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ABSTRACT

Experimental petrology and major element chemistry are used to infer the
melting processes that operate in the upper oceanic mantle to yield basaltic magma, and
the subsequent cooling processes by which these magmas chill to form the oceanic crust.

THE PRIMARY MAGMAS OF MID-OCEAN RIDGE BASALTS

This paper reports experiments carried out between 9 and 16 kbar (0.9 - 1.6 GPa)
using natural, primitive mid-ocean ridge basalt (MORB) compositions and synthetic
analogs of MORB to investigate the effects of pressure, temperature and variable bulk
chemistry on the composition of liquids multiply saturated with the minerals present in
the upper oceanic mantle: olivine, orthopyroxene, augite and plagioclase or spinel. For
this low-variance, 5S-phase assemblage, expressions involving pressure, liquid NaK#
(NapO+K50)/(NapO+Kp0+CaO), Mg# (Mg/[Mg+Fe2¥]; total iron as Fe2t) and
wt. % TiO9 predict temperature and major element compositions of magmas produced
by melting spinel and plagioclase lherzolites over the pressure range of 0.001 - 16 kbar.
The expressions are derived using data from this experimental study and published
experimental studies that report compositions of glasses coexisting with olivine,
orthopyroxene, augite and plagioclase and/or spinel. A two-part quantitative framework
for evaluating the systematics of MORB chemistry is presented: 1) for estimating melts
from a depleted MORB-mantle source as a function of pressure and changing mantle
composition, and 2) for evaluating the effects of fractional crystallization on these
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estimated primary melts over a range of pressures corresponding to depths in the upper-
most oceanic mantle and in the oceanic crust. This framework yields the following
observations: the total extents of depletion achieved by the decompression melting
process range from ~5 - 20 %, the range of pressures of melting is relatively narrow,
from 8 - 15 kbar, and much of the variation in major element chemistry observed in
MORB can be explained by melting a similar depleted MORB-mantle source (primitive
upper mantle, [Hart and Zindler, 1986] - ~1 % melt). The inverse correlation between
NajO and FeO observed by Klein and Langmuir (1987) in the global MORB data set is
also present in the array of the estimated primary magmas of MORB. The operation of
fractional crystallization over a range of pressures is responsible for the rotation of the
steep, primary NayO-FeO trend to the more shallow trend observed in the evolved
(MgO = 8.00 wt.%) MORB. The dominant compositional vector associated with mixing
between melts generated at different pressures within the same decompression melting
’column’ resembles the compositional vectors associated with varying extent of melting
and pressure of melting (i.e., an inverse correlation between NajO and FeO in the -
mixed melts). The mixing vector is not similar to the ’local’ trends observed by Klein and
Langmuir (1989). These ’local’ trends are identified within MORB sampled over a
limited portion of mid-ocean ridge, and are characterized by a positive correlation
between NajO and FeO, and an inverse correlation between NaO and SiO».
Fractional crystallization of estimated primary magmas over a range of pressures (0.001 -
4 kbar, and possibly greater) generates variability in derivative magmas that resembles
the local trends observed at several areas along the mid-Atlantic ridge. The correlation
between pressure of melting (10 - 15 kbar), extent of melting (3 - 20 %) and NayO-FeO
systematics observed by Klein and Langmuir (1987, 1989) generally holds for normal
(not hot-spot influenced) MORB. The primary magmas of some low-NajO, hot-spot
MORBs may have been derived by melting a more fertile mantle source, to a greater
extent, at similar pressures to the intermediate -NapO, normal MORB.

MAGMATIC DIVERSITY AT THE OVER-LAPPING SPREADING CENTER AT
11945 N ON THE EAST PACIFIC RISE

Major element chemical data, experimentally determined phase equilibria and
geological observations obtained with the ALVIN submersible are combined to
investigate the petrological processes responsible for generating the compositional
diversity sampled in lavas from both rifts of the 11°45°N over-lapping spreading center
(OSC) on the East Pacific Rise (EPR). Lavas on the tectonically active, migrating,
eastern rift of the OSC show a greater diversity in major element composition relative to
those on the western rift, which is less active volcanically and tectonically (north of
western rifts of the OSC require the operation of crystallization of magmas along the
olivine - augite - plagioclase - liquid boundary, however, few, if any of the lavas erupted
at the OSC contain augite as a phenocryst phase. The diversity of major element
compositions of the lavas sampled from the western rift is well explained by simple
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mixing between moderately evolved magmas saturated with olivine + augite +
plagioclase near 1-atm., and parental magma. The resulting mixed magma is no longer
saturated with augite at 1-atm., however the magma composition retains the signature of
the fractionation of augite contributed by the evolved component in the mixture. The
major element compositions of lavas sampled from the eastern rift are well explained by
fractionation from parental magmas similar to the primitive lavas sampled at the eastern
rift and further to the north on the EPR, at pressures equivalent to ~3 - ~ 6 km depth.
Although these magmas appear to have evolved by fractionation of olivine + plagioclase
+ augite, upon emplacement to shallower pressures and eruption, they are no longer
saturated with augite and are thus erupted with only olivine and plagioclase as
phenocryst or micro-phenocryst phases. The diversity of chemical compositions erupted
during the recent history of the eastern rift and the lack of a continuous seismic reflector
along this portion of the EPR preclude the existence of a continuous ’'magma chamber’
beneath the eastern rift of the OSC, however, the occurrence of lavas of similar major
element chemistry and similar age along approximately 25 km of ridge requires extensive
lateral injection from the source of magma differentiation, possibly at pressures
equivalent to near the base of the oceanic crust.

Thesis Supervisor: Dr. Timothy L. Grove
Professor of Geology
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INTRODUCTORY NOTE

This thesis consists of two independe;lt and free-stariding chapters that pertain to
processes of melting in the upper oceanic mantle and crystallization of basaltic magma in
the upper oceanic mantle and oceanic crust. Mid-ocean ridge basalts have long been
recognized as potential ‘windows’ through which we may ’see’ processes of melt
generation in and chemical compositions of the upper oceanic mantle. Observable
products of the processes that yield mid-ocean ridge basalt include the thickness and rate
of generation of the oceanic c;ust, and the chemical compositions and mineral
assemblages of the mid-ocean ridge basalts and depleted abyssal peridotites. Mid-ocean
ridge basalts and depleted abyssal peridotites are direct samples of the end-products of
the melting and freezing process that forms oceanic crust. The thickness and rate of
formation of the oceanic crust informs us of the volumes and rates of magma generation
in the upper oceanic mantle. Samples of abyssal peridotite contain information on the
nature of the melting processes. Pieces of the oceanic crust (mid-ocean ridge basalt)
contain information on the composition(s) of the upper oceanic mantle, the nature and
depth(s) of the melting process(es), and the processes that occur after magma
formation, during the freezing of the magma to form the oceanic crust.

The purpose of the research presented in the two chapters of this thesis is to
contribute to the framework required to extract information about processes of thermal
evolution and chemical mass transfer in the earth’s upper mantle from data on the
thickness and chemistry of the oceanic crust. The approach taken in Chapters I and IL is
fourfold: 1) to examine the melting process directly by carrying out melting experiments
in the laboratory on analogs of mantle material at pressures and temperatures similar to
those that occur in the earth up to approximately 5 0km depth, 2) to examine the
freezing process directly by carrying out melting experiments in the laboratory on natural

basalt at ambient pressures, 3) to relate the experimental data generated in the
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laboratory to the chemical compositions of basalts using the framework of phase
equilibria, and 4) to use geologic observations of basalt occurrences at mid-ocean ridges
to form models of magma generation and freezing.

Chapter I provides new experimental data on the pressures and temperatures at
which upper-mantle peridotite melts, and on the composition of melts that are
generated by this melting process. Quantitative descriptions of the phase equilibria that
control melt generation from mantle peridotite are presented that are constrained by the
data presented in this study, as well as data from the literature. Chemical variations
observed in mid-ocean ridge basalt from the global data set are then used in the context
of the phase equilibria to infer depths and volumes of melt generation required to
produce these basalts. The basalts we sample have been through the freezing process,
and thus their chemical compositions have been modified. A method is described and
employed to remove the modifying effects of the freezing process on the melts generated
in the mantle, which may occur over the range of pressures between magma generation
and segregation from the source region, and emplacement within the mid-ocean ridge.
The chemical systematics of the basalts that are associated with the melting process are
then identified.

Chapter Il examines the chemistry and geology of a portion of the mid-ocean
ridge at 11°45°N on the East Pacific rise. The nature of the freezing process that
resulted in the formation of the oceanic crust in the vicinity of a small ridge offset feature
is investigated in the context of detailed geological observations from the ALVIN
submersible and chemical compositions of the sampled crust. Experimentally
determined, low-pressure phase equilibria are employed to ’see’ through the effects of
Jow pressure crystallization and magma mixing processes on the chemistry of the
sampled basalts. The phase equilibria frame;ork developed in Chapter 1 for
quantifying freezing processes at higher pressures is employed to determine the range of

depths over which the basalts cooled and crystallized.
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Each chapter is presented as a self-contained article including references.
Figures and tables are placed at the end of the text for each chapter. The abstracts from
each chapter have been combined into the thesis abstract presented at the beginning of

the document.



CHAPTER I

Primary magmas of mid-ocean ridge basalts



INTRODUCTION

State of the problem of melting in the upper o<:'e'anic mantle

Melting in the upper mantle occurs as the result of adiabatic up-welling that
accompanies crustal extension at mid-ocean ridge spreading centers. Thermal evolution
of the upper mantle causes decompression melting which results in a large amount of
chemical differentiation. Oceanic crust, which covers approximately 80 % of the earth’s
surface, and is created at a rate of roughly 20 km3/yr at mid-ocean ridge spreading
centers, is the end-product of this melting process. A simple schematic diagram of the
decompression melting process is shown in Fig. 1. "Fertile’ mantle (mantle that has not
yet contributed any melt to the spreading center) rises along an adiabat beneath the
active spreading axis. At some depth (shown in Fig. 1 at approximately 50 km), the
ambient temperature crosses the solidus of the mantle material and melting begins.
Melting continues as the mantle rises further, ceasing at the depth at which the
temperature of the mantle parcel is lower than the solidus temperature for the mantle.
Two physical conditions control the point at which the ambient mantle temperature
crosses below the mantle solidus and melting stops: 1) conductive cooling from above
lowers the mantle temperature in the upper part of the oceanic mantle (i.e. Cordery and
Phipps-Morgan, 1991), and 2) melting proceeds to the extent that the extraction of one
or more phases from the mantle residue occurs (the mantle becomes depleted in the
’basaltic’ component), at which point the mantle solidus steepens so that the solidus
temperature rises above the ambient temperature. McKenzie and Bickle (1988) suggest
that conductive cooling will not be a significant factor in the upper oceanic mantle,
although Cordery and Phipps-Morgan (1991) show that under certain conditions,
specifically at slow spreading rates, conductive cooling may impose a significant control.
In any case, the more significant control on the degree to which the mantle melts is most

likely imposed by the total extent of depletion achieved. The point at which a phase is



eliminated from the mantle residue, or the degree of depletion achieved during melting,
will be a function of how (and if) the melt is extracted from the mantle residue as it is
produced.

What happens to the melt, as it is produced? Does it stay with its solid residue
(batch melting in a diapir; i.e., Presnall et al., 1979), or does it separate and rise on its
own (i.e., McKenzie and Bickle, 1984, 1988)? These questions are important because
whether or not the melt remains in equilibrium with its solid residue as the mantle rises
through the melting regime controls the volume and the compositions of the melts and
the residues of the melting process. If the melt stays with the solid as the solid rises
through the melting regime, and separates at the top, then the bulk composition of the
melting system (residue + melt) stays constant, and the pressure signature of the melt
produced will be equivalent to the pressure of segregation (the pressure at the top of the
melting regime). In this batch melting case, bulk system composition and pressure of
melting are effectively constant for the melting process that yields MORB, and the
volume and composition of magma produced will be a function of the starting
composition of the mantle, the pressure of segregation and the extent of melting
achieved, which is a function of temperature. If, on the other hand, melts segregate from
the rising mantle in small fractions, as they are produced, then the bulk composition of
the melting system changes continuously as melting proceeds (near-fractional meiting).
Furthermore, as long as the fractions of melt do not equilibrate with the overlying
mantle as they rise, then the pressure signature associated with the magma formed by
aggregating these small fractions of melt at some depth shallower than the melting
regime will reflect the range of pressures over which each of the small melt fractions
were produced. In this near-fractional melting case, then, the volume and composition
of the resulting aggregate magma compositi(; will be a function of temperature, the
range of pressures over which the melting occurred, and the changing system

composition.



- Theoretical models of melt generation and segregation (i.e., McKenzie, 1984)
favor polybaric, near-fractional melting over diapiric, batch melting for producing
magmas during decompression melting. The recent experimental study of basaltic melt
segregation from a deforming matrix of olivine (Riley and Kohlstedt, 1991) suggests that
melts segregate at small fractions (0.1-1%) as they are produced. Johnson et al. (1990)
suggest that the chemical variations observed in abyssal peridotites, the residues of the
partial melting process that produces MORB, reflect a process of melt extraction that
involves the removal of small increments of melt as they are produced (near-fractional
melting). Geodynamic models (Cordery and Phipps-Morgan, 1991) suggest that
buoyancy forces resulting from the change in density associated with the extraction of
melt from the rising mantle will enhance convection of mantle through the melting
regime, and thus enhance melting. Given these theoretical, experimental and
geochemical observations it is clear that decompression melting is a dynamic process
during which pressure, temperature and system composition change as melting
proceeds, and the changes in system composition associated with melt extraction result
in changes in density that feed back to drive the melting process.

Recent efforts to more realistically model the decompression melting process in
the upper oceanic mantle include Klein and Langmuir (1987, 1989) and McKenzie and
Bickle (1988). Klein and Langmuir utilized the melting experiments of Jaques and
Green (1980) and Fujii and Scarfe (1985), as well as the method of Langmuir and
Hanson (1980) for estimating the distribution of FeO and MgO during mantle melting,
to examine the case of polybaric, batch melting for the generation of MORB at mid-
ocean ridges; in their treatment the pressure of melting and the extent of melting varied
but the solid composition melting at any given pressure was constant. McKenzie and
Bickle (1988) used an empirical parameteriz;tion of an unabridged set of the existing
mantle peridotite melting experiments to model the melting process that produces

MORB as a polybaric, near-fractional melting process. In their treatment both pressure



and the solid composition varied as melting proceeded. The present study provides new
expe}imental data that pertains to the mantle rhelting process. A quantitative,
experimentally constrained description of the melting equilibria as a function of
pressure, temperature and solid composition is presented. This quantitative description
is guided by thermodynamic constraints on the mantle melting equilibrium, and is
calibrated over the data presented in this study as well as a comprehensive but more
critically evaluated set of melting experiments as compared to the data sets of McKenzie
and Bickle (1988) and Klein and Langmuir (1987, 1989).

Our approach is guided by the theoretical framework of the mantle melting
process provided by McKenzie and Bickle (1988) and by the insightful observations of
Klein and Langmuir (1987, 1989) about the geochemical systematics of sampled MORB,
and how these systematics may relate to the mantle melting process. The approaches
taken by Klein and Langmuir (1987, 1989) and McKenzie and Bickle (1988) to
estimating compositions of melts from mantle peridotites are based on peridotite
melting experiments that are analogs to larger extents of melting of the mantle (> 20 %)
and are not directly applicable to modelling melting processes that involve extraction of
small (0.1 - 1 %) melt fractions. Fig. 2 presents NaK# vs. Mg# for experimentally
produced melts that coexist with the phases present in the mantle source, olivine,
orthopyroxene, augite and spinel and/or plagioclase. The open squares represent
existing data, the solid squares show the data added by this study (and that of Grove et
al., 1990; and Bartels et al., 1991). Small increment melts produced from a spinel-
lherzolite rising into the melting region beneath a mid-ocean ridge are anticipated to
have high NaK# (~0.4). With further depletion by extraction of melt the NaK#
decreases. The Mg# of the melts increases relatively slightly. These melt compositional
parameters impose a significant control on ti;é major element compositions of melts
from spinel-lherzolites. Our approach provides an improvement over the earlier

approaches because it is calibrated over a data set that better describes the variations of



melt composition anticipated during near-fractional melting of mantle lherzolite. The
péra;neterization is designed for calculating meits over the range of melt percents
relevant for the mantle melting process (1 - 20%). Moreover, it allows a quantitative
calculation of the melt composition at small melt percentages as a function of changing
residue composition. The description we present can be used to constrain mantle
melting processes, whether batch, near-fractional, or in-between.
Background on question of primary magmas of MORB

The oceanic crust provides samples of the end-product of the mantle melting
process. In order to use the chemistry of the oceanic crust (or its thickness) to infer
characteristics of this melting process, we need to evaluate and correct for any post-
melting processes that may have modified the mantle melt compositions and volumes to
yield the sampled MORB. For the purpose of this discussion we define a liquid
produced by partial melting of a source region and unmodified by any post-segregation
process as a ’primary magma’ (B.V.S.P., 1981). Thus it is the primary magmas of MORB
that provide direct constraints on the mantle melting process. The identity of the
primary magmas of MORB has been the subject of on-going debate. Three general
views have evolved over the past 25 years. The first view is that the primary magmas of
MORSB are essentially picritic melts that segregated from their mantle source at
relatively high pressures (20-25 kbar, O’Hara, 1968a; Stolper, 1980; Elthon and Scarfe,
1984; Elthon, 1989). This view holds that a major amount of chemical modification has
occurred to these picritic, primary magmas after separation from their mantle residue to
produce chemically evolved MORB sampled at mid-ocean ridge spreading centers.

The second view is that many primitive MORBSs are potential primary magmas
that segregated from their mantle source at relatively low pressures (9-11 kbar, e.g.,
Presnall et al., 1979, Fujii and Scarfe, 1985; Fujii, 1989). For the purpose of this
discussion, we define *primitive’ MORB to be those MORB glasses that contain greater

than 9.00 wt.% MgO. A third approach to the primary magmas of MORB has evolved



along with the more recent models of the decompression melting process beneath mid-
ocean ridges discussed‘above (O’Hara, 1985; McKenzie and Bickle, 1988; Klein and
Langmuir, 1987, 1989). This approach regards the magma that is emplaced into the
spreading center as an aggregate of melts collected from a range of degrees and depths
of melting and segregation. In this third view, the magma being fed into spreading
centers no longer represents a primary magma in the strict sense of the definition
provided above, but rather consists of a blend of primary magmas, segregated from a
range of pressures, referred tain later discussion as aggregate primary magmas.

In this paper, two approaches are used to constrain the mantle melting processes
that yield MORB. A forward approach consists of using the experimentally constrained,
quantitative description of the mantle melting equilibria presented below to predict
primary magma compositions produced by batch and near-fractional, isobaric and
polybaric melting of a depleted MORB-mantle source. Fractional crystallization
processes are then applied to correct these estimated primary magma compositions
’down temperature’ to 8.00 wt.% MgO so that they can be directly compared to the
corrected global data set of MORB compiled by Klein and Langmuir (1987,1989). An
inverse approach consists of subtracting out the effects of fractional crystallization and
other post-segregation magmatic processes from a subset of sampled MORBs that span
the range of compositions covered by the global data set of Klein and Langmuir
(1987,1989) in order to track the sampled MORBs "up temperature’, back to parental,
primary magma compositions. These parental, primary magma compositions are
compared to those estimated by the mantle melting models presented below to place
constraints on the generation of the primary magmas of these MORB, as well as to

evaluate the nature of the composition of the depleted MORB-mantle source(s).



EXPERIMENTAL AND ANALYTICAL METHODS
Starting Material . .

Two primitive and one parental mid-ocean ridgé basalt (MORB), and several
synthetic MORB analog compositions were chosen for experimental study. The samples
consist of fresh glassy to aphyric pillow fragments, and the freshest parts of the pillows
were separated, reduced to powder by grinding in a SPEX shatterbox for 3 minutes, and
then used as starting material. Three types of experiments were carried out: the first
used the natural basalts, the s€cond used mixtures of natural basalt with small
proportions of mafic minerals and the third used synthetic compositions prepared by
combining mixes of oxides with small proportions of mafic minerals. Mixes for the
second type of experiment were prepared by grinding powdered natural basalt with
hand-picked, cleaned, crushed Kragero orthopyroxene or San Carlos olivine in an
automatic agate mortar and pestle for 3 hours. The synthetic starting compositions were
prepared in three steps. The first step entailed grinding Johnson-Matthey high purity
SiOy, TiO, AlO3, Crp03, Fe203, MgO, MnO with prepared mixes of CaSiO3,
NaySiO3 and K3Si4qOg together in an automatic agate mortar and pestle for 5 hours, Fe
sponge was then added and the mix was ground for an additional 1.5 hours (Lindsley et
al., 1974). The second step entailed adding small proportions of powdered San Carlos
olivine and in some cases powdered spinel separated from a Kilbourne Hole lherzolite
(KH-5-4, T.L. Grove, pers. comm.). The third step entailed holding the synthetic mix at
~1300°C at an oxygen fugacity controlled at the quartz-magnetite-fayalite buffer on Pt-
Fe loops fabricated after the method of Grove (1981). This step was necessary to ensure
that the Fe was present in the starting composition as dominantly FeO. Table 1 provides

chemical analyses of the starting compositions used in this study.



Expe(imental procedure -

| Melting experin_lents were carried out at 9, 10, 1>1, 12, 13 and 16 kbar, under
volatile-free cdnditions, in a 1/2" solid-medium piston cylinder apparatus (Boyd and
England, 1960) using the piston-in method (Johannes et al., 1971). Experimental
conditions are reported in Table 2. The temperature was monitored and controlled
using Pt-PtggRh1(. The pressure medium consisted of an outer cell of NaCl and an
inner cell of Pyrex. This pressure cell was calibrated against the melting point of gold at
10 kbar (Akella and Kennedy,.1971) and the observed effect of friction within the
assembly was < 1 kbar. This effect on total pressure lies within the uncertainties of the
calibration and the pressures reported in Table 2 do not include a friction correction.
Approximately 4 - 10 mg of starting material was packed into a graphite container,
closed with a graphite lid and welded into an outer Pt capsule. The graphite isolates the
sample from the Pt outer capsule and prevents Fe loss. The graphite-Pt capsule
assembly keeps the redox conditions constant near the C-CO2-CO buffer. The 32 mm
sample assembly was placed in a ceramic sleeve and centered in the hot spot of a
graphite furnace using crushable alumina (Anggq) spacers. The thermocouple was
located 3.5 mm above the center of the furnace, or 1.75 mm above the top of the sample
capsule, and separated from the capsule by a 1.75 mm wafer of Anggg. The
temperature gradient between the thermocouple position and the center of the sample
was measured to be 45 °C. Temperatures reported in Table 2 are corrected for this
temperature difference. Failure to reproduce the sample geometry from experiment to
experiment results in inconsistent temperature measurements. Temperatures were
reproduced in the assembly described above to at least within +/- 15 ocC.
Analytical methods

Experimentally produced run produc—t; were analyzed with the MIT 4-

spectrometer JEOL 733 Superprobe, using an accelerating voltage of 15 keV and a
beam current of 10 nA for all phases. Data was reduced using Bence and Albee (1968)



i0

matrix corrections with modifications of Albee and Ray (1970). A beam spot size of 10
micr;)ns was used for glass analyses, a 1 micron &am spot size was used for the
crystalline run products. Analytical precision is estimated by replicate measurements of
a MORB glass (PROTEA-9-70-002, Table 1). One standard deviations of replicate glass
analyses expressed as relative percent oxides are Si02:0.2%, TiO2:1.7%, Al203:1.3%,
Fe0:0.8%, Mg0:0.7%, Mn0:17.6%, Ca0:0.8%, K20:10%, Na20:2.2%, P205:33.3%,
based on 368 individual analyses over 46 analytical sessions. The mean sum of the
analyses of the MORB glass is.99.2%. Major element compositions of all the run
products are presented in Table 3.
Conservation of Mass

Three approaches were used to evaluate if the bulk composition of the
experimental charge remained constant. We inspected each polished charge in reflected
light to determine if large cracks had formed in the graphite containers during the
experiment. If cracks were apparent, and melt was observed to be in contact with the
outer Pt sleeve, then Fe loss is certain to be greater than 5 % relative and such
experiments were discarded. It is possible that cracks may form that are not apparent
upon inspection of the polished charge in reflected light, and thus each charge was
examined with the back-scattered electron imaging system (brightness = average atomic
number) on the electron microprobe. If significant Fe-loss has occurred then the Fe-Mg
bearing minerals will often show reverse zoning with respect to Fe and Mg, because Fe is
diffusing out of the minerals and glass and into the platinum outer capsule throughout
the course of the experiment. Even in charges with no observed reverse-zoned crystals,
Fe-loss may still have occurred, and thus a third approach that entailed computing mass
balances between the compositions of phases (Table 3) and the bulk composition of
each experiment (using the method of unwe}éhted least squares; Bryan et al., 1969,
reported in Table 2) was necessary to ensure conservation of Fe in the charge. Ina

successful experiment, the composition estimated by the mass balance of the phases
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present closely approximates the bulk composition of the starting basalt or basalt-
mincral mix. In general, only experiments with < 10 % relative Fe loss were considered
acceptable. The mass balance calculations for several of the experiments containing
glass, olivine and orthopyroxene yielded negative phase proportions. The negative
phase proportions result from the arrangement of the phases, particularly the melt,
olivine and orthopyroxene phases, in composition space, relative to the bulk
composition. Mass balance results with negative phase proportions are physically
unreasonable because all of the phases included in the mass balance are observed to be
present in the experiment. These results therefore cannot be used to evaluate whether
mass was conserved during the experiment. We forced positive phase proportions on
the mass balance results by excluding the phases that had negative coefficients in the
initial calculation (in many cases, orthopyroxene; and in three experiments, the alumina-
rich phase as well) from the mass balance calculation. This treatment forces the glass
and the other crystalline phases to incorporate the components present in the excluded
phases and thus results in overestimates of the proportions of these included phases.

We used the equilibrium batch melting equation and treated K7O as incompatible in the
crystalline phases to estimate the melt % present in each charge (Table 2). As expected,
in all but one of the experiments, the glass fractions estimated with the equilibrium batch
melting equation are lower than those predicted by the mass balance calculations. The
purpose of the three measures described above are to provide maximum surety that Fe-
loss is identified in the experiments. Maintaining a constant bulk composition of the
starting material is a necessary first step for an approach to equilibrium in an
experiment. An experiment that is undergoing mass transfer of Fe with respect to an
outer platinum capsule, for example, can not reach equilibrium unless and until loss of
Fe to the capsule has ceased and the bulk co;position of the sample has stabilized. The
outer platinum capsule may provide a large sink for the Fe in the silicate charge, and

potentially buffer the FeO content in the resulting glass which would then yield
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misleading experimental results (see section below on Experimcntal data used to
devéiop the model). ) |
Attainment of equilibrium

All of the experiments presented in this study are direct syntheses; phase
appearance sequences and temperatures have not been reversed. However, several
lines of observation lead us to conclude that the experiments approached equilibrium
sufficiently that they can be used to constrain the processes of mantle melting. First, the
Fe-Mg bearing crystalline phases show generally consistent partitioning with respect to
iron and magnesian (with the exception of experiments H177, H179, H181, H154 and
H156, which have low Fe-Mg Kps for all Fe-Mg bearing crystalline phases present, and
are discussed below). The average KpFe-Mss ([FeO*tIMgO!id)/[Fe0liIMgO*t) are
0.30 (10=0.04), 0.30 (10=0.04), 0.27 (10=0.05), and 0.42 (10=0.07) for olivines, augites,
orthopyroxenes and spinels, respectively. These Kps are as expected from other phase
equilibrium studies and provide evidence for a close approach to equilibrium. Second,
we have succeeded in maintaining reasonably constant sample bulk compositions with
little or no loss of iron to the platinum outer capsule (see above). Third, replicate
analyses of the glass phases present in the melting experiments show that the majority of
the experimental liquids were homogeneous within the precision of the microprobe
analytical technique (+/- 2 0). Fourth, the experimental minerals, with the exception of
augites, are generally sub- to euhedral, and equant or tabular; and individual crystals
commonly reach sizes of 50 to 100 microns across, (the augites, in contrast, are often
anhedral, see below).

Nevertheless, individual mineral analyses vary outside of the practical
reproducibility established above from replicate glass analyses. Back-scattered electron
imaging shows that most of the experimentaﬁiy produced minerals are weakly zoned, and
that sector and patchy zoning are often the norm for augites. The presence of sector

zoning and the small heterogeneities in compositions of the experimentally produced
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minerals are inconsistent with attainment of total equilibrium. We run our experiments
fdr a;s long as possible, however, experiments of }far greater duration than are presently
feasible would be required to produce true equilibrium mineral phase compositions. We
used the compositions of the experimentally produced augites to guide the choice of
optimum run durations. Augite compositional variation is a sensitive function of
pressure and temperature, and the composition of the melt produced and the nature of
the melt-producing reaction for a mantle peridotite are dependent on the composition of
the coexisting augite (Stolper,.1980). A series of experiments were conducted on a
primitive MORB composition (ALVIN 2004-3-1) at 10 kbar and 1270 OC for durations
from 0.5 to 48 hours in order to investigate the effect of run duration on the
homogeneity and average composition of experimentally produced augite. Augite and
plagioclase are liquidus phases at 10 kbar for this MORB. Augites produced in
experiments of 0.5 to 6 hours duration were very heterogeneous in composition. Longer
run times (>14 hours) produced more homogeneous augites, but compositional
heterogeneity persists in even the longest runs. Furthermore, the average composition
of the experimentally produced augites appears to become constant for experiments
with durations between 6 and 24 hours. Obviously, longer run times are almost always
desirable when trying to reproduce processes that occur in the earth, however our run
times were chosen to maximize the achievement of near equilibrium results within the
practical limits of our experimental setup.

Experiments H177, H179, H181, H154 and H156 have anomalously low Fe-Mg
Kps for all the Fe-Mg bearing crystalline phases (<0.25 for olivine, <0.25 for augite,
<0.23 for orthopyroxene and <0.34 for spinel). These experiments are all highly
crystalline (~20-30 wt.% glass) and the fact that the Fe-Mg Kps are low for all the Fe-
Mg bearing crystalline phases present in eaci; »experiment suggests that a significant
portion of the total iron measured in the melt phase is actually present as Fe3t. If this

were true, then the measured amount of total iron yielded by the electron microprobe
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would be an over-estimate of the actual amount of Fez"'

in the glass, which would then
resuit in a lower apparent Kp for Fe-Mg exchange between minerals and melt (FeO]iq
occurs in the denominator of the Kp formulation). Thompson (1974) noted a similar
dependance of observed Fe-Mg Kp for olivine on temperature (melt fraction) in 10-
kbar melting experiments on a natural basalt, and attributed it to the increased activity
of FeoO3 which was not being accounted for because all the Fe was measured as FeO.
A simple calculation suggests that if the MORB glass used in the starting composition for
the four of the five experiments listed above (H177, H156, H154 and H181: 90 wt.%
MORB and 10 wt.% powdered San Carlos olivine) contained ~ 10 % of the total iron as
Fe3 *, then the amount of Fe3+ present in the starting material would be ~ 0.9 wt. %.
If Fe3* is assumed to be totally incompatible with respect to all of the crystalline phases
present, then the amount of Fe3* estimated to be present in an experiment with 22
wt.% liquid is 0.9/.22 = 4.1 wt.%. In the case of experiment H181, for example, the total
FeO measured in the glass phase by the electron microprobe is 11.8 (Table 3), and the
observed Fe-Mg olivine Kp is 0.21. If 4.1 wt. % of the total Fe is present as FepO3 then
a simple approximation of the ’true’ Fe-Mg olivine Kp for this experiment is
(18.7*5.70)/(7.71*42.3), or 0.33; similar estimates of the ’true’ augite, orthopyroxene and
spinel Fe-Mg Kps are 0.31, 0.28 and 0.50. These estimated values are well within the
expected range. Experiments are currently under way to determine if reducing the
starting composition in Fe capsules in evacuated silica tubes at 1 atm. prior to using it in
the melting experiments will result in higher observed Fe-Mg Kps. The presence of a

significant portion of the total Fe as FeZ*t

in the 5 experiments discussed in this section
also affects the observed Mg# of the melt (true Mg# will be higher), and may also affect
the stability of spinel. As the descriptions of the mantle melting equilibria discussed
below depend critically on both the identity E)f the phases with which the melt is
saturated (i.e., spinel or plagioclase, both, or neither) and the Mg# of the melt, these 5

experiments were used only in the description of the plagioclase melting equilibrium (the



15

stability of which is assumed not to depend critically on the amount of Fe3t present in
thé r;lelt). The melt cqmpositions were recaic.ul'atcdr by assuming that the true Fe-Mg
olivine Kp in each experiment is equal to the average experimentally determined Fe-Mg
olivine Kp (0.30) to estimate the amount of FeO, and then estimating the amount of
FeO3 by difference from the total measured FeO.
Philosophy behind the experimental approach

Realistic models of the melting process in the upper mantle require the capacity
to predict the compositions of.small extent partial melts of the mantle as a function of
temperature, pressure, and changing bulk mantle composition. A powerful constraint on
these small extent melts is that they are produced in equilibrium with the minerals
present in the solid residue. The major phases present over the extents of melting
achieved during the melting processes that yield MORB are: olivine, low-Ca pyroxene
(orthopyroxene or pigeonite), high-Ca pyroxene (augite), and an aluminous phase
(spinel and/or plagioclase) in the pressure range 0.001 - 16 kbar. The phrase ‘mantle
residual assemblage’ is used to refer to the phases olivine + augite + low-Ca pyroxene +
spinel +/- plagioclase. The constraint that augite and spinel are residual to the melting
process that yields MORB stems from the presence of these phases in even the most
depleted abyssal peridotites sampled on the sea floor (Dick et al., 1984). We therefore
designed experiments that would yield melts of a range of compositions that coexist with
the mantle residual assemblage over a range of pressures and temperatures. To achieve
this goal, mixtures of basalt powder and small amounts of either powdered
orthopyroxene or olivine were melted over a range of temperatures and pressures.
Initially, the phase equilibria for a powdered primitive MORB glass (ALVIN 2004-3-1,
Table 1) were determined at 9, 11 and 13 kbar. None of the experiments on ALVIN
2004-3-1 contained coexisting melt, olivine, ;Jgite, low-Ca pyroxene, spinel and/or
plagioclase, but we used the olivine-augite-plagioclase, olivine-plagioclase and augite-

plagioclase boundaries located with ALVIN 2004-3-1 as a guide for changing the bulk
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composition to create a starting composition that would saturate with the mantle
résiciual assemblage. Using this approach, bu_lk compositions were generated that
yielded the experimental assemblage: liquid + olivine + augite + low-Ca pyroxene +
spinel and or plagioclase at a range of temperatures at 9 - 16 kbar. By-products of this
effort to locate these low-variance boundaries over a range of pressures, temperatures
and bulk compositions were experiments that contain melt coexisting with only a subset
of the desired crystalline phases. Several experiments containing melt coexisting with
olivine +/- orthopyroxene +/-augite are also reported in Tables 2 and 3.

Comparison to other experimental approaches to mantle melting

Three approaches have been taken to investigate melting processes in the
mantle: peridotite melting (forward approach), determination of liquidus phase
equilibria on primitive natural basalt compositions (inverse approach) and melting
basalt glass compositions in contact with natural mantle minerals (the sandwich
technique). The peridotite melting, or forward approach consists of melting mantle
material over a range of pressures and temperatures. Some of the earliest experimental
studies on the nature of mantle melting were done using this approach (e.g., Ito and
Kennedy, 1967; Green and Ringwood, 1967; Kushiro, 1968; Mysen and Kushiro, 1977;
Jaques and Green, 1980, Takahashi, 1986) and these studies have provided important
first order observations. Measuring the compositions of the melt produced and the
coexisting phases is limited, however, by the small melt fractions present.

Several of the experimental studies carried out to investigate the nature of mantle
melting used the inverse approach (e.g. Kushiro, 1973; Fujii and Kushiro, 1977; Bender,
et al, 1978; Fujii and Bougault, 1983; Elthon and Scarfe, 1984). This approach consists
of choosing a primitive natural basalt composition that is assumed to represent a liquid
composition and testing whether this primiti;é composition represents a primary melt
from some depth. In order to test the primary nature of this primitive basalt, the

liquidus phase assemblage is determined by melting it over a range of pressures and
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temperatures. If the primitive melt’s composition is similar to that of a primary melt
fromr some depth, then at experimental pressure, temperature and volatile conditions
equal to those conditions at which the natural melt was produced, the liquidus
assemblage for the natural composition will be the same as the mineral phase
assemblage present in the mantle residue upon segregation.

In general, none of the primitive natural compositions tested by the inverse
approach were shown to crystallize the mantle residual assemblage on their liquidus.
Only a few of these primitive compositions ever crystallize orthopyroxene (or pigeonite)
at all, and these compositions only do so at temperatures well below their liquidus. (e.g.
up to 30 - 40 degrees below the liquidus temperature for the FAMOUS primitive basalt
527-1-1 at 15 kbar, as determined by Bender et al., 1978).

Several recent experimental studies have applied the sandwich technique (e.g.,
Stolper, 1980; Takahashi and Kushiro, 1983; Fujii and Scarfe, 1985; Falloon and Green,
1987). This approach forces saturation of a primitive basait with a natural mineral
assemblage representing the mantle source, over a range of pressures and temperatures.
The sandwich technique successfully produces large pools of silicate melt in contact with
the starting mineral assemblage (generally olivine + orthopyroxene +/- augite +/- spinel

+/- plagioclase).

EXPERIMENTAL RESULTS
We have produced 20 assemblages consisting of glass plus the mantle residual
assemblage over a range of temperatures from 1220 to 1340 OC, in the pressure range of
9-16 kbar. Liquids saturated with olivine, two pyroxenes, and at least one aluminous
phase will be referred to as “multiply saturated’ in the following sections. Each provides
a constraint on the reaction boundary described bysilicate liquids coexisting with the

mantle residual assemblage in composition, pressure, temperature space.
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A simplified liquidus phase diagram (Fig. 3) shows the effect of pressure on the
pdsi£ion of liquidus boqndaries in composition Spacg. Glass and pyroxene compositions
from a subset of the experiments reported in Tables 2 and 3 are recalculated in terms of
end-member mineral components, and then projected into the pseudo-quaternary Oliv-
Cpx-Plag-Qtz (olivine - clinopyroxene - plagioclase - quartz) using the projection scheme
of Tormey et al. (1987). The liquids in Fig. 3 are saturated with plagioclase and thus can
be projected through the Plag component onto an Oliv-Cpx-Qtz pseudo-ternary
diagram. This simplified liquidus phase diagram is suitable for interpreting liquid lines
of descent for MORB compositions similar to those used in the experiments. Multiply
saturated liquids produced at 9, 11 and 13 kbar project as points for each given pressure.
The curves that emanate from these points are boundaries defined by the projected
compositions of liquids coexisting with 3 solid phases (olivine + orthopyroxene +
plagioclase, olivine + augite + plagioclase, orthopyroxene + augite + plagioclase,
compositions in Grove et al., 1991). When these multiply saturated liquids are plotted as
points on mineral component projection schemes as functions of pressure, they
constitute one point in a multi-dimensional volume, or on the 'reaction boundary’
defined by liquids that can coexist with the mantle residual assemblage in temperature,
composition space. Their projected positions are functions of temperature and major
element chemistry, i.e., Mg#, alkali content and TiO7 (see discussion below). As such,
this simplified liquidus phase diagram is useful for qualitatively depicting the relationship
between pressure and compositions of liquids and coexisting solid phases. The effect of
increased pressure on the projected composition of silicate liquids that coexist with the
mantle residual assemblage, as inferred from our experimental study and depicted in
Fig. 3, is to decrease the Qtz component and increase the Oliv component in the
multiply saturated liquids. This observation is consistent with observations of several
previous studies in both natural and simple systems (i.e., O’Hara, 1968b; Presnall et al.,

1979; Stolper, 1980).
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Melting reactions for the mantle residue assemblage

/) One important question in basalt petrggénesis is the nature of the melting
reaction by which primary basalts are generated in the mantle (Mysen and Kushiro,
1977; Stolper, 1980). Stoichiometric coefficients of the meiting reaction are required as
input for models of melting processes in the upper mantle. Reaction boundary
coefficients presented in Table 4 were estimated by mass balancing a higher
temperature liquid on a reaction boundary against a lower temperature liquid on that
same boundary plus the solid phases coexisting with that lower temperature liquid
(Juster et al., 1989). The most accurate result is achieved by choosing two liquids
produced by melting the same starting composition at two slightly different
temperatures, however such pairs of experiments and the compositional data required
are not common in the elevated pressure experimental literature. Experiments B52 and
B30 were carried out at 12 kbar, 15© apart on similar starting compositions (SYN2 and
SYN3, Table 1), and both contain melt coexisting with olivine + augite + orthopyroxene
+ spinel. Based on the estimates of the coefficients for the melt reaction relating the
lower temperature B30 melt and crystailine phases to the higher temperature B52 melt
(Table 4) we suggest that melting spinel lherzolite at 12 kbar consumes augite,
orthopyroxene and spinel and produces liquid plus olivine. The nature of the suggested
melt reaction is similar to that observed in the simple mantle analog system CaO-MgO-
Al»03-Si07 (Presnall et al, 1979). Reaction boundary coefficients for the melting of
spinel Therzolite were also estimated from pairs of 10-kbar experiments presented in the
study of Falloon and Green (1987). The melt reactions estimated from these data are
qualitatively similar to that of the B30-B52 melt reaction, the quantitative differences
most likely stem from the difference in pressure and the resulting differences in melt and
pyroxene compositions. The estimated spingi;lherzolite melting reaction obtained by
averaging the reaction estimates from experiments B30-B52 and a subset of the Falloon

and Green (1987) 10-kbar data (Table 4) is shown graphically in Fig. 4. The 10-kbar
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phase compositions are projected into the Oliv - Spinel - Di-Hd - En-Fs tetrahedron.
The ;lature (Which phases are consumed or pl_’oduced during melting) of the melting
reaction can be determined using this projection (Grove et al., 1983a). The projected
composition of the multiply saturated liquid at 10 kbar lies outside the phase volume
defined by olivine, orthopyroxene, augite and spinel. Thus, the geometry depicted in Fig.
4 indicates that augite + orthopyroxene + spinel are being consumed to produce liquid
+ olivine at 10 kbar. The coefficients of the melting reaction are extremely sensitive to
the liquid and augite compositions (see Table 4). Therefore, the melting reaction
observed at a given pressure and temperature varies as the compositions of these .
experimentally produced phases vary. Appropriate melt reactions for modelling mantle
melting are obtained from experiments containing minerals and melts reasonably similar
in composition to mantle phases.

