-11 s-I and makes the prospects for isolating such a mechanism at

room temperature unlikely.

Rutter and Mainprice (1978) conducted similar experiments on Tennessee

sandstone at room temperature and at 3000C. Selected results from their intact sample

experiments are reproduced in Fig. 3.10. They observed a dramatic decrease in stress

sensitivity at 3000C, which they attributed to a change in the dominant creep mechanism

from stress corrosion (low temperature and high strain rate) to pressure solution. If the

stress corrosion mechanism is thermally activated according to

/ = k exp (30 d / kT) (3-10)

where k is Boltzmann's constant, then the 200C slope should be approximately twice

the 3000C slope. Thus the first few data points in the 3000C plot would represent the

stress corrosion branch. Whether or not the low-stress-dependent branch is due to

pressure solution, it is operating in the proper temperature range for mid-crustal

conditions; especially at low strain rates. These phenomena obviously need further

investigation. For example, it is important to know if RM's low-stress-dependence

mechanism would be operative in a low porosity rock such as granite.

Table 3.1 summarizes the strain rate data. It is interesting that at room temperature

the stress sensitivity parameter B is nearly identical for our data and those of both
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Wawersik and RM, even though effective pressure varied from zero to 1.5 kb and two

different rock types were studied. If stress dependence is thermally activated, as in eq.

(3-10), then

f3 = 2.303 kTB . (3-11)

Then, as mentioned, RM's 3000 C stress corrosion data also give the same stress

sensitivity, although that value has a large uncertainty.

Also shown in Table 3.1 are data from room temperature time-to-failure

experiments. The time-to-failure data can be related to the secondary creep rate data in

the following manner. First, note that in a creep test, the transient primary and tertiary

creep phases are generally short in duration when compared to the secondary creep

phase. Then, if the total inelastic volumetric strain that a sample undergoes in secondary

creep is denoted as ev,ito t, the volumetric strain rate for secondary creep is

approximately iv = ev,itot / tf. If we further assume that ev,itot is approximately

independent of stress level as suggested by Griggs (1940) and Kranz and Scholz

(1977), especially for a given confining pressure, then substituting into (3-3) leads to

iv = ( ev,itot / to) e2.303bc . (3-12)

Comparison to (8) shows that b = B. Given the stated uncertainties in Kranz's values

of b (eq. 3-3), his data is in agreement with our determinations of B and approximately

independent of confining pressure (Fig. 3.11). On the other hand, Scholz's

single-crystal quartz measurements of b (Table 3.1) are significantly smaller. This may

reflect a tendency for single crystals to have smaller stress-concentrators than

polycrystalline rocks. As we discuss in the next section, fracture toughness G is a more

fundamental parameter for controlling crack growth rate than either a or K. We will

attempt to relate the empirical constants b and B to G in that section.

The dependence of strain rate on strain (eqs. (3-8) and (3-9)) is not suprising and is

undoubtedly present in the RM data as well. Constant strain rate experiments on brittle

rocks in compression always strain harden in the region before failure where inelastic

strain occurs. As discussed earlier, this hardening represents, in part, the ability of

rocks to relieve stress concentrations through microcracking. In our experiments,
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failure to account for the strain hardening effect would have resulted in a 20%

overestimate of the stress coefficient in a relaxation experiment.
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Model

Early approaches to understanding static fatigue in glass were based on reaction rate

theory. Charles and Hillig (1962) considered the case where chemical reactions at the

crack tip were rate limiting. Such reactions are expected to be both thermally activated

and stress sensitive. By stretching the bonds at the crack tip, the energy barrier to the

forward reaction is reduced while the energy of the reverse reaction is increased. Using

a modification of Charles and Hillig, we write for the forward rate

v+ = vo exp[-(E o + ao31/rc - c'a)/kT] (3-13)

where vo represents the rate of jump attempts, Eo is the stress free activation energy, ao

is the molecular dimension, rc is the crack tip curvature and F is the interfacial free

energy between the crystal and reaction products. P' has units of volume and expresses

the stress sensitivity. The rate of the reverse reaction is

v- = vo exp[-(E o + ao3F/rc + 'oa)/kT] (3-14)

Combining Eo and the surface energy into an apparent activation energy E*, the net

reaction rate becomes

v = v+ - v- = vo exp(-E*/kT) sinh(p'a/kT) (3-15)

For large stress, v+ >> v- and eq. (3-13) approximates the net rate.

Eqs. (3-13) through (3-15) have been included because of their similarity to the

empirical eq. (3-10). However, eq. (3-15) refers to conditions at the crack tip, which,

for a brittle rock, will contain a stress singularity. Thus it is more appropriate (Rice,

1978) to express the stress-related driving force in terms of the strain energy release

G = -(aUE/c)u . (3-16)

For v+ >> v-, (3-16) becomes
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v = vo exp[-(E* - ao2 G)/kT].

It is well known that for rocks loaded in compression, the dominant mode of

microcrack growth is tensile and is in a direction subparallel to the maximum

compressive stress. The development of tensile stresses in an overall compressive

stress field requires an inhomogeneity in elastic properties. Tapponier and Brace

(1976), for example, noted the frequent occurance of axial cracks emmanating from

brittle grains in contact with biotite. Of course, the largest contrasts in material

properties will occur at the surface of pores or cracks; especially when open. We will

use for a model a set of non-interacting cracks oriented obliquely to the applied

principal stress directions (Fig. 3.12). Nemat-Nasser and Horii (1982) have analized

the response of a single such crack in a homogeneous medium. Their analysis includes

a generalized stress field and crack orientation as well as crack friction. This crack

geometry has also been analized by Ashby and Hallam (1986). They developed a

convenient result (Sammis and Ashby, 1986) for uniaxial compression which relates

the far-field axial stress to crack length for long 'wing' cracks:

al(c/L)1/2 = 4.3KIC/(1-f) (3-18)

where KIC is critical stress intensity factor for mode I (tension) and f is coefficient of

friction on the crack. c is the diagonal crack half length and L in non-dimensional wing

crack length; L = 1/c where 1 is wing crack length. Eq. (18) represents the condition for

stable crack growth so that at the crack tip, KI = KIC. Then, for axial stress 5 stress

needed to extend the crack, stress intensity at the crack tip is given by

KI = al(7tc/L)1/ 2(1-f)/4.3 . (3-19)

The strain energy release rate can be written (e.g. Rudnicki, 1980)

G = KI2 (1-ir)/2p. (3-20)

where 1i and t are respectively Poisson ratio and shear modulus. Inserting (3-19) and
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(3-20) into (3-18) gives

v = vo exp[-(E* - a 12/L)/kT] (3-21)

with n = tcao2((1-T)/2)((1-f)/4.3) 2 . Notice that in contrast to (3-16) we have now

expressed the reaction rate in terms of the remote stress, which appears raised to the

second power since it is expressing the strain energy release rate. Also, as the crack

grows in creep (increasing L, constant ca), the driving force decreases. This represents

strain-hardening of the sample.

Relating Crack Growth to Volumetric Strain

We next attempt to relate the atomistic rate theory result (3-21) to the observed

macroscopic strain rates. If a crack tip advances through the chemical corrosion of

bonds, then the number of reaction sites per unit volume can be expressed as

N = 2Ncw/ao (3-22)

where Nc is the crack density (per unit volume) and w is average crack tip width. Now

assume that each reaction represented by (3-21) contributes an increment of volume

change

Vi = a a0
3  (3-23)

where a is a geometric factor. a can be interpreted by considering the change in crack

volume that results from the advance of a crack tip by a distance ao. This change in

crack volume is

Viw/ao = cawao2. (3-24)

By combining (3-21) and (3-23), volumetric strain rate becomes

iv = ViNv = -vo exp[-(E* - ajl2/L)/kT] (3-25)
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where ivo = (2a ao2 Ncw Vo).

In a creep test, the initial application of axial stress will force the dominant cracks to

grow to a pre-determined length according to (3-18) since the crack tip stress intensity

is at the critical value. Once the sample is at stress, however, the cracks will continue to

grow, gradually lowering the crack tip stress intensity due to the crack length

dependence in (3-25). This relation predicts a monotonically decreasing strain rate.