Two sets of reaction coefficients for the melting of spinel lherzolite estimated
from data at 16 kbar from this study and from the study of Bartels et al. (1991) suggest
that the melting reaction consumes augite + spinel to produce liquid + olivine +
orthopyroxene at 16 kbar. The Mg#s of the melts in the 16 kbar experiments are lower
than those expected for melts in equilibrium with peridotite, and thus it is difficult to
evaluate whether the change in the nature of the melting reaction observed between the
10-12 kbar and 16 kbar experiments is caused by melt composition variations, or by the
effect of pressure on the coexisting augite and orthopyroxene compositions.

Reaction coefficients were determined for the plagioclase-lherzolite melting
boundary at 8 kbar using experiments H130, H164 and H13. Because the starting
composition for H13 is significantly different from the starting composition for H130 and
H164 these coefficients are approximate, however, they provide a guide for modelling
plagioclase lherzolite melting. Reaction coefficients were also determined for the melt
+ olivine + augite + orthopyroxene + plagioclase + spinel using experiments H162,

H156, H154 and H181. These experiments were carried out on the same starting
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composition between 1280 and 1295 ©C at 13 kbar and the estimated melt reactions
(Tal;le 4) suggest that when plagioclase - spinel lherzolites melt, augite + orthopyroxene
+ spinel are consumed to produce liquid + olivine + plagioclase. The melt
compositions present in these experiments have low CrpO3 contents and Mg#s (and
potentially high FepO3 contents, see above), however and thus the inferred melt
reaction coefficients may not be directly applicable to melting of mantle peridotite.

In summary, mantle melting is not modal and the coefficients of the melting
reaction (and potentially the nature) change with increasing pressure. With the possible
exception of the pressure range of 4-6 kbar where melting may be at a eutectic boundary
(Grove et al., 1990), melts produced at higher and lower pressures in the mantle are
generated along a peritectic-type boundary. Based on the coefficients provided in Table
4 it is apparent that melt composition, bulk system composition and pyroxene
compositions strongly influence the way mantle peridotite melts. Three areas of further
work are required to better constrain how melting of Iherzolite proceeds: 1)
experiments at 15 - 20 kbar are required to produce experiments containing melts with
mantle characteristics that coexist with the mantle residual assemblage in order to
evaluate the effect of the changing pyroxene compositions on the melt reaction, 2)
experiments are required to more accurately estimate the reaction boundary for
plagioclase lherzolite melting over the pressure range of 8 - 12 kbar, and 3) experiments
are required to establish the nature of the melt reaction at conditions equivalent to the
plagioclase to spinel transition in the upper mantle.

Composition of experimentally produced melts saturated with the mantle residue
assemblage

Presnall and Hoover (1987) and Grove et al. (1990) observed that many
experimentally produced, multiply saturate({ ~li»quids were not directly suitable as partial
melts of a natural mantle lIherzolite. Many experimentally produced liquids are too rich

in FeO, Nap0, K70 and TiO3 to be parental to basalts that we sample, and too rich in
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FeO, relative to MgO, to be in equilibrium with a mantle residue. The Mg# in the
multl:ply saturated liquids reported in this study vrangres from 0.46 - 0.69, the NayO
content from 1.87 - 5.94 and the TiO» content from 1.15 - 2.56. Only a small subset of
these melts are direct analogs of mantle melts, however all of them can be used to
describe the multi-dimensional volume occupied by liquids coexisting with the mantle
residual assemblage in pressure, temperature and composition space. In the following
discussion we present a method for using constraints provided by experiments containing
multiply saturated liquids (from this study and the literature) to predict how the natural

upper mantle will melt as a function of pressure and changing mantle composition.

A QUANTITATIVE MODEL FOR MANTLE MELTING

Experimental data used to develop the model

Multiply saturated experiments covering a broad range of composition space, 12
from this study (the Series H experiments in Table 2) and 49 from natural system
experiments presented in the literature (Kushiro, 1973; Fujii and Kushiro, 1977; Stolper,
1980; Fujii and Bougault, 1983; Grove and Bryan, 1983b; Takahashi and Kushiro, 1983;
Fujii and Scarfe, 1985; Takahashi, 1986; Falloon and Green, 1987; Baker and Eggler,
1987; Grove et al., 1990; Bartels et al., 1991), are used to develop a model for predicting
the compositions of melts produced in the mantle over the pressure range 0.001 - 16
kbar. We also include 5 multiply saturated experiments produced in the simple-analog
system CMAS (CaO-MgO-Alp03-SiO2) by Presnall et al. (1979). Table 5 presents a
summary of the experimental studies included in our data set. To most completely
describe the mantle-melting equilibria, we have incorporated as many data from the
literature as possible. Fig. 5 presents temperature vs. Mg# of multiply saturated melts
from the literature (Table 5) and from this study, broadly contoured for increasing
pressure. Multiply saturated liquids from experiments in the simple system CMAS

(Presnall et al., 1979) at 0.001, 7, 9, 9.3, 11 and 14 kbar provide upper limits on the
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temperatures at which silicate melts can coexist with the mantle residual assemblage
over/this pressure range. The data show gene_rélly systgmatﬁc variations between Mg#,
temperature and pressure,' with the exception of the 10-kbar data of Falloon and Green
(1987) (solid circles in Fig. 5). These melts were produced with the sandwich technique
described above and they define a temperature - Mg# trend that cuts across the main
trend defined by all the data. They also span a range of temperatures at one pressure
(10 kbar) similar to that spanned by the 10 - 15 kbar data of the other studies shown, and
the upper end of which exceeds the 14-kbar melt temperature in the simple system
CMAS. It is possible that the chromium could stabilize the assemblage olivine +
orthopyroxene + augite + spinel + melt to higher temperatures in the natural system
relative to the temperatures observed for the analog assemblage in the simple system.
However the chromium effect would have to be great enough to overcome the
temperature-lowering effects caused by the presence of FeO and NaO, in particular, in
the natural system, Falloon and Green (1987) 10-kbar experiments. Given the lack of
data available to quantify the effect of chromium on the assemblage melt + olivine +
orthopyroxene + augite + spinel, relative to the simple system, it is not possible to rule
out the chromium effect, however we interpret the temperature-Mg# variation of the
Falloon and Green (1987) 10-kbar sandwich experiments in Fig. 5 to indicate a lack of
equilibrium between the sandwich minerals and melt (for further discussion, see below).
Only the lowest temperature experiment of the Falloon and Green 10-kbar data was
included in the data set used for the regressions described below.
Quantitative description of the mantle melting equilibria

The upper limit upon the thermodynamic variance of the melting equilibrium is
obtained from the Gibbs phase rule: F = C + 2 - ®, where F refers to the number of
degrees of freedom, C to the number of syst;h components and ® to the number of
phases. For mantle melting @ is five: melt - olivine - orthopyroxene - augite - Al-phase

(plagioclase, spinel). In the simple, mantle analog system, CMAS, the melting
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equilibrium has one degree of freedom. Therefore, fixing pressure of melting in the
CMAS system also fixes both temperature and composition of the melt. To describe the
major element, bulk composition of the natural upper mantle, however, more
components must be considered. We have chosen eight system components that are
necessary and nearly sufficient to describe the chemical variation in the mantle-melt
system: MgpSiO4, CaMgSipOg, FeMg.1, CaAl3SipOg, NaSiCa_1Al 1, KSiCa_1ALy,
TiOy, SiO7. The components with 1 notation are exchange components, and describe
the effect of replacing one constituent with another (i.e. an Fe2t cation for a Mg
cation). The system components listed above can be used to describe the melt phase
components: Ol (olivine), Cpx (clinopyroxene), Pl (plagioclase), Qz (SiO2), TiO2, Mg#,
NaSiCa_1Al 1, and KSiCa_1Al.1, where O}, Cpx, Pl and Qz are oxygen normalized
mineral components chosen to describe the melt. Application of the Gibbs phase rule: F
= 8 + 2 -5, indicates five degrees of freedom for the melting equilibrium in the natural
system. In order to predict the temperature or composition of partial melts of the
natural upper mantle, we have to fix five variables, i.e., pressure and four compositional
variables.

The increase in variance from one in the CMAS system to five in the natural
system occurs as a result of the added components: FeO, TiO, Na20 and KO in the
natural system, relative to CMAS. We have developed a method for predicting the
composition and temperature of a liquid in the 8 component system in equilibrium with
the mantle residual assemblage using easily calculated parameters. Our treatment is
justified on thermodynamic grounds but is not rigorous, in part because we use mixed
weight and molar values. For example, in place of the exchange components NaSiCa.
1AL1 and KSiCa_1Al.1 in the melt we found that the weight ratio
(Nap0+K20)/(Nap0+Kp0+Ca0) (NaK#;j was sufficient to describe the effects of
changing alkali content on the major element composition of a meit coexisting with the

mantle residual assemblage. This simplification is justified because MORBs are
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generally very low in K7O. Similarly, we used wt.% units for T102 because these are the
units in which this element is most commonly expressed An obv10us shortcoming of our
approach is that we do not include Cr in our component description of the mantle
system. We have excluded Cr/Al variation in spinel and the coexisting melt because of
the lack of adequate data. We calculate the changes in the composition of a liquid in
equilibrium with olivine + orthopyroxene + augite + plagioclase or olivine +
orthopyroxene + augite + spinel as pressure and the key major element parameters,
Mg#, NaK# and TiO», vary. The calculation expresses the change in liquid composition
in terms of oxygen based mineral components. These mineral components can be
transformed to oxide weight percent through a linear transformation.

We estimate the relationships between our variables as linear, and use multiple
linear regression to obtain expressions that reflect the best fits for T, and the melt
components: Ol, Cpx, Pl and Qz, in terms of P (in Kbar), Mg# (molar), NaK# (wt.) and
TiOy (wt. %). The 66 experiments contained in the data set described above were used
to constrain the fit. We estimated two expressions over the range of 0.001-16 kbar
because mantle mineralogy changes over this pressure range, from plagioclase-(+/- sp)

Iherzolite at lower pressures to spinel-lherzolite at higher pressures.

The regressions for plagioclase-lherzolite melting (constrained with 30 experiments):

R

T = 1242+ 9 (P-0.001) + -120 (1-Mg#)+ 888 NaK#+ 6.6 TiO; 088 (1)
Ol = .120 + .008 (P-0.001) + .229 (1-Mg#)+ -335 NaK#+ -009 TiO; 097 (2)
Cpx= .261 + -008 (P-0.001) + -069 (1-Mg#)+ -.104 NaK#+ .012 TiOy 095 (3
Pl = 419 + .012 (P0.001) + -135 (1-Mg#)+ .691 NaK#+ .000 TiOp 095 @)
Qz = 200 + -012 (P0.001) + .000 (1-Mg#) + -252 NaK#+ .000 TiO; 097 (5)
The regressions for spinel-Iherzolite melting (constrained with 38 experiments):

T = 1146+ 17 (P0001) + -856(1-Mg#)+ -70.0 NaK#+ 000 TiO; 0.89 (6)
Ol = 177 + .005 (P0001) + .111 (1-Mg#)+ -249 NaK#+ .000 TiOp 061 (7)
Cpx= 265 + -006 (P-0.001) + 243 (1-Mg#) + -434 NaK#+ 000 TiOp 067 (8)

Pl = .38 + .010 (P0.001) + -319 (1-Mg#)+ 122 NaK#+ .000 TiOp 090 (9)
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Qz = .176 + -008 (P-0.001) + .000 (1-Mg#) + -539 NaK#+ .047 TiO; 0.88 (10)

The constant terms in the regression's for eqns. 1-5 were fixed to the values of T
and melt components Ol, Cpx, Pl and Qz determined by Presnall et al. (1979) for the
CMAS system at 1 atm., because these expressions simplify to this simple system, 5-
phase equilibrium when the independent variables (1-Mg#), NaK# and TiO; are zero.
In the CMAS end member case, the 5-phase equilibrium is univariant, and both the
temperature and composition of a melt coexisting with olivine - orthopyroxene - augite -
plagioclase are described by p‘ressure alone. The pressure dependent terms goes to zero
at 1 atm. and a set of constant terms are left in the expressions for plagioclase-lherzolite
melting that reflect the temperature and composition of a melt in the CMAS system that
coexists with the mantle residual assemblage at 1 atm. We did not fix the constant terms
in the spinel-lherzolite melting expressions (eqns. 6-10) because the 5-phase assemblage
olivine - orthopyroxene - augite - spinel - melt is metastable in CMAS at 1 atm. The
constant terms in eqns. 6-10 were determined by the regressions.

Equations. 1-10 are preliminary in that they represent best fits to the existing data
set of assemblages of melt coexisting with olivine, orthopyroxene, augite, and plagioclase
and/or spinel produced experimentally at pressures up to 16 kbar. In order to maximize
the number of constraints we have used as many experiments as possible. We include
experiments performed using a variety of techniques from 6 different laboratories. The
resulting data set provides a good, first approximation of the multi-dimensional volume
defined by silicate melts coexisting with mantle residual assemblage in pressure,
temperature, composition space. Values of the adjusted correlation coefficient (R) for
the regressions that yielded eqns. 1-10 range from 0.61 to 0.97. For a perfect fit of the
right-hand side variables to the left-hand side variable, R is 1.0. The values of R for the
temperature regressions (eqns 1 and 6) are 0.88 and 0.89. Fig. 6a provides a comparison

of temperatures predicted by eqns. 1 and 6 to the experimental temperature.



27

Temperatures for 56 of the 64 experiments used to constram eqns. 1 and 6 are predicted
to within +/- 25 ©. The goodness of fit for eqns. 1-5 to the plagloclase-saturated
experiments and 6-10 to the spinel-saturated experiments has been evaluated (Fig. 6b)
by using the temperature, and Mg#, NaK# and wt. % TiO in the melt phase for each
experiment, and eqns. 1-5 and 6-10 to predict pressure. Pressures for 59 of the 64
experiments used to constrain eqns. 1-10 are predicted to within +/- 2 kbar of the
experimental pressure, a reasonable estimate of the interlaboratory pressure differences
in piston cylinder devices (Johannes et al., 1971). The ’best’ and "worst’ case fits for the
melt component eqns. are shown in Fig. 7. As an example of a best case, values of the
Qz component are predicted for each of the spinel-saturated experiments with eqn. 10
and compared to the experimentally observed values. As an example of the worst case,
values of the Ol component for the same melts are predicted with eqn. 7 and compared
to the experimentally determined values of OL

The lower values of R for eqns. 7 and 8 may reflect limitations of the various
experimental approaches represented in the data set, as well as inter-laboratory,
analytical differences. For example, the lower temperature, peridotite-basalt sandwich
experiments of Fujii and Scarfe (1985) are fit well by eqns. 6-10. The higher
temperature sandwich experiments, however, are not. This difference could reflect a
lack of equilibrium between the melt and the sandwich minerals in these higher
temperature experiments. The lack of equilibrium in the higher temperature
experiments might result because the rate of dissolution of the augite may be too slow
for the experiment to attain the true equilibrium phase assemblage. Alternatively, the
difference could be due to the absence of a Cr variable in our quantitative description.
To test the first hypothesis, a synthetic analog of one of the higher temperature melts
(melt composition # 10 from Table 6) of Fu]TiAivand Scarfe (1985) was prepared for a
series of melting experiments. If this melt composition (F&S,#10) is multiply saturated

at 10 kbar then it should have augite + orthopyroxene + spinel (+/- olivine, as olivine is
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in reaction with melt along the multiple saturation boundary). The F&S,#10
expe;imental composition (solid square) is wmpared to thq éomposition predicted with
eqns. 7-10 (open squaré with cross) in Fig. 8, using the same prbjection schemes
described in Fig. 3. The predicted composition projects at lower Cpx contents in the
Oliv - Cpx - Qtz projection (Fig. 8a) and at lower Plag contents in the Oliv - Cpx - Plag
projection (Fig. 8b), relative to the projected position of F&S,#10. Based on the
position of the estimated 10-kbar multiple saturation boundary and the inferred olivine
+ augite + liquid boundary, F&S,#10 should have augite on its liquidus, followed by the
assemblage olivine + augite at lower temperatures. The melting experiments reported
in Table 6 confirm that F&S,#10 crystallizes augite on its liquidus at temperatures
between 1295 and 1310°C (within 15° of the reported liquidus temperature; Fujii and
Scarfe, 1985). A melting experiment 30° below the liquidus also contained only augite +
liquid. The F&S,#10 composition is representative of a subset of the "multiply
saturated’ experiments reported in the literature, and included in the data set to
constrain eqns. 1-10, that are not well fit by the resulting equations. The melting
experiments reported in Table 6 suggest that the F&S,#10 composition is poorly fit by
description of the spinel-multiple saturation boundary provided by eqns. 6-10 because
this composition is not multiply saturated with the sandwich minerals present in the
charge at the reported pressure and temperature.

An additional test of the quantitative descriptions of the plagioclase- and spinel-
multiple saturation boundaries is provided by comparing the temperatures and melt
compositions in the B-series experiments presented in Tables 2 and 3 to the
temperatures and melts compositions predicted for these melts by eqns. 1-10 (Table 7).
The B-series experiments presented in Tables 2 and 3 were not used to constrain the
quantitative descriptions of the spinel- and p]égioclase melting equilibria presented in
the text. The choice of starting compositions and temperatures for the B-series

experiments was guided with eqns. 1-10. The temperatures of the experiments are
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predlctcd to within 15° for 4 of the 5 examples shown in Table 7. Melt compositions in
expernnents B30 and B52 are poorly fit by the composmons predlcted with eqns. 7-10
with respect to SiOp and AlpO3 in particular, however the melt compositions in
experiments B54 and B56 are well matched by the predicted compositions using the
same eqns. The melt composition in experiments B63 is close to the composition
predicted with eqns. 2-5. Work is currently underway to refine the descriptions of the
multiple saturation boundaries provided by eqns. 1-10 by 1) using a more robust
technique to describe the multiple saturation surfaces with the experimental data, and to
describe the errors associated with the fits, 2) excluding data such as the F&S,#10
composition that are demonstrated not to be multiply saturated with the mantle residual
assemblage, 3) incorporating more data such as the B-series experiments in Tables 2 and
3, and 4) incorporating the effects of Cr/Al variations into the treatment.

The coefficients for the independent variables in the temperature expressions are
positive for (P-0.001), and negative (or zero) for the compositional variables (1-Mg#),
NaK# and TiO). The two-fold increase in the magnitude of the positive dependence of
temperature on (P-0.001) between the plagioclase-lherzolite (eqn. 1) and the spinel-
Iherzolite (eqn. 6) melting expressions is similar to that observed in CMAS (Presnall et
al, 1979). The negative coefficients for (1-Mg#), NaK# and TiO reflect melting point
lowering effects caused by the addition of FeO, Nap0, K20 and TiO», respectively.

Equations 1-10 quantify the observations of many experimentalists (Takahashi
and Kushiro, 1983; Fujii and Scarfe, 1985; Falloon and Green, 1987). These authors
have pointed out that the boundary defined by melts saturated with the mantle residue
phases is not univariant in the natural system, and melts in equilibrium with the mantle
residual assemblage can vary over a range of compositions. In other words, mantle melts
do not all plot at a single point on a tempera—t_ﬁre - composition phase diagram (e.g., a
projection) at a given pressure, the composition of a multiply saturated melt depends on

the bulk composition of the system. The magnitudes of the effects of variation in Mg#
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and NaK# on the projected compositions of 11qu1ds in equlhbnum with a plagioclase-
lherzohtc mantle remdue at 8 kbar are shown fora range of melt compositions (Mg# =
0.5 to 1.0 and NaK# = 0.0 to 0.5, TiO = 0.75 wt. %) in Fig 9. The composition of a
liquid (shown here in terms of normative Oliv, Cpx, Qtz and Plag components) saturated
with olivine + orthopyroxene + augite + plagioclase varies dramatically as NaK# and
Mg# vary. Increasing NaK# decreases the Qtz component in the projected
compositions of predicted primary melts (Fig. 9a), and melts range in composition from
Qtz-undersaturated through Qtz-saturated.

At a given pressure, the effect of decreasing Mg# is to shift the projected
positions of melts from plagioclase-lherzolite sources to lower normative Cpx and higher
normative Oliv (Fig. 9a and 9b). This effect is similar to that observed in the simple
system CaO-MgO-Al»03-SiO-FeO at 1 atm. on the phase boundaries olivine + low-Ca
pyroxene + plagioclase + augite + liquid and olivine + plagioclase + augite + liquid
(Shi and Libourel, 1991). As the Mg# of the system decreases, the piercing point
defined by the boundary olivine + plagioclase + augite + liquid in the Anorthite -
Olivine - Cpx plane shifts towards Olivine. At a given pressure, increasing NaK#
increases the Plag component in the projected compositions of predicted primary melts
(Fig. 9b). This effect is qualitatively similar to that depicted for 1-atm, multiply
saturated, natural system liquids by Grove and Juster (1989). It is also consistent with
the study of Biggar and Humpbhries (1981) on the effect of increasing Na2O on the 4-
phase piercing point forsterite + diopside + plagioclase + liquid in the system
CMAS+NayO at 1 atm. In this simple system study, increasing NazO content of the
liquid saturated with forsterite, diopside and plagioclase shifts the composition of that

liquid towards higher normative plagioclase content.
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MELTING IN THE UPPER OCEANIC MANTLE, ESTIMATING THE PRIMARY
MAGMAS OF MORB

A;ssu;nptions and model input e o

To model the Iﬁantle-melting process we make three simplifying assumptions.
The first is that the MORB-mantle source is uniform in its mineralogy at the onset of
melting, consisting of olivine, two pyroxenes and at least one aluminous phase. Although
uniform in mineralogy, we assume that the bulk composition of the mantle may vary, and
are interested in predicting the effect of varying bulk mantle composition on the partial
melt produced at a given pressure. The third assumption is that melting in the upper.
oceanic mantle is volatile-free. To model the mantle melting process we need to 1)
estimate partition coefficients, 2) estimate the mantle source composition, 3) estimate
the modal mineralogy of the source, 4) estimate the melting reaction, and 5) specify the
melting model, extent of melting or depletion and pressure of melting.
Estimating melt compositions with egns. 2-5 and 7-10

Equations 2-5 and 7-10 provide mineral component descriptions of melts in
equilibrium with the mantle residual assemblage. The Mg#, NaK# and TiO7 contents
of potential primary melts must be estimated to use these equations. Estimates of TiO
and NaK# for melts of the upper oceanic mantle are obtained with the batch melting
equation:

Cj=Co/(DB+F(1-PR)) 1y
where Cj is the concentration of TiO2, for example, in the melt, C, is the initial
concentration of TiO7 in the solid, DB is the bulk partition coefficient for TiO2 between
the solid and the melt, weighted by the initial mode of the solid, F is the extent of
melting, and Pg is the bulk partition coefficient for TiO between the solid and the melt,
weighted by the stoichiometric coefficients of the melting equation. We use eqn. 11 to
model both batch melting and fractional meiﬁng processes. By setting F=0.01-0.20 we
estimate the TiO7 contents of melts produced in single increments (or "batches’) of

melting. By calculating increments of F=0.01-0.001 and removing most of the meit at
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each increment, we use the batch melting equation to approximate fractional melting,
mbdéled as incremental batch melting with incomplete melt Withdrawal.

Partitioning of elements between mantle minerals and melt. Distribution
coefficients for CaO, NapO, K20 and TiOp between mineral phases and melt were
calculated from experimental data provided in Table 3, data of Bartels et al. (1991) and
Grove et al. (1991) and Grove et al. (in prep). We do not assume any temperature and
composition dependence for the distribution coefficients, and treat the pressure
dependence very simply: one set of distribution coefficients are used for calculations at
pressures less than 9 kbar and another for calculations at pressures greater than 9 kbar.
The Mg#s of melts coexisting with the mantle source were estimated by applying an
olivine/melt KpFe-M8 (Fe0°IMgO!i9/Fe0lidMgO0!) of 0.30, the average of 109 KpFe-
Mg geterminations (10=0.05) over the pressure range of 8 - 20 kbar (Thompson, 1974;
Thompson, 1975; Takahashi and Kushiro, 1983; Elthon and Scarfe, 1984; Takahashi,
1986; Falloon and Green, 1987; Baker and Eggler, 1987; Ulmer, 1989; Bartels et al.,
1991; Grove et al., 1990; this study). The Mg# of olivine in the mantle source was
estimated by using mineral-mineral Fe-Mg exchange Kps for olivine, orthopyroxene,
augite and spinel and the modal proportions of these minerals to calculate a mass
balance with the Mg# of the bulk mantle. This method of estimating the Mg# of the
melt works well for small melt fractions, because it determines the Mg# of the melt that
would be in exchange equilibrium with the mantle source at the beginning of melting.
To better model Fe-Mg systematics for larger melt fractions, work is currently underway
to solve the mass balance for FeO and MgO between a fraction of melt and the residue,
given the quantity of melt produced, initial mantle composition, initial mantle phase
proportions, stoichiometric coefficients of the melting reaction, mineral/mineral Fe-Mg
exchange coefficients and the olivine/melt KB(i.e. after the method of Langmuir and

Hanson, 1980).
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Estimates of the depleted mantle source composition. A composition for the
deplf;ted MORB mantle is estimated by assuming that it represents the residue left by
extracting a small degree melt from the primitive mantle composition. The actual extent
of melting that occurred to produce the MORB mantle from the primitive mantle is not
precisely known. The extent of depletion estimated from Sm-Nd isotopic systematics
(Hart and Zindler, 1986) is < 3%. Hofmann (1988) proposed 1-2% depletion, based on
mass balance constraints between primitive mantle, average continental crust and
average MORB. We have estimated a MORB mantle composition by depleting the
primitive mantle composition of Hart and Zindler (1986) by 1.3 %. The calculation
entailed extracting melts from the primitive mantle over the pressure range 1 - 25 kbar,
using melt model 3 (see below). Melting over a range of pressures produces a range of
primary melt compositions and therefore a range of mantle residue compositions. The
residues from each of the pressure steps were averaged together to obtain a well mixed,
depleted MORB-mantle composition (Table 8).

Estimates of modal proportions of mineral phases in the mantle. We calculated the
modal mineralogy of the upper oceanic mantle in the plagioclase-lherzolite and spinel-
lherzolite fields using materials balance methods. Mineral phases similar to those
produced in our experiments at appropriate pressures were balanced against the
primitive mantle composition of Hart and Zindler (1986). The experimentally produced
phases chosen for the mass balance have Mg#s similar to those inferred to be present in
the mantle source (mineral phase compositions from Table 3; Bartels et al., 1991;
Falloon and Green, 1987; Takahashi, 1986). The modes of the depleted MORB-mantle
composition are estimated by calculating the change in the modal assemblage with
progressive melting with the stoichiometric coefficients of the melting reaction.
Representative modes for spinel-lherzolite at 10 kbar and plagioclase-lherzolite at 8

kbar are provided in Table 8.
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Estimates of the melting reaction. Estimates of the stoit_:hiometric coefficients for
the rl;elting reactions are provided in Table 4 _aﬁd assumed constant over the melting
interval. To model spinel-lherzolite melting (pressures > 9 kbar) we used the reaction
0.82 augite + 0.40 orthopyroxene + 0.08 spinel = 1 liquid + 0.30 olivine, and for
plagioclase-lherzolite melting (pressures < 9 kbar) we used the reaction 0.28 augite +
0.19 orthopyroxene + 0.58 plagioclase = 1 liquid + 0.05 olivine.

Model primary melts from the depleted MORB-mantle source (the forward approach)

In this section we estimate Mg#, NaK# and TiO7 contents for melts generated
over a range of pressures and extents of melting, by batch melting and incremental batch
(or ’fractional’) melting, from the estimated depleted MORB-mantle composition.
Given these estimates of Mg#, NaK# and TiO7 contents, eqns. 2-5 and 7-10 provide
mineral component descriptions of these melts. The mineral component description,
together with the Mg#, NaK# and wt.% TiO contents are then transformed to a wt.%
oxide description. Compositions of partial melts have been estimated over the pressure
interval of 20 to 4 kbar (within the spinel and plagioclase stability fields). Several recent
studies have suggested that melts produced at pressures higher than 25 kbar (the
stability field of garnet) constitute some part of the magmas erupted at mid-ocean ridge
spreading centers (Bender et al., 1984; McKenzie and Bickle, 1988; Klein and Langmuir,
1987, Salters and Hart, 1989). We have extrapolated our experimental data set only to
20 kbar. Experimental data are not sufficient to constrain the compositions and
temperatures of melts coexisting with garnet, olivine, orthopyroxene and augite.

Compositions of primary magmas and aggregate primary magmas are estimated
using the predictive method presented above with the following melting models: 1)
isobaric, batch melting; 2) isobaric, incremental-batch, accumulated melting with
incomplete melt withdrawal; and 3) polybari_c; incremental-batch, accumulated melting

with incomplete melt withdrawal.
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Model 1: Isobaric batch melts

; Model 1 melts are produced by a single increment of melting (a "batch’) of a
specified extent, at a single pressure. Equation 11 is used to estimate TiOp and NaK#
for these melts, with F (extent of melting) equal to the desired batch increment. Mg# is
estimated as described above. These estimated values are plugged into eqns. 1-10 along
with pressure to predict major element composition and temperature of melting. The
effects of changing pressure and extent of melting on the major element compositions of
the magmas produced are apparent in the model 1 melts predicted for extents of melting
of 5, 10 and 20 % and pressures between 5 and 20 kbar (Table 8, model 1 melts).

The extent of melting that can occur before exhausting one of the 4 phases,
olivine, orthopyroxene, augite and plagioclase or spinel, is estimated using the
stoichiometric coefficients of the mantle-melting reaction combined with the estimated
modal mineralogy of the mantle source. For the depleted mantle 1 composition
(assuming batch melting) plagioclase is exhausted from the plagioclase-lherzolite residue
at approximately 10 % melting; spinel appears to disappear from spinel-lherzolite at
approximately 38% melting. Augite is exhausted at approximately 39 % melting from
the plagioclase-lherzolite source and at approximately 23 % melting from the spinel-
lherzolite source. We have chosen a melt % of 20 % as the outside limit for our batch
melting models because evidence from abyssal peridotites suggests that the primary
magmas of MORB coexisted with olivine, orthopyroxene, augite and an aluminous phase
(Cr-Al spinel) when they were formed (Dick et al., 1984; Fujii, 1989). The effect of near-
fractional melting on the extents of depletions at which phases will be exhausted cannot
be directly assessed without a quantification of the dependance of the mantle melting
reaction on mantle melt composition.

The melt compositions produced witﬁ-t‘he batch melting model, from the
depleted mantle 1 model composition at pressures between 8 and 15 kbar, and melt

extents of 10 - 20 % are broadly similar to primitive MORB, particularly in terms of
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K20 Na20 and TiOp. These characteristics reflect both the dcpleted nature of our
MORB-mantle source (Table 8, depleted mantle 1) and the relatlvely low extents of
melting (<25%). At a constant pressure, increasing the extent of melting decreases the
abundances of TiO3, Nay0, K20, SiO2, and Al»O3, and increases the abundances of
FeO, MgO, and CaO in the melt. These effects can be largely understood in terms of
the changing NaK# of the melts produced as extent of melting increases. At low melt
extents, NaK# is high, and thus the multiply saturated melts have higher contents of
normative plagioclase (higher SiO, Al2O3, Nap0). As the melt extent increases, the
NaK# drops, and the multiply saturated melts have lower contents of normative
plagioclase (higher FeO, MgO, CaO). At constant extent of melting, increasing pressure
of melting results in lower SiOp, and higher Al03, FeO, and MgO. Calculated batch
melts that illustrate the relation between pressure and extent df melting are shown in
Fig. 10a on a NaO vs. FeO diagram. Klein and Langmuir (1987) observed a negative
correlation between FeO and Na2O in their global data set of MORB compositions, and
inferred that this negative correlation resulted from the coupling of increased extent of
melting (which decreases NapO in primary magmas), and increased pressure of melting
(which increases FeO in primary magmas; Langmuir and Hanson, 1980). This inference
led them to suggest that the NapO-FeO correlation observed in the global MORB data
set reflected a melting process in the upper oceanic mantle that resulted in the
production of greater extents of melting, when melting began at deeper pressures (40
kbar), and the lesser extents of melting when melting began at lower pressures (14 kbar).
The trends shown in Fig. 10a are consistent with Klein and Langmuir’s suggestion of the
general effects of pressure and extent of melting, or mantle composition, on the resulting
mantle melt composition. It is also apparent from Fig. 10a, that another process that can
lead to a negative correlation between Naz(s_;md FeO is increasing the extent of melting

at a fixed pressure, or over a limited range of pressures.
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~ The effects of pressure and extent of melting on the CaO/Al203 vs. FeO

charécteristics of calculated batch primary magmas are shown in Fig. 10b. At a fixed
pressure, increased extent of melting results in higher CaO/AlpO3 and FeO in the
calculated magma compositions. At fixed extent of melting, increased pressure of
melting results in lower CaO/AlpO3 and higher FeO. The correlation observed between
Ca0/AlpO3 and FeO in the batch melts calculated over a increased pressures and extent
of melting is positive, and is opposite to the inverse correlation observed between NapO
and FeO for the same calculated melts.
Effect of mantle composition on the compositions of batch melts

Melts produced by the model 1 melting process at 8 and 15 kbar from the
primitive and depleted mantle compositions shown in Table 8 are compared on NapO
vs. FeO and CaO/Al»O3 diagram in Fig. 11. Compositions of primary magmas produced
from the depleted mantle source are shifted to lower NapO contents, and slightly higher
FeO contents at the same pressure and extent of melting, relative to compositions of
primary magmas produced from a more fertile source.
Model 2: Isobaric, incremental-batch, accumulated melting with incomplete melt
withdrawal

In their recent trace element study of abyssal peridotites, Johnson et al. (1990)
suggested that upper mantle peridotite is depleted of its basaltic component through a
fractional melting process. Isobaric incremental, accumulated melting with incomplete
melt withdrawal is a step-wise process calculated to model isobaric, progressive
depletion of a mantle source similar to near-fractional melting at a single pressure. The
process of incremental, accumulated melting with incomplete melt withdrawal is similar
to the melting process described by Langmuir et al. (1977) as ’continuous but incomplete
removal of melt as melting proceeds’. Durin_é é single step, a small (1 %) batch of melt is
produced. The composition of this increment of melt is calculated in the same way as

the model 1 batch melts described above, with F=.01. Most (90%) of this increment of
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melt is then drawn off and pooled, and the bulk composition, mineral mode and Mg# of
the oiivine in the residue is recalculated. The _néw bulk com.pc.)sition, mineral mode, and
olivine Mg# of the mantle residue then used as the starting points for the next step.
Calculated compositions of accumulated primary melts generated from this process at
pressures between 5 and 20 kbar and melt %s of 5.2, 10.3 and 20.2 are presented in
Table 8 (model 2 melts). The outside limit of melting extent was again chosen to be less
than the extent of melting (assuming the batch model) at which augite is exhausted.

Calculated model 2 melts are shown on NapO vs. FeO and CaO/AlpO3 vs. FeO
diagrams (Figs. 12a and 12b). The compositions of the model 2 melts differ from the
model 1 melts generated at similar pressures and extents of melting. The fractional
nature of the process that produced the model 2 melts effectively scavenges more NapO
from the residue as melting proceeds. The difference between the model 1 and model 2
melts is less marked in the case of plagioclase-lherzolite melting because the presence of
plagioclase in the source makes NapO more compatible in the plagioclase-lherzolite
residue than in the spinel-lherzolite residue.

The differences in NapO content (and K2O) between the model 1 and model 2
melts generated at the same pressures and extents of melting but by different melting
processes are in part responsible for the differences in the CaO/Al»O3 ratios observed
for the same melts (Figs. 10 and 12). The higher contents of NapO and KO in the melts
produced by the model 2 process result in higher values of NaK#. NaK# is one of the
parameters used in eqns. 2-5 and 7-10 to estimate the major element composition of
melts saturated with a plagioclase- or spinel- lherzolite assemblage. Increased NaK#
results in a predicted melt composition that has a higher normative Plag content, relative
to Cpx, Oliv and Qtz (see earlier discussion). Magma compositions with higher
normative plagioclase, relative to normative ;linopyroxene, olivine and quartz, have
higher AlpO3 contents, lower CaO contents, and thus lower CaO/Al»O3 ratios.

Estimated spinel-lherzolite melt compositions with higher NaK# also have higher SiO7
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and lower total FeO and MgO contents, relative to spmel-lherzohte melt compositions
with lower NaK#, although both will have snmlar Mg# Compare, for example, melts in
experiments B52 and B54 (Table 3). These melts were produced at the same pressure,
and have similar Mg#s and TiO3 contents, but different NaK# values (0.15 and 0.28,
respectively). The melt composition in B54, which has the higher NaK# value, has a
lower CaO/Al»O3, higher SiO3, higher AlyO3, and lower FeO, MgO and CaO. This
effect of NaK# is significant for near-fractional meiting models in the upper oceanic
mantle that involve removal of. the melt fractions as they are produced and for batch
melting models that involve varying the extent of melting between batches. The NaK#
values of melts change substantially over the melt extent range appropriate for magma
generation in the upper oceanic mantle as the result of stripping away melt fractions, or
increasing the extent of melting, because NapO and KO are incompatible in the spinel-
Iherzolite assemblage. The Mg# variation will be less because Mg# is buffered, to a
certain extent by the large proportion of olivine (+ orthopyroxene) in the residue (see
Fig. 2). Thus, both the FeO and MgO contents of the melts increase as the residue
becomes more depleted (during near-fractional melting), or as the melt extent increases
(during batch melting), even as the Mg# increases, because the NaK# is decreasing.
Temperature of melting in the upper oceanic mantle

Fig. 13 depicts the mantle solidus in the simple system CMAS determined by
Presnall et al. (1979); the temperatures of the depleted mantle residue predicted using
the expressions presented above, the depleted mantle 1 composition and the model 2
melting assumptions; and the solidus inferred by McKenzie and Bickle (1988) from
natural system experiments. Curves representing the temperature of the residue after 3
and 6 % incremental-batch, accumulated melting steps with partial melt withdrawal, and
the temperature of the residue at which an initial 0.1 % batch melt is present are shown.
The incremental-batch, accumulated melting process involves removing 90% of 1 %

melt batches from the mantle, 3 and 7 times, to accumulate 2.7 % and 6.1 % total
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fractlons of melt, respectively. Thus, the accumulated, batch meltmg temperatures
presented in Fig. 13 represent the temperature of the mantle res1due at the extraction of
the final increment. Note that the initial 0.1 % batch melt increment is produced at a
temperature that is considerably higher than the mantle solidus inferred by McKenzie
and Bickle (1988) (dashed line) from natural system experimental data. This difference
may stem from a variety of sources. Small amounts of hydrous phases (serpentine, talc,
etc.) may have been present in the natural starting material of the peridotite melting
experiments used to constrain the McKenzie and Bickle (1988) solidus. Initial
dehydration of these minerals could lower the observed solidus, relative to that of an
anhydrous mantle peridotite. Furthermore, as discussed above, determining the solidus
directly by peridotite melting at pressure is difficult given current experimental and
analytical techniques. Such solidus determinations are thus likely to be subject to error.
Model 3: Polybaric, incremental-batch, accumulated melting with incomplete melt
withdrawal

Melt generation below mid-ocean ridge spreading centers is best modeled by an
adiabatic melting and melt extraction process that occurs over a range of pressures in the
upper mantle (McKenzie, 1984; Klein and Langmuir, 1987, 1989; McKenzie and Bickle,
1988). We have formulated a simple melting column model to estimate the
compositions of an aggregate primary magma consisting of a blend of primary magmas
produced over a range of pressures. This model is different from the melting column
model presented by Klein and Langmuir (1987, 1989), in that we model polybaric, near-
fractional melting, during which 90% of the melt produced is removed at each step.
Thus, in this simple model, the amount of melt generated at any pressure within the
melting column is always the same, and the average pressure of melting is simply the
mean pressure of the melting column (comp;fe to the mean melt extent and pressure of
Klein and Langmuir, 1987; which are weighted towards the upper (more shallow) part of

the melting column.). An incremental-batch, accumulated melting process with
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incomplete melt withdrawal is calculated over a range of pressures to simulate melting of
mant/16 rising adiabatically. The increment of melting tbat occurs in mantle peridotite
per kbar of adiabatic rise is assumed to be 1.0% (similar to the value of Ahern and
Turcotte, 1979, of 1.2%). At some initial pressure, during the ascent of a parcel of
mantle, its temperature intersects that of the mantle solidus, and melting begins. The
parcel of mantle rises 1 kbar and melts 1.%. Of this 1.% melt, 90% is removed and
accumulated elsewhere. The depleted parcel of mantle, retaining a small amount of
melt, rises another kbar, and melts another 1.%. 90% of this batch is removed and
accumulated with the previous batch, etc. The melts are accumulated and mixed to
become an aggregate of primary melts sampled from a range of pressures. Between
each step of melt production, the composition, mineral mode and Mg# of the residual
olivine in the mantle parcel is recalculated.

The composition of the aggregate primary magma depends on the depth of
solidus intersection, the total extent of depletion of the mantle source achieved and the
degree to which the sampling process is representative of all the melts generated. The
total extent of depletion, or maximum extent of melting reached at the top of the melting
regime, is in turn a function of the depth of solidus intersection, or onset of melting, as
well as the thermal regime in the upper mantle beneath the spreading center. If melting
starts deep enough, and continues to relatively shallow levels beneath the spreading
center, then the limiting factor to generating melt from the mantle residue will be the
amount of augite present. If melting starts shallower, and/or if cooler isotherms
established by conductive cooling at the top of the mantle extend to deeper levels in the
upper mantle then melting of the rising mantle may be terminated prior to the
exhaustion of augite. We have calculated the arrays of melt increment compositions for
6 examples of the model 3 process. In exami;lés 1- 3, the depleted mantle 1 composition
(Table 8) is used. In examples 4 - 6, the fertile mantle of Hart and Zindler (1986) is

used. In these models, upwelling mantle peridotite of the depleted mantle composition
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intersects the solidus at 25, 20 and 15 kbar (example 1, 2 and 3, respectively). Melts are
extrz;cted from the residue until a depth of 4—lgbér (arbi_trary imposition of the depth at
which cooling by conduction lowers the ambient temperature below the mantle solidus)
is reached. In all the models presented in Table 9, melting proceeds until the cut-off
pressure of 4 kbar without exhausting the augite in the residue. The aggregate primary
magma, or average of the increments, for each example is presented in Table 9.
Compositions of the increments and the aggregate primary magma composition are
shown for the first three models on a NapO vs. FeO diagram in Fig. 14.

The curvature of the arrays of melt increments arise from the combined effects of
decreasing pressure, and increasing ‘depleted’ character of the mantle peridotite. The
NajO variation is a function solely of extent of depletion of the source peridotite; as a
parcel of peridotite rises in the mantle and melts are produced and stripped away, the
residual solid becomes increasingly depleted in incompatible components. Increments
of melts produced from the increasingly depleted residual solid contain less NapO. The
FeO variation during the model 3 melting process, however, is a function of both
increasing extent of depletion, which increases the amount of FeO in the melt produced,
and decreasing the pressure of melting, which decreases the amount of FeO in the melt
produced. These competing effects result in the FeO variations shown in Fig. 14. The
effect of pressure on the FeO content of the melt is demonstrated by the shift in the
arrays of melts present in each model melting column towards higher FeO with
increased pressure.

The aggregate primary magma from one melting path (or column) is the average
composition of the individual increments if all the increments from that path are
sampled equally, and mixed completely . These aggregate primary magmas are shown in
Fig. 14 for each of the 3 melting paths discussed. As anticipated (Klein and Langmuir,
1987), the FeO content of an aggregate primary magma from a melting column increases

with increasing depth of the melting column. The NapO variation is controlled by the
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extent of depletion of the peridotite, which in turn is controlled by the depth at which
meltmg begins and the depth at which melting terminates. For all 3 examples in Fig. 14,
melting does not proceed to the extent that augite is exhausted from the Iherzolite
source, but rather is terminated by intersection of the rising mantle with an assumed
lithospheric boundary, above which it is too cool to melt. Because melting is initiated at
different depths, however, the total extent of melting achieved from the melting column
in each example, varies from ~18% in the 25-4 kbar example to 10% in the 15-4 kbar
example. The high NapO, low.FeO end of the array defined by the aggregate primary
magmas (open symbols) in Fig. 14 is thus from the shallowest melting column, in which
the total extent of depletion achieved of the mantle source is the smallest. The low
NayO, high FeO end of the array is from the deepest melting column, in which the
mantle achieves the highest extent of melting (systematics similar to those suggested by
Klein and Langmuir [1987] to explain the variations observed in the MORB global array,
see below; although the range in pressure spanned by these three melting columns of 25
- 4 kbar is significantly lower than the range suggested by Klein and Langmuir of 40 - 1
kbar in their Table 3, 1987 to explain the observed diversity of MORB compositions).
Extent of depletion achieved of the mantle source and thickness of the oceanic crust

An important parameter that varies systematically with the NapO and FeO
variations between the 3 melting column models described above is the implied mantle
temperature. The ambient mantle temperatures implied by the three simple, one-
dimensional melting models varies from ~ 1500 °C in example 1, to ~ 1340 °C in
example 3. The crustal thickness (simple calculation for estimating crustal thickness for
each melt model is presented in notes for Table 9) yielded by each column also varies.
Resulting crustal thickness, assuming that all the melt produced in the melting column is
extracted to form the oceanic crust, increase_s"by a factor of 3 between the high-NapO
and low-NajO ends of the aggregate primary magma array (from 4 km to 13 km). The

observed average thickness of young oceanic crustis ~ 6 km (range of 3 - 8 km, Reid
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and Jackson, 1981). The observed variation in crustal thickness shows a systematic
décréase with increasing spreading rate (Chen and Sandwell, 1990). The larger variation
in crustal thickness observed at slower spreading rates is associated with fracture zones
and is interpreted by Chen and Sandwell (1990) to reflect a transition from a 3-D
structure of crustal accretion at slow ridges to a 2-D accretion pattern at fast spreading
ridges. Klein and Langmuir (1987) have suggested that crustal thickness and MORB
chemistry are correlated. This suggestion is based primarily on the observation of
thicker crust at Iceland (~ 15 km, seismically determined; low NapO, high FeO) and
thinner crust at the mid-Cayman Rise ( ~ 3 km, estimated from geologic evidence; high
NajO, low FeO). The observed crustal thicknesses intermediate between these
extremes do not show a significant correlation with basalt chemistry. The lack of a
correlation between the estimates of intermediate crustal thickness and basalt chemistry
may result from inadequate data coverage; alternatively it may suggest that crustal
thickness and basalt chemistry are decoupled. In the latter case, additional variables
must operate during the decompression melting process to buffer the crustal thickness to
a more constant value while still allowing for the observance of the geochemical
signatures associated with extent and pressure of melting variations in MORB (see
below). For example, we use a simple, one-dimensional melting column model that
assumes a fixed melt production rate upon decompression. This model may be too
simple to predict observables such as crustal thickness associated with melting in the
upper oceanic mantle realistically.
Mantle melting systematics and fractional crystallization of MORB magmas, global
and local trends revisited

Klein and Langmuir (1987) observed-an inverse correlation between FeO and
NajO in their corrected, global MORB data set. Their observations were based on a

data set of evolved MORB (MgO contents < 8.5 wt.%). In this study we find a similar
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inverse correlation between FeO and NajO for compositions.of primary melts
gc’ne‘r’ated over a range of pressures and extents of mel@ing, and thus confirm their
insightful interprctatioﬁ linking the inverse correlation observed in evolved MORB to
the interplay between the effects of pressure and extent of melting on the compositions
of melts generated in the upper oceanic mantle.

The main trend of NayO vs. FeO observed by Klein and Langmuir (1989, their
Fig. 5) in the global MORB data set corrected to 8.0 wt.% MgO is shown in Fig. 15a.
The global data set presented by Klein and Langmuir (1987,1989) is corrected to 8.00
wt.% MgO to normalize out the effects of low-pressure’ fractional crystallization. They
applied a correction to the NapO and FeO contents of MORB that was estimated by
fitting NapO vs. MgO and FeO vs. MgO curves for suites of MORBs, over the
compositional range of 5 - 8.5 wt. % MgO. The solid curves in Fig. 15a show the
compositions of melts calculated with the near-fractional melting model (model 2) at 8,
10, 12 and 15 kbar from the depleted mantle 1 source composition (Table 8), for total
extents of depletion of the mantle source ranging from < 5% - 20.2 %. The primary
magma trend is steeper than the main NapO-FeO trend defined by evolved MORB, and
the two do not coincide. In order to directly compare the estimated primary melts to the
sampled lavas, the primary melts need to be ’corrected’ forward to 8.00 wt.% MgO.
Correcting estimated primary magmas ‘down temperature’

We corrected the primary magmas ’"down temperature’ by fractionally
crystallizing them at low (near 1-atm.) pressures. The fractionation paths were
calculated by estimating the positions of the 1-atm. phase boundaries (olivine +
plagioclase + liquid, and olivine + plagioclase + augite + liquid) for a given primary
magma in both the Oliv - Cpx - Qtz and the Oliv - Cpx - Plag projections. The
boundaries were estimated by calculating the normative O}, Cpx, Pl and Qz components
of the liquid on the olivine - plagioclase - augite - orthopyroxene - liquid 5-phase

boundary with equations 2-5. To use these equations, we fixed pressure at 0.001 kbar,



46

and specified the Mg#, NaK# and TiO contents of the primary magma. The positions
of thé 3-phase olivine + plagioclase + liquid-- and the 4-phgsé olivine + plagioclase +
augite + liquid boundaﬁes were then inferred from the positioﬁ of the 5-phase boundary
(see below for more discussion). The 3 and 4-phase boundaries were then used to
determine the fractional crystallization path that would evolve the primary magma to
8.00 wt.% MgO at near-ocean floor pressures. The hatchered lines in Fig. 15a show the
estimated primary magmas corrected to 8.00 wt.% MgO; the solid arrows connect
estimated primary melts representing 5.3%, 10.3% and 20.2% depletion of the mantle
source at 12 kbar (10.2, 11.5 and 12.8 wt.% MgO, respectively) to the fractionated melts,
each with 8.00 wt. % MgO.

The 5.3% aggregate primary magma from 12 kbar contains 10.2 wt.% MgO and is
in the olivine primary phase volume at near-ocean floor pressures, relative to the
estimated 1-atm. phase boundaries. The fractional crystallization path (all of the
fractional crystallization models were calculated as described in the notes for table 10)
that evolves this aggregate primary magma from 10.2 wt.% MgO (Mg# = 0.727) consists
of one, 0.02 mass increment of olivine subtraction, followed by 12, 0.02 increments of
30% olivine + 70% plagioclase subtraction (MgO = 8.03 wt.%, Mg# = 0.65). The total
% crystallized for this path is 23. The 5.3% aggregate primary melt from 12 kbar does
not reach augite saturation at 1-atm. conditions over the crystallization interval of 10.2 -
8.00 wt. % MgO. The fractional crystallization path that evolves the 10.3% (MgO = 11.5
wt.%; Mg# = 0.733) aggregate primary magma to 8.00 wt.% MgO consists of the
subtraction of two, 0.02 increments of olivine, followed by 19, 0.02 increments of 30%
olivine and 70% plagioclase subtraction (MgO = 8.00 wt.%, Mg# = 0.61). The total %
crystallized for this path is 35. The 10.3% aggregate primary melt from 12 kbar also does
MgO. The cumulate rock types produced from the low-pressure fractional

crystallization paths that evolve both the 5.3 and the 10.3% aggregate primary magmas
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to 8.00 wt.% MgO are dunite and troctolite. In contrast, the 12—kbar, 20.2% aggregate
prim;ry melt does reach augite saturation during 1-atm. fragtiqnal crystallization to 8.00
wt.% MgO. The 1-atm. fractional crystallization path that evolves this primary magma
from 12.8 wt. % MgO (Mg# = 0.742) to 8.00 wt. % MgO consists of 3, 0.02 increments
of olivine subtraction, followed by 12, 0.02 increments of 33% olivine + 67% plagioclase
subtraction, followed by 14, 0.02 increments of 12% olivine + 39% augite + 49%
plagioclase subtraction (MgO = 7.98 wt.%, Mg# = 0.57). The total % crystallized for
this path is 44, and the cumulate rock types produced are dunite, troctolite and gabbro.
The primary magmas from 8 - 15 kbar corrected forward by low-pressure
fractionation overlap much of the variation in NapO and FeO (with the exception of the
higher FeO MORB) spanned by the global array of Klein and Langmuir (1987,1989)
(Fig. 15a). The relatively closely spaced curves defined by the estimated primary
magmas are displaced to higher FeO and NaO as a result of the forward correction by
fractional crystallization at near ocean floor conditions. The slopes of the isobaric
melting curves become more shallow. Much of the range of variation in FeO and Na0
spanned by the global array can be produced by melting the depleted MORB mantle
source (Table 8) to achieve ~5 - ~20 % total depletion, over the pressure range of 8 -
15 kbar; and then subsequent fractionation at near-ocean floor conditions. The closely
spaced curves of melt compositions are shifted to more widely spaced fractionated
magma compositions, however, and thus the full span of the global array of MORB is
not covered by the magma compositions yielded by low-pressure fractionation of
aggregate primary magmas from the same mantle source. Variations in mantle source
composition vary the NapO and FeO contents of mantle melts (see Fig. 11), and will
therefore vary the resulting NapO and FeO contents of ’corrected’ primary magma
compositions at 8.00 wt.% MgO. Major element source variations may be partly
responsible for the generation of the spread of compositions observed in the global array

of MORB at 8.00 wt.% MgO. However, an additional variable that affects the
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compositions of primary melts as they evolve to sampled MORB is the pressure at which
crystélllization occurs. ) | -

The effects of differentiation to 8.00 wt.% MgO by fractional crystallization over
the pressure range of 4 -0.001 kbar (within the upper oceanic mantle and oceanic crust)
are shown in Fig. 15b. In this figure the aggregate primary magmas are ‘corrected’ to
8.00 wt.% MgO by estimating fractional crystallization paths at 4 kbar for several
aggregate primary magmas generated at 8 - 15 kbar using the same approach as
described above for estimating near-ocean floor fractional crystallization paths. The
effect of fractionating the same aggregate primary magma to 8.00 wt.% MgO at a higher
pressure relative to the low-pressure fractionation paths discussed above can be to
achieve higher NapO and FeO contents in the magmas fractionated at higher pressure.
For example, the 10.3% aggregate primary magma from 12 kbar contains 2.94 wt.%
Na20 and 9.06 wt. % FeO at 8.00 wt.% MgO as the result of fractionation at low
pressures (0.001 kbar) and 3.10 wt.% NaO and 9.82 wt.% FeO at 8.00 wt.% MgO as the
result of fractionation at 4 kbar. The higher NapO and FeO contents in the magma
fractionated at the higher pressure result from the earlier appearance of augite in the
higher pressure fractionation path. Both Na2O and FeO are incompatible in the
assemblages olivine + plagioclase and olivine + plagioclase + augite. The
crystallization of both assemblages therefore enriches the liquid in NapO and FeO.
However, the crystallization of the assemblage olivine + plagioclase + augite takes out
less MgO as compared to the crystallization of the assemblage olivine + plagioclase (for
a given mass of the assemblage crystallized). The controlling factor in the extents of
fractional crystallization for the paths presented in Fig. 15 is MgO content. It requires
more fractional crystallization to evolve a magma from 11.5 wt.% MgO to 8.00 wt.%
MgO by subtracting out olivine + plagioclas;-F augite, as compared to subtracting out
olivine + plagioclase. Therefore, if augite appears in the fractional crystallization path,

then greater enrichments in the incompatible FeO and NapO occur. For example, the
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10-kbar, 10.3% aggregate primary magma (MgO = 11.2 wt.%) is in the olivine primary
phasé-, volume at 4 kbar. The fractional crystallization path that evolves this magma to
8.00 wt.% MgO at 4 kbar consists of 2, 0.02 mass increments of olivine subtraction,
followed by 8, 0.02 increments of 30% olivine + 70% plagioclase subtraction, followed
by 11, 0.02 increments of 14% olivine + 31% augite + 56% plagioclase subtraction
(MgO = 8.00 wt%, Mg# = 61). The total % crystallized for this path is 35. The same
10-kbar, 10.3% aggregate primary magma is also in the olivine primary phase volume at
1atm. The fractional crystallization path that evolves this magma to 8.00 wt.% MgO at 1
atm. consists of 2, 0.02 mass increments of olivine subtraction, followed by 15, 0.02
increments of 30% olivine + 70% plagioclase subtraction (MgO = 8.02 wt.%, Mg# =
63). The total % crystallized for this path is 29. As shown in Fig. 15b, the range of Na0
and FeO contents spanned by the global array of MORB at 8.00 wt.% MgO (including
the high FeO MORB) can be produced by melting a depleted MORB mantle source
from 5 - 20 % total extent over the pressure range of 8 - 15 kbar, and then fractionating
these primary magmas within the upper 25 km of the oceanic mantle and oceanic crust.
The origin of ’local trends’

In addition to effectively rotating and translating the NapO-FeO trend from the
steeper, primary trend, to the more shallow, global trend, fractional crystallization over a
range of pressures may play a significant role in generating the dispersion of MORB
compositions from the corrected global array that is responsible for "local trends’ or
cross trends identified by Klein and Langmuir (1987, 1989) and Brodholt and Batiza
(1989) for locations along the mid-Atlantic ridge. The cross trends are observed because
MORB corrected to 8.00 wt.% MgO from the same region sometimes contain variable
amounts of NapO and FeO contents at the same MgO contents. These MORB are
characterized by a positive correlation betwe;h NajO and FeO at 8.00 wt.% MgO (and
an inverse correlation between NayO and SiO7) as compared to the inverse correlation

between NapO and FeO associated with the global array. The cross trends are found in
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some MORB suites that show the parent-derivative relationships recognized in several
MOliB suites and ascribed to fractional crystqllization (Gro_ve and Bryan, 1983; Tormey
et al., 1987; Grove et al., 1990, Grove et al., 1991).

Three of the local trends identified by Klein and Langmuir (1989, their Fig. 5a)
are shown in Fig. 15c. As discussed above, aggregate melts produced at the same
pressure (10 kbar for these isobaric models) and representing the same total extent of
depletion of the same mantle source will evolve to different NapO and FeO contents at
8.00 wt.% MgO by fractional crystallization at elevated pressures (for example, 4 kbar)
and near-ocean floor pressures (1 atm.). Thus, fractional crystallization of the same
aggregate primary magma over a range of pressures from the top of the melting regime
in the upper mantle to shallow levels in the oceanic crust can produce variations in the
basalts sampled at one location along a ridge that cut across the global array. The trends
in NaO and FeO shown by the curves connecting the 1-atm. and 4-kbar fractionated
magmas from each of the three 10-kbar, aggregate primary magmas are similar in slope
to the cross trends identified at the mid-Cayman rise, 11.4°N-11.97°N on the mid-
Atlantic ridge and the Reykjanes peninsula. There is a slight shallowing in slope in the
three cross trends identified by Klein and Langmuir (1989) with increasing FeO and
decreasing NapO in the corrected MORB, which is also apparent in the trends indicated
by the forward corrected primary magmas at 1 atm. and 4 kbar. The positively
correlated ’cross’ trends defined by primary magmas fractionated forward at 4 kbar and
1 atm. shown in Fig. 15b and ¢ with respect to FeO and NaO are also characterized by
decreasing SiO7 and CaO/AlpO3 with increasing FeO and NaO. The span of Naz0
and FeO indicated by the observed cross trends along the mid-Atlantic ridge may
indicate fractional crystallization over a greater range of pressures than that modelled
(increasing the difference in pressures increz;;és the amount of enrichment of FeO and
NayO achieved in the magmas fractionating at higher pressures, because augite appears

earlier in the fractionation path at higher pressures). Alternatively, variations in
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aggregate primary magma compositions fed to the spreading center may contribute to
the o—i)sewed span. The cross trends observed ét the m@d-ngm_an rise and the
Reykjanes peninsula are shifted to lower and higher FeO contents, respectively, relative
to the forward corrected 10-kbar aggregate melts in Fig. 15c. In terms of the simple
isobaric models used for this discussion, these shifts can be explained by deriving the
aggregate primary magmas from slightly lower and higher pressures (9 and 12 kbar),
respectively (detailed models starting from MORB lavas sampled at these locations are
presented below). -

In the previous discussion we assumed that the primary magmas were generated
isobarically. As discussed earlier, however, melting in the mantle beneath mid-ocean
ridges is most likely a polybaric and near-fractional process. Aggregate primary magmas
estimated from the depleted MORB-mantle source using the polybaric melting model
(model 3, Table 9) are compared to the global array of Klein and Langmuir (1987) and
the local trends of Klein and Langmuir (1989) in Fig. 16a on a wt.% NajO vs. wt.% FeO
diagram and in Figs. 16b and ¢ on wt.% NaO vs. wt.% SiO7 diagrams. The polybaric,
aggregate primary magmas show an inverse correlation with FeO and NajO that is
steeper than the global array defined by MORB corrected to 8.00 wt.% MgO, and a
positive correlation between NapO and SiO) (Figs. 16a and b). The polybaric, aggregate
primary magmas corrected ‘'down temperature’ to 8.00 wt. % MgO by fractional
crystallization at near-ocean floor conditions and at 4 kbar fall within the global array
defined in terms of NapO and FeO (Fig. 16a). The corrected primary magmas fall
within the roughly triangular region of MORB corrected to 8.00 wt.% MgO in terms of
NajO and SiO (Fig. 16¢, after Klein and Langmuir, 1989; their Fig. 6b). The ’down-
temperature’ fractionation corrections were carried out as described above for the
isobaric aggregate primary magmas. For exé;hple, the polybaric, aggregate primary
magma generated in a melting column with a mean pressure of melting corresponding to

12 kbar, and representing 14% depletion of the depleted MORB-mantle source (wt.%
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MgO = 12.00, Mg# = 0.736), follows the following crystallization path to 8.00 wt.%
MgO_.at near-ocean floor conditions: 5, 0.01- méss increments of olivine subtraction,
followed by 16, 0.02 inc;rements of 31% olivine + 69% plagioclase subtraction, followed
by 4, 0.02 increments of 13% olivine + 56% plagioclase + 31% augite subtraction (8.03
wt.% MgO, Mg# = 0.60). The total amount crystallized for this low-pressure path is
35%. The same aggregate, polybaric primary magma follows the following
crystallization path at 4 kbar (pressure corresponding to the top of the melting regime):
5, 0.01 mass increments of olivine subtraction, followed by 7, 0.02 increments of 31%
olivine + 69% plagioclase subtraction, followed by 18, 0.02 increments of 11% olivine +
51% plagioclase + 38% augite subtraction (8.01 wt.% MgO, Mg# = 0.58). The amount
crystallized for this high-pressure path is 41%. The slopes of the positive correlation
between NayO and FeO, and the inverse correlation between SiO2 and NaO at 8.00
wt.% MgO caused by fractionating these polybaric, aggregate primary magmas at 0.001
and 4 kbar are similar to the local trends shown again in Fig. 16a and ¢ and discussed
above. The correspondence between the corrected primary magmas and the global
array of MORB is in agreement with the interpretation of Klein and Langmuir
(1987,1989) that the low FeO, high Nap0O MORB come from more shallow melting
regimes (mean pressure of melting ~8-9 kbar) in which the mantle is melted to a lesser
extent, and the high FeO, low NapO MORB come from deeper melting regimes (mean
pressure of melting ~ 15 kbar) in which the mantle is melted to a greater extent. For the
mantle composition used in these calculations, the high FeO, low NaO portion of the
global array can be produced by melting at a mean pressure of 15 kbar, to a total extent
of ~18% (similar to the deepest melting column calculation presented in Table 9 and
Fig. 16a). The low FeO, high NapO portion of the global array can be produced by
melting at a mean pressure of < 9.5 kbar (th;- mean pressure of the most shallow
melting column calculation), and/or a total extent of melting of < 10%. The greater

span in the observed local trends, relative to that produced solely by fractionating the
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same primary magma at different pressures is most likely indicative of a range of
inéor;ling primary magma compositions. The range could result from variations in the
mantle source composi.tion, and/or from variations in the aggregation process (i.e. Klein
and Langmuir, 1989, see below for further discussion), and/or by interaction between the
mantle melts and the overlying mantle (see below).

For polybaric fractionation of primary MORBSs to occur, favorable thermal
conditions are required in the uppermost oceanic mantle. The models discussed above
suggest that fractionation over.the range of 0.001 - 4 kbar pressures (and possibly
greater) are required to generate the dispersion of NapO and FeO that characterizes the
local trends observed by Klein and Langmuir (1989). Primary MORB magma will only
experience fractionation at pressures of 4 kbar and lower in the upper mantle if the
temperatures are cool enough at these depths.

Klein and Langmuir have interpreted the cross trends as representative of within-
column mixing of melts produced by differing extents of melting at different pressures,
i.e., small degree melts generated at high pressures mixing with high degree melts
generated at lower pressures, within the same mantle column. It is apparent from Fig.
17, that incomplete mixing of the individual increments of melt produced over a range of
pressures along the same melting path, in this case example number 2 from Table 9, is
capable of generating an array of trends of FeO vs. NapO. However, mixing the
compositional extremes generated along a single melting path (e.g., mixing the
increment from the most fertile mantle, at 20 kbar with the increment from the most
depleted mantle at 4 kbar, Fig. 17) in differing proportions yields a NayO - FeO
correlation that is similar to the global trend, not perpendicular to it. Mixing increments
from more shallow, more depleted portions of the melting column (e.g., melt increments
from 10 and 4 kbar depth in the melting colu;fin) in varying proportions yields a positive
NapO-FeO correlation, however these melts, sampled directly would be more depleted,

with respect to NapO, and will also have a more shallow level melting signature than
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most MORB sampled from the sea-floor. Three stage mixtures of variable proportions
withi_ﬁ the melting column can be envisioned t’hét would exhibit the positive correlation
between NajO and FeO, with the appropriate absolute abundances of NapO to
resemble the local trends (i.e. a 2:1 mix of the most fertile increment and the most
depleted increment, which then mixes with varying amounts of the increment produced
at 13 kbar). Clearly, in a three-dimensional melting regime, characterized by near-
fractional, polybaric melting processes, the potential exists for incomplete sampling and
mixing between various melt fractions to generate a variety of partial aggregate primary
magmas. The overall vector associated with the intra-column mixing processes,
however, is similar to the vector associated with varying mean extents and pressures of
melting (see open symbols in Fig. 14), rather than orthogonal, as suggested by Klein and
Langmuir (1989).

We have also discuss briefly below two additional post-segregation processes that
impart a chemical signature to the derivative magmas that could be similar to polybaric
fractionation involving aug as a crystallizing phase. These processes can also generate
the dispersion of NapO and FeO at similar MgO contents in the derivative magmas.
Mixing of a range of evolved magma compositions that achieved their compositions by
varying amounts of fractional crystallization from the same primary, or near-primary
magma in a crustal level magma chamber, with a replenishment of that near-primary
magma can produce NapO-FeO trends similar to the local trends. If primary MORB
magmas percolate through the upper mantle en route to the spreading axis, then
assimilation of mantle material may occur to modify the melt composition. It may be
possible to generate the NapO-FeO systematics observed in the local trends with this
process, however the melting process is not well enough constrained at this point to
quantify the process. In the discussion above of calculating estimated primary magmas

forward to 8.00 wt.% MgO and in the discussion below of correcting observed MORB

with ~ 8.00 wt.% MgO back to estimated primary magma compositions, we have made
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the simplifying assumption that fractional crystallization over a range of pressures is the
domiﬁant post-segregation process operating to modify the primary magmas of MORB.
This assumption allows us to correct for the fractional crystallization processes that
relate primary magmas to MORB and see the trend in terms of Na20 and FeO contents
generated by melting processes that produced the primary magmas of MORB. The
trend that emerges is similar to that produced by increased extents of melting over a
limited pressure range (8 - 15 kbar).

Back-calculation of ’parental’ and primitive MORB to primary magma compositions
(the inverse approach)

Although several have been tested experimentally, no sampled MORB has been
demonstrated to be multiply saturated at elevated pressure with the mantle phases
olivine, orthopyroxene, augite, and an aluminous phase. Furthermore, most MORB
glasses have Mg#s lower than 0.70 (total Fe as Fe2+), which should be considered as a
minimum Mg# for melts that could be in equilibrium with mantle ol (composition Fogg-
Fogg). Thus sampled MORB are not primary melts. To use the chemical compositions
of sampled MORB to constrain the melting processes beneath mid-ocean ridge
spreading centers we need to remove, or ’see through’ the compositional signatures of
post-segregation magmatic processes. These processes may include any or all of the
following: 1) low pressure fractionation and mixing processes that occur within the
oceanic crust, 2) fractional crystallization of primary magmas in the upper mantle, en
route to emplacement into the spreading center, and 3) assimilation of mantle (or
lithosphere) by primary magmas as they move through the upper mantle.

The occurrence of low pressure fractional crystallization has been demonstrated
in almost all MORB suites discussed in the literature, and is also suggested by the
presence of the cumulate rocks that make up layer 3 of the oceanic crust. Further
compositional modification can occur within crustal level magmas chambers as the result

of mixing between evolved magmas produced by low pressure fractional crystallization
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of olivine + augite + plagioclase and more primitive magmas delivered to the magma
chan;ber as it is replenished with near-primary fnagma from depth (O’Hara and
Mathews, 1981). This mixing process yields a chemical signature, distinct from that of
crustal level, low-pressure fractionation of olivine + augite + plagioclase, that might
resemble crystallization of olivine + augite + plagioclase at pressures in the mantle
below the oceanic crust (see below). A similar chemical signature may be imparted to
MORB in crustal-level magma chambers as the result of ’in situ’ or side-wall
crystallization (Langmuir, 1989). In this process, cooler, highly evolved liquids are
generated in boundary layers, along the walls of magma chambers, while the interior of
the chamber remains hotter and less fractionated. Residual liquids from the boundary
layer are incorporated into the hotter, less evolved interior, yielding a mixed chemical
signature, distinct from low pressure fractional crystallization.

A second process that may modify the chemical composition of a MORB primary
magma is fractional crystallization of primary magmas en route to the surface. As
discussed above, primary magmas become saturated with ol upon emplacement to lower
pressures relative to the pressure at which they were last equilibrated with their mantle
residue. As these primary magmas move up into the cooler, uppermost mantle, they
crystallize olivine. Further crystallization involves plagioclase and augite; the
crystallization assemblage depends on the pressure at which fractionation occurs.
Evidence for high pressure (pressures greater than oceanic crustal pressures, i.e. 3 - 8
kbar) crystallization of olivine + augite + plagioclase is found in high pressure gabbros
sampled at the mid-Cayman Rise (Elthon, 1987) and in the MORB liquid trends
observed at the Kane Fracture Zone (Tormey et al., 1987). A method for removing the
effects of fractional crystallization of primary magmas en route to emplacement into the
spreading center is presented below. -

The chemical composition of a primary magma may be modified by the

assimilation of (incorporation of, or reaction with) mantle material as the magma rises
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through the upper mantle. Assimilation may occur as melts percolate through the
man';lc, or it may occur within the region whefe» the increments of melts are collected or
‘aggregated’. Evidence for melt percolation is found in the plagioclase-bearing
peridotites that occur in the abyssal peridotite suite and have been interpreted as
depleted mantle peridotite that was "injected’ with melt at shallow levels in the upper
mantle (Dick, 1989). Evidence for melt aggregation in the mantle beneath spreading
centers has been inferred from structures in ophiolites (Nicolas and Prinzhofer, 1983).
The residual peridotite in the uppermost mantle is most likely a harzburgite, containing
only a few % of augite. A MORB primary magma, saturated with olivine,
orthopyroxene, augite and a Cr-Al spinel upon leaving its mantle residue, is saturated
with olivine only upon decompression. If this magma is allowed to equilibrate with the
overlying mantle, lower pressure partial melting will result. Olivine will crystallize from
the magma, and orthopyroxene (+ any residual augite left in the depleted uppermost
mantle) will melt and be incorporated into the magma (Kelemen, 1990). This process
increases the SiO7 content and decreases the total FeO and MgO contents of the
magma, while buffering the Mg# at mantle-melt values. CaO and AlpO3 also increase
slightly in the magma. The chemical variation among a range of magmas that initially
stemmed from the same primary magma composition and subsequently underwent
differing amounts of this mantle assimilation process, followed by olivine fractionation,
may resemble the chemical variation produced by the crystallization of olivine + augite
+ plagioclase from this same primary magma at pressures in the uppermost mantle,
below the oceanic crust (see below).
Correcting MORB:s for 'up temperature’ to remove the effects of fractionation

Two different groups of MORB glasses were calculated back to hypothetical
primary magma compositions. The parental_ MORB group consists of 4 MORB glasses
with MgO less than 9 wt.% that span the range of NapO-FeO variation observed by

Klein and Langmuir (1987) in the global MORB data set. In addition, each of the
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glasses in this group represent a ’parental’ lava composition fqr their respective regions
(ie. éryan et al., 1981). The term parental impﬁes that these cqmpositions can be
related to the more evolved lava compositions sampled in the same region by processes
of near ocean-floor fractional crystallization. The primitive MORB group consists of 5
MORB glasses that represent the extremes in NapO-FeO variation in the primitive
MORRB data set compiled by Elthon (1990). The inversion technique described below
provides a prediction of the fractionation processes that have modified a MORB after it
was separated from its mantle source, and is used to calculate each of the selected
MORBS back to a potential primary magma composition. This technique assumes that
the primary magma segregated at one pressure.

The technique uses mineral component projection schemes, eqns. 2-5 and 7-10, a
test of Mg#, and experimentally constrained estimates of phase proportions and mineral
compositions involved in the fractionation processes. The inversion technique starts by
using the NaK#, Mg# and TiO7 of the MORB to calculate the values of mineral
components of liquids multiply saturated with the pl- and sp-mantle residue assemblage
over a range of pressures (using eqns 2-5 and 7-10). The MORB composition is also
expressed in terms of mineral components. If the MORB mineral components and the
calculated mineral components of a predicted primary magma at one pressure coincide,
and if its Mg# is appropriate for a liquid in equilibrium with a mantle residue (i.e. u 0.70),
then the MORB may be a primary magma. If none of the calculated muitiply saturated
compositions coincide with the MORB, and/or if the Mg# is not appropriate for a liquid
in equilibrium with a mantle residue, the next step is to determine the simplest
fractionation process that would allow the MORB to be brought into coincidence with
one of the multiple saturation boundaries. This approach assumes that fractional
crystallization is the process that modified the MORB from its primary magma
composition. The relative projected positions of the MORB and the calculated multiply

saturated liquids are used to determine the minimum pressure of fractionation that
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could bring the MORB back to a calculated primary magma vc'omposition. The
coml;ositional changes caused by this fractiongtibn process are added back to the
MORB composition by carrying out a backward fractionation process. Phase
compositions and proportions estimated from experimentally determined olivine-
plagioclase-liquid or olivine-augite-plagioclase liquid boundaries are used (Grove et al,
1990; Grove et al., 1991). Once the MORB has been corrected by this back
fractionation process, the revised composition is used with eqns. 2-5 and 7-10 to
calculate a new set of liquids saturated with the mantle residue assemblage over a range
of pressures. These are compared to the revised MORB composition and, if necessary,
the process of back fractionation is adjusted until a ’back-fractionated” MORB
composition is obtained that has the appropriate Mg# and mineral components to be in
equilibrium with the mantle residual assemblage. Primary magma compositions
estimated with this technique will be referred to as ’back-fractionated primary magmas’.

A parental MORB from the mid-Cayman rise (KN-54-2-2; Thompson et al.,
1980) serves as an example to illustrate this inversion technique. Fig. 18 shows the Oliv -
Cpx - Qtz and Oliv - Cpx - Plag pseudo-ternary projections with the composition of KN-
54-2-2 and the compositions of multiply saturated liquids calculated with eqns 2-5 and 7-
10, over a range of pressures using the NaK#, Mg# and TiO7 content of KN-54-2-2.
Note that the projected position of KN-54-2-2 closely resembles the position of the 9-
kbar, spinel saturated multiply saturated liquid. However KN-54-2-2 does not pass the
Mg# test for a melt in equilibrium with a mantle residue, and thus must have been
modified since its primary magma separated from the mantle source. At each one of the
plagioclase-bearing calculated multiply saturated liquids, the orientations of the olivine-
plagioclase-augite-liquid (4-phase boundary) and olivine-plagioclase-liquid (3-phase
boundary) boundaries may be inferred. The 1-atm. boundaries are shown in Fig. 18. To
infer the orientations of the higher pressure boundaries, move the 1-atm. phase

boundaries to the multiple saturation point for the desired pressure, keeping the 4 and 3-
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phase boundaries parallel to their 1-atm orientations. This is a simplification of the
phasé relationships that is justified on the gropﬁds that the slopes of the 3 and 4-phase
boundaries do not change significantly with increasing pressure (Grove et al. 1991).
These boundaries can be used to infer the liquid line of descent for a given MORB at
that pressure. At 1-atm, KN-54-2-2 would have olivine + plagioclase as liquidus phases,
and would follow the 3-phase boundary to the 1-atm. 4-phase boundary. By comparing
the 3 and 4-phase boundaries at successively higher pressures with the projected
composition of KN-54-2-2, an estimate can be made of the minimum pressure at which
KN-54-2-2 may have experienced olivine + plagioclase + augite fractionation. For KN-
54-2-2 the minimum pressure of olivine + augite + plagioclase fractionation is 8 kbar.
At this pressure, the KN-54-2-2 composition and the position of the 4-phase boundary
coincide. Therefore, we suggest that at 8 kbar the parental magma for KN-54-2-2
underwent some amount of olivine + plagioclase + augite fractionation. Olivine, augite
and plagioclase are added to correct for this 8-kbar fractionation, and new projected
compositions of liquids saturated with the mantle residue are then calculated using this
revised MORB composition. For KN-54-2-2 a small amount of olivine addition returns
the revised MORB composition to the calculated 10 kbar, spinel-multiple saturation
boundary.

All the MORB: discussed in this section were returned to primary magma
compositions using this technique. The back-fractionation paths that returned each
MORSB to a primary magma composition are summarized in Table 10. The degree of
difficulty encountered in trying to return a fractionated MORB to its primary magma
composition will be proportional to the complexity of the magmatic processes that have
occurred. In the case of KN-54-2-2 the back-calculation procedure was not difficult. If
the parental MORB for a given region is more evolved in terms of Mg# and near the 4-

phase boundary at 1-atm (i.e. the composition from the Reykjanes peninsula), then the
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solution becomes less constrained, because a number of pqssible paths could be followed
backrto a primary composition. ) “ _

An important constraint on the elevated pressure liquid line of descent for the
primary magmas of MORB is visible in Fig. 18. All of the MORBs we investigated (with
the possible exception of #102, from the primitive MORB compilation of Elthon (1990)
had primary compositions estimated by back-calculation that were derived from sp-
saturated mantle residues. These primary liquids always plot in the olivine-primary
phase volume relative to the 3.and 4-phase boundaries. If the primary magma
segregates from its residue and then fractionates at pressures only slightly lower than the
melting/segregation pressure (pressure of fractionation within 2 kbar of pressure of
melting), then olivine fractionation (cumulate = dunite) is followed by olivine-augite
fractionation (cumulate = wherlite), then olivine-augite-plagioclase fractionation
(cumulate = gabbro). If the primary magma is removed from its residue and emplaced
to a pressure more than 2 kbar lower than the segregation pressure, then olivine
fractionation is followed by olivine-plagioclase fractionation (cumulate = troctolite),
then olivine-augite-plagioclase fractionation.

Polybaric fractionation is demonstrated to account for the modification of the
primary magmas of the diverse set of MORB examined above, and some combination of
olivine, olivine-plagioclase and/or olivine-augite-plagioclase fractionation all play
significant roles in generating the evolved compositions of the lavas we examined in
detail. Augite may play a significant role even if the sampled lavas are not saturated with
augite upon eruption because of the close proximity of the olivine-augite and the olivine-
augite-plagioclase phase boundaries to compositions of partial melts from a spinel-

lherzolite residue at elevated pressures.
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Pressure of derivation of primary MORB and the relationship between primitive MORB and
primary MORB B |

With the possiblé exception of one of the 9 MORB compositions, which has an
Mg# of 0.70, and appears to be very close to a primary composition (ELT 102, Fig. 19),
in general the MORB compositions considered above do not resemble predicted
primary magma compositions, but have experienced post-segregation modification by
fractional crystallization. This is not a new conclusion. As discussed earlier in this study
and as pointed out by many authors (e.g. B.V.S.P., 1981), experimental petrology studies
have generally failed to demonstrate that any MORB is saturated with the mantle
residual assemblage at elevated pressure. In general, primitive and parental MORBs
are not primary melts. The pressure of melting estimates for the back-fractionated
primary magma compositions range from 9 - 15 kbar (Table 10). Therefore, most of the
melting that produces the primary magmas of MORB appears to occur in the spinel-
stability field and pressures greater than 15 kbar are not necessarily required to explain
the major element chemical variations of parental and primitive MORB. Furthermore,
the primary magmas of MORBs predicted with eqns 2-5 and 7-10, and estimated with
the back-fractionation technique are not picritic, and contain 8.82 to 12.8 wt. % MgO
(Tables 8, 9 and 10).