Accelerating tertiary creep can be interpreted as the result of a gradual increase in the

intensity of crack interactions as the sample approaches failure. Since (3-25) assumes

no crack interactions, it cannot predict tertiary creep. Interpreted in this manner,

secondary creep is either the nearly constant strain rate tail of the exponential decay

predicted by (3-25) or the region of inflection representing the transition from negative

curvature primary creep to positive curvature tertiary creep. Notice, also, that a

modified form of (3-25) can be used to describe the region I subcritical crack growth

rate (Fig. 3.2). In this case, log(crack velocity) m KI2 and not cc KI as is normally

assumed. Due to the limited range of stress over which the relevant measurements are

made, these forms cannot be distinguished from available data.

The validity of (3-25) can be tested by using crack density values obtained from

laboratory experiments. Since many of the parameter in the pre-exponential term

(especially a) have not been measured directly, only an approximate comparison to

experimental data can be made. We will use crack density data measured by Hadley

(1975) and reported in Madden (1983). For Westerly granite at 65% failure stress,

Hadley reported an axial crack count of 51 mm-2 for 10 - 30 micron lengths, increasing

to 208 mm-2 at failure. 30 - 100 micron axial crack densities increased from 58 to 121

mm-2 at failure. Assuming that crack widths and lengths were approximately equal, this

gives Nc,10-30g m ~ 2 - 10 x10 3 mm-3 and Nc,30-100pm ~ 1 - 2 x10 3 mm-3. The least

constrained parameter is a. It can be estimated by noting that for a characteristic crack,

an increase dl in crack length can be related to the resulting volumetric strain by

a aowNcdl = de, . (3-26)

Using ao = 10-3 pm and w = 40 gm, the crack geometry coefficient estimated from

Hadley's data is a = 1.2 ± 0.6 x10 3. Finally, we use the Debye frequency, vo - 1013
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Hz. Since (3-25) applies to uniaxial compression, we use Wawersik's 1973 unconfined

Westerly granite data (Fig. 3.13) with an ultimate strength of 2.5 kb. At 80% failure

strength, using ev = 10-9 s-1, eq. (3-25) predicts that the energy barrier, E* - 4o2/L =

0.96 ± 0.05 eV (21 kcal/mole). At 90% failure strength, the barrier height would drop

to 0.84 eV. Given the uncertainties in the calculation, these are in remarkable agreement

with the value reported by RM (0.9 eV) for sandstone and the range given by Scholz

(1972) (0.9 to 1.1 eV) for time-to-failure in quartz. The same relation applied to data

from the present study yields energy barriers at 80 and 90% failure stress that agree

with Wawersik's results to within 20%. This consistancy may indicate that all of these

room temperature creep experiments are controlled by the same stress corrosion

sub-critical crack growth process.

Finally, we attempt to modify (3-25) by relating the crack length parameter L in the

stress sensitivity term to volumetric strain. If a is approximately independent of crack

length, integrating (3-26) yields L = Kev where K = (aoscwNc)- 1. Here we have set ev

= 0 when L = 0. Then, (3-25) becomes

iv = ivo exp[-(E* - 4lo2/Kev)/kT (3-27)

giving stress and strain sensitivities of

aln /ao = 2cYcl/KevkT (3-28)

and

aln /aev = -O1 2/Kv 2kT. (3-29)

Unfortunately, the ratio Vic which appears in both partial derivatives is proportional to

c2 (c is the diagonal crack half-length). Since c is not well determined experimentally,

we are not able to test these relations adequately. The predicted stress sensitivity, using

c = 20 gtm, is plotted along with unconfined granite data in Fig. 3.13. The same

calculation gives an apparent activation energy E* = 1.3 ± 0.1 eV (1 eV = 23.1

kcal/mole). A suite of synthetic creep curves using (3-27) is plotted in Fig. 3.14.

Finally, a synthetic creep experiment, stepping through a series of stress levels, is
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shown in Fig. 3.15. This duplicates many of the features observed in Fig. 3.5,

although it does not adequately predict secondary features such as the strain rate

transients that occur after each stress increase.

Eq. (3-27) has been developed for uniaxial stress. Application of confining

pressure increases the normal stress on oblique cracks, thereby increasing their

frictional strength. In addition, wing cracks must do work against the confining

pressure as they open. Thus, confining pressure has a first order effect on creep rates.

We can include this effect by incorporating the confining pressure dependence of G in

(3-17). From Ashby and Hallam (1986), assuming long wing cracks, (3-18) becomes

4.3 KIC j (3-30)

O1= c ) (3-30)
1 - hX- f(1 + X)- 4.3 L

where X = 03/01. Then, substituting ad = a 1 - 03, and repeating the above analysis

leads to

(1 - )Ec 2 2 2
=1- '!)(1 - f)2 a d KIC

G 2g (3-31)

[4.3 (xc)2 3 L + 4.3 KIC L/2+ 2 f (tc) / 3

The ad2 dependence comes from the assumption that KI , od. Confining pressure

appears in the denominator and, as expected, inhibits crack growth. For large confining

pressure, the strain hardening becomes more severe (G cc 1/L2 instead of 1/L).

One other interesting calculation can be made based on the stress sensitivity. Since

9cc v, differentiating eq. (3-17) gives

alniv/aG = (alny/alnv)(aInv/aG) = ao2/kT (3-32)
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and from (3-31)

aG/lnod = 2G. (3-33)

Then

n = (alniv/alnd)const. a3,L = 2ao2G/kT (3-34)

where n appears in eq. (3-9) and is tabulated in Table 3.1. Eq. (3-34) predicts that n is
independent of confining pressure which appears to agree with the experimental data.
For n = 60 ± 5, we have G = 0.12 ± 0.01 Jm -2. Experimentally determined critical

energy release rates for quartz-bearing rocks (Atkinson, 1987) fall in the range Gc ~ 50

- 400 Jm-2. However, these rocks are observed to develop a damage zone ahead of the

advancing crack. For single crystal quartz, which is more appropriate for the atomistic
analysis developed in this section, experimental results give Gc ~ 0.4 - 10 Jm -2. This

suggests that for steady-state creep, microcrack tips are advancing at G/Gc of
approximately 0.01 to 0.4 or relative stress intensity KI/KIC ~ 0.1 to 0.6.
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Conclusions

The main result of this study is the determination of the logl0(strain rate) sensitivity

to stress of 0.7 kb-I for secondary creep in Westerly granite at room temperature. This

value is in remarkable agreement with results from other studies on dry Westerly, Barre

granite and Tennessee sandstone. Application of reaction rate theory to subcritical crack

growth is successful in predicting both the stress and strain sensitivity of strain rate.

This same reaction rate theory can provide a framework for understanding the

exponential stress dependence of region I subcritical crack growth. A stress corrosion

reaction, presumably involving the Si-O bond, with an apparent activation energy of

approximately 1.3 ± 0.1 eV (30 kcal/mole) appears to control room temperature

time-dependent creep in common silicate rocks above 80% failure strength. The

various parameters affecting low-temperature creep require further investigation.

Temperature is clearly of central importance, not only in determining activation

enthalpies, but also in making the processes occuring at low stress accessable at

reasonable strain rates. The effects of confining pressure and pore pressure should be

determined. Fluid composition, including pH, may affect crack growth rates. Finally,

crack morphology is important. How cracks grow and interact will ultimately determine

the rock strength and will dominate or greatly influence permeability, acoustic

velocities, electrical resistivity and other rock properties.
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TABLE 3.1 - Parameters from Creep Data

Temp Peff B

[oC] [kb] [kb-1]

eq.: (3-8)

C n

[eV/kb]
(3-8) (3-9) (3-10)

WG5, Westerly (this study)

WG6, Westerly (this study)

Westerly (Wawersik, 1973)

TS13, Tenn. sandst. (RM )

TS 12, Tenn. sandst. (RM)

stress cor. branch, Fig. 3.10

TS 12, Tenn. sandst., (RM)

press. solution branch, Fig. 3.10

26

26

25

20

300

0.4

0.4

0

1.5

1.5

7.2

7.5

7.5

7.6

3.7

-4 to -6
-3 to -5

300 1.5 0.88

0.43

0.44

0.44

0.44

0.42

Time-to-Failure Experiments b
eq.: (3-3)

Barre granite (Kranz, 1980)
il t ti

It Is

It it tf

Single crystal quartz (c axis)

(Scholz, 1972)

Single crystal quartz (a axis)

(Scholz, 1972)

0

0.53

1.0

2.0

0

10.8+_2.8

5.2±1.7

5.5±1.1

8.0±-2

0.54

25 0 1.7

137

Sample

5 0.10

n
(3-2)

46±12

51±17

72±32

143±84

0.64

0.31

0.33

0.47

0.032

0.10
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Figure Captions

Figure 3.1

Figure 3.2

Characteristic strain response for constant-stress experiment.