The calculated paths from the MORBs back to the parental primary magma
compositions are shown on NapO vs. FeO and CaO/AlO3 vs. FeO diagrams in Fig. 19.
The trend defined by the spectrum of predicted primary magmas from the depleted
MORB-mantle source provided in Table 8, produced at several pressures and over a
range of extents of melting, coincides with primary compositions estimated for a range of
parental and primitive MORBs by subtracting out the effects of fractional crystallization.
The model 1, batch melting curves from Fig. 12 are also shown for comparison. The
range of % melting obtained by comparing these back-fractionated primary magma

compositions to melts produced by the model 1 melting process from the depleted
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mantle 1 composition is 5 - 20 %. The back-fractionated primary magma compositions
for tI;e 9 parental and primitive MORBs are g_eﬁerally simil?r to the primary magma
compositions estimatea with eqns. 7-10 (spinel-lherzolite melting) and the melt models
discussed above (compare Tables 8, 9 and 10). The pressure estimates indicated by the
compositions of the back-fractionated primary magmas for the parental and primitive
MORB (with the exception of ELT-102) are consistent with the melting pressures
(within about 2 kbar) for the forward-calculated, model 2 melts of similar FeO, Naz0O
and CaO/AlLOs3. -

In addition to pressure and extent of melting, mantle source composition controls
the composition of primary magmas. The 9 MORB compositions discussed above were
chosen because they have a wide range of FeO and NaO contents, which might, in turn,
reflect a range of mantle source compositions. With the exception of ELT-102 and
perhaps IOTJ, however, the array of MORBs chosen have major element characteristics
similar to a range of extents of melts derived by melting a source similar to depleted
mantle 1 (Table 8) between ~ 10 and 15 kbar. As shown above (Fig. 11), melts
produced at similar extents of melting and pressure from a less depleted mantle have
higher NaO and lower FeO. The low NapO - low FeO back-fractionated primary
magma estimate for ELT-102 may reflect larger extent melts from a more fertile source
mantle.

Klein and Langmuir (1987, 1989) have interpreted the negative correlation
between NapO and FeO observed in the corrected global MORB data set as follows:
high-NajO, low-FeO MORB:s are produced by melting over a limited range of pressures
(i.e. small extents of melting), with a shallow mean pressure. Low-NazO, high-FeO
MORB:s are produced by melting over a larger range of pressures (i.e. high extents of
melting), with a deeper mean pressure. The_'hvigh-Nazo (>3 wt. %), low FeO portion of
the primary global array is defined by the back-fractionated primary parents for the

Indian Ocean triple Junction (IOTJ) and the mid-Cayman rise lavas (MCR). Both of the
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prlmary magmas for these MORBs were produced by relatlvely small extents of melting
(73 -6 %) at roughly 10 12 kbar. The back-fractlonated primary magmas for the Kane
Fracture Zone (23°N, MAR), and primitive MORB compositions 65, 45, and 72 have
intermediate NayO (2 - 3 wt. %) and FeO, and were produced by a higher extent of
melting (8 - 18 %), at a slightly higher pressure (13-15 kbar). Thus, the correlation
between depth and extent of melting suggested by Klein and Langmuir (1987, 89) to
explain the NapO-FeO systematics of MORB holds for these regions.

The correlation breaks down for the MORB:s at the low-NayO (<2 wt.%)
extreme of the array. The results presented in this study suggest that two other
processes may contribute to the global trend of decreasing NapO with increasing
pressure: increased extent of melting from the same source at the same pressure, and
melting sources of variously depleted character at the same pressure. The back-
fractionated primary magmas for MORBs from the Reykjanes Peninsula near Iceland
and from 46°-32° S on the MAR have low NaO and lower FeO (see Fig. 19). These
primary magmas were produced by melting at 11 - 15 kbar, roughly the same range of
pressures of melting for the back-fractionated primary magmas with higher NaO, and
similar, or lower FeO (Table 8). The difference may be that these magmas were
produced by melting a more fertile mantle, but to greater extents. MORB from the
Reykjanes Peninsula near Iceland, the FAMOUS region at 379N on the MAR, and from
469-32° S on the MAR are all ’enriched’ or hot-spot influenced MORB. Enriched
MORB have long been recognized as different from ‘normal’ MORB (e.g., Bryan, 1979).
Dick et al. (1984) compared abyssal peridotites and associated basalt from the mid-
Cayman rise, from just south of the Kane Fracture Zone and from FAMOUS, and
concluded that the highest degree of melting occurred in the vicinity of mantle hot spots.
We have shown that melts generated at the same pressure, but from a more fertile
mantle source composition have lower FeO relative to melts from a less depleted source

composition (Fig. 11). Thus, the MORB at the low NapO end of the array in the global



65

data set may have been produced by melting a more fertile mantle source, to a greater
extent, and at a similar pressure, rather than by melting a similar mantle source at a

greater depth.

CONCLUSION

Two types of information are necessary to understand the processes by which
mantle is melted to produce MORB magma: 1) the compositions of melts produced in
the mantle as a function of pressure, melting regime and mantle composition, and 2)
methods for relating these estimated primary magmas to sampled MORB. This paper
provides a step towards obtaining these types of information by presenting a quantitative
framework for estimating melts of mantle peridotite and for evaluating the effects of
fractional crystallization over a range of pressures on these melts. Calculated
compositions of primary magmas produced by melting in the upper oceanic mantle are
corrected ’"down temperature’ to 8.00 wt. % in order to directly compare them to
sampled MORB corrected to 8.00 wt. % MgO. Selected MORB that span the range of
NayO and FeO defined by the global array identified by Klein and Langmuir (1987) are
corrected "up temperature’ to parental primary magmas and compared directly to
estimated mantle melts. These comparisons yield the following observations: the total
extents of depletion achieved by the decompression melting process range from ~5 - 20
%, the range of pressures of melting is relatively narrow, from 8 - 15 kbar, and much of
the variation in major element chemistry observed in MORB can be explained by
melting a similar depleted MORB mantle source. Further conclusions are: 1) the
negative correlation between Nap0 and FeO observed by Klein and Langmuir (1987,
1989) in the global MORB data set is also present in the array of the primary magmas of
MORB. 2) The operation of fractional crystallization over a range of pressures is
responsible for the rotation of the steep, primary NapO-FeO trend to the more shallow

~ trend observed in the evolved (non-primary) MORB. 3) The dominant vector
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associated with intra-column mixing is not similar to the observed local trends, but is
rathér more similar to the vectors associated w1th varying extent and pressure of melting
on the compositions of the melts produced. Fractional crystallization over a range of
pressures (0.001 - 4 kbar) can generate the local trends observed at several areas along
the mid-Atlantic ridge. 4) The correlation between pressure of melting (8 - 15 kbar),
extent of melting (3 - 20 %) and NapO-FeO systematics observed by Klein and
Langmuir (1987, 1989) generally holds for normal (not hot-spot influenced) MORB. 5)
The primary magmas of low-NaO, hot-spot MORBs may have been derived by melting
a more fertile mantle source, to a greater extent, at similar pressures to the intermediate

-Na70 normal MORB.
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Schematic diagram of decompression melting in the upper oceanic mantle

(not to scale).
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Fig. 12  NaK# vs Mg# of experimentally produced melts that coexist with olivine,

- augite, low-Ca pyroxene (orthopyroxene or pigeonite) and spinel or
plagioclase (or both) at 0.001 kbar (pluses), and.elevated pressures up to 16
kbar. The open squares are the existing experimentally produced, multiply
saturated mantle analog melts, the solid squares are the data added by this
study (also include data from Grove, et al., 1990; and Bartels et al., 1991).
Small extent ( ~ 1%) melts from spinel-lherzolite (sp-lherz) are anticipated to
have high values of NaK# (~0.40) and Mg# of ~ 0.70 (shown as open
diamond). With further melting of an increasingly depleted spinel-lherzolite
(i.e., near-fractional melting), the NaK# drops steeply, while the Mg#
increases only slightly (path shown by solid arrow).
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Pseudo-ternary liquidus phase diagram constructed from experiments
conducted on mixtures of the primitive MORB composition ALV-2004-3-1 +
small fractions of Kragero orthopyroxene or San Carlos olivine.
Experimentally produced glass and pyroxene compositions are recalculated
in terms of mineral components using the projection scheme of Tormey et al.
(1987) and oxygen units, and projected through Plag onto the Oliv-Cpx-Qtz
plane. The filled boxes locate the projected positions of the compositions of
glasses saturated with 3 crystalline phases (olivine-augite-plagioclase, augite-
orthopyroxene-plagioclase); phase compositions for these experiments are
presented in Grove et al. (1991) and Grove et al. (in prep). The stars locate
the projected posittons of the compositions of glasses saturated with 4 or §
crystalline phases (olivine-augite-orthopyroxene-plagioclase at 9 and 11 kbar,
olivine-augite-orthopyroxene-plagioclase-spinel at 13 kbar), and the -
coexisting pyroxenes; phase compositions for these experiments are
presented in Table 3. The ellipse shows the standard deviation of the mean
of 7 microprobe analyses of an experimentally produced glass.
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Graphical representation of the 10-kbar melt reaction for spinel lherzolite
estimated from experiments B30, B52 and a subset of the 10-kbar
experiments of Falloon and Green (1987). The projection scheme casts the
expérimentally produced mineral and melt phases in terms of the oxygen
based mineral components: Oliv, Spinel, En-Fs (enstatite-ferrosilite) and Di-
Hd (diopside-hedenbergite). The circles show the phases being consumed
during melting (augite + orthopyroxene + spinel) and the stars show the
phases being produced (melt + olivine). The reaction is 0.82 augite + 0.40
orthopyroxene + 0.08 spinel = 1.0 liquid + 0.30 olivine.
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Temperature of multiple saturation experiments vs. Mg# systematics of
multiply saturated, experimentally produced melts from the literature and
this study. Increased pressure increases the temperature at which the
experimental liquids coexist with the mantle residual assemblage, as does
increased Mg#. The simple system CaO-MgO-Alp03-SiO data of Presnall
et al. (1979) define the maximum temperature at 0.001,7,9,9.3,11 and 14
kbar at which silicate melts can coexist with the mantle residual assemblage.
Overall, the data show consistent variations. The 10-kbar data of Falloon
and Green (1987) (F & G 10 kbar, solid circles), show a large variation in
temperature, over a limited range in Mg#. These data are not included in
the data set used for the descriptions of the multiple saturation boundaries
provided in the text.
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Fig. 1-6  (A) Predicted temperature vs. reported experimental temperature for the
- experimental data set used to constrain the temperature expressions (eqns. 1
and 5 in the text). R-squared refers to the correlation coefficient; for a
perfect fit, R-squared = 1.0. '



Predicted Temperature

1400

: ‘ |
R-squared = 0.88-0.89 .
1350
5’ ’I [
1300 g
1250 .
’/.’r o"
u
1200 =
1150
Error on experimental temperature = +/- 25 deg
1100 | : ' '

1100

1150

1200

1250

1300

Experimental Temperature

1350

14
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(B) Predicted pressure vs. reported experimental pressure for the same data
set. The predicted pressure is the average of the pressures predicted by eqns.
1-5 for the plagioclase-saturated melting equilibrium and the average of the
pressures predicted by eqns. 6-10 for the spinel-saturated melting
equilibrium, and thus portrays the overall ‘goodness of fit’ for eqns. 1-10 to
the experimental data set.
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(A) Predicted Qz values vs. experimentally observed Qz values for the sp-
saturated melting equilibrium (eqn. 10). Qz refers to the oxygen-normalized
mineral component of SiO7 in the melt.
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(B) Predicted Ol values vs. experimentally observed Ol values for the sp-
saturated melting equilibrium (eqn. 6). Ol refers to the oxygen-normalized
mineral component of olivine in the melt.
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Fig. 1-8

90

(A) Comparison of predicted spinel-lherzolite-melt multiple saturation
boundary (open square with cross) for melt composition #10 from Table 6 of
Fujii and Scarfe (1985) (F&S, #10), to the melt composition (solid square).
This melt composition was reported to coexist with olivine + augite +
orthopyroxene + spinel at 10 kbar and 1310°C. It is representative of a
group of melt compositions used in the data set to constrain the spinel-
lherzolite-melt multiple saturation boundary that are not well fit by the
resulting description (equations 6 - 10). Pseudo-ternary projection schemes
calculated as in Fig. 3. In both the projections through Plag (A) and Qtz (B),
the F&S,#10 composition projects into the augite primary phase volume
relative to the estimated 10-kbar multiple saturation boundary and inferred
olivine + augite + liquid boundary. Given the estimated phase boundaries,
this composition should have augite on its liquidus, followed by the '
assemblage augite + olivine. Melting experiments on a synthetic analog of
the F&S,#10 composition (Table 6) confirm this prediction.
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Fig. 1-8  (B) (see fig. caption for Fig. 8a)
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Fig. 1-9
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(A) Grid of melt compositions produced from a plagioclase-lherzolite source
at 8 kbar, projected through Plag onto the Oliv - Cpx - Qtz pseudo-ternary.
Pseudo-ternary projection schemes calculated as in Fig. 3. Grids (spaced at
0.1 unit increments) show the effects of variations in Mg# and NaK# of the
multiply saturated liquid on the projected position of this liquid; wt.% TiO2
in each of the projected melts is 0.75. (B) Same melt compositions as in (A),
projected through Qtz onto the Oliv - Cpx - Plag pseudo-ternary.
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F1g 1-10 (A) Wt.% NapO vs FeO for model 1 melts of the upper oceanic mantle
(Table 8), using the depleted mantle 1 composition. Solid squares represent
1,5, 10 and.20 % batch melts from a plagioclase-lherzolite source at 5 and 8
kbar, and open squares represent 1, 5, 10 and 20 % batch melts from a
spinel-lherzolite source at 10, 15 and 20 kbar.
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Fig. 1-10 (B) CaO/AlpO3 vs. FeO for the same melts described in (A).
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Flg 1-11  (A) NagO vs. FeO for batch melts from 2 different mantle sources, a
primitive upper mantle composition of Hart and Zindler (1986) and a
depleted mantle composition (Table 8). The curve for each of the two
mantles is defined by batch melts calculated at 1, 5, 10 and 20 % melting.
One set of curves was calculated at 8 kbar from a plagioclase-lherzolite
source, the other at 15 kbar from a spinel-lherzolite source.
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Fig. 1-11 (B) CaO/AlpO3 vs. FeO for same melts shown in (A).
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F1g 1-12  (A) Wt.% NajO vs FeO for model 2 melts of the upper oceanic mantle
(Table 8), using the depleted mantle 1 composition. Solid circles represent 1,
5.2, 10.3 and 20.2 % incremental-batch accumulated melts from a
plagioclase-lherzolite source at 5 and 8 kbar, and from a spinel-lherzolite
source at 10, 15 and 20 kbar.
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Fig. 1-12 (B) CaO/Al203 vs. FeO for the same melts described in (A).
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Fig. 1-13 Temperature - Pressure diagram for melting in the mantle. The upper most,
dash-dot curve represents the mantle solidus in the simple system CaO-MgO-
Al03-Si07 determined by Presnall et al. (1979); the lower most, dashed
curve is the mantle solidus inferred by McKenzie and Bickle (1988) from
natural system experiments; and the three curves in between represent 6 %
and 3 % accumulated batch melts, and 0.1% batch melt from the depleted
MORB-mantle composition 1 presented in Table 8 (see text for discussion).
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Fxg 1-14 NajO vs. FeO for model 3 melting paths (# 1, 2 and 3, Table 9). Each solid
symbol shows the composition of an increment of melt produced as mantle of
the depleted mantle 1 composition rises and undergoes incremental, batch
melting, in response to adiabatic decompression. Like symbols represent
increments of melt produced within the same column. The high-NaO melts
are the first melts produced, at the greatest pressure. The low-NapO melts
are the last melts produced, at the shallowest pressure. As pressure
decreases, the mantle composition becomes increasingly depleted in NaO.
The 3 melting paths correspond to the first three melt models in Table 9.
The averages of all the increments produced along each of the melting paths,
respectively, are slfown as open symbols.
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Flg 1-15 (A) NagO vs. FeO comparing the main trend of Klein and Langmuir (1989,
their Fig. 5a) for the global MORB data set corrected to MgO = 8.0
(enclosed within the dashed curve), to the trend.defined by the primary
magma compositions calculated in this study. The primary magmas are
produced by melting depleted mantle 1 using an isobaric, near-fractional
melting model between 8 and 20 kbar, from < 5% - 20% (shown as solid
curves). The entire region occupied by the data presented in Klein and
Langmuir (1989, their Fig. 5) is also delimited with the dash-dot curves. The
hatchered curves show the compositions of the estimated primary melts
corrected "down temperature’ to 8.00 wt.% MgO by applying fractional
crystallization processes at near-ocean floor conditions. The solid arrows -
connect estimated primary magmas from 12 kbar to the corrected magmas at
8.00 wt.% MgO.
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Fig. 1-15

114

(B) The global MORB data corrected to 8.00 wt.% MgO described in the
caption to Fig. 15a is shown again on an NapO vs. FeO diagram. Also shown
are curves indicating the compositions of the estimated primary magmas
shown in Fig. 15a corrected "down temperature’ by applying fractional
crystallization processes at near-ocean floor conditions and at pressures of ~
4 kbar. Like line types indicate curves corrected from the same primary
magmas at each of the two pressures. Closed symbols along the curves
indicate "low-p’, or near-ocean floor conditions of fractional crystallization,
open symbols indicate fractional crystallization at ’elev-p’ or ~ 4 kbar.



wt. % Na20

4.0

3.0

2.0

1.0

Y T v
. esusgeasi  8kb, ‘low p’
g ~'~.~.~. waninn 1°kb, 'Iow-p'
i H{\; a=s=g@ems  12kb, 'low p'
E :\\\ ,‘%\ g 15kb, ‘low-p’
i : ssrsorn 8Kb, ‘elev-p'
i global array wwngun  10kb, ‘elov-p’
i s P
i of K&L : ' '
§ | =nup=== 12kb, ‘elev-p
E : . w——py—= 15kb), 'elev-p’
; : X sses@e=s  8kb, 'elev-p’
i |
“s
[} -
; e
i
) -
i h
; -
i region of
: K&L data

......................................... Ll T
N 1 A 1 A L 1 . 4 '

wt. % FeO

STT



116

Flg 1-15 (C) The global MORB data corrected to 8.00 wt.% MgO described in the
caption to Fig. 15a is shown again on an NapO vs.' FeO diagram. Also shown
are three of the local trends observed by Klein and Langmuir (1989, their Fig.
5b) (heavy solid curves; MCR = mid-Cayman rise, MAR = 11.4°N-11.97°N
on the mid-Atlantic ridge, RP = Reykjanes Peninsula), and the corrected
primary magmas from 10 kbar, the solid curve that connects the solid squares
shows the 10-kbar melts corrected "down temperature’ to 8.00 wt.% MgO by
fractional crystallization at low-p’ or near-ocean floor conditions, the
hatchered line connecting the open squares shows the same 10-kbar melts
corrected ’"down temperature’ to 8.00 wt.% MgO by fractional crystallization

~ 4 kbar. The solid lines connecting the solid and open squares indicate
the potential cross trends in Na2O vs. FeO caused by fractional
crystallization of a similar primary magma at near 1-atm. conditions and ~ 4
kbar.
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F1g 1-16 (A) NapO vs. FeO comparing the main trend of Klein and Langmuir (1989,
their Fig. 5a) for the global MORB data set corrected to MgO = 8.0
(enclosed within the dashed curve), to the trend.defined by the polybaric,
aggregate primary magmas estimated in this study (solid curve connecting
solid squares). The dash-dot curve contains all of the global MORB data.
The labels 10, 14 and 18% associated with the solid squares indicate the
extent of depletion of the mantle source achieved during the polybaric, near-
fractional melting process. The polybaric, aggregate primary magmas are
corrected ’"down temperature’ to 8.00 wt.% MgO by fractionally crystallizing
them at 0.001 kbar (’low’ p frac, shown by hatchered curve connecting open
squares) and at 4 Kbar (high’ p frac, shown by curve connecting open circles).
The heavy solid curves labelled MCR (mid-Cayman rise), MAR (11.4°N-
11.97°N on the mid-Atlantic ridge) and RP (Reykjanes Peninsula) indicate
the position and slope of the local trends observed at these locations by Klein
and Langmuir (1989, their Fig. 5b).
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Flg 1-16 (B) Wt.% NapO vs. wt.% SiO7 comparing the trend defined by the
polybaric, aggregate primary magmas estimated in this study (solid curve
connecting solid squares) to the same primary magmas corrected ’down
temperature’ to 8.00 wt.% MgO by fractional crystallization at 0.001 kbar
(low’ p, dashed line connecting solid circles) and at 4 kbar (Chigh’ p, dashed
line connecting solid triangles).
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F1g 1-16 (C) Wt.% NajO vs. wt.% SiOp comparing the forward corrected polybaric,
aggregate primary magmas (0.001 kbar = solid curve connecting solid
triangles; 4 kbar = solid curve connecting solid circles) to the region occupied
by MORB corrected to 8.00 wt.% MgO by Klein and Langmuir (1989, their
Fig. 6b) (outlined by dashed line), and to the local trends (labelled as in Fig.
16a). The forward corrected primary magmas are labelled with the extent of
depletion achieved in the melting regime that yielded each aggregate primary

magma.



wt. % Na20

—®— 'low' p frac
—&— ‘high' p frac .
3r 4
2 B —
-------------------------------------- region of |
""""""" K&L data
1 M 1 i i A 1 i L " i a
47 48 49 50 51 52 53

wt. % SiO2

€CT



124

Fig. 1-17 NapO vs. FeO for the polybaric, incremental melting with incomplete melt
- withdrawal model calculated over the pressure range of 20 - 4 kbar

(presented in Fig. 14, solid diamonds). The open squares represent the
increments of melt present in the *melting column’ beneath a mid-ocean
ridges spreading axis. If all these increments were sampled and thoroughly
mixed, then an aggregate primary magma composition (shown as the open
circle in Fig. 14) representing the average of all the increments would be
delivered to the ridge axis. If incomplete mixing were to occur beneath a
given portion of a mid-ocean ridge (as suggested by Klein and Langmuir,
1989, as a mechanism to explain the ’local trends’ observed in the global
MORB data set, characterized by a positive correlation between NayO and
FeO at 8.0 wt.% MgO) then a variety of partial aggregate primary magmas
may be delivered to the spreading axis. Three possible mixing vectors are
indicated with the heavy solid lines. A positive correlation between NapO
and FeO is generated by incomplete mixing within only the most shallow
portion of the melting column. These shallow level melts, however, are also
characterized by extremely low NapO (<1 wt.%) because they are derived
from the most depleted mantle.
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Fig. 1-18 Pseudo-ternary projection schemes from Plag onto the Oliv-Cpx-Qtz pseudo-
- ternary (upper), and from Qtz onto the Oliv-Cpx-Plag pseudo-ternary

(lower). The projection scheme is the same as that described for Fig. 3. The
projected position of the parental mid-Cayman rise lava KN-54-2-2 (c) is
shown on each, along with the projected positions for the calculated liquids at
0.001, 2, 4, 6, 8 and 10 kbar (solid squares) saturated with olivine-
orthopyroxene-augite-plagioclase; and at 5, 7, 9, 11, 13 and 15 kbar (solid
triangles) saturated with olivine-orthopyroxene-augite-spinel. These liquid
compositions were calculated at each of these pressures with eqns. 2 - 5 and 7
- 10 in the text, for the Mg#, NaK# and wt.% TiO7 of KN-54-2-2. The
olivine-augite-plagioclase-liquid and olivine-plagioclase-liquid boundaries are
sketched in at 1 atm.. The olivine-augite-plagioclase-liquid boundary tracks
with the olivine-orthopyroxene-augite-plagioclase-liquid boundary with
increasing pressure. The trace of the olivine-orthopyroxene-augite-
plagioclase-liquid boundary with increasing pressure is similar to the olivine-
plagioclase-liquid boundary. The olivine-plagioclase-liquid boundary does
not appear to shift with increased pressure. Thus, the olivine-augite-
plagioclase-liquid boundary and the olivine-plagioclase-liquid boundary can
be inferred at each of the pressures from the positions of the multiple
saturation points. Note that composition C lies on olivine-plagioclase-liquid
boundary at 1-atm, but coincides with the inferred 8-kbar olivine-plagioclase-
augite-liquid boundary. This boundary projects onto the 8-kbar olivine-
orthopyroxene-augite-plagioclase-liquid point in the Oliv-Cpx-Plag pseudo-
ternary.
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F1g 1-19 (A) Wt.% NajO vs. wt.% FeO showing the back-fractionation paths (dashed
lines) generated with the inverse technique described in the text (see also
Table 10) for 9 MORB compositions. Each lava and the model magma
compositions associated with its back-fractionation path is designated with a
different symbol. Dashed lines connect the natural lavas back to the model,
parental, primary magma compositions. The group labelled with letters are
the parental group MORBs: IOTJ = Indian Ocean triple junction (sample
6/2; Price et al., 1986); MCR = mid-Cayman rise (sample KN-54-2-2;
Thompson et al., 1980); KFZ = just south of the Kane Fracture Zone, 23° N
on the MAR (sample GS-104-20); RP = Reykjanes Peninsula (sample TR-
139-180-1; Schilling, 1983). The group labelled with numbers are the
primitive group MORBs, the numbers are the same as the numbers in Table
5 of Elthon (1990). The solid curves are defined by the model 2 melts from
the depleted mantle 1 (Fig. 12). The solid symbols indicate 5.2, 10.3 and 20.2
% melts, circles, squares and triangles represent melts from 10, 15 and 20
kbar, respectively.
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Fig. 1-19 (B) CaO/AlO3 vs wt.% FeO for same lavas, back-fractionation paths and
melting curves shown in (A). Note that #102, from the primitive MORB
data set of Elthon (1990), is very close ta being primary.
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Table 1-1 Starting compositions used in 9, 11, 13 and 16 kb multiple saturation experiments

528-1-1
n (10)
SiO, 48.8(1)2
TiO,  0.80(2)
ALO3 15.7(1)
Cr203

FeO  9.26(9)
MgO 102(1)
MnO | 0.19(3)
CaO  11.9(1)
K>O  0.10(1)
NayO  2.09(8)
P>Os5 -
Total 99.0
100.0

70-002

(368)

49.6(1)
1.20(2)

15.8(2)

8.98(7)
8.66(6)
0.17(3)

11.9(1)
0.10(1)
2.67(6)
0.12(4)

99.2

2004-3-1

%
49.1(2)
1.19(2)
16.3(8)

8.65(9)
9.13(5)
0.09(5)
11.7(2)
0.10(1)
2.66(9)
0.04(2)
99.0

79-35g Kragero San Carlos KH-4-5
olivine

opx
3)
47.5(1) 573
0.59(2) 0.06
180(1)  0.10
0.04(3)
8.82(10) 9.49
102(1) 335
0173) -P
116(2) 026
0.092) -
2.439) -
0.033) -
9.4 1007

39.9

11.2
489

spinel
0.00 46.5
0.10(1) 0.30
58.7(1) 134
9.84(13) 0.03
10.0(1) 9.40
20.7(2) 213
0.12(1) 0.04
0.02(1) 8.04
- 0.04
- 0.9
99.9 100.0

SYN?1 SYN2 SYN3

47.5 45.6
0.31 0.30
123 ' 143
0.04 0.20
9.59 9.41
21.0 213
0.04 0.04
8.28 7.88
0.04 0.04
1.02 0.97
1000 100.0

SYN4

473
0.33

14.6
0.03
8.07

200
0.06
7.09
0.07
2.44

100.0

SYNS

46.4
0.33

15.5
0.23
8.12

20.0
0.06
6.96
0.07

239 -

100.0

SYN6

475
0.30

14.7
0.0
7.84

20.5
0.09
6.52
0.07
2.56

100.0

MORB glasses 528-1-1, 70-002 and 2004-3-1, fused bulk rock 79-35g (Bartels et al., 1991), Kragero orthopyroxene and spinel from
Kilborne Hole (KH-5-4) were analyzed with the MIT JEOL Superprobe. San Carlos olivine was calculated as Fogg olivine

< numbers in parentheses represent 1 r deviation in terms of least units cited, thus 48.8(1) should be read as 48.8 +/-0.1.

element not analyzed.
CsYN compositions calculated by combining weighed amounts of mixes of oxides and powdered San Carlos olivine +/- Kilbourne Hole

spinel.
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Table 1-2  Experimental run conditions (see Table 1 for starting compositions and Table 3 for run product compositions)

Compositiona

528-1-1
79-35g

+16 wt.% opx
70-002

+20 wt.% opx

2004-3-1
+10 wt.% ol

2004-3-1
+20 wt.% ol
2004-3-1
+25 wt.% ol

2004-3-1
+30wt.% ol

Run
#

H13
H251

H129
H128
H130
Hio64
H184
H177
H165
H178
H162
H156
H154
H181
H179
H193
H253
H200
H199
H176

T

Oc

1220
1250

1270
1250
1230
1225
1260
1255
1310
1295
1295
1290
1280
1280
1320
1345
1360
1340
1325
1330

P

t

Kb hrs

O \O

10
18

3
5
12
9
24
18
12
10
15
15
15
18
15
24
30
23
22
22

Run products

b

gl,pl,ol,aug,pig
gl,pl,ol,aug,opx

gl,ol,opx

glol,opx
gl,pl,ol,aug,opx
gl,pl,ol,aug,opx
glol,aug,opx
gl,pl,ol,aug,opx
gl,ol,aug,opx
gl,ol,aug,opx
gl,pl,ol,aug,opx,sp
gl,pl,ol,aug,opx,sp
gl,pl,ol,aug,opx,sp
gl,pl,ol,aug,opx,sp
gl,ol,aug,opx,sp
gl,ol,aug,opx
glol,opx
gl,ol,aug,opx,sp
glol,aug,opx,sp
glol,aug,opx

0.26
0.34

0.32
0.31
0.38
031
0.32
0.24
0.29
0.32
0.31
0.23
0.22
0.21
0.21
0.30
0.32
0.25
0.26
0.29

KDFe-Mg
ol/lig aug/liq opx/liq sp/liq

0.29
033

0.34
0.33
0.34
0.23
0.28
0.28
0.31
0.26
0.22
0.21
0.25
0.35
0.28
0.26
0.34

0.25
0.30

0.29
0.26
0.31
0.29
0.31
0.20
0.25
033
0.27
0.23
0.21
0.18
0.19
0.31
0.38
0.24
0.34
0.29

41
67

61

22

73
37
34
31
22

53
50
27
24
54

% gI° Phased

proportions
(Wt. %)

42:27.5:26:-
45:14:29:12:-

93:7:-

91:9:-
77:-:8:15:-
79:-:9:13:-
79:14:6:-
29:24:12:35:-
74:3:23:-.
91:6:3:-
52:-:2:44:-:-
40:4:1:53:-:2
39:5:1:52:-:3
31:8:1:58:-:2
19:4:74:-:3
82:6:12:-
96:4:-:-
33:14:51:-:2
25:11:61:-:3
70:5:25:-

0.61
0.56

1.74
2.55
2.47
2.90
0.94
0.28
0.39
0.03
1.52
0.10
0.14
0.25
033
1.05
3.58
0.53
0.80
2.83

R2¢ gFef

loss

211
1.75

£

0.59
5.00
9.60
247

5.60
0.97

0.45
0.43
1.27
3.36
5.65
131
4.89
3.74
12.0
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Table 1-2 (cont.)

Compositiona Run T P t Run productsb KDFe-Mg % gI° Phased SR%€ gFef
# °C Kb hrs ollliq aug/liq opx/liq sp/liq proportions loss
(Wt. %)
79-35g H195 1300 13 9 glolaug 030 030 - - 73:21:6 0.87 5.11
+20 wt.% ol H196 1285 13 17 glolaugopx 031 032 029 - 70 76:20:4:- 0.82 3.85
H185 1350 16 11 glol,augopx 032 036 031 - 58 83:17:=- 156 145
SYN1 B29 1315 12 13 glolopx 033 - 033 - 57 78:22:- 020 4.12
B32 1285 12 12 glol,aug,opx,sp 028 024 019 040 51:15:15:18:1 0.01 0.13
SYN2 B30 1300 12 11 glol,aug,0px,sp 033 033 026 048 25:10:37:24:4 0.01 0.15
SYN3 B52 1315 12 18 glol,aug,opx,sp 031 027 027 0.54 58:19:5:15:3 0.03 0.40
SYN4 B54 1285 12 22 glolaug,opx,sp 032 034 029 047 59:16:6:17:2 003 -
B55 1270 12 24 glol,aug,0px,sp 032 033 029 047 57:15:7:19:2 0.05 -
SYNS B59 1285 12 26 glolaug,0opx,sp 034 034 028 048 54:13:9:20:4 0.07 -
B56 1255 12 15 glplolLaugopxsp 030 025 021 044 25:17:23:19:12:4 0.02 -
SYN6 B63 1260 10 23 glplolaugopx 030 028 022 - 21 25:35:40:-:- 0.05 0.86
g opx refers to Kragero orthopyroxene, ol refers to San Carlos olivine.
abbreviations: gl=liquid, pl=plagioclase, ol=olivine, aug=augite, pig=pigeonite, opx=orthopyroxene and sp=spinel.
€ liquid fraction calculated for experiments with negative phase proportions (see note -), estimated assuming KO behaves
d incompatibly and using an equilibrium batch crystallization equation.
phase proportions listed in same order as given for run products; "-* = excluded from mass balance. Phase proportions solved with
glol,aug (+/- pl, sp) to ensure a physically reasonable mass balance of the run products against the bulk compositions. When low-
Ca pyroxene (pyx) (and in three cases, pl) was included in the mass balance, negative proportions resulted because of the :
arrangement of the run products in composition space. Exclusion of low-Ca pyx in the mass balance forces the liquid (gl), the ol and '
aug to take up the difference. Therefore the mass balance will overpredict the fractions of these phases. The gl fraction predicted
by the mass balance is generally larger than that estimated with the equilibrium crystallization equation, assuming K>O behaves
incompatibly (see previous column). The purpose of the mass balance is solely to evaluate whether Fe was lost from the sample to
the outer Pt capsule.
? sum of the residuals squared for the mass balance described in note c.
% relative Fe loss.
8 no discernable Fe loss within the constraints of the mass balance calculation.
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Table 1-3 Run product compositions for melting experiments at 9 - 16 kbar (see Table 2 for run conditions)

Run Phase? # SiOp TiOp AlhO3 Crp03 FeO MgO MnO CaO K70 NayO P,O5  total
H13 gl 9 481(4) 1.35(22) 14.4(2) 0.04(2) 13.4(8) 791(24) 0.253) 103(2) 0.20(2)  2.36(14) 0.11(5) 984
pl 5 351.0(6) L d 29.9(1) - 0.82(21) 0.40(16) - 11.9(3) 0.06(1)  3.41(21) - 99.5
ol 3 394(2) 0.00 0.08(-) 0.03(1) 189(1)  42.4(4) 021(2)  0.37(9) - - - 101.2
aug 9 51.6(12) 05514) 4.79(3.2) 039(20) 937(19) 18.8(1.8) 026(3) 143(3.2) - 0.31(28) - . 100.4
pig 8 547(1.1) 0.14(10) 1.95(39) 0.00 11.5(2) 27.0(1.7) 027(12) 4.66(67) - 0.12(10) - 100.5
H251 gl 11 49.9(4) 0.74(26) 16.6(3) 0.02(1) 8.58(33) 849(24) 0.21(8) 10.5(2) 0.12(2) 2.84(1) 0.06(4) 98.1
pl 4 51.5(2) - 29.8(5) - 0.34(18) 0.32(12) - 13.7(1)*  0.03(1)  3.60(15) - 99.2
ol 5 39.7(3) 0.03(1) 0.146) 0.00 15.4(1)  44.5(3) 0.13(4)  0.41(6) - - - 100.2
aug 14 53.2(8) 0.38(8) 471(1.1) 0.093) 6.81(81) 20.5(1.5) 0.15(3) 143(20) - 031(7)y - 100.4
opx 14 56.3(1.) 0.16(7) 2.28(1.17) 0.05(3) 9.49(40) 309(1.3) 0.18(2) 221(71) - 0.00 - 101.5

HI29 g 10 504(2)  102(5) 147@2)  0093) 9.05(12) 11.0(2)  0.14(2) 109(1)  010(1) 237(8) 0.11(2) 998
ol 5 404(2)  003(1)  008(1) 006(1) 124(1) 4752)  0153) 0372) - - - 1007
7.66 0.09 2.51 - 0.03 - .7 1010

opx 2! 562 0.16 2.33 0.10 320

HI28 gl 10 51.5(4)  102(5) 153(1)  0.09(3) 881(11) 994(13) 0.14(3) 1L12)  010(1)  236(12) 0.12(2) 100.4

ol 4 404(2)  004(1) 0071) 006(1) 13.0(1) = 468(4)  0.14(2) 038(3) - - 100.9
opx 4 567(3)  0.13(8)  146(56) 0.11(7) 819(17) 321(7)  012(5) 216(32) - 0052) - 101.0
HI30 gl 10 50.1(1) 115(6) 163(2)  009(3) 9.12(16) 901(10) 0.13(3) 109(1)  0.122)  277(6) 0.12(2) 9.7
pl 3 506(5) - 30.0(9) - 0.78(13) 0.70(18) - 14.4(4)  004(1) 329(28) - ° 998
ol 5 391(1)  0054) 0075 000  169(4) ~ 43.6(4) ~ 0.17(4)  038(2) - - - 1003
aug 10 53.1(5)  052(9) 364(8) 017(3) 7.11(4) 2058)  013(7) 14.9(7) - 03009) - 100.2
opx 1 55.1 0.30 313 0.11 9.45 29.8 0.23 3.09 . 0.06 - 101.2
Hi64 gl 7 50.1(1)  1153) 162(1)  007(2) 893(6) 926(7) 0.12(2) 11.0(5)  013(1)  276(1) 0.092) 99.8
pl 6 504(3) - 297(1) - 0.52(18) 0.60(44) - 13.5(4)  0.03(1)  3.80(15) - 100.6
ol 4 405(3)  0041) 010(1) 0042) 137(1) 458(3)  020(1) 038(3) - - - 100.7
aug 26 52.8(1'5) 0.65(25) 4.45191) 0.13(3) 6.43(1.03)20.1(9)  017(3) 150(L7) - 037(20) - 100.0
opx 9 560(8)  023(8)  237(1.15) 0.07(4) 862(60) 31.7(10) 016(5)  231(75) - 0.06(3) - 101.4
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Table 1-3 (cont.)