Idealized K-v plot for subcritical crack growth.

Figure 3.3 Room-dry Westerly granite strength test response of stress a d , tangential

strain et, and volumetric strain ev.

Figure 3.4

Figure 3.5

Figure 3.6

Initial loading and transient creep response for Westerly granite at

effective pressure of 0.4 kb.

Volumetric strain rate response to stress steps in secondary creep regime.

Sample is Westerly granite at effective pressure of 0.4 kb.

Stress relaxation experiment (axial strain held constant) for Westerly

granite at 0.4 kb effective pressure.

Figure 3.7 Stress-strain rate plot for two Westerly granite samples at 0.4 kb effective

pressure in secondary creep regime. Arrows indicate sequence of

measurements. Values in brackets are estimated since data was too noisy

to obtain reliable measurement. Sample in (b) underwent transition to

tertiary creep at end of experiment. Solid symbols are relaxation data.

Figure 3.8 Same data as Fig. 3.7a with strain hardening trend removed.

Figure 3.9

Figure 3.10

Conductivity change for same sample as Fig. 3.7a showing linear

increase with volumetric strain.

Selected stress-strain rate data for Tennessee sandstone at 20 and 3000 C

(Rutter and Mainprice, 1978). By their interpretation, high temp. data

changed from stress corrosion mechanism at high stress to pressure
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solution mechanism at lower stress.

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Summary of stress sensitivity of secondary creep volumetric strain rate.

Run conditions are listed in Table 3.1.

Diagonal crack and wing cracks that grow in response to remotely

applied compression.

Secondary creep rate for unconfined Westerly granite, after Wawersik

(1973). Curve is theoretical fit using (3-27).

Synthetic creep curves for various axial stress levels from (3-27).

Modeled creep response to a sequence of stress steps. Note the strain

hardening effect similar to that shown in Fig. 3.5.
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CHAPTER 4

DEVELOPMENT OF ELECTRICAL RESISTIVITY ANISOTROPY

DURING DEFORMATION OF GRANITE

abstract. Two triaxial deformation experiments have been conducted on brine-saturated

(0.1 and 0.01 Maq KC1) Westerly granite at effective pressures of 100 and 400 bars.

Deformation histories included constant strain rate, constant stress and stress relaxation

sequences. Complex resistivity, over the frequency range from 10-3 to 105 Hz, was

measured in both axial and transverse directions during the experiments.

Low-frequency-limit resistivity pDC increased with initial loading and then decreased

steadily after the onset of dilatancy. The initial increase in PDC was greatest in the

transverse direction, in one experiment reaching a peak contrast PDC1/PDCII = 1.4 at

approximately 35% peak strength. With continued loading and the resultant opening of

microcracks, the resistivity contrast decreased to approximately 0.8 by failure. In terms

of the frequency dependence of resistivity, the general form of the real part of the

resitivity varied little during deformation other than a uniform change in magnitude

proportional to the changes in pDC. Under initial hydrostatic stress, the phase angle

between current and voltage ranged from 10 to 30 mrad over the frequency range 0.001

to 100 Hz. With the onset of dilatancy, notable changes occured in the phase spectra in

the 0.001 to 10 Hz region. The changes differed in the axial and transverse directions

and appeared to be the result of changing pore structure since they diminished upon

removal of deviatoric stress. Although the variations in complex resistivity were subtle,

their occurance in the Earth may be exploited as a means of identifying secular changes

in stress or strain through induced polarization or magnetotelluric measurements.

Introduction

Remote measurements of electrical resistivity variations have provided information

about the Earth that is not available from direct observation. For example, induced

polarization (IP) has proved useful in prospecting for disseminated sulfides as well as

other ore bodies (Madden and Cantwell, 1967; Wong, 1979; Nelson and Van Voorhis,

1983). In the field of earthquake prediction, resistivity studies have been used to search
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for changes in stress and strain related to earthquakes (Morrison, 1978; Rikitake and

Yamazaki, 1979; Madden, 1983; Park and Lee, 1988). Magnetotelluric measurements

can sample lower crustal resitivity by taking advantage of the earth's naturally occuring

electrical currents (Hermance and Pedersen, 1980). All of these techniques rely on

either spacial or temporal variations in resistivity (for reviews see Olhoeft, 1980 and

Parkhomenko, 1982). In addition, laboratory investigations have proven useful in

determining how complex resistivity varies under controlled conditions. Such

laboratory studies can provide information to assist in the interpretation of field

observations (Wong, 1979; Lockner and Byerlee, 1986). Variations of PDC as a

function of confining pressure for a variety of wet rocks have been reported by Brace et

al. (1965), Brace and Orange (1968a) and Brace (1971). These studies were extended

to include the effects of stress (Brace and Orange, 1968b) as well as implications for

coseismic changes (Brace, 1975). Other investigators (e.g. Saint-Amant and

Strangway, 1970; Shahidi et al., 1975; Olhoeft, 1980; Lockner and Byerlee, 1985a,b)

have studied the frequency-dependent complex resistivity p* for rock and other

geological materials, primarily in connection with low-frequency IP phenomena.

The measurement of resistivity changes, before and during earthquakes, received

much attention when Barsukov (1970) and Sadovsky et al. (1972) reported resistivity

changes of more than 10% preceding earthquakes in the Garm region of the U.S.S.R.

These findings were followed by reports of similar changes in resistivity before a

magnitude 4 earthquake on the San Andreas fault in California (Mazzella and Morrison,

1974). However, calculations indicated that such variations should have been

accompanied by easily observable uplifts and tilts. In studying resistivity changes

related to earthquakes, both active dipole-dipole measurements (Morrison and

Fernandes, 1986) and passive telluric current measurements (Madden, 1983; Park and

Lee, 1988) have been used. We investigate in this paper the additional possibility of

using standard IP techniques to identify temporal variations in stress or strain.

The generalized form of Ohm's law can be expressed as

Ei = Pik Jk (4-1)

where E and J are, respectively, electric field intensity and current density. From (4-1)

it is recognized that, similar to stress and strain, resistivity is a second rank tensor
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quantity. In most field applications, resistivity is considered isotropic so that it can be

represented by a scalar value:

Pik = Ip I ik (4-2)

where 8 ik is the Kronecker delta. However, for rocks subjected to large deviatoric

stress, the orientation of microcracks, which control the resistivity of wet rocks, is

highly anisotropic (Hadley, 1975; Tapponier and Brace, 1976; Kranz, 1980). For

triaxial experiments, in which P2 = P3 = Pc, we assume that resistivity can be

represented by

Pik= Pil 0 0 0 (4-3)
00

where = PI/Pu represents the contrast in resistivity between directions transverse and

parallel to the sample axis. Because of design difficulties, triaxial experiments have

typically measured resistivity parallel to the sample axis and therefore the maximum

compressive stress direction. From earlier studies under hydrostatic conditions

(Lockner and Byerlee, 1985a) it was determined that a measureable IP response

occured in Westerly granite at frequencies below 100 Hz which was apparently the

result of microcrack-pore fluid interactions. It was decided that a comparison of IP

response for parallel and transverse directions might provide differences that could be

related to microcrack anisotropy. The results of these measurements are reported here.
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Experimental

Two orthorhombic samples were prepared from a block of Westerly granite.

Sample dimensions were 50.8 x 50.8 x 114 mm. The unusual square-cross-sectioned

samples were chosen to simplify electric field shape as well as electrode geometry for

the transverse measurements. However, in retrospect, the more common cylindrical

sample geometry would probably have been a better choice. Axial and transverse foil

strain gages were applied directly to the surface of the sample and coated with a silicone

sealant to isolate them from the pore fluid (Fig. 4.1). Ag/AgCl electrodes were prepared

by depositing AgCl on silver screens. Since complex resistivity measurements require a

four electrode geometry, electrode assemblies in the transverse direction consisted of

sample/electrode/frit/electrode/frit. Electrode assemblies in the axial direction consisted

of sample/electrode/frit/electrode/fused silica. Frits were machined pieces of Coors

AHP99 porous ceramic. This material is 99% A120 3 bonded with a boro-silicate glass

containing no Mg or Ca and has a porosity of 28%. It is strong enough to support the

differential stresses applied to the sample column. To isolate the sample assembly from

the silicone oil confining fluid, all external surfaces were covered with pieces of 3.2

mm-thick vinyl which were sealed with vinyl cement. This proved to be a difficult task

and is not recommended for future experiments. All electrode and strain gage leads

were brought out through the vinyl jacket and out of the pressure vessel by means of

electrically insulated feed-throughs. For the first experiment (Pc = 200 bars), electrolyte

contained 0.01 Maq KC1, saturated with AgCl to prevent stripping of electrodes, to

give an electrolyte resistivity of approximately 5 ohm-m. For the second experiment (Pc

= 600 bars), electrolyte was 0.1 Maq KC1, again saturated with AgCl, for a resistivity

of 0.7 ohm-m. Due to the large thermal coefficient of the electrolyte resistivity,

experiments were conducted in a controlled temperature chamber at 30.0 ± 0.1 OC.