Run Phase? # SiO, TiO, AhO3  Cry03  FeO MgO MnO CaO K,0 NayO P05 total
His4 gl 9 487(7)  124(4) 177(2)  003(1) 814(16) 956(34) 017(2) 105(7)  014(1) 3.14(1)) 0133) 994

ol 5 402(1)  002(1)  0052) 002(1) 127(3) 47.122)  015(1)  033(1) - 1006
aug 10 513(1)  0.58(20) 7.01(82) 0.18(3) 5.80(30) 199(9)  0.16(3) 143(1) - 050(7) - 99.6
opx 12 53.4(1.1) 027(5)  6.19(1.4) 0.13(3) 7.94(17) 298(6)  019(3)  240Q21) - 010(1) - . 1003

H177 g8 8 469(13) 256(10) 17.7(7) 000  115(13) 639(12) 028(4)  7.90(71) 040(12) 505(77) 0.40(4) 9.1

pl 4 526(2 - 29.1(8) - 059(18)  0.54(46) - 124(1)  009(-)  4.28(9) 99.6
ol 4 395(9)  0031)  0061) 002(1) 184(3) 4203  021(5) 0334 - - - 100.5
aug 10 50.8(1)  098(13) 697(1.13) 0.15(3) 7.58(26) 183(7)  0.19(3) 14.2(9) . 0.59(11) - 99.6
opx 10 529(1.1) 0.42(7)  630(1.58) 0.11(3) 9.96(33) 27.9(6)  021(6)  236(28) - 012(2)" - 1002
Hi65 gl 7 481(2)  130(4) 181(2)  004(3) 9.12(10) 93817) 013(2) 103(1)  014(2) 333(2) 0.12(2) 1000
ol 4 407(3)  004(1) 006(1) 00 13.0(2) = 466(5)  018(1)  032(1) - - - 101.0
aug 33 519(9)  037(7)  72(10) 0.14(7) 585(40) 21.5(1.4) 0.16(4) 120(13) - 047(6) - . 995
opx 13 544(15) 023(10) 524(2.71) 0.08(6) 7.71(57) 30.0(1.5) 0.16(3)  3.46(167) - 0.16(8) - . 1014

H178 gl 9 488(4)  113(3) 160(2)  004(1) 851(10) 114(2)  019(4) 10809  013(1) 272(13) 0.11(2) 999

ol 2 409(2)  002(1) 0071) 00 11.7(2) = 485(4)  0142) 0351 - - 101.7
aug 10 519(1.6) 048(27) 7.2515) 0.193) 6.05(39) 21.5(2.0) 0.18(4) 124(16) - 0.48(14) - 100.4
opx 7 538(9)  024(3)  678(1.38) 0.14(2) 7.44(17) 302(4)  017(2) 2.55(33) - 012(1)° - ° 1014

HI62 gl 10 489(5)  140(6) 177(3) 000  102(1)  793(@2) 010@) 913(2) 021(2) 411(12) 000° 989

pl 5 52209 - 29.8(2) - 0.48(13) 029(13) - 129(7)  004(1) 41234 - = 998
ol 4 397(3)  0042) 006() 0031) 173(d) 431(2) = 020Q2) 0321 - . - 1009
aug 31 50.5(7)  0.68(14) 842(1.24) 0.103) 7.66(40) 193(1.2) 0.18(3) 12.6(10) - 0.67(17) - 100.0
opx 10 515(7)  033(7)  873(1.73) 0.05(3) 9.63(19) 28.0(6)  017(4)  222(16) - 0.14(2)" - 100.8
sp 3 020(6) 017(4) 644(6) ~ 037(7) 126@8) 199(6)  011(3) 0.14(3) - - . 97.3

HIS6 gl 7 480(3)  142(8) 193(4) 000  103(4)  628(90) 0.14(2) 8.64(45) 023(3)  527(25) 0.26(4) 998
pl 5 538(1) 28.7(1) 0.55(28) 0.57(44) - 11.7(1) ~  008(1)  4.83(1) - 1002

ol 4 3973) 0031) 006(1) 000 169(3) 440(2)  020(1) 0332) - - . 101.3
aug 12 502(1.1) 092(20) 855(1.47) 0.103) 8.19(55) 189(1.0) 0.19(4) 129(12) - 0.65(13) - 100.5
opx 9 520(13) 039(8)  810(2.08) 007(2) 104(4) = 275(12) 019(3) 25147 - 0.18(6) - 101.2
sp 3 041(38) 0.14(1) 648(2)  081(11) 11.7(4) 207(4)  0.12(2) 015(4)° - - - 98.0
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Table 1-3 (cont.)

Run Phase? # SiOp

H154 gl
pl
ol
aug
opx
sp

H181 gl
pl
ol
aug
opx
sp

H179 gl
ol
aug
opx
sp

H193 gl
ol
aug
opx

H253 gl
ol
opx

7 47.8(4)
7 527(4)
4 39.8(5)
12 51.1(4)
10 51.2(7)
3 0.75(62)

4 47.3(4)
4 528(2)
6 39.6(2)
10 50.2(1.3)
10 51.7(1.3)
3, 038(31)
4 47.4(7)
4 402(3)
10 50.2(1.2)
10 51.8(34)
2 06l

11 47.5(4)
5 405(2)
9 525(4)
6 54.0(7)

7 47.4(3)
3 40.5(3)
11 54.3(3)

TiO,

1.65(7)

0.05(1)
0.72(12)
0.49(7)
0.15(1)

1.98(18)

0.04(1)
0.85(20)
0.45(9)
031(2)

1.64(14)
0.04(1)
0.63(26)
0.34(2)
0.21

1.22(5)
0.02(1)
0.31(4)
0.20(4)

1.19(4)
0.00
0.22(2)

AlO3

19.1(4)

29.2(6)
0.06(1)
7.03(68)
8.63(1.1)

64.0(1.5)

18.5(9)

29.2(6)
0.06(1)
8.76(1.36)
8.35(1.9)

65.9(5)

18.6(4)
0.22(11)
10.5(2.2)
8.64(61)
65.8

16.0(2)
0.10(1)
7.48(5)
6.77(1.35)

15.8(20)
0.10(1)
5.34(20)

Crp03

0.04(3)
0.00
0.13(3)

0.07(2)
0.77(5)

0.02(1)

0.00
0.12(3)
0.07(4)
0.47(26)

0.00
0.02(1)
0.06(2)
0.05(2)
0.49(3)

0.03(2)
0.02(1)
0.09(2)
0.08(3)

0.02(1)
0.00
0.15(2)

FeO

11.0(3)
0.53(17)
17.2(3)
7.83(32)
10.5(2)
11.9(2)

11.8(4)
0.58(22)
18.7(3)
7.86(27)
10.3(8)
13.4(3)

11.6(4)
15.3(2)
7.90(87)
8.90(13)
11.4

8.46(10)

10.6(1)
5.94(34)
6.86(33)

7.42(10)
9.41(31)
6.22(7)

MgO

62)
46(38)
43.1(8)
19.7(8)
27.1(5)
20.0(1)

6.10(
0

5.70(16)
0.51(40)
42.3(2)
18.4(1.3)
27.4(8)
19.8(4)

7.07(48)
44.6(6)
18.9(3.0)
28.2(6)
213

11.7(3)
48.5(4)
23.5(7)
30.8(4)

123(2)
49.3(2)
26.8(3)

MnO

0.16(2)

0.22(1)
0.17(4)
0.16(4)
0.13(2)

0.14(5)

0.19(2)
0.18(5)
0.20(3)
0.13(1)

0.13(2)
0.15(2)
0.15(2)
0.18(2)
0.12

0.19(4)
0.15(1)
0.15(3)
0.11(4)

0.27(4)
0.10(5)
0.13(6)

CaO

8.64(43)

12.4(2)
0.38(7)
13.3(9)
2.45(31)
0.19(12)

7.38(29)

12.1(4)
033(2)

13.0(1.3)
2.22(21)
0.12(5)

8.36(22)
0.41(11)
10.3(1.10)
2.28(20)

0.19

10.7(1)
0.34(3)

10.4(1.)
2.45(14)

10.6(9)
031(3)
7.32(33)

K70

027(3)
0.08(1)

037(2)
0.07(1)

0.27(3)

0.15(1)

0.14(1)

NayO
4.98(58)
439(15)
0.59(6)
0.15(1)
5.94(26)
4.52(19)
0.75(21)
0.16(2)
5.12(83)
1.23(62)
021Q2)
3.03(15)
0.58(4)
0.13(3)
2.72(10)
0.35(5)

P705

0.28(3)

0.40(7)

total

100.1
99.8
101.0
100.4
100.7
97.1

100.2

99.8
101.2
100.0
100.8

. 100.5

034(2)
0.13(2)

0.15(1)

100.0
100.9
99.7
100.6
99.7

99.1
100.2
101.0
101.4

98.0
99.7
100.8
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Table 1-3 (cont.)

Run Phase?® #

H200 gl

SiO,

4 413(7)

ol 5 405(2)

aug 19
opx
sp 3

H199 gl 3
ol 5
aug 8
opx 10
sp

H176 gl 8
ol 4
aug 5
opx 6
7
6

w

H195 gl
ol
aug

H196 gl 7
ol 5
aug 8
opx 6
H185 gl 9
ol 4
aug 11
opx 10

51.5(5)

7 52.6(1.3)
0.56(20)

48.1(8)
39.7(2)
51.3(5)
52.3(9)
0.09(8)

47.3(7)

b 41.3(1)

52.9(3)
54.9(7)

48.0(5)
40.5(1)

TiO,

1.42(2)
0.05(1)
0.49(8)
0.28(7)
0.18(1)

1.77(17)
0.05(1)
0.53(8)
0.38(8)
0.17(2)

1.25(5)
0.03(1)
0.35(6)
0.17(3)

0.66(3)
0.02(1)
0.33(8)

0.66(2)
0.03(1)
0.36(3)
021(2)

0.58(3)
0.03(1)
0.25(3)
0.19(4)

AhO3

17.8(4)
0.10(1)
8.97(69)
8.60(2.01)

65.9(8)

17.6(8)
0.11(1)
9.15(6)
8.16(1.29)

65.7(2)

16.5(5)
0.11(1)
7.40(53)
6.22(1.04)

18.9(3)
0.08(1)
8.17(1.8)

18.3(2)
0.09(3)
8.44(66)
8.47(1.5)

16.6(2)
0.11(3)
8.87(51)
8.27(1.0)

Cry03

0.03(1)
0.02(1)
0.08(3)
0.00

0.21(4)

0.03(1)
0.03(1)

0.08(2)

0.06(2)
0.78(3)

0.00
0.00
0.12(1)
0.10(1)

0.02(1)
0.03(1)
0.08(3)

0.03(1)
0.03(1)
0.08(1)
0.06(3)

0.03(2)
0.04(1)
0.08(2)
0.06(2)

FeO

9.92(11)

13.2(2)
6.53(26)
7.91(16)
9.48(6)

10.4(4)
15.6(2)

MgO

8.90(73)
46.8(5)
20.9(9)
29.5(1)
21.8(1)

7.83(65)
44.5(4)

7.15(41) 20.6(7)

9.23(21)
112(2)

7.73(22)
9.59(11)
5.20(12)
6.03(11)

8.22(10)
12.4(2)
5.56(63)

8.28(19)

123(3)
5.54(21)
7.34(15)

7.75(10)

10.2(1)
5.12(24)
6.23(12)

20.6(6)
20.7(1)

11.8(2)
50.2(3)
23.1(4)
31.7(5)

9.36(25)
47.4(4)
21.0(2.1)

9.70(20)
472(2)
20.3(7)
30.1(7)

12.0(2)
49.4(4)
21.8(9)
31.2(5)

MnO

0.16(3)
0.18(2)

11.19)
0.12(3)
0.07(1)

0.11(2)
0.18(2)

0.19(3)
0.15(3)
0.09(1)

0.18(3)
0.14(1)
0.17(3)
0.15(3)

0.18(3)
0.17(2)
0.17(3)

0.20(3)
0.18(2)
0.15(3)
0.12(1)

0.193)
0.15(3)
0.15(2)
0.15(4)

CaO

9.94(38)
0.29(2)
0.18(3)
2.11(12)
0.15(9)

7.69(65)
031(2)
10.8(6)

216(21)

0.11(1)

10.9(2)
0.31(1)

11.6(4)
2.46(10)

10.6(1)
0.30(2)
13.2(2.0)

10.7(1)
032(3)

14.1(7)
2.35(29)

10.7(1)
0.34(3)

11.9(1.)
2.45(15)

K>O

0.22(2)

0.36(4)

0.13(1)

0.11(1)

0.10(1)

0.12(1)

NayO

3.86(31)
0.74(7)
0.15(2)
5.61(51)
0.93(8)
0.23(4)
2.98(17)

0.55(4)
0.14(2)

2.76(11)
0.47(6)
2.72(9)

0.52(10)
0.08(2)

2.39(12)

0.55(4)
0.13(2)

P705

0.32(2)

0.36(6)

0.15(3)

0.07(1)

0.07(1)

0.04(3)

total

99.3
101.1
100.4
101.2

98.1

99.8
100.5

100.6

100.5
98.1

98.9
101.7
101.4
101.9

98.8
101.0
100.4

'98.8
100.7
100.7
101.2

974
1009
100.3
100.9
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Table 1-3 (cont.)

Run Phase® # SiOp

B29

B30

B32

B52

B54

B55

gl
ol
opx

gl
ol
aug
opx
sp

gl
ol
aug
opx
sp

gl
ol
aug
opx
sp

gl
ol

aug

opx
sp

gl
ol
aug
opx
sp

7 48.1(6)
4 407(2)
10 53.1(6)

7 469(3)
4 39.7(2)
10 50.3(5)
10 52.8(6)
3 0.16(1)

8 47.9(2)
4 39.7(7)
15 50.2(4)
6! 52.2(9)
3 031(10)

10 47.4(3)
6 39.5(7)
19 50.4(1.1)
28 52.5(1.2)
5 0.09(8)

8 492(3)
4 40.8(4)
20 50.3(9)
22 52.4(1.0)
4 051018)

8 48.3(3)
5 40.9(4)
22 50.5(1.0)
22 52.5(7)
3 0.55(38)

TiO)

039(3)
0.00
0.10(2)

0.50(6)
0.00

0.20(3)
0.12(1)
0.05(1)

0.61(3)
0.00

0.25(2)
0.10(1)
0.07(2)

0.47(2)
0.00

0.15(4)
0.10(2)
0.08(1)

0.42(2)
00

o

031(4)
0.15(3)
0.05(1)

0.44(3)
0.00

0.24(4)
0.13(3)
0.06(1)

AlhO3

17.0(8)
0.13(1)
7.55(84)

18.1(1)
0.11(1)

10.0(5)
7.88(77)

68.0(6)

18.3(2)
0.12(1)

10.2(5)
9.35(1.25)

68.5(3)

17.7(1)
0.11(1)
7.54(1.55)
7.93(1.43)

58.9(1.9)

18.8(2)
0.09(1)

10.3(4)
9.28(1.27)

67.8(1.9)

19.1(2)
0.09(2)

10.2(1.8)
9.43(84)

69.3(2)

Cry0O3 FeO

0.00 8.64(12)
000  103(2)
0.10(3)  6.50(20)

0.00 9.94(36)
000  143(4)
0.04(2) 6.16(19)
0.06(2) 7.37(8)

0.18(6) 9.97(14)
000  11.8(2)
000  173(2)
0.00 6.49(58)

0.09(3) 7.96(52)
0.14(8) 11.8(1)

0.12(5) 9.21(17)
0.07(1) 12.4(1)

0.44(7) 5.32(33)
0.57(10) 6.94(22)
8.06(1.46) 9.75(30)

0.02(1)  7.83(16)
0.02(1) 12.1(2)
0.04(2) 5.01(26)
0.07(3) 6.77(23)
0.45(14) 8.38(1)

0.00 7.91(12)
0.02(1) 123(2)

0.05(2) 5.22(52)
0.08(2) 6.98(18)
0.43(4)  8.68(13)

MgO

13.6((4)
49.2(3)
31.2(5)

10.5(1)
45.5(4)
20.0(6)
29.9(4)
21.8(4)

8.30(23)
44.0(3)
19.0(5)
29.2(6)
20.6(1)

10.8(1)
46.2(9)
20.2(1.3)
30.3(9)
21.0(4)

9.93(23)
47.8(3)
18.8(1.0)
30.1(1.0)
22.4(36)

9.74(14)
47.9(6)
19.2(1.8)
29.9(5)
22.6(4)

MnO

0.09(3)
0.08(1)
0.08(3)

0.11(3)
0.10(3)
0.10(2)
0.09(3)
0.03(1)

0.09(6)
0.11(2)
0.11(2)
0.12(2)
0.02(1)

0.10(2)
0.12(1)
0.11(3)
0.08(2)
0.04(2)

0.11(4)
0.09(2)
0.11(2)
0.09(3)
0.04(1)

0.13(3)
0.09(2)
0.11(3)
0.10(3)
0.04(1)

CaO

10.4(1)
0.29(1)
1.85(28)

11.2(1)
0.36(2

13.4(7)
2.33(12)
0.07(1)

10.1(2)
035(2)

13.7(8)
2.16(21)
0.12(1)

11.7(1)
035(1)

14.3(1.0)
1.70(23)
0.10(4)

9.87(10)
0.30(1)

14.6(9)
1.97(30)
0.13(4)

10.0(2)
0.30(2)
13.5(1.3)
2.09(3)
0.10(7)

K>O

0.07(1)

0.10(1)

0.18(3)
0.12(1)
0.12(1)

0.13(2)

NayO

1.35(7)
0.053)
1.99(25)
0.36(4)
0.05(1)
3.14(12)
0.41(7)
0.07(1)
1.87(12)
0.42(6)
0.06(4)
3.77(10)
0.72(8)
0.15(11)
3.78(15)

0.76(36)
0.14(4)

P205

0.00

0.00

0.00

total

99.6
100.7
100.6

99.3
100.1
100.6
100.6
100.2

100.6
101.6

. 1003

0.00

0.00

1012
101.6

99.6
98.8
98.7

100.2

98.04

100.2
101.2
100.2
101.0

99.8

100.2
101.6

99.9
101.4
101.7
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Table 1-3 (cont.)

Run Phase® # SiO, TiO  AhO3  Crp03  FeO MgO MnO  CaO K,0 NayO P05 total

BS9 gl 11491(3)  0422) 184(1) 0.0 8.12(13) 9.94(19) 0.06(4)  971(19) 0.14(1)  3.87(21) 0.00 9.9

ol 5 402(6) 0.0 009(1) 005(1) 1282) 46.1(4) = 010Q2) 030(1) - - - 9.7
aug 12 498(6)  027(2) 10.1(4)  0.19(3) 521(14) 187(6)  0.12(2) 14.8(5) - 0.683) - . 1002
opx 12 519(9)  0.15(2)  908(98) 0.44(12) 6.88(26) 30.1(9)  0.122)  2.07(40) - 0.15(14) - 100.9
sp 7 0155 006(1) 664(11) 1.38(10) 878(14) 223(6)  0.042) 0092) - - - 9.5

BS6 gl 8 492(2)  0483) 190(1) 0.0 870(33) 746(37) 0.11(3) 836(135) 0.19(1)  532(26) 0.00 98.8
pl 6 550(7) - 28.7(8) - 0.43(19) 0.00 - 11.1(3) ~ 006(1)  520(23) - 100.9
ol 3 397(5)  002(1)  008(1) 003(1) 154(1) ~ 4457  011(1))  030(1) - - - 100.1
aug 25 50.4(8)  028(4)  9.84(%99) 0.10(4) 561(41) 190(8)  020(3) 140(L1) - 072(7) - 100.2
opx 11 524(7)  0.16(3)  859(1.01) 0.40(11) 7.37(33) 299(3)  0.093)  215(19) - 0.12(2) - 101.2
sp 3 029(23) 0092) 67.6(5)  1.13(46) 10.8(1) ~ 212(2)  0041) 0.10(5) - - - 101.3

B63 gl 8 509(1)  073(5) 182(1)  0.05(4) 8.09(28) 8.04(27) 0.13(5)  9.53(15)

0.19(2) 430(17) 0.00.  100.1
pl 10 53.9(6) - 29.0(4) - 040(9) 022(12) - 119(2) = 006(1)  4.60(19) - 100.1
ol 5 3993) 000 0.09(1)  005(1) 140(3) 458(4)  0.14(3) 030Q2) - . - 100.3
aug 10 515(9)  047(6)  7.34(119) 025(3) 5.44(26) 191(8)  0.14(2) 154(8) - 061(5) - 100.2
opx 10 52.8(8)  0.19(2)  8.12(1.46) 025(3) 6.77(14) 304(5)  0111)  22526) - 0.122) - 101.0

< Abbreviations as in Table 2.

b Parenthesized units represent two standard deviations of replicate analyses in terms of least units cited. Thus, 48.1(4) should be
read as 48.1 +/-0.4.

8Element not analyzed.
Element below detection limit.
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Table 1-4 Experimentally constrained stoichiometric coefficients? for the mantle-
melting equation over the pressure range of 0.001 - 16 kbar (wt. %)
(abbreviations the same as in Table 2): -

1Llqll=¢ liql2 + a augl2 + B opx12 +y oiT2 + 5 p1T2 + € spT2

calculated from experiments presented in this study:

Expt.

TI T2 Pkb) Mg# «a B y 6 € =r2b
(T1-T2)

H130 H13 9 064051 025 021 -003° 057 - 0.92

Hi64 HI3 9  065-051. 031 016 -006 058 - 1.32

H162 H156 13  058-052 1.72 1.59  -135 -1.13 017 0.02
H162 H181 13  0.58-0.46 1.21 0.50  -0.57 -0.23 0.11 0.21
H154 H181 13  0.50-0.46 1.83 0.44  -0.98 -053  0.29 0.04
H200 H179 16  0.62-0.53 134  -0.15 -0.25 - 0.07 0.02
B52 B30 12  0.68-0.65 1.08 017  -0.36 - 0.07 0.005

Bartels et al. (1990)
H192 H197 16 0.65-051 139 -017 -0.31 - 0.08 0.33
Falloon and Green (1987):

2078 2138 10 0.71-0.67 0.76 0.60 -0.44 - 0.08 0.03
2136 2078 10 0.75-0.71 0.79 043  -0.29 - 0.07 0.12
2140 1511 10 0.72-0.69 0.73 040  -0.19 - 0.06 0.22
1493 1511 10  0.71-0.69 0.75 038  -0.22 - 0.08 0.14
For modelling spinel-lherzolite melting:

avg of B52, and 0.82 0.40 -0.30 - 0.08

Falloon and Green

experiments

For modelling plagioclase-lherzolite melting:

avg of H130 and H164 0.28 019  -0.05 0.58 -

a stoichiometric coefficients were esitmated with a mass balance calculation in which
the major element compositions of the melt and mineral phases (wt. % oxides)
in an experiment at a lower temperature (T2) on the multiple saturation
boundary were balanced against a melt at a higher temperature (T1) on the
multiple saturation 0.boundary. The equations were normalized to 1 unit mass
of liquid (thus the mineral phase coefficients sum to 1.0).

b sum of residuals squared for mass balance calculation.

€ negative coefficients imply that the phase belongs on the product side of the melt
reaction, with the liquid.
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Table 1-5 Sources of experimentally produced multiply saturated liquids incorporated
into data set used in quantitative description of multiple saturation equilibria
over the pressure range of 0.001 - 16 kb '

Study Pressure Temp Phases? Mg #D NaK#© TiO%
&)  (°0) (wi%)
Kushiro 8 1200 lig,ol,aug,pig,pl 0.57 0.27 1.97
(1973)
Fujii & Kushiro 8 1230 lig,ol,aug,opx,pl 0.57 0.21 1.64
(1977)
Presnall et al. 001- 1242- lig,ol,aug,opx,pl 1.00 0.00 0.00
(1979) 14 1374 lig,ol,aug,opx,pl,sp
lig,ol,aug,opx,sp A
Stolpe)r 10 - 1275 lig,ol,aug,opx,pl 0.67 0.28 0.84
1980
vjii & Bougault 10 1275 lig,oL,aug,opx,pl® 0.70 0.20 0.86
1983)
g}rove & Bryan .001 1156- lig,ol,aug,pig,pl 0.46- 0.11- 1.28-
1983b) 1167 0.54 0.13 2.43
akahashi & Kushiro 5-8  1200- lig,ol,aug,opx,pl,sp 0.63- 0.20- 1.33-
1983) 1225 lig,ol,aug,opx,sp 0.66 0.31 191
Ithon & Scarfe 15 1300 lig,ol,aug,opx,sp 0.69 0.10 1.19
1984)
vjii & Scarfe 10 1250- lig,o0l,aug,opx,sp 0.70- 0.00- 0.04-
1985) 1310 0.82 0.16 1.14
alloon & Green 10- 1230- lig,ol,aug,opx,pl,sp 0.68- 0.14- 0.69-
9987,1988) 15 1360 lig,ol,aug,opx,s 0.76  0.27 0.96
aker & Eggler 8 1150- lig,ol,aug,pig,pl 0.41- 0.28- 1.43-
1987) 1175 045 041 1.65
rove et al. 8 1210 lig,ol,aug,pig,pl 0.46 030 2.55
1990)
artels et al. 10- 1270- lig,0l,aug,opx,pl 0.58- 0.24-  0.64-
%990) 15 1355 lig,o0l,aug,opx,sp 0.65 0.38 0.88
inzler 9- 1220- lig,ol,aug,pig,pl 0.46- 0.20- 1.15-
(this study) 16 1340 lig,ol,aug,opx,pl 0.65 046 2.56
lig,ol,aug,opx,pl,sp
lig,ol,aug,opx,sp
a  abbreviations same as jn Tabje 2.
b mg# = (Mg +/[Mgi'}'-%l"’e 4;:])), total iron as Fe2+.
g NaK# = ([NapO+K20]/[Nap0+KpO0+CaQ]), in wt. %.

liquid composition and temperature of multiple saturation estimated from
experiments on ol-aug-pl and ol-opx cotectic surfaces.

liquid composition assumed to be that of ARP-74-10-16, temperature
estimated from liquidus experiments of Fujii and Bougault (1983).

liquid composition and temperature of multiple saturation interpolated
between higher temperature experiment saturated with ol, aug and pl; and
a lower temperature experiment saturated with aug, pig, and pl.

a



Table 1-6 Melting experiments on synthetic analog? of glass from experiment # 10, 10 kbar at 1310°C, Table 6, of Fujii and Scarfe (1985).

Run Conditions:
Run Pressure Temp Time Run products
# (kbar) ©c) (hrs)
B93 10 1310 12 gl
B102 10 1295 10 glepx
B100 10 1265 24 glepx
Starting composition: .
#P SiOy TiOp  ALhO3 Cry03 FeO MgO MnO CaO K>O NayO Total
F&S#10 50.1 0.45 14.5 0.32 6.05 14.0 0.12 124 0.05 1.74 100.0

SYNF&S 8 512 039(2) 14.2(1) 0.20(13)  6.18(6) 14.0(1) 0.05(1) 12.0(2) 0.05(1) 1.54(7) 99.9
Run product compositions: .

B93 gl 9 51.6(2) 0.36(3) 14.6(1) 0.28(5) 5.08(19) 14.2(12) 0.13(3) 12.1(1) 0.05(1) 1.44(8) '99.8
B102 gl 10. 50.7(3) 0.44(4) 16.6(1) 0.22(4) 6.07(11) 11.3(2) 0.15(3) 123(1) 0.05(1) 1.76(8) 99.8
B102 cpx 22 53.1(6) 0.16(6) 5.93(1.7) 0.83(14) 456(31) 236(19) 0.11(2) 12.2(1.4) 0.34(16) ;100.8
B100 gl 10 50.9(4) 0.47(3) 183(2) 0.23(3) 6.18(26)  9.95(38) 0.07(1) 11.8(1) 0.07(1) 1.97(10)‘ 100.1
B100 cpx 37 52.9(6) 0.18(4) 6.07(70) 0.63(11) 4.64(39) 23.1(1.2) 0.11(2) 12.9(1.3) - 0.31(7) 100.8

2 composition synthesised from oxides as described in experimental techniques section for the type 3 experiments, and conditioned at 1 atm. at
QFM at 1307 for 1 hour.
number of analyses in average of electron microprobe analyses.
C parenthesized units represent two standard deviations of replicate analyses in terms of least units cites. Thus, 51.2(2) should be read as 51.1 +/-
0.2.
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Table 1-7 Comparison between experimentally produced, multiply saturated experiments and
compositions predicted with the descriptions of the spinel- and plagioclase-therzolite
- melting equilibria. :

Expt Pressure Temp SiOp TiOp AhO3 ~ FeO MgO™ CaO KyO NajO

B30 12 1300 47.3(3) 0.50(6) 182(1) 10.0(4) 10.6(1) 11.3(1) 0.10(1) 2.01(25)
model® 1311 483 049 161 104 107 117 010 218

BS2 12 1315 474(3) 047(2) 17.8(1) 927(17)109(1) 11.8(1) 0.12(1) 1.88(12)
model® 1314 484 046 163 951 112 119 012 203

BS4 12 1285 492(3) 042(2) 188(2)  7.82(16) 9.92(23) 9.86(10) 0.12(1) 3.77(10)
model? 1297 491 042 187 776 954 103 012 407

B56 12 1255 49.8(2) 049(3) 193(1)  8.82(33) 7.56(37) 8.47(15) 0.19(1) 5.39(26)
model? 1277 492 047 195 898 742 859 ~ 019 565

B63 10 1267 50.9(1) 0.73(5) 182(1)  8.10(28) 8.05(27) 9.54(15) 0.19(2) 4.30(17)
model® 1260 52.1 0.72 17.5 7.93 7.68 9.44 0.19 4.44

2 model calculated for the pressure of the experiment and the Mg#, NaK# and TiO of the glass
using the description of the spinel-lherzolite meiting equilibrium.
as in a but the model was calculated with the description of the plagioclase-lherzolite meiting
equilibrium.



Table 1-8 Model mantle and melt compositions

Mantle compositions

SiO, TiO, AL O3 FeO MgO CaO K0 NayO
H&Z prim® 46.381 0.182 4.097 7.619 38.116 3.239 0.032 0333
H&Z dep 1° 46.335 0.172 3.870 7.665 38.499 3.185 0.004 0.279

Mantle modes

aug opx ol pl aug opx ol sp
H&Z prim? 0.11 0.24 0.58 0.07 0.20 0.24 0.53 0.03
H&Z dep 1P , 0.11 0.24 0.59 0.06 0.19 0.24 0.54 0.03

Melt compositions generated by melting H&Z dep 1 mantle source

Model 1: l isobaric, batch melting

Pressure 5 kbar 8 kbar 10 kbar 15 kbar 20 kbar

melt % 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%
SiO 539 53.5 53.0 51.8 51.4 50.9 50.2 49.9 49.5 479 475 47.1 45.5 45.1 44.6
TiO» 1.11 087 061 1.11 0.87 0.61 0.94 0.81 0.64 0.94 0.81 0.64 0.94 0.81. 0.64
AlLO3 16.0 16.0 159 17.2 171 17.1 17.6 16.6 15.6 18.8 17.8 16.8 19.9 18.9 18.0
FeO 6.07 6.31 6.68 6.45 6.70 7.06 6.90 7.55 8.17 7.33 7.97 8.59 7.75 8.38: 9.00
MgO 8.88 924 9.78 9.44 981 103 10.2 11.2 12.1 10.8 11.8 12.7 11.5 12.41 13.3
CaO 11.3 11.6 12.1 11.3 11.6 12.1 10.5 11.5 124 10.7 11.6 12.6 10.8 11.8 12.7
K70 0.07 0.04 0.02 0.07 0.04 0.02 0.08 0.04 0.02 0.08 0.04 0.02 0.08 0.04 0.02
NayO 2.74 241 1.90 2.74 2.41 1.90 3.46 2.50 1.55 3.51 2.53 1.57 3.55 2.57 1.59

Temp (OC) 1230 1235 1241 1257 1262 1268 1269 1278 1287 1349 1366 1367 1429 1438 1447
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Table 1-8 (cont.)

Model 2: isobaric, incremental-batch, accumulative melting with incomplete melt withdrawal

Pressure 5 kbar 8 kbar 10 kbar 15 kbar 20 kbar

melt %° 52% 103% 202% 52% 103% 202% 52% 103% 202% 52% 103% 20.2% 52% 103% 202%
SiOy 53.9 53.6 522 51.8 514 50.1 50.4  50.1 49.6 48.0 47.6 47.2 45.7 45.2 448
TiOy 1.21 1.02 073 1.21 1.02 0.73 1.00 090 0.67 1.00 0.90 0.72 1.00 0.90 0.72
AlLO3 16.0 159 15.8 17.1 17.1 17.0 17.8 16.5 15.7 19.0 17.7 16.6 201 18.9 17.8
FeO 5.94 6.14 6.68 6.32 6.50 7.02 6.66 7.32 8.09 7.09 7.73 8.18 7.51 8.14 854
MgO 8.82 9.26 105 9.39 983 111 10.0 11.2 12.0 10.7 11'9 13.2 113 12.5 13.9
CaO 11.2 11.6 12.7 11.2 11.6 12.7 10.3 11.4 12.6 10.4 11.5 12.8 10.6 11.7 13.0
K70 0.07 0.04 002 0.07 0.04 0.02 007 0.04 0.02 0.07 0.04 0.02 0.07 0.04 0.02
NayO 2.81 2.44 1.31 2.81 2.44 1.31 3.73 2.54 1.68 3.76 2.55 1.29 3.79 2.56 1.29

Temp (OC)d 1233 1243 1259 1260 1270 1286 1278 1295 1303 1359 1376 1383 1438 1456 1463
!: .

a
b

renormalized not to include Cr,O3, MnO, NiO, P7Os.

calculated by melting a primitive mantle of the composition of Hart and Zindler (1986) over the pressure range 25-2 kbar, with the model 3
melting process (see text) for a total melt extent of 1.3%. Compositions of the residues of these melts over this pressure range were averaged to
provide an estimate of a well-mixed depleted MORB-mantle source. '

each successive increment of batch melting is 0.01, of which 90 % is withdrawn after it is produced. The effective % melt extracted = 1-(.991)"
where n=number of steps. ' )

the temperature at which the last increment in the step-wise incremental-batch accumulative melting process with incomplete melt withdrawal
was produced.
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Table 1-9 Aggregate primary magmas produced by near-fractional, polybaric melting and accumulation

Model 3: polybaric, incremental-batch, accumulative melting with incomplete melt withdrawal®
Hart & Zindler dep 1 Hart & Zindler prim
(M 2 ) (4) ©) ©

P;(kbar) 25-4 20-4 15-4 25-4 20-4 15-4
F1(%) 18 14 10 18 14 10
crust 13 8 4 13 8 4
(km) ‘
SiOp 47.7 49.1 50.5 47.7 49.3 50.7
Ti08 0.75 0.83 0.90 0.80 0.86 0.93
AHO3 16.6 16.4 16.5 17.2 17.0 17.3
Fe 8.00 7.66 7.12 7.76 7.32 6.65

. MgO 12.8 12.0 10.9 12.3 114 101
CaO 12.7 12.2 11.5 - 12.3 11.7 10.9
K20 0.02 0.03 0.04 0.17 0.21 0.30
NayO 1.46 1.88 2.55 1.83 2. 3.00
Tempy 1499- 1418- 1337- 1483- 1402- 1321-
(°C) 1207 1206 1200 1223 1205 1197 -

Notes: Percent melting as a function of pressure is assumed to be a constant value of 1. % per kbar of
pressure release, 90% of this melt is withdrawn after each increment (to allow for continuous melting).
P; provides the initial (P1) and final (P2) pressures associated with a given mean pressure. FT, is the
total extent of melt achieved from the column ((0.991)( 1-P2+ 1)). Tempy provides the temperatures

at which the first and last increment are produced, respectively. Crust refers to an approximation of the

thickness of crust generated from each melting column (= (P1- P2 + 1)*3.3*Fr).
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Table 1-10 "Back-fractionation’ calculations of sampled MORB lava compositions to hypothetical primary parents
sample?  SiOp TiOp AhLO3 FeO MnO MgO CaO NayO  Ky0O P’  ol-aug-pI° inc F
(Kb) (wt. fraction)

10TJ S11 1.08 16.7 7.75 020 873 10.0 391 0.25

513 1.01 17.0 7.19 018  9.02 10.3 3.78 0.22 0.13,0.29,0.58 0.02 0.89
parent 51.2 0.93 17.4 6.85 017  9.25 10.2 3.76 0.21 910 025 - 0.75 0.02 0.82
MCR 517 1.58 16.6 8.78 7.80 104 3.48 0.25

513 1.26 173 7.14 8.60 11.0 3.16 0.18 0.13,0.29,0.58 0.02 0.72
parent 51.0 1.22 16.8 7.28 9.7 10.7 3.07 0.18 910 10 - - 0.02 0.65
KFZ 50.2 1.44 15.8 9.35 017 850 12.0 2.36 0.10

50.2 1.32 16.3 8.55 015 884 12.3 2.26 0.09 0.12,0.34,0.54 0.02 0.87

49.9 1.19 171 8.04 013  9.12 12.2 2.25 0.08 \ 0.25 - 0.75 0.02 0.78
parent 49.5 1.14 16.2 8.21 0.10 110 11.6 2.14 0.08 13-14 10 - - 0.01 0.75
RP 50.5 0.92 147 102 006 822 12.8 1.87 0.07

49.3 0.62 18.1 8.04 004 934 12.6 1.84 0.05 0.25 - 0.75 0.02 0.67
parent 49.0 0.60 17.4 8.18 0.04 108 12.1 177 0.05 10-11 10 - - 0.02 0.64
ELT65 49.1 1.18 174 8.54 9.03 11.8 2.95 0.05

49.0 1.01 183 7.73 9.44 11.6 291 0.04 0.25 - 0.75 0.02 0.85
parent 48.7 0.98 17.8 7.83 10.6 113 2.82 0.04 1315 1.0 - - 0.01 0.83
ELT45 48.7. 0.91 174 100 8.93 11.5 2.56 0.04

49.1 0.80 17.9 8.19 9.51 12.2 233 0.03 0.12,0.34,0.54 0.02 0.74
parent 48.7 0.77 17.2 832 11.0 11.7 224 0.03 1315 10 - - 0.01 0.71
ELT72 49.6 0.85 16.1 8.97 9.87 12.4 2.07 0.17

493 0.76 17.1 8.30 10.1 12.3 2.06 0.15 0.25 - 0.75 0.02 0.89
parent 49.0 0.73 16.5 8.38 11.2 12.0 2.00 0.15 12-13 1.0 - - 0.01 0.86
ELT102 498 0.63 17.4 7.53 9.94 13.1 1.65 0.02
parent 496 062 17.0 7.59 10.7 12.8 1.62 0.02 11-13 1.0 - - 0.02 0.98
ELT34 50.9 1.08 15.6 9.46 9.15 12.0 1.62 0.12

50.6 0.97 16.4 8.29 9.54 12.5 1.54 0.10 0.12,0.34,0.54 0.02 0.82
parent 50.2 0.93 15.6 8.44 11.4 11.9 1.46 0.09 1315 1.0 - - 0.01 0.78
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Notes for Table 1-10

3 MORB sample abbreviations: 10TJ, Indian Ocean triple junction; MCR, mid-Cayman rise; KFZ, just south of the Kane Fracture Zone (23°N); RP,
Reykjanes Peninsula; ELT#, # keyed to same # in Table 5, Elthon (1990).
estimated pressure of separation of the parent magma from the mantle residue, inferred with the inverse method described in the text.

C weight fractions of phases added to lava.

fraction of liql.}&i rgglaining. . . R .
NOTE: plKp" 4 = (Naﬁopl*CaOl'q)/(NaZth*CaOpl)= 1.0; ol KpFe-ME = (Fe00lrMg0lid)/(Fe0li9*Mg0®)) = 0.203; aug KpFeMe =
(Fe0*"8+Mg0ld)/(Fe0l9*Mg0?Vg) = 0.27.
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- CHAPTERII

Magmatic diversity at the over-lapping spreading center at 11945’ N on the East Pacific
Rise
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INTRODUCTION

Detailed geochemical sampling and marine tectonic studies over the past 10 years
have revealed that mid-ocean ridges are segmented on the scale of tens to hundreds of
kilometers (e.g., Macdonald et al., 1984; Lonsdale, 1985; Langmuir et al., 1986).
Maxima in geochemical diversity typically occur near the end-points of ridge segments,
and thus understanding the processes that yield the geochemically diverse signatures is
important for understanding the overall formation of mid-ocean ridge crust. Data
collected during a combined ALVIN submersible/dredging cruise aboard the Atlantis II
in 1988 to the over-lapping spreading center (OSC) at 11°45’N on the East Pacific Rise
(EPR) are combined with experimentally determined 1-atm. phase equilibria. The
purpose of this study is to extend the work of Thompson et al. (1985, 1989) to evaluate
and amplify the existing framework for understanding the processes that yield
geochemical diversity at migrating tectonic offsets along mid-ocean ridges by applying it
to this well characterized area.

Previous Work on the 11°45’ N OSC

The discontinuity at 11945’ N of the EPR, at a depth maximum along the ridge
between the Clipperton and Orozco transforms (Perram and Macdonald, 1990), was
mapped with Sea Beam and recognized morphologically as an OSC by Macdonald and
Fox (1983); and as a substantial petrologic discontinuity by Thompson et al. (1985, 1989)
and Langmuir et al. (1986). Detailed sampling of the EPR between 10 and 12°N
(Thompson et al., 1985, 1989; and this study) provides excellent characterization of the
lava types represented along the ridge segment to the south of the 11945’ N OSC as well
as at the southern tip of the eastern limb. Geochemical and camera-tow studies of the
ridge segment to the north of the 11945’ N 6SC include those of Hekinian and Fouquet
(1985), Langmuir et al. (1986) and Hekinian et al. (1989). Mapping of the 11945’ N
OSC with high-resolution SeaMARC I side scan sonar (Crane, 1987) and Argo and
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Angus imaging systems (Thompson et al., 1985, 1989; Argo-Rise Group, 1988; Uchupi et
al;, 1;)88) revealed that the eastern limb is tecgoﬁically and volcanically more active than
the western limb.

A recent detailed bathymetric, magnetic and side scan sonar study has
determined that the 11945’ OSC has existed near its current morphological expression
for approximately 0.7 m.y., and that it migrated northward at 70 mm/yr for the first 0.2
m.y., then migrated slowly (less than 30 mm/yr) and then significantly more rapidly (140-
200 mm/yr) southward (Perram and Macdonald, 1990). Thus the 11945’ OSC represents
a southward migrating, small-offset (8 km) ridge transform intersection (Perram and
Macdonald; 1990).

Background

Over-lapping spreading centers (Macdonald and Fox, 1983; Lonsdale, 1983) are
intermediate in the scale of tectonic offsets of mid-ocean ridge spreading centers,
between large offset transforms, and zero offset transforms (Schouten and White, 1980;
Schouten and Klitgord, 1982) or deviations in axial linearities (DEVALs) (Langmuir et
al., 1986). OSCs are non-rigid (Macdonald et al., 1985), may migrate along strike and
are thought to be rather transient features, although this point has been debated
(Lonsdale, 1986; Macdonald et al., 1986; Perram and Macdonald, 1990). Previous
investigators have observed that mid-ocean ridge basalt (MORB) erupted near tectonic
offsets may show several petrologic signatures. These signatures include the occurrence
of evolved lava compositions with cooler magmatic temperatures (Hekinian and
Thompson, 1976; Schilling and Sigurdsson, 1979; Christie and Sinton, 1981); the
eruption of a wider range of lava compositions over a limited geographic area (Natland,
1980; Sinton et al., 1983; Perfit et al., 1983; Bender et al., 1984; Christie and Sinton,
1986); and the effects of higher-pressure frac—:;ionation (Langmuir and Bender, 1984;
Sinton and Christie, 1985) and varying extents of melting in the underlying mantle

(Bender et al., 1984; Langmuir and Bender, 1984; Christie and Sinton, 1986, Karsten, et
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al, 1991). Collectively labelled "a transform fault effect’ (Langmuir et al., 1986) the
petr(‘)logic signatures associated with tectonic-offsets have been understood in the
context of the cooling of the lithosphere and asthenosphere that results from the
truncation or disruption of a spreading ridge by the offset (Fox and Gallo, 1984;
Langmuir and Bender, 1984). Macdonald et al. (1988), however, stress the observation
that as the offset at the 11°45’'N OSC on the EPR is so small, the axial morphological
and geochemical expression of the OSC must be controlled by processes at depth (i.e.
related to magma supply) beneath each of the spreading segments, rather than by the
near-surface boundary conditions imposed by the small offset in the lithospheric plates.

Sinton et al. (1983) extended the framework which considered the thermal affects
associated with ridge truncation to include the magma supply effects associated with the
migration of a ridge-transform intersection relative to the underlying mantle, in order to
evaluate the magnitude and distribution of geochemical signatures associated with
migrating ridge transform intersections. Several tectonic variables are considered within
their framework, including local spreading rates; proximity to "hot spots’; propagation
rate (if any); migration rate of the intersection, relative to the underlying mantle; and the
length of the transform truncating the ridge segment.

This paper presents geochemical and geologic observations from the east and
west limbs of the OSC at 11°45°N on the EPR (Fig. 1). In the context of the existing
frameworks for evaluating the geochemical effects of the tectonic environments
associated with offsets along mid-ocean ridges (Sinton et al., 1983; Langmuir et al., 1986,
Macdonald et al., 1988), the work of Thompson et al. (1989) is extended to address three
general questions for the migrating OSC at 11945'N: 1) What are the geochemical
signatures observed in lavas erupted proximal to the migrating OSC? 2) What roles in
generating the geochemical diversity observ;'d. on both limbs of the 11945’N OSC are
played by crystal fractionation and magma mixing over a range of crustal pressures? 3)

What role do the tectonic variables governing the morphological expression of the
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11945’N OSC play in generating the magnitude and distribution of geochemical
ahorﬁalies observed, aqd how do these anomqliés compare to the geochemical
anomalies observed at other nearby OSCs (i.e. 12°37’N and 12°54'N) and propagating,
or migrating rift systems (i.e. Galapagos, Juan de Fuca)? These questions are addressed
and constrained by new experimental data and geochemical data on lavas recently

recovered in the 1988 ALVIN dive series.
MAJOR ELEMENT COMPOSITIONS OF LAVAS FROM THE 11945'N osc _

Analytical Methods

Chemical analyses were performed with an electron microprobe at an
accelerating potential of 15 kV and a sample current of approximately 10 nA. Beam
spot size was nominally 1 micron for mineral analyses and 10 microns for glass analyses.
All data was collected using wavelength dispersive spectrometers and Tracor Northern
5500-5600 automation and reduced using the Bence and Albee (1968) matrix corrections
with modifications of Albee and Ray (1970). The relatively low beam current of 10 nA
was used to minimize errors resulting from sodium migration in the glass caused by
impingement of the electron beam. Counting times were 10 - 40 seconds. A natural
MORRB glass (PROTEA-9-70-002, Table 3) was analyzed during every probe session to
check the consistency of the calibration throughout the time over which the analytical
data were collected. We have augmented the data presented in this study with the data
presented for the same area by Thompson et al. (1989), as well as additional data for 10 -
13°N on the EPR from the Smithsonian Institution Volcanic Glass File (this additional
data is only used for the discussion of the geochemical anomalies associated with OSC
tectonic segmentation). Systematic differen;:éé outside of electron microprobe counting
statistic errors for SiO7, MgO and NajO exist between data obtained on the MIT

electron microprobe and the Smithsonian electron microprobe. Therefore, correction
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factors obtained by analyzing the same set of glasses on both microprobes (provided in
Tablé 3) were applied to the data from the Smithsonian electron microprobe facility.
Data Presentation

Major element compositions of fresh glass chips from 79 lavas sampled during the
1988 ALVIN and dredging cruise aboard the Atlantis IT on the EPR from 11940’ to
12°00°’N on the east and west limbs of the 11945’N OSC were determined as described
above on the MIT electron microprobe. The dive tracks and dredge locations for 8
ALVIN dives and 2 dredges ate shown in Fig. 1 (dredge locations from the Thompson et
al. (1989) study are also provided in Fig. 1). For the purposes of discussion, the
compositional mean and sample standard deviation were compiled for chemical groups
observed in the data set (including the data of Thompson et al., 1989) (Table 2). These
groups were chosen on the basis of similarity of major element compositions (the only
exception is group F, which was also identified based on field observations). In general,
the sample standard deviations for the chemical groups are similar in magnitude or
smaller relative to the sample standard deviations associated with 7 replicate analyses
collected for a single MORB glass with the electron microprobe (compare 1 sigma
values for chemical group averages in Table 2 with 1 sigma values for individual analyses
in Table 1).

Normalized SiO», TiO7, Al»O3, FeO* (total Fe as FeO), CaO, K70, Na O, and
P05 for glasses from the eastern and western rifts of the 11945’N OSC are plotted
verses MgO in Fig. 2. The glasses from the eastern rift of the OSC (EOSC) show a
significantly greater range in MgO content than those of the western rift of the OSC
(WOSC), defining both the more primitive and more evolved ends of the total range.
The highest MgO glasses from both the EOSC and the WOSC overlap in their Al203,
FeO, CaO and TiO contents. As the MgO ~c"6ntents of the glasses decrease the trends
defined by Al»O3, FeO and CaO for the two suites diverge, although some overlap is

observed. In general, the EOSC glasses contain lower amounts of Al203 and CaO, and
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higher amounts of FeO, relative to the WOSC glasses, at a given MgO content. Glasses
from the EOSC define a lower KO trend with decreasing MgO than those from the
WOSC, although, again, overlap is observed. Mineralogically, the lavas sampled from
both rifts of the OSC are aphyric to sparsely phyric, containing micro-phenocrysts and

rare phenocrysts of plagioclase and lesser amounts of olivine.

GEOLOGICAL OBSERVATIONS AND DISTRIBUTIONS OF GEOCHEMICAL
- GROUPS

Western Rift

Three ALVIN dives (1997, 1998 and 2000) and two dredges (17 and 18) were
carried out between roughly 11943’ N and 11952’ N on the western rift of the 11945’'N
OSC during the 1988 Atlantis II-118 cruise (Fig. 1, dredges 64, 65, 66 and 68 from the
PROTEA-009 cruise reported by Thompson et al., 1989 are also shown). The WOSC is
narrower and topographically higher than the eastern rift and is composed of pillowed
terrain with occasional lobate pillows and sheet flows in flatter regions. To the north
there is no simple axial graben, however there is a well developed axial graben to the
south (Bryan et al., 1988). The age of the lavas corresponds to approximately 1.5 on the
sediment scale (inter-connected sediment pockets observed). The southern portion of
the west rift is marked by fissuring, while the northern portion is dominated by relatively
un-fissured, constructional volcanism; the transition between the dominantly fissured
and un-fissured terrain was observed at approximately 11°45’N (north of ALVIN dive
1998). Tectonism also dominates the portion of the EPR south of the WOSC (south of
11940’N) to the topographic high at 11925’N, with the most recent locus of volcanic
activity observed at 11929'N (age corresponliihg to 1.2 on the sediment scale, light

dusting of sediment observed) (Thompson, Bryan et al,, in prep).
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The northernmost tip of the western rift (ALVIN dive 2000, Fig. 1) is marked by
smali volcanic cones cut by only minor fissures, énd a final volcanic event that partially
filled in earlier fissures. The ages of lavas at the tip are similar to those further south,
(also corresponding to roughly 1.5 on the sediment scale); lavas collected along dive
2000 from glassy flows that partly fill the older fissures probably represent the last
volcanic event (Bryan et al.,, 1988). In general, the western rift of the OSC to the north
of approximately 11°45°N is relatively quiet with respect to both tectonic and volcanic
processes, and most likely is adieing rift. No evidence of hydrothermal activity was
observed north of 11%40°N.

Eastemn Rift

Five ALVIN dives were carried out between roughly 11943’N and 11°50°'N on the
eastern rift of the 11°45’N OSC (Fig. 1). Some areas of the EOSC are marked by local
constructional highs that were centers of eruption. The ages of the fissured lavas
correspond roughly to 1.5 on the sediment scale. To the north on the EOSC the axial
region lacks a well defined axial graben; and is wide and highly fissured. Southwards, the
axial region narrows, and has a better developed graben at 11944’N. The tip of the
EOSC consists mainly of fissured volcanic ridges and local constructional highs. Lavas
with a range of compositions (groups A, B, C, H, K and P, Tables 1 and 2) were
emplaced along the EOSC from approximately 11955’ N (Dr-20) to 11943’'N (ALVIN
dive 2002) relatively recently (ages corresponding to 1.5-1.1 on the sediment scale;
interconnected sediment pockets - light dusting of sediment). At the southern tip of the
EOSC, the more recent volcanic events (chemical groups A, C, H; dive 2002) took the
form of small, thin pillow eruptions on the western flank of the axial region near 11942’N
that override the older pillow terrain (chemical group O, 2002), whereas to the north
local flooding and lava lake formation occur_r;d in the bottom of the deeper and wider

fissures. These lava lakes (chemical groups A and C; dive 2004), cut by only rare



158

fissures, cover and abut the older pillowed terrain seen in thg'walls of the fissures
(chc;nical group P, div¢ 2004). o

The most recent volcanic event observed on the EOSC emplaced lavas (ages
corresponding to 1.0 on the sediment scale; no sediment observed) of a nearly uniform
composition (chemical group F (+E), Table 2; Fig. 1) (Kinzler et al., 1988) along the
EOSC from 11°43’N (ALVIN dive 2002) to 11°57'N (Dr-19). Samples in Group F were
erupted as thin sheet flows in the bottoms of fissures and were identified from the
ALVIN submersible to be similar in their very fresh and highly glossy, black appearance.
In addition, the group F lavas were identified as the youngest lavas sampled during the
course of dives 1999, 2001, 2002, 2003 and 2004, and were observed to have flowed over
the older sheet and pillow flows described above. Group E was recognized after the
major element compositions of the lavas were determined (as were the other groups
listed in Table 2) on the basis of their compositional similarity to the younger group F
lavas. Lavas in group E were collected along dives 1999 and 2001, and were recovered in
dredges 70 and 19. The group E lavas are interpreted to be slightly older than the group
F lavas, based on direct observation of their field relations in 5 ALVIN dives. Because
of their similarity in composition, however, we suggest that groups E and F were
emplaced fairly closely in time. This emplacement event occurred over a distance of
approximately 24 km. The lavas were erupted onto the floors of fissures, which may
suggest that the hydraulic head associated with the recent eruptions was relatively low, as
the levels of the flows were not observed to rise far above the floors of the older fissures.

In general, the EOSC now appears to be in a moderately active volcanic phase
which has followed a period dominated by tectonic fissuring of yet older constructional
volcanism. Hydrothermal activity is not developed in the current phase, although fossil
hydrothermal sites consisting of inactive sulfide chimneys and hydrothermally stained
talus were observed. This phase is very similar to the final stage in the ridge segment

tectonic and volcanic cycle outlined by Thompson et al. (1988), where tectonism is on the
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decrease and renewed volcanism is restricted to low level ﬁllipg in of fissures in the floor
of th;a axial graben. Thg: implication is that the cycle is about to start anew on the
eastern rift of the OSC, with a fresh influx of magma to the spreading axis.

Three chemical groups (H, K and N) are observed in common between the
WOSC and the EOSC (see also Thompson et al., 1989). Interestingly, chemical group K
is relatively common on the EOSC (sampled at dredge-20, and on ALVIN dives 1999,
2001 and 2003) and is sampled at only one location on the WOSC (ALVIN dive 2000);
while chemical group N is relatively common on the WOSC (sampled at dredge-65, and
on ALVIN dives 1998 and 2000) and is sampled at only one location on the EOSC (dr-
70). The observed, uneven distributions of these lava types support the inference of
Thompson et al. (1989) that magma may have ’leaked’ across the small (roughly 8 km)
basin that separates the two rifts of the OSC. Lavas in the third, shared chemical group
(H) only occur at two sampled locations, near the northernmost part of the WOSC
(dredge-68) and at the southernmost part of the EOSC (ALVIN dive 2002). On the
basis of major element considerations alone, it would be hard to justify that these
spatially disparate lavas were physically related to the same magma body. Rather, it is
likely that they evolved from similar parent magmas by similar magmatic processes (see
below).

Primitive Lavas

Primitive lavas (defined here as lavas containing > 8 wt.% MgO) were sampled
at several locations on both the WOSC and the EOSC. Grouped together in the P group
(Table 2), 7 different primitive lava types with Mg# (100*Mg/[Mg+Fe]) of 61 - 65 were
identified. Lava types P2, P3, P4 and P5 were sampled on the WOSC, P1, P6 and P7
were sampled on the EOSC. The highest MgO glass (ALV-2004-3-1, MgOn=9.23) was
sampled approximately 8 km north of the southern tip of the EOSC. In general, the P
group lavas sampled from the ALVIN were observed to be older than the nearby, more

evolved lavas.
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Propagation vs. Migration?

/ Thompson et al. (1985, 1989) suggested that the eastern rift of the 11°945’N OSC
was propagating southwards and that the western rift constituted a failing rift. This
interpretation was based on the observation of recent volcanic and tectonic activity on
the EOSC, and a lack thereof on the WOSC. The ALVIN dive observations presented
here confirm the previous observations that within the zone of overlap, the eastern rift is
more volcanically and tectonically active relative to the northern portion of the western
rift. The southern portion (soyth of 11945”) of the WOSC is marked by recent fissuring,
indicating extension. Perram and Macdonald (1990) suggested that the migrating offset
at 11945°N is the result of a reorientation of the ridge axes to the north and south to
accommodate a slight rotation in the spreading direction over the past 1 m.y. (3-4°.
Perram and Macdonald (1990) suggest that active, asymmetric extension is occurring to
the north (on the EOSC) and to the south (on the southern portion of the WOSC) of
11945°N. The observations of possibly recent fissuring along the southern portion of the
WOSC (ALVIN dive 1998), and lack thereof along the northern portion of the WOSC;
and recent fissuring along the whole length of the EOSC are consistent with this

interpretation.

PETROLOGIC EVOLUTION OF THE LAVA TYPES SAMPLED ON THE 11045N
OSC

Experimental Study

We carried out a 1-atm. experimental study using natural lava compositions
collected from 11°40°N to 11°50°N on the EPR. These experiments locate the 1-atm.
olivine - augite - plagioclase - liquid boundar;ﬂ(4-phase boundary) in composition space
for the bulk compositions sampled at the 11°45’N OSC. These data will be used to

quantify the effects of shallow level (near 0.001 kbar) crystallization on the magma
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composmons and to assess the roles played by crystal fractlonatlon processes and mixing
of magmas in the gcneratlon of the observed: geochem1cal mgnatures at the 11945°N
OSC

Experimental Methods All five lavas used in our experiments consist of fresh
glassy to aphyric pillow fragments. Four of the lavas (PROTEA-9-70-002, 67-032, 64-002
and 61-002) were collected during a dredging program between 10 and 12° N in 1984
(Thompson et al., 1985; 1989). The fifth (ALVIN 2004-3-1) was sampled on ALVIN
dive 2004 (Fig. 1). The freshest parts of the pillows were reduced to powder by grinding
in a SPEX shatterbox for 3 minutes and then used as starting material for the anhydrous,
1-atm. melting experiments. Table 3 provides chemical analyses of the starting
compositions used in this study. Two analyses of PROTEA-9-70-002 are provided in
Table 3; one carried out on the Smithsonian electron microprobe and the other carried
out on the MIT. electron microprobe. Experimental run conditions are reported in
Table 4.

The experiments were carried out at 1 atm. using techniques similar to those
described in Tormey et al. (1987). Pellets of natural lava powder (0.08-0.10 g) were
prepared using elvanol as a binder, and sintered to 0.008" PtFe alloy loops fabricated to
minimize Fe exchange between the loop and silicate sample (Grove, 1981).

Experiments were carried out in Deltech DT31VT quenching furnaces in a CO2-H gas
atmosphere maintained near the quartz-fayalite-magnetite buffer, using gas flow rates of
0.1 mL/s. Oxygen fugacity was monitored using ZrO2-CaO electrolyte cells calibrated at
the Fe-FeO, Cu-CupO and Ni-NiO buffers. Temperature was monitored using Pt-
PtggRhy( thermocouples calibrated against the melting points of NaCl, Au and Pt on
the IPTS 1968 temperature scale (Biggar, 1972). Temperatures were held constant to
within plus or minus 1°. The exchange of Fe between loop and silicate charge, and the

loss of Na from the silicate charge by volatilization in these 1-atm wire loop experiments



162

have been essentially eliminated by using PtFe alloys, extremely low gas flow rates, and
"large" sample sizes (Tormey et al., 1987).

Analytical Methods Run products were mounted in epoxy and polished for

examination under reflected light and for characterization of the chemical compositions
of all the phases (provided in Table 5) with the MIT 4-spectrometer JEOL model 733
electron microprobe (see analytical methods section above).

Balance of Mass In order to evaluate how mass was conserved during each
experiment, the compositions of all the phases present (Table 5) were balanced against
the bulk composition of each experiment (Table 3), using unweighted materials balance
(Bryan et al., 1969). These mass balance calculations provide estimates of the
proportions of phases present in each experiment (reported in Table 4 with the sum of
the residuals squared for each mass balance). FeO loss from the charge as estimated
with the mass balance technique was typically < 1% to 3% relative, never more than 5%
relative. NapO loss was typically 1 - 5% relative, never more than 10 % relative.

Achievement of Near Equilibrium Conditions The average values of
experimental Fe-Mg Kps (FeO"ﬂMgOliqUid/MgOthFeOliq“id) observed in the melting
experiments reported in Table 4 for olivine/liquid (20 experiments) and augite/liquid (17
experiments) are approximately constant at 0.28 +/- 0.1 (1 sigma) and 0.24 +/-0.2 (1
sigma), respectively. The olivine/liquid Fe-Mg Kp is within 1 sigma of the equilibrium
value determined by Roeder and Emslie (1970) and both the olivine/liquid and
augite/liquid Fe-Mg Kps are similar to those obtained in similar 1-atm. experimental
studies on tholeiitic and low-potassium, high-alumina basalt compositions (Grove et al.,
1982; Grove and Bryan, 1983; Tormey et al., 1987), indicating that near-equilibrium
conditions were obtained in the experiments, at least with respect to Fe-Mg exchange.
The average experimental Na-Ca Kp (NagdﬁICaOliq“id/CaOXﬂNazoliq“id) observed
for plagioclase/liquid (20 experiments) is 1.05 +/- 0.15 (1 sigma). The larger 1 sigma on
the average plagioclase/liquid Na-Ca Kp), relative to the 1 sigmas on the Fe-Mg Kps
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stems from a systematic increase in the plagioclase/liquid Na-Ca Kp as the temperature
of exberiment decreases (Table 5). The glass, olivine and plagioclase produced in the
experiments are generally homogeneous in composition, again indicating near-
equilibrium conditions. Experimentally produced augites are compositionally the most
heterogeneous, as reflected in the higher standard deviations associated with the average
compositions reported in Table 5. This compositional heterogeneity stems from sector
and patchy zoning developed in the pyroxenes and was not observed to diminish
significantly with increased run time (augite saturated experiments were carried out for
approximately 4 to 11 days, Table 3). Nonetheless, the small standard deviation of the
values observed for the augite/liquid Fe-Mg K, and the similarity of the average
augite/liquid Fe-Mg Kp to that obtained in similar experimental studies suggests that an
approach to equilibrium was achieved.
Experimental Results

Crystallizing Phase Proportions Cotectic proportions of the minerals crystallizing
along the 4-phase boundary are provided in Table 6. The olivine-plagioclase-augite
phase proportions were determined by computing mass balances between higher-
temperature liquids and lower-temperature liquid + crystalline phase assemblages (both
experiments carried out on the same starting composition). This mass balance estimates
the proportions of olivine, plagioclase and augite that crystallized from the higher-
temperature liquid to form the composition of the lower-temperature liquid. If the 4-
phase boundary curves with decreasing temperature, then an increase in the difference
in temperature (AT) between the experiments on either side of the mass balance results
should yield different coefficients of the crystallization reaction. As AT increases for the
estimates provided in Table 6, the proportion of olivine and augite decreases, and the
proportion of plagioclase increases, indicatin_é some curvature. The variation is slight,
however, and thus the average is calculated to best approximate the crystallization

reaction.
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Phase Relationships The low pressure 4-phase boundary defined by the melting
expe;iments is shown in projection schemes in Fig. 3. Experimentally produced olivine-
augite-plagioclase saturated glass compositions and the coexisting augite compositions
are projected into the Olivine (Oliv) - high-Ca Clinopxroxene (Cpx) - Plagioclase (Plag) -
Quartz (Qtz) pseudo-quaternary, using oxygen units and the mineral component scheme
of Grove et al. (1991), and further projected from Plag onto the Oliv-Cpx-Qtz pseudo-
ternary in Fig. 4a and from Qtz onto the Oliv-Cpx-Plag pseudo-ternary in Fig. 4b. The
lavas used as starting compositions are also plotted. The liquid line of descent for
ALVIN 2004-3-1 is shown in Fig. 4a as a solid curve. Olivine and plagioclase are on the
liquidus at approximately 1225 °C, thus 1-atm. crystallization involves the precipitation
of olivine + plagioclase, in proportions of roughly 30 % and 70% respectively, moving
the magma composition away from the Oliv apex in the Oliv - Cpx - Qtz pseudo-ternary,
towards the 4-phase boundary. Upon intersection with the 4-phase boundary, the
magma saturates with augite, and further crystallization involves olivine + plagioclase +
augite, moving the magma composition away from the plane defined by the Oliv apex,
the Plag apex and the compositions of the coexisting augites. Magmas evolving from all
the starting compositions chosen in this study move towards the Qtz apex of the Oliv -
Cpx - Qtz pseudo-ternary as they fractionally crystallize along the olivine-plagioclase-
augite-liquid boundary. Although the liquidus assemblages were not determined for the
other 4 starting compositions, the highest temperature experiments on each of these 4
compositions contain olivine + plagioclase. Thus, none of the 5 compositions have the
assemblage olivine + plagioclase + augite on their liquidus, although PROTEA-9-61-
002 crystallizes augite within < 20 wt.% crystallization (Table 3). This observation is
consistent with the phenocryst mineralogy for these nearly aphyric samples which

contain only small amounts of olivine and plagioclase.
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Petrogenetic Models ‘

‘ The chemical groups from the east and west rifts of the 11045 "N OSC (Table 2)
are projected onto portions of the Oliv - Cpx - Qtz and Oliv - Cpx - Plag pseudo-
ternaries in Fig. 4 (using the same projection scheme as described for Fig. 3), along with
the experimentally determined 1-atm. 4-phase and 3-phase (olivine + plagioclase +
liquid) boundaries. Primitive lava groups P7, P6 and P1 plot towards the Oliv-Cpx join in
Fig. 4a and generally follow an olivine - plagioclase crystallization control line, similar to
that observed for the higher temperature, olivine + plagioclase saturated experiments
on lava P7, ALVIN 2004-3-1 (see below for discussion of models). Primitive lavas P2,
P3, P4 and PS from the WOSC are lower in CaOn relative to the primitive lavas on the
EOSC (Fig. 5a), and do not appear to follow an olivine + plagioclase fractionation
control line (see below for discussion of models). Chemical group N (labelled n in Fig.
4a), which is dominantly sampled on the WOSC (Fig. 1), is the most evolved lava type
(Mg# = 59) that appears to have formed by olivine + plagioclase fractionation (see
Table 8) from the primitive lava type P3, also sampled on the WOSC. Many of the lava
groups sampled from both rifts of the OSC, however, contain elevated FeO and TiO2
contents, low AlpO3 and CaO contents, and are displaced towards the Qtz apex in Fig.
4a relative to the primitive (MgO > 8 wt.%) lavas. These characteristics (in particular
the diminishment of both AlpO3 and CaO with increasing extents of evolution) suggest
that fractionation of augite as well as olivine + plagioclase played a role in the creation
of the evolved lavas sampled at the OSC. With the exception of perhaps two lavas,
however, most of the OSC lavas do not coincide with the 1-atm., experimentally
determined 4-phase boundary, either in the projection schemes shown in Fig. 4 or in
most major element variation diagrams comparing the experimental data and natural
glasses. (In Fig. 5, neither the WOSC or the EOSC lava groups fall on the 1-atm.,
experimentally determined 4-phase boundary on the CaOn vs. MgOn variation diagram,

and only the WOSC lavas coincide with the 1-atm. 4-phase boundary on the FeOn vs.
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MgOn variation diagram) Furthermore, the majority of the OSC lavas do not contain
augit;: as a phenocryst phase. Therefore althqugh the majoy element chemistry indicates
a role for the crystallization of augite, the displacement of the lava compositions from
the 1-atm. olivine + augite + plagioclase + liquid boundary, and the lack of augite as a
phenocryst phase suggest that the lavas were not saturated with augite at near 1-atm.
conditions. Two alternative models for generating the diversity of the chemical groups
sampled at the OSC are evaluated in the following sections: 1) mixing of primitive
magmas with moderately evolved magmas fractionated in shallow magma chambers (™1
km below the ridge axis) along the near-1-atm. 4-phase boundary, and 2) fractionation of
olivine + augite + plagioclase from primitive magmas at greater pressures (~ 6 km

below the ridge axis).

1) Mixing of primitive magma with moderately evolved magma during magma chamber

replenishment at shallow levels within the spreading axis

In this model, magma is emplaced in a chamber at shallow levels where it evolves
by low-pressure fractional crystallization (along the experimentally determined 4-phase
boundary). After some time, fresh, parental magma is re-injected into the chamber
(O’Hara, 1977), mixed homogeneously with the fractionated magma, and then some
fraction of the mixed magma is erupted. The proposed model is similar to a cycle of the
open magma chamber model B proposed by Albarede (1985). Model B proceeds as
follows: 1) fresh magma is injected into a chamber that contains residual magma
created by fractional crystallization, and mixing occurs; 2) part of the mixed magma is
immediately erupted; 3) closed system fractional crystallization takes place within the
reservoir and the system returns to step 1. We will test whether any of the chemical
groups sampled at the OSC represent the mixed magma erupted during step 2.

The chemical groups from the 11945'N OSC are plotted in Fig. 5 on a CaOn vs.
MgOn and FeOn vs. MgOn. diagram, along with the experimentally produced, 1-atm.

olivine + plagioclase saturated liquids, and olivine + plagioclase + augite saturated
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liquids. The displacement of the evolved lava groups away from the 1-atm. 4-phase
bbunﬁary relative to the Cpx apex observed in Fig. 4 is also apparent in Fig. 5 on the
CaOn vs. MgOn diagram. The lava groups are generally characterized by lower CaOn,
and higher FeOn contents, relative to the experimental liquids on the 1-atm. 4-phase
boundary, at equivalent MgOn contents. The array of lava compositions on the CaOn
and FeOn vs. MgOn diagrams shown in Fig. 5 encourages the interpretation that, in fact,
the sampled lavas may be two component mixtures of the MgO-rich parental magmas
and magmas similar to the experimentally produced, olivine + augite + plagioclase
saturated liquids. _

The primitive chemical groups (P1-P7) from the OSC and the experimentally
produced liquids on the 4-phase boundary were the components available for mixing in
weighted, least squares, mass balance calculations used to test the mixing hypothesis for
generating the major element compositions of the OSC chemical groups (Table 7). In
general, the lavas sampled on the western rift of the 11945’N OSC (mixing lines for
evolved groups I, J, and primitive group P3 are shown on Fig. 5a) lie within the mixing
‘envelop’ defined by the moderately evolved experimentally produced olivine + augite +
plagioclase saturated liquids and the inferred parental magmas. The FeOn vs. MgOn
variation diagram in Fig. 5b shows that most of the lava groups of the WOSC coincide
with the array of liquids along the 1-atm. phase boundaries. This coincidence might be
interpreted as evidence of shallow level, closed system fractionation. However
fractionation and subsequent mixing are required to explain both the FeOn and the
CaOn vs. MgOn variations for the WOSC lavas. The mismatches in the models relative
to the lava groups (Table 7), particularly the poor fits for the KO contents, most likely
reflect the lack of a fully representative set of parental and experimental compositions
available for mixing. -

Groups K and H are found on both rifts of the OSC (Fig. 1); group K was

sampled in several locations on the EOSC, but in only one location on the WOSC, and
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group H was sampled near the northernmost t1p of the WOSC and at the southernmost
tip of the EOSC. The major element chemlstrles of both of these better modelled within
the elevated pressure fractionation framework discussed below for the EOSC.

The mixing scenario discussed above for the generation of much of the chemical
diversity of the WOSC lavas requires a magma chamber or complex of pipes at shallow
levels either at or relatively proximal to the WOSC, prior to and at the time of
emplacement of the lavas. Detrick et al. (1987) reported the presence of a continuous
seismic reflector from ~ 11°3Q’N that terminates abruptly at ~ 11°40°N, and is then
picked up for a very short distance at ~ 11°42'N, just underneath the sample site of the
P3 lava group (Dredge 64, Thompson et al., 1989). This seismic reflector is interpreted
as indicative of a shallow magma chamber situated roughly 1 km beneath the ridge axis.
For the simple model suggested by the major element mixing calculations, parental
magmas such as lava types P2, P3 and P4 are emplaced into this shallow magma
chamber (and perhaps erupted at the ridge axis at the same time) where they undergo
fractional crystallization, reaching the low-pressure, 4-phase boundary. The ’best fit’
experimental liquids in the mass balance calculations (Table 7) from parental-type
starting compositions (64-002=P3, ALV2004-3-1=P7) contain roughly 50 % liquid
(Table 4), suggesting for this simple model that re-injection of fresh parental magma is
intermittent, and only occurs after approximately 50 % crystallization of the prior batch.

With the exception of chemical group O on the EOSC, none of the major
element compositions of the chemical groups on the EOSC are adequately explained by
mixing of any of the parental lava types sampled with magmas similar to the evolved, 1-
atm. experimentally produced liquids. Group O is, in fact, an exceptional composition,
relative to the other lavas sampled on the EOSC (see, for example, TiO2n vs. MgOn,
Fig. 3, the EOSC lavas at ~2.00 wt.% TiOzn and 7.90 wt.% MgOn). The major element
composition of Group O, which was sampled at the southernmost tip of the eastern rift

of the 11945’N OSC (ALVIN dive 2002, Fig. 1), is well approximated as a mixture of lava
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type P7, the most primitive lava sampled at the OSC (ALVIN dive 2004, just north of
AL\&N dive 2002, Fig. 1), and the most evolv_ed experimental liquid (61-002-150, Table
5). The following model is suggested for its petrogenesis. A single batch of parental
magma was emplaced at shallow depths at the rift tip, and was then able to fractionate to
very high FeO and TiO», and low AlpO3 and CaO contents by crystallizing olivine +
augite + plagioclase contents in the relatively cool rift tip environment. As discussed
below, the thermal environment and magma supply conditions associated with the
rapidly southward migrating EOSC are expected to favor high degrees of fractionation
(as at the Galapagos, Christie and Sinton; 1981). This is in contrast with the processes
inferred across the OSC for the lavas on the WOSC, where the evolved components
present in the mixtures do not appear to reach such high levels of fractionation. Ata
later stage, another batch of parental magma, not necessarily of the same composition as
the first batch but similar in composition to lava type P7 was injected through the
chamber, mixed with the highly evolved liquid and then erupted. Interestingly, Group O
lavas were only sampled in three closely spaced locations, on the eastern portion of the
eastern rift tip. Furthermore, the most evolved lavas sampled on the EOSC (Groups A
and B, sampled in close proximity to Group O on ALVIN dives 2002 and 2004) do not
resemble the highly evolved, low-pressure, experimentally produced liquids that are
inferred to have been present for the formation of the Group O lavas. These
observations suggest that the low-pressure fractionation process that produced the
evolved component present in the Group O lavas was not a common one on the EOSC,
or at least that the evolved magmas that are the products of this process are not
commonly erupted at the EOSC.
2) Fractionation of olivine + augite + plagioclase at pressures > 1 atm

In this model, emplacement of paren;il magmas occurs at greater depths (~ 6
km = ~ 2 kbar pressure) in the spreading axis, relative to the shallow level (= 1 km)

fractionation, re-injection and mixing model inferred for the WOSC. The parental
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magmas then fractionate at pressures greater than 1-atm. Several reasons exist for
explc;ring this model for the lavas sampled at the EOSC. 1) Lava groups A, B, C, D, E,
F, and G are moderately to highly evolved in terms of their major elements (12.0 - 14.1
wt.% FeO, 1.98 - 2.65 wt.% TiO7). With decreasing MgO, the lavas show increasing
FeO and TiO», with decreasing CaO and AlpO3, with little change in SiO contents,
characteristics similar to those associated with magmas evolving along the
experimentally determined, 1-atm. 4-phase boundary. However, augite is not observed
as a phenocryst phase in the lavas sampled at the EOSC. Furthermore, as is apparent in
Fig. 5, the evolved major element signatures are linked with higher MgO contents,
relative to the experimentally determined 1-atm. 4-phase boundary. Two additional
groups, H and K, that are sampled on both rifts of the OSC, have similar characteristics.
Group K is more common on the EOSC, and thus might be expected to have been
formed by the petrologic processes that dominated on the eastern rift. Group H is
sampled only at the tips of both rifts, and its chemistry appears to be better explained by
elevated pressure fractionation than by the mixing scenario proposed for the WOSC
lavas. 2) The lava groups are displaced away from the 4-phase boundary in the Oliv-
Cpx-Qtz pseudo-ternary (towards the Oliv apex in Fig. 4a and towards the Oliv-Plag join
in Fig. 4b), a shift that is consistent with the effect of increased pressure on the position
of the 4-phase boundary in composition space (Presnall et al., 1979; Stolper, 1980; Grove
et al., 1990; Bartels et al., 1991). 3) Simple two-component mixing models similar to
those inferred for the WOSC lavas fail to reproduce the major element chemistry of
these EOSC lavas. The fact that the shallow level fractionation, re-injection and mixing
model fails for the EOSC lavas suggests that shallow level magma chambers are not
common on the EOSC. This interpretation is consistent with the observations of Detrick
et al. (1987) that there is a break in the shall;w level seismic reflector between 11°40'N
and 12°10'N on the EPR. 4) The evolved lavas on the EOSC coincide with the 4-phase
boundary at ~ 2 kbar predicted by the expressions of Kinzler and Grove (1991) which
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track the phase boundary position in composition and temperature space as a function
of prc;sure and melt composition. This line of evidence will be explored in detail in the
next section. | B

Grove and Juster (1989) and Kinzler and Grove (1991) devised a method that
predicts the influence of compositional variables and pressure on the compositions of
liquids saturated with olivine, plagioclase, augite and a low-Ca pyroxene. This 5-phase
boundary lies at the terminus of the 4-phase olivine + augite + plagioclase + liquid
boundary. The key compositional parameters that control the position of the 5-phase
boundary in composition space are: Mg#, A# ([NapO+K20]/[NapO+K20+CaO]) and
TiO7 content. Longhi and Pan (1988) have shown the systematic effects of variation.s in
Mg# on the positions of saturation boundaries in projection schemes; Grove et al.
(1991) and Kinzler and Grove (1991) discuss the effects of variations in A# in light of
natural system experiments and the simple system (CaO-MgO-Al03-5i02-Naz0)
experiments of Biggar and Humphries (1981); and TiO7 was the other compositional
variable in MORB systems that Grove and Juster (1989) and Kinzler and Grove (1991)
found to be significant. Given some simplifying assumptions about the shape of the 4-
phase boundary that extends from the 5-phase boundary, we can use the predictive
method of Kinzler and Grove (1991) to estimate the position of the 4-phase olivine -
plagioclase - augite - liquid boundary in composition space as a function of pressure,
Mg#, A# and TiOp content of the magma.

We have used a subset of the experimentally produced liquids on the 4-phase
boundary presented in this study to test the ability of the expressions of Kinzler and
Grove (1991) to accurately locate the 4-phase boundary for the EPR lava compositions.
Fig. 6 shows 4 experimentally produced liquids saturated with olivine + augite +
plagioclase in the projection schemes described in Fig. 4. In the projection through Qtz
onto the Oliv-Cpx-Plag pseudo-ternary (Fig. 6b), a liquid composition saturated with

olivine + augite + plagioclase should project approximately on top of liquid
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compositions saturated with olivine + augite + plagioclase +_low-Ca pyroxene. The
proje/cted positions of the experimentally proglubed liquids on the 1-atm. 4-phase
boundary coincide with the projected positions of the liquid compositions predicted by
the Kinzler and Grove (1991) expressions to be on the 5-phase boundary at 1 atm.,,
which suggests that the expressions work very well for the EPR lavas. The boundaries
predicted at 2 and 4 kbar are shifted towards the Oliv-Plag join. In the projection
through Plag onto the Oliv-Cpx-Qtz pseudo-ternary (Fig. 6a) the experimentally
produced liquids define the 1-atm. 4-phase boundary that trends away from the
predicted liquids on the 5-phase boundary towards the Oliv-Cpx join. The combination
of the 1-atm. experimentally determined 4-phase boundary, which provides the general
slope, and the predicted 5-phase boundary, which fixes the location, allows us to infer the
positions of the olivine - augite - plagioclase - liquid boundary at 1 atm., and 2 and 4 kbar
for the compositions of the experimentally produced liquids.

Four of the evolved lava groups sampled on the EOSC (Groups A, B, C and E)
and two groups from both the EOSC and the WOSC (Groups H and K) are shown in the
Oliv-Cpx-Plag and Oliv-Cpx-Qtz pseudo-ternaries in Fig. 7 and 8, respectively, along
with the phase boundaries predicted for these compositions with the method of Kinzler
and Grove (1991) as described above at 1 atm., and 2 and 4 kbar. The Group B, Cand
E lavas project onto the predicted 2-kbar 4-phase boundary in both the Oliv-Cpx-Qtz
(Fig. 7a) and the Oliv-Cpx-Plag pseudo-ternaries (Fig. 7b). The Group A lavas
projected onto a predicted 4-phase boundary at slightly higher pressures (™ 3 kbar).
Groups H and K project onto the 4-predicted phase boundary at ~ 1 kbar.

Fractionation of olivine + plagioclase + augite at pressures of 1 - 3 kbar may have been
responsible for the evolved character of these lava groups. To test the higher pressure
fractionation hypothesis for the generation ol‘ fhese lavas further, models were
calculated relating several of the evolved chemical groups on the EOSC back to the

parental type lavas (Table 8, models 1- 7). These are 'reverse’ fractionation models,
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estlmated by adding back the phases that were inferred to have crystallized from their
parcntal magmas in thelr generation. Composmons of augltes (m terms of Wollastonite-
(Enstatite,Ferrosilite)) added in the 2-3 kbar models were similar to the estimates of
Grove et al. (1991) except that the calculations presented in Table 8 used slightly more
aluminous pyroxenes. We used the Kps and cotectic proportions for the assemblage
olivine + augite + plagioclase determined experimentally at 1-atm. (Tables 5 and 7).
The model parents estimated by 1- and 2-kbar ‘reverse fractionation’ from groups
S, H and K (models 1, 6 and 7,.respectively, Table 8) are good approximations to the
major element composition of lava P7, the most primitive, parental lava type. With_the
exception of NapO, KoO and P20s, the models estimated by 3- and 2-kbar ‘reverse
fractionation’ from Groups A, B, D, and E in Table 8 are also similar to the most
primitive parental lava type P7. The success of these reverse fractionation’ models in
returning the evolved lavas to the major element composition of the most primitive
parental lava type, particularly with respect to CaO, AlpO3, FeO, TiO2 and SiO3,
supports the hypothesis that fractionation of olivine + augite + plagioclase at pressures
equivalent to ~ 6 km generated the evolved compositions sampled on the EOSC. In
models 3 - 5, the NapO and K5O contents are lower in the model parent, relative to the
primitive P7 lava. Given that the K7O contents of both the parental lava P7 (Mg# = 65)
and, for example, Group E lavas (Mg# = 52) are the same (0.10 wt.%), it comes as no
surprise that in detail, P7 could not have been parental to Group E lavas by fractional
crystallization. The major element compositions of these evolved lavas at the EOSC
require a parental magma type with lower K2O and NajO, relative to the parenta] lavas
identified at the EOSC. Hekinian and Fouquet (1985) report a composition for a
parental type lava sampled to the north of the EOSC at approximately 12950°N that is
similar to lava P7, but has lower KO and Nz?zO (0.05 and 2.38 wt.%, respectively; Table
3, sample CL-H-6). We suggest that a magma type similar to that sampled further north

on the EPR must be playing a role in the magmatism at the EOSC, and that we just have
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not sampled it. Forward fractionation models 8 and 9 demonstrate that the
coml;ositions of lava groups C and G are well explained as the more fractionated
products of the same ~ 2-kbar fractionation process inferred for types E and S,
respectively.