Constant confining pressure and pore pressure were maintained throughout each

experiment by means of an automated computer control system. A small stainless steel

pore fluid reservoir was connected to the bottom of the sample to reduce pore pressure

variations which might result from rapid changes in sample pore volume during the

experiments as well as to aid in flushing the sample of residual salts. Total axial

displacement was monitored with an external DCDT displacement transducer attached
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to the piston assembly. Axial force was measured in the first experiment with an

external load cell and in the second experiment with an internal strain gage bridge. All

pressures, displacements and strains were sampled once a second using a 16-bit A/D

converter.

The system used to measure complex resistivity is described in Lockner and

Byerlee (1985a). For frequencies above 100 Hz, a two electrode system was in which

the inner electrode pair was connected, in sequence to a Hewlett Packard 4275A (10

kHz to 1 MHz) and a 4274A (100 Hz to 100 kHz) LCR meter. These instruments are

designed to determine sample impedance at discrete frequencies (three samples per

decade). At low frequency (10-3 to 102 Hz), a four-electrode system was employed as

shown in Fig. 4.2b. A 1-V peak-to-peak sine wave was used as an excitation signal

(LCR meters were also set at this supply voltage). This resulted in a current density of

order 10-3 amp/m 2. The voltage drop across the sample was sensed with a high input

impedance (>3 x 108 ohms) instrumentation amplifier. To determine current, a

precision decade resistor was placed in series with the sample. Voltage drop across the

resistor was also measured and, by knowing the resistance, was converted to current.

By sampling voltage and current over a full cycle, both magnitude and phase of the

sample impedance were determined.

To saturate the sample, the sample assembly was placed in the pressure vessel and

evacuated for a minimum of 4 hr. Pore fluid was then forced into the sample at the

desired run pressure (100 bars in the first experiment and 200 bars in the second). This

was continued for at least 3 days, until fluid ceased to enter the sample. Once it was

determined that the sample was satisfactorily saturated, the piston was advanced to

make contact and the experiment was begun.

Precision of pore pressure, confining pressure and axial stress measurements were

respectively 0.1, 0.1 and 0.2 bars. Precision of axial displacement was 0.3 gm.

Sensitivity of strain gage measurements was 1 gstr, although due to temperature

fluctuations, long-term resolution was approximately 10 gstr. In measuring sample

impedance, cable effects were measured using a dummy sample and were then

automatically corrected for. However, these correction were not complete, as can be

seen by a small offset in phase angle where the high and low frequency systems

overlap at 100 Hz. Since capacitive effects roll off as 1/co, this error should be

insignificant below about 10 Hz. Using the manufacturer's specifications for the LCR
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meters and assuming 0.025% sampling error for the low-frequency measurements

(12-bit A/D resolution) nominal errors in sample impedance determinations are as

follows: for limpedancel, ± 0.3 to ± 3% (> 100 Hz) and ± 0.03 to ± 0.05% (< 100

Hz). Errors in measuring phase angle 0 range from ± 1.0 to ± 18.0 mrad (> 100 Hz)

and from ± 0.3 to ± 1.0 mrad (< 100 Hz). To convert sample impedance to resistivity,

a correction factor due to the test geometry must be determined. For resistivity parallel

to the sample axis, the geometric factor is known to approximately 0.3%. However, no

correction is made due to sample deformation due to load. This results in axial

resistivity being systematically underestimated by as much as 4%. Larger errors exist in

converting transverse impedance to resistivity. In the case of the axial measurement,
electric field lines are essentially parallel. However, because of electrode geometry,

field lines in the transverse measurements diverge from one electrode and converge at

the other. In addition, there is a small leakage current to the top end plug. To analyze

these geometric effects, a 2D finite difference model of the sample was developed.

Various value of f = p_/PIl were used as input and the corresponding apparent sample

resistance was determined. The resultant equi-potential lines for 3 = 1 are plotted in

Fig. 4.3a. Notice the distortions of the eqi-potential lines near the top end plug due to

the leakage current. For laminar current flow in the x-y plane, resistance Rx can be

normalized by resistivity: Rx = Rxw/p where Rx is non-dimensional resistance and w

is the sample width in the z-direction. 3 is plotted as a function of R± in Fig. 4.3b,

along with a quadratic fit (solid line). This results in the empirical relation:

3 = -0.01 + 0.321 (R.W/P Ij) + 0.225 (R w/ip 1)2 . (4-4)

Then, pi is computed from P and p 1. P and pl are known to approximately 5%.
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Results and Discussion

The first experiment was run at Pp = 100 bars and Pc = 200 bars. Differential stress

and axial displacement are plotted vs time in Fig. 4.4. Pdif was increased slowly to 2.3

kb and then held constant. After approximately 6,000 s of creep, strain rate was

accelerating and the sample approaching failure. At this point, axial displacement was

held constant and the stress was allowed to relax. When the differential stress had

dropped to 2.05 kb, a through-going fault formed which intersected both transverse

electrodes. This resulted in a sudden stress drop to 0.92 kb. Real resistivity at 10 Hz,

which will be refered to as pDC is plotted in Fig. 4.4b. Note that PDCL is somewhat

greater than PDCII during the creep portion of the experiment but quickly drops as the

through-going fracture forms. This is expected since the fracture provided a

low-resistance path between the transverse electrodes. As is common in low confining

pressure experiments, the fracture formed at a steep angle and, in fact, intersected both

end pieces. However, it is noteworthy that a large directional resistivity contrast

developed well before the main stress drop, presumably in response to the development

of a large scale dilatant zone. Following the stress drop, this resistivity contrast

disappeared.

Time histories for the second experiment, which lasted 11 days, are shown in Fig.

4.4. This experiment was conducted at Pp = 200 bars and Pc = 600 bars. Following an

initial loading phase, in which differential stress reached 3.32 kb, the sample was

deformed at an axial displacement rate of 1.1 x 10-6 mm/s for a nominal strain rate of 1

x 10-8 s-1. Since a significant fraction of this displacement was accomodated by elastic

shortening of the piston, the true axial strain rate of the sample averaged 0.6 x 108 s- 1.

The strain gage readings (Fig. 4.5b) show a gradual increase in volumetric strain rate

over the course of the experiment, culminating in an abrupt acceleration in strain. The

sample was unloaded and the experiment ended before a macroscopic fault was formed.

The raw 10 Hz sample resistances, uncorrected for geometry, are plotted in Fig. 4.5c.

The directional resistivity contrast 3 is plotted in Fig. 4.5d and the corresponding

resistivity values are shown in Fig. 4.6. Resistivity is replotted as a function of

differential stress in Fig. 4.7. In the initial loading stage of the experiment, both

resistivity and 1 showed a rapid increase, peaking at approximately 35% failure
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strength. PDcII increased by approximately 50% which agrees well with results from

Brace and Orange (1968b). The subsequent steady decrease in PDC11 to 38% of the peak

resistivity by failure is less than the values reported by Brace and Orange (15 - 20%).

However, their granite experiments were conducted at 2 to 4.5 kb confining pressure

and showed a trend to greater resistivity changes at higher confining pressure. Since

beginning crack populations are more completely closed at higher confining pressure,

opening of cracks during the dilatant stage will lead to a relatively larger drop in

resistivity at high confining pressure. This effect could explain the observed trend. In

our experiment, the transverse resistivity increased more rapidly than axial resistivity

during the initial loading. The peak contrast was 1 = 1.4. In the initial loading phase,

cracks oriented normal to the loading axis are preferentially closed. These cracks are

more important to conduction paths for transverse resistivity than for axial resistivity.

Consequently, it is reasonable to expect their closure to have a greater effect on PDC.I
than on PDCII.