Primitive Lavas primitive lava types (P1-P7 and N, Table 2) have been identified,
4 on the WOSC (P2-P5), 3 (P1, P6 and P7) on the EOSC and 1, group N, which occurs
on both. Forward fractionation models 8 and 9 (Table 8) successfully relate lava types
P6 and N to lava types P7 and P3, respectively, by olivine and plagioclase fractionation.
Lava type P1 is similarly related to P7. These models indicate that much of the chemical
diversity observed in the more mafic lavas on both the WOSC and the EOSC is generally
well explained by the fractionation of olivine + plagioclase from a primitive (high-MgO)
lava such as P7. Of the parental lava types on the WOSC, P3 is well modelled as a
mixture of P7 and the experimentally produced, 1-atm. liquid ALV-2004-3-1-10. Lava
types P2, P4 and PS5 do not appear to be related to the other parental group lavas
through the simple mixing and fractionation models developed for the EOSC and
WOSC.

The petrologic models for the evolved lavas on the EOSC suggest that the
tectonic environment associated with the migrating rift tip favors staging of magma
batches at greater depths in the oceanic crust, relative to the WOSC and more central
portions of the tectonic segments to the south on the EPR. Christie and Sinton (1981)
identified 2 highly fractionated lavas (Mg# = ~53) at the 95.5°W propagating rift in the
Galapagos region (18B and 18C) that are offset from the inferred 1-atm. 4-phase
boundary towards the Oliv apex of the Oliv-Cpx-Qtz pseudo-ternary and contain rare
micro-phenocrysts of olivine and plagioclase. These two lavas are similar to the evolved
lavas at the EOSC in that they have major el&hent signatures suggestive of fractionation
along the 4-phase boundary. However they contain elevated FeO and TiO2 and low

AlO3 and CaO, given their MgO contents, relative to what would be anticipated for
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fractionation along the 1-atm. 4-phase boundary, and are saturated with only olivine and
plagioclase upon eruption. The predicted phase boundaries for the Galapagos lavas are
shown in Fig. 9 using the method of Kinzler and Grove (1991) and Grove et al. (1991)
described above for the EOSC lava groups. The Galapagos lavas (filled circles) are
closely similar to melts predicted to be on the 4-phase boundary (possibly also saturated
with low-Ca pyroxene) at pressures between 3 and 4 kbar. The propagating rift tip at
95.5°W may provide a tectonic environment similar to that of the migrating eastern rift
at the 11945°N OSC, that favors staging of magma batches near the base of the oceanic
crust, and/or in the upper-most oceanic mantle. In these tectonic environments magma
may be emplaced to the system before rifting is sufficiently developed to allow rapid
Ascension to shallow levels in the crust or extrusion on the sea floor.

The chemical diversity of the evolved lavas at the EOSC is well explained by
processes of fractional crystallization at slightly elevated pressures. The major element
chemistries of the evolved lavas indicate that they are the products of ~45- =55 %
crystal fractionation (Table 8) at pressures of ~2 kbar (= ~ 6 km depth) from parental
lavas similar to those sampled at the EOSC and further north on the EPR. The
pressures and extents of fractionation inferred from the models suggest that isolated
magma batches are emplaced at or near the base of the oceanic crust beneath the
EOSC, where they cool and fractionate to relatively high extents, before being erupted.
This process is consistent with the suggestion of Christie and Sinton (1981) and Sinton et
al. (1983) that propagating rift tips are characterized by isolated magma chambers, not
interconnected or continuous magma chambers, and of Macdonald et al. (1988) that rifts
near migrating offsets suffer from diminished magma supply, or ‘magma starvation’.

Evolved lavas with major element signatures of ~ 2-kbar crystal fractionation of
olivine + plagioclase + augite are sampled z;ﬁalong the EOSC between 11°40°'N and
11957N (Fig. 1, chemical groups A, B, C, D, E, F, G, and S). As mentioned above,

Detrick et al. (1987) identified a break in the shallow level seismic reflector along the
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EPR that roughly coincides with the portion over which these evolved magmas were
sampled. Detrick et al. (1987) did, however, observe two discontinuous seismic
reflectors at greater depths (~ 1km deeper) at 11°45°N and 11°55’N on the EOSC.
These deeper seismic reflectors are consistent with the petrologic evidence that magma
chamber processes are occurring deeper in the oceanic crust beneath the EOSC, relative
to the WOSC and the rise axis to the north.

Chemical groups E and F (identical in chemistry, group E is slightly older than
group F) were sampled along a ~ 26 km segment of the EOSC (between ~ 11943'N and
~11957N). The lack of a continuous seismic reflector and a well defined axial graben
along this same portion of the EPR, as well as the occurrence of a wide diversity of lavas
erupted in the neo-volcanic zone, argue against a continuous magma chamber at 6 km
depth from ~11°45'N and ~ 11957N (Detrick et al., 1987; Macdonald et al., 1988).
The preferred interpretation is that parental magma was injected beneath the EOSC at
~11957’N and staged at ~ 6 km depth. Approximately 40 - 50 % fractionation occurred
to produce the E magma, which was then emplaced vertically and laterally along the
EOSC, forming lava lakes and flooding the bottoms of larger preexisting fissures to the
south. The group C lavas, sampled at the southern tip of the EOSC (ALVIN dives 2002
and 2004) and interpreted as having been formed by fractionation along the 4-phase
boundary at 2 kbar from the group E and F magma type (Table 8, model 8), were also
erupted at this time. The more evolved, 2-kbar signature of the group C lavas relative to
the E and F lavas suggests that the lateral injection of the group E magma occurred at
relatively deep levels. Group F lavas were then emplaced shortly thereafter as a second

pulse of the same magma type that erupted to form group E and Clavas.



177

TECTONIC VARIABLES GOVERNING THE OSC AT 11945°N ON THE EPR

This final section explores the relationship between the tectonic variables
associated with migrating ridge-offset intersections (Sinton et al., 1983) and the
magnitude and distribution of the associated geochemical signature for the migrating
OSC at 11°45°N. These tectonic variables are local spreading rates; proximity to "hot
spots’; propagation rate (if any); migration rate of the intersection, relative to the
underlying mantle; and the length of the transform truncating the ridge segment. Table
9 provides a compilation of these variables for the 11945’ N OSC, as well as for three
other OSCs on the EPR at 9°N, 12937'N and 12°54'N, and two propagating rift tips
from the Galapagos area and two from the Juan de Fuca (data sources are in notes for
Table 9) For the purposes of this comparison, the geochemical anomaly associated with
a given ridge offset is considered in terms of the FeO*/MgO (FeO* implies total Fe as
Fe2+) ratio. 'Normal MORB?’ are considered to have FeO*/MgO ratios < 1.75, thus
any lavas sampled with FeO*/MgO ratios > 1.75 are considered to be anomalously
fractionated (Sinton et al., 1983). FeO*/MgO is chosen as the geochemical anomaly
indicator because it reflects the degree of fractionation achieved by erupted lavas, which
in turn will be a function of the thermal and magmatic budgets associated with the rifts.
The actual value of the anomalous FeO*/MgO associated with a particular offset feature
(from 1.9 to 5 in Table 9) is likely to be affected by petrologic considerations including
the parent magma composition, the oxygen fugacity of the fractionally crystallizing
magma bodies (Sinton et al., 1983), and the petrologic processes causing the
fractionation.

An important effect of the elevated pressure fractionation processs that appears
to have generated the compositional diversig' rin the lavas sampled along the EOSC at
the 11°45°N OSC is that it lowers the magnitude of the FeO*/MgO ratio associated with

the evolved lavas, relative to that which would result from near-1-atm. fractionation.
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The maximum FeO*/MgO value observed at the EOSC is 2.25, for lava group A (Table
2), vs;hich is inferred to have evolved by crysta}liiation along the 4-phase boundary at
approximately 3 kbar. This lava group contains 14.1 wt.% FeO, and 6.26 wt.% MgO.
Experimentally produced melts on the 1-atm. 4-phase boundary with similar FeO
contents contain less MgO (see, for example, the glass composition in experiment 64-
002-140; at 14.0 wt.% FeO this glass contains only 5.43 wt.% MgO, and thus has an
FeO*/MgO ratio of 2.58). The lower MgO contents in magmas that evolve at 1 atm.
result because parental magmas that evolve near 1-atm. crystallize more olivine, and
olivine + plagioclase before reaching the 4-phase boundary, as compared to parental
magmas evolving by crystallization at higher pressures. FeO is enriched more as
magmas evolve along the 4-phase boundary, relative to the olivine-liquid and olivine-
plagioclase-liquid boundaries.
Observed FeO*/MgO anomaly

The FeO*/MgO ratio for glasses is plotted vs. latitude in Fig. 10 for the tectonic
segments to the north and south of the 11°45’N OSC on the EPR. The maximum
FeO*/MgO values ( ~2.3) are observed in lavas sampled along ALVIN dive 2002 (Fig.
1) at the very tip of the eastern rift of the OSC. The most primitive lavas associated with
the 11945’N OSC (lowest FeO*/MgO) are erupted approximately 8 km behind the tip of
the eastern rift. The FeO*/MgO ratio remains elevated above that of 'normal’ MORB
throughout the portion of the EOSC sampled (~ 28 km). Data directly to the north of
129 on the EPR are sparse, and thus it is difficult to evaluate where the FeO*/MgO ratio
drops to a ‘normal’ MORB level of 1.75. Lavas at 1296’N on the EPR range up to 1.9 in
FeO*/MgO (Langmuir et al., 1986), however, this range has been interpreted by
Langmuir et al. (1986) as being caused by a small deval. Thus the FeO*/MgO
geochemical anomaly associated with the OSCat 11945'N is inferred to have a

distribution along the rift to the north of the OSC of > 30 but < 50 km.
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Lavas sampled from the western rift show a more limited overall range of
FeO;‘/MgO variation (maximum value ~1.%, Fxg 4), although the ratio still varies
considerably at a given latitude. The more limited range in FeO*/MgO is consistent with
the mixing scenario proposed z;bove for generating the WOSC lavas. Fractionation of
magma batches in the shallow level magma chambers inferred to be present on the
WOSC is dampened by the repeated influx of fresh, unfractionated parental magma.

Nearby OSCs at 12°37'N and 12954'N (Fig. 3) show less range in FeO*/MgO
relative to those on the east rift of the 11945°'N OSC (Langmuir et al., 1986; show ranges
in the FeO*/MgO ratio for the portions of the northern segment from 11°45Nto
12927°N and 12°37°N to 13°30°N of 1.38-1.79 and 1.09-1.86, respectively).

Comparison

Macdonald et al (1988) point out important distinctions between first-order
segmentation of the mid-ocean ridge by major transform faults and propagating rifts,
whose offsets are large enough that the lithosphere along the plate boundary behaves
rigidly (0.5-1.0 M.y. old), second-order segmentation by large-offset (>3-5 km) OSCs
and small-offset, non-rigid transform fauits, and third-order segmentation by smaller
offset (<3 km) OSCs. It is important to bear in mind that in Table 9 we are comparing
first- (the propagating rift systems from the Galapagos Spreading Center and the Juan
de Fuca), second- (the OSCs at 11°45°N and 9°N on the EPR) and third- order (the
OSCs at 12°37°N and 12°54’N on the EPR) discontinuities. Note that the magnitude
and distribution of the geochemical anomaly along the ridge segment to the north (in
terms of FeO*/MgO) associated with the second-order discontinuity at 11°45’N (2.3, 30 -
50 km) is of the order observed at several of the first-order propagating rift tip
discontinuities considered. Furthermore, the geochemical anomaly associated with the
OSC at 11945'N is more significant than tha;_bbsewed at the similarly sized OSC at 9°N
(1.9, <20 km). In contrast, geochemical anomalies (in terms of elevated FeO*/MgO)

are very small, if present at all at the third-order discontinuities at 12°37°N and 12°54'N.
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~ All of the OSCs considered in Table 9 are on intermediate to fast spreading

ridge;s (5-6 cm/yr, half spreading rate), in contrast to the propagating rifts which are on
intermediate spreading ridges (~ 3 cm/yr, half spreading rate). The geochemical
signatures associated with both propagating rift tips and OSCs on ridges with similar
spreading rates vary widely, thus spreading rate variations of the scale covered by the
features in Table 9 are not particularly diagnostic. The propagating ridge tip at 93°W in
the Galapagos area is the only ridge offset feature considered in Table 9 that appears to
be fed by a ’hot spot’. The fact that no anomalous FeO*/MgO ratios are observed in .
lavas from this area suggests that even though the rift is currently propagating, the
diminished magma supply effects associate with propagating rifts (’starvation’) are
swamped by the flooding of the rift tip with an over-supply of the "hot spot’ derived
magmas (Sinton et al., 1983). Thus, no observed geochemical anomaly is associated with
the propagating rift at 93°W.

The length of the transform is anticipated to be directly related to the magnitude
of the thermal edge effects it imposes on the truncated rifts (Langmuir et al., 1986).
Thus the transform length might be diagnostic of the geochemical anomalies associated
with the tectonic offset features considered in Table 9. In fact, propagating rifts and
OSCs (95°W and Cobb; 9°N and 11°945°N, respectively) with similar truncating
transform lengths (and half spreading rates) show very different distributions of lavas
with anomalous FeO*/MgO. Whether or not the ridge offset features in Table 9 are
currently propagating, or have propagating rifts on one side of the OSC also does not
appear to be diagnostic of the magnitude or distribution of geochemical anomaly
associated with the offset.

The most significant variable shown in Table 9 is the migration rate of the
particular offset feature relative to the unde;iﬁng mantle. Lavas sampled from
propagating rift and OSC offsets with more rapid migration rates relative to the

underlying mantle show anomalous FeO*/MgO over greater lengths behind the rift tips.
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A rapid migration rate may imply that the rift(s) at the migrating offset feature is "out-
rﬁnr{ing’ its supply of magma from the mantle, and is thus suffering ’starvation’
(Macdonald et al., 1988). A shortage of incoming primitive (less fractionated, lower
FeO*/MgO) magma related to the rapid migration of the offset away from the mantle-
derived magma supply zone results in a greater extent of fractionation of the magma at
the migrating rifts, as well as lesser amounts of mixing between fractionated magmas and
fresh inputs of primitive magma. The 11945’N OSC is migrating roughly twice as fast as
the most rapidly migrating propagating rift tips, which probably explains the similar
order of associated geochemical anomaly between these first and second order ridge
segmentation features. Similarly, the three-fold increase in migration rate associated
with the 11945’N OSC over that associated with the similar sized 9°N OSC is most likely
responsible for the more substantial anomaly associated with the 11°45’N OSC. The
results of this comparison between the tectonic variables associated with ridge offsets
and the occurrence of geochemical anomalies are consistent with the suggestion of
Sinton et al. (1983) and Macdonald et al. (1988) that migration rates of rifts relative to
their magma sources are the key factors controlling the formation and distribution of

geochemical anomalies such as elevated FeO*/MgO.
SUMMARY AND FURTHER STUDY

This study combines detailed geochemical sampling with geological observations
and experimentally determined phase equilibria to examine in detail the petrologic
processes that operated to produce the observed geochemical diversity at the large
offset, rapidly migrating OSC at 11945°N on the EPR. The major observations of this
study are: 1) The geochemical signatures in_ "t‘he lavas erupted on both the eastern and
western rifts of the OSC require the operation of crystallization by magmas along the

olivine - augite - plagioclase - liquid boundary, however, few, if any of the lavas erupted
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at the OSC contain augite as a phenocryst phase. 2) Lavas on the eastern rift of the
OSC show a greater diversity in major element éompos?tion'relative to those on the
western rift. 3) The major element chemistry of the lavas sampled from the currently
volcanically and tectonically quiet western rift is well explained by simple mixing between
moderately evolved magmas saturated with olivine + augite + plagioclase near 1-atm.
and parental magma. The resulting mixed magma is no longer saturated with augite at
1-atm., however the magma composition retains the signature of the fractionation of
augite contributed by the evolved component in the mixture. The identification of a
shallow level seismic reflector under the southern portion of the western rift of the OSC
(Detrick et al., 1987) indicates the presence of a shallow level magma chamber in which
the magma injection, fractionation, re-injection and mixing process inferred for the
western rift lavas took place. 4) The major element compositions of lavas sampled from
the eastern rift is well explained by fractionation from parental magmas similar to the
primitive lavas sampled at the eastern rift and further to the north on the EPR, at
pressures equivalent to ~ 6 km depth in the oceanic crust. The diversity of chemical
compositions erupted during the recent history of the eastern rift and the lack of a
continuous seismic reflector along this portion of the EPR preclude the existence of a
continuous magma chamber beneath the eastern rift of the EOSC, however, the
occurrence of lavas of identical major element chemistry and similar age along
approximately 25 km of ridge requires extensive lateral injection from the magma
source, possible at pressures equivalent to the base of the oceanic crust. 5) No
anomalous FeO*/MgO lavas were observed on the western rift of the OSC, which is
consistent with the mixing scenario proposed for the generation of the compositional
diversity of the WOSC lavas. Anomalously high FeO*/MgO (~2.3) values were
observed for the lavas on the eastern rift over a relatively great length of ridge axis (30 -
50 km). These characteristics are comparable to those observed at first order tectonic

discontinuities such as the 95.5°W and Blanco propagating rift tips, and more substantial
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than the geochemical anomalies observed at nearby OSGCs, and are attributed at least in
part to the very rapid mlgratlon rate of the 11045 'N, relative to the underlying mantle
(Perram and Macdonald, 1990). The rapid migration rate relative to the underlying
mantle and magma source(s) results in the staging of isolated magma batches at
pressures equivalent to the base of the oceanic crust where they are able to evolve to
fractionated compositions.

Two further studies are required to test the inferences made in this study based
solely on the geological observations and major element compositions of the glasses
sampled. These include: 1) Electron microprobe study of the phenocryst assemblages
present in a representative set of the lavas, particularly to examine the phenocryst
evidence to test the mixing hypothesis for several of the western rift lava groups, as well
to test the ~ 2-kbar fractionation hypothesis for many of the eastern rift lava groups. 2)
The trace element data for the lavas (which is coming soon!) needs to be integrated into
the present work, both to test the integrity of the lava groups identified on the basis of
field observation and major element chemistry and to further test the mixing and

fractionation models.
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Bathymetry and sample locations for the 11945’'N OSC on the EPR (inset,
from Perram and Macdonald, 1990, provides general location), with tracks
(arrows) of ALVIN dives 1997 - 2004, and locations of dredges 17 - 20 from
the 1988 Atlantis II - leg 119 cruise. Dredge locations (labelled dr-) for
samples from Thompson et al. (1989) are also shown. Capitol letters signify
chemical groups (Tables 1 and 2) sampled at each dive or dredge location.
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Major element variation diagrams vs. MgO for the glasses sampled on the
eastern and western rifts of the 11945'N OSC (EOSC=open squares and
WOSC=closed squares). Data are from Table 1 and Thompson et al.
(1989). Correction factors (see Table 3) were applied to the data of
Thompson et al. (1989) and all analyses were normalized to 100% (indicated
by subscript n).
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(A) Starting compositions (triangles), and experimentally produced olivine
+ plagioclase, and olivine + plagioclase + augite saturated liquids (pluses)
and augites (squares) projected into the pseudo-quaternary Oliv - Cpx - Plag
- Qtz using oxygen normalized mineral components (projection scheme of
Grove et al., 1991) and further projected through Plag onto the Oliv - Cpx -
Qtz pseudo-ternary. The two pluses that project into the olivine primary
phase volume are liquids saturated with olivine and plagioclase (from
experiments on ALVIN 2004-3-1), the remaining pluses define the 4-phase
boundary (from experiments on all five starting compositions provided in
Table 3). The solid curve shows the 1-atm. liquid line of descent for the most
MgO-rich lava santpled (ALVIN 2004-3-1). The pluses on the 4-phase
boundary at lower normative Qtz in the projection are olivine - plagioclase -
augite saturated experiments on the other lavas. The projected position of
the MORB glass ALVIN 2004-3-1 (the triangle that plots closest to the Oliv
apex) is shifted away from the experimentally determined liquid line of
descent for ALVIN 2004-3-1 (solid line) in the Oliv - Cpx - Qtz pseudo-
ternary because of a slight amount of sodium loss in the higher-temperature
melting experiments. The experimentally produced augite compositions
closest to the Cpx apex are from the highest temperature experiments, as
temperature decreases, the augite compositions move away from the Cpx
apex towards the Oliv - Qtz join. The thermal divide on the 4-phase
boundary is very close to the Oliv - Plag - Cpx join, and the ’down-
temperature’ direction along the experimentally determined 4-phase
boundary for the EPR lavas is always towards Qtz.
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(B) Asin (A) however projected through Qtz onto the pseudo-ternary Oliv -
Cpx - Plag. The 4-phase boundary olivine + plagioclase + augite + liquid
collapses to a cluster to constrain the temperature minimum or point’ in the
Oliv - Cpx - Plag pseudo-ternary. The olivine + plagioclase + liquid
boundary is constrained as well by experiment, the olivine + augite + liquid
and the plagioclase + augite + liquid boundaries are inferred. Two of the
starting compositions fall on the 1-atm. olivine + plagioclase + liquid 3-
phase boundary, one is near the 1-atm. 4-phase boundary and the other two
are shifted slightly towards the Plag apex.
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Fig. 2-4
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(A) Comparison of the OSC lava groups (open squares) to the 1-atm.
experimentally determined phase boundaries (experimental liquids shown as
pluses) in an expanded portion of the same projection described in Fig. 3a
caption. Note the displacement towards the Oliv apex of most of the OSC
lava groups from the solid line fit by eye to the 3-phase saturated
experimental liquids in the Oliv - Cpx - Qtz pseudo-ternary. The two pluses
in the Oliv phase volume are the olivine + plagioclase saturated experiments
on ALVIN 2004-3-1.
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Fig. 2-4
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(B) Asin (A) however in an expanded portion of the same projection
described in Fig. 3b caption. The parental type lavas on the EOSC fall along
the olivine + plagioclase + liquid boundary in the Oliv - Cpx - Plag pseudo-
ternary, however several of the EOSC lava groups are shifted away from the
1-atm. boundaries toward the Oliv apex.
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Fig. 2-5
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(A) Normalized wt.% CaO vs. wt.% MgO (CaOn vs. MgOn) for lava types
sampled at the EOSC (open squares) and WOSC (filled squares, 3 lava types
that occur on both rifts are shown.as open circles). The pluses are 1-atm.
experimentally produced liquids saturated with olivine + plagioclase (wt.%
MgO>17.5), and olivine + plagioclase + augite. The lines show 3 shallow
level mixing models (Table 7) between parental lava types and liquids along
the 1-atm. experimentally determined 4-phase boundary for lava types P3, I
and J on the WOSC. Lava type L contains 2 lavas (Table 1 and 2) on the
WOSC that are "E’ type MORB similar to MORB:s recognized from this
portion of the EPR by Thompson et al. (1989), with elevated K2O and
NajO. -
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Fig. 2-5
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(B) Normalized wt.% FeO vs. wt.% MgO (FeOn vs. MgOn) for lava types
sampled at the EOSC (open squares) and WOSC (filled squares, 3 lava types
that occur on both rifts are shown.as open circles). The pluses are 1-atm.
experimentally produced liquids saturated with olivine + plagioclase (wt.%
MgO > 7.5), and olivine + plagioclase + augite. The WOSC lava types
coincide with the experimentally determined 1-atm. liquids on the olivine +
plagioclase and olivine + plagioclase + augite boundaries (with the
exception of the enriched L lava type which has lower FeOn than all other
lavas and experiments). The arrow drawn through the EOSC lavas indicates
an inferred fractionation trend along the same boundaries determined
experimentally at T-atm. but at ~ 2 kbar pressure ( ~ 6 km depth).



wt. % FeOn

18

16

14

12

10

wt. % MgOn

+ expt
+ O both
+ ® WOSC
| O EOSC
1-atm. 4-phase + i
. boundary a i
+ +
+ 1+t 0
deeper
+ fractionation
L + -
- L B mixing B
N
| B + 0
1 i L i 1 A 1 i 1
5 6 7 8 9 10

01<



Fig. 2-6
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(A) Application of the method of estimating the effect of pressure and
composition on the positions of phase boundaries described in Chapter I to 4
of the experimentally produced olivine + plagiaclase + augite saturated
liquids (4-phase boundary) to infer the effect of increased pressure on the
phase boundaries shown in an expanded portion of the projection described
in the caption for Fig. 3a. Solid symbols indicate the 1-atm. experimental
liquid compositions, open symbols of the same shape indicate the predicted
positions for these liquid compositions of the olivine + plagioclase + augite
+ low-Ca pyroxene + liquid (5-phase) boundaries at 0.001, 2 and 4 kbar.
Solid lines connect the 1-atm. olivine + plagioclase + augite saturated liquids
with the 1-atm., predicted 5-phase boundaries for each composition. The 1-
atm. experiments provide the slope of the 4-phase boundary, and the 5-phase
boundary marks the terminus. We have inferred the position of the 4-phase
boundary at 2 and 4 kbar by assuming the slope remains the same as that
determined experimentally at 1-atm. and fixing the position with the
predicted 5-phase boundary.
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Fig. 2-6
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(B) The same estimated boundaries described in the caption for Fig. 6a are
shown in an expanded portion of the projection described in the caption for
Fig.3b. The close correspondence between the experimentally produced
liquids on the 4-phase boundary at 1-atm. and the predicted positions of the
1-atm. 5-phase boundaries for each of the experimental liquid compositions
occurs because the 4-phase boundary essentially collapses onto the 5-phase
boundary in this projection. Thus, the predicted 5-phase boundary can be
used to track the position of the 4-phase boundary in this projection. The
topology of the 3-phase boundaries (dashed lines) are inferred. The
predicted positions of the 4- and 5- phase boundaries track along the olivine
+ plagioclase + liquid boundary with increasing pressure, moving towards
the Oliv - Plag join.
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Fig. 2-7
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(A) Application of the method of estimating the effect of pressure and
composition on the positions of phase boundaries described in Chapter I to
estimate the phase boundaries for 4 of the lava groups from the EOSC (A, B,
C and E, Table 2) shown in an expanded portion of the projection described
in the caption for Fig. 3a. The solid symbols indicate the lava group
compositions (labelled in each projection), open, like symbols indicate the
predicted positions of the 5-phase boundary for each of these compositions
at 0.001, 2 and 4 kbar. Solid curves in the Oliv - Cpx - Qtz projection (a)
show the inferred 0.001, 2 kbar and 4 kbar 4-phase boundaries.
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Fig.2-7 (B) Asin (A), however the estimated boundaries are shown in an expanded
: portion of the same projection described in the caption for Fig. 3b. The

projected positions of the 4-phase-boundaries are assumed to be the same as
the projected positions of the predicted 5-phase boundary. The topology of
the 3-phase boundaries (solid curves with arrows) are inferred. The close
correspondence between lava groups B, C and E and the predicted 2-kbar, 4-
phase boundary in both the Oliv - Cpx - Qtz projection (A) and the Oliv -
Cpx - Plag projection (B) suggests that these compositions are olivine +
plagioclase + augite saturated at ~ 2 kbar. Lava group A is shifted to slightly
higher pressures ( ~ 3 kbar) in both projections.
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Fig. 2-8
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(A) Same construction as in Fig. 7a for 2 lava groups that contain lavas from
both the EOSC and the WOSC (H and K, Table 2) shown in an expanded
portion of the projection described in the caption for Fig. 3a. The solid
symbols indicate the lava group compositions (labelled in each projection),
open, like symbols indicate the predicted positions of the 5-phase boundary
for lava groups H and K at 0.001, 2 and 4 kbar. These lava groups are
inferred to be crystallizing on the 4-phase boundary at ~ 1 kbar.
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Fig. 2-8  (B) Same construction as in Fig. 7b for 2 lava groups that contain lavas from
- both the EOSC and the WOSC (H and K, Table 2) shown in an expanded
portion of the projection described in the caption for Fig. 3b. Symbols as
described in the caption for Fig. 8a.
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Flg 29 (A) Same construction as in Fig. 7a for 2 lava compositions (K18B and K18C,
Christie and Sinton, 1986) from the 95.5°W propagating rift at the Galapagos
shown in an expanded portion of the projection described in Fig. 3a. The
lavas are shown as filled circles, the predicted 5-phase boundaries for these
two lavas at 0.001, 2 and 4 kbar are shown as open squares. These inferred
phase boundaries suggest that the Galapagos lava compositions are saturated
with olivine + plagioclase + augite (+ low-Ca pyroxene?) at ~ 3 - 4 kbar.
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Fig. 2-9
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(B) Same construction as in Fig. 7b for 2 lava compositions (K18B and
K18C, Christie and Sinton, 1986) from the 95.5°W propagating rift at the
Galapagos shown in an expanded portion of the. projection described in Fig.
3b. Symbols as described in the caption for Fig. 9a.
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F1g 2-10 (A) Normalized FeO/MgO (FeOn/MgOn) of lavas from the EPR up to and
including the western rift of the 11945’N OSC between ~ 11.2°N and 12°N.
Data are from Table 1, Thompson et al. (1989) and the Smithsonian
Institution Volcanic Glass File (data from both Thompson et al., 1989, and
the Smithsonian Institution Volcanic Glass File were corrected with the
factors provided in Table 3, and all analyses were normalized to 100%).
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Fig. 2-10 (B) Normalized FeO/MgO (FeOn/MgOn) of lavas from the eastern rift of
the 11945’N OSC and the EPR to the north, from ~11.75°N - ~13°N.
Locations of the 12°37'N and the 12°54’N OSCs are also shown.
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Table 2-1 Electron microprobe analyses of glasses from the eastern and western rifts of the 11°45°’N OsC

Alvin # SiOy TiOp AbO3 FeO? MgO. MmO CaO KyO NayO P,Os Total Tag?
203 8O- a0 Ky 20 P205 g

1997 11 501(1)C 2.02(7) 142(1) 11.0(1) 6.83(8) 020(3) 10.9(2) 0.23(2) 3.25(13) 0.15(3) 98.83
1997 3-1 500(2) 193(4) 14.4(1) 105(2) 6.99(9) 0.17(4) 109(1) 0.22(2) 3.09(4) 0.14(4) 9831
1997 41 501(1) 1.88(5) 145(1) 102(1) 7.24(10) 0.19(5) 11.0(1) 0.22(2) 3.05(5) 0.14(2) 98.81
1997 5-1 501(2) 1.91(5) 145(2) 103(1) 7.24(10) 0.17(5) 11.0(1) 0.23(2) 3.09(9) 0.13(2) 98.65
1997 6-1 49.4(1) 1.46(4) 16.0(1) 8.68(11) 829(8) 0.14(5) 11.6(1) 0.21(2) 2.98(12) 0.09(3) 98.92
1997 7-1 50.0(1) 1.97(4) 14.1(1) 10.8(1) 690(3) 0.20(4) 10.8(2) 021(1) 3.20(2) 0.14(4) 9835
1997 72 500(2) 1.993) 14.1(1) 10.8(1) 6.90(6) 0.22(4) 10.9(1) 021(1) 3.088) 0.15(5) 98.26
1997 9-1 49.9(1) 1.99(5) 142(1) 10.6(1) 697(5) 0.20(6) 10.9(1) 0.22(1) 3.16(10) 0.14(4) 98.28
1998 2-1 49.0(2) 2.09(6) 159(1) 9.33(10) 699(5) 0.14(4) 103(1) 0.71(3) 3.47(10) 0.26(4) 98.13
1998 4-1 49.4(1) 2.34(4) 150(1) 101(1) 639(8) 0.16(4) 103(1) 0.74(2) 3.56(11) 0.30(3) 98.23
1998 6-1 50.1(2) 1.57(8) 14.7(1) _9.56(10) 7.73(9) 0.18(2) 11.7(1) 0.14(2) 3.04(9) 0.08(5) 97.82
1998 7-1 49.9(2) 147(9) 151(1) 9.28(27) 8.03(11) 0.20(3) 11.6(2) 0.15(2) 2.93(9) 0.08(3) 98.79
1998 91 50.1(2) 1.29(4) 152(2) 8.66(8) 829(6) 0.15(3) 12.1(1) 0.19(2) 2.61(9) 0.06(3) 98.66
1998 10-149.9(2) 1.52(5) 15.0(1) 9.30(9) 7.96(8) 0.17(3) 11.6(1) 0.17(1) 291(13) 0.15(3) 98.73
1998 11-1 502(1) 1.59(3) 14.7(1) 9.54(13) 7.73(6) 0.13(6) 11.6(2) 0.18(2) 2.97(10) 0.14(4) 98.78
1999 2-1 50.1(1) 1.84(10) 13.6(2) 11.2(4) 7.23(16) 0.23(4) 11.1(3) 0.11(2) 261(8) 0.13(4) 98.24
1999 32 502(1) 203(4) 13.4(1) 11.9(1) 7.008) 023(2) 10.8(1) 0.12(2) 2.63(10) 0.14(4) 98.46
1999 61 501(1) 224(4) 132(1) 125(1) 657(6) 0.18(5) 10.4(1) 0.15(1) 2.78(10) 0.19(3) 98.25
1999 7-1 50.1(1) 222(7) 13.1(1) 125(2) 6.56(9) 0.18(8) 10.5(1) 0.15(1) 2.84(5) 0.15(4) 98.18
1999 8-1 502(1) 2.05(8) 13.4(1) 11.8(2) 698(9) 022(4) 10.8(1) 0.12(2) 2.67(7) 0.16(4) 98.19
2000 22 50.0(1) 2.05(7) 13.8(1) 111(1) 6.75(10) 0.17(5) 10.9(1) 0.27(2) 3.19(10) 0.16(4) 9835
2000 4-2 500(2) 1.93(4) 144(1) 105(2) 6999) 0.17(4) 109(1) 0.22(2) 3.09(6) 0.14(5) 9831
2000 5-1 504(1) 1.55(4) 14.0(1) 10.0(2) 7.50(10) 0.21(3) 11.7(1) 0.12(1) 2.92(7) 0.09(2) 98.47
2000 6-1 50.5(2) 1.54(5) 14.0(3) 102(1) 747(4) 017(3) 11.6(1) 0.12(2) 2.9509) 0.08(3) 98.63
2000 7-1 503(2) 1.71(3) 13.8(1) 10.7(1) 7.09(10) 0.18(5) 11.1(1) 0.14(1) 3.05(10) 0.08(3) 98.11
2000 8-1 503(2) 1.57(4) 141(1) 101(1) 7.44(5) 0.18(4) 11.5(1) 0.12(1) 2.93(10) 0.07(2) 98.29
2000 9-1 499(2) 1.57(3) 14.6(1) 9.45(10) 7.62(10) 0.16(7) 11.7(1) 0.18(1) 2.99(9) 0.10(3) 98.28
2000 10-1 49.9(1) 1.54(3) 14.7(1) 938(8) 7.80(8) 0.16(3) 11.8(1) 0.17(2) 3.01(7) 0.09(5) 98.50
2000 10-249.9(1) 1.55(5) 14.6(1) 939(14) 7.72(7) 0.17(5) 11.8(1) 0.16(1) 3.01(9) 0.07(3) 9833
2000 11-1 50.0(1) 1.50(2) 14.7(1) 9.33(15) 7.78(6) 0.14(2) 11.8(1) 0.16(1) 3.02(6) 0.07(4) 98.50
2001 1-1 49.8(2) 207(8) 133(1) 120(2) 696(11) 021(3) 10.7(1) 0.12(2) 2.94(10) 0.15(3) 97.66
2001 31 500(1) 2.02(3) 133(1) 122(1) 697(10) 0.23(2) 10.7(1) 0.12(1) 2.66(10) 0.13(4) 98.44
2001 32 499(2) 2.02(3) 13.4(1) 120(2) 7.00(8) 022(1) 10.8(1) 0.11(2) 2.66(10) 0.14(4) 98.10
2001 4-1 50.1(2) 2.00(5) 13.4(1) 12.0(2) 6.95(6) 024(3) 109(1) 0.11(1) 2.65(11) 0.07(3) 98.46
2001 51 50.1(1) 201(7) 134(1) 120(1) 6955 0.25(3) 10.8(1) 0.11(1) 2.72(16) 0.10(6) 98.47
2001 7-1 50.1(1) 1.99(5) 13.4(1) 120(2) 697(9) 0.23(2) 10.8(1) 0.10(1) 2.65(9) 0.10(3) 98.31
2001 72 500(2) 2.03(6) 13.4(1) 120(2) 690(4) 027(3) 10.9(1) 0.11(1) 2.70(2) 0.07(2) 98.44
2001 81 501(1) 198(5) 134(1) 120(1) 694(7) 027(4) 109(1) 0.11(1) 2.64(16) 0.09(3) 98.48
2001 thr 501(2) 1.75(6) 138(1) 112(2) 7.21(11) 023(3) 11.3(1) 0.10(1) 2.71(16) 0.06(5) 98.52
2002 1-1 493(1) 1.90(5) 149(1) 105(1) 7.76(9) 022(3) 10.8(1) 0.20(2) 2.72(8) 0.14(4) 98.36
2002 21 493(1) 190(3) 150(1) 104(2) 7.75(6) 0.22(4) 10.8(1) 0.20(1) 2.74(14) 0.13(4) 98.46
2002 31 492(2) 191(3) 150(1) 104(1) 7.749) 0.24(3) 108(1) 0.20(2) 2.75(14) 0.10(4) 98.45
2002 51 49.6(2) 263(7) 127(1) 13.9(1) 6.09(6) 026(4) 9.78(9) 0.17(1) 2.90(16) 0.15(2) 98.13
2002 6-1 50.0(1) 2.03(4) 13.4(1) 121(1) 6.93(7) -024(3) 10.8(1) 0.11(1) 2.56(14) 0.09(2) 98.23
2002 63 495(2) 263(4) 126(1) 139(1) 6.10(5) 028(3) 9.73(13)0.17(2) 2.83(8) 0.18(4) 97.99
2002 7-1 500(2) 203(5) 134(1) 122(1) 691(6) 0.23(3) 10.7(1) 0.11(2) 2.65(7) 0.10(3) 98.22
2002 81 49.7(1) 261(4) 13.02) 132(1) 647(5) 0.15(4) 10.2(2) 0.14(2) 2.85(14) 0.20(3) 98.50
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Alvin- #  SiOy

2002
2002
2002
2003
2003
2003
2003
2003

Dr-20 2
Dr-20 3
Dr-20 6
Dr-20 8
Dr-20 9
Dr-20 15
Dr-20 33
Dr-20 34
Dr-19 1
Dr-19 7
Dr-19 9
Dr-19 15
Dr-19 16

91 50.5(2)
10-1 49.9(1)
12-2 49.9(1)
21 501(2)
41 49.7(1)
51 50.2(2)
6-1 49.5(3)
81 503(1)
21 49.9(2)
31 49.1(2)
32 50.1(1)
41 49.8(2)
5-1 49.9(1)
6-1 50.0(1)
72 49.6(2)
8-1 49.8(2)
9.1 49.7(1)
92 49.9(1)
10-1 50.0(2)
11-1 50.0(2)
12-1 49.8(2)
12-2 49.9(2)
49.9(3)
49.8(1)
49.8(3)
49.9(2)
50.1(2)
50.02)
50.0(2)
49.8(1)
49.9(2)
50.02)
50.0(1)
49.9(3)
49.7(1)

TiO, AlLO3 FeO?