As shown in Fig. 4.5, the drop in resistivity corresponds to the onset of dilatancy.

This is expected since the decrease in resistivity must be the result of new and/or more

efficient pathways appearing in the rock. Since these new pathways have a preferred

orientation parallel to the sample axis, we might expect them to contribute more

effectively to axial conduction than to transverse conduction. However, this does not

appear to be the case, since 3 rapidly drops to about 0.80. Madden (1976) considered

the effect of anisotropy on conductivity of embedded networks. He pointed out that due

to the strong interrelationship between flow paths in different directions, large

anisotropies on a microscopic scale tend to result in much smaller anisotropy of bulk

properties. This effect appears to play a significant role in the resistivities of the present

samples. However, the fact that the anisotropy actually reverses sense with the growth

of axial cracks requires some additional explanation. Both theoretical and laboratory

studies of crack interactions (e.g. Segall and Pollard, 1980; Horii and Nemat-Nasser,

1985) indicate that until crack densities become large, axial cracks tend not to link up.

Thus, new axial crack growth may not be effecient at increasing connectivity for flow

in the axial direction. At the same time, these same cracks have finite width and are

typically outgrowths of existing cracks. Thus they are guaranteed to contribute to lateral

conduction. This could provide an explanation for the observed results. If it is correct,

we could expect that in the very final stage of crack growth, in which crack density is
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large enough to force cracks to interconnect, 3 should increase. If such a phenomenon

occurs however, it is not observable in the present data (Fig. 4.6b).

Complex Resistivity

We next turn our attention to the full frequency-dependent complex resistivity

measurements. The real component of the axial resistivity data p' is plotted as a

function of frequency in Fig. 4.8a. The labels on individual curves correspond to the

times indicated in Fig. 4.5. Phase angle -0 by which current leads voltage is plotted in

Fig. 4.8b. The sharp roll off in p' and the corresponding increase in -0 above 1kHz are

the result of relaxation mechanisms at the rock-water interfaces and represent a

transition from resistive to dielectric behavior. Since the time constant for this relaxation

is proportional to RDCII, the transition shifts to higher frequency as RDCII decreases.

The offset in phase angle at 100 Hz is the result of inadequate removal of cable effects

for the high frequency measurements. Since the capacitive effects roll off as 1/o, these

errors should not be significant below about 10 Hz. In the low-frequency portion of the

spectrum, the gradual decrease in p' with increasing frequency is the result of a broadly

distributed set of relaxation mechanisms. This effect is also indicated by the relatively

featureless but significant phase angle of about 10 mrad in the hydrostatic data (1

degree = 17.45 mrad). Since Westerly granite contains almost no minerals that can

contribute to faradaic or surface exchange reactions, we attribute this low-level IP

response to interactions of the microcrack surface double layers. Interpreted in this

manner, the broad low-frequency distribution reflects a distribution in microcrack

dimensions. The gradual decrease in p' with frequency is quantified by the IP

parameter Percent Frequency Effect (PFE), defined as the percent decrease in p' per

decade in frequency. The hydrostatic data give PFE = 1.4.

The transverse complex resistivity data is shown in Fig. 4.9. The real component of

resistivity p' shows all of the same trends that were observed in p'll. Notice that curve

'A' has increased above the hydrostatic resistivity, reflecting the trend in the early DC

resistivity data. The phase plot (Fig. 4.9b) shows a phase content in the 0.01 to 100 Hz

range that is not observed in the axial data. This is true even for the hydrostatic data,

which, for an isotropic material, cannot occur. At this time, we have no explanation for

this phase response, and must accept the possibility that it indicates a problem in the test
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configuration. As a result, the transverse phase results cannot be treated with full

confidence.

The most interesting feature in the complex resistivity data is the progressive

variation in low-frequency phase angle during the experiment. This is shown in detail

in Figs. 4.10 through 4.12. The initial loading of the sample is accompanied by a

general loss in low-frequency phase content in both the axial and transverse directions

(Fig. 4.10). In addition, the transverse phase shows the development of a peak at 0.4

Hz. This is followed (Fig. 4.11) by the development of a similar peak in the axial phase

spectrum at 0.01 Hz. A similar, though less convincing peak, was observed in axial

resistivity measurements for Westerly granite in creep (Lockner and Byerlee, 1986) and

is reproduced in Fig. 4.13. In that experiment, a lower electrolyte salt concentration

was used, resulting in an overall increased phase response. Since a decrease in

electrolyte concentration has the effect of expanding the surface double layer width, the

differences in the phase response in these two experiments suggest an intriguing area

for future research. The newly-formed peaks in the phase spectra persist until failure

(Fig. 4.12). When the sample was unloaded and returned to hydrostatic pressure (Fig.

4.12), the axial phase spectrum recovered its pre-stressed value above 0.1 Hz, although

at lower frequencies, almost no recovery occured. This may reflect the partial closure of

cracks to create short length scale restrictions in the current paths. In a similar fashion,

the transverse phase spectrum recovered at frequencies above about 0.01 Hz. One

interesting aspect of the phase response is that the modified spectra that developed

during the dilatant stage of the experiment showed no additional change as the sample

approached failure. In this sense, p' responded primarily to strain while phase angle

responded mainly to stress. The emergence of a peak in the axial phase spectrum at

0.01 Hz is interperted as resulting from the development of a characteristic length in the

network of conduction paths. If a diffusion mechanism were responsible for this peak,

the diffusion length scale can be estimated by assuming a relation of the form L2  2Dt.

Then a diffusion coefficient of DCI- = 2 x 10-5 cm2/s and t = 50 s (one-half the period)

suggests a characteristic length of approximately 0.4 mm. This is on the order of the

mean grain size for Westerly granite. In a similar manner, the peak in the transverse

phase spectrum at 0.4 Hz would yield a characteristic length scale of 0.07 mm. While

additional information is required to have confidence in this interpretation, these values

do suggest that measurement of the phase spectra is providing information about the
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development of the microcrack structure in the rock. Although the variations in phase

angle are on the order of only 10 mrad, they would be observable by high-quality IP

field measurements. As a result, it may be possible to use this phenomenon to monitor

secular changes in microcrack geometry as part of an earthquake prediction program.

The technique may also have application as a well logging tool for inferring down-hole

stress orientation.
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Figure Captions

Figure 4.1

Figure 4.2

Sample column assembly for complex resistivity measurements.

Schematic diagram of resistivity measurement system. Upper diagram is

for high-frequency measurements (102 - 106 Hz) using two-electrode

technique. Lower diagram is for low-frequency measurements (10-3 -

102 Hz) using four-electrode technique.

Figure 4.3 a) Eqi-potential surfaces for finite-difference model of sample geometry

using a directional resistivity contrast 13 = 1. b) Relation between b and

non-dimensional apparent sample resistance as determined by the

difference model.

Figure 4.4 Time plot for experiment at Pp = 100 bars, Pc = 200 bars; a) differential

stress and axial displacement b) axial and transverse resistivity at 10 Hz.

Figure 4.5 Time plot for experiment at Pp = 200 bars, Pc = 600 bars; a) differential

stress and axial displacement b) strain gage outputs c) uncorrected axial

and transverse sample resistances at 10 Hz d) computed directional

resistivity contrast.

Figure 4.6

Figure 4.7

Figure 4.8

10 Hz resistivity plots for 600 bar confining pressure experiment.

10 Hz resistivity plotted as a function of differential stress for 600 bar

confining pressure experiment.

Complex resistivity for 600 bar confining pressure experiment. Labels on

curves refer to times shown in Fig. 4.5. a) Real component of axial

resistivity b) phase angle.
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Complex resistivity for 600 bar confining pressure experiment. Labels on

curves refer to times shown in Fig. 4.4. a) Real component of transverse

resistivity b) phase angle.

Figure 4.10

Figure 4.11

Figure 4.12

Low-frequency phase plots for 600 bar confining

Times are shown in Fig. 4.5.

Low-frequency phase plots for 600 bar confining

Times are shown in Fig. 4.5.

Low-frequency phase plots for 600 bar confining

Times are shown in Figs. 4.5 and 4.6.

pressure experiment.

pressure experiment.

pressure experiment.

Figure 4.13 Low-frequency phase plot for axial resistivity during initial stage of creep

experiment on Westerly granite at Pc = 50 bars, Pp = 100 bars and Pdif

= 1,600 bars (from Lockner and Byerlee, 1986).
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CHAPTER 5

CHANGES IN CONDUCTIVITY DURING DENSIFICATION

OF QUARTZ POWDERS

abstract. A series of high-temperature densification experiments have been performed

in which strain and electrical resistivity were measured. Starting material was ultra-fine

quartz powder (5-10 jim-diameter). Confining pressure ranged from 2,000 to 3,700

bars and pore pressure from 300 to 2,000 bars. All runs were conducted at 700C and

were saturated with distilled water. Initial porosity in all experiments was in excess of

40%. Experiments lasted from 10 hr to 8 days, with ending porosities from 19% to as

little as 8 ± 1%. In all experiments, initial volumetric compaction rates were rapid (10-5

to 10-6 s-l1), decreasing quickly to rates in the range 10-7 to 10-8 s- 1 after approximately

1 day. Electrical conductivity as well as porosity decreased monotonically during the

experiments. Conductivity ranged from 10-2 to 104 mho/m. A model is presented in

which decrease in conductivity is initially controlled by the loss of fluid filled pore

volume, followed by a transition, at approximately 15% porosity, to a condition in

which conductivity in controlled by constrictions in interconnecting channels.

Introduction

The experiments presented in this paper are intended to extend our understanding of

the manner in which fluid filled pores may exist in the lower crust A variety of studies

have been conducted in which metallic oxides have been hot-pressed in the presence of

water (Kingery et al., 1976; Brantley, 1987; Watson and Brenan, 1987). One important

question in these studies concerns the stability of fluid-filled pores and whether, under

equilibrium conditions, they will remain connected by a network of channels, or

become isolated from each other. This question has important consequences for the

ability of a rock mass, under metamorphic conditions, to transport fluid. Water which

is released in metamorphic reactions will tend to rise in response to bouyancy forces. If

the pore structure remains connected, it will allow water to migrate at relatively low

fluid pressures. If, on the other hand, pores tend to become isolated, fluid pressures

could rise to near-lithostatic in order to maintain connected pathways. This will have an
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important effect on the ease of transport of water and dissolved minerals.

In a related issue, properties of the lower crust are inferred primarily through

remote sensing techniques based on measurements of seismic wave velocities and

attenuation, gravity and electrical conductivity. Conductivity in the mantle is dominated

by ionic conduction in the solid mineral phases, since temperatures are high enough to

produce significant ionic mobility. However, for the lower temperatures present in the

earth's crust, the dominant mineral phases become poor conductors, and conduction is

determined primarily by the movement of ions dissolved in the pore fluids. Here again

the interconnectedness of the pores will play an important role in determining

conductivity. The present experiments were designed to address these issues. In one

sense, the results reported here should be regarded as a progress report since the

experiments have not yet been run to near-equilibrium pore geometries. At the same

time, both the compaction rate and conductivity data are unique and are of interest in

their own right.
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Experimental

The starting material in all experiments was an ultra-fine quartz powder obtained

from crushed Ottawa sand by means of air centrifuge separation. In all but one run, a

5-10 p.m-diameter fraction was used. An additional run was performed using a >20 gpm

fraction to study the effect of grain size. The quartz powder is described more fully in

Brantley (1987). With the exception of run 12, cylindrical samples were formed by

cold pressing in a steel chamber. In this procedure, the quartz powder was compacted

by a piston with an axial stress of 3.0 ± 0.6 kb. This resulted in an initial porosity ,

for the 5-10 p.m powder, of 0.46 ± 0.02 (Oinit = 0.41 for the >20 pm powder). In run

12, quartz powder was placed directly into the copper jacketted sample assembly so that

it underwent little precompaction. Sample diameter in all experiments was 19.1 mm and

length was nominally 18 mm. The assembled sample column is shown in Fig. 5.1. The

sample is sandwiched between aluminum oxide spacers, each containing a 1.5

mm-diameter axial hole. The top hole allows access of pore fluid (distilled, deionized

water) and also contains a thermocouple to measure sample temperature. A porous

ceramic frit, placed on the top of the sample prevents quartz powder from extruding

past the thermocouple. The frit is machined from 28% porosity Coors AHP99. This

material is 99% A12 03 bonded with a boro-silicate glass containing no Mg or Ca. The

lower spacer contains a 1.9 mm-diameter Ag wire electrode which is electrically

insulated from the rest of the sample assembly and pressure vessel. The central

electrode penetrates 10.0 ± 0.05 mm into the sample. The sample is separated from the

Ar gas confining medium by a 0.51 mm-walled annealed Cu sleave which was silver

plated to retard corrosion. Since these experiments are intended to run for many days, it

is critical that the sample be strictly isolated from the confining fluid. In early runs, we

found that Ar gas slowly diffused through the viton o-rings use to seal the sample

assembly. Thus, a more complicated assembly, shown on the upper end plug in Fig.

5.1, was developed for these experiments. This assembly consists of two viton o-rings

and an intermediate split steel ring. The split-ring is connected to atmospheric pressure

through a small vent hole. Thus, any gas which leaks past the upper o-ring is trapped

by the split-ring assemby and vented to the atmosphere. Since positive pore pressure is

maintained in the sample at all times, argon can never enter the pore fluid system. A
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similar result is achieved in the lower seal assembly by placing a stainless-steel screen

at the top of the piston. This allows Ar to escape out through the hole in the piston that

contains the central electrode wire. A Pt-wire resistance heater is placed around the

sample assembly and is packed with thermally conductive boron nitride to minimize

thermal gradients. This entire sample assembly is then placed in the pressure vessel and

pressurized to the desired confining and pore pressures. Finally, temperature is raised

to the desired run temperature. Confining pressure is measured with a manganin coil

and pore pressure with a strain gague pressure transducer. A high-speed servo-control

valve is used to advance a hydraulic ram against the piston, maintaining an axial stress

on the sample which is equal to the confining pressure. Thus the sample is compacted

in a virtually hydrostatic stress state. A DCDT displacement transducer, attached to the

piston, provides a continuous record of axial shortening. This axial shortening is

converted to volumetric strain ev by assuming ea = e0 so that for finite strain, e, = (1 +

Ea) 3 - 1. All pressures are held constant by an automated computer control system. An

independent measure of volumetric strain is achieved by measuring the volume of pore

fluid, needed to maintain constant pressure, that is removed from the sample. This

precision system is capable of resolving changes of 0.015 mm 3 , or approximately e,

= 3 pstr. All experiments were run at a temperature of 7000C ([3-quartz stability field).

Confining pressure ranged from 2,000 to 3,700 bars (1 bar = 0.1 MPa), and pore

pressure ranged from 300 to 2,000 bars. Pressures, temperature and displacement were

recorded automatically once every second using a 16 bit multiplexed A/D converter.

Sample resistance was measured periodically during the course of each experiment

by comparison to a precision decade resistor. The measurement circuit is shown in Fig.

5.2. A Wavetek model 142 signal generator was used to provide a 100 Hz sine-wave of

nominal 1 volt peak-to-peak voltage. This excitation signal was connected to the sample

in series with the decade resistor box. A high-input-impedance (>3 x 108 Q)

instrumentation amplifier was then connected, successively, across the sample and the

precision resistor, which was adjusted to match the sample resistance. Sample

resistances typically ranged from 103 to 106 ohms.

Accuracies of confining pressure and pore pressure are, respectively, 10 and 5

bars. Precisions are 0.2 bars. Precision of axial displacement is 0.3 pm. During the

experiments, samples typically neck by 1 - 2% due to the support of the A120 3 spacers.

Thus we estimate that final porosities are known to ± 1%. Final sample dimensions are
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measured after removal from the pressure vessel and, based on starting weight and an

assumed density of Pquartz = 2.65 g/cm 3, used to compute ending porosity. The final

porosity is then combined with the axial shortening data to back-calculate the porosity

during the run. Consequently, porosity values have larger uncertainties in the early

stages of the experiments. The run temperature of 7000 is for the center of the sample
and is accurate to ± 100. The temperature gradient was determined by moving a

thermocouple up and down the axis of a dummy sample. Temperature at the ends of the
sample was found to drop off by 150.