1.56(4)
2.08(7)
237(4)
1.82(7)
2.67(5)
2.08(3)
1.25(4)
2.06(4)
2.57(8)
1.19(2)
2.07(7)
2.61(4)
2.29(3)
2.03(4)
2.57(4)
1.99(4)
2.23(4)
2.00(5)
2.01(5)
1.98(4)
2.57(5)
2.04(1)
1.76(3)
1.75(4)
1.76(2)
1.93(6)
1.94(5)
1.77(3)
1.98(6)
1.79(5)
2.05(3)
2.05(4)
2.07(6)
2.07(7)

‘13.9(1)

13.701)
13.0(1)
13.7(1)
13.2(1)
13.4(1)
15.8(1)
13.5(1)
12.8(1)
163(1)
13.5(1)

10.8(1)
11.6(1)
13.1(1)
11.4(1)
132(2)
121(3)
9.00(8)
122(2)
14.0(2)
8.65(9)
123(1)

12.8(1) _14.0(1)

13.0(1)
13.5(1)
12.7(1)
13.5(1)
13.1(1)
13.4(1)
13.4(1)
13.4(1)
12.8(1)
13.4(4)
13.901)
13.8(1)
13.8(1)
13.5(1)
13.5(1)
13.9(1)
13.5(1)
13.8(6)
13.4(1)
13.4(1)
13.4(1)
133(1)

2.03(12) 13.4(2)

12.8(1)
12.1(1)
13.9(1)
121(2)
12.8(2)
11.9(2)
12.0(1)
12.0(1)
14.0(2)
12.0(1)
11.0(2)
11.0(1)
11.0(1)
11.7(2)
11.8(1)
11.1(1)
11.9(1)
11.0(1)
12.2(1)
12.2(1)
123(1)
12.1(1)
12.1(2)

MgO MnO

7.87(4) 0.10(4)
7.17(11) 0.13(7)
6.48(10) 0.15(5)
745(6) 0.12(5)
6.57(9) 0.16(6)
7027) 0.13(6)
8.77(6) 0.10(4)
6.92(8) 0.10(5)
6.20(8) 0.17(5)
9.13(5) 0.09(5)
710(7) 0.10(7)
6.20(7) 0.17(6)
6.53(6) 0.22(5)
6.87(7) 0.22(3)
6.02(10) 0.23(3)
6.96(5) 0.19(3)
6.53(8) 021(3)
6.95(10) 0.22(2)
6.94(2) 021(3)
6.90(6) 0.20(2)
6.04(4) 0.24(5)
6.92(8) 0.19(2)
7.46(10) 0.13(3)
743(7) 0.11(6)
7.44(10) 0.10(5)
7.12(12) 0.13(3)
716(7) 0.16(2)
7.53(10) 0.14(4)
713(9) 0.11(4)
745(7) 0.11(4)
6.75(5) 0.21(3)
6.75(11) 0.22(5)
6.75(7) 0.21(5)
6.76(6) 0.22(3)
6.92(9) 0.13(6)

Ca0 Ky0 NayO P,Os Total Tag?

11.5(1) "0.12(1) 2.24(16) 0.07(4)

11.0(1) 0.11(1) 3.02(13) 0.13(4)
10.4(1) 0.13(1) 2.95(9) 0.15(4)
113(1) 0.08(3) 2.76(10) 0.09(2)
9.83(17)0.20(2) 2.81(9) 0.21(2)
10.9(1) 0.10(3) 2.65(13) 0.11(3)
11.9(1) 0.11(2) 2.77(5) 0.02(1)
10.9(1) 0.10(2) 2.65(13) 0.10(5)
9.77(4) 0.18(2) 2.87(13) 0.21(5)
11.7(2) 0.10(1) 2.66(14) 0.04(2)
109(1) 0.11(1) 2.73(1) 0.11(5)
9.77(8) 0.18(2) 2.91(12) 0.16(3)
10.4(1) 0.09(1) 2.68(15) 0.17(4)
10.9(1) 0.08(1) 2.61(10) 0.09(1)
9.75(15)0.14(3) 2.84(17) 0.21(4)
10.9(1) 0.05(4) 2.64(20) 0.12(2)
105(2) 0.09(2) 2.68(12) 0.17()
109(1) 0.07(1) 2.65(15) 0.12(4)
109(1) 0.06(3) 2.61(7) 0.12(3)
109(1) 0.07(3) 2.60(11) 0.12(3)
9.88(9) 0.14(1) 2.80(13) 0.17(5)
10.8(1) 0.06(2) 2.59(9) 0.13(3)
11.4(1)
11.4(1)
113(1)
10.8(1)
10.8(2)
11.3(1)
10.9(1)
11.2(2)
10.7(1)
10.7(1)
10.7(1)
10.6(1)
10.7(2)

0.10(2) 2.66(11) 0.08(5)
0.09(1) 2.65(9) 0.08(3)
0.09(2) 2.86(11) 0.09(3)
0.09(2) 2.82(14) 0.11(4)
0.11(1) 2.78(15) 0.10(5)
0.09(3) 2.90(9) 0.10(3)
0.09(1) 2.76(11) 0.08(3)
0.06(2) 2.65(15) 0.13(4)
0.08(2) 2.68(9) 0.11(5)
0.07(1) 2.60(12) 0.12(2)
0.08(2) 2.56(12) 0.14(2)
011(2) 2.60(4) 0.14(3)

98.65
98.89
98.70
99.63
98.53
97.95
99.22
98.83
98.68
98.99
99.01
98.64
98.05
98.31
97.90
98.21
98.05
98.14
98.28
98.13
98.33
98.10

0.09(2) 2.71(9) 0.09((4) 98.44

98.13
98.01
98.12
98.48
98.73
98.61
98.08
98.05
98.19
98.22
97.73
97.83

HNEHEORQOROORRRO> MmO O>» 3> ROTC

3 total Fe as FeO
Tag refers to chemical group to which the glass belongs
€ each composition represents the average of 7 replicate analyses; parentheses represent 1 standard

deviation of the sample in terms of least units cited, thus 50.1(1) should be read as 50.1+/-0.1



Table 2-2 Chemical groups described by glasses from the 11°45°N 0sC reported in Table 1 and
Thompson et al. (1989), locations shown in Figure 1

Groupn?

10
1
3
2
18
15

N WD WO VN W

N<RXE<LO-HuEoZ3IITIIRoOZZErRe~TQmmoOwE»
o

— b e ek ek ek pd ek et ek ek b ped e

SiOgn

50.6(1)d
50.6(2)
50.8(2)
51.0(1)
50.9(1)
51.0(1)
50.9(1)
50.8(2)
50.7(1)
50.9(1)
50.9(2)
50.2(2)
51.3(1)
50.7(2)
50.2(1)
49.8(2)
50.7(1)
50.0(3)
50.0
50.8
499
49.7
489
50.5
511
50.9
51.3
51.1
51.1
50.4
50.7
50.8

TiOon AlhOzn FeOn

2.65(3)
2.41(8)
2.34(6)
2.28(1)
2.07(3)
2.06(3)
1.98(2)
2.08(2)
2.10(3)

131(1) 14.1(3)
133(1) 13.4(2)
133(1) 13.2(1)
13.4(1) 127(1)
13.7(1) 12.3(1)
13.7(1) 12.3(1)
137(1) 12.0(1)
13.9(1) 11.6(1)
143(1) 11.1Q1)
1.99(5) 145(2) 10.8(3)
1.81(4) 14.0(1) _11.3(2)

MgOn CaOn K;On NapOnP,Osn datasetting®

6.26(12)
6.55(10)
6.64(5)
6.70(1)
7.08(11)
7.08(5)
7.26(2)
7.11(9)
6.96(6)
7.15(20)
7.49(15)

2.26(18) 15.7(6)
1.58(2) 14.3(1)
1.59(4) 15.0(1)
1.94(1) 153(1)
1.24(2) 16.1(2)
1.52(4) 15.2(1)
1.53(6) 15.6(4)

9.91(55) 6.83(43)
103(1)  7.60(3)
9.62(14) 7.89(10)
10.6(1)  7.90(1)
9.04(7) 8.83(7)
9.43(2) 8.11(4)
9.45(25) 8.33(22)

1.48 16.2
1.31 155
1.26 16.0
1.20 16.5
217 14.0
2N 134
212 137
2.09 14.1
1.58 14.1
2.08 14.3
1.98 14.3
1.7115.0 15.0
2.40 134
2.64 133

8.79
8.79
9.08
8.75
13.7
135
123
11.3
109
10.7
11.2
103
13.6
132

8.39
8.42
8.85
9.23
6.67
6.68
714
6.88
7.99
7.23
7.05
1.77
6.64
6.39

10.0(1)
10.6(1)
10.7(1)
10.7(1)
11.1Q1)
11.1Q1)
11.0(1)
11.2(1)
113(1)
11.1Q1)
11.501)
10.5(1)
11.8(1)
12.0(1)
11.0(1)
123(1)
11.8(1)
11.9(1)
117
123
120
118
113
9.99
110
11.1
117
115
112
11.8
105
106

0.17(2) 2.93(5) 0.203)
0.14(2) 2.85(5) 0.21(5)
0.10(2) 2.82(14) 0.16(1)
0.15(1) 2.87(4) 0.17(2)
0.10(2) 2.68(4) 0.14(2)
0.09(2) 2.69(4) 0.10(2)
0.09(1) 2.91(4) 0.10(1)
0.13(1) 2.97(8) 0.17(2)
021(1) 3.193) 0.20(1)
0.22(1) 3.18(7) 0.14(1)
0.10(2) 2.81(14) 0.08(2)
0.74(2) 3.59(6) 0.30(2)
0.12(1) 2.992) 0.08(1)
0.15(3) 2.98(11) 0.12(4)
0.20(1) 2.79(2) 0.12(2)
0.10(1) 2.66(2) 0.13(1)
0.16(1) 2.96(1) 0.12(5)
0.15(1) 2.85(12) 0.17(1)

021 3.02 0.09
019 265 0.06
011 279 0.02
010 269 0.04
016 317 0.22
020 286 0.21
012 3.02 0.15
028 325 0.16
012 227 0.07
023 287 0.24
019 3.10 0.21
016 3.08 0.19
012 286 0.21
018 287 0.24

_ e m e R NN EST NN SN RNDWRWRDRNNDR,WRNNWNDND =W

EOSC
EOSC
EOSC
EOSC
EOSC
EOSC
EOSC
both
WOSsC
WOSsC
both

WOSC

WOSC
both -
EOSC
EOSC
WOSC
WOSC
WOSC
WOSC
EOSC
EOSC
EOSC
EOSC
EOSC
WOSC
EOSC
WOSC
WOSC
WOSC
EOSC
EOSC

2 number of samples included in group

1=analyses from Thompson et al., 1989; 2=analyses from Table 1, this study; 3=analyses from both

sources

CEOSC = chemical group sampled on the eastern rift of the 11945'N OSC, WOSC = sampled on the

western rift, both = sampled on both rifts.
parenthesized units represent 1 standard deviation of the chemical group population, in terms of
least units cited, thus 50.6(1) should be read as 50.6+/-0.1.
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Table 2-3 Starting compositions used in 1-atm. melting experiments

234

Composition SiOy  TiOp

67-0322
64-0022
61-0022
70-0022
70-002°
70-002¢
70-0024
2004-3-19

502 159 -
502 150
504 184
502 126
49.6(1) 1.20(2)
501 122
498 125

AhbO3 FeO MgO MnO CaO

158 950 7.52
161 921 791
147 103 696
160 904 824

15.8(2) 8.98(7) 8.66(6) 0.17(3) 11.9(1) 0.10(1) 2.67(6)

159 907 874
159 896 875

K0 Nay0
116 015 288
119 012 268
1.7 017 290
125 010 250
120 010 270
124 010 267

P»Os5 Total
0.17 9.4
016  99.8
0.18 99.2
013 1000
0.12(4) 992
012 1000
013  100.0

49.1(2) 1.19(2) 163(8) 8.65(9) 9.13(5) 0.09(5) 11.7(2) 0.10(1) 2.66(14) 0.04(2) 99.0

2 determined with the Smithsonian electron microprobe
b average of 368 electron microprobe analyses collected with the MIT JEOL electron microprobe,
numbers in parentheses represent 1 sigma deviation in terms of least units cited, thus 49.6(1) should
be read as 49.6 +/-0.1
€70-0022 normalized to 100%, excluding MnO
70-0023, after the following correction factors were applied: Si07:0.9944; MgO: 1.0686; NaoO: 1.076,
and then renormalized to 100 %; these correction factors were determined by comparing analyses of
the same set of 8 natural glass chips collected on each microprobe, and applying corrections for oxides
that were 2 sigma or greater outside of electron microprobe counting statistics.
as in b but average of 7 microprobe analyses



Table 2-4 Run conditions for melting experiments (see Table 3 for starting compositions and Table 5 for run product compositions)

Composition

2004-3-1

70-002

67-037

64-002

61-002

Run
#

50

40

20

10

60

70

110
120
130
140
100
110
130
140
150
100
110
140
150
100
110
130
140
150

TOC log
fo2
1223 -8.25
1213 -8.36
1188 8.72
1170 -8.95
1152 -9.39
1134 924
1160 -8.58
1152 -9.02
1140 -9.20
1128 -9.38
1191 -8.52
1171 -8.58
1140 -9.20
1128 -9.38
1110 -9.76
1190 871
1160 -8.95
1128 -9.40
1110 -9.66
1190 -8.71
1160 -8.95
1140 -9.14
1128 938
1110 -9.66

Time
(hrs)

18.6
46.0
77.8
164.2
170.2
166
93.5
93.5
1423
165
114.3
93.5
142.3
165
269.8
94.5
99.8
166.3
218.5
94.5
99.8
146.5
165
218.5

Run productsa

gl,pl,ol

gl,plol

gl,plol

gl,pl,ol,aug
gl,pl,ol,aug
gl,pl,ol,aug
gl,pl,ol

glpl,ol,aug
glpl,ol,aug
glpl,ol,aug
glplol

gl,pl,ol,aug
gl,pl,ol,aug
gl,pl,ol,aug
gl,plol,aug
gl,pl,ol

gl,pl,ol,aug
gl,pl,ol,aug
gl,pl,ol,aug
glplol

gl,pl,ol,aug
gl,pl,ol,aug
gl,pl,ol,aug
gl,pl,ol,aug

ol/lig
FeMg

0.26
0.27
0.27
0.28
0.28
0.29

0.29
0.30
0.29

0.29
0.27
0.29
0.29

0.26
0.29
0.29

0.26
0.29
0.30
0.30

KDb
aug/liq plliq
FeMg CaNa
0.81
0.75
0.91
024 1.02
023 118
023 123
025 096
024 089
025 117
024 092
030 1.13
025 109
022 100
023 1.04
022 1.08
021 128
026 106
022 114
021 113
021 130

Phase
proportions
(wt. %)

97:2:1
84:12:4
70:22:8
57:28:13:2
34:40:14:13
26:43:14:17

48:31:9:12
41:34:10:15
25:42:11:22

73:20:4:3

48:32:7:13
40:36:8:16
29:42:9:19

59:28:6:7
40:36:8:16
23:47:10:20

80:14:4:2

64:22:3:11
48:30:5:15
35:36:6:22

ZRZC

0.77
0.70
1.04
1.11
0.94
0.69

0.18
0.13
0.11

0.27
0.05
0.19
0.51

0.13
0.19
0.34

0.05
0.07
092
0.13

3 ol=glass,pl=p
liq = glass, Kp

gtlocla

se,ol= 011 ne
= (Fe

y (;lﬁl—auglte

/FeOlAMgOXth, (Na,

0*lca0li4/Nay0!ca0™th
€ sum of the residuals squared for an unweighted least squares fit of the run product compositions to the starting composition
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Table 2-5 Run product compositions for melting experiments on EPR compositions (see Table 4 for run conditions)

Run Phase? # of SiO;
anals
2004- gl 7 497(1)°
3-150 pl 3 49.6(6)
ol 3 50503)
2004- gl 7 502(2)
3.140 pl 4 493(1)
ol 3 399(4)
2004- gl 6 502(3)
3120 pl 4  503(9)
ol 3 397(4)
2004- gl 6 50.8(3)
3-1-10 pl 4 50.7(4)
Lol 4 39.6(5)
aug 8 S1.5(1.1)
2004- gl 10 50.4(4)
3160 pl 3 523(5)
ol 4 388(1)
aug 13 51.8(4)
2004- gl 10 50.0(7)
3170 pl 3 523(5)
ol 5 385(4)
aug 7 51.3(7)
70002 gl 9 50.1(4)
120 pl 6 525(8)
ol 6 389(3)
aug 1

TiO, ALO3 FeO
118(2) 16.4(1)  8.78(12)
£ 31.8(6)  0.55(5)
00d 0092 1232
138(6) 154(2)  9.46(10)
- 317(1)  0.65(4)
0.0 0.12(4) 14.1(2)
1.58(4) 142(9)  9.84(13)

- 29.8(11)  0.95(22)
0.03(1) 0.12(3) 15.3(1)
2.17(10) 13.5(2)  11.0(1)

29.9(4)  0.71(11)
0.05(1) 0.08(2) 18.1(6)
0.72(21) 2.92(78) 6.36(88)

333(20) 12.5(2) 12.9(3)

29.5(4)  0.75(4)
0.07(4) 0.06(4) 22.8(2)
0.94(14) 2.46(57) 7.94(36)

4.14(44) 12.1(5)  13.4(7)

29.1(1)  0.78(8)
0.10(1) 0.06(5) 24.9(12)
1.28(29) 2.86(72) 8.89(81)

2.52(13) 13.4(1)  11.9(1)
292(6)  0.86(11)

0.04(3) 0.38(26) 20.8(1)

0 51.7(1.1) 1.10(49) 2.84(82) 7.29(1.4)

MgO

9.00(10)
0.30(6)
46.9(5)

8.35(7)
0.30(7)
45.8(2)

7.71(12)
0.54(24)
439(2)

7.08(7)
0.40(10)

42.1(5)

16.7(6)

6.22(13)
0.36(18)

38.7(2)

16.4(5)

5.75(3)
0.30(5)

36.9(9)

16.3(6)

6.30(6)

0.32(5)
39.9(3)
15.7(1.2)

MnO
0.15(2)
0.10(1)
0.14(4)
0.17(1)
0.19(7)
0.28(1)
0.27(2)

(;.31(3)
0.16(4)

0.22(3)

036(3)
0.12(4)

0.23(3)

(;.38(1)
0.18(6)

0.16(3)

6.35(2)
0.13(4)

CaO

11.8(2)
15.5(2)
0.50(1)

12.0(1)
15.7(1)
0.47(2)

12.3(1)
14.9(4)
0.50(1)

11.5(1)

14.4(2)
0.46(3)

20.8(2)

10.4(2)

13.5(3)
0.41(3)

19.8(3)

10.0(2)

13.4(3)
0.45(2)

18.8(11)

10.8(1)

13.2(6)
0.53(6)

20.6(4) -

K70
0.10(1)
0.02(1)

0.11(2)
0.02(1)

0.14(1)
0.03(1)

0.17(2)
0.04(1)

0.25(1)
0.03(2)

0.28(3)
0.02(2)

0.38(2)
0.11(3)

NayO
2.53(10)
2.68(11)

2.63(11)
2.59(6)

2.64(21)
2.91(21)

2.52(2)
3.23(8)
6.21(6)

2.51(9)
3.83(17)

(;.26(6)

2.55(12)
3.88(22)

0.32(13)

331(9)
3.90(33)

0.28(7)

P,O5 Total

0.04(1) 99.7
- 1004
100.3

0.04(1) 99.7
- 100.3
100.6

0.04¢1) 98.8
- 99.4
99.7

0.11(5) 99.2
- 9.4

100.7.

99.3

0.48(6) 99.4
- 100.3.
101.2

99.7-

0.54(5) 99.0
- 99.8
101.3

99.9

0.19(3) 99.1
100.1
100.9
- 99.6
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Table 2-5 (cont.)

Run Phase? # of SiO)
anals
70002 gl 9 50.3(8)
130 pl 5 51909
ol 5 385()
aug 8 52.1(2)
70002 gl 8 49.2(3)
140 pl 3 532(3)
ol 5 374Q)
aug 4 51.0(1.5)
67032 gl 8 50.4(6)
110 pt 4 509(3)
col 5 388(3)
Caug 7 52.5(1)
67032 gt 7 504(5)
130 pt 4 537(7)
ol 5 381()
aug 9 49.5(22)
67032 gl 7 49.8(6)
140 pt 3 53.8(1)
ol 5 378(2)
aug 10 50.6(1.7)
67032 gl 9 49.8(4)
150 pl 3 3537(3)
ol 5 371(Q2)
aug 8 51.2(6)

TiOy AhO3 FeO MgO
280(3) 132(3) 122(6)  5.90(15)
294(2)  0.70(10)  0.27(4)
0009 0194) 2343) 380(2)
096(13) 2.48(3) 8.06(29) 16.3(4)
417(26) 120(2) 143(3)  5.51(13)
289(1) 0739)  022(3)
003(3) 021(5) 2643)  355(2)
127(27) 3.14(11) 9.70(1.4) 15.2(1.2)
21021) 13.5(2) 117(3)  7.05(18)
302(6) 0.75(22) 0.34(16)
000  021(10) 196(4)  41.2(4)
0.74(25) 2.47(61) 6.59(70) 16.9(4)
262(11) 13.02) 1302)  5.85(17)
283(4)  0.88(10) 0.31(6)
000  022(7) 228(3)  380(5)
1.74(77) 3.91(1.47)9.43(1.37) 13.9(1.9)
3.56(14) 126(1) 134@2)  531(9)
- 284(2) 063(2)  0.18(1)
0.08(5) 0225 25.8(4)  35.6(2)
1.42(46) 3.16(1.20)9.47(1.42) 14.8(1.4)
49209) 117(2) 142(3)  4.70(3)
279(5) 097(4)  0.66(60)
008(6) 021(7) 29022  333(3)
1.50(15) 2.28(38) 10.2(5)  15.6(5)

MnO

CaO

0.28(11) 10.3(3)

(;.37(1)
0.21(7)

0.30(5)

041(2)
0.24(5)

0.22(4)

(3.29(4)
0.17(5)

0.27(4)

039(4)
0.23(8)

0.31(7)

6.43(1)
0.22(5)

0.21(3)

6.45(5)
0.24(2)

13.4(3)
0.29(17)
19.5(4)

9.90(16)

12.8(2)
0.42(2)

18.0(6)

11.5(3)

14.6(3)
0.39(6)

19.93)

10.4(2)

12.4(4)
0.50(7)

20.2(4)

9.70(16)
12.0(2)

0.52(14)
19.9(9)

8.88(17)
11.8(3)

0.45(14)
18.1(6)

K70

0.45(4)
0.10(1)

0.32(6)
0.13(1)

0.17(3)
0.08(1)

0.29(5)
0.15(1)

0.57(8)
0.18(0)

0.68(5)
0.17(1)

NayO
3.25(21)
3.75(7)
(;.21 4)

2.68(21)
4.07(22)

031(8)

2.66(21)
3.11(15)

021(5)

3.16(18)
4.26(23)

0.37(10)

3.38(13)
4.54(1)

(;.31(6)

3.32(13)
4.42(8)

6.23(3)

P,05 Total

0.25(7) 989
- 9.5
100.8

99.8

0.37(5) 98.7
- 1001
100.4

98.9

0.26(6) 99.6
- 1000

1005

9.5

0.23(5) 99.2
- 1000
100.0:

99.3

0.34(7) 99.0.
- 99.7
100.5

99.9

0.45(9) 98.9
99.6

100.6

9.4
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Table 2-5 (cont.)

Run Phase? # of SiOp
anals
64-002 gl 8 50.2(2)
110 pl 4 528(7)
ol 5 389(2)
aug 17 51.8(8)
64-002 gl 11 493(2)
140 pl 4 3533(2)
ol 5 373(1)
aug 4 51.5(1.1)
64002 gl 7 484(5)
150 pl 4 541(6)
col 5 368(3)
caug 9 514(3)
61-002 gl 8 50.4(6)
110 pl 3 521(3)
ol 5 387(3)
aug 8 523(5)
61002 gl 7 50.0(7)
130 pl 4 53.3(6)
ol 5 383(3)
aug 8 52.6(8)
61-002 gl 7 49.8(4)
140 pl 4 54.8(4)
ol 5 374(Q2)
aug 5 52.134)

TiO, ALO3 FeO
23029) 13.4(2) 11.9(5)
283(5)  1.14(14)

000  021(8) 19.1(4)
0.76(21) 2.83(66) 6.70(91)

3.92(7) 11.8(1) 14.0(1)

28.5(4)  0.80(20)
0.06(4) 0.18(8) 26.6(3)
1.17(25) 2.57(63) 9.16(69)

5.28(18) 11.2(2)  15.4(4)

27.8(1.0) 0.85(22)
0.05(7) 020(4) 292(2)
1.36(10) 2.05(23) 9.92(24)

2.27(18) 13.3(4)  11.9(6)
284(5) 1.12(18)
0.17(4) 19.2(3)
2.50(29) 6.40(43)

0.00
0.72(5)

2.98(48) 12.8(4) 13.1(5)
287(7)  0.87(31)
0.20(6) 23.8(3)
2.29(44) 7.86(34)

0.00
0.81(9)

333(31) 122(3) 143(4)
282(8)  0.94(31)
0.28(8) 27.5(4)
2.17(37) 8.91(27)

0.10(5)
0.94(7)

MgO

6.76(27)
0.53(7)

41.4(2)

16.6(7)

5.43(4)
0.25(9)

353(2)

15.9(6)

4.99(3)
0.47(41)

332(2)

15.6(2)

6.71(35)

0.56(10)
41.2(5)
17.0(1)

6.06(16)
0.29(14)

37.9(3)

16.8(3)

5.29(23)
0.24(13)

34.3(4)

15.9(2)

MnO

0.22(6)

6.31(3)
0.15(6)

0.28(1)

(;.41(5)
0.18(5)

0.23(4)

0..46(3)
0.19(6)

0.23(7)

0.26(8)
0.15(5)

0.28(6)

(;.35(3)
0.24(2)

0.25(6)

(;.44(2)
0.18(2)

CaO

11.2(3)

13.3(5)
0.45(3)

20.1(5)

9.59(12)

12.6(2)
0.41(4)

18.9(2)

9.40(4)

12.0(3)
0.44(1)

18.4(4)

11.2(2)

13.7(3)
0.44(3)

20.2(3)

10.5(34)

12.9(2)
0.45(4)

19.2(4)

9.73(40)

122(2)
0.49(7)

18.4(3)

K70

0.22(2)
0.10(1)

0.35(1)
0.14(1)

0.43(3)
0.17(2)

0.19(3)
0.10(1)

031(3)
0.12(0)

0.37(4)
0.13(1)

Na,O
3.03(18)
3.74(27)
0.27(11)

2.93(7)
4.14(7)

025(5)

2.76(13)
4.50(7)

6.26(4)

2.73(21)
3.53(17)

024(4)

2.91(15)
4.09(14)

(;.22(3)

3.08(21)
4.38(14)

(;.27(2)

P05 Total

0.26(4) 99.5
- 9.9

100.4
- 99.2

0.36(1) 97.9
- 99.7
100.3

99.6

0.49(7) 98.6
- 99.9

100.5

99.2

0.26(8) 99.2
- 99.5
100.0

99.5

0.26(4) 9.2
- 1003
101.0
100.0

0.32(6) 98.7
- 100.9
100.5

98.9
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Table 2-5 (cont.)

Run Phase? # of Si0y TiOp AhOj FeO MgO MnO CaO K20 Na;O P,0O5 Total
anals

61-002 gl 8 49.2(2) 4.33(12) 11.4(1) 1538(2) 4.74(3) 0.26(4) 9.16(10) 0.43(1) 3.02(11) 0.44(4) 98.8

150 ptl 3 5502) - 27.9(2) 0.78(5) 0.16(2) - 11.3(1) 0.17(1) 4.85(8) - 100.2

ol 5 367(4) 016(6) 0.24(6) 31.3(3) 31.5(4) 047(5) 0.45(1) - - - 100.8

aug 20 50.8(1.0) 1.43(3) 2.69(94) 10.5(1.0) 14.7(9) 0.24(5) 18.7(7) - 0.30(7) - 99.4

@ Abbreviations as in Table 4
Parenthesized units represent 1 sigma of the sample of replicate analyses in terms of least units cited.
Thus, 49.7(1) should be read as 49.7 +/- 0.1
€ Element not analyzed
Element below detection limit

[}
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~ Table 2-6 Crystallizing proportions along the olivine - plagioclase - augite - liquid
boundary estimated? from experiments reported in Tables 5 and 6.

High T LowT AT estliq " Proportions®  ZR2C
Expt Expt (°) wtfrac oliv. plag  aug

70120 70130 12 092 012 050 038 010
. 70140 24 071 009 056 035 101
70130  70-140 12 078 009 061 030 113
avg (3) for 70-002 0.10(4) 0.56(7) 035(1)
67110 67130 31 075 012 044 044 010
" 67-140 43 065 011 046 043 059
" 67150 61 051 012 050 038 152
67-130  67-140 12 038 013 048 040 052
. 67-150 30 - 071 013 054 033 187
67140  67-150 18 083 014 058 028 067
avg (6) for 67-037 0.13(1) 0.50(5) 0.38(6)
64110 64140 32 072 011 054 036 041
" 64150 50 054 011 055 034 092
64-140  64-150 18 081 012 058 030 065
avg (3) for 64-002 0.11(1) 056(3) 033(3)
61110 61130 20 083 008 051 041 009
] 61140 32 066 010 053 037 032
" 61150 50 051 010 051 039 009
61130  61-140 12 0.58 027 044 029 121
" 61150 20 066 010 052 038 002
61-140 61150 18  0.82 010 056 034 016
avg (6) for 61-002 0.13(7) 0.52(4) 0.36(5)

AVERAGE OVER ALLESTIMATES  0.12(4) 0.53(5) 0.35(5)

4 proportions estimated by solving for the coefficients a,b,c,d in the equation: 1
High T liq = a Low T liq + b Low T oliv + ¢ Low T plag + d Low T aug, using
unweighted least squares. Thus the reported ’est. liq wt. fraction = a. High T
and Low T experiments were selected from down temperature sequences of
experiments on the same composition

crystalline phase proportions, (wt. fraction) (b,c,d) normalized to 1

sum of the residuals squared for the unweighted least squares estimation described
in note

b



Table 2-7 Mixing models for chemical groups sampled from the 11°45’N OSC

_ = siopn TiOjn AbO3nFeOn

Group H
model 0.19

Group I
model 0.16

GroupJ

model 0.14

Group K
model 0.24

Group M
model 0.38

Group P2
model 0.28

Group P3
model 0.11

Group T

model 0.04

Group V
model 0.19

Group W
model 0.25

Group X
model 0.11

Group O
model 0.18

MgOn CaOn KpOn NajyOn P,Osn setting®

50. 8(2)b 2.08(2)13.9(1) 11 6(1)
507 211 143
mixing components: 39% P1+61% 62—037-130 hqund

50.7(1) 2.10(3)14.3(1)11.1(1) 6.96(6) 11.3(1) 0 21(1) 3.19(3)
505 212 142 112 721 11.4 3.05
mixing components: 25% P4 + 75% 64-002-110 hquld

50. 9(1) 1. 99(5) 14 5(2) 10. 8(3)
507 = 2.06 10.

7.11(9) 11 2(1) 013(1) 297(8) 0.17(2) both
7.06 300 0.19

0.20(1) WOSC
0.22
7.15(20) 11. 1(1) 022(1) 3.18(7) 0.14(1) WOSC
722 111 3.12 0.16
mlxmg componems 52% P4 + 48% 62-037-110 hqmd
50.9(2) 1.81(4)14.0(1) 11. 3(2)
50.7 197 142 11
mixing componeiits: 23% P4 + 77% 62-037-110 liquid
51.3(1) 1.58(2)14.3(1)10.3(1) 7.60(3) 11.8(1) 0.12(1) 2.99(2) 0.08(1) WOSC
511 175 147 100 782 118 016 283 0.12
mixing components: 66% P2 + 34% 200431-10 liquid
50.7(1) 1.52(4)15.2(1) 9.43(2) 8. 11(4) 11 8(1) 0. 16(1) 2. 96(1) 0. 12(5) WOSC
505 157 153 977 832 1L 0.13 7 0.05
mixing components: 68% P6 + 32% 200431 10 liquid

50 0(3) 1. 53(6) 15 6(4) 9, 45(25) 8. 33(22) 11 9(1) 0 15(1) 2. 85(12) 0 17(1) WOSC
148 9.54 2.7

7.49(15) 11. 5(1) 0.10(2) 281(14) 008(2) both
742 116 018 2.7

mlxmg components 75% P6 + 25% 200431 10 llqllld
509 209 141 113 6.88 111 028 325 016 WOSC
509 212 141 114 6.95 111 023 3.09 0.18

mixing components: 47% P2 + 53% 67-037-130 liquid
511 208 143 107 7.23 11.5 023 287 024 WOSC
510 199 142 111 7.34 11.5 018 285 0.21

mixing components: 47% P2 + 53% 61-002-110 liquid
S1.1 198 143 112 7.05 11.2 019 310 021 WOSC
509 208 144 109 7.21 114 028 318 0.16

mixing components: 47% P2 + 53% 70-002-120 liquid
504 171 150 103 1.77 118 016 3.08 0.18 WOSC
504 174 150 103 7.93 11.8 016 280 0.20

mixing components: 66% P3 + 34% 67-037-110 liquid

50.2(1) 1.94(1)15.3(1) 10.6(1)
499 203 153 106
mixing components: 39% P1 + 61% 61-002-150 lxquld

790(1) 11. 0(1) 020(1) 2.79(2) 0.12(2) EOSC
112~ 019 280  0.15

a
b

$r% = sum of the residuals squared for the weighted least squares mass balance calculation models
parenthesized units represent 1 standard deviation of the chemical group population, in terms of

least units cited, thus 50.8(2) should be read as 50.8+/-0.2.



Table 2-8 Fractionation models for chemical groups sampled from the 11945°N OSC

SiO2n TiOzn AbhO3nFeOn MgOn CaOn K7On NajOn P20sn phase propa %AmassbP gkbm(?c
oliv - aug - plag inferre
LavaS 51.1 2.12 13.7 123 714 11.0 0.12 3.02 0.15
50.4 1.44 15.6 933 854 119 0.08 2.66 0.10 -0.12-0.33-0.55 +36 ~2
model 1 49.9 1.26 16.5 865 923 118 0.07 2.57 0.08 -0.30- -0.70 +44
Lava P7 49.7 1.20 16.5 875 923 118 0.10 2.69 0.04
Group A50.6 2.65 13.1 141 6.26 10.0 0.17 293 0.20 :
50.1 1.50 15.7 952 871 118 0.09 2.46 0.10 -0.12-0.35-0.53 +49 ~3
model 2 49.7 1.35 16.4 902 919 11.7 0.08 241 0.09 -0.30- -0.70 +54
Lava P7 49.7 1.20 16.5 875 9.23 11.8 0.10 2.69 0.04 R
Group B50.6 2.41 133 134 6.55 106 0.14 285 0.21
50.1 1.49 15.6 9.56 8.59 12.1 0.08 2.44 0.12 -0.12-0.35-0.53 +43 ~2
model 3 49.6 1.29 16.6 888 9.26 11.9 0.07 2.36 0.11 -0.30- -0.70 +51
Lava P7 49.7 1.20 16.5 875 9.23 118 0.10 2.69 0.04
Group DS51.0, 2.28 13.4 127 6.70 10.7 0.15 2.87 017
50.4 1.49 15.5 942 855 120 0.09 249 0.10 -0.12-0.35-0.53 +40 ~2
model 4 49.9 1.29 16.4 874 9.23 118 0.08 241 0.09 -0.30- -0.70 +52
Lava P7 49.7 1.20 16.5 875 923 11.8 0.10 2.69 0.04
Group E50.9 2.07 13.7 123 7.08 11.1 0.10 2.68 0.14 .
50.3 1.42 15.7 938 852 122 0.07 2.39 0.09 -0.12-0.35-0.53 +36 ~2
model 5 49.7 1.24 16.6 870 9.21 120 0.06 231 0.08 -0.30- -0.70 +44
Lava P7 49.7 1.20 16.5 875 9.23 118 0.10 2.69 0.04
Group H50.8 2.08 139 116 711 112 0.13 297 0.17
50.4 1.50 15.6 925 851 119 0.09 268 0.12 -0.14-0.31-0.55 +32 ~1
model 6 49.9 1.30 16.5 858 921 11.8 0.08 2.59 0.10 -0.30- -0.70 +41
Lava P7 49.7 1.20 16.5 875 923 118 0.10 2.69 0.04
Group K50.9 1.81 140 113 749 11.5 0.10 281 0.08
50.5 143 153 951 841 121 0.08 2.60 0.06 -0.12-0.33-0.55 +25 ~1
model 7 49.9 1.22 164 873 920 11.9 0.07 2.50 0.05 -0.30- 0.70 +36
Lava P7 49.7 1.20 16.5 875 923 118 0.10 2.69 0.04
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Table 2-8 (cont.)

SiOon TiOpn AlO3znFeOn MgOn CaOn K70n NayOn P205n phase prop? %Amass® P (kbar)
oliv- aug - plag  inferred®

Lava P7 49.7 1.20 16.5 875 923 118 010  2.69 0.04

model 8 49.9 1.30 16.0 9.15 883 119 011 275 0.04 030 - 0.70 -8 ~0.001
Lava P6 49.9 1.26 16.0 9.08 8.85 12.0 011 279 0.02

Lava P3 50.3 1.53 15.6 945 833 119 015 285 0.17

model 9 50.4 1.65 15.0 983 17.87 12.0 016 290 0.18 070 - 030 -8 ~0.001
Group N50.7 1.59 15.0 9.62 7.89 12.0 015 298 0.12

Group E50.9 2.07 13.7 123 7.08 11.1 010 2.68 0.14

mode] 1051.0 230 13. 13.2 6.60 10.7 011 2.77 0.16 0.12 0.35 0.53 -11 ~2
Group C50.8 2.34 133 13.2 6.64 10.7 0.10 2.82 0.16

LavaS 51.1 2.12 13.7 123 714 110 012  3.02 0.15

model 1150.7 1.99 139 118 730 11.0 0.11 2.95 0.14 -0.12-0.33-0.55 -6 ~2
Group G50.9 1.98 13.7 120 726 11.0 0,09 291 0.10

T 0
4 phase proportions being subtracted or added in the model (wt.%). The fractior}ation calculation useg weéght units and removsf variable
roportions of olivine, augite and plagioclase in increments of 0.02; Fe-Mg K4V = 0.29, Fe-Mg K42U8!'® = 0.23; Ca-Na Kg a8 =09
or assemblages of olivine + plagioclase and 1.1 for assemblages of olivine + plagioclase + augite. ugigte compositions for 2 - 3 kbar
bfractionation models were estimated from experiments at 1 atm., 2 kbar and § kbar (see Grove et al., 1991)
change in mass of system for step, for examsp e in fractionation model for Group A lavas, the first step involves addition of 33 increments
(()f 21 60 gf {hé: asgcgrg ¢ 0.12 olivine + 0.35 augite + 0.53 plagioclase, which is equivalent to adding 49 % to the changing model magma
Csee text gor dis(cuss?on )

243



244

Table 2-9 Comparison of values of tectonic variables and resulting geochemical effects for the 11%45'N
OSC and other nearby OSCs and migrating ridge-offset intersections

Location Half Spreading 'HotSpot’  Propagating? Migration Transform Geochemical
Rate ‘Influence? Rate Length Signature
(cmfyr) (mm/yr) (km)
95°W 2.1-3.6 no yes 37 ~ 30 LS = < 100 km
GSC MS =~ 35
X8 =" 20km
85°wW 2.1-36 no stopped 60 - 90 ~ 80 LS = ~ 200 km
GSC ~2my. MS="~5
ago XS =0km
93°W 2.1-3.6 yes Yes ? ~ 10 none
GSC .
Blanco -3 no stopped 24-30 ~ 250 IS=<75
JdF ~2my. MS="3
ago XS =0km
COBB ~3 no yes 60 - 80 ~ 30 LS="200
JdF MS= ~ 25
XS =50 km
12°37N  ~ 56 no ? no evidence <3 none
EPR for migration
in magnetics
12°54N  ~ 56 no ?WOSC  noevidence 1.6 none
EPR prop. S for migration
in magnetics
11%5N  ~ 56 no no ~ 15N ~8 LS = 60 km
EPR < 308 MS =23
>145S XS =15km
P°N ~ 56 no ? EOSC 45-55 ~8 LS = <20 km
EPR prop. S MS =19
XS =0km (?)

GSC = Galapogos Spreading Center, JDF = Jaun de Fuca Spreading Center, EPR = East Pacific Rise.

TABLE NOTES: ’Hot Spot’ influence? refers to whether or not the major element chemistry reflects a
significant hot spot signature; Propagating? to whether or not the either rift tip of the MROT is currently
propagating through the oceanic crust; Migration Rate to the average migration rate of the rift tips
relative to the underlying mantle (hot spot reference) over the past 2 m.y., except for the 11945'N OSC, in
this case the migration rate is 75 mm/yr to the north, followed by < 30 mm/yr to the south for 0.7 to 0.2
m.y.b.p., followed by >145 mm/yr to the S for 0.2 m.y. to present; Transform Lgngth to the length of the
offset that truncates the rift; Geochemical Signature is defined in terms of FeO /MgO in lavas sampled in
area, LS = length of ridge segment behind offset over which the geochemical signature of the offset is
observed, MS = maximum value of geochemical signature, if MS < 1.75, then no geochemical analomy is
observed, XS = distance behind offset of MS. (Data for GSC and JdF estimated from Sinton et al., 1983;
Hey, 1977; Karston et al., 1991; Data for 11°45'N EPR from Perram and Macdonald, 1991; Thompson et
al,, 1989; Langmuir et al., 1986; this study; Data for 12954'N from Hekinian et al., 1985, Antrim et al.,
1988; Data for 9°N from Natland et al., 1986; Smithsonian Institution Volcanic Glass File).