Although sample resistance was determined to ± 0.5% accuracy, conversion to

conductivity a requires determination of a geometric scaling factor: a = 1/aR where a
has units of length. A radially symmetric finite difference model was developed to

compute a. For the nominal sample dimensions, a = 0.0268 ± 0.005 m. However, the

value of a will decrease as the sample densifies. This correction is not made in

computing the conductivity data, resulting in a systematic error of up to 6%.
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Results and Discussion

Run conditions, starting materials and ending porosities for the series of

experiments are listed in Table 5.1. Most experiments were conducted at an effective

pressure Pe of 1,700 bars (Pe = P - Pp, where Pc is confining pressure and Pp is pore

pressure). Densification and conductivity curves are shown in Figs. 5.3 and 5.4. Note

that all runs showed similar compaction histories, namely an initial period of rapid

compaction, trailing off, after approximately 10 hr, to a much slower compaction rate.

This can be seen more clearly in Fig. 5.5 where volumetric strain rate is plotted as a

function of time. Runs 14 and 15, at Pp = 1,000 bars, had the fastest initial compaction

rates shown in Fig. 5.5. Run 13 (Pp = 2,000 bars) actually had the fastest compaction

rate. However, due to equipment problems, this sample had to be unloaded and

restarted. Consequently, the initial rate is not shown. In all runs that lasted for more

than 2 days, compaction rates decayed to approximately 2 - 3 x 10-8 s- 1. This

represents about 0.2% porosity loss per day and indicates that little additional

compaction can be expected for reasonably lengthed experiments. These runs were all

at 300 bars pore pressure. However, the 2 kb pore pressure run was compacting 4 to 5

times faster and appeared capable of approaching an equilibrium density if it had

continued for a few more days. The faster compaction rate is apparently the result of

increased H20 activity at high pore pressure.

The volume of pore fluid removed from the sample to maintain constant pore

pressure is recorded during each experiment. This constitutes an independent measure

of sample compaction and can be used to test the accuracy of the determination of

porosity from axial shortening. Data from run 11 at Pp = 1,000 bars are shown in Fig.

5.6. In this figure, the change in volume of the room temperature pore pressure

intensifier is plotted as a function of porosity (calculated from axial shortening data).

Since fluid mass is conserved in the pore fluid system, the volume change in the sample

can be related to the volume change in the intensifier by

AV2 = PI/P2 AV 1  (5-1)

where pi is water density in the intensifier and P2 is water density in the sample. A
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least squares fit to the data requires a density ratio of 3.2 ± 0.2. The correct ratio of

3.55 predicts the line shown in Fig. 5.6. The most likely cause of the discrepancy is a

calibration error in the load cell due to seal friction. This would imply that the axial

stress was slightly lower than the confining pressure so that the sample compacted

laterally more than it compacted axially. Since porosities are back-calculated from the

ending sample dimensions, beginning porosities are systematically calculated too small.

For example, in this run, a back-calculated porosity of 18% should in fact be 19.5%.

This fluid pore volume measurement was only made for a few of the runs so we have

not made this correction to any of the data.

Conductivity-porosity relations are summarized in Fig. 5.7. For a given porosity, a

general increase in conductivity with increasing pore pressure is observed. This trend

reflects an increase in fluid conductivity with pore pressure, primarily reflecting the

increase in fluid density with pressure. One apparent inconsistancy in the conductivity

data is run 12 which, although it has lower porosity than runs 9 and 10, has about the

same conductivity. This is the only sample run a high effective pressure (3,700 bars)

and in addition was not cold pressed as were all the other samples. As a result, its

unusually high conductivity may reflect a difference in grain packing geometry. At this

point, this explanation is only conjecture and needs to be verified by additional

experiments. Another notable feature of Fig. 5.7 is the shallow slope and relatively

high conductivity of run 11 (compared to runs 9 and 10). This is the only run in which

the unsorted >20 pm powder was used. Once again, a possible explanation would be a

difference in grain packing geometry for this experiment. This effect also needs further

investigation.

The matrix conductivity was measured before the start of run 10 by pre-loading the

sample, at temperature, while evacuated. In this manner, conductivity of the quartz

matrix was determined to be 8 x 10-5 mho/m. Conductivity for single crystal quartz is

highly anisotropic (Kronenberg and Kirby, 1987). Conductivity perpendicular to the

c-axis is approxiately 10-5 mho/m at 7000 C, although parallel to c, conductuctivity as

high as 10-2 has been reported. Values that we have measured for the dry aggregate are

approximately one-half the conductivity reported by Olhoeft (1981) for Westerly granite

and a hornblende schist at the same temperature. The lower conductivity of the quartz

powder is probably due to the inefficient conduction resulting from the open pore

structure. One of the primary reasons for undertaking these experiments was to
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determine whether the residual pore structure remained connected as the samples

compacted. If the interconnecting passages pinch off so that pores become isolated,

then the sample conductivity should drop to the value for matrix conduction at the

residual porosity. If, on the other hand, pores remained connected, the slope of the

conductivity-porosity plot should decrease before reaching the matrix conductivity. As

shown in Fig. 5.7, we have come within one-half decade of the matrix conductivity

without observing any decrease in slope. This indicates that in the experiments

performed so far, interconnecting channels have continued to close. By the end of run

15, compaction rate was about 1% per day. Thus, we expect to be able to observe the

final stages of channel closure in future experiments. If the trends in the data are

extrapolated to the matrix conductivity, they indicate that the low pore pressure runs 9

and 10 would retain residual porosities of 8 to 10%. The high pore pressure

experiments, run at the same effective pressure, would have residual porosities of 3 to

5%. One explanation for this would be that the increased fluid pressure allows material

from the grain contacts to be transported farther into the open pores before being

redeposited.

Archie's law is a well known empirical relation between conductivity and porosity

which is used mainly for sedimentary rocks (Timur et al., 1972), although its

applicability has also been evaluated for crystalline rocks (Brace et al., 1965; Lockner

and Byerlee, 1986). The most common form of Archie's law is

Ofluid/crock = 4 -m (5-2)

where cfluid and arock are, respectively, conductivity of fluid and conductivity of

saturated rock. m typically ranges from 1 to 2 and is near 1.7 for many sandstones

(Timur et al., 1972). Values of m for the present experiments are listed in Table 5.1. In

most cases, the exponents are significantly larger than what is observed for sandstones

as well as low porosity Westerly granite. It may be more appropriate to remove the

residual porosity when fitting the present data to Archie's law since, as the connecting

passages pinch off, the residual pore volume no longer plays a role in limiting

conductivity. A similar approach was taken in Brace et al. (1965) were they made a

distinction between crack and pore porosity. If this is done, the resulting values of m

can be reduced to the range of values observed for sedimentary rocks. In this sense,
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uncharacteristically large values of m may be indicative of rocks in which a significant

residual porosity is nearly isolated. In the next section we take a different approach and

attempt to model the conductivity data in terms of geometric changes in the pore

structure during densification.
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Conductivity-porosity Model

As a first step in modeling the conductivity-porosity data, we begin with a simple

model based on the following assumptions:

Assumption 1) The starting aggregate consists of hexagonally close-packed spheres

of equal size. This implies an initial porosity 4i ~ 0.26. We will first model the well

sorted (5-10 pm) quartz powder. From the density determinations (4 = 0.46 ± 0.02) of

the cold press procedure used to form the initial samples, we know that the starting

material has a more open structure than efficiently packed spheres. Also, SEM studies

show that the initial powder contains angular grains. However, the sharp corners of

grains will be more reactive and grains will tend to become more rounded at

temperature. Thus, it is not clear how severe the errors are that are introduced by this

simplifying assumption.

Assumption 2) All current paths are from pores (high a) to connecting channels

(low a) to neighboring pores, etc. The connecting channels are expected to dominate

conductivity; especially as they approach closure.

Assumption 3) Porosity decreases, as connecting channels pinch off, towards a

final porosity )f, that is indicated by asymptotes in the data. Connecting channels are

approximated as shown in Fig. 5.8. The channel cross-section at the narrowest point is

approximately triangular with sides 2c. The length of each channel is approximately 2a.

Assumption 4) Densification occurs by transport of material from grain contacts to

pores. This process results in movement of grain centers toward each other and is

measured by grain overlap = 2b. This geometry gives the following relations:

a =r sin p
b = r (1 - cos p)

c = r sin 0 (5-3)

(p = cos-l(1 - b/r)

20 + 2p = n/3 .

196

I~.. -,,.n;L~i-- ----1--~ -;-- i rr~n;-lrux ---~.iti._



Conductance of Channels and Pores

For a single channel,

Yc = Ofluid area/length = ofluid 43c2/2a (5-4)

where Y is conductance and 0 fluid is conductivity of fluid. Substituting (5-3) gives

Yc = 43 afluid r sin2(x/6 - p)/sin (p. (5-5)

For hexagonal close packing, pores are approximately cubic in shape (Fig. 5.9),

and are connected to neighboring pores by eight channels. Volume of a unit cell is

Vuc = 1642 C r3  (5-6)

where r = (1 - i)/(l - 4) is a measure of volumetric strain relative to the initial state.

Then, pore volume of a unit cell is simply OVuc. The radius of a pore of equivalent

volume becomes

rp = ((3/4x) Vuc) 1/ 3 . (5-7)

Pore conductance is approximated by

Yp = Ofluid area/length = ofluid (Trp2)/(2rp) = x ofluid rp/2 . (5-8)

While this includes a rather crude approximation to the true geometric factor

contributing to pore conductivity, it will not be too far from the correct value, and as

long as the pore geometry does not change significantly with compaction, the geometric

factor will remain constant.

Each unit cell contains one pore connected to pores in neighboring cells.

Macroscopic planar current flow in, for example, the x-direction (Fig. 5.9), involves

parallel flow in two channels leaving a pore. These channels connect to two new

channels, in series, which enter the next pore. Thus the equivalent unit cell conductance
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(Fig. 5.10) is

Yuc = { 1/Yp + I/Yc)-1. (5-9)

Finally, conductivity for a unit cell, and therefore for the entire matrix, becomes

a = Yuc length/area = 42/4 ((1 - )/(1 - i))1/3 Yuc/r. (5-10)

Relating Porosity to Unit Cell Deformation

When the connecting channels have pinched off (Yc = 0):

0 =0 (5-11)

(pf = x/6

bf = r (1 - cos (pf) = r (1 - cos x/6).

Assumption 5) b is linearly related to strain of the aggregate and therefore to

porosity:

S= (i - 3zb/r. (5-12)

Coefficient z depends on geometry; e.g. coordination of grains and amount of debris

filling pores. Since f = Oi - 3zbf/r, substitution of (5-11) and rearrangement gives

z = (i - f)/(3(1 - cos x/6)). (5-13)

For a given 4i and 4f, (5-13) is sufficient to fully specify the problem.

Representative plots of (5-10), using f = 0.02 and 0.04, are shown in Fig. 5.11

along with data from experimental run 13. Since the appropriate fluid conductivity is

not known, the theoretical curve is shifted vertically to give the best fit and in fact is in

good agreement with the data. Runs 14 and 15 are also fit reasonably well, although for

the other data sets, at higher porosity, the model grossly over-estimates porosity
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dependence of conductivity. Note that run 13 achieved the greatest densification of all

the runs. Since the present model is dominated by the closure of the connecting

channels, which should become increasingly important as densification progresses, the

good agreement with run 13 is encouraging. The inability to fit the less dense

conductivity data may indicate that pore conductivity is domimant in those runs. We

next explore this possibility.

Modification for Initial Porosity

Equation (5-10) will generate a family of curves depending on the choice of Of.

Since these curves all exhibit a gradual change in slope, fitting the individual data

segments from the various runs is a severely underdetermined problem. We next make

the assumption that the suite of runs, using the same starting material and conducted at

the same effective pressure and temperature, all represent portions of a single

densification curve. This curve can then be reconstructed by shifting conductivity data

from the various runs vertically so that they overlap. Such a composite curve, using

data from runs 9, 10, 13, 14, and 15, is presented in Fig. 5.12. Where the various data

sets overlap in Fig. 5.12, their slopes generally agree with each other, providing some

confidence that this procedure is valid. The relative shifts in the data sets are assumedto

be the result of variations in fluid conductivity. Fluid conductivities, normalized by run

13, are predicted to be 0.04, 0.06, 0.7 and 0.7 for runs 9, 10, 14 and 15, respectively.

Since runs 9 and 10 had the same run conditions, a discrepancy in their fluid

conductivities probably indicates a problem in one or both of these runs. Experiment 10

had been run dry at temperature to measure matrix conductivity. It was then cooled,

saturated and reheated. Consequently, it may have suffered damage due to thermal

cracking, providing a possible explanation for its enhanced conductivity.

In the model developed so far, conductivity is dominated by the conductivity of the

channels after as little as one percent compaction. Since the starting material is less

dense that what would be expected for close-packed spheres, pores should be expected

to be connected more efficiently in the early stages of densification than would be

predicted by the model. To include this feature in the model, we assume that a

cross-over porosity Oco exists, above which pore conduction dominates, and below

which channel conduction dominates. Then (5-9) is modified to
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(5-14)Yuc = {1/Yp + 1/(QYc)) -

with the condition that when 0 = 4co, Yp = QYc. Q can be interpreted to indicate the

efficiency of the interconnecting channels relative to that predicted by the close-packed

model. Expanding (5-10) to give the explicit porositiy dependence of conductivity

results in

OfluidoY= (5-15)

(32 )3 + 3 (2) 2 1Q( 3z

71-) 3z2

4(1 32 j -1

The dependence due to pore conduction is given by the first term in the denominator.

Two model curves, using of = 0.02 and 0.04 are shown in Fig. 5.12 along with the

composite data. Both model curves use 4i = 0.43 and Oco = 0.15 to conform to the

data. These models provide a good fit, suggesting that the aggregate is approaching a

final porosity of 3 ± 1%. The model curves require values of Q of 43 ± 6, indicating

that the initial model significantly underestimated the channel conductance in the early

stages of compaction. Apparently, for the starting sample geometry, the pore structure

is sufficiently open so that the pores form a connected network with no significant

intervening channels. However, for the present run conditions, at approximately 15%

porosity, a transition occurs where pores become sufficiently isolated that connecting

channels begin to dominate electrical conduction. The residual porosity is better

constrained for this composite data set than for most of the individual runs. If, as

suggested in the last section, we remove the residual porosity and plot log a vs log(O -

of), the resulting slope is 1.7, which is precisely the porosity dependence observed for

sandstones (Timur et al., 1972).
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TABLE 5.1 - Run Conditions

All runs at 7000C

Run Grain Size Pc
[gm] [bars]

Pp
[bars]

Pe Ending 0)
[bars] (±+ 0.01) (Archie's law)

9 5-10 2,000

10 5-10 2,000

11 >20 2,000

12 5-10 3,700

13 5-10 3,700

14 5-10 2,700

15 5-10 2,700

300
300
300
300

2,000

1,000

1,ooo

1,700

1,700

1,700

3,400

1,700

1,700

0.18
0.19
0.10
0.08

0.07 (_-0.02) 2.8
0.11 2.8

1,700* 0.11

*Run 15 was pre-compacted at Pc = 3,700 b, Pp = 0, T = 180C.
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Figure Captions

Figure 5.1 Sample column assembly for hot press experiments.

Figure 5.2 Schematic diagram of sample resistance measurement circuit. Voltage

drop across sample is balanced against voltage drop across precision

decade resistor.

Figure 5.3 Summary of porosity and conductivity plotted as a function of time for

runs 9 - 12.

Figure 5.4 Summary of porosity and conductivity plotted as a function of time for

runs 13 - 15.

Figure 5.5 Logl 0(volumetric strain rate) plotted vs time for all experiments.

Figure 5.6

Figure 5.7

Plot of porosity change as calculated from axial shortening vs pore fluid

removed from sample to maintain constant pressure.

Log a vs log 0 for all experiments. Matrix conductivity was determined

from evacuated sample. See Table Al for values of exponent in power

law fit.

Figure 5.8 Cross-sectional view of channel connecting pores in HCP model. Grain

centers are assumed to approach each other as material at grain contacts

(shown as overlapping regions) is removed and deposited in pores.

Figure 5.9 Cross-section of HCP geometry showing relation between grains, pores

and connecting channels.

Figure 5.10 Equivalent circuit for current flow in x-direction (Fig. 5.9). Yp is
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conductance of pore and Yc is conductance of connecting channel.

Figure 5.11 Comparison of run 13 data to model predictions (eq. 5-10) using residual

porosity of of 2 and 4%. Model curves have been shifted vertically for

best fit.

Figure 5.12 Composite conductivity curve for all runs in which Pe = 1,700 b. Data

sets are shifted vertically to overlap. Two curves for extended model (eq.

5-15) are plotted for residual porosities of 2 and 4%. A cross-over

porosity of 15% is used. Above this value, pore conductivity dominates

while below it, channel conductivity dominates.
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Figure 5.2
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